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ABSTRACT OF THE DISSERTATION 

Contemporary Problems in Aerosol Aggregation and Gelation 

by 

Pai Liu 

Doctor of Philosophy in Energy, Environmental & Chemical Engineering 
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Assistant Professor Rajan K. Chakrabarty, Chair 
 

Aggregation of nanoparticles in aerosols is a fundamental phenomenon with important 

implications to diverse fields ranging from material synthesis to pollutant control. The past few 

decades have witnessed extensive research on investigating the structure and growth mechanism 

of aerosol aggregates with sizes spanning across several orders of magnitude. This dissertation 

focuses on some contemporary problems that remain unaddressed in this topical area. Aerosol 

aggregates in sub-micron regimes, which are formed via the irreversible collision and aggregation 

of solid nanoparticle monomers, are fractal-like in their morphology. A mathematical description 

of this seemingly random structure dates to the seminal works by Forest and Witten (1979). In 

their work, the aggregate mass and characteristic length were related with a power-law relationship 

parameterized with a fractal dimension (Df), which quantifies aggregates’ dimensionality, and a 

prefactor (kf), which is recently shown to be related to their shape anisotropy. With the advent of 

mass-based aerosol particle classifiers, aggregates morphology can be alternatively characterized 

with a power-law relationship connecting their mass and mobility diameter, which is 

parameterized with a pair of mass-mobility exponent (Dfm) and prefactor (kfm). Knowledge of the 

exact empirical relationships between these pairs of parameters (Df - Dfm and kf - kfm) is essential 

for accurate characterization of aggregate physical properties. In this dissertation, comprehensive 
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empirical relationships were established between these parameters for aggregates produced with a 

diffusion-limited cluster-cluster aggregation (DLCA) mechanism. The influence of aggregates’ 

shape anisotropy on their mass-mobility relationship was evaluated using the concept of apparent 

monomer screening.  

Prolonged aggregation leads to the phenomenon of gelation at a micrometer level, in which the 

submicron DLCA aggregates with a characteristic Df ≈ 1.8 jam together to form volume spanning 

gels with a characteristic Df ≈ 2.5. These aerosol gel particles, sometimes called superaggregates, 

have been observed in laboratory-scale diffusion flames, as well as in the naturally occurring large-

scale combustions such as wildfires. Toward explaining the morphology and growth mechanism 

of superaggregates, Sorensen and Chakrabarti (2011) established the theoretical framework of 

aerosol gelation, which details the dynamic process by which gels are produced from their 

precursor sols. Part of this dissertation focuses on investigating the kinetics of aerosol gelation 

with emphasis placed on the previously understudied late-stage regimes in which the mean-field 

Smoluchowski Equation fails. This late stage kinetics of gelation was probed using a high temporal 

resolution Monte Carlo DLCA simulation, and system independent kinetic formulations were 

established along with improved parametrization on the characteristic gelation times.  

The morphology and growth mechanism of aerosol gels in the super-micron regime can be largely 

system dependent and poorly understudied. Part of this dissertation studies the growth of soot gel 

particles toward millimeter size in a novel buoyancy-opposed flame (BOF) aerosol reactor. 

Characterizations on the packing density of these particles revealed an inflection in their fractal 

scaling law within the super-micron regime, parameterized with a decrease of Df from 2.5 to 1.7. 

A late-stage growth mechanism, which involves the cluster-cluster aggregation of monomeric gel 
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particles, was introduced to account for the reappearance of the small Df values in super-micron 

regime. 

Lastly, our BOF reactor could be harnessed as an enabling technology for scalable production of 

gel materials. As a proof-of-concept of this technology, we performed flame synthesis of titanium 

dioxide (TiO2) aerosol gels using a methane-oxygen BOF reactor with titanium tetraisopropoxide 

precursor. The in-flame aerosol trapping effect was reproduced in the BOF reactor at a variety of 

operating conditions. Control of flame temperature was established in the range between c.a. 600 

and 1300 °C with the application of nitrogen dilution at variable flow rates. Control of the 

morphology and crystal phase of the TiO2 was achieved by exploiting the dependencies of 

monomer sintering and crystal phase transformation on temperature. 
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Chapter 1: Introduction 
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1.1 Fractals 

The morphology of aerosol aggregates determines many of their physical and chemical properties. 

