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Abstract

This document describes the motivation, language description, and experience using
FrIL, an intermediate language for a compiler's “middle-end”. FRrIL has successfully
supported a two-semester compiler construction sequence, where the first semester included
code generation from a C-like language and the second semester included advanced data
flow analysis and program transformation.

1 Introduction

As evidenced by this issue’s table of contents, there is no lack of credible opinion concerning
the nature and content of a good IL (intermediate language). Compiler writers have long
wrestled with defining an endearing and enduring IL, yet only now do we see an effort to
bring various ILs out of their closets and into scrutiny.

Given the plethora of programming languages and computer instruction sets, it’s re-
markable how few ILs have an associated architecture: an exposed language definition, a
contractual agreement between the front- and back-ends of a compiler, a reliable and stable
interface. As shown in Figure 1, an architected IL carries the promise of multiple front-ends
interfacing with multiple back-ends, offering substantial reuse of middle-end optimizing tech-
nology. Standards committees can spend a decade settling on extensions to well-established
languages; a machine architecture can easily expire in fewer years than its vendors spent
defining and benchmarking its instruction set. And yet the mechanism connecting these two
worlds—the so-called “middle end” of a compiler—often receives all too little attention. The
irony of this situation is evident in Figure 1, from which one predicts that an IL should
outlive any given programming language or machine architecture.

Before proceeding to the formal definition of FRIL, it’s useful to examine the design
considerations that gave birth to FrIL:
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Figure 1. Hypothetically, an IL avoids quadratic work in accommodating multiple
languages and multiple architectures

. An IL should be a bone fide language, and not merely an aggregation of
data structures. With tools such as YACC and LEX at our disposal, we can afford to
bestow syntax on our IL, so that its tokens are as readily recognized by humans as by
a back-end. Direct encodings of front-end data structures (e.g., a common/equivalence
table for FORTRAN) do not constitute a suitable IL.

. An IL should have clean and readily apparent semantics. Where doubtful
interpretation exists, trouble will surely follow. For example,

e An IL should avoid short-circuiting operators like C’s “&&”; such control should
be explicit in the IL.

o Evaluation order (or lack thereof) should be explicitly specified in the IL.

. The IL representation should not be overly expensive. Although some ex-
pansion is inevitable, one should strive for a terse, meaningful representation, keeping
in mind that most optimizing compilers perform many passes over the intermediage

language.

. The IL should probably not be any particular programming language. Al-
though persuasive arguments have been made in favor of adopting some programming
languages (e.g., ML [App92]), as an IL, the storage model is often inappropriate.
Moreover, an IL can demand a level of specificity from its front-ends that would be
embarassing to require of humans (e.g., alias relations).

. The IL should be sufficiently general to represent important aspects of
multiple front-end languages.

. The IL should be sufficiently general to support efficient code generation
for multiple back-end architectures.

. The IL should allow easy implementation of machine-independent program
optimizations.



Ideally, an IL has fractal characteristics, so that program transformation and optimiza-
tion can occur at multiple levels. For example, consider the string operation

¢ = concat(a, b)

in which strings ¢ and b are concatenated to form string ¢. There are at least two ways of
representing this operation:

High-level approach: The string operation should be preserved intact, so we see a “con-
cat” operation in the IL. This representation allows for efficient data flow summary of
the operation’s effects and easy relocation of the operation (e.g., out of a loop).

Low-level approach: The string operation should be realized as a loop that forms the
resulting string. This representation allows for optimization of the code representing
“concat”. For example, the loop performing the “concat” may be fusable with nearby
loops.

Which representation is best? Conceivably, each representation has its advantages at dif-
ferent stages of program optimization. With a fractal IL (such as FRIL), the operation is
initially specified at a high-level. The middle-end optimizer can be unaware of the details
of “concat”, but can perform code motion and value numbering to move or eliminate the
operation, since FRIL will require the explicit specification of side-effects. Subsequently, the
front-end that provided “concat” may be asked to lower the operation, perhaps exposing
an iterative loop whose contents can be further optimized. Stated another way, “concat” is
initially provided by the front-end as a run-time procedure, whose call sites are subjected to
a first round of optimization. Subsequently, the called procedure is expanded (inlined, open-
subroutined) at the call site, and the resulting code undergoes a second round of optimization.

From the above discussion we see that a front-end for FRIL doesn’t vanish from the
compilation scene after constructing the intermediate representation of its source program.
The front-end may be called upon to elaborate high-level operations, ultimately rendering
them into the lowest level of FRIL prior to target code generation.

