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ABSTRACT OF THE DISSERTATION 

The Role of the Intestinal Microbiota in Inflammatory Bowel Disease 

by 

Seth Michael Bloom 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Microbiology and Microbial Pathogenesis 

Washington University in St. Louis, 2012 

Professor Thaddeus S. Stappenbeck, Chairperson 

 

Inflammatory bowel disease (IBD) arises from complex interactions of genetic, 

environmental, and microbial factors. The intestinal microbiota is crucial for IBD 

induction and complex shifts in microbiota composition occur in IBD, but disease has not 

been consistently associated with presence or absence of a specific microbe. It is thus 

controversial whether fulfilling Koch’s postulates for individual bacterial species is 

relevant to IBD and whether disease-associated alterations in microbial colonization are 

predictive of underlying etiology. Resolving these controversies has been challenging due 

to paucity of animal models with rapid disease onset, experimental reliance on 

gnotobiotic animals, and difficulty specifically isolating many commensal intestinal 

bacteria.  

We fulfilled Koch’s postulates in a host genotype-specific fashion, using non-

gnotobiotic methods to show that common commensal Bacteroides species induced 

disease in a genetic mouse model of IBD whereas an Enterobacteriaceae species that was 
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significantly enriched during spontaneous disease was not itself sufficient for disease 

induction. We studied mice with a human-relevant IBD-susceptibility mutation which 

spontaneously develop intestinal inflammation resembling human ulcerative colitis. 

Antibiotics blocked colitis induction and mice remained disease-free after treatment 

cessation but developed disease if subsequently colonized with intestinal contents from 

untreated donors or with intestinal contents grown in mixed culture on media selective 

for Gram-negative obligate anaerobes. We therefore isolated common commensal 

Bacteroides species, introduced them into antibiotic-pre-treated mice, and confirmed 

colonization by specific, quantitative re-isolation in culture. Isolates colonized 

susceptible and non-susceptible mice equivalently but induced disease exclusively in 

susceptible animals, suggesting susceptibility was due to differences in host response 

rather than altered colonization susceptibility.  

In contrast to commensal Bacteroides, Enterobacteriaceae were >100-fold 

enriched in the microbiota during spontaneous disease in our mice, supporting 

observations in other animal models and in human patients. However an 

Enterobacteriaceae isolate from a spontaneously colitic mouse was not sufficient to 

induce disease in antibiotic-pre-treated animals despite robust colonization.  

We thus identified distinct subsets of commensals with and without IBD-inducing 

potential and showed that these subsets would not have been predicted based on disease-

associated shifts in the microbiota. Our findings establish experimental criteria and a 

conceptual framework for understanding the intestinal microbiota's involvement in IBD. 
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Inflammatory Bowel Disease: History and Studies of Etiology 
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Epigraphs 
 
 

 
“DR. BURRILL B. CROHN, NEW YORK: In a disease of this type, in which an 

attempt is being made to establish the etiology of the disease, we have naturally taken 
great pains to exclude every known etiologic factor. Histologic sections were made of the 
tissues and stained with various types of stains. Cultures were made. Ground material 
was injected into guinea-pigs and fowl. Various types of laboratory animals were used to 
eliminate any possible form of tuberculosis. Löwenstein cultures were made. Dr. 
Klemperer, the pathologist, exhausted all the known possible scientific methods of finding 
an etiologic factor. I can say that no etiologic factor was found.” 

 
“Regional Ileitis: A Pathologic and Clinical Entity.” (1932) Burrill B. 
Crohn, MD, Leon Ginzburg, MD, and Gordon D. Oppenheimer, MD. 
Journal of the American Medical Association. 99(6):1323–1329. 

 
  
 

 
“In discussing the difficult subject of the etiology of these ulcerative diseases of 

the terminal ileum and colon, it seems desirable in the present state of knowledge to be 
very conservative and careful in the expression of one’s opinions. While ulcerative colitis 
is a fairly definite clinical and pathologic disease picture, it is doubtful if it is an etiologic 
entity…  

 “[I]t does not seem correct to assume that all, or even a large per cent of the 
ulcerative colitis cases of unknown etiology are chronic bacillary dysentery… Ulcerative 
colitis is usually sporadic; bacillary dysentery is usually epidemic. Ulcerative colitis is 
almost never encountered as contact disease; nor do certain geographical localities 
furnish more cases than others. Ulcerative colitis usually begins insidiously; bacillary 
dysentery is as a rule acute and stormy in its onset…. 

“Our opinion in the matter of the etiology of chronic ulcerative colitis may be 
summarized as follows: (1) a small per cent are unrecognized amoebic colitis cases. (2) a 
certain per cent, approximately 20%, are instances of chronic bacillary dysentery in 
whom either the dysentery organisms or the secondary invaders, or both, keep up the 
disease. (3) the cause in the remainder is as yet unknown… Three theories seem most 
plausible: (1) a primary functional (neurogenic) disturbance of the bowel and then a 
secondary infection. (2) the mucosa is first sensitized by a transient specific or special 
infection and then local or distant organisms or toxins attack the susceptible tissue… (3) 
the specific cause, whether bacterial or viral in nature, is yet to be discovered.” 

 
“The Etiology and Therapy of Ulcerative Colitis.” (1936) Asher 
Winkelstein, MD. American Journal of Digestive Disease and Nutrition. 
3(11): 839-844. 
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Inflammatory bowel disease (IBD) consists of a spectrum of chronic, non-

communicable, diarrheal diseases, including ulcerative colitis and Crohn’s disease, that 

are characterized by inflammation of the gut wall (Xavier and Podolsky 2007). IBD 

affects over 1 million people in the USA alone and is rising in prevalence worldwide 

(Loftus 2004). Historical accounts of diseases with IBD-like symptoms date back at least 

two millennia to a widely cited description by a Greek physician with the oddly 

appropriate name Soranus of Ephesus (De Dombal 1968). The first medical report 

describing ulcerative colitis by its modern name is generally credited to Sir Samuel Wilks 

in 1859, and ulcerative colitis was formally defined as a discrete pathologic entity 

distinguishable from infectious colitis by Wilks and Moxon in 1875 (De Dombal 1968; 

Pearce 2009). Crohn, Ginzburg, and Oppenheimer proposed classifying the condition that 

is now called Crohn’s disease as an entity distinct from ulcerative colitis in 1932 (Crohn, 

Ginzburg et al. 1932). By their classification, which is widely accepted today, ulcerative 

colitis and Crohn's disease are characterized respectively by continuous, ascending 

colonic inflammation that is restricted to the intestinal mucosa and by discontinuous, 

granulomatous inflammation that penetrates the intestinal wall and can occur in any 

portion of the intestinal tract (Crohn, Ginzburg et al. 1932; Xavier and Podolsky 2007). 

However since ulcerative colitis and Crohn’s disease share many features and cannot be 

diagnostically distinguished in a significant fraction of cases, it remains unclear whether 

these two forms of IBD share a common etiology, are etiologically distinct, or represent a 

collection of similar diseases arising from many different etiologies (Stenson, Hanauer et 

al. 2009). 
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Beginning with many of the earliest descriptions of IBD in modern medical 

literature, attention has focused on the possibility that disease may have a microbial cause 

(see epigraphs above). Consistent with IBD’s apparently non-communicable etiology, 

both these early investigations and many subsequent studies have failed to consistently 

associate most cases with infection by any known microbial pathogen (Crohn, Ginzburg 

et al. 1932; Winkelstein 1936; Packey and Sartor 2009). Despite the failure to identify 

specific etiologic agents, a wealth of clinical and laboratory data supports the hypothesis 

that IBD induction depends on one or more factors within the intestinal tract’s indigenous 

microbiota (Strober 2010), which is an extraordinarily dense microbial community 

comprising hundreds or thousands of commensal species many of which have never been 

grown in culture (Eckburg, Bik et al. 2005; Qin, Li et al. 2010). Medically, antibiotics 

and probiotics have therapeutic benefits in several manifestations of IBD (Sartor 2008; 

Ohkusa, Kato et al. 2010). In patients with Crohn's disease, surgical diversion of fecal 

flow produces disease remission in inflamed bowel segments and disease often recurs 

upon flow restoration (Ginzburg, Colp et al. 1939; Harper, Lee et al. 1985; Janowitz, 

Croen et al. 1998). Harper and colleagues, studying IBD patients in whom surgical 

diversion had been performed, found that experimental introduction of small bowel 

effluent into the surgically excluded bowel segments re-induced disease whereas a sterile 

ultrafiltrate of bowel effluent did not (Harper, Lee et al. 1985). Similarly, in most 

spontaneous animal models of IBD, disease is blocked by antibiotics or re-derivation into 

germ-free (gnotobiotic) facilities and IBD-susceptible germ-free animals develop disease 

upon exposure to commensal microbiota from conventionally raised hosts (Sartor 2008). 
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However it remains a subject of active investigation whether these phenomena represent 

the effects of a specific microbial species or subgroup of species, constitute a non-

specific response to microbial stimuli in general, or are due to the synergistic effects of 

multiple microbes acting together as a community (Xavier and Podolsky 2007; Sartor 

2008; Takaishi, Matsuki et al. 2008; Garrett, Gordon et al. 2010; Strober 2010).  

 While many questions remain unresolved about the microbial factors responsible 

for IBD induction, advances in immunology and genetics have revolutionized 

understanding of disease etiology and pathogenesis. IBD is now widely understood to 

consist of a pathological host immune response influenced by the complex interaction of 

genetic and environmental, as well as microbial, factors (Xavier and Podolsky 2007; 

Cadwell, Patel et al. 2010). The basis of the immune response is complex and only 

partially understood, but components of both the innate and adaptive immune system are 

clearly important with substantial evidence of a critical role for T-cells and therapy 

targeting the inflammatory cytokine TNFα is highly efficacious in many cases (Rakoff-

Nahoum, Paglino et al. 2004; Xavier and Podolsky 2007; Barnes and Powrie 2009; 

Stenson, Hanauer et al. 2009). Classical family-based genetic studies have shown that 

IBD has a strong genetic component, but disease is multigenic and genetic factors are not 

solely sufficient to explain its occurrence (Stenson, Hanauer et al. 2009). Recent data 

from multiple genome-wide association studies has led to identification of susceptibility 

alleles at nearly 100 different loci, some specifically associated with either ulcerative 

colitis or Crohn’s disease and others associated with both (Barrett, Hansoul et al. 2008; 

Franke, Balschun et al. 2008; Franke, McGovern et al. 2010). While the functional 
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significance of many loci remain obscure, several are associated with genes in pathways 

that modulate immune and epithelial function. Interestingly, these studies have revealed 

susceptibility alleles associated with multiple genes in pathways related to Interleukin-10 

(IL-10) and Transforming Growth Factor β (TGFβ) signaling, two inhibitory cytokines 

that are known from immunologic studies to play a prominent role in immunoregulation 

and intestinal homeostasis. In support of these findings, a recent kindred analysis 

identified a subset of patients with highly fulminant, rapid-onset enterocolitis due to 

recessive deficiencies in components of the receptor complex for IL-10 (Glocker, Kotlarz 

et al. 2009).  

Identification of disease-inducing microbial agents in a wide variety of diseases 

has traditionally relied on experimental infection of laboratory animals. As expemplified 

by the first epigraph at the beginning of this chapter, efforts at applying this approach to 

IBD using standard healthy animals have largely failed to induce IBD-like disease or 

result in identification of causative microbial agents (Crohn, Ginzburg et al. 1932; Packey 

and Sartor 2009). Together with epidemiologic clues, these experiments provided some 

of the earliest evidence that the IBD’s etiology is more complex than that of a classical 

infectious disease (Winkelstein 1936). Subsequent efforts to develop experimental 

models simulating IBD have included treating animals with colitis-inducing chemicals or 

drugs, transferring specific populations of immune cells into recipients lacking 

endogenous lymphocyte, and infecting animals with known enterocolitis-inducing 

microbial pathogens (Jurjus, Khoury et al. 2004; Nell, Suerbaum et al. 2010). Each of 

these approaches has yielded important information about the immunologic factors, 
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cellular pathways, potential therapies, and natural progression of intestinal inflammation. 

But with important exceptions (Onderdonk, Franklin et al. 1981; Onderdonk, Bronson et 

al. 1987; Cadwell, Patel et al. 2010), inducible models can be problematic for identifying 

indigenous microbial factors involved in spontaneous IBD since the proximate cause of 

disease in each case involves an experimental manipulation that rarely or never occurs in 

association with human disease. 

By contrast, the relatively recent availability of technology to create genetically 

engineered animal models has rendered it possible to conduct experiments which would 

have been unimaginable in the days of Crohn, Wilks, and (especially) Soranus. In the 

past two decades, an ever-increasing number of genetic animal models that develop 

spontaneous intestinal inflammation resembling human IBD have been developed 

(Horwitz 2007). These animal models, primarily mice, bear mutations in genes affecting 

many aspects of epithelial integrity and both the adaptive and innate immune systems 

(Xavier and Podolsky 2007; Mizoguchi and Mizoguchi 2010). In contrast to un-

manipulated healthy animals or animals in which disease has been experimentally 

induced, these spontaneously colitic animals have proven to be more natural candidates 

for efforts to identify potential IBD-inducing microbes and test hypotheses about the 

nature of microbial contributions to IBD etiology (Horwitz 2007; Sartor 2008). As 

described in greater detail in subsequent chapters, landmark studies using antibiotics and 

re-derivation into germ-free facilities have shown that disease in most of these models is 

largely dependent on the commensal microbiota and that it may be possible to identify 

specific commensal bacteria which play a role in disease induction (Sartor 2008). 
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Remarkably, there are a number of examples of in which deletion of a specific gene was 

observed to cause spontaneous intestinal inflammation in mice and the gene was 

subsequently shown to be associated with a risk allele for IBD in human patients 

(Mizoguchi and Mizoguchi 2010). These convergent lines of evidence raise the 

possibility that beyond serving as conceptually useful experimental models, discoveries 

in spontaneously colitic animals which bear mutations in genes linked to human IBD-

susceptibility alleles may be directly relevant to the etiology and pathogenesis of human 

IBD. 

One such animal model of particular interest was recently developed and 

characterized in collaboration between our laboratory and that of Dr. Paul Allen. The 

mice in question bear mutations affecting two different pathways that have each been 

identified as associated with IBD. The first genetic alteration in these mice consists of 

recessive deficiency in the IL-10 receptor 2 (IL10R2) protein (Spencer, Di Marco et al. 

1998), deficiency in which is known to cause severe, fulminant IBD in human patients 

within the first year of life (Glocker, Kotlarz et al. 2009). Susceptibility alleles linked to 

the IL-10 locus have also been identified for both Crohn’s disease and ulcerative colitis in 

recent genome-wide association studies (Franke, Balschun et al. 2008; Franke, 

McGovern et al. 2010). The second alteration consists of a transgenic dominant negative 

TGFβ receptor II (dnTGFβRII) expressed specifically in T-cells (Gorelik and Flavell 

2000). Although we are not aware of a human IBD-susceptibility allele linked directly to 

this gene, a recently identified risk allele for Crohn’s disease is linked to the gene 

encoding SMAD3 (Franke, McGovern et al. 2010), a signal-transducing protein that is 
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phosphorylated upon activation of the TGFβ receptor and is important for TGFβ 

induction of Foxp3+ regulatory T cells (Yoshimura, Wakabayashi et al. 2010). Mice 

bearing either of these genetic features in isolation develop somewhat variable colitis 

over a period of months (Spencer, Di Marco et al. 1998; Gorelik and Flavell 2000; Kang, 

Bloom et al. 2008). By contrast, mice that bear both genetic features, which we termed 

“dnKO mice”, all spontaneously develop fulminant intestinal inflammation with 

pathologic hallmarks of severe human ulcerative colitis by 4-6 weeks of age (Kang, 

Bloom et al. 2008). To the extent of our knowledge, disease in this model is considerably 

more rapid and robust than in other spontaneous genetic models (Kang, Bloom et al. 

2008). Co-housed littermate Il10r2+/- controls do not develop colitis, suggesting that any 

microbial triggers of colitis in dnKO mice are innocuous in exposed, non-susceptible 

hosts. Disease in dnKO mice is characterized by elevated Th1 serum cytokines, is 

partially ameliorated by neutralization of the cytokines TNFα and interferon-γ, and can 

be induced in Rag-/- recipient mice by adoptive transfer of CD4+ T-cells from dnKO 

donors (Kang, Bloom et al. 2008). 

