Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-53

1993

Completeness of a Visual Computation Model

Timothy B. Brown

Visual programming is the specification of computational processes using diagrams and icons.
Traditional computation models such as Turing machines and lambda-calculus, which are
based on one-dimensional text strings, are not suitable for visual programming languages. We
propose a two-dimensional computation model that requires no text. We also prove that the
model is computationallhy complete, i.e., that the model has the same computational power as
Turing machines.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Brown, Timothy B., "Completeness of a Visual Computation Model" Report Number: WUCS-93-53 (1993).
All Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/548

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/548?utm_source=openscholarship.wustl.edu%2Fcse_research%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Completeness of a Visual Computation Model

Timothy B. Brown

WUCS-93-53

November 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

A thesis presented to the Sever Institute of Washington University in partial
fulfillment of the requirements for the degree of Master of Science, December
1993. Prepared under the direction of Professor T. D. Kimura

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

COMPLETENESS OF A VISUAL COMPUTATION MODEL

by

Timothy B. Brown

Prepared under the direction of Professor T. D. Kimura

A thesis presented to the Sever Institute of
Washington University in partial fulfillment
of the requirements for the degree of
MASTER OF SCIENCE

December, 1993

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY

ABSTRACT

COMPLETENESS OF A VISUAL COMPUTATION MODEL

by Timothy B. Brown

ADVISOR: Professor T. D. Kimura

December, 1993

Saint Louis, Missouri

Visual programming is the specification of computational processes using diagrams and
icons. Traditional computation models such as Turing machines and A-calculus, which are
based on one-dimensional text strings, are not suitable for visual programming languages.
We propose a two-dimensional computation model that requires no text. We also prove
that the model is computationally complete, i.e., that the model has the same computational
power as Turing machines.

Table of Contents

Page
LSt Of Tables .. e e e e e iii
|0 R A o) = L iv
Chapters
1. Introduction and Problem Statement.........ccc.cceeereviceesserernmunnenns 1
2. Background and MoOtIVatiON......covveverriniemencrenneirreernensesannnssnnnnnens 3
3. Methods and MErCs ..ouieiinini i e ea e 36
4. The Boxgraph Computation Modelcoeeiiiiiiiiiiiiiiiiiiie e 38
5. Completeness of Recursive Boxgraph Modelcocvveeneveecineeinens 58
6. Oberon Implementation........ccooiiiiiiiiiiiiiiicececrceeviie e 78
7. Evalualion ..oiiiiiiriiiiii e e e en e aas 86
8. Future Work .. .o e, 90
BIbLOGIADRY . neeeiic et e n e 92
ACKNOWIEAZEMENES ..ouiiiiiiieeiiiiei e e e e et et aaesbeeaa e saees s s eneens 97
Appendices
A, Pen INterface ..o e e 99
B. Oberon Implementation NOtES......cceoieeeiiieiiiiiiiiiieiiieeeeeeeaennenns 103
C. User’s Guide. ..o e 113
| 5 2 T U 115

List of Tables

Tables Page
5.1.1 A Set of Program Machine Operations.......c.oouevieviiiriirinsiaianenaannns 59
5.1.2 Program for Example Program Machine..........cccovvivvivrirennnenrnsnaens 60
5.1.3 Trace of Program Machine Execution.............coooviiiiiniiiiiinn, 61

il

List of Figures

v

Figures Page
2.2.1.1 Moving a Vertex of a Quadrilateral Object.......ccccovirviinnnnnnes 21
2.2.1.2 A Celsius-to-Fahrenheit COnverter.. ...o.vovieiiaireiiiniinceeeeenencnns 22
2.2.1.3 Graphically Defining the New Objects MidPointLine

and Verticallingo.vviiiniiiiiiiiiiiniaiii e 23
2.2.2.1 Troupes of Performers in Rehearsal Worldoooeniiins 24
2.2.3.1 Screen Images from PiCL...ccciiiciiiiiiiiiiiiiioiiiancinn e 25
2.2.4.1 Prograph Classes.......ccociiiiiiiiiiiiiiiiiiier e 26
2.2.5.1 A Simple BOXGIAPN ...uvniiiiiiiiiieiiiei e ceeee e ree e e e anen 27
2.2.5.2 Data Flow and INCONSIStENCY .eviinnrerriiierirriiaereiineeeennaeneanns 28
2.2.5.3 A Simple Iteration BOXccoiiiiiiiiiiiiiiiiciiir e 28
2.2.6.1 A LabVIEW Virtnal Instrument.......cccceiiiiimimiiiiiinneecnnencsnnns 29
2.2.6.2 A Virtual Instrument with a FOR Loop.....coveviiiiiiiiinniiiiinennns 29
2.2.7.1 The Binomial Coefficients Subformccocooiiiiiiiioni. 30
2.2.8.1 A Parts Bin and Construction Window........covoviiiiiiinininiinen.. 31
2.2.8.2 FabrickClock. .o 31
2.2.9.1 Cantatd WoOTKSPACE .o vv v et iieiiiiieeraeiiarentiianetasiaaesasstansnas 32

Figures Page
2.2.9.2 A Subform and Corresponding Flow Graph........cccocvceenvineenn. 33
2.2.10.1 A FibONACCT VIP. ...t ie ittt ene e 34
2.2.10.2 Use of the FibonacCi ViP.....cvvvieiiiiviiiiniiiiiiiieiiiiieieeeeeeeees 34
4.1.1 Logical Functions in Boxgraph........ccovviiiiimiiviiiiiieiiiieeeans 39
4.1.2 Computations of AND ...ttt 40
4.1.3 Non-BoxXgraphsoueuviioiiiiiiicee i 42
4.1.4 AND Operation BoXceiuiiniiiiiiiiiiiiiie e iicenaanes 44
4.1.5 Local ConstrainS...c..euveeitareniaeiaeeneeaiieeeieieiaaeeierannenns 47
4.1.6 Elaborations of XOR....cooooiiiiiimiiiiiiiiiiiiiiiiiiiireee i 48
4.1.7 Boxgraph Representation of a Full Adder................cooevviinnni. 49
4.2.1 Naming BoXgraphs ..uvuvueeeeenioiniiiiiii e v 50
4.2.2 Arithmetic Primitives...c.cccii i e, 51
4.2.3 Arithmetic OPerationsveeiavereiareeiiarenaierinrerrnanenennes 53-55
4.2.4 Fibonacci and GCD Functions......ccccceeeiieeiiiiveeonieiieceeeeen 57
5.1.1 Structure of a Program Machine...............ooviiiiiiiiiiin 58
5.1.2 *double’ SUBTOUHNE ...vvveeii et 62
5.2.1 Sequential Control Flow using Data Flowcocvveeinennann... 64

Figures
5.3.1
5.4.1
5.4.2

5.4.3

5.4.4

5.4.5

5.4.6

5.5.1
5.5.2
5.5.3
6.1
6.2
6.3
6.4

6.5

Page
Passing Register State using Data Flow ..., 65
Recursive Jump Operation from 71 10 f...vveeeeiiiviiniiiniiiniinn 67
Passing Control Values using Data Flow......ccooconniniinnnni 68
Trace of Program Machine Execution
Recursion Level 0....cooiviiiiiiiiiiii e 70
Trace of Program Machine Execution
RecursionLevel 1ot iiesenrnanaeaa e 71
Trace of Program Machine Execution
Recursion Level 2coiiiiiiii i e 72
Trace of Program Machine Execution
Recursion Level 3. ... 73
The Successor Operation @’ocoivviiruniinniiecoiiiiiiiiiiiian. 75
The Zero Operation A0 e 75
The Decrement or Jump Operation a (M)......ccovevvrvniiniinnniniann.s 76
Horizontal ADSHactON. . .ccviei it iiiciiiie et eaeene 78
Screen Dump of Full Adder Before Execution.....cccccomverviieencene 82
Screen Dump of Full Adder After Execution.......ccoveveeeeenivennes &3
Screen Dump of Fibonacci Function Before Execution................ 84
Screen Dump of Fibonacci Function After Execution.......c..c....... 85

1. Introduction and Problem Statement

Visual programming languages allow the specification of computational processes
using visual expressions. These visual expressions are usually in the form of two-
dimensional diagrams and icons. The current trend in visual programming language
research is towards the creation of sophisticated, general purpose visual programming
languages. This is a natural and useful wrend. However, we believe that in order for the
power of visual programming languages to be realized, the fundamental aspects of visual
programming languages must be discovered.