Before mathematician Mandelbrot in 1975 coined the term fractal and developed the concept of 

fractal geometry, the morphology of non-coalescent aerosol aggregates, produced from random 

collisions between dispersed nanoparticles, is at best described as “fluffy” or “random”. Thus, 

perhaps fractal geometry is one of the most important concepts fundamental to the works presented 

in this dissertation. Given its importance, the introduction chapter starts out with a brief recap on 

the concept of fractal geometry and its statistical representations. 

1.1.1 Fractal geometry 

Fractal-like patterns are almost everywhere in Nature. Trees on campus, broccoli flowers in the 

markets, rivers branching on landscapes, the coastline of Britain, trajectories of animal foraging, a 

spark of electric discharge, soot emitted from vehicular exhausts, and last but not least, our brains, 

which perceive all these incredible shapes. It is counterintuitive to notice that fractal-like objects 

are more commonly found than the regular ones fitting into the category of Euclidean geometry 

(Mandelbrot 1977). 

Fractal geometry comprises repeating sub-elements and manifests self-similarity over changing 

length-scale. Statistically, this quality is called scale invariance. For example, in Figure 1.1 we 

construct a fractal Sierpinski triangle by cloning and arranging equilateral triangles in a recursive 

manner. The resulting geometry (rightmost, after eight times iteration) is scale invariant. Upon 

taking a closer look at a subset of the geometry, we immediately notice that the subset looks exactly 

the same as the whole. Figure 1.2 shows the fractal pattern in Nature through a series of pictures 

taken on a tree standing on the ground of St. Louis Forest Park in a bleak early spring morning. 
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Progressively zooming out, we observe scale invariance in the twigs, which look nearly the same 

as the larger branches, and the larger branches, which in turn look nearly the same as the entire 

tree.  

  

 

Figure 1.1. Construction of a fractal Sierpinski triangle 

 

 

 

 

Figure 1.2. Scale invariance in a tree. 
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1.1.2 Scaling law and fractal dimension 

Fractal objects can reach a large length-scale without filling much of the space. As Figure 1.3 

shows, a Sierpinski triangle reaches the characteristic length of its Euclidean counterpart but filling 

significantly less amount of space. This space-filling characteristic can be more rigorously 

discussed using scaling laws, which describe how quantities related to an object will change as a 

function of its size (West 2017). For example, the scaling relationship between the space (S) that 

a Euclidean object occupies and its characteristic length (L) can be written as a power law: 

𝑆 ∝ 𝐿ௗ                                                                 (1.1) 

where the exponent d represents the spatial dimension values of the objects (for example d = 2 and 

3 for two- and three-dimensional objects, respectively). On the other hand, a fractal object, which 

fills up a smaller S while attaining the same L, must have a dimensionality taking values smaller 

than d. Such a dimensionality, which often takes non-integer values, is defined as a fractal 

dimension (Df). Therefore, the S taken up by the fractal object, can be described with a power law 

of L parameterized with Df, that is: 

𝑆 ∝ 𝐿஽೑     with 𝐷௙ < 𝑑                                                  (1.2) 

 

Figure 1.3. A fractal Sierpinski triangle is compared with its Euclidean counterpart having the same 
characteristic length.  
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1.2 Aerosol Aggregation 

An aerosol aggregation process starts with a dispersion of solid particles (monomers), which are 

nearly spheres with a radius of several tens of nanometers. When monomers collide, they are 

assumed to be joined together irreversibly, forming a cluster. Clusters in turn collide with other 

clusters in the system, forming clusters with bigger sizes, and so forth. When particles grow in 

such a manner, they are said to be produced via a cluster-cluster aggregation mechanism (Meakin 

1985; 1999).  Furthermore, if the clusters move in a diffusional manner between their collisions, 

the process is called diffusion-limited cluster-cluster aggregation (DLCA) (Meakin 1985; 1999). 

The resulting clusters, if non-coalescent in their nature, are best described with fractal morphology, 

as shown in Figure 1.4.  