The aim of my doctoral research has been to determine whether microbial factors 

are important for the etiology of colitis in dnKO mice and, if so, to identify specific 

bacteria that play a role in disease induction. Chapter 2 of this thesis describes 

experiments demonstrating that colitis in dnKO mice is completely responsive to 

medically relevant antibiotic treatment and suggesting that disease may be due to a 

specific subset of anaerobic bacteria. Chapter 3 describes development of an 

experimental system to test the disease-inducing potential of various commensal 



 10   

microbes, fulfillment of host-genotype-specific Koch’s postulates for a number of 

commensal Bacteroides isolates in dnKO mice, and demonstration that although 

commensal Enterobacteriaceae are greatly enriched during spontaneous disease, an 

Enterobacteriaceae isolate is not itself sufficient for disease induction. Chapter 3 also 

addresses similarities and differences between our findings in dnKO mice and results 

from other animal models with human-relevant IBD-susceptibility mutations and 

proposed both experimental criteria and a conceptual framework for further elucidating 

commensal microbial influences on IBD etiology. Chapter 4 discusses potential future 

directions arising from these findings. 
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Chapter 2: 

The dnKO mouse model of fulminant IBD is highly antibiotic responsive 
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INTRODUCTION 

 Many animal models of IBD are highly dependent on the intestinal microbiota 

(see Chapter 1) (Horwitz 2007). The clearest and most definitive demonstration of 

microbiota dependency has involved re-deriving animal models into germ-free facilities 

and demonstrating the absence of disease. Prominent examples in which this strategy has 

prevented intestinal disease include spontaneous genetic models such as HLA-B27 

transgenic rats (Taurog, Richardson et al. 1994), IL-10 deficient mice (Sellon, 

Tonkonogy et al. 1998), T cell receptor-αβ-deficient mice (Dianda, Hanby et al. 1997), 

and TRUC (Tbet-/- x Rag-/-) mice (Garrett, Gallini et al. 2010). Germ-free derivation also 

greatly mitigated colitis development in IL-2 deficient mice (Schultz, Tonkonogy et al. 

1999). Germ-free re-derivation has also prevented or mitigated intestinal inflammation in 

a number of inducible colitis models that are sometimes used to model IBD, including 

carrageenan treatment of guinea pigs (Onderdonk, Hermos et al. 1977), dextran sodium 

sulfate (DSS) treatment of mice (Pull, Doherty et al. 2005), and transfer of 

CD4+CD45Rbhigh T cells into Rag-/- recipient mice (Mazmanian, Round et al. 2008). 

 These and similar experiments have been of foundational importance, and germ-

free re-derivation may be regarded as a “gold standard” in demonstrating the importance 

of microbial contributions to disease in a given animal model. However due to both 

practical reasons and a desire to more accurately simulate the situation in human IBD 

patients, there is also strong interest in exploring the role of intestinal microbe in animal 

models through use of antibiotics. Antibiotic treatment has proven efficacious to some 

extent in a wide variety of animal colitis models including HLA-B27 transgenic rats 
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(Rath, Schultz et al. 2001), IL-10 deficient mice (Hoentjen, Harmsen et al. 2003), TRUC 

(Tbet-/- x Rag-/-) mice (Garrett, Lord et al. 2007), DSS-treated mice (Rakoff-Nahoum, 

Paglino et al. 2004), and DSS-treated, murine norovirus-infected, Atg16L1 hypomorphic 

mice (Cadwell, Patel et al. 2010). The antibiotics used have varied from study to study, 

but a common theme in the majority of models has been that antibiotics with anaerobic 

coverage, particularly metronidazole, are partially or entirely efficacious. Some studies 

have distinguished between the ability of antibiotics to prevent disease before it becomes 

established and to therapeutically treat disease after it has already developed (Rath, 

Schultz et al. 2001; Hoentjen, Harmsen et al. 2003), a question with importance both for 

understanding disease pathogenesis and for potential relevance to medical therapies.   

 We assessed whether microbial factors were important in the dnKO mouse model 

of fulminant, rapid-onset IBD by treating mice with metronidazole and ciprofloxacin 

(Kang, Bloom et al. 2008). We found that disease was highly antibiotic-responsive, with 

antibiotics completely preventing colitis by a variety of semi-quantitative and quantitative 

metrics. We also found that treatment with metronidazole and ciprofloxacin could 

therapeutically reverse even severe colitis, reproducing classic features of quiescent IBD 

in treated animals. In smaller-scale experiments we further found that metronidazole 

monotherapy was partially efficacious in preventing disease but did not appear to be 

therapeutically efficacious in established disease, while ciprofloxacin monotherapy did 

not appear to have either preventive or therapeutic efficacy. 
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METHODS AND RESULTS 

Generation of dnKO mice (developed by Silvia S. Kang and Paul M. Allen) 

Dominant negative TGFβRII mice (supplied by Richard A. Flavell) (Gorelik and 

Flavell 2000) and CRF2–4-deficient (IL-10R2−/−) mice (Genentech) (Spencer, Di Marco 

et al. 1998) were on the C57BL/6 background. All mice used in these experiments were 

bred and housed in the specific pathogen-free barrier facility on the 7th floor of the 

Clinical Sciences Research Building at Washington University. Animal protocols were 

reviewed and approved by the Washington University animal studies committee. The 

Crf2–4−/− mice lack the IL-10R2 receptor protein and are referred to as Il10r2−/− in this 

report. The dominant negative TGFβRII mice (referred to as dnTgfβrii) express a 

dominant negative TGFβRII solely in the CD4 and CD8 compartment. Mice that were 

unresponsive to IL-10R2 signaling in all compartments and TGFβ signaling specifically 

in the T cell compartment were generated by breeding dnTgfβrii  mice (hemizygous) with 

Il10r2−/− mice to yield a novel strain of mouse, dnTGFβRII (hemizygous) × Il10r2−/−, 

henceforth referred to as dnKO mice. The breeding scheme involved mating dnTGFβRII 

(hemizygous) × Il10r2+/−, mice with Il10r2−/− mice to generate four genotypes of 

littermates in equal Mendelian ratios: dnKO, Il10r2−/−, dnTGFβRII (hemizygous) × 

Il10r2+/−, (referred to as dnTGFβRII), and Il10r2+/− mice (which phenotypically resemple 

wild-type animals). 
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Antibiotic treatment blocks development of fulminant disease in dnKO mice 

At 2 weeks of age, the intestines of dnKO mice appeared normal both 

macroscopically and microscopically (Kang, Bloom et al. 2008). This observation 

indicated that general intestinal architecture development in these mice was not perturbed 

at this time. Disease induction was rapid and could be detected by 3 weeks of age, a time 

commensurate with known changes in the microbial ecology of the mammalian intestine 

that occur at the weaning–suckling transition(Palmer, Bik et al. 2007). We therefore 

explored the role of intestinal microbes at or after the suckling-weaning transition (3 

weeks of age). 

To examine whether bacteria influence disease development in the dnKO model, 

we treated mice with broad-spectrum antibiotics in drinking water. Beginning at 24 d of 

age, mice received drinking water containing high-dose ciprofloxacin and metronidazole, 

two commonly used antibiotics that are broadly active against aerobic and anaerobic 

bacterial species, respectively (Perencevich and Burakoff 2006). Mice received drinking 

water containing 0.66 mg/ml ciprofloxacin (Ahmed, van Vianen et al. 2003) and 2.5 

mg/ml metronidazole (Sigma) (Roach, Wallis et al. 1988) beginning at 24 d of age. 

Previous reports (Rath, Schultz et al. 2001) have suggested occasional refusal of mice to 

drink water that contains antibiotics, so we included 20 mg/ml sugar-sweetened grape 

Kool-Aid Mix (Kraft Foods) in the water to encourage consumption. The antibiotic 

solution was passed through a sterilizing, 0.22-μm, nonpyrogenic cellulose acetate filter 

(Corning) before delivery to mice and was replaced with freshly prepared solution two to 

three times per week.  
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Antibiotic treatment blocked development of fulminant disease in treated dnKO 

with a high degree of efficacy as assessed by survival and weight gain. Mice were 

weighed every 1-2 days using a portable electronic Ohaus scale (VWR International). 

Weights were recorded to a tenth of a gram. Individual mice died or were humanely 

killed when their weight reached ≤ 70% of their maximal weight and 45-day survival was 

analyzed by the Kaplan-Meier method. Untreated mice rapidly developed fulminant, fatal 

disease (45-day survival = 10.5%; median survival = 35 days). In striking contrast, 

antibiotic-treated dnKO mice exhibited 100% 45-d survival (Figure 2.1), a highly 

significant difference (p < 0.0001). We were thus able to compare the growth of treated 

dnKO mice with treated littermate controls (Il10r2−/−, dnTGFβRII, and Il10r2+/− 

combined) by measuring their weights over a 3-wk treatment period (Figure 2.2). Both 

groups of mice showed weight gain over the course of the experiment, and no statistically 

significant difference in weight gain was observed between the dnKO and control groups 

(p = 0.105). These results indicated that antibiotic treatment effectively blocked 

fulminant disease. 

 

Antibiotic treatment blocks colonic gross pathology in dnKO mice 

We next assessed development of intestinal pathology in antibiotic-treated dnKO 

mice. Disease severity was assessed using a gross pathology scoring system previously 

validated in this model (Kang, Bloom et al. 2008). Upon sacrifice, mice were euthanized 

and ceca and colons were immediately removed, flushed with PBS and Bouin's fixative 

(70% picric acid / 25% formaldehyde [37%] / 5% glacial acetic acid), and opened 
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longitudinally with scissors (ceca were opened from the ileocecal junction to the cecal tip 

along the greater curvature). The intestines were then pinned open mucosa-upward in 

square Petri dishes filled with wax (Carolina Biological), fixed in Bouin’s fixative for 4-8 

hours at 4°C, washed and stored in 70% ethanol. Whole mount images of fixed intestines 

were taken at 7X (cecum only), 20X, 40X, and 90X magnification. Images were scored 

for gross pathology according to a previously validated scoring system (Kang, Bloom et 

al. 2008) by an anatomic pathologist (T.S.S.) blinded to the identity of the samples (0 = 

no disease, 3 = severe disease; representative images of ceca with different degrees of 

disease severity are shown in Figure 2.3). 

Intestinal gross pathology was assessed in a cohort of age-matched, 4 week old 

dnKO and Il10r2+/- mice that were either left untreated or were treated with antibiotics 

beginning at weaning (age 3 weeks). Consistent with previous observations (Kang, 

Bloom et al. 2008), we observed development of severe intestinal pathology in the cecum 

and transverse colon of untreated dnKO but not Il10r2+/- mice. However antibiotic 

treatment completely blocked pathology development in treated dnKO mice. The 

differences among groups were highly statistically significant (p = 0.0033 in both the 

cecum and transverse colon by Kruskal-Wallis test), although the groups were 

underpowered for individual pairwise comparisons. Similar results were obtained in 

dnKO mice treated with antibiotics for longer time periods (not shown). 
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Antibiotic treatment blocks colitis development in dnKO mice 

We next assessed the effects of antibiotic treatment on histologic colitis in dnKO 

mice. Intestines were encased in 2% agar, turned on their sides (perpendicular to plane of 

microtome), paraffin embedded, cut in 5-μm sections, and stained with hematoxylin and 

eosin (H&E) at the Developmental Biology Department histology core (Washington 

University, St. Louis, Missouri, United States).  Colonic histology of untreated dnKO 

mice exhibited severe mucosal inflammation with features including crypt abscessess, 

mucosal thickening, inflammatory infiltrates, epithelial hyperproliferation, crypt dropout, 

and other features characteristic of human ulcerative colitis (Figure 2.5) (Kang, Bloom et 

al. 2008). By contrast, colons of antibiotic-treated dnKO mice and both treated and 

untreated Il10r2+/- mice showed no histologic evidence of colitis (Figure 2.5).    

To better quantify disease, we measured increases in crypt height and crypt width, 

hallmark features of the epithelial response to colonic inflammation which we have 

previously shown to be highly sensitive and precise metrics of disease (Kang, Bloom et 

al. 2008). Blinded microscopic analysis of H&E-stained histologic samples for height and 

width of well-oriented crypts in the transverse colon, and distal 0.5 cm of the rectum was 

performed at 400X magnification. By these metrics untreated dnKO mice were highly 

significantly more colitic than all other groups including antibiotic-pre-treated dnKO 

mice, which did not differ from Il10r2+/- controls (Figure 2.6). Thus, antibiotic treatment 

with metronidazole and ciprofloxacin completely blocked colitis development in dnKO 

mice. 
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Antibiotic treatment prevents mortality and reverses weight loss in severely colitic 

dnKO mice.   

Given the ability of metronidazole and ciprofloxacin combination therapy to 

prevent colitis in dnKO mice, we next asked whether these antibiotics would also have a 

therapeutic role in treated established disease. To assess treatment efficacy, we allowed a 

group of 5 dnKO mice to age and become phenotypically sick before initiating treatment. 

Mice aged ≥28 days were begun on metronidazole and ciprofloxacin combination therapy 

if they fell below 90% of their maximum and had lost weight on 3 consecutive days or if 

they fell below 80% of their maximum body weight. (All mice were aged 28-32 days at 

beginning of treatment.) Two untreated age-, sex-, and weight-matched dnKO mice 

retrospectively identified from previous survival experiments were selected as controls 

for each antibiotic-treated mouse (total of 10 untreated control mice). Mice were weighed 

daily and sacrificed according to humane guidelines as described above.  

We found that treatment with metronidazole and ciprofloxacin reversed even 

advanced disease in dnKO mice. Antibiotics resulted in significantly improved survival 

and weight gain (Figure 2.7). Whereas untreated matched control mice had a median 

survival of just 5 days, the treated mice exhibited significantly enhanced survival (p = 

0.016, logrank test) and 3 out of 5 exhibited substantial and prolonged weight gain 

(Figure 2.7). Of the two treated mice that succumbed, one died within the first day of 

treatment (presumably before antibiotics could take effect; pathology not analyzed). The 

second survived longer than all untreated control mice before being sacrificed for humane 

reasons due to weight loss after 17 days of treatment. However its cecum and colon were 
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subsequently observed to be non-colitic, suggesting the weight loss occurred for extra-

intestinal reasons. 

 

Antibiotic treatment of severely colitic dnKO mice reverses mucosal thickening and 

ulceration and induces unusual gross mucosal characteristics 

We next assessed the effects on the colonic mucosa of antibiotic treatment in 

severely colitic mice. Healthy colonic mucosa, such as that present in Il10r2+/- mice 

(Figure 2.8 A) or in dnKO mice treated with antibiotics prior to colitis development 

(Figure 2.8 B) has a relatively even mucosal surface with regular, densely packed crypts 

with circular openings. In severe colitis (Figure 2.8 C), colonic mucosa undergoes 

ulceration and thickening with crypt dropout (loss of many crypts), development of 

thickened and dysmorphic crypt openings, and occasional formation of pseudopolyps 

(areas of residual mucosa surrounded by ulceration). The colons of successfully treated, 

previously colitic dnKO mice were less thickened than colons of untreated dnKO mice (if 

thickened at all) and were not ulcerated, but they were grossly dysmorphic due to the 

residual damage from inflammation (Figure 2.8 D to F). They exhibited fewer crypts per 

unit area (a phenomenon known as atrophy (Riddell, Goldman et al. 1983)), less even 

surface, and residually dysmorphic crypt openings. Thickening of the colon in Figure 2.8 

E and F is completely reversed and many areas are evident which are completely lacking 

in crypts although they are not ulcerated. The remaining crypts are clustered in small 

“islands” (usually two crypts together in a doublet), suggestive of post-colitic crypt 
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fission (division). All of these features are suggestive of healing mucosa still exhibiting 

the after-effects of severe colitis. 

 

Antibiotic treatment of severely colitic dnKO mice reverses inflammation and 

induces mucosal characteristics with classic features of quiescent IBD 

Remarkably, we found that antibiotic treatment in severely colitic mice produced 

the stereotypical histologic hallmarks of quiescent colitis (quiescent IBD). Figure 2.9 

shows images of the colon of formerly colitic mice rescued with antibiotics. Colitis has 

largely disappeared, with reduced inflammatory infiltrates, little or no hyperplasia, and 

signs of healthy epithelial cells including mature, polarized surface epithelium and a 

relatively normal census of mature goblet cells. However the mucosa remains severely 

dysmorphic structurally with distorted branching and budding crypts – some showing 

separation from the muscularis mucosae – and widespread crypt dropout (atrophy). There 

are also epithelium-lined cyst-like structures that may represent the sites of former crypt 

abscesses. Colons from formerly colitic mice thus exhibit the classic features of quiescent 

colitis or quiescent IBD, which is seen in IBD patients whose colitis is in remission 

(Riddell, Goldman et al. 1983).  
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Metronidazole monotherapy provides survival benefit to dnKO mice before disease 

develops, but metronidazole treatment in established disease or ciprofloxacin alone 

does not.  

 We next asked whether metronidazole or ciprofloxacin played a more important 

role in colitis treatment in dnKO mice by treating with each of them individually. We 

treated mice either at weaning (21 days of age) or at ≥24 days of age. We observed that 

there were substantial survival benefits for mice treated with metronidazole at weaning, 

but not for any of the other groups (p < 0.0001). Although sample sizes in most groups 

were small and have not been repeated, the results are strongly suggestive that 

metronidazole treatment is of primary importance early in disease, although combination 

therapy may be more efficacious and appears required later in disease. Given the 

microbial species targeted by metronidazole (Perencevich and Burakoff 2006), these 

results suggested that obligate anaerobes might play a crucial role in disease induction in 

dnKO mice. 