One of those fundamental aspects is a formal computational model which can serve
as a basis for visual computation. Since traditional computation models such as Turing
machines and A-calculus are based on one-dimensional text strings, they are not suitable for
visual programming languages. We propose a two-dimensional computation model that
requires no text. Our proposed model is visually expressed using only boxes, arrows, and
a few notations for primitive operations. The model is also computationally complete, i.e.,
it has the same computational power as Turing machines.

In creating our computation model, we have adopted as a guiding principle
Einstein’s often quoted advice, “Make it as simple as possible, but not simpler.”
Following this advice, we attempt to define and implement the simplest visual
programming language (“as simple as possible”) which is computationally complete (“but
not simpler”). We do not claim that the proposed model is an ideal visual programming
language, any more than one would claim that the Turing machine model is an ideal text-

based programming environment.

Before presenting our visual computation model, we provide some background
information about visual programming languages in general and about recent rends in
visual programming systems. After this background material is presented, along with
further motivation for this research, we describe the methods and metrics chosen for the
research. The visual computation model is then described. A proof of the model’s
computational completeness follows the description of the model. Our current
implementation of the model is then described. Lastly, an evaluation of the work and some

suggestions for future improvements are provided.

2. Background and Motivation

2.1 Introduction to Visual Programming Languages

Traditionally, computational processes are specified by one-dimensional text
strings. Visual programming, in contrast, uses two-dimensional diagrams and icons for
specifying such processes. For many users, visual programming is an attractive
alternative to traditional computer programming. One of the reasons for this
attractiveness is that the visual representation of a solution to a problem is often more -
closely matched with the way the solution is conceived or understood than is a text-based
representation. The evidence for this assertion can be found in many places.

For many people, spoken or written directions about how to get from one place to
another are much more difficult to understand than a simple map. Similarly, instructions
for procedures to be carried out in a work environment, such as a factory or assembly
line, are often much easier to understand when they include pictures showing what is to
be done. Instructions for how to work with computer software commonly include not
only pictures and diagrams of what the user should see on screen, but also diagrams and
pictures that help the user build a conceptual framework for the workings of the software.
Even people who are supposedly very practiced at representing problem solutions in text-
based languages, namely computer programmers, commonly use diagrams to describe
their solutions both before and after programs are written.

Traditional, text-based, programming languages are notorious for the difficulty
many people have in using them. As one researcher puts it, ““The facilities these [text
based] languages provide for describing algorithms correspond more closely to how

computers operate than to the cognitive or perceptual processes of the programmer.” [9]

In response to this gap between cognitive processes and computer processes,
graphical aids have been used for program design for many years. The most widely
known example would have to be the flow-chart, but it is certainly not the only example.
Diagrams showing the relationships among subroutines and their calling routines were
commonplace almost as soon as the idea of subroutines was conceived. The
documentation of any program written in a modular programming language would be
incomplete without a diagram showing the relationships among modules. Similarly,
documentation of object-oriented systems inevitably includes diagrams showing the
class/subclass (object/extension) relationship among objects in the system. This is so
common and useful that an object-oriented programming system that doesn’t include a
“class browser” which can dynamically create and display such diagrams and allow the
programmer easy access to the code for any object through interaction with those
diagrams is considered an inadequate object-oriented environment.

Two-dimensional notations and languages have also been used freely in
mathematics and symbolic logic. Obvious examples of these notations are graphs and
rees used to define and illustrate relationships between objects. Another well-known
example is the Venn diagram. Some less well-known examples include Frege’s [11] use
of notations based on binary trees to represent structures of various judgments. Peirce’s
system of existential graphs [35] is a diagrammatic system for first order logic. More
recently, Harel [18] presented a visual notation which is an extension of Venn diagrams
to include the ability to represent relationships commonly represented in graphs.

The idea of allowing a computer to do the work of transforming a diagram used in
program design into a working program is actually not very new. Researchers at ML.LT.
were exploring interactive programming by means of flowcharts on a graphics display as
early as the late 1960’s [37]. But it was not until the cost of graphics-related hardware

and software began to fall significantly that the visual programming idea gained

significant momentum. Even with graphical computer systems commonplace today, the
potential advantages of visual programming have not been fully appreciated. We believe
that this is caused, in part, by the hardware most commonly used to interact with
graphical computer systems, the mouse.

Using a mouse is not a natural skill, the distance between where an action takes
place, at the mouse, and where the results of that action are displayed, on screen, is
somewhat troublesome. This makes creating diagrams with a mouse rather awkward,
difficult, and time consuming. Recent advances in pen-based interfaces have changed
the situation. Even fairly experienced mouse users can complete diagrams more quickly
and easily using a pen-based interface [4]. The use of shape recognition algorithms and -
pen-based systems makes the drawing and composition of diagrams for visual programs
easier and more natural [5]. The advent of pen-based personal computer systems will
almost certainly create more demand for systems which allow complete interaction using
only the pen. These systems will include pen-based visual programming languages.

A wide variety of visual programming languages have been proposed, developed,
or commercialized [13]. Researchers in the area have devised a number of methods of
classifying such languages. We will not attempt to present here all the different
classification information about a given visual language. However, we will provide some
basic information using a few of the classification methods presented in Hils [19], Glinert
[13] and Ambler {3].

One of the very first design questions a visual programming language creator

must answer is what will be the semantic base of the language. One of the available

* A method of classifying all programming languages has been proposed which parailels the Flynn
Classification of computer systems: Single Instruction Single Data, Single Instruction Multiple Data,
Multiple Instruction Single Data, and Maltiple Instruction Multiple Data. In this scheme, languages are
classified with regard to their visual content. The four classifications are; Textual Instruction Textual Data
(TITD), Textual Instruction Visual Data (TIVD), Visual Instruction Textual Data (VITD), and Visual
Instruction Visual Data (VIVD). All the languages discussed in this thesis have at least some form of
Visual Instruction.

choices is the flow paradigm. The flow paradigm can be divided into two instances, data
flow and control flow. In a data flow system the sequence in which functions or
operations in a program are to execute is not explicitly specified. Instead, the source of
data for an operation is specified, and whenever all the inputs for an operation are
available, the operation occurs. The operation is said to fire whenever its data is
available. The control flow model more closely resembles the traditional use of flow
charts. Whatever visual representation is used shows the sequential relationship among
operations. Some data flow based systems also include control flow constructs.