 

 

Figure 1.4. Electron microscope image of a soot DLCA aggregate 
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This section begins with an introduction of the mass scaling law for fractal aggregates, along with 

the important fractal scaling parameters and their shape descripting roles. The experimental 

methods for the determination of these scaling parameters are also reviewed. This is immediately 

followed by a brief discussion on the power-law mass-mobility relationship of aggregates. This 

section concludes with Smoluchowski Equation and the kinetics of particle growth via a cluster-

cluster aggregation mechanism.   

1.2.1 Fractal morphology of aerosol aggregates 

The mass and characteristic size of fractal aggregates obey a power-law scaling relationship that 

connects the total number of constituent monomers (N) with aggregate radius of gyration (Rg): 

𝑁 = 𝑘௙൫𝑅௚ 𝑎⁄ ൯
஽೑                                                        (1.3) 

where a is the radius of monomers that are commonly assumed to be monodispersed and point-

contacting spheres; kf is a scaling prefactor (Sorensen and Roberts  1997; Sorensen 2001; 2011). 

For DLCA aggregates, many experiments conducted over the past several decades have led to the 

consensus that Df takes a constant value ≈ 1.8 and kf takes values ranging between 1.0 and 2.5 

(Sorensen and Roberts 1997; Sorensen 2001; 2011). 

Throughout history Df has been considered as one of the most important parameters for the 

aggregate morphology. For example, Df represents the space filling capability of the aggregates 

(Mandelbrot 1977; Forrest and Witten 1979). A Df with a larger value (approaching d) indicates 

that monomers will be packed in a more compacted manner, and vice versa. The determination of 

Df for aggregates dates to the seminal work by Forest and Witten (1979) who first observed the 

long-range correlations in the morphology of smoke particle aggregates produced from a 
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combustion process. Experimentally, Df of aggregates is most commonly determined in an ex situ 

manner, which involves digitalizing and analyzing the electron microscope images of these 

aggregates (Forest and Witten 1979; Chakrabarty et al. 2011a; McDonald and Biswas 2004). For 

example, the nested square method (NSM), which counts the monomers in the boundaries drawn 

with increasing distance to the aggregate geometric center (Xiong and Friedlander 2001; Katrinak 

et al. 1993), and the perimeter grid method (PGM), which counts the incrementally shrinking 

lattice boxes that overlap the aggregate perimeter (Dye et al. 2000). Alternatively, analysis can be 

performed in an ensemble manner on a large number of aggregates, which is called the ensemble 

method (EM) (Friedlander 2000; Samson et al. 1987; Park et al. 2004). For example, the total 

number of constituent monomers (N) and the radius of gyration (Rg) are determined for every 

individual aggregate, and next, Df can be calculated via a linear regression on logN and logRg. Note 

that the three methods – NSM, PGM, and EM – essentially attempt to extract Df for aggregates in 

three-dimensional (3-d) space, from their two-dimensional (2-d) electron microscope images. Bias 

is unavoidable because of the information loss related to the projection, and empirical correction 

factors are needed to convert the Df determined in 2-d images to its 3-d values (Brasil et al. 1999, 

2000; Lee and Kramer 2004). Chakrabarty et al. (2011) systematically evaluated the reliability of 

those three methods through a set of numerical simulation studies. Their results demonstrated that 

only the EM yields consistent values of Df from the 2-d projections for aggregates, and hence is 

the most reliable (Chakrabarty et al. 2011a). This superior reliability of EM is because it accounts 

for a statistically significant amount of aggregates whose resting angles are uncorrelated. When an 

ensemble analysis is performed, the influence of projecting angles is averaged out. The in situ 

measurement of Df can be performed using light-scattering and q-space analysis (Sorensen 2001; 
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Heinson et al. 2018), which is considered to be an accurate way to directly measure the Df of 

aggregates in 3-d space.  

The shape descripting role of kf started to attract increasing awareness in the last decade 

(Chakrabarty et al. 2009; Heinson et al. 2010; Melas et al. 2014; Goudeli et al. 2016; Heinson et 

al. 2017). This is because adopting Df as a sole descriptor of aggregates shape is inadequate. For 

example, Df taking a constant value does not address the diversity in aggregate shape anisotropy. 

Chakrabarty et al. (2009) observed that a minor population of soot produced from a premixed 

flame have a quasi-one-dimensional shape. Such “stringiness” seems to contradict with the well-

recognized constant Df ≈ 1.8 for aggregates produced via DLCA mechanism (Chakrabarty et al. 