 

DISCUSSION 

 In many animal models of spontaneous IBD, disease is known to be microbiota 

dependent (Horwitz 2007). Antibiotic treatment has been one important tool for 

examining microbiota dependence of disease. Here we examined the effects of treatment 

with the antibiotics metronidazole and ciprofloxacin on colitis in the medically relevant 

dnKO mouse model of disease. We found that metronidazole and ciprofloxacin 

combination therapy were highly efficacious in completely preventing colitis in dnKO by 
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several metrics of disease and also efficacious in treatment of established disease. 

Importantly, mice successfully treated after development of severe disease showed 

classic colonic epithelial features seen in human patients with quiescent IBD, which may 

be important precursors to IBD-associated colon cancer (Greenstein, Sachar et al. 1979; 

Riddell, Goldman et al. 1983; Itzkowitz 2003). We further found that metronidazole 

monotherapy was more efficacious than ciprofloxacin monotherapy in preventing 

disease, although neither appeared as efficacious as combination therapy. 

 This is not the first study to explore the efficacy of antibiotics in murine IBD 

(Hoentjen, Harmsen et al. 2003; Rakoff-Nahoum, Paglino et al. 2004; Heimesaat, 

Bereswill et al. 2006; Garrett, Lord et al. 2007). However previous studies have either 

relied on experimentally administered agents to induce inflammation or on mouse strains 

that develop less severe forms of spontaneous IBD in which treatment efficacy is 

primarily assessed on the basis of histology scores without additional important metrics 

such as survival, weight gain, gross pathology, serum cytokine levels, and T cell 

activation (Kang, Bloom et al. 2008). We are aware of no other models in which 

antibiotic treatment has produced clinical disease remission and histologic healing as 

dramatic as that which we observe in antibiotic-treated dnKO mice. Our findings have 

similarities to those in HLA-B27 transgenic rats, where metronidazole monotherapy had 

preventive efficacy but not therapeutic efficacy in established disease, although that study 

observed some preventive efficacy of ciprofloxacin as well (Rath, Schultz et al. 2001). 

Metronidazole and ciprofloxacin combination therapy was not assessed. 
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 Although antibiotics, including ciprofloxacin and metronidazole, are sometimes 

used to treat patients with IBD, research regarding their efficacy remains inadequate. 

Yamada’s Textbook of Gastroenterology comments on a “surprising absence of 

controlled data supporting the use of antibiotics in patients with Crohn’s disease”,  

(Stenson, Hanauer et al. 2009), although a meta-analysis demonstrated beneficial effects 

of broad-spectrum antibiotic treatment (Rahimi, Nikfar et al. 2006). To our knowledge, 

the utility of metronidazole and ciprofloxacin combination therapy in ulcerative colitis 

has not been adequately assessed (Sartor 2003; Gionchetti, Rizzello et al. 2006; 

Perencevich and Burakoff 2006), and recommendations vary regarding usage in patients 

with fulminant ulcerative colitis (Cuffari, Present et al. 2005; Baumgart and Sandborn 

2007; Ho, Lees et al. 2007). However a recent randomized, double-blind, placebo-

controlled trial of a 2-week course of broad-spectrum antibiotics (amoxicillin, 

tetracycline, and metronidazole) in ulcerative colitis patients found significant short- and 

long-term benefits in terms of both clinical disease and mucosal healing, with treatment 

providing greater benefit in patients with more active disease (Ohkusa, Kato et al. 2010). 

Our results suggest that carefully controlled studies examining the benefits of combined 

ciprofloxacin and metronidazole in ulcerative colitis may also be appropriate. 

Our findings suggest not only that disease in dnKO mice is microbiota-dependent, 

but that it might depend on specific microbial factors. The antibiotic regimen we used 

does not sterilize the gut (Heimesaat, Bereswill et al. 2006; Swidsinski, Loening-Baucke 

et al. 2008), suggesting that a germ-free state is not required for complete blockade of 

disease. Furthermore, the observation that metronidazole monotherapy had preventive 
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effects suggests that disease may depend in significant proportion on anaerobic microbes 

in the gut, given the known action and coverage of metronidazole (Rath, Herfarth et al. 

1996; Perencevich and Burakoff 2006). Based on the results described here, we 

hypothesize that disease in dnKO mice depends on a subset of commensal bacteria, likely 

obligate anaerobes, which are eliminated by antibiotic treatment.  
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Figure 2.1: Treatment with ciprofloxacin and metronidazole promotes survival in 

dnKO mice.  

45-day survival of untreated dnKO mice (n = 19; 45-d survival = 10.5%; median survival 

= 35 d) and dnKO mice receiving metronidazole and ciprofloxacin in drinking water 

beginning at 24 days of age (n = 8; 45-d survival = 100%). Individual mice died or were 

humanely killed when their weight reached ≤ 70% of maximal weight. Survival was 

analyzed by the Kaplan-Meier method, and statistical significance of difference between 

groups is p < 0.0001, by log-rank test. Upward arrow, antibiotic treatment begun at age 

24 d. (Kang, Bloom et al. 2008). Representative of multiple independent experiments. All 

statistical analysis was performed using Prism v3.02 (GraphPad Software) unless 

otherwise indicated. (Some survival data was generated by Silvia S. Kang). 
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Figure 2.1 
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Figure 2.2: Treatment with ciprofloxacin and metronidazole promotes weight gain 

in dnKO mice. 

Weight gain of antibiotic-treated mice (n = 2 Il10R2+/-, n = 3 Il10R2-/-, n = 4 dnTgfβrii, 

and n = 7 dnKO) plotted individually (A) or as mean weights (B) of treated dnKO mice 

(n = 7) and treated controls (n = 9; non-dnKO genotypes combined) ± SEM. Data were 

pooled from three separate experiments using dnKO and littermate controls. To account 

for the longitudinal nature of the data, analysis of weight change over the course of 

treatment was performed using generalized estimating equations. The mice gained weight 

over the course of the experiment (p < 0.001), and the dnKO and control groups did not 

differ significantly (p = 0.105). Statistical analysis was performed by Michael J. Geske 

(Kang, Bloom et al. 2008). Representative of multiple independent experiments 
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Figure 2.2 
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Figure 2.3: Scoring system for intestinal gross pathology.  

Representative cecal whole mount samples imaged at 7X, 20X, 40X, and 90X 

magnification using an Olympus SZX12 dissecting microscope with an Olympus DP70 

Digital Microscope Camera at 1360x1024 image size (Diagnostic Instruments). Samples 

were scored by an anatomic pathologist (T.S.S.) blinded to the identity of the samples 

according to a previously validated scoring system: 0, normal; 1, focal ulcers present; 2, 

ulcers and diffuse, mild mucosal thickening; and 3, ulcers and diffuse, severe mucosal 

thickening (Kang, Bloom et al. 2008). Samples in which different areas of the image 

most closely matched different scoring criteria were assigned the average of the two 

scores. 7X scale bar = 6 mm; 20X scale bar = 2 mm; 40X scale bar = 1 mm; 90X scale 

bar = 0.44 mm. 
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Figure 2.3 
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Figure 2.4: Treatment with ciprofloxacin and metronidazole blocks colonic gross 

pathology in dnKO mice. 

Cecum and transverse colon pathology scores of 4-week-old untreated and antibiotic-

treated Il10r2+/- and dnKO mice. Abx = antibiotics (metronidazole + ciprofloxacin in 

drinking water). Intestinal whole mounts were scored for gross pathology in a blinded 

fashion by an anatomic pathologist (T.S.S.) according to a validated system: 0 = no 

pathology, 3 = severe pathology (see Figure 2.3). Individual (squares) and median (bars) 

pathology scores are displayed. Kruskal-Wallis test: 

(A) Cecum pathology score: H3 = 13.75, p = 0.0033. 

(B) Transverse colon pathology score: H3 = 13.75, p = 0.0033. 
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Figure 2.4 
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Figure 2.5:  Treatment with ciprofloxacin and metronidazole blocks colonic 

inflammation in dnKO mice. 

Representative images of H&E stained rectal histology of 4-week-old untreated and 

antibiotic-treated Il10r2+/- and dnKO mice as described in Figure 2.4. Representative 

images of rectal histology (≤0.5 cm from the anorectal junction) were taken using an 

Olympus DP70 Digital Microscope Camera on an Olympus BX51 microscope. The 

rectum of the untreated dnKO mouse exhibits mucosal thickening, inflammatory 

infiltrates, epithelial hyperproliferation, crypt dropout, and other features characteristic of 

human ulcerative colitis (Kang, Bloom et al. 2008). The features of inflammation are 

absent from the rectum of the antibiotic-treated dnKO mouse.  Scale bar = 100 µm. 



 35   

Figure 2.5 
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Figure 2.6: Treatment with ciprofloxacin and metronidazole prevents colitis in 

dnKO mice as assessed by quantitative metrics of the epithelial response to 

inflammation. 

Heights and widths of well-oriented crypts from the transverse colons and rectums of 4-

week-old untreated and antibiotic-treated Il10r2+/- and dnKO mice as described in Figure 

2.4. Data displayed as mean +/- SEM. Statistical significance determined by 1-way 

ANOVA with post-hoc Tukey’s test. All statistically significant pairwise comparisons are 

displayed: **, p < 0.01, ***, p < 0.005. 

(A) Transverse colon crypt height: F3,11 = 40.87, p < 0.0001. 

(B) Transverse colon crypt width: F3,11 = 10.71, p = 0.0014. 

(C) Rectum crypt height: F3,11 = 33.25, p < 0.0001. 

(D) Rectum crypt width: F3,11 = 9.501, p = 0.0022.  
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Figure 2.6 
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Figure 2.7: Treatment with ciprofloxacin and metronidazole prevents mortality and 

reverses weight loss in severely colitic dnKO mice.  

dnKO mice (n = 5) treated with metronidazole + ciprofloxacin after developing severe 

disease (≥ 4 weeks of age) were each matched with two untreated age-, sex-, and weight-

matched dnKO mice (n = 10 total untreated mice). Antibiotic treatment resulted in (A) 

significantly improved 25-day survival (p = 0.016, logrank test) and (B) weight gain as 

compared to controls. One antibiotic-treated mouse died during the first day of treatment; 

necropsy was not performed. A second antibiotic-treated mouse was sacrificed for 

humane reasons due to weight loss after 17 days of treatment and observed to be non-

colitic. Data compiled from multiple independent experiments with 1-2 mice per group. 
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Figure 2.7 
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Figure 2.8: Treatment with ciprofloxacin and metronidazole reverses established 

colitis in dnKO mice, producing grossly dysmorphic colonic mucosa with evidence 

of crypt dropout.  

Whole mount images of descending colon mucosa. 

(A) 4 week old Il10r2+/- and (B) dnKO mice treated with antibiotics before onset of 

severe disease (metronidazole + ciprofloxacin begun at 21 days of age). Colons exhibit 

even mucosal thickness with dense, regularly spaced, circular crypt openings. 

(C) Descending colon from an untreated, severely colitic 4 week old dnKO mouse 

exhibiting areas of frank mucosal ulceration surrounding a pseudopolyp with evidence of 

crypt dropout (atrophy) and hyperplastic, grossly dysmorphic crypt openings. 

(D to F) Descending colon mucosa from dnKO mice treated with antibiotics begun at ≥4 

weeks of age (after development of severe colitis) and continued for ≥17 days. 

(D) Colon exhibits no frank ulceration but has uneven mucosal thickness and residually 

dysmorphic crypt architecture due to prior disease. 

(E) Colon is not thickened or ulcerated but exhibits severe diffuse crypt dropout as 

demonstrated by the reduced number of crypts per unit area, Pattern of crypts in doublets 

and “islands” suggests the occurrence of crypt fission.  

(F) Magnified image of colon in (E), inset. 

Bar = 1 mm. 
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Figure 2.8 
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Figure 2.9: Treatment with ciprofloxacin and metronidazole reverses established 

colitis in dnKO mice, producing histologic hallmarks of quiescent ulcerative colitis. 

Images of H&E stained descending colon histology from 4-week old (A) Il10r2+/- and 

(B) dnKO mice treated with antibiotics before onset of severe disease (see Figure 2.8). 

Colons exhibit normal crypt architecture with absence of immune infiltrates and dense, 

regularly spaced, non-branching colonic crypts that extend to the muscularis mucosae. 

(C) Descending colon from an untreated, severely colitis 4-week old dnKO mouse 

exhibiting marked mucosal thickening, infiltration of inflammatory cells, ulceration, 

thinning of surface epithelium, epithelial hyperplasia in crypts, and crypt dropout. Images 

of (D-E) descending colon and (F) transverse colon from a dnKO mouse treated with 

antibiotics after developing severe colitis. Colon exhibits dramatic reductions in mucosal 

inflammation and crypt hyperplasia with mature surface epithelium and presence of 

goblet cells, especially in the transverse colon. Mucosa shows classical features of 

quiescent colitis including widespread crypt dropout (atrophy) and exhibit distorted, 

branching crypts (arrows), some of which are separated from the muscularis mucosae, 

and epithelium-lined cyst-like structures that may represent former crypt abscesses 

(Riddell, Goldman et al. 1983). 
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Figure 2.9 
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Figure 2.10: Metronidazole monotherapy begun at weaning provides survival 

benefit to dnKO mice, but metronidazole monotherapy begun later or ciprofloxacin 

monotherapy at either age does not.  

45-day survival of dnKO mice treated with metronidazole or ciprofloxacin beginning at 

the indicated ages. Survival differences between groups are statistically significant (p < 

0.0001, log-rank test). Survival data for metronidazole therapy begun at 21 days of age 

are representative of multiple independent experiments; other groups consist of compiled 

data from ≥2 experiments each with 1-3 mice per group. 
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Figure 2.10 
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CHAPTER 3   

Commensal Bacteroides fulfill host-genotype-specific Koch’s postulates in the dnKO 

mouse model of inflammatory bowel disease 
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INTRODUCTION 

The commensal microbiota is widely recognized to play a critical role in the 

pathogenesis of inflammatory bowel disease (IBD) (Xavier and Podolsky 2007). But 

despite many decades of research (Winkelstein 1936; De Dombal 1968; Packey and 

Sartor 2009), there is no clear consensus on precisely how intestinal microbes induce IBD 

(Strober 2010). In particular, two related and fundamentally important questions remain 

unresolved: (1) is IBD induced by specific subsets of commensal bacteria and, if so, (2) 

can these subsets be identified based on disease-associated alterations in levels of 

colonization? 

One approach to answering these questions has involved profiling the microbiota 

of affected individuals, a strategy recently revolutionized by the widespread availability 

of culture-independent mass sequencing that is an important ongoing focus of the Human 

Microbiome Project (Peterson, Frank et al. 2008; Peterson, Garges et al. 2009). Profiling 

studies have detected complex IBD-associated alterations in microbiota composition but 

have not found disease to be consistently associated with presence or absence of a 

specific microbe (Frank, St Amand et al. 2007; Takaishi, Matsuki et al. 2008; Packey and 

Sartor 2009; Frank, Robertson et al. 2010; Qin, Li et al. 2010). These findings have led 

some to theorize that community-wide alterations in the microbiota rather than specific 

microbiota elements may be responsible for disease (Garrett, Gordon et al. 2010), 

whereas others have suggested that groups of microbes which are enriched during disease 

likely play a pro-colitic role while microbes which are depleted may be anti-

inflammatory (Sokol, Pigneur et al. 2008; Takaishi, Matsuki et al. 2008). But although 
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profiling studies have provided invaluable insights into the microbiota dynamics 

associated with disease, they have not directly addressed the question of causality (Frank, 

St Amand et al. 2007; Peterson, Garges et al. 2009). It thus remains an open question 

among many researchers whether fulfilling Koch’s postulates for individual bacterial 

species is relevant to IBD and whether disease-associated alterations in microbial 

colonization are predictive of underlying disease etiology (Xavier and Podolsky 2007; 

Takaishi, Matsuki et al. 2008; Cerf-Bensussan and Gaboriau-Routhiau 2010; Garrett, 

Gordon et al. 2010).  

Directly assessing disease-inducing roles of specific microbes in IBD in a 

reductionist fashion by applying Koch's postulates has proved challenging for several 

reasons (Burke 1997). Although progress has recently been made, there is a paucity of 

spontaneous animal models exhibiting rapid disease onset that bear human-relevant 

disease susceptibility mutations, with some models taking months to develop even 

relatively mild disease (Kang, Bloom et al. 2008). Furthermore, experiments using IBD-

susceptible animal models have generally relied on gnotobiotic (germ-free) animals 

(Horwitz 2007; Sartor 2008). Gnotobiotic animal models have provided many 

foundational insights into the microbiota’s influence on both homeostatic development of 

the immune system and on intestinal diseases (Mazmanian, Liu et al. 2005; Ivanov, 

Atarashi et al. 2009; Round and Mazmanian 2009). However it is not always clear how 

directly findings from these models translate to conventionally raised animals or to 

humans since many of the microbes tested have been human-derived isolates rather than 

rodent-adapted strains, there are well-documented examples of intestinal bacteria 
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inducing dramatically different disease phenotypes in gnotobiotic and conventionally 

raised hosts (Rhee, Wu et al. 2009; Garrett, Gallini et al. 2010), and gnotobiotic animals 

are immunologically underdeveloped, which could have important effects on patterns of 

immunopathology (Mazmanian, Liu et al. 2005; Atarashi, Nishimura et al. 2008; Ivanov, 

Atarashi et al. 2009; Round and Mazmanian 2009). The intestinal microbiota's vast 

diversity and variability (Turnbaugh, Quince et al. 2010) has posed a further challenge 

for identification of candidate disease-inducing bacteria, and specifically isolating and 

cultivating many intestinal bacteria has been prohibitively difficult (Savage 1977; 

Eckburg, Bik et al. 2005; Sartor 2008). 