2 Overview

The syntax of a FRIL program will look most familiar to those accustomed to LISP, as lan-
guage boasts numerous left and right parentheses. This notation carries several advantages:

¢ A FRIL program is amenable to interpretation, perhaps by defining the appropriate
L1SP macros.

e The abstract syntax tree for a FRIL program is much closer to its parse tree than is
the case for most programming languages.

— FRIL’s prefix form of expression specification allows language constructs to be
easily specified without the disambiguating productions typically found in gram-
mars for infix-style languages. The FRIL language is easily parsed bottom-up or
top-down.



— Because FRIL is designed as an IL, it need not have the typical redundant syn-
tactic devices associated with most programming languages to assist in syntactic
error diagnosis and recovery.

e A FRIL program requires scant semantic processing. Types have already been checked
and converted by the front-end. Moreover, implicit references to storage, normally
absent from an IL, are explicitly represented in FRIL. For example, if a procedure call
potentially modifies a set of storage “names”, then this behavior is stated explicitly
(and compactly) in FRIL. Thus, even a high-level fractal contains sufficient informa-
tion to analyze, optimize, and transform the fractal. When more detail is exposed by
elaborating the high-level fractal into lower-level fractals, the associated information
can also become more precise.

e Where most languages are replete with constructs of similar purpose (cf. if~then-else
and the “?” operator in C), FRIL has a rather sparse set of operators. There is a
general value-choice operator (CHOOSE) and only one construct for altering program
flow (—).

While the keywords of FRIL may appear overly verbose, their printed form is not necessarily
the form in which they are stored. Once rendered into a “tokenized” format (perhaps using
LEX), the cost of representing a keyword is essentially reduced to one computer word. Storage
names not requiring external resolution are similarly represented as small integers.

Throughout this paper, a FRIL construct or operation « is denoted (a...); a list of o
constructs is denoted <a>-list.

Given the rules stated below for storage allocation and name sharing, a front-end is
responsible for translating a source program into a < Comp Unit>-list. Each (CompUnit...)
is self-contained, with its own symbol table, alias relation specification, and executable
expressions. Each alias relation, executable expression, and (practically every) symbol is
given a CompUnit-specific identifying integer. Expression 0 in each (CompUnit...) is
the distinguished entry expression for the CompUnit.

3 Data types

FRIL supports the following basic data types, but others are easily added:
INT represents the usual integer data type.

CHR represents a single character.

PTR represents an untyped pointer.

FLT represents a floating-point number.

Each symbol declared in FRIL must be statically typed. Also, most operations in FRIL are
typed.



int al;
extern int a2;
int one;

void main() {
int i;

int factorial(X)
int X;
{

int Y;

Y = X;
if (Y > 0) Y+factorial (X-1);
else one;

}

one = 1;
al = factorial(i=5);
a2 = factorial(3);

Figure 2. Sample C program.

4 Compilation Unit

In support of separate (independent) compilation, each compilation unit provides its own
specification of storage references and executable expressions. Access to the data and code of
other compilation units is provided through ezternal symbols. Figure 2 contains the source
of a C program and Figure 3 shows the corresponding (automatically generated) FRIL
program. Each (CompUnit...) must include the following constructs in their specified

order:

(ExternalName <gsiring>) establishes the quoted string <gstring> as the name of this
compilation unit. The CompUnit named “main” is the distinguished entry CompUnit
of a FRIL program. The only mechanism for invoking {expression 0 of) 2 CompUnit
is by invoking the CompUnit’s external name.

(SymbolTable...) declares the names and types of all storage symbols.

(AliasTable...) specifies sets of symbols that must or may be aliased with a storage
reference.



(CompUnit (ExternalName "main")
(SymbolTable 6

(S,r-bol
(8ymbolIl “one")
{SymbolType INT)

2

(Symbol
(SymbolID "a2")
(Sy=bolType INT)

(Symbol
(SymbolID "ai1%)
(SymbolType IET)

(Symbol
(SymbolID B) /+ i */
(SymbolType INT)

)

(Symbol
(SymbelID 7) /* X %/
(SymbolType THT)

(Symbal
(SymbolID 8) /» Y */
(SymbolType INT)

)
(4liasTable %
{ilias 1
(MayiliasSymbols {SymbolID “ome"))
3
3
(Expression 0
(PushLevel 2 (Args ) (Locals ))
(>0 (->2) )
b)
(Expression 2
(PughLevel 3
(Azgs )
{Locals (SymbolID 5)
)
(DefTyped INT (SymbolID “one") 1)
(DefTyped INT (SymbolID "ai")