An alternative is to create a constraint based system. Such systems allow the user
to visually specify the invariant properties and relationships of objects in a particular
problem space along with some methods which the system may used to maintain those
relationships. Such systems are in many ways analogous to the textual programming
language Prolog and other logic programming systems [7, 47]. There are also visual
languages which use programming by demonstration or rehearsal. In such systems, the
user manipulates sample data or visual representations of data structures to demonstrate
to the system what operations are to be performed. The system then emulates the
demonstrated operations on new data.

The last major class of visual programming languages is the group of forms-based
systems. Ambler and Burnett, leading researchers in this visual programming paradigm,
have stated, “You can think of form-based programming as a generalization of
spreadsheet programming.”[3] The basic idea is that the success of spreadsheets is
largely due to the visual methods used within spreadsheets to represent relationships
between data items and that visualness can be expanded upon to create more powerful
problem solving systems.

Once a semantic base is chosen, a syntactic base must be chosen. The syntactic

base determines the actual visual representation of programs. In flow based systems the

most common approach is to use directed graphs. Nodes in the graphs indicate
operations or data cells and the directed edges represent the flow of either the data or
control. Some flow based visual languages, for example HI-VISUAL [20], use
juxtaposition of nodes to indicate flow. Nodes in the graph are represented as boxes,
icons, or other shapes. This visual representation has been called the box-line
representation or ‘boxes-on-lines’. Lieberman [28] has suggested that the predominance
of this visual representation is a hindrance to the imaginative use of visualization in-
programming language systems. Constraint based systems often use box-line
representations or domain-specific representations, for example circuit diagrams or
matrix notation. Since forms based systems are extensions of spreadsheets, their visual
representation generally looks like a spreadsheet interface. The visual representation and
syntax of a demonstration system are usually domain specific.

After the semantic and syntactic bases are chosen, the language designer then
creates a set of basic constructs. These constructs include such items as representations
for iteration, sequential execution (in a non-control flow system), procedure abstraction
and recursion, type checking, and higher-order functions.

The following section includes samples of a number of visual programming
languages. Each language description includes an indication of the semantic base, -
syntactic base, and basic constructs of the language. The languages are presented

chronologically by date of the publication.

2.2 Sampling of Visual Programming Languages

2.2.1 ThingLab (1979)

Thinglab was the product of Alan Boming’s Ph.D. Dissertation [6]. It was
originally designed as an environment for graphic simulations of experiments in physics
and geometry. Butit is now clear that one of ThingLab's major contributions to computer
science is the constraint based visual programming language incorporated into the
system. This programming language is an extension of Smalltalk [21,15,16] and is,
therefore, quite naturally, very object oriented.

In a-constraint based system, the user specifies a set of relationships, called
constraints, between objects in the problem space. The system's number one job is to
maintain these relationships. .A graphic user interface is incorporated into ThingLab
which allows users to view and edit objects. As the objects are being edited, the system
is using the construction of objects as a way of determining constraints. In order to do
this, the system must be supplied with some infermation about what constraints are
possible. This is done by a different class of user, the kit-builder.

The kit-builder creates objects, by programming in Smalltalk, which are available
for use by the other system users. When the kit-builder creates constraints, she must also
specify a set of methods that the system can invoke to satisfy the constraints. Figure
2.2.1.1, which is taken from Berning {7], shows the result of a user creating a new
Quadrilateral object using basic geometric objects (like line and point) created by a kit-
builder and then adding mid-point objects to the lines and connecting those mid-points.
Moving one of the end-points of the quadrilateral lines, demonstrates the theorem that the

lines connecting the mid-points always form a parallelogram. When the prototype

quadrilateral was created, the system developed the following description of a
quadrilateral.

Class Quadrilateral

Part Descriptions
partl: a line
part2: a line
part3: a line
part4: a line
Merges
part2 point2 = part3 pointl
partl pointl = part4 point2
part3 point2 = part4 pointl
partl point2 = part2 pointl
The Merges section shows the constraints which the system created based on the user's
drawing of the prototype.

ThingLab also includes a set of objects which have constraints allowing them to
perform simple mathematical operations. Figure 2.2.1.2, which also comes from Boming
[7], shows a Celsius-to-Fahrenheit Converter. Notice that items that cannot be changed
in order to satisfy constraints are shown with an anchor attached. Another feature of the
program is that it takes advantage of the declarative (non-procedural) nature of
constraints to allow conversion both forwards and backwards. In other words, the user
could change the temperature on the Fahrenheit side and have the converted Celsius
temperature show up on the other side, or the user could change the Celsius side and have
the appropriate Fahrenheit value show up on the other side.

ThingLab was later extended to allow the constructor of basic building blocks, to
do so in a more intuitive and graphical way. Instead of programming in Smallitaik, the
kit-builder programs the system using diagrams which are very similar to those in Figure
2.2.1.1. Figure 2.2.1.3, which is from Borning (8], shows the program which defines the

MidPointLine object and the program defining a vertical line. This system forms the

abstraction mechanism allowing Thinglab's programming language to be used to define

10

new objects, functions and procedures, using existing ones. This allows recursion to be

represented.

2.2.2 Rehearsal World (1984)

One of the most well known visual programming by demonstration systems is
Rehearsal World [17]. It was designed to allow teachers who do not know how to
program to create computerized lessons. The system uses a theater metaphor in which
the screen is the stage and there are predefined performers which a user can direct to
create a play. The underlying representation of all the players is created using Smalltalk
code. New performers can often be created by examples, but it is sometimes necessary to
write Smalltalk code. The teachers are not expected to program in Smalltalk, therefore,
some coding must be done by others.

Performers are represented on screen by icons and interact by sending cues. The
director, the teacher, teaches the performers how to behave during a given production.
Figure 2.2.2.1 shows how performers are grouped on screen into troupes. Some typical .
predefined performers are a Text performer that can be directed to display text and a
Number performer that can be directed to display numbers. Each performer has a set of
cues to which it will react. The user can send cues or, by telling the system to "watch”,
can direct a performer to send cues to other performers. The performers correspond to
Smalltalk objects and the cues correspond to messages. Once the performance has been
choreographed by the director, it can be rehearsed and debugged before it is played back

for its intended audience.

Il

2.2.3 Pict (1984)

One of the pioneer efforts in flow based visual programming languages was Pict
[12, 14]. Pict’s designers chose the flow based model, and in particular a control flow
based model, even when many professionals had been questioning the usefulness of
flowcharts. They contend that much of the criticism of flowcharts stems from the fact
that the flowchart is not the program. They found “much to recommend the flowchart
when it is the program itself rather than merely an aid to documenting it” [14]. The
syntactic base for Pict is the directed graph. Pict systems incorporate an interactive editor
allowing users to create programs using a joystick. Once the system is started, users need
never touch a keyboard. Pict programs can perform simple, integer-based calculations.
Figure 2.2.3.1, from [14], shows a series of displays from a running Pict system.

Since Pict uses color to differentiate many of its significant structures, the figure
loses quite a bit in its translation into black and white. Nonetheless, the flowchart-like
structure of Pict programs can easily be seen. Nodes in the graph are represented as small
squares; arcs, or flows between the nodes, are represented as double lines with arrow
heads inside indicating the direction of flow. Image (d) of the figure shows the

‘representation of a routine to perform natural number multiplication by repeated addition;
the icon for this routine is shown enlarged in image (¢). This shows Pict’s procedure
abstraction construct. The diagram in image (e) shows a program which retrieves an
input, n, from the user and then calls a factorial subprogram to calculate n!. Images (h)
through (k) show the animation of the execution of the program, which uses recursion to
calculate 7!. Along with procedural abstraction and recursion, Pict contains constructs,
many of them represented using color, for Pascal-like control structures like repeat-until
and while . Different parameter passing modes, data structures, and program operations

are represented by various icons.