Despite these challenges, important progress has been made through screening of 

specific bacteria or defined bacterial mixtures for disease induction in gnotobiotic animal 

models. In most models, including Il10-/- mice (Kim, Tonkonogy et al. 2007), Il2-/- mice 

(Waidmann, Bechtold et al. 2003), TRUC (Tbet-/- x Rag-/-) mice (Garrett, Gallini et al. 

2010), and HLA-B27 transgenic rats (Rath, Herfarth et al. 1996; Rath, Wilson et al. 

1999), certain bacteria or bacterial pools have been sufficient for disease induction 

whereas others have not, suggesting microbial specificity may be important in disease 

induction (Sartor 2008). Broader interpretation of findings is difficult since particular 

bacteria have produced different and sometimes apparently contradictory effects in 

different animal models (Rath, Wilson et al. 1999; Waidmann, Bechtold et al. 2003; Kim, 

Tonkonogy et al. 2007). Surprisingly, isolates of IBD-enriched bacteria from human 

patients have frequently failed to induce disease in gnotobiotic experiments whereas 

other bacteria have been colitogenic (Rath, Herfarth et al. 1996; Sellon, Tonkonogy et al. 
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1998) However as noted above there are several reasons why these results may not 

directly translate to human disease, including the fact that the isolates were not host-

species-adapted. In a pioneering series of studies focusing on host-adapted bacteria, 

Onderdonk and colleagues isolated a panel of commensal bacteria from guinea pigs and 

screened them in gnotobiotic guinea pigs treated with the colitis-inducing molecule 

carrageenan. These studies identified Bacteroides vulgatus as crucial for disease 

pathogenesis (Onderdonk, Franklin et al. 1981; Onderdonk, Bronson et al. 1987; 

Onderdonk 2005). B. vulgatus also specifically induced colitis in gnotobiotic HLA-B27 

transgenic rats (Rath, Herfarth et al. 1996; Rath, Wilson et al. 1999), but it did not induce 

disease in the more widely studied Il10-/- mouse model (Sellon, Tonkonogy et al. 1998) 

and was actually protective against colitis in Il2-/- mice (Waidmann, Bechtold et al. 

2003). It is unclear which, if any, of these seemingly contradictory findings most 

realistically mimics the situation in human disease. 

Based on our previous findings (Chapter 2), we hypothesized that disease in the 

antibiotic-responsive, rapid-onset, medically relevant dnKO mouse model of spontaneous 

IBD depends on a subset of commensal bacteria, likely obligate anaerobes, which are 

eliminated by antibiotic treatment. Here we use non-gnotobiotic methods to fulfill host-

genotype-specific Koch's postulates for commensal Bacteroides species in dnKO mice. 

Based on screening experiments, we isolate commensal intestinal bacteria from our 

mouse colony, introduce them into antibiotic-pre-treated mice, assess disease 

development, and confirm host colonization by quantitatively re-isolating the 

experimentally introduced bacteria in culture. Using this approach, we show that 
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common commensal Bacteroides species colonize IBD-susceptible and non-susceptible 

hosts equivalently, but induce disease exclusively in susceptible animals. By contrast, we 

show that commensal Enterobacteriaceae are strikingly enriched during spontaneous 

disease, but a colitis-enriched Enterobacteriaceae isolate is not sufficient for disease 

induction despite robust colonization. We thus identify distinct commensal bacterial 

subsets with and without disease-inducing potential and show that their colitogenicity 

would not have been predicted based on disease-associated alterations in colonization.  

 

METHODS AND RESULTS 

Development of non-gnotobiotic methods to screen for disease-inducing microbes in 

antibiotic-pre-treated dnKO mice 

We developed a system utilizing the dnKO model’s rapid disease onset and 

exquisite antibiotic-responsiveness to screen commensal bacteria for colitis-inducing 

potential. Since antibiotic treatment was highly effective in blocking disease in dnKO 

mice (see Chapter 2), we hypothesized that mice pre-teated with antibiotics should 

remain disease-free after treatment cessation if isolated from microbial exposures but 

should develop disease if exposed to the microbiota of untreated mice. In initial 

experiments, mice were housed in our specific-pathogen free barrier facility on the 7th 

floor of the Clinical Sciences Research Building at Washington University. (Animal 

protocols for this an all subsequent experiments were approved by Washington 

University's animal studies committee.) In this facility, it is standard practice for 

individual cage components (cage bottoms, cage lids, wire racks, water bottles, and feed) 
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to be sterilized by autoclave or irradiation, stored in open air in the mouse facility, and 

assembled as necessary for use. The disinfectant Clidox®-S (Pharmacal Research 

Laboratories, Inc.) is used at a 1:18:1 concentration and each batch of disinfectant is used 

for several days before a fresh batch is made. For our experiments, we disinfected our 

hands and the exterior of all cages with Clidox®-S solution before handling mice. Cages 

containing mice are opened only in hoods with HEPA-filtered air.  

In initial experiments, dnKO mice were pre-treated with antibiotics for 10 days 

with frequent transfer to freshly assembled cages and then removed from treatment. (All 

experiments in Chapter 3 were performed using combined metronidazole + ciprofloxacin 

treatment.) After treatment cessation, mice were either maintained in freshly assembled 

cages (“isolated”, negative controls) or were co-housed with an untreated, non-dnKO 

littermate mouse in a cage containing that mouse’s dirty bedding and were also smeared 

with 2 mL per mouse of a suspension of intestinal contents harvested from an untreated 

donor mouse and suspended in 10 mL of sterile PBS (Backhed, Ding et al. 2004). Mice 

were sacrificed after 7 days and colons were analyzed for pathology. Antibiotic-pre-

treated dnKO mice (but not non-dnKO littermate controls) experimentally exposed to 

intestinal contents developed severe colitis with ulceration and shortening of the colon, 

but colons of isolated dnKO mice also showed some degree of mucosal thickening and 

inflammation (Figure 3.1 and not shown). These results confirmed that our approach 

could work in principle, but suggested that more stringent animal care practices would be 

required to ensure precision and reproducibility. 
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To enhance precision and reproducibility of mouse handling practices, we 

modified several experimental parameters. Instead of conventional caging, we began 

using “enhanced caging” that had been autoclaved after assembly and began rigorously 

decontaminating all surfaces with a stronger 1:8:1 solution of Clidox®-S prepared fresh 

daily. These techniques were previously used by the Virgin laboratory during discovery 

of murine norovirus (Karst, Wobus et al. 2003). We performed all animal care personally 

rather than allowing Division of Comparative Medicine technicians to handle the cages. 

We also began using enhanced contact precautions, donning an extra pair of gloves and 

isolation gown and changing these outer layers after handling mice or cages from each 

experimental group. Additionally, we began pre-treating mice with antibiotics for ≥3 

weeks instead of 10 days prior to treatment cessation to ensure that no residual antibiotic-

sensitive organisms remained. These enhanced animal care practices proved highly 

effective (see below). 

 

Development of a standardized stock of intestinal contents 

The human intestinal microbiota varies considerably from individual to individual 

in terms of both the bacterial species present and their relative proportions (Turnbaugh, 

Quince et al. 2010). We performed a qualitative experiment to examine microbiota 

variability between mice. Age-matched, untreated male mice (non-dnKO genotypes) 

were co-housed beginning at weaning (age 3 weeks). After ~3 weeks of co-housing, mice 

were sacrificed on each of two successive days (2 mice per day). Cecal contents were 

collected, pooled, serial diluted, and dilutions were cultured aerobically on chocolate 
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agar. The striking day to day differences in relative frequency of different colony types 

qualitatively illustrated that even in co-housed mice there was a high degree of 

microbiota variability. 

To establish a reproducible source of intestinal microbes for subsequent 

experiments, we adapted an approach that was successfully employed in an experimental 

model of intra-abdominal abscesses to characterize the pathogenic contributions of 

various bacteria in a complex polymicrobial mixture and has also been used in 

experiments with “humanized” gnotobiotic mice (Onderdonk, Weinstein et al. 1974; 

Weinstein, Onderdonk et al. 1974; Turnbaugh, Ridaura et al. 2009). Ceca were harvested 

from untreated non-dnKO mice from the dnKO colony and transferred to the anaerobic 

chamber where contents were removed, suspended in sterile, pre-reduced PBS + 20% 

glycerol, and frozen at -80°C in single-use aliquots in 1.8 mL CryoTube Vials (377267, 

Nunc). Prior to freezing, an aliquot of the mixture was titered on non-selective anaerobic 

and aerobic media. Subsequently, frozen aliquots were thawed, adjusted to the same 

concentration of total cecal material, and titered on the same media types. We observed 

some loss of viability in the frozen stock, with greater loss among total anaerobic bacteria 

than aerobes (Table 3.1). 

 

Sensitive, quantitative system to screen for disease-inducing microbes in antibiotic-

pre-treated dnKO mice 

Using the methodologic improvements described above, we validated our non-

gnotobiotic screening system for disease-inducing microbes in antibiotic-pre-treated 
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dnKO mice. dnKO mice housed under enhanced animal care conditions (see above) were 

pre-treated with antibiotics for ≥3 weeks with frequent transfers to fresh sterile cages to 

eliminate residual antibiotic-sensitive bacteria from their environment. Two days after 

treatment cessation, the mice were orogastrically gavaged with sterile PBS or freshly 

thawed aliquots of intestinal contents from untreated animals (Table 3.1, Figure 3.3). 

Mice gavaged with intestinal contents but not PBS developed severe disease that was 

fatal in some cases (Figure 3.3). Examination of colons demonstrated that intestinal 

contents induced severe colonic gross and microscopic pathology resembling that seen in 

untreated, spontaneously colitic dnKO mice (Figures 3.4 to 3.6). Colitis induction was 

significant by all quantitative metrics compared to PBS-gavaged controls, which did not 

exhibit signs of colitis (Figure 3.4 to 3.6). Gavaging freshly harvested intestinal contents 

produced similar outcomes as gavaging frozen material (not shown). These results 

supported the hypothesis that colitis induction in dnKO mice was microbe-dependent, 

suggested that freezing did not eliminate all colitigenic microorganisms, and 

demonstrated the feasibility of our method as a sensitive and quantitative system to 

screen bacteria for disease-inducing potential.  

 

Colitis-inducing microbes can be grown in mixed cultures of cecal contents 

Since certain members of the colonic microbiota cannot be cultured(Savage 1977; 

Eckburg, Bik et al. 2005; Duncan, Louis et al. 2007), we conducted a proof-of-principle 

experiment to assess whether we could culture colitigenic microorganisms. Intestinal 

contents freshly harvested from untreated, non-dnKO donors were cultured anaerobically 
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on ANB agar for 48 hours or aerobically on chocolate agar for 24 hours. Cultures were 

removed from culture plates using sterile swabs, suspended in sterile, pre-reduced PBS to 

an optical density of 4 McFarland standards. Groups of antibiotic-pre-treated mice were 

gavaged with sterile PBS, the aerobic culture alone, or a combination of the aerobic and 

anaerobic cultures mixed in equal proportions. One mouse receiving the combination of 

aerobic and anaerobic cultures lost >30% of maximum weight and was sacrificed 5 days 

post-gavage; all others survived to the end of the three-week experiment. Neither survival 

nor weight loss differed significantly between the two groups (p = 0.5220 and p = 0.4736; 

Figure 3.7 A and C respectively). However we observed development of severe colitis in 

mice gavaged with the combination of aerobic and anaerobic cultures that was significant 

relative to both PBS gavage and to gavage of aerobic cultures alone (p < 0.01; Figures 3.7 

B and 3.8). By contrast, gavage of aerobic culture alone did not induce significant disease 

(p > 0.05; Figure 3.7 B). These results, which were remniscent of findings in gnotobiotic 

HLA-B27 rats (Rath, Schultz et al. 2001), suggested that colitis-inducing bacteria could 

be grown in culture, but aerobic or facultatively anaerobic bacteria were likely not 

sufficient for disease induction. 

This experiment also demonstrated dissociation between weight post-gavage and 

intestinal pathology. Although short-term antibiotic treatment blocks pro-inflammatory 

cytokine secretion and promotes weight gain in dnKO mice (Kang, Bloom et al. 2008), 

we have observed that dnKO mice treated for longer periods exhibit sporadic, variable 

weight loss despite remaining colitis-free (not show). Using weight as a disease metric 

was also problematic due to the complex breeding scheme of compound heterozygotes 
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used to produce dnKO mice, which ensured a constant scarcity of mice and therefore 

necessitated using both males and females animals from multiple litters which were not 

perfectly age-matched. Although neither age nor sex differences appeared to affect colitis 

development, they naturally produced a degree of heterogeneity in weights. In all 

subsequent experiments, we therefore relied on colon-specific metrics of colitis rather 

than weight loss or serum cytokines to ensure results were not confounded by extra-

intestinal processes.  

 

 

Techniques for isolation and identification of aerobic and anaerobic bacteria from 

cecal mixed cultures 

  We established a system to isolate and identify intestinal bacteria. Single colonies 

from mixed cultures were picked and sub-cultured on fresh media, after which a single 

colony from the sub-culture was passaged to ensure purity. Genomic DNA was extracted 

from individual isolates and the bacterial 16S rRNA gene was PCR-amplified using 

primers Bact-8f and Bact-1510r (Eckburg, Bik et al. 2005; Gill, Pop et al. 2006). The 

resulting PCR product was then sequenced using the original PCR primers. Sequences 

were edited and trimmed for quality using the Trev 1.9 program of the Staden Package©. 

Forward and reverse reads were assembled into a single contig using SeqMan from the 

DNAStar© Lasergene software package, Version 8.0.2.  The 16S sequences were 

classified using the Ribosomal Database Project (RDP, Release 10, Update 15) Classifier 

and the closest cultured and un-cultured matches from GenBank were identified using 
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RDP’s SeqMatch program supplemented by BLAST analysis (Altschul, Gish et al. 1990; 

Cole, Chai et al. 2007; Wang, Garrity et al. 2007; Cole, Wang et al. 2009). 

 

Isolation of numerous, widely diverse bacteria from intestinal mixed cultures 

We originally planned to isolate a variety of intestinal bacteria, identify them, 

pool them by taxonomic group, and inoculate the pooled isolates into healthy dnKO mice 

to test for colitigenicity. Commensal intestinal bacteria vary by several orders of 

magnitude in their overall abundance within the intestinal microbiota (Dethlefsen, Huse 

et al. 2008; Huse, Dethlefsen et al. 2008), presenting challenges for isolation of less 

abundant bacteria. When intestinal contents are cultured on a single non-selective media 

type, it is only possible to isolate relatively abundant bacteria because rarer organisms 

will be missed in a mixed lawn of bacteria. We therefore employed a variety of selective 

aerobic and anaerobic media for bacterial isolation to increase the range of bacteria we 

could isolate (Figure 3.9). To further increase the sensitivity of our isolation methods, we 

plated intestinal contents on these media types in serial, half-log dilutions, which allowed 

us to isolate unique-appearing colonies from the plates with the largest number of 

individually distinguishable colonies (Onderdonk, Weinstein et al. 1974; Sakon, Nagai et 

al. 2008). We allowed cultures to incubate for 2-7 days (aerobic growth) or 7-14 days 

(anaerobic growth), then picked unique-appearing isolates using the techniques described 

above.  

The method of serial dilutions on selective media allowed us to sample microbes 

with abundances varying over an estimated 107-fold range (Figure 3.10 D). Despite the 
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likely occurrence of some redundancy of isolates from each media type and extensive 

redundancy between isolates from certain media types, the range of isolate titers suggests 

the ability to widely sample the cultivable microbiota by this approach. We calculated 

that sampling depth provided by culturing continues to be considerably greater than that 

of culture-independent broad-range bacterial 16S rRNA gene sequencing in various 

landmark studies (Figure 3.10 C) (Kroes, Lepp et al. 1999; Eckburg, Bik et al. 2005; 

Dethlefsen, Huse et al. 2008; Turnbaugh, Hamady et al. 2008). Importantly, the presence 

of rarer species detectable on some media types would not have been detected at the 

sampling depth of any of the sequencing surveys. Approaches like mass sequencing 

allow revolutionarily high-resolution of the taxonomy of abundant microbes within the 

microbiota. However mass sequencing approaches accumulate data additively with 

additional effort rather than exponentially, therefore our results results demonstrate that 

culture-based approaches remain the most sensitive and specific technique for deep 

sampling of cultivable bacteria within the intestinal microbiota. 