/* i)

(-> 1
(DefTyped INT (SymbolID 5) /% i #/
B
)
(HiddenRefs (AliasUse 1))
)
)
(->0
(DefTyped INT (SymbolID “a2")
(-> 1
3
(HiddenRefs (AiliasUse 1))
)
)
)

)

(Expression 1

)

{PughLevel 5
(LinkExpressionID 2)

(Args  (SymbolID 7) /% X */)
(Locals {SymboliID 8) /x Y %/)
)
(DefTyped INT (SymbolID 8) /* Y %/
(UseTyped IKT (SymbolID 7) /+ X */
)
)
(~> 0
(CBOOSE
(
(NE IET
o]
{GT INT
(UseTyped INT
(SymbolID 8) /* Y %/
)
4
)
)
(TIMES INT
(UseTyped IKT
(SymbolID 8) /% Y =/
)
(-> 1
(HINUS INT
(UseTyped INT
(SymbolID 7) /* X %/
)
1
)
(HiddenRefs (AliasUse 1))
)
3
2
(1 (UseTyped INT (SymbolIDl “omne")))
)
)

Figure 3. FrIL translation.




< Ezpression>—list specifies the executable code. Each expression within a compilation unit
is identified by a nonnegative integer. Expression 0 is the entry ezpression, which can
only be executed by invoking the (CompUnit...)’s external name.

5 Symbol Table

(SymbolTable <num>...) declares the number of symbols (<num>) and contains the
< Symbol>-list. Note that predeclaring the number of symbols would not be wise for
languages in which humans write programs, but such details are quite useful in an IL.

(Symbol...) declares a symbol.

(SymbolID <id>) declares the name of the symbol, where <id> is either a
positive integer or a quoted string.

(SymbolType <type>) declares the symbol’s type.

There are two forms of a (SymbollID...):

Positive Integer: Such symbol names are private to the (CompUnit...) and thus can
only be directly referenced inside the (CompUnit...).

Quoted String: Such symbol names are common among all {(CompUnit...)s. For exam-
ple, each (CompUnit...) that references

(SymbolID “x”)
refers to the same storage name, while

(SymbolID 3)

is a different symbol name in different (CompUnit... )s.

The explicit association of actual storage with such symbol names is accomplished by a
(Locals...) or (Args...). A symbol can have at most one such storage association. If a
symbol name is never mentioned in a (Locals...) or (Args...), then the storage association
for that name is global (i.e., at level 0 of the display).

6 Alias Table

Each entry of the alias table specifies a pair of sets of symbols [ May, Must]. When a storage
reference 1s associated with one of these pairs, then the reference must alias the symbols in
Must and may alias the symbols in May.

(AliasTable <num>...) introduces the alias table with <num> entries.

(Alias <id>... introduces an alias with number <id>:

(MustAliasSymbols <SymbolID>-list) and
(MayAliasSymbols <SymbolID>~list) declare the aliased symbols.
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7 Expressions

The remainder of a (CompUnit...) contains the <Faxpression>-list. Each expression
declares its expression ID, static link, and storage associations. The rest of an expression
contains executable code. An expression finishes by “returning” some value to its caller, as
described below.

(Expression <num>... introduces expression with nonnegative ID <num>.

(PushLevel <depth>... declares the static properties and storage associations of this
expression. The expression is nested at positive level <depth>.

(LinkExpressionID <outer>) specifies which expression is statically scoped
just outside the current expression. If this declaration is missing, then this
expression is outermost.

(Args <SymbolID>—list) declares a list of symbols whose storage associations
are stack locations on entry to this expression.

(Locals <SymbolID>—list) declares a list of symbols whose storage assocations
are local to this expression.

When an expression is invoked, the runtime display is established to provide access to
non-local storage. Storage associations are established between the expression’s arguments
and locals and their allocated storage in the expression’s dynamic stack frame.

7.1 Transfer of Control

The invoke operator (—...) is the only mechanism in FRIL for diverting the flow of ex-
pression execution. Constructs involving conditional branching, unconditional branching,
iteration, procedure call, or procedure return must inevitably execute an invoke operator.
There are three syntactically distinguishable forms for (—...):

(— <positive>...) invokes a particular expression of the currently executing compilation
unit. Expressions invoked in this manner are essentially internal procedures. A front-
end might create such procedures to correspond with actual internal procedures, inline
procedures, or code that might be invoked from multiple sources.