2009). This observation raised two important questions: First, does the Df of DLCA aggregates 

have a distribution instead of being a constant? and second, does the shape anisotropy of aggregates 

control Df? These questions were answered by Heinson et al. (2010) who systematically studied 

the fractal scaling of DLCA aggregates that were classified into different bins per their aspect ratio. 

Their results suggest that DLCA aggregates with a wide range of aspect ratio all have a Df ≈ 1.8, 

and that the shape anistropy of aggregates is in fact related to kf. A stringier-looking aggregate has 

a kf taking a smaller value towards unity, and when kf is as large as two, the aggregate appears to 

be more collapsed and isotropic (Heinson et al. 2010). This observation agrees with the math in 

Eq. (1.3), because an aggregate with a higher degree of anisotropy has a larger Rg, and since N, a, 

and Df are fixed, Eq. (1.3) requires a decrease in kf to balance the increase in Rg (Heinson et al. 

2010). More recent studies in this topical area explored other aspects of kf as a morphology 

indicator. Melas et al. (2014) related kf to the distribution of three-monomer angles in DLCA 

aggregates, and observed a substantial increase in the probability of sharp three-monomer angles 

when kf is greater than 1.6. Goudeli et al. (2016) reported a positive correlation between the value 
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of kf and the degree of monomer polydispersity. Heinson et al. (2017) quantified the dependence 

of kf on the thickness of homogenous coatings applied on the surface of DLCA aggregates. 

1.2.2 Mass-mobility relationship of aerosol aggregates 

The advent of mass-based aerosol classifiers, such as aerosol particle mass analyzer (APM) and 

centrifugal particle mass analyzer (CPMA), facilitated an in situ method to determine the mass 

scaling law for aerosol aggregates (McMurry et al. 2002; Park et al. 2004; Scheckman et al. 2009; 

Cross et al. 2010; Zangmeister et al. 2014). An example is the application of the tandem differential 

mobility analyzer (DMA) – CPMA – condensational particle counter (CPC) setup. First, an 

ensemble of aerosol aggregates is passed through the DMA, where the aggregates are classified 

per their mobility diameter (dm). These size-selected aggregates are then scanned using the CPMA 

– CPC and their mass (M) distribution profile is obtained. This technique allows aerosol 

experimentalists to correlate the M and dm of aggregates, generating a power-law mass-mobility 

relationship: 

   𝑀 = 𝑘௙௠(𝑑௠ 2𝑎⁄ )஽೑೘                                                  (1.4) 

where kfm and Dfm are respectively called mass-mobility prefactor and exponent (Sorensen 2011). 

Due to the similarity in the formulation of Eq. (1.3) and (1.4), some experimentalists have wrongly 

addressed Dfm to be the Df of aggregates. Since dm is not necessarily related to aggregate Rg in a 

linear manner, treating these two parameters as interchangeable is not correct. For example, DLCA 

aggregates with Df ≈ 1.8 are shown to have a Dfm ≈ 2.2 (Sorensen 2011). Sorensen (2011) targeted 

this issue in his review article, however explicit relationships between the two pairs of parameters 

– Df and Dfm, and kf and kfm – were yet to be established for DLCA aggregates having variable 

degree of shape anisotropy.  
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1.2.3 Kinetics of cluster-cluster aggregation growth 

The kinetics of aerosol growth by cluster-cluster aggregation mechanism is described by the 

Smoluchowski Equation (SE) (Friedlander 2000). The SE which tracks the change in the number 

density of the aggregates composed of k monomers: 

𝑉
ௗ௡ೖ

ௗ௧
=

ଵ

ଶ
∑ 𝐾௜௝𝑛௜𝑛௝ − ∑ 𝐾௜௞𝑛௜𝑛௞

ஶ
௜ୀଵ௜ା௝ୀ௞                                      (1.5) 

where V represents the system volume; n represents number of aggregates and the subscripts (i, j, 

and k) denotes the number of monomers that constitute the aggregates; K represents the 

aggregation kernel measuring the collision efficiency between the two clusters identified by the 

subscripts; and t represents time (Friedlander 2000). Note that SE takes the formulation of Eq. (1.5) 

when the following important assumptions are satisfied. First, the mean-field assumption requires 

no spatial correlation between aggregates, so that the probability of cluster i meeting cluster j is 

simply proportional to the product of their number densities (Friedlander 2000; Sorensen and 

Chakrabarti 2011). Second, all collisions between aggregates are assumed to take place in a binary 

manner, which further guarantees a 100% probability that the colliding particles stick with each 

other (Friedlander 2000).  