We identified a subset of the isolates depicted in Figure 3.10 D by 16S rRNA 

gene sequencing, revealing a widely diverse range of bacteria representing the four phyla 

most commonly identified in culture-independent sequencing surveys of mammalian 

intestinal microbiota: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria 

(Figure 3.11). Interestingly, some of the isolated bacteria were apparently novel isolates 

that have only previously been described by culture-independent methods. All identified 

isolates grew on chocolate agar and/or anaerobic blood agar. Thus the pools of cultured 

bacteria gavaged into dnKO mice in the experiments depicted in Figures 3.7 and 3.8 were 
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presumably considerably more complex than the panel of bacteria depicted in Figure 

3.11. 

 

Intestinal contents cultured on media selective for Gram-negative obligate 

anaerobes induce disease in IBD-susceptible hosts 

Due to the large numbers and broad diversity of cultivable intestinal bacteria 

(Figure 3.11), difficulty in growing many isolates in useful quantities, and limited 

availability of dnKO mice for screening experiments, we determined that testing pools of 

bacteria isolated from mixed cultures on general growth media would not be the most 

efficient approach to screen for specific colitigenic bacteria. As an alternate approach, we 

decided to first limit the complexity by screening mixed cultures of intestinal contents 

containing more restricted pools of bacteria than those used in Figures 3.7 and 3.8. The 

mammalian intestinal microbiota contains hundreds of bacterial species belonging 

primarily to the phyla Bacteroidetes (Gram-negative obligate anaerobes) and Firmicutes 

(Gram-positive, predominantly obligate anaerobes), with other phyla including 

Proteobacteria (Gram-negative, predominantly facultative anaerobes) present at lower 

abundance in healthy hosts (Backhed, Ley et al. 2005). However the most abundant 

bacteria within the microbiota belong to a relatively restricted number of highly 

represented taxa, primarily within the Bacteroidetes and Firmicutes phyla (Dethlefsen, 

Huse et al. 2008). We hypothesized that disease would likely depend on the most 

abundant members of the microbiota.  
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We adopted two approaches to restrict complexity: growing mixed cultures 

containing only abundant members of the microbiota and culturing on more selective 

media types. Dilutions of frozen intestinal contents from untreated mice (described 

above) were cultured in parallel on a variety of anaerobic culture media (Figure 3.12). 

The mixed cultures were grown on non-selective media (ANB agar), media selective for 

Gram-negative obligate anaerobes (LKV agar), or media inhibitory towards Gram-

negative bacilli and enriched for growth of Gram-positive anaerobes (CNA agar). From 

each media type, we harvested mixed cultures from a dilution at which ~1500 colonies 

grew, ensuring the culture contained only relatively abundant (approximately ≥0.07% 

abundance) intestinal bacterial cultivable on that media type (Table 3.2). We also 

harvested a culture of concentrated intestinal contents grown anaerobically on ANB agar 

and a concentrated culture grown aerobically on chocolate agar (Figure 3.12 and Table 

3.2). Anaerobic cultures were harvested after 3 days of incubation using sterile swabs, 

suspended in sterile pre-reduced PBS, and frozen at -80˚C in single-use aliquots with 

20% pre-reduced glycerol. Aerobic cultures were harvested by the same method after 48 

hours incubation (Table S1). The titer of each frozen stock was determined prior to use in 

gavage experiments. 

To test whether the restricted cultures could induce disease, we gavaged groups of 

antibiotic-pre-treated dnKO mice with the anaerobic mixed cultures combined in 1:1 ratio 

with the aerobic culture. Mice receiving diluted ANB and LKV cultures developed severe 

intestinal pathology relative to PBS-gavaged controls while undiluted ANB culture 

induced a non-significant trend towards disease induction (Figure 3.13). Mice gavaged 
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with the CNA culture showed a trend towards development of milder disease that did not 

significantly differ from PBS-gavaged controls. Quantitative histologic metrics of 

inflammation confirmed significant disease induction by the diluted ANB and LKV 

cultures. These results confirmed that colitis-inducing bacteria could be grown in culture 

and suggested abundant Gram-negative obligate anaerobes might be sufficient for disease 

induction. 

 

Isolation and classification of abundant commensal bacteria cultivable on LKV agar  

 To isolate Gram-negative, anaerobic bacteria, freshly thawed aliquots of intestinal 

contents (see above) were diluted to the concentration used in preparation of the LKV 

mixed culture used for gavage (Table 3.2) and cultured anaerobically on LKV agar and 

Bacteroides bile esculin (BBE) agar. Unique-appearing colonies were picked from plates, 

sub-cultured on fresh media, and passaged to ensure purity. Isolates were identified by 

sequencing the PCR-amplified 16S rRNA gene as described above; sequence identity 

was determined by BLAST2 analysis. Unique bacterial species isolated from LKV agar 

are listed in Table 3.3. For isolates <98% identical to the most similar type strain, the 

most similar cultured isolate in the RDP database was also identified. All isolates from 

BBE agar were redundant with bacteria isolated on LKV agar. All were >99% similar to 

sequences identified in metagenomic sequencing of rodent commensal microbiota (not 

shown). 

As expected, the isolates were predominated by members of the phylum 

Bacteroidetes from the genera Bacteroides and Parabacteroides (Table 3.3), which are 
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Gram-negative obligate anaerobes belonging to the group known as the intestinal 

Bacteroidales and are highly evolved to colonize the mammalian intestine (Coyne and 

Comstock 2008). They include Bacteroides vulgatus, which has been implicated in colitis 

induction in the gnotobiotic HLA-B27 transgenic rat model and the carrageenan-induced 

colitis model in guinea pigs, but did not induce colitis when inoculated into germ-free IL-

10-/- mice (Onderdonk, Franklin et al. 1981; Onderdonk, Bronson et al. 1987; Sellon, 

Tonkonogy et al. 1998; Rath, Wilson et al. 1999). Parabacteroides distasonis, a member 

of the altered Schaedler Flora, may produce milder inflammation in gnotobiotic HLA-

B27 transgenic rats (Rath, Herfarth et al. 1996), but to our knowledge the other 

Bacteroidetes isolates have not been implicated in IBD. One Bacteroides isolate is >99% 

identical at the 16S rRNA gene level to a GenBank sequence of an unpublished isolate 

identified as “Bacteroides sp. TP-5”.  We are aware of no publications that have 

characterized Bacteroides sp. TP-5, but the GenBank entry is titled “The Bacteroides 

species is an important environmental risk factor for colon carcinogensis in T-cell 

receptor b and p53 double-knockout mice” (Kado 2009). Other than Bacteroides sp. TP-

5, the most closely related isolate in the RDP database is only ~95% identical, suggesting 

this isolate may represent a novel, largely uncharacterized Bacteroides species. 

We also initially isolated two members of the phylum Proteobacteria, class 

Betaproteobacteria, order Burkholderiales (Wang, Garrity et al. 2007). The isolates were 

<97% identical to each other and ~94-96% identical to the most closely related isolate in 

the RDP database, a recently described gram-negative strict anaerobe with the proposed 

name Parasutterella excrementihominis gen. nov., sp. nov. that is proposed to represent a 
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novel genus and species (Nagai, Morotomi et al. 2009). Each of these Proteobacteria 

isolates thus represented a potentially novel species, although as noted they have been 

previously detected in metagenomic sequencing of commensal microbiota. We are aware 

of no publications specifically examining either isolate’s interactions with its host. 

However, as was reported for P. excrementihominis, both isolates proved extraordinarily 

difficult to culture in usable quantities (Nagai, Morotomi et al. 2009) and the isolates 

ultimately lost viability. These bacteria were therefore not characterized in subsequent 

experiments. 

We also isolated Lactobacillus murinus, which is a gram-positive, 

microaerophilic commensal commonly found throughout the murine gastrointestinal tract 

and is a member of the altered Schaedler flora (Dewhirst, Chien et al. 1999; Sarma-

Rupavtarm, Ge et al. 2004). A study of lactobacilli in murine colitis identified L. murinus 

in non-colitic animals but failed to detect it in IL-10 deficient colitic mice (Pena, Li et al. 

2004). We did not characterize L. murinus in subsequent experiments because lactobacilli 

are known to be highly metronidazole-resistant (Hammad and Shimamoto 2010) and can 

be commonly isolated from the fecal microbiota of non-colitic dnKO mice treated with 

metronidazole and ciprofloxacin combination therapy (not shown) 

 

Commensal Bacteroides isolates induce disease in IBD-susceptible but not non-

susceptible hosts 

We screened five of the Bacteroidetes isolates listed in Table 3.3 for colitis-

inducing potential by gavaging pure cultures of each into antibiotic-pre-treated mice. For 
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preparation of gavage inocula, 24-hour cultures of the respective isolate were grown 

anaerobically in standing culture in TYG broth (Goodman, McNulty et al. 2009). Each 

culture was concentrated by centrifugation, mixed with sterile, pre-reduced PBS + 

glycerol to a final concentration of 20% glycerol, and frozen at -80°C in single-use 

aliquots. Titers of each frozen stock were determined prior to use in gavage. To perform 

colonization experiments, aliquots were thawed in a 37°C water bath, transferred to the 

anaerobic chamber, volume-adjusted in sterile pre-reduced PBS, and immediately 

transported to the mouse facility for orogastric gavage (Goodman, McNulty et al. 2009). 

Gavage doses were confirmed by back-titering the inocula. For sterile PBS gavage, we 

added sterile, pre-reduced glycerol to a concentration equivalent to that in the thawed 

bacterial gavage inocula. 

We found that pure cultures of each of the Bacteroidetes isolates induced colitis in 

dnKO mice to varying degrees (Figure 3.15 and 3.16). Unexpectedly, an isolate of 

Bacteroides thetaiotaomicron, a well-characterized symbiotic species (Goodman, 

McNulty et al. 2009), potently induced colitis in dnKO mice. As expected, this isolate 

was innocuous in Il10r2+/- control animals, which did not differ from PBS-gavaged 

controls (Figures 3.16 to 3.19). These results demonstrated the induction of disease by 

commensal Bacteroides in a host-genotype-specific fashion. 

 

 

 



 66   

Antibiotic treatment eliminates cultivable intestinal Bacteroides from the fecal 

microbiota 

Given the ability of commensal Bacteroides species to induce disease in dnKO 

mice, we hypothesized that these bacteria must be eliminated from the microbiota by 

antibiotic treatment. We tested this hypothesis by culturing fecal bacteria on selective and 

non-selective culture media. Fecal samples from 4-week-old untreated dnKO mice or 

dnKO mice treated with antibiotics for ≥3 weeks were collected in sterile microcentrifuge 

tubes. Samples were immediately placed on ice, weighed, transferred to an anaerobic 

chamber within ≤1 hr of collection, suspended in 500 µl of sterile pre-reduced PBS by 

repeated vigorous vortexing and disruption with a sterile pipette tip, and titered by 

culturing 10-fold serial dilutions in parallel on ANB agar (non-selective, general 

anaerobic growth media) or Bacteroides bile esculin (BBE) agar, which is selective and 

differential media for the isolation of intestinal Bacteroides species (Livingston, Kominos 

et al. 1978). 10 µl of each dilution was spotted in triplicate on quadrants of titer plates. 

BBE titers were counted after 48 hours and ANB titers were counted at 48 hours and 

confirmed after 5 days. Fecal titers were calculated as cfu/g of feces. 

Using these methods, we confirmed that antibiotic treatment eradicated cultivable, 

disease-inducing intestinal Bacteroides from the fecal microbiota. Fecal samples from 

antibiotic-treated dnKO mice exhibited no bacterial growth when quantitatively cultured 

on Bacteroides bile esculin (BBE) agar at a detection limit of 17 colony-forming units 

(cfu) per sample (Figure 3.20). By contrast, we observed high bacterial titers (~109 cfu/g 

of feces) on BBE agar in samples from untreated animals. Fecal titers on non-selective 
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media did not differ between groups, confirming that antibiotics prevented disease by 

selectively altering microbiota composition rather than by sterilizing the gut (Figure 

3.20).  

 

Gavaged Bacteroides species stably colonize antibiotic-pre-treated mice at high 

levels regardless of host genotype 

We reasoned that BBE agar could thus be used to assess Bacteroides colonization 

of gavaged, antibiotic-pre-treated mice. Three of the Bacteroides isolates screened in 

Figure 3.15 (B. thetaiotaomicron, B. vulgatus, and Bacteroides sp. TP5, see Table 3.3) 

grew robustly by 48 hours in anaerobic culture on BBE agar (Figure 3.21 A). B. vulgatus 

forms non-pigmented, circular, convex colonies with entire edges that are 1-2 cm in 

diameter after 48 hrs growth. B. thetaiotaomicron forms colonies that are similar in size 

and morphology to B. vulgatus but strongly pigmented. Bacteroides sp. TP5 forms 

circular, convex colonies with entire edges that are 0.25-1 cm in diameter and non-

pigmented or very lightly pigmented after 48 hrs.  

Remarkably, we could thus monitor Bacteroides colonization by performing 

serial, quantitative, specific fecal cultures on BBE agar. Antibiotic-pre-treated mice 

gavaged with PBS remained free of cultivable Bacteroides, confirming absence of cage-

to-cage microbial contamination (Figure 3.22 A). By contrast, mice given pure cultures 

of B. thetaiotaomicron, B. vulgatus, or Bacteroides species TP5 became stably colonized 

at ~1010 cfu/g of feces (Figure 3.22). Bacterial identity was determined based on 

characteristic colony size, morphology, and pigmentation pattern on BBE agar (Figure 
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3.21 B) and confirmed by 16S rRNA gene sequencing of representative colonies. 

Colonization levels were surprisingly high and consistent. Analysis of titers compiled 

from animals of various genotypes from many experiments over multiple timepoints 

revealed that they were normally distributed over an extremely narrow range (Figure 

3.23). Antibiotic-pre-treated Il10r2+/- and dnKO mice became stably colonized with the 

gavaged bacteria at equivalent levels (Figure 3.22), demonstrating that genotype-

dependent differences in disease induction were likely due to differences in host response 

rather than altered colonization susceptibility. 

 

Commensal Enterobacteriaceae but not Bacteroides are strikingly enriched in the 

microbiota during spontaneous disease 

Despite our finding that commensal Bacteroides induced disease in dnKO mice, 

studies of the intestinal microbiota in IBD have not found Bacteroides to be consistently 

enriched during disease (Onderdonk, Richardson et al. 1998; Frank, St Amand et al. 

2007; Ott, Plamondon et al. 2008; Sokol, Pigneur et al. 2008; Takaishi, Matsuki et al. 

2008; Frank, Robertson et al. 2010). We likewise observed that fecal titers on 

Bacteroides bile esculin agar from untreated dnKO (spontaneously colitic) and Il10r2+/- 

(non-colitic) mice did not significantly differ in either absolute levels or as a proportion 

of total cultivable bacteria (Figure 3.24). By contrast, many studies have documented 

IBD-associated enrichment of Enterobacteriaceae, Gram-negative, facultative anaerobes 

(including the species E. coli) from the phylum Proteobacteria that can be selectively 

cultured on MacConkey agar (Burke 1997; Onderdonk, Richardson et al. 1998; Frank, St 
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Amand et al. 2007; Lupp, Robertson et al. 2007; Sartor 2008; Frank, Robertson et al. 

2010; Strober 2010). In agreement with findings from other colitis models, we observed 

that commensal Enterobacteriaceae were strikingly enriched in spontaneous disease, 

accounting for ~50% of total cultivable fecal bacteria in untreated dnKO mice compared 

with <0.5% of cultivable bacteria in co-housed Il10r2+/- controls (Figure 3.24). 

 

Commensal Enterobacteriaceae are not sufficient for disease induction 

The observation that Enterobacteriaceae are often elevated in IBD has led to 

suggestions that these bacteria may play a pathogenic role in disease (Burke 1997; 

Onderdonk, Richardson et al. 1998; Frank, St Amand et al. 2007; Edwards, Lucas et al. 

2010). However it is unclear whether Enterobacteriaceae enrichment is a cause or effect 

of disease since enrichment also occurs during non-IBD intestinal inflammation 

experimentally induced by chemicals or microbial pathogens (Heimesaat, Bereswill et al. 

2006; Heimesaat, Fischer et al. 2007; Lupp, Robertson et al. 2007; Stecher, Robbiani et 

al. 2007; Sartor 2008). Importantly, commensal Enterobacteriaceae were eliminated from 

antibiotic-treated mice (Figure 3.24 C), allowing us to directly test whether they could 

induce disease. We isolated an Enterobacteriaceae species that was highly enriched in the 

feces of an untreated, colitic dnKO mouse (~33% of total cultivable bacteria) and 

identified it as Escherichia coli based on 16S rRNA sequence similarity to the closest 

culture isolate (Figure 3.25). Confirmation of this species identification by phenotypic 

identification using the API 20E strip (biocode 5144532, bioMerieux, Inc., Durham, NC) 

in the Barnes-Jewish Hospital Medical Microbiology Laboratory confirmed this 
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classification. The isolate was maintained aerobically on MacConkey agar, ANB agar, or 

in Trypticase Soy Broth. 