(— <gstring>...) invokes expression 0 of the specified compilation unit. Such expressions
are typically externally callable functions.

(— 0...) invokes the continuation of the currently executing expression. This mechanism’s
primary use is to return control flow to the expression’s caller, with the supplied
arguments placed on stack as returned values.

The remaining operands of (—) are arguments, evaluated and placed on the execution
stack, in reverse order, prior to executing the invoked expression.



7.2 Conditional Execution

The operator (CHOOSE...) is the only mechanism in FRIL for selection of alternatives.
The syntax is:

(CHOOSE <choice>—list),
where each <choice> is specified as
(<ezpression> <p1> <pa>...<pn>)
and executes as follows:
1. The <expression> is evaluated.

2. If the result is an integer ¢, 1 < ¢ < n, then this <choice> succeeds by executing <p;>.

3. Otherwise, the <choice> fails and the next <choice> is considered.

(CHOOSE...) must succeed on some <choice>; otherwise, a runtime exception is

raised.
Horizontal (CHOOSE. ..) resembles case selection, while vertical (CHOOSE...) re-

sembles nested conditional execution.

7.3 Arithmetic and Logical Operations

The format of an arithmetic or logical operation is:
(<operator> <type> <operand>-list)

where

<operator> is one of the operators listed below;

<type> is a FRIL basic type;

<operand>—list are the operands of the operation.

Operator Description

PLUS addition

MINUS gubtraction

TIMES multiplication

DIVIDE division

REMAINDER | remainder of division

GT greater-than

GE greater-than-or-equal

LT less-than

LE less-than-or-equal

EQ equal

NE not equal

AND conjunction of two integers
OR disjunction of two integers




7.4 Input and Output

Basic input and output are accomplished by
(PUT <char>) writes a single character into the file “output”.
(GETC ) reads a single character from the file “input”.

There is currently no operator for opening, closing, or switching among files, but these could

easily be provided.

Higher-level input and output routines have been generated by writing C functions that
read and write integers, strings, etc. The resulting FRIL code is essentially a primitive
run-time library, that need only be concatenated with other FRIL code passed into the

interpreter.

7.5 Storage Operations

(Def <type> <address> <value> <alias>) is a more general form of (Def...). The ex-
pression returns <walue>, storing the result at <aeddress>. The type of <value> must

agree with <iype>.

(Use <type> <address> <alias>) returns the current value at storage <address>, inter-
preted as <type>.

(Storage <type>) returns the number of storage units associated with <type>.
(Alloc <units>) returns the address of a fresh block of <units> storage locations.

(HiddenRefs <refs>-list) does not explicitly reference storage, but instead declares a set
of (unordered) implicit references. Each of the (refs...) is of the form:

(AliasDef <id>) for definitions, or
(AliasUse <id>) for uses.

where <id> is an alias relation.
In the above, <alias> is optional, but can be specified as:

(AliasWith <id>) where <id> is an alias relation.

8 Status of the system

First, a disclaimer: in writing this paper, some of FRIL’s syntax has been improved from
what is currently accepted; the affected software will shortly be upgraded to accept exactly
the syntax put forth in this paper. Figure 4 shows the status of development to date. There

are actually two front-ends for FRIL:

MIME is the C-like front-end, which produces FRIL exactly as described in this paper.
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Figure 4. Status of the system.

LEMON is a FORTRAN front-end that produces a control flow graph and program references,
but no executable code. This front-end is useful for measuring statistics of real

FORTRAN programs. The parser for this front-end is actually the PTRAN system
at IBM Research.

The program optimizations implemented to date include
o Constant propagation [WZ91].
¢ Register allocation [CAC*81].
¢ Dead code elimination [ASU86].
¢ Incremental may-alias accommodation [CG93].

A FRIL interpreter can execute a FRIL program, whose behavior is monitored by: construct
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(Debug <level>) sets the interpreter trace level to nonnegative <level>. Level 0 produces
no output; level 9 traces stack and storage activity. Levels 8 — —1 produce increasing
amounts of trace information.

9 Conclusions

FRIL has served well as the target of a first course in compiler construction and as a language
for program analysis and optimization. The storage model (display levels and SymbolIDs)
is sufficiently high-level to allow easy 1L generation from languages such as C and PASCAL.
The fractal nature of FRIL allows optimizations to proceed on large-grained code before
trying to optimize the lower-level code. This approach should allow great efficiency and

power in a middle-end optimizer.
Future work might consider the “fractalization” of data as well as code. For example, a
symbol name may refer to a complex object composed of other names.
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