The solution to SE with homogeneous K, yields the expression for the ith moments (Mi) of cluster 

size distribution: 

𝑀௜(𝑡) = 𝑀௜(0) ቀ1 +
௧

௧೎
ቁ

(௜ିଵ)௭

                                               (1.6) 

where z is a kinetic exponent and tc is a characteristic time for cluster-cluster aggregation (Sorensen 

and Chakrabarti 2011; Fry et al. 2002). In the case of DLCA z takes a value of one (Sorensen and 

Chakrabarti 2011; Fry et al. 2002), and correspondingly, the tc for Brownian aggregation is: 
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𝑡௖ =
ଶ௏

௄௡೟೚೟,బ
                                                              (1.7) 

where ntot,0 is the number of particles at t = 0, which is equal to the conserved total number of 

monomers in the system (or M0(0)). The Brownian aggregation kernel K is written as follows in 

Eq. (1.8), invoking the Stokes-Einstein type of diffusion: 

𝐾 =
଼௞ಳ்

ଷఓ
                                                               (1.8) 

where kB, T, and µ respectively represent the Boltzmann constant, temperature, and viscosity of 

the surrounding gas (Friedlander 2000).  

 

1.3 Aerosol Gelation 

Prolonged aggregation leads to gelation, a process in which the dispersed fractal aggregates jam 

together, forming a volume spanning network with a Df ≈ 2.5 (Sorensen and Chakrabarti 2011). 

For a long time, gelation was believed to be a phenomenon only taking place in liquids, for 

example, the wet sol-gel process (Brinker and Scherer 1990). That changed when Sorensen et al. 

(1998) observed the formation of soot gel particles in an acetylene flame and introduced the 

concept of aerosol gelation. Figure 1.5 shows the typical size and morphology of aerosol gel 

produced from flame soot. This section starts with a revisit on the fundamental concepts in the 

theory of aerosol gelation, along with a review on the important characteristic length and time 

scales for the gelation in DLCA systems. This is followed by a subsection detailing the flame 

systems – both in laboratory and in nature – that facilitate aerosol gelation. This section concludes 

with the application of aerosol gelation to material synthesis.  
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Figure 1.5. Electron microscope image of a soot aerosol gel. 

 

1.3.1 Theoretical foundation 

Gelation in sol systems was traditionally described with percolation theory (Stauffer and Aharony 

2018). For example, a percolation model (Stauffer 1976; Degennes 1976; Stauffer et al. 1982) 

operates by filling system space with a point lattice, and then randomly occupying each lattice site 

with monomers having a diameter equal to the lattice space. Monomers that are placed in adjacent 

lattice points will be regarded as joined into the same aggregate. If some critical monomer 

concentration ΦC is reached, a volume spanning gel with Df ≈ 2.5 will emerge. Although 

percolation model succeeds in describing the emergence of gel, it does not involve any timescale 

and hence is a static model (Sorensen and Chakrabarti 2011; Heinson et al. 2017).  

A dynamic description of gelation accounts for the entire process by which a gel is produced from 

its precursor sol (Sorensen and Chakrabarti 2011; Heinson et al. 2017). For example, Figure 1.6 
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shows the evolution a DLCA system starting out with solid monomers (picture on the left), which 

come together and form fractal aggregates (picture in the middle). If the system is allowed to 

evolve for a long time, DLCA aggregates eventually jam together, producing gels which have a 

large-scale connectivity spanning the system (picture on the right). Those gel particles are 

interchangeably called “superaggregates” to highlight the fact that they are composed by DLCA 

“supermonomers”. The hybrid morphology of superaggregates – with Df ≈ 2.5 over large length 

scales and Df ≈ 1.8 over small length scales – has been repeatedly verified in many theoretical and 

experimental findings (Sorensen and Chakrabarti 2011). The latest study on this topical area shows 

that gels produced from a DLCA share identical morphologies with those produced from a 

percolation model (Heinson et al. 2017). Therefore, the dynamic description of gelation is unified 

with static percolation. 