To test the isolate’s disease-inducing potential, we gavaged it into antibiotic-pre-

treated dnKO mice. For preparation of the gavage inoculum, 16-hour cultures of E. coli 

were grown in Trypticase Soy Broth in a 37°C shaker at 225 rpm. Each culture was 

concentrated by centrifugation, mixed with sterile, pre-reduced PBS + glycerol to a final 

concentration of 20% glycerol, and frozen at -80°C in single-use aliquots. The stock was 

tittered prior to use in experiments. Other groups of dnKO mice were gavaged with B. 

thetaiotaomicron or sterile PBS as positive and negative controls.  We quantified 

bacterial colonization by performing parallel, serial fecal titers on BBE and MacConkey 

agar (Figure 3.26). MacConkey titers were performed as for BBE titers (see above) and 

were counted after 12-16 hours and confirmed for negative growth at 48 hours. E. coli 

stably colonized antibiotic-pre-treated animals at consistent levels even higher than those 

observed in untreated dnKO mice (compare Figure 3.24 C and 3.26 B) and comparable to 

E. coli colonization levels in mono-associated gnotobiotic mice (Hapfelmeier, Lawson et 

al. 2010). However E. coli did not induce significant disease relative to PBS, whereas B. 

thetaiotaomicron induced significant disease relative to both E. coli and PBS by most 

metrics (Figure 3.27 and 3.28).  

 

DISCUSSION 

The precise role of the intestinal microbiota in IBD induction remains an area of 

active investigation (Sartor 2008; Strober 2010). Multiple theories exist concerning 
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whether IBD can be induced by specific commensal microbes and, if so, whether the 

disease-inducing microbes can be identified based on enrichment in the microbiota 

during disease (Xavier and Podolsky 2007; Takaishi, Matsuki et al. 2008; Packey and 

Sartor 2009; Cerf-Bensussan and Gaboriau-Routhiau 2010; Garrett, Gordon et al. 2010). 

We previously hypothesized that disease in the dnKO mouse model (which bears genetic 

defects in pathways linked to IBD in humans and which develops spontaneous, rapid-

onset, antibiotic-responsive colitis closely resembling human ulcerative colitis) depends 

on a subset of commensal bacteria, likely obligate anaerobes, which are eliminated by 

antibiotic treatment (Chapter 2). Here we fulfilled Koch's postulates for commensal 

Bacteroides species in host-genotype-specific fashion using non-gnotobiotic methods in 

dnKO mice. We found that Bacteroides species: 

1) were common to susceptible and non-susceptible hosts and were eliminated by 

disease-blocking antibiotics, 

2) could be isolated and grown in pure culture, 

3) induced colitis when administered to antibiotic-pre-treated susceptible hosts but not 

when administered to non-susceptible hosts, and 

4) could be quantitatively re-isolated from experimentally colonized animals at 

equivalent levels regardless of host genotype.  

The disparity in Bacteroides-induced disease thus appears to be attributable to differences 

in host response rather than altered colonization susceptibility. We further showed that 

commensal Enterobacteriaceae were strikingly enriched during spontaneous disease but a 
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colitis-enriched E. coli isolate was not sufficient for disease induction despite robust 

colonization.  

Intriguingly, our results in dnKO mice, which bear medically relevant deficiencies 

in the IL-10 receptor (Glocker, Kotlarz et al. 2009) and in TGFβ signaling (Franke, 

McGovern et al. 2010), independently replicate findings from the medically relevant 

HLA-B27 transgenic rat model (Hammer, Maika et al. 1990). Conventionally raised 

transgenic rats develop spontaneous colitis characterized by striking enrichment of 

commensal Enterobacteriaceae and unchanged levels of commensal Bacteroides 

(Onderdonk, Richardson et al. 1998) However colonization of gnotobiotic transgenic rats 

with the Bacteroides species B. vulgatus (and possibly Parabacteroides distasonis) 

induced disease whereas colonization with a variety of IBD-enriched human isolates 

including E. coli, a species of Enterobacteriaceae, did not (Rath, Herfarth et al. 1996; 

Rath, Wilson et al. 1999). The HLA-B27 allele in humans is strongly linked to 

spondyloarthritis (a collection of rheumatologic diseases that frequently includes IBD) 

but is not an independent risk factor for IBD that is not associated with spondyloarthritis 

(Brakenhoff, Heijde et al. 2010) It has thus been unclear whether findings in HLA-B27 

transgenic rats would be more broadly relevant to IBD in general. However there are 

intriguing similarities between the transgenic rat model and dnKO mice. Colitis in HLA-

B27 transgenic rats is T-cell-dependent (Hoentjen, Tonkonogy et al. 2006; Hoentjen, 

Tonkonogy et al. 2007) and there is evidence that disease may be related to impaired 

inhibition of T-cell activation by IL-10 and TGFβ through unknown mechanisms (Qian, 

Tonkonogy et al. 2008). Similarly, we previously showed that adoptive transfer of dnKO 
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CD4 T-cells into Rag-/- recipient mice induces fulminant colitis relative to transfer of 

wild-type T-cells (Kang, Bloom et al. 2008). We and others have shown that transfer of 

Il10r2-/- CD4 T-cells also induces enhanced disease, although to a lesser extent (Kang, 

Bloom et al. 2008; Murai, Turovskaya et al. 2009). 

B. vulgatus colonization was also pro-colitic in the gnotobiotic guinea pig model 

of carrageenan-induced colitis, the model in which it was originally identified as a 

potential colitogen (Onderdonk, Franklin et al. 1981; Onderdonk 2005). However B. 

vulgatus mono-association did not induce disease in gnotobiotic Il10-/- mice and may 

actually have been protective in gnotobiotic Il2-/- mice, whereas some commensal E. coli 

species had pro-colitic effects in these models (Sellon, Tonkonogy et al. 1998; Kim, 

Tonkonogy et al. 2005). Alleles of the gene for IL-10 and a component of the IL-2 

receptor complex were found to be associated with IBD in recent genome-wide 

association studies (Franke, Balschun et al. 2008; Franke, McGovern et al. 2010). 

Reasons for the apparent disparity between these mouse models and the dnKO mouse and 

HLA-B27 rat models are unclear. A recent study of intestinal biopsy material from 

human patients found that Bacteroides thetaiotaomicron induced strong IL-8 secretion ex 

vivo in tissue from IBD patients but not in tissue from healthy controls, whereas there 

was no difference in IL-8 response between the two groups of tissues upon exposure to 

an E. coli species (Edwards, Lucas et al. 2010). Much further work is needed, particularly 

from human studies, but we believe in aggregate this evidence supports the idea that 

commensal Bacteroides species may have specific colitogenic effects in at least a subset 

of human IBD. 
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Many studies have documented IBD-associated enrichment or depletion of 

specific commensal bacterial subsets but it remains an important unresolved question 

whether and how these alterations contribute to disease pathogenesis (Burke 1997; Frank, 

St Amand et al. 2007; Takaishi, Matsuki et al. 2008; Packey and Sartor 2009; Peterson, 

Garges et al. 2009; Frank, Robertson et al. 2010; Strober 2010). Our demonstration that 

commensal Enterobacteriaceae were enriched during spontaneous disease but were not 

sufficient for disease induction adds to a growing body of evidence that intestinal 

inflammation provides both commensal and enteropathogenic Enterobacteriaceae with a 

selective colonization advantage regardless of inflammation etiology (Onderdonk, 

Richardson et al. 1998; Heimesaat, Bereswill et al. 2006; Lupp, Robertson et al. 2007; 

Stecher, Robbiani et al. 2007; Ackermann, Stecher et al. 2008; Winter, Thiennimitr et al. 

2010). Interestingly, disease-associated enrichment of Proteobacteria relative to 

Bacteroidetes has also been observed in the lung microbiota of patients with asthma, a 

chronic inflammatory disease (Hilty, Burke et al. 2010), and in the gastric microbiota of 

patients infected with Helicobacter pylori, a cause of chronic atrophic gastritis 

(Maldonado-Contreras, Goldfarb et al. 2010). In ecological terms, Enterobacteriaceae 

thus appear to behave as invasive species capable of exploiting new niches created by 

inflammation-induced ecosystem instability at mucosal surfaces. The Enterobacteriaceae 

pathogen Salmonella typhimurium directly exploits intestinal inflammation by using 

tetrathionate – a compound generated in the intestinal lumen in presence of host-derived 

reactive oxygen species – as a respiratory electron acceptor to outcompete the 

fermentative anaerobes that normally dominate the microbiota (Winter, Thiennimitr et al. 
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2010). We speculate that similar mechanisms for exploiting inflammation could account 

for “bystander enrichment” of commensal Enterobacteriaceae in IBD and may even be 

related to the frequency with which non-pathogenic Enterobacteriaceae strains have 

independently and convergently evolved pathogenic phenotypes (Pupo, Karaolis et al. 

1997; Wirth, Falush et al. 2006). Thus, although disease-enriched bacteria may play 

colitogenic roles in certain circumstances and disease-depleted bacteria may have anti-

colitic effects in others (Burke 1997; Sokol, Pigneur et al. 2008), our findings emphasize 

that IBD-associated shifts in colonization are not a sufficient basis to form conclusions 

about a microbe's effects on disease without additional evidence. 

In this study, we have endeavored to address two key questions about IBD using 

dnKO mice: (1) is disease induced by specific subsets of commensal microbes and, if so, 

(2) can these subsets be identified based on disease-associated alterations in levels of 

colonization? Our work provides evidence supporting the concept of commensal 

specificity and disputing the concept that disease-associated enrichment necessarily 

implies a causative role. These findings also underscore the importance of examining 

microbial influences on pathogenesis in the context of host genetic predisposition 

(Cadwell, Patel et al. 2010). The possibility that a microbe's colonization dynamics in 

disease may be dissociable from its disease-inducing potential presents significant 

obstacles for elucidating underlying microbial etiology. Mazmanian and colleagues 

recently coined the term "pathobiont" to describe commensal or symbiotic microbes that 

induce disease only in certain genetic or environmental contexts (Mazmanian, Round et 

al. 2008; Chow and Mazmanian 2010), but no established criteria exist for classifying a 
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microbe as a pathobiont or distinguishing pathobionts from conventional pathogens. We 

propose refining the definition to state that unlike parasitic or opportunistic pathogens, 

true pathobionts colonize at equivalent levels regardless of disease induction. Formal 

demonstration that a microbe acts as a pathobiont would thus require fulfillment of host-

genotype-specific (or environment-specific) Koch's postulates resembling those described 

here. Extending this concept, we note that it is even possible to envision a scenario in 

which pathobiotic bacteria induce a targeted immunopathologic response that leads them 

to become depleted within the microbiota despite playing a causative role in disease. 

In summary, our results provide important insights into the intestinal microbiota's 

role in IBD induction and suggest a candidate group of organisms that may be relevant to 

disease induction in a subset of human cases. As new spontaneous animal models of IBD 

based on other human susceptibility mutations become available, we propose that the 

methods, experimental criteria and conceptual framework we develop here will allow 

characterization of microbial contributions to disease in additional genetic contexts.  
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Figure 3.1: Co-housing and exposure to intestinal contents from untreated control 

mice induces disease in antibiotic-pre-treated dnKO mice. 

3 week old dnKO mice housed in conventional cages were pre-treated with antibiotics 

(metronidazole + ciprofloxacin) for 10 days, then antibiotics were halted and mice were 

either maintained without experimental microbial exposures or co-housed with an 

untreated non-dnKO mouse and smeared with intestinal contents from an untreated, non-

dnKO mouse. Mice were sacrificed and colons were analyzed for gross pathology after 7 

days. Colons of mice experimentally exposed to intestinal contents exhibit severe 

pathology with ulceration and shortening, but colons of isolated mice also show signs of 

mucosal thickening and inflammation. Representative of 2-3 experiments per group with 

1-2 mice per experiment. 
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Figure 3.1 
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Figure 3.2: Bacterial composition of intestinal contents is highly variable from 

sample to sample. 

Intestinal contents from age-matched, untreated male mice (non-dnKO genotypes) co-

housed for ~3 weeks beginning at weaning were harvested on each of two successive 

days (2 mice per day). Serial dilutions of intestinal contents were cultured aerobically on 

chocolate agar. Culture plates with similar numbers of cfu (inset labels) from each culture 

day are shown.  Note the highly variable morphology of abundant bacterial colonies 

between the two samples. 
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Figure 3.2 
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Figure 3.3: Gavaged intestinal contents from untreated donors induce fulminant 

disease in antibiotic-pre-treated dnKO mice. 

(A) Experimental timeline. Antibiotic treatment (metronidazole + ciprofloxacin) began at 

weaning; mice housed were antibiotic-treated for ≥3 weeks and orogastrically gavaged 

with experimental inocula 2 days after treatment cessation (Abx = antibiotics). Individual 

mice were sacrificed after 21 days or when their weight reached ≤ 70% of maximal 

weight. 

(B) Antibiotic-pre-treated dnKO mice housed in enhanced caging under stringent cage-

care precautions were gavaged with PBS (n = 4 mice) or a freshly thawed aliquot of 

pooled intestinal contents from untreated non-dnKO donors that had been frozen in 20% 

glycerol at -80°C under anaerobic conditions (n = 6 mice). The gavage dose of intestinal 

contents was 2x107 total cfu per mouse, titered on Anaerobic Reducible Blood (ANB) 

Agar. Mice were sacrificed at 3 weeks post-inoculation or upon loss of >30% of 

maximum body weight. Survival analyzed by Kaplan-Meier method, and statistical 

significance determined by the log-rank test. Results are representative of multiple 

independent experiments. All statistical analysis was performed using Prism v3.02 

(GraphPad Software) unless otherwise indicated. 
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Figure 3.3 
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Figure 3.4: Gavaged intestinal contents from untreated donors induce severe colonic 

gross pathology in antibiotic-pre-treated dnKO mice. 

Pathology scores of antibiotic-pre-treated dnKO mice gavaged with sterile PBS or 

intestinal contents from untreated donors as described in Figure 3.3, displayed as 

individual (symbols) and median (bars) scores. Statistical significance determined by 

Mann-Whitney U-test using SPSS 16.0 (SPSS Inc.) due to a problem with Prism's 

algorithm. 

(A) Cecum pathology scores. 

(B) Transverse colon pathology scores. 
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Figure 3.4 
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Figure 3.5: Gavaged intestinal contents from untreated donors induce severe colitis 

in antibiotic-pre-treated dnKO mice. 

Representative images of H&E stained rectal histology of antibiotic-pre-treated dnKO 

mice gavaged with sterile PBS or intestinal contents from untreated donors as described 

in Figure 3.3. Bar = 100 µm. 
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Figure 3.5 
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Figure 3.6: Gavaged intestinal contents from untreated donors induce severe colonic 

gross pathology in antibiotic-pre-treated dnKO mice. 

Quantitative histologic disease metrics of antibiotic-pre-treated dnKO mice gavaged with 

sterile PBS or intestinal contents from untreated donors as described in Figure 3.3, 

displayed as mean +/- SEM. Statistical significance determined by unpaired t-test. 

(A) Transverse colon crypt height. 

(B) Transverse colon crypt width. 

(C) Rectum crypt height. 

(D) Rectum crypt width. 

 



 88   

Figure 3.6 
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Figure 3.7: Combined aerobic and anaerobic bacterial cultures of intestinal contents 

induce non-fatal colitis in antibiotic-pre-treated dnKO mice, but mixed aerobic 

culture alone does not. 

Intestinal contents from untreated donors were cultured anaerobically on ANB agar or 

aerobically on chocolate agar. Cultures were suspended in sterile, pre-reduced PBS at an 

optical density of 4 McFarland standards. Antibiotic-pre-treated dnKO mice were 

gavaged with sterile PBS, with the aerobic culture alone, or with a combination of the 

aerobic and anaerobic cultures mixed in equal proportions. 

(A) One mouse receiving the mixed aerobic and anaerobic cultures was sacrificed 5 days 

post-gavage due to loss of >30% of maximum weight. All other mice were sacrificed 3 

weeks post-gavage. Kaplan-Meier survival analysis; groups are not significantly different 

by log-rank test: p = 0.5220. 

(B) Cecum pathology scores of mice in (A). Statistical significance determined by the 

Kruskal-Wallis test with post-hoc Dunn’s test: H2 = 18.21, p = 0.0001. All significant 

pairwise comparisons are displayed: **, p < 0.01. 

(C) Weight change post-gavage of mice in (A). Groups are not statistically significant by 

1-way ANOVA: F2,20 = 0.7760, p = 0.4736. 
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Figure 3.7 
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Figure 3.8: Representative cecal pathology of antibiotic-pre-treated dnKO mice 

gavaged with aerobic and anaerobic bacterial cultures of intestinal contents. 