12

Experiments conducted by Pict’s authors showed that naive users were very
impressed that they could program a computer ‘without learning a programming
language.” Of course, they did learn and use a programming language, along with a
program editor. They simply were unaware of their accomplishment, presumably
because it was much easier than expected. Pict’s authors state that they do not claim that
Pict is a general purpose programming environment, but Pict clearly points toward the

development of such systems.

2.2.4 Prograph (1985)

Prograph was initially reported on in 1985 [30] and is described in more detail in
later publications [9,10]. Prograph is a commercially available product. One of the
major features of Prograph is the integration of data flow based visual programming with
object-oriented programming techniques. Classes, which are represented as icons, can be
viewed in a class browser. Figure 2.2.4.1(a) shows a class browser window containing a
forest of class trees. Part (b) of the same figure shows the visual representation of the .
attributes of some classes. A method for a class is a data flow diagram which may be
condensed into an icon. Part (¢) shows the representation of two of the methods of the
class Index.

Prograph includes predefined iteration and parallelism mechanisms, including
operators which apply a function to all objects in a list and return a list, and a contwrol flow
construct -- the while loop. The Prograph system includes an editor for creating classes
and programs, an interpreter for executing and debugging, and an “Application Builder”
which is used for constructing and testing the user interface to a program. The
Application Builder is similar in concept to the technigues used for interface construction

in such products as Visual Basic.

13

2.2.5 Show and Tell (1986)

The Show and Tell Language (STL) system is a data flow based, general purpose
programming language originally designed for school children. [26, 27] As in most data
flow languages, the directed graph serves as the semantic base. Boxes represent
functions, constants, variables, iterators, or containers of inconsistency. Arrows represent
the flow of data between boxes. The particular case of directed graph used in STL is
called a boxgraph. In the boxgraph notation, boxes may be hierarchically nested and
edges can flow from a box at any level of the hierarchy to a box at any other level so long
as no cycle is created in the boxgraph.

The concept of consistency is fundamental to STL. Consistency is used for
program control which emulates an IF-THEN construct without the introduction of
specific control flow ideas. The data flow rule that allows this is ‘data flow may not
continue through an inconsistent box.” A box in a boxgraph becomes inconsistent when
there is a conflict of some type among the data flowing into the box. Figure 2.2.5.1
shows a simple boxgraph both before and after execution. Boxes which are inconsistent
are shown shaded. Boxes can be open or closed. Closed boxes, framed with solid lines,
contain inconsistency; open boxes, framed with dashed lines, allow inconsistency to
propagate out to the next larger containing box. Figure 2.2.5.2 shows how inconsistency
affects data flow.

Iteration is available in STL via a construct called the iteration box. An iteration
box stops iterating when it becomes inconsistent. Figure 2.2.5.3 shows a simple use of an
iteration box. There are three forms of communication that can be used to send data to
the internal section of an iteration box, sequential, parallel, and global. Sequential

iteration is represented by pairs of triangle shaped ports on the frame of a box. Data

14

values passed through sequential ports are sent back to the input of the box for
subsequent iterations. Their values may change throughout the course of iteration. For
example, in Figure 2.2.5.3, the value which arrives at the topmost sequential port on the
right side of the iteration box after the first iteration (in this case the value is 5) is returned
as an input value to the topmost sequential port on the left side of the iteration box. Ports
are matched using simple lexicographic ordering of ports. Parallel ports, represented in
STL as a small striped rectangle on the edge of a box, are used to transfer collections of
data values to the groups of boxes represented by one iteration box. Any value coming
into an iteration box via an arrow without a port (sequential or parallel) is considered to
be a global value, which does not change throughout the iteration.

STL also includes box types which are used for opening files and accessing fields
of a record structure. Naming of box graphs corresponds to the procedure concept in
textual programming languages and can be used to simplify complex box graphs and to
implement recursion. Also included in STL are a set of simple operation boxes, such as
the plus box, '+, which perform the expected operations (addition, subtraction,

multiplication, division, etc.)
2.2.6 LabVIEW (1986)

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) [40] is a
commercial visual programming environment designed for use by engineers and
scientists with little or no traditional programming experience. The basic component of
any program in the LabVIEW environment is the virtual instrument which consists of a
front panel and a block diagram. As the name indicates, a virtual instrument is intended
to imitate the behavior of a laboratory instrument, an oscilloscope for example. Figure

2.2.6.1 shows a virtual instrument with the front panel on the left and block diagram on

15

the right. The block diagram is the source code, written in LabVIEW’s visual
programming language called G, which describes the virtual instrument’s behavior.

G is a data flow based language with a special set of control flow structures
added. The iconic nodes in G’s block diagrams represent either predefined functions or
user defined virtual instruments. The virtual instrument is G’s procedural abstraction
mechanism. The predefined functions are numerous and include arithmetic operators,
comparative operators, trigonometric functions, string manipulation operators, statistical
routines, matrix operators, curve fitting procedures, and signal processing routines. The
added control flow structures include a sequence structure which forces its contents to be
executed in a specified order, a FOR loop, and a REPEAT-UNTIL loop (mistakenly
called a WHILE loop). Figure 2.2.6.2 shows a virtual instrument which uses a FOR loop
construct in its block diagram. The directed edges between iconic nodes in G are called

wires and their graphic rendering indicates the type of data which is flowing over them.

2.2.7 Forms (1987)

As one would expect from its name, Forms is a forms-based visual programming
language. As was stated earlier, forms-based languages are an attempt to expand upon
those aspects of spreadsheets that have made them a popular tool for "non-programmers”
to use in solving problems on computers. One of those aspects is the visual layout of a
spreadsheet as a matrix of cells. Another is the way in which cells can be specified when
entering formulas by pointing a cursor at a cell or dragging the cursor across a group of
cells instead of specifying the cells by name. Many of these properties can be
summarized into the following statement. For a specific class of table-oriented
computational problems, the spreadsheet solution "parallels the process we might use if

we were to approach the problem with only pen and paper.” [2] Forms-based visual

16

programming languages attempt to maintain this property while expanding the class of
problems that can be solved.

Some of the additions to typical spreadsheet concepts included in Forms are the
following. The sheer concept is changed to a form which can contain objects such as cell
matrices. Cells can contain numeric data, string data, or a graphic image. Cell matrices
can be unbounded, that is their dimensions need not be specified until actual problem
evaluation. Subforms are similar to forms except that they can inherit values from their
parent form. This is similar to parameter passing, and subforms are the abstraction
mechanism for creating subprograms or procedures. Subforms can be dynamically
created during an evaluation; this allows procedures created with subforms to be
Tecursive.

Figure 2.2.7.1 shows a subform which computes the binomial coefficients for an
order N-1 equation where N is to be determined when the subform is invoked. This
illustrates an unbounded cell matrix and the notation used to specify each cell's value
based on its neighboring cells. The R stands for Row; C stands for column. Therefore,
‘=R[-1]C + RC[-1]’ indicates the value of the cell one row up from the current cell in the
same column should be added to the value one column to the left of the current cell in the
same row to obtain the value for the current cell. The value of the single cell object N is
to be inherited from the parent form. The simplicity and power of this notation for

solving this type of problem is fairly obvious in the illustration.