 

Figure 1.6. From left to right, snapshots taken on a simulated DLCA system with increasing time. 

 

The dynamic description recognizes the tendency of gelation from the simple fact that the Df of a 

fractal aggregate is always smaller that the spatial dimension d (Sorensen and Chakrabarti 2011). 

As a result, free spaces in the system are progressively occupied as aggregates grow until none is 

left. This system crowding effect can be illustrated with a comparison between two primary length 
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scales: the average aggregate size <Rg> and the average aggregate nearest neighbor separation 

<Rnn>. The fractal scaling law in Eq. (1.3) provides: 

〈𝑅௚〉 ∝ 〈𝑁〉ଵ ஽೑⁄                                                           (1.9) 

where <N> represents the mean aggregate mass (mean number of monomers per aggregates). 

The <Rnn> is related to spatial dimension d by assuming the system space to be uniformly allocated 

per each aggregate: 

〈𝑅௡௡〉 ∝ (𝑛௧௢௧ 𝑉⁄ )ିଵ ௗ⁄                                                   (1.10) 

where ntot is the total number of aggregates. Conservation of total number of monomers provides 

ntot = ntot,0 / <N>, and thus Eq. (1.10) yields to 

〈𝑅௡௡〉 ∝ 〈𝑁〉ଵ ௗ⁄                                                        (1.11) 

Figure 1.7 plots Eq. (1.9) and (1.11) in a log-log space. The system starts out with <Rnn> ≫ <Rg>, 

which is called a cluster-dilute condition. As aggregate grow, <Rg> always increases faster than 

<Rnn> because of Df < d, driving the system to a cluster-dense condition, at which <Rnn>/<Rg> ≈ 

10. These increasing trends ultimately lead to the condition <Rg> ≈ <Rnn>, defined as an ideal gel 

point (IGP), at which the sol system is about to gel (Sorensen and Chakrabarti 2011; Kolb et al. 

1983; Vicsek 1989). Beyond the IGP, <Rg> is greater than <Rnn> indicating that aggregates start 

to interdigitate, and the subsequent physical occurrence of gel is called a physical gel point (PGP). 

At last, when all aggregates in the system are incorporated in a single gel particle, the system is 

said to reach a final gel stage (FGS) (Sorensen and Chakrabarti 2011).  
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Figure 1.7. (Adapted from Sorensen and Chakrabarti 2011, Soft Matter 7, 2284-2296) Sketch of the 
evolution of the two primary length scales <Rg> and <Rnn> as a function of mean number of monomers per 
aggregates <N>.  

 

The condition <Rg> ≈ <Rnn> only provides a rough evaluation on the characteristic aggregate size 

at IGP (Rg,IGP). An accurate estimation on Rg,IGP requires the use of cluster volume fraction (fvc), 

which is defined as the ratio of volume occupied by aggregates to the system volume. Volume 

occupied by an aggregate, including both connected monomers and the space between them, is 

best described using the volume of a sphere with aggregate perimeter radius Rp = [(Df + 2)/Df]1/2Rg 

(Sorensen and Chakrabarti 2011; Fry et al. 2002; Oh and Sorensen 1997). If all aggregates in the 

system are assumed to maintain same size and isotropic shape, the total fvc can be written as: 

𝑓௩௖ =
ସగ௡೟೚೟

ଷ௏
൬

஽೑ାଶ

஽೑
൰

ଷ ଶ⁄

𝑅௚
ଷ                                               (1.12) 
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Solving fvc(Rg,IGP) = 1 with the combination of Eq. (1.12), (1.3) and ntot = ntot,0 / <N> provides 

analytical expressions for Rg,IGP, and the corresponding average aggregate mass (NIGP): 

𝑅௚,ூீ௉ = 𝑎 ቈ𝑓௩௠
ିଵ𝑘௙ ൬

஽೑

஽೑ାଶ
൰

ଷ ଶ⁄

቉

ଵ ൫ଷି஽೑൯⁄

                                    (1.13a) 