Representative cecal whole mounts of antibiotic-pre-treated dnKO mice described in 

figure 3.7. Righthand images are magnified views of images on left (inset areas indicated 

by boxes). 

(A) Mouse gavaged with PBS. 

(B) Mouse gavaged with aerobic culture of intestinal contents. 

(C) Mouse gavaged with combined aerobic and anaerobic culture of intestinal contents. 

Arrows indicate ulcers. 
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Figure 3.8 
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Figure 3.9: Cultivation of intestinal contents on selective culture media for bacterial 

isolation. 

Intestinal contents from untreated, wild-type mice were harvested, suspended in sterile, 

pre-reduced PBS, serially diluted, and cultured on a variety of aerobic and anaerobic non-

selective and selective media. The media types used for anaerobic culture were 

Anaerobic Reducible Blood Agar (“ANB”, Remel, general anaerobic growth media), 

Anaerobic Reducible CNA Blood Agar (“ACNA”, Remel, enriched for growth of Gram 

positive anaerobic organisms), Anaerobic Reducible LKV Blood Agar (“LKV”, Remel, 

selective for growth of Gram negative obligate anaerobes), Bacteroides fragilis Isolation 

Agar (“BBE”, Remel, contains gentamicin to inhibit most facultative anaerobes, bile to 

inhibit most anaerobic gram negative bacteria, and esculin to differentiate members of the 

B. fragilis group), and Rogosa agar (“Rog”, for cultivation of lactobacilli). The media 

types used for aerobic culture were Tryptic Soy Agar with 5% Sheep Blood (“TSA”, 

Remel, general aerobic growth media), Chocolate Agar (“Choc”, Remel, general aerobic 

growth media enriched for isolation of fastidious aerobes), Columbia CNA with 5% 

Sheep Blood (“CCNA”, Remel, for selective isolation of gram-positive cocci and 

inhibition of gram-negative bacilli), bile esculin azide agar (“BEA”, Remel, aerobic 

media for isolation of enterococci), and MacConkey Agar (“Mac”, selective and 

differential for isolation of gram negative aerobes or facultative anaerobes). 
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Figure 3.9 
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Figure 3.10: Plating serial dilutions of intestinal contents on selective media allows 

deep sampling of the intestinal microbiota. 

(A) Culture media from Figure 3.9 labeled to indicate the approximate limits of detection 

in terms of total cultivable intestinal bacterial load (cfu/g of intestinal contents) at various 

dilution cutoffs. Limits of detection represent the approximate titer within intestinal 

contents that a species would need in order to be detected at the corresponding dilution 

cutoff. 

(B) Approximate numbers of total cfu detected on ANB agar (general, non-selective 

anaerobic media) at each dilution cutoff. Color-coded as in (A). 

(C) Average sampling depths of various landmark microbiota surveys performed by 16S 

rRNA sequencing using either the Sanger methods or 454 method (Kroes, Lepp et al. 

1999; Eckburg, Bik et al. 2005; Dethlefsen, Huse et al. 2008; Turnbaugh, Hamady et al. 

2008). Surveys are color-coded as in (A) and (B) to indicate the corresponding dilution 

cutoff surpassed. Note the presence of colony types on some media that would not have 

been detected at the sampling depth of any of the sequencing surveys. 

(D) Estimated titers of a panel of bacterial isolates picked from the plates in (A). Isolates 

picked based on unique-appearing colony morphology, with titers estimated by number 

of similar-appearing colonies on the same media type. By this method, some degree of 

redundancy within each media type and redundancy between certain media types should 

be assumed.  
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Figure 3.10 
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Figure 3.11: Diversity of bacterial isolates from selective media (subset).  

A subset of isolates isolated anaerobically from ANB agar, anaerobic reducible CNA 

blood agar, or LKV agar or aerobically from chocolate agar were classified according to 

16S rRNA gene sequence using the Classifier and SeqMatch function of the Ribosomal 

Database Project (RDP, Release 10, Update 15). A phylogenetic tree was constructed 

using the RDP Treebuilder application with an archaeal 16S sequence as the outgroup. 

Taxonomic assignments to the genus or family level by the RDP Classifier are listed in 

the figure key. 
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Figure 3.11 
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Figure 3.12: Preparation of selective mixed cultures of intestinal contents for 

gavage. 

An aliquot of frozen intestinal contents (see Figure 3.3 and Table 3.1) was thawed, 

serially diluted, and cultured anaerobically on the indicated media types. 3-day mixed 

cultures were harvested from the indicated culture plates (in squares) and frozen in 20% 

glycerol (See Table 3.2). Titer of the frozen stocks was determined prior to use in 

experiments. For gavage, aliquots of each culture were subsequently thawed and adjusted 

to desired doses for gavage. 
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Figure 3.12 
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Figure 3.13: Selective mixed cultures of intestinal contents induce intestinal gross 

pathology in antibiotic-pre-treated dnKO mice. 

Pathology scores of intestines from antibiotic-pre-treated dnKO mice gavaged with sterile 

PBS or with the indicated anaerobic mixed cultures of intestinal contents mixed 1:1 with 

aerobic cultures grown on chocolate agar at 0 dilution (see Figure 3.12 and Table 3.2). 

Individual (symbols) and median (bars) pathology scores are displayed. Gavage doses: 

ANB -1 = 6.6x107 total cfu/mouse; ANB -4.5 = 6.4x107 total cfu/mouse; LKV -4 = 

7.3x107 total cfu/mouse; CNA -4.5 = 5.4x107 total cfu/mouse. Statistical significance 

relative to PBS determined by Dunn's multiple comparison test: n.s., p > 0.05; *, p < 

0.05; **, p < 0.01. The screen was unrepeated. 

(A) Cecum gross pathology scores. 

(B) Transverse colon pathology scores. 
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Figure 3.13 
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Figure 3.14: Selective mixed cultures of intestinal contents induce mucosal 

inflammation in antibiotic-pre-treated dnKO mice. 

Quantitative histologic disease metrics of intestines from antibiotic-pre-treated dnKO 

mice gavaged with sterile PBS or with selective mixed cultures of intestinal contents as 

described in Figure 3.13. displayed as mean +/- SEM. Statistical significance relative to 

PBS determined by Dunnett's multiple comparison test: n.s., p > 0.05; *, p < 0.05. 

(A) Transverse colon crypt heights. 

(B) Rectum crypt heights. 
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Figure 3.14 
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Figure 3.15: Pure cultures of diverse commensal intestinal Bacteroidetes isolates 

induce intestinal pathology in antibiotic-pre-treated dnKO mice. 

Screen for colitis induction by Bacteroidetes isolates. Cecum gross pathology scores of 

antibiotic-pre-treated dnKO mice gavaged with 1x108 cfu/mouse of pure cultures of the 

indicated primary bacterial isolates (see Table 3.3). Unrepeated for B. uniformis and P. 

goldsteinii. 
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Figure 3.15 
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Figure 3.16: Pure cultures of diverse commensal intestinal Bacteroidetes isolates 

induce colitis in antibiotic-pre-treated dnKO mice. 

Representative H&E stained cecal histology of antibiotic-pre-treated dnKO mice gavaged 

with Bacteroides species as described in Figure 3.15. A non-inflamed cecum from an 

antibiotic-pre-treated B. thetaiotaomicron-gavaged Il10r2+/- control mouse is shown for 

comparison. Scale bar = 200 µm. 
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Figure 3.16 
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Figure 3.17: Bacteroides thetaiotaomicron induces pathology in antibiotic-pre-

treated dnKO but not Il10r2+/- mice. 

Pathology scores of antibiotic-pre-treated mice of the indicated genotypes gavaged with 

PBS or a pure culture of the B. thetaiotaomicron isolate described in Table 3.3 (7x107 

cfu/mouse). Statistical significance determined by Kruskal-Wallis test with post-hoc 

Dunn’s test. All significant pairwise comparisons are displayed: *, p < 0.05.  

(A) Cecum pathology scores: H2 = 12.26, p = 0.0022. 

(B) Transverse colon pathology scores: H2 = 11.36, p = 0.0034.  
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Figure 3.17 
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Figure 3.18: Bacteroides thetaiotaomicron induces colitis in antibiotic-pre-treated 

dnKO but not Il10r2+/- mice. 

Representative H&E stained rectal histology of antibiotic-pre-treated mice gavaged with 

PBS or a pure culture of B. thetaiotaomicron as described in Figure 3.17. Scale bar = 50 

µm. 
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Figure 3.18 
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Figure 3.19: Quantification of Bacteroides thetaiotaomicron-induced colitis in 

antibiotic-pre-treated dnKO mice. 

Quantitative histologic disease metrics of intestines from mice described in Figures 3.17 

and 3.18 displayed as mean +/- SEM. Statistical significance determined by 1-way 

ANOVA with post-hoc Tukey’s test. All significant pairwise comparisons are displayed 

if the omnibus p-value by ANOVA was significant: *, p < 0.05; **, p < 0.01. 

(A) Transverse colon crypt height: F2,10 = 8.596, p = 0.0067. 

(B) Rectum crypt height: F2,10 = 12.55, p = 0.0019. 

(C) Transverse colon crypt width: F2,10 = 2.057, p = 0.1786. 

(D) Rectum crypt width: F2,10 = 12.05, p = 0.0022.  
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Figure 3.19 
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Figure 3.20: Antibiotic treatment eliminates cultivable intestinal Bacteroides from 

the intestinal microbiota. 

Fecal samples from 4-week old untreated dnKO mice or from dnKO mice treated with 

antibiotics (metronidazole + ciprofloxacin) for ≥3 weeks were titered in parallel 

anaerobically on non-selective (ANB) agar and Bacteroides bile esculin (BBE) agar. 

Titers from individual mice (symbols) and means of log10-transformed titers (bars) are 

displayed. Limit of detection = 17 cfu per sample. Statistical significance of difference 

between ANB titers was determined by unpaired t-test (log10-transformed titers). 

Representative of ≥2 independent experiments per group. 
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Figure 3.20 
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Figure 3.21: Representative Bacteroides colonies and fecal titer plate. 

(A) Pure cultures of (1.) B. vulgatus, (2.) Bacteroides sp. TP5, and (3.) B. 

thetaiotaomicron isolates streaked on BBE media and incubated anaerobically for 48 hrs. 

Insets: representative colonies of each isolate exhibiting characteristic size, morphology, 

and pigmentation (scale bar = 1 mm). The culture plate was photographed with a digital 

camera, and magnified images of representative colonies of each isolate (indicated by 

black squares in the low-power image) were photographed on a dissecting microscope at 

12.5X magnification images with both backlighting and reflected lighting at an exposure 

time of 1/500 s. 

 (B) Representative BBE fecal titer plate from a B. thetaiotaomicron-gavaged mouse 

exhibiting characteristic B. thetaiotaomicron colony appearance (imaged after 72-hr 

anaerobic incubation). Bacterial identity confirmed as B. thetaiotaomicron by 16S rRNA 

gene sequencing of representative colonies. Titer plates from mice gavaged with B. 

vulgatus and Bacteroides sp. TP5 also exhibited colonies with the respective 

characteristic morphology (not shown). 
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Figure 3.21 
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Figure 3.22: Gavaged Bacteroides stably colonize antibiotic-pre-treated mice at high 

levels regardless of host genotype. 

Serial fecal titers on BBE agar from antibiotic-pre-treated mice gavaged on Day 0 with 

the indicated inoculum. 

(A) Antibiotic-pre-treated mice of the indicated genotypes gavaged with sterile PBS or a 

pure culture of B. thetaiotaomicron (6.6x107 cfu/mouse). Individual titers (symbols) and 

means of log10-transformed titers (lines) are displayed. Statistical significance of 

differences between log10-transformed fecal titers from B. thetaiotaomicron-gavaged 

dnKO mice and Il10r2+/- mice determined by unpaired t-test. 

(B) Antibiotic-pre-treated dnKO mice gavaged with a pure culture of Bacteroides sp. TP5 

(8.9x107 cfu/mouse). 

(C) Antibiotic-pre-treated dnKO mice gavaged with a pure culture of Bacteroides 

vulgatus (9.1x107 cfu/mouse). 

(D) Bacteroides titers from (A-C) overlaid. Representative of ≥2 independent 

experiments with 2-6 mice per group for B. thetaiotaomicron and Bacteroides sp TP5; 

Not repeated for B. vulgatus at this gavage dose, but mice gavaged with a 10-fold higher 

dose became colonized at similar levels. 
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Figure 3.22 
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Figure 3.23: Bacteroides colonization of gavaged, antibiotic-pre-treated mice is high, 

consistent, and normally distributed. 

Frequency histogram of all 92 B. thetaiotaomicron fecal titer measurements that we have 

performed on gavaged, antibiotic-pre-treated mice regardless of mouse genotype. Fecal 

titers were performed 6, 13, or 20 days post-gavage and are compiled from multiple 

independent experiments with 4-9 mice per experiment. Gavage doses ranged from 

6.6x107 to 8.6x108 cfu/mouse. After exclusion of the outlier value of 8.78, the data are 

normally distributed as determined by the D'Agostino & Pearson K2 omnibus normality 

test: p = 0.5894, K2 = 1.057, skewness = -0.153, kurtosis = 0.3345. Analysis performed 

using GraphPad Prism version 5.01 for Windows (GraphPad Software) because the test is 

not available in Prism v3.02. 
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Figure 3.23 

 



 123   

Figure 3.24: Commensal Enterobacteriaceae but not commensal Bacteroides are 

strikingly enriched in spontaneous colitis. 

(A to C) Fecal samples from 4 week old untreated mice of the indicated genotypes or 

mice treated with antibiotics for ≥3 weeks titered in parallel anaerobically on ANB and 

BBE agar and aerobically on MacConkey agar (selective for Enterobacteriaceae). 

Il10r2+/- and dnKO mice were co-housed; data compiled from ≥2 cages/group. Statistical 

significance determined by 1-way ANOVA (ANB titers: F3,13 = 1.344, p = 0.3031) or 

unpaired t-test (log10-transformed titers). 

(D) Approximate percentages of BBE- and MacConkey-cultivable fecal bacteria in 

untreated Il10r2+/- and dnKO mice from (A) to (C) calculated by dividing BBE titers and 

MacConkey titers of by the corresponding titers of total cultivable bacteria (on non-

selective ANB agar). Percentages of "Other" were calculated by subtracting BBE and 

MacConkey percentages from 100%. Genotypes and housing arrangements of the mice 

are shown. 

(E and F) Proportions of total cultivable bacteria from (D) displayed using a logarithmic 

scale. Displayed as individual (symbols) and means of log10-transformed proportions 

(bars). Unpaired t-test (log10-transformed proportions). 
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Figure 3.24 
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Figure 3.25: Isolation of Escherichia coli from the feces of an untreated dnKO 

mouse. 

A prominent, distinctive bacterial colony type (convex, circular, white-yellow, entire 

margins, strongly β-hemolytic, 2-3 mm diameter after 48 hrs incubation) was isolated 

from the feces of an untreated (spontaneously colitic) dnKO mouse cultured on ANB 

agar. The colony type comprised 33% of all colonies observed on the titer plate (2.0x109 

cfu/g out of 6.0x109 total cfu/g). 

(A) The isolate was identified by as Escherichia coli, a member of the family 

Enterobacteriaceae, by 16S rRNA sequence identity to the closest cultured isolate, 

supplemented by phenotypic identification (phenotyping performed by W. M. Dunne, Jr.; 

in the Barnes-Jewish Hospital Medical Microbiology Laboratory. Table lists isolate ID, 

most similar bacterial type strain, percent sequence identity, and accession number of 

type strain sequence. 

(B) H&E stained histology of the descending colon of the untreated dnKO mouse from 

which E. coli was isolated and of a co-housed untreated Il10r2+/- mouse. Scale bar = 200 

µm. 
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Figure 3.25 
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Figure 3.26: E. coli stably colonizes gavaged, antibiotic-pre-treated mice. 

Serial fecal titers cultured in parallel on BBE and MacConkey agar from antibiotic-pre-

treated dnKO mice (5-6 per group) gavaged with sterile PBS, B. thetaiotaomicron (1x108 

cfu/mouse), or Escherichia coli (2x108 cfu/mouse). Bacterial identity was determined by 

colony characteristics, confirmed by sequencing the 16S rRNA gene of representative 

colonies. Representative of ≥2 experiments per group. 

(A) B. thetaiotaomicron colonization (BBE agar). 

(B) E. coli colonization (MacConkey agar). 
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Figure 3.26 
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Figure 3.27: E. coli does not induce significant gross pathology in antibiotic-pre-

treated dnKO mice. 

Pathology scores of intestines from mice described in Figure 3.26 displayed as individual 

(symbols) and median (bars) scores. Statistical significance determined by Kruskall-

Wallis test with post-hoc Dunn's test. All significant pairwise comparisons are displayed: 

*, p < 0.05; **, p < 0.01. Representative of ≥2 experiments per group. 

(A) Cecum pathology scores: H2 = 11.49, p = 0.0032. 