2.2.8 Fabrick (1988)

Fabrick [22,29] is a visual programming environment intended to make
programming a more natural process which is accessible to casual and novice

programmers. It was developed in a commercial research environment at Apple

17

Computer. Programs are represented by data flow graphs of connected components. The
components correspond to functions and are represented by icons. Fabrick extends the
normal use of data flow to include bi-directional flow. Each component in Fabrick has a
set of connection points, or pins, to which flow lines can be connected. Triangles
represent the pins and indicate the direction of flow; bi-directional pins are represented by
diamonds.

The pin metaphor is part of the overall electronics shop metaphor used in Fabrick.
Programmers build new programs, or components, out of already defined components. A
relatively large set of predefined components are included in the Fabrick environment.
These include components which perform arithmetic, perform string and graphic
manipulation, and generate common graphical elements (rectangles, ovals, lines, etc.)
The system is set up to allow the addition of other kits containing special purpose
components. Figure 2.2.8.1 shows the Fabrick Parts Bin (top) and a Construction
Window (bottom). The parts bin is used to store previously created components. The
programmer simply drags parts from the bin into the construction area and connects
components by using a mouse to draw lines between pins.

The component system is Fabrick's main abstraction mechanism. Figure 2.2.8.2
shows a completed analog clock component created using previously built components.
Once the clock component is built, it can be represented by just the part of the diagram
that looks like a clock face. This icon can then be added to the bin of available
components and used to create other components.

There are three other aspects of Fabrick which are particularly interesting. First, it
contains a simple gesture recognition system to increase the number of commands that
can be associated with a mouse button. After positioning the cursor over an object and
pressing the mouse button, moving the mouse in a specific direction indicates the

operation to be performed. For example a pin can be connected to by clicking on the pin

18

and moving the cursor in one direction. That same pin can be moved around the
perimeter of its component by clicking on the pin and moving the cursor in a different
direction. Second, unlike many programming languages and systems, Fabrick is fully
live. This means that whenever a connection, value, or component is changed, the rest of
the current graph is immediately updated to reflect the change. Lastly, Fabrick contains a
group of components called iterators which are used for computations which are to be
repeated. These iterators function in a manner which is similar to the iterators of Show

and Tell described above.

2.2.9 Cantata (1990)

Cantata is a data flow based visual programming language which is part of an
integrated software development environment call Khoros [33,43]. The system’s
designers contend that most data flow based visual programming languages are too
limited in application and that they need to be made more general in order to be widely
accepted and used. Cantata uses a directed graph of boxes, called glyphs, as its standard
notation. However, Cantata attempts to provide the appropriate compromise between
visual and textual programming. Thus, operators, those fundamental procedures which
are represented as glyphs, are written in traditional programming languages such as C or
FORTRAN. This allows numerous pre-written libraries of procedures to be quickly
incorporated into the environment. This also reflects the system designer's point of view
that some things are better represented in textual rather than graphical notation.

Figure 2.2.9.1 shows the Cantata workspace with the source code of an image
processing application. The “count_loop" in Figure 2.2.9.1 illustrates one of Cantata's

control flow constructs, counted iteration. A WHILE loop and an IF-THEN-ELSE

19

construct are also included. Procedural abstraction is provided by Cantata; new glyphs
can be made by creating a flow graph consisting of existing glyphs.

The Khoros/Cantata environment also takes on some features of a forms-based
language. Glyphs are partitioned into groups of similar functions which are accessible
through a forms interface. Figure 2.2.9.2 shows a subform and its corresponding flow
graph implementation. The "Standard Control Structures” are all accessed through the

same form, The subform shown is for the IF-THEN-ELSE control structure,

2.2.10 Hyperflow (1992)

Hyperflow [23, 24] is a visual programming language specifically designed to
work in a pen computer environment. It is an extension of the Show and Tell Language
discussed above, but it is also a user interface framework. In that sense, it is also an
extension of various window systems such as X windows [36].

The basic building block of Hyperflow is the visually interactive process, or vip.
A vip is a concurrent process with a user interface. This user interface is typically
represented by a box or group of boxes on screen, but can be represented by various on-
screen renderings. A vip’s user interface comresponds to a window in a traditional
windowing system and can respond to user input in a similar manner. Along with the
user interface, each vip has a processing part which contains, among other things, the
specification of how the vip is to respond to commands, whether they be from user input
or from messages from other vips. It is this message passing and receiving capability of
vips which makes the group of vips a communicative organization capable of distributed
computation. Vips are connected by arrows indicating communication paths. A vip's
body, its processing part, can be encoded in the two dimensional syntax of Hyperflow or

in a textual programming language such as C, Pascal, or even assembly language.

20

Figure 2.2.10.1 shows the specification of a vip which is used to calculate the
Fibonacci sequence. Boxes which are connected by lines, not arrows, are all part of the
same vip. This particular vip has two commands which it can accept, init and next. Init
is encoded in a textual language, while next is encoded in the two-dimensional
Hyperflow syntax. After init is requested, subsequent invocations of the next command
will supply the successive integers of the Fibonacci sequence. Figure 2.2.10.2 shows
how that vip is used to compute the 10th Fibonacci number.

It is worth noting that every functional medule in a Hyperflow system, including
such low level items as device drivers, has a corresponding vip and thus has an interface
part and a processing part. This approach reflects the positon that “the user interface is
as ubiquitous as the computation.” [23] One of the goals of the Hyperflow language is
that it be able to function as a common language at the various levels of programming

from user interface through system programming.

21

199[qQ) [RISIR[IPRNY) B JO XOUOA © SULAOW :1'1°7'Z 2mSL]

~~ A
ey, ,
.....H/I! /.4. e
. - v
I/.Jﬂ.ﬂl -ﬂ) .l.../.
", 5
/ A\ // / .f.....f
/. -f ."x .’ \-‘.-
AN % /._ //) .
¥ e lillnu_l.
P
e mE —— 8 &u.unu__u-_. s B iy b s e e man P s o e
FERT U1 7.1 ROV VPUIY L T BT
DT bl $ieans) !mwlm_ i) $SULaS tuntyg 1a2]
BT My MUF St g DT LR Trmy
MHINIOIINY utIfe M tmma $adlinoad JMIM APy S 8, Adhisoanud h ko Iu]
am M éﬂd N g | TS
). AUIMUGK, s MM FREIG W TE TILEYY EYTTEETY T H oy
e [[N o PR ot e = , $23lan
A3
b
/. \.\/
., »
T e _ -
- lll(..l]l;?i P |||llm .I.II
a/ // /— ...I..r/V
.ﬂ p ./ -~
~, / e \
I..I/ 4 -/1.\
ﬁ'.tl W T
, r
- N I-rla[llt -’
/\‘ ——
Mg v e s F L LTE) R
ELATIREE . e e e TRUDINY Am Mg
AvRlg fsupms o) L] ML fiupyns) {anyg b
Anit Y Ales sy kﬁmﬂ M) s s huvrsy
LLEILOJA WHSISUON S ¢, Mdfuoitud LRI AL T 355&5& $26ndg 8, &EE?“ MM TIPS
un MM éﬂﬂ n d i 2
10030 WIS HHO30 Ul EYLTETYIT PEL- R R TILE S DR TTES Jutty
TRt IR RIS A et s e o s e~ vrimaa e 1%

Plus

~~~~~~~~~~~~ e v e e e e e e e UM RO

Paine structure tnsert HumberOperator
H@%’Hﬂﬁ%ﬁmﬁ detete HumberPringer
LaLldndarera proftocype’'s valugs  |constrain Flus

Rectangle as save file nerge Poinc
TemperatureConvergsubclass template  move Recrangle

Texcfiung e e s s e s e e s GAAL CEXL TemperatureConvery
Thermomerer o 8 et e o ot o et e o] T XL

Thermometers Thetmonteter

Tunes Times

Triangle A Attt e et

{

F
/
{
*—-
= /

Figure 2.2.1.2: A Celsius-to-Fahrenheit Converter

22



Thinglab Objecs Delinar

T ey R
1SN AT P

Pl

MUEGRLIne R {nsact
Vetticadling ruciure dalate
B values coanrdn
------------ merge
neveg CuesreThing
edft DHvide
............ ExprCocucant
Exprlauality
Exgecision
(fnseries) ot

l*! 555

Figure 2.2.1.3: Graphically Defining the New Objects MidPointLine and VerticalLine

23



%
*
%
*
*
%
*
&
*
&
*
*
*
*
*
*
%
*
*

*

PROGRAMMING BY REHEARSAL *

Loy 18 b ko o 2

Tt et iy ey pudseed e [t o st i gL
"L
I E‘E Lin R oy ‘1 ; XK .1?1 {1
A o b 3! ) r
i Z et
ALE mplytuge Treups brE LTy :fc e
Basic Teoupe T [ ] l ¢
x 1
ST hello ,%
Cabag Troups A _— . - " 4 J
; e o
SrephuciTesupa ¥ i l %‘n
S . i v 0 oooooo | EE
g . !
3 CL Lo Oy o in T hd
S T T A G BV e
Ghits 7t StaptssTreupe Lot i ki) * Lad b
Grbd B H 9 45
roldfust, :
Greungd T
33
Hucgres ¥ | twcnty—hve past eleven J
heybunty s l__"“"':‘__“ ="
5 houre
 F— h : 17: 462
. ¢ miautes
HasaByuny TECEST RLCRTELOS b .
e S S e
Fisiar iﬁ' 2 pa b Al = '1.?- s..n'“l:' \
Salaat ek ¥ Han X
Faceicas 7] I
ut et A Rrar b m e _{‘_-4..’ t yRirete
s PR A i
o o & X,
= ¥ i b “i :T_'.% 1Tyt 1.3
Py b T Tahos s ¥
it ol 4 BunTrupe )
% 13 Thit BAKCTIA SOOUMIS Hat Mheter [Tt amet: Sl pe abit Eogstady needed. The fus i 4 L
= Py ﬂ Tert petfocast which U widd 2 st ded msdibprlbie JGERES, 199 waelul o Lantigs 4 well

H

STAGES|&:

AL Co Bl E BMY BULCQT #0 W KIEER Thi it Uar Con preds There U 33 4 Humbar
Ot Srhlh ey 0 MU TAEUD, Mid & Tolbled Pttt wlodh ot be (00 e pited WS
benditap deridi bl CM0 sbnipULan Lhics (i 3 l.. v

b ]

el

HRESHOWEE[CLEAR R PRINT [ QUIT}

Figure 2.2.2.1: Troupes of Performers in Rehearsal World

FYAFTEF O I T I TR T R B R R

24



FE

L
]

|

| O EAAEEENEIE, e
GILIGIE i

TN

mmmmm .
@E@Eﬂi@

Ummmunmmmm

E-C_:mmmmm G[omoog
bIGO[b[d[E BIEHHOG;

Figure 2.2.3

.1: Screen Images from Pict



&3 Clascex

spplisatien  menu  meex

R @@

@,11(4& K«-w toeucd, secelf st wger lewm

bellen  rodie et eheck bax aphic adtt taxt lade

(a)

Y tndex T lndex Entry
C)
AL O 4
sttt Ht v V 8ok
) ey
ML
waler Het v
-— revhew
FALSE
alfck matived v
[¢) datelet
aalcies

Ravhow *
Alhar
4
Titte
Tublicher
A\
Year
v

(£, 8

(b)

ladex/Sart 1:1

1ndeulsultd uvalue (st 131
A, l/flll/’){/fflllll’lllo‘f

(©)
Figure 2.2.4.1: Prograph Classes

26



4— R
[ 7 M

(a) Simple Box-Graph before Execution

N
g N N
AN

(b) Simple Box-Graph after Execution

Figure 2.2.5.1: A Simple BoxGraph

27



-] NN

1 N PN NN

T

(o} before {a) aftler

- . <S x\\%‘

\\\\\ ;%';t

74

T

i

+

(b) before (b) ofter
Qt\Q}:\\\‘%\\\s
2 +3 R \;S
i . i .
v T
{c) befote (c) after

Figure 2.2.5.2: Data Flow and Inconsistency

6 B ﬁ:ﬂ I 0
P B P
[
A 4
0 b+ HE e

Figure 2.2.5.3: A Simple Iteration Box

28



€ Flle €dit Format Centrofs luncdtiong
"\ National

II@H@ *" H P Instruments

IOMH Scale Number Ul Panel BSRaa Scale Number Ul Glagram

A

(Bumbers do parentheses indicate the
valid range of a number at a given
point)

Figure 2.2.6.1: A LabVIEW Virtual Instrument

& Fflle Edit Format Controis Cundtions

NN o [l T e e ] R

EOS5=] Random Data U1 Panel B Randam Data Uil Diagrem

Figure 2.2.6.2: A Virtual Instrument with a FOR Loop

29



30

BlCee(l{clent{ N} -1Cecl(s

Ceaffa} 1 H 1 [N
{ - = - teiC{-t}] [ - - -
(e - - - CREOEER-a - -
[=N
K : {
|

Figure 2.2.7.1: The Binomial Coefficients Subform



r abrit componcat: Graphic Obxw]

[T} atdoa S Use Tatataod

urert of Duitect

@ & 0 @ ¢ 60

Oval Polyen Recungle Raundbact BiMep

(] & m

Fame T Grephtcitte

FabakClack

—

Buic prec OvalCredear
Ping: angln, corner, detuls, aval

Figure 2.2.8.1: A Parts Bin and Construction Window -

l'-lbdtﬂockE

e T-Taa) S
HIN TR ©)
Lo Hand
tong weida
19 {1
T L -m Hin Hand
o tang wida
[mtausa] 9 2
haurse
Haour Hand
-

4
{4 1) (urridy long widae

value, (Untrped)
1H 90 pen

Figure 2.2.8.2: FabrickClock



B

(AMEA1D Vinua] Crmp ey Fruioirm—t oy (e OORTS Syutes

IWPLT ST Core s e I~CF FRTISR I S PRXESSING

o MRITHRETIC Ol N TSI HroTe & 0%

Paim Loviats borhassce

Emml L | ];‘]lﬂ:] ‘}I },—I[ _:‘:I :I L2 R I 10w ﬂﬁ
BT | comien oo [
henilt of Caliation:  § :'gi“’ g
=3 1 (Cs) [eimow]  (Ger ) [Ge ) 7
e e e [ T
[ | e e S
, M = =+
=] fak izl
T : = I
= R e [ R s
B Bl s e
E E@ = : 'txut.agi[ﬁ@@ S 15 ¢
Qs g st *MJ” T8 SR P e Y = ® = !
Lk iab s rabat o LaLd L e : =
fuiats SiAy oo el %) ey A= bt ol
N AR g s s
AR A S A Hiar AE] o o sl
N G L i e glﬁ'ﬂ& Bhaadl [72 75 V31 EILEES Ty
Gl AT T M Bl e A b e 0] ol e R o] vl A e ¥

Figurc 2.2.9.1: Cantata Workspace




Standard Control Structures
Choose Selection [f-ThenElze Lontrol Structure
Count Loop 1f Conditional Expression [Lc;(_qa]uc 3 exnt, _]
i lc-Loop o
PECITIT | | Controt Path Connections:
| terge | Irput  [data_in |
Then (TRUE)
Output [fusc/tro/ 1€ el BRA0T093 J
Else (FALSE)
L Bl Outpet [fuse/trp/i€_elCARS07033 ]
QuIT Help
.;_)./_ —=
HEE
i
2l le= I-’ —’ YL (e
 |[H=] jReser @ ' ;E HESET @
- E THEN-PART Y
- =
if_else = Lﬁ merge
2l [
3 =
ELSE-PART

Figure 2.2.9.2: A Subform and Corresponding Flow Graph

33



34

icon name

@) next

-
-
-

]
!
’.Er
%]

]

de

=)

Q

[+3

1
g

conmumund?
conmumandl

Figure 2.2.10.1: A Fibonacci vip

(ini0)

10 (next)

4
Y

Figure 2.2.10.2: Use of the Fibonacci vip



35
2.3 Motivation

The examples presented in the preceding section provide a brief overview of the
visual programming languages which have been designed. They are presented
chronologically in order to highlight a trend. The goals of visual programming languages
are becoming more and more ambitious. Early visual programming languages were
designed for a small class of users and a small class of problems. Newer visual
programming languages are building on their predecessors to become much more general
purpose.

This trend is to be expected, because, where programming languages are
concerned, there is a large gap between the way human beings conceive of solutions to
problems and the way we must program those solutions for computers. Visual
programming promises to narrow that gap. To the extent that it does narrow that gap,
visual programrming is desirable at all levels and for all users. However, as Glinert [13]
states, this promise will not be fulfilled until the truly fundamental open problems of
visual programming are solved. He goes on to state

One of the major obstacles preventing full realization of the visual approach’s
potential is the present dearth of formal underpinnings for the field. Even
seemingly simple things such as good notations analogous to the BNF which
has traditionally been used to precisely and unambiguously describe textual
programming languages seem hard to come by in the visual and iconic cases.
We believe that, in order to support the trend towards more general purpose systems, the
complementary path towards the foundations of the field must be followed. We are
motivated by the desire to help provide some of the formal underpinnings for the field. In
particular to describe a visual language which is analogous to the Turing machine. Those
properties of a Turing machine which we would like our visual language to have are

simplicity and computational completeness. How we produce and measure simplicity and

completeness is the subject of the next section.



36

3. Methods and Metrics

Parsimony is, of course, a subjective concept. But we can try to use methods
which create a simple language and try to measure the simplicity of the language. The
visual languages presented in the previous section were identified by their semantic base,
their syntactic base, and the additional constructs added to then language. We have
attempted to choose the simplest syntactic and semantic bases for our visual language and
have attempted to add as few additional constructs as possible.

The semantic base chosen is data flow. In order to appreciate the simplicity of this
model, we note that such systems are built around a simple data availability firing rule: An
operator or operation executes when and only when its necessary input values are available
and produces output which is then sent to other operators which need these values. An
operation in the pure data flow model has no other side effects; that is, no other values are
changed. In contrast to the von Neumann model of computation, no addresses or program
counters are part of the model. Also, there is an equivalence between the data dependencies
and the operation scheduling constraints. That is, there are no operation sequencing
constraints other than the ones imposed by the data dependencies. Also, there is no notion
of a "single locus of control." Any two operations may be executed concurrently. [1]

With the semantic base chosen, the choice of a syntactic base becomes relatively
easy. The data flow model is easily and naturally represented by a directed graph whose
nodes represent operations and whose arcs represent data dependencies between
operations. This syntax is very simple, node-arc-node.

We would like to add as few other constructs to the model as possible. How well
we meet this goal can be measured by three metrics. The first metric is the number of
visual components of the syntax. Qbviously, we need a node representation, in this case a

box, and a dependency representation, in this case an arrow. We would like to use only



37

these two visual components. The second metric is the number of functional components.
That is, the number of "types" of nodes. In many data flow based visual programming
languages there are a large number of node types, sequencing nodes, [F-THEN-ELSE
nodes, WHILE loop nodes, and iteration nodes for example. We would like to keep this
number to a minimum. Having a small number of node types means minimizing the
number of decisions about node execution that need to be made by the program execution
engine. Thirdly, we would like to maintain the smallest possible number of types of
relationships among nodes. We are required to have the data dependency relationship, but
we would like to add no other relationships. In particular, the position of nodes should
have no influence on their execution.

The constructed computation model is not only to be simple, but also
computationally complete. The measure of computational completeness is the Turing
machine and the ability to solve all computable functions as defined by the Turing machine.

We will show our computation model to be complete in that sense.



38

4. The Boxgraph Computation Model

In this section we present our computation model in two parts. First, the basic
boxgraph model, which is equivalent to Propositional Logic, is presented. Then the basic
boxgraph is extended to make the Recursive Boxgraph model which is computationally

complete.

4.1 Basic Boxgraph

The Boxgraph model of computation [25] has data flow as its semantic base and the
directed graph as its syntactic base. The mode] consists of a set of diagrams in the two-
dimensional plane and a set of transformation rules. A boxgraph is an acyclic directed
graph of hierarchically nested boxes. We leave further discussion of the use of the term
acyclic in this context for later. The visual components of the model are boxes and arrows.
No text is needed. Boxes are used not only to represent operational nodes of the graph but
also to represent data.

Figures 4.1.1 and 4.1.2 show examples of boxgraphs. Figure 4.1.1 shows the
logical functions AND, OR, and XOR, where the logical values, True (T) and False (F),
are represented by a double box without arrows and a single box without arrows,
respectively. It is important to note that “T” and “F” are not part of the model. They are
only added for convenience of representation. In each of these functions, the result of the
operation will be the value that flows into the lower right-hand box of the graph. Figure
4.1.2(a) shows the boxgraphs before and after the computation of F=AND(F,T), and
Figure 4.1.2(b) shows the same for T=AND(T,T). These executions illustrate the concept
of inconsistency. Inconsistency in the boxgraph model is very similar, but not identical, to

inconsistency in the Show and Tell Language.



Y

Y

e
b

(a) AND Function

IE >

Y

(b) OR Function

A

Jp—
I

rﬂ
i

K

gi=l

]

‘e e e wm e m wm e

Y

(c) XOR Function

Figure 4.1.1: Logical Functions in Boxgraph

39



40

N
I

O] > Drk\\\\{%":’

(a) Computation of F=AND(F,T)

7L

”
[~

O ol > N
H NN

=
O W O

(b) Computation of T=AND(T,T)

Figure 4.1.2: Computations of AND

During the computation, a box may become inconsistent when two different values
try to occupy the same box causing a conflict. This is shown by shading or cross hatching
the inconsistent box. When a box becomes inconsistent, all the arrows incident with the
box become non-existent for the remainder of the computation. This includes arrows
which arrive at the box, those that leave from the box, and those which pass through the
interior of the box. A box can be either open or closed in terms of limiting the scope of
inconsistency propagation. An open box, which is framed by dashed lines as in Figure
4.1.1(c), allows inconsistency to flow out to its surrounding environment. When an open

box becomes inconsistent, the smallest box containing it also becomes inconsistent. A



41

closed box, which is framed by solid lines, does not propagate inconsistency to its
environment. The concept of inconsistency will be defined in more exact terms later.

A box partitions the two-dimensional space into two parts, the interior and the
exterior of the box. The interior defines the functionality of the box and the exterior defines
the usage of the box. Using the concepts of interior and exterior, we can now give a more
exact definition of a cycle in a boxgraph and thus clarify the use of the term acyclic. Let X
and Y be two distinct nodes (boxes). Let X be exterior to Y. By definition then Y is also
exterior to X. A cycle is formed between X and Y if there is a path of arrows which starts
at X or the interior of X and arrives at Y or the interior of Y, and there is another path
which starts at Y or the interior of Y and arrives at X or the interior of X. Suchacycleisa
problem for our model because it creates a cycle of data dependency. If such a cycle exists,
then Y depends on data produced by X and X depends on data produced by Y. This
implies that X must fire and produce output before Y can fire, and Y must fire and produce
output before X can fire. The term acyclic, when applied to boxgraphs, means that no such
cycles exist.

The location, size, and shape of a box are insignificant. Indeed a box can be
replaced by any simple closed curve. Similarly, the size and shape of an arrow are
insignificant. The location of an arrow, however, is significant in terms of which boxes it
intersects.

No two boxes may intersect with each other, but an arrow may intersect with other
arrows and with boxes. An arrow can cross box boundaries to connect any two boxes.
Provided, of course, that no cycle, as described above, is created by the arrow. The graph
in figure 4.1.3(a) is not a boxgraph because a cycle is formed between boxes A and B by

the arrows o and .



42

(@) (b)

Figure 4.1.3: Non-Boxgraphs

A boxgraph containing no arrow is called trivial and represents a value such as T or
F in Figure 4.1.1. A box may contain either nothing, a trivial boxgraph, or a non-trivial
boxgraph, but cannot contain both a trivial boxgraph and a non-trivial boxgraph. Figure
4.1.3(b) illustrates a non-boxgraph which violates this rule. A box containing a non-trivial -
boxgraph, such as the box shown in Figure 4.1.4(a), is called an operation box. An empty
box or a box containing a trivial box graph is called a memory box. In our intended
semantics, an operation box receives input values from its exterior and returns output
values to its exterior. Arrows which arrive at a box boundary, whether from the interior or
exterior, are referred to as in-arrows with respect to the box. Arrows which start at a box
boundary are referred to as out-arrows with respect to the box. Establishing the association
between the in-arrows and out-arrows of a procedure box is analogous to parameter
binding in traditional programming. The boxgraph model uses the following positional

binding rule:



43

Rank all the in-arrows from the exterior by lexicographic ordering of the (x,y)

coordinates of their intersection points with the box. Then do the same for all

the out-arrows to the interior. Bind an in-arrow with an out-arrow of the same

rank.

The same binding rule applies to in-arrows from the interior and out-arrows to the exterior.
An arrow which crosses a box boundary can be seen as an abbreviation for two arrows, an
in-arrow which arrives at the boundary and out-arrow which leavés the boundary from the
same location. Figure 4.1.4(b) shows the use of an operation box. An example of the
positional binding rule is shown in Figure 4.1.4(c). Arrows a and b are bound with
arrows ¢ and d respectively, and arrow e is bound with arrow f. An operation box
defines an environment for the computations carried out by its interior boxes and controls
propagation of inconsistency to its outer environment. In that sense it defines a two-
dimensional block structure.

The informal semantics of the boxgraph model ean be presented in an imperative
(prescriptive) form as follows: A trivial boxgraph represents a datum or a value. A non-
trivial boxgraph represents an operation. An arrow represents a data communication path,
i.e. a data flow. A value flows from the starting box of an arrow to the ending box. The
data transfer may be carried out anytime asynchronously. Since there are no cycles, once a
box is filled by a value, the value stays there. A memory box becomes inconsistent if the
incoming value is different from the value already existing in the box (if such a value
exists), i.e. when a conflict occurs in the box, it becomes inconsistent. When a box
becomes inconsistent, all arrows intersecting with the box become ineffective, i.e., no data
may flow on those arrows. If an open memory box becomes inconsistent, the smallest
operation box containing the open box also becomes inconsistent. If the operation box is
also open, the smallest box containing the open operation box becomes inconsistent, and so

on. A computaton halts when all empty boxes are filled with values.



(a) Operation Box

(c) Using Operation Box - [T

Figure 4.1.4: AND Operation Box

Y

44



45

We can make the above semantics more precise, by presenting them in a declarative
(descriptive) form. In the declarative semantics, a boxgraph defines a set of logical
constraints on the box contents. A boxgraph is consistent if the content of each box
satisfies the constraints imposed by the neighboring box contents. In this form, the data
flow semantics show a close relationship to the constraint based semantics of other visual
languages. A computation is defined as the process of finding a set of values for filling in
the empty boxes without violating the consistency of the boxgraph. An elaboration of a
boxgraph is an assignment of values, including the null value (1), to all the arrows such
that the constraints imposed by each box may be satisfied. Formally a boxgraph is
consistent if there exists an elaboration, otherwise it is inconsistent. The concept of
elaboration is similar to the concept of interpretation in mathematical logic, where a set of
propositions are defined to be consistent if there exists a model (interpretation) for which all
propositions are satisfied.. As in logic, the consistency of a boxgraph depends on the
existence of an elaboration and not on how the elaboration is constructed. Local constraints
imposed by a box on the values of the incident arrows are defined as follows (see Figure
4.1.5):

Let A = {a1, a2, ..., am } be the set of values on the in-arrows to a box,
and B = {by, by, ..., bp} be the set of values on the out-arrows
from a box.

(1) When the box is a memory box with o (L, if it is empty) as its content:

(1.1 If A« {a} has no non-null value, then B = {.L}.

(1.2) If A U {a} has exactly one non-null value a, then B = {a}.
(1.3) If A u {a} has more than one non-null value and the box is closed, then
B = {L}.

Note that if A & {&} has more than one non-null value and the box is open, then
there is no assignment of any value to B which preserves consistency.



46

(2) When the box is an operation box with P as its content:

2.1 B bound with A and B is consistent.
(2.2) If the box is closed and B bound with A and B is inconsistent, then
B={1}.

Note that if the box is open and B bound with A and B is inconsistent, then
there is no assignment of any value to B which preserves consistency.

If a boxgraph is consistent and an elaboration is found, then the computation of
filling the empty boxes can be carried out by transferring the values on the in-arrows into
the empty boxes. As an example, for computing T=XOR(F,T) and F=XOR(T,T), using
the boxgraph of Figure 4.1.1(c), elaborations are given in Figure 4.1.6. The result of a
computation is unique if the elaboration is unique.

In order to demonstrate the power of the boxgraph model presented so far, a binary
full adder is constructed in Figure 4.1.7. With x, y, and ¢ as a Boolean input, the Boolean

output values, s and ¢', are computed by: s =x@y®c and c¢'=xy + yc + xcC.



	Completeness of a Visual Computation Model
	Recommended Citation

	tmp.1453823647.pdf.iRojg