𝑁ூீ௉ = 𝑓௩௠

஽೑ ൫஽೑ିଷ൯⁄
𝑘

௙

ଷ ൫ଷି஽೑൯⁄
൬

஽೑

஽೑ାଶ
൰

ଷ஽೑ ൫଺ିଶ஽೑൯⁄

                            (1.13b) 

where fvm represents monomer volume fraction which is a conserved parameter. Its expression 

can be written as: 

with 𝑓௩௠ =
ସ

ଷ
𝜋𝑎ଷ ௡೟೚೟,బ

௏
                                                 (1.14) 

Eq. (1.13a) and (1.13b) indicate that a denser aggregation system (higher fvm) reaches IGP with a 

smaller characteristic aggregates size and mass, which can also be qualitatively observed in 

Figure 1.7. 

The kinetics of gelation should be discussed in two separate regimes according to the IGP 

(Sorensen and Chakrabarti, 2011). In the pre-IGP regime, the system evolves with mean-field 

cluster-cluster aggregation mechanism, and the aggregate growth can be described using the 

solution of SE (discussed in Section 1.2.3).  For example, the average aggregate mass <N> = ntot / 

ntot,0 can be written in the form of moments, <N(t)> = M0(t = 0) / M0(t), and Eq. (1.6) with i = 0 

and z = 1 provides: 

〈𝑁(𝑡)〉 = 1 + 𝑡 𝑡௖⁄                                                      (1.15) 
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Furthermore, combination of Eq. (1.7) and (1.14) provides: 

𝑡௖ =
଼గ

ଷ
𝐾ିଵ𝑓௩௠

ିଵ𝑎ଷ                                                     (1.16) 

These equations lead to the characteristic timescale for a system to reach IGP (tIGP) (Dhaubhadel 

et al. 2007;). For example, solving <N(tIGP)> = NIGP with the combination of Eq. (1.15), (1.16), 

and (1.13b) provides an analytical expression for tIGP, which reads: 

𝑡ூீ௉ ≈ 𝐾ିଵ𝑎ଷ𝑓௩௠

ିଷ/(ଷି஽೑)
                                                (1.17) 

Eq. (1.17) may in fact overestimate tIGP because it does not account for the enhancement in 

aggregation kinetics as the system evolves from cluster-dilute to dense conditions (Sorensen and 

Chakrabarti 2011). Theoretical study by Fry et al. (2002) has identified that the kinetics of 

aggregation tend to speed up in DLCA system as fvc increases to unity (the IGP). Specifically, 

when a system starts out in cluster-dilute regime, Brownian aggregation mechanism holds, and the 

kinetics is parameterized with z = 1 (Fry et al. 2002). Subsequently, when cluster-dense condition 

sets in, aggregates no longer have enough free space to move by a diffusional manner, and the 

aggregation mechanism becomes ballistic-limited near the IGP (Fry et al. 2002; Sorensen and 

Chakrabarti 2011). The enhanced kinetics due to this system crowding effect manifests as an 

increase in z toward a value of two, when the system reaches IGP (Fry et al. 2002; Sorensen and 

Chakrabarti 2011).   

In the post-IGP regime, the mean-field assumption no longer holds valid because aggregates start 

to interdigitate, and consequentially the SE fails (Sorensen and Chakrabarti 2011). Note that the 

transition of monomers from sol to gel phase actually takes place in this regime. How to describe 

the kinetics of the post-IGP regime remains an open research topic. Fry et al. (2002) empirically 
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mapped the values of z for DLCA starting out with various fvm and observed the increasing trends 

to persist till FGS at which the terminal value of z is as large as six. Rottereau et al. (2004) modelled 

the post-IGP regimes using the concept of connectivity among clusters. Purely mathematical based 

analysis disregarded the breaking-down of mean-field assumption and applied SE in the late-stage 

post-IGP regime (Van Dongen and Ernst 1985). Such a model has led to the advent of 

“mathematical gelation”, which has been shown to deviate significantly from that occurred in real-

world colloid systems (Sandkühler et al. 2004). Lushnikov (2006) described the gelation in 

coagulating system using a truncated model, in which gel particles with mass greater than a cut-

off value were immediately removed. Such a model reconciled the paradoxical behavior of SE at 

a cost of violating mass conservation. The characteristic timescale for post-IGP regime was yet to 

be formulated in the traditional