(B) Transverse colon pathology scores: H2 = 12.02, p = 0.0025.  
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Figure 3.27 
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Figure 3.28: E. coli does not induce significant histologic colitis in antibiotic-pre-

treated dnKO mice. 

Quantitative histologic disease metrics of intestines from mice described in Figure 3.26 

displayed as mean +/- SEM. Statistical significance determined by 1-way ANOVA with 

post-hoc Tukey's test. All significant pairwise comparisons are displayed if omnibus p-

value by ANOVA was significant: *, p < 0.05.  

(A) Transverse colon crypt height: F2,14 = 2.580, p = 0.1112.  

(B) Transverse colon crypt width: F2,14 = 5.434; p = 0.0179.  

(C) Rectum crypt height: F2,14 = 6.438, p = 0.0104.  

(D) Rectum crypt height: F2,14 = 7.268, p = 0.0068. 
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Figure 3.28 
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Figure 3.29: Schematic summary of findings. 

dnKO mice (genetically susceptible to IBD) develop spontaneous colitis characterized by 

enrichment of commensal Enterobacteriaceae in the intestinal microbiota compared to 

Il10r2+/-  (non-susceptible) mice, which do not develop disease. Antibiotic treatment 

prevents disease and eliminates both commensal Bacteroides and commensal 

Enterobacteriaceae from the microbiota. After cessation of treatment, mice remain 

healthy and free of Bacteroides and Enterobacteriaceae. Antibiotic-pre-treated mice 

experimentally colonized with individual isolates of Bacteroides or Enterobacteriaceae 

become robustly colonized independent of host genotype, but disease develops only in 

IBD-susceptible hosts colonized with Bacteroides. 
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Figure 3.29 
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Table 3.1: Preparation of a standardized, frozen stock of intestinal contents. 

Intestinal contents from untreated, non-dnKO mice were suspended in sterile, pre-

reduced PBS in an anaerobic chamber and frozen in single-use aliquots in 20% glycerol 

at -80°C. Prior to freezing, an aliquot of the mixture was titered on the indicated media 

types. Subsequently, freshly thawed aliquots were adjusted to the same concentration of 

total intestinal contents and titered on the same media types. 

Growth 
Conditions 

Media 
Type Colony Type 

Pre-freeze 
mixture (no 

glycerol) 

Post-freeze 
mixture adjusted 
to same dilution 
(some residual 

glycerol) 

% Loss in 
viability due to 

freezing 

CFU/mL CFU/mL 

Anaerobic ANB Total 4.20E+08 7.00E+07 16.7% 
β-hemolytic 1.41E+05 1.20E+05 85.1% 

Aerobic Chocolate Total 4.70E+06 2.32E+06 49.4% 
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Table 3.2: Preparation of bacterial mixed cultures of intestinal contents to screen 

for colitis induction.  

Serial 100.5-fold dilutions of intestinal contents (see Methods) were plated in parallel on 

solid media and incubated either anaerobically or aerobically on a variety media types 

(see Figure 3.12). Cultures was harvested from plates at the indicated dilutions and frozen 

at -80˚C in single-use aliquots with 20% pre-reduced glycerol. The table lists culture 

conditions, media types, 10-fold dilution factors, and numbers of cfu on the plates from 

which cultured bacteria were harvested. 

 

Media 
Type 

Culture 
Conditions 

10-Fold Dilution Factor of  
Intestinal Contents from 

Untreated Mice 

# of Colonies 
on Source 

Culture Plates 
ANB 

Anaerobic 

1 ~6.3 x 106 

ANB 4.5 ~1.4 x 103 
CNA 4.5 ~1.6 x 103 
LKV 4 ~1.4 x 103 

Chocolate Aerobic 0 ~3.9 x 105 
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Table 3.3: Unique bacterial isolates from LKV media. 

Unique species of commensal bacteria isolated from the intestinal microbiota of untreated 

mice using LKV agar. Isolates were identified by 16S rRNA gene sequence analysis 

using the Ribosomal Database Project supplemented by BLAST. Sequence identity to 

bacterial type strains and closest cultured isolates was determined by BLAST2 analysis. 

All were >99% identical to sequences detected in metagenomic sequencing of rodent 

commensal microbiota (not shown). 

Isolate ID Closest  Type Strain 
(Closest Cultured Isolate) % Identity 

dnLKV2 Bacteroides uniformis 99% 

dnLKV3 Bacteroides massiliensis 
(Bacteroides sp. TP-5) 

94% 
(99%) 

dnLKV6 Lactobacillus animalis 
(Lactobacillus murinus, ASF 361) 

99% 
(99%) 

dnLKV7 Bacteroides dorei 
(Bacteroides vulgatus) 

97% 
(99%) 

dnLKV8 Parabacteroides distasonis 97% 

dnLKV9 Bacteroides thetaiotaomicron 99% 

dnLKV18 Parabacteroides goldsteinii 
(Bacteroides sp. ASF519) 

99% 
(99%) 

dnLKV27 Parasutterella excrementihominis, 
gen. nov., sp. nov. 96% 

dnLKV22 Parasutterella excrementihominis, 
gen. nov., sp. nov. 93% 
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CHAPTER 4 

Future directions 
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Introduction 

 

A large number of interesting and important future directions arise from this 

work. I will focus primarily on those related to determining if there is molecular basis for 

the specificity of disease induction by Bacteroides species and determining whether and 

how this microbial specificity is related to host-genotype-specific interactions with T 

cells, since I believe this to be most relevant to the Stappenbeck-Allen lab collaboration. 

However I will first briefly mention two other potential future directions. 

 

Brief Future Direction 1: dnKO mice as a potential model of quiescent colitis and 

IBD-associated colon carcinogenesis 

Metronidazole and ciprofloxacin resulted in rescue of severely diseased mice 

within a matter of weeks (see Chapter 2), establishing a system that could serve as a 

straightforward and relevant model for studying the epithelial events that characterize 

quiescent IBD. Importantly, IBD colitis has significant association with colon cancer 

(Greenstein, Sachar et al. 1979), and the mechanisms by which IBD-associated cancers 

develop differ in important aspects from sporadic colon cancer (Itzkowitz 2003). We 

suggest that dnKO mice could be useful as a model for examining the progression from 

colitis to cancer and how it is influenced by inflammatory processes. Importantly, these 

experiments can be performed without relying on chemical agents to induce 

inflammation. At present we have only examined a small number of mice with quiescent 

colitis, and further work will be needed to determine whether they spontaneously show 
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signs of dysplasia and carcinogenesis. As a cautionary note: one obvious approach would 

be to cycle mice on and off of antibiotics, co-housing them with an untreated mouse after 

each round of treatment. Although an attractive option, care would be required to monitor 

and prevent the development and spread within the mouse colony of antibiotic-resistant 

(particularly ciprofloxacin-resistant) bacteria. 

 

Brief Future Direction 2: Isolation of rare or novel intestinal anaerobes 

 The bacteriology cultivation methods described here resulted in isolation of a 

number of species of Firmicutes, Bacteroidetes, and Proteobacteria that appeared, based 

on 16S rRNA sequence analysis, to represent novel species and possibly even novel 

genera that have previously been detected solely in culture-independent mass sequence 

analysis of the intestinal microbiota. A number of these isolates did not survive during 

my initial, large-scale, un-targeted attempts at mass isolation. However a more focused 

approach would undoubtedly lead to better success in maintaining viability of even 

extremely fastidious and hard-to-grow bacteria. In particular, I note a number of 

important and promising candidates or candidate approaches.  

1.) Bacteroides sp. TP5 (isolate dnLKV3, see Chapter 3) may be a novel species and 

is viable and easily grown on the culture media described here. Further 

phenotypic workup could result in confirming and publishing it as a novel 

species. 

2.) We isolated two different Betaproteobacteria related to Parasutterella 

excrementihominis gen. nov., sp. nov. (Nagai, Morotomi et al. 2009). Each of 
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these isolates may have represented a novel species. They were extremely slow to 

grow and not highly abundant in the microbiota, forming very small, slow-

growing colonies on BBE, LKV, or ANB agar. However they were isolatable on 

these selective media types and I see no reason why they or closely related 

Betaproteobacteria could not be isolated again by similar methods. 

3.) I have succeeded in isolating a number of bacteria that appear to fall within under-

studied families of Firmicutes, including Lachnospiraceae (which are 

Clostridiales) and Erisypelotrichaceae on anaerobic CNA agar. These organisms 

have been more difficult to grown in culture and some of the isolates have lost 

viability. However I have at least one isolate from each family that is still viable 

in a frozen stock and is on the verge of 16S rRNA cutoff (97% identity) for being 

a novel species (previously only detected by sequencing). Furthermore, our 

laboratory recently reported on the fact that Lachnospiraceae are preferentially 

enriched in the space between the transverse folds found in the mouse ascending 

colon (Nava, Friedrichsen et al. 2010). It would be relatively straightforward to 

sacrifice mice, immediately transfer their unopened colons into the anaerobic 

chamber, open the colons, use a small probe to scoop out the material from 

between the ascending colon folds, make dilutions, and plate it on anaerobic CNA 

agar or another even more selective medium. 

4.) A variety of papers have reported that treating mice with antibiotics targeting 

subsets of bacteria can result in enrichment of other bacterial subsets within the 

microbiota that presumably expand to fill the niches left vacant by the death of the 
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antibiotic-sensitive organisms (Rakoff-Nahoum, Paglino et al. 2004).  I have 

made similar observations. Treating mice with different antibiotics and then 

isolating bacteria that remain within the microbiota could potentially allow easier 

access to bacteria which are normally of too low abundance for isolation. I 

suggest treating for over a week before performing isolations, since the 

microbiota will likely take some time to normalize from the effects of antibiotics 

to achieve new stable microbial communities. 

 

Major Future Direction: Mechanism of Bacteroides disease induction in dnKO mice. 

 The identification of specific disease-inducing and non-disease-inducing 

commensal bacteria in the dnKO mouse model presents an exciting opportunity probe the 

mechanisms of host-microbe interaction from both host and microbial perspectives. We 

have now developed a number of useful immunologic and bacteriologic tools that enable 

us to interrogate the underlying nature of commensal-induced immunopathology in this 

model. As described in Chapter 3, we have shown specificity of Bacteroides species as 

compared to at least a subset of other bacteria in inducing host-genotype-specific disease. 

It remains an open question why this specificity was observed: is it because of one or 

more specific Bacteroides-produced molecular factors, or is it attributable to differences 

in bacterial “behavior” within the intestines?  

On the host side, several pieces of evidence implicate T cells in the pathogenesis 

of dnKO disease. The dnTfgβrii transgene in dnKO mice is expressed specifically in the 

T cell compartment (Gorelik and Flavell 2000; Kang, Bloom et al. 2008). Previous data 
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from our groups demonstrates that CD4 T cells from dnKO donors have substantially 

stronger colitis-inducing effect than wild-type T cells when adoptively transferred into 

Rag-/- recipients (Kang, Bloom et al. 2008). Similarly, we and others have shown that 

transfer of Il10r2-/- T cells also induces more severe disease than wild-type T cells (Kang, 

Bloom et al. 2008; Murai, Turovskaya et al. 2009).  However it remains to be formally 

determined whether the host-genotype-specific, Bacteroides-induced disease is 

specifically attributable to T cells of the dnKO genotype or whether it also requires other 

cell types. Assuming that a host-genotype-specific, bacterial-species-specific T-cell-

bacteria interaction is sufficient for disease, it will be important to understand what 

effects the bacterial stimulus is inducing in the T-cells. Do the T cells simply exhibit 

higher rates of activation, do they aberrantly differentiate to adopt a pathologic phenotype 

(e.g. Th1 vs. Th2), or is there a failure to develop or respond to regulatory T cells in the 

context of the colon? 

Even if we confirm that disease is due a specific combination of Bacteroides-

specific microbial stimulation and host-genotype-specific T cells, it will be important to 

determine whether the resulting immunopathology depends on development of T cell 

receptors (TCRs) directed against specific Bacteroides-produced antigens or whether 

Bacteroides-produced factors somehow induce more generalized host-genotype-specific 

T cell activation that can lead to reactivity against any potential antigen. I am personally 

inclined to favor the second option. I am aware of no reason why the genetic signaling 

defects present in dnKO mice as compared to Il10r2+/- mice would cause them to develop 

fundamentally different TCR repertoires in naïve T cells that could account for the host-
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genotype-specific nature of the response to identical bacterial stimuli. Thus, although 

many dnKO T cells presumably do react against bacterial antigens during disease and 

some of the antigens in question may be produced by bacteria that play a direct role in 

disease induction, I suspect that it will be more important to determine why the T-cells 

have been stimulated to react pathologically rather than to identify what they are reacting 

against. 

There is intriguing published evidence supporting the idea that Bacteroides 

species produce molecules which could cause aberrant host-genotype-specific immune 

responses in a non-antigen-dependent fashion. Bacteroides fragilis produces a 

zwitterionic capsular polysaccharide molecule (PSA) that in wild-type mice promotes 

Th1 skew but also promotes mucosal tolerance in the colon by triggering development of 

inducible Foxp3+ regulatory T cells (Mazmanian, Liu et al. 2005; Mazmanian, Round et 

al. 2008; Round and Mazmanian 2010; Strober 2010). Regulatory T cell induction 

appears to require stimulation of naïve T cells by IL-10 produced in a TLR2-dependent 

fashion, likely by antigen-presenting cells and/or the T-cells themselves (Mazmanian, 

Round et al. 2008; Round and Mazmanian 2010). In the absence of IL-10 production or 

blockade of the IL-10 receptor, the PSA molecule failed to induce tolerance and may 

even have been paradoxically pro-inflammatory (Mazmanian, Round et al. 2008; Strober 

2010). Intriguingly, there are suggestions from genomic data that many other intestinal 

Bacteroidales species may make similar zwitterionic polysaccharides, with the 

implication that these molecules might also modulate T cell differentiation in IL-10 

dependent fashion (Comstock 2009). Thus, the effects of Bacteroides in dnKO mice may 
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have a molecular cause that is independent of a particular T cell antigen or TCR 

specificity. 

 

Hypothesis: A molecular factor specifically present in commensal intestinal Bacteroides 

species(Aim 1) induces host-genotype-specific immunopathologic T-cell activation and/or 

altered differentiation(Aim 2) in a process that is not dependent on a specific bacterial 

antigen.(Aim 3) 

 

Specific Aims: 

1.) Assay for the presence of molecules that are present specifically in Bacteroides 

species but not in non-colitogens (e.g. E. coli and the residual bacteria in 

antibiotic-treated mice) which have pro-colitic or pro-inflammatory activity in 

dnKO but not in Il10r2+/- mice. 

a. Treat dnKO and Il10r2+/- mice currently receiving antibiotic therapy with 

lysates of colitis-inducing and non-colitis-inducing bacteria in drinking 

water to assess whether host-genotype-specific, Bacteroides-specific 

disease-induction occurs.  

i. If so, consider biochemically fractionating the lysate. 

b. Perform intraperitoneal and/or foot-pad injections of dnKO and Il10r2+/- 

mice currently receiving antibiotic therapy using lysates of colitis-

inducing and non-colitis-inducing bacteria and assess whether a host-

genotype-specific, Bacteroides-specific hyperactive immune response 
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occurs in the injected region, draining lymph node, or spleen (as 

appropriate to the site of injection). Characterize the response. 

c. Harvest naïve T-cells, preferably from antibiotic-treated, non-colitic dnKO 

and Il10r2+/- mice, culture them with antigen-presenting cells, pulse with 

bacterial lysates, and assess whether a host-genotype-specific, 

Bacteroides-specific response occurs. 

2.) Assess whether adoptively transferred T-cells from dnKO donors but not from 

Il10r2+/- donors preferentially induce disease in Rag-/- mice colonized with 

Bacteroides, but not in mice colonized with E. coli or mock-colonized. 

a. Assess the phenotypes of the transferred cells in each case to determine if 

there are differences in activation, polarization, or regulatory T cell 

development. 

b. Alternate approach: T cell deplete dnKO mice to determine whether 

disease course is affected. 

3.) Assess whether the adaptive immunes response in Bacteroides-colonized, colitic 

dnKO mice is specifically targeted against particular Bacteroides molecules or 

whether it is a more general phenomenon wherein Bacteroides-colonized dnKO 

mice also develop pathological immune responses against normally non-

colitogenic bacteria or antigens.  

a. Assess whether pre-immunization with killed Bacteroides induces a more 

strongly immunopathologic response upon colonization or re-challenge 

(Onderdonk, Cisneros et al. 1983). 
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b. Inject antigens that normally lack intrinsic colitis-inducing activity into 

dnKO mice along with the killed Bacteroides and assess whether an 

immune response targeting them develops. 

i. Assess whether immune responses develop against bacteria that 

were present at high levels in the intestinal tract of dnKO mice 

prior to Bacteroides colonization (when the mice were non-colitic). 

c. Perform in vitro assays to determine the percent of T cells reactive to the 

introduced Bacteroides species as compared to other antigens from the gut 

milieu. 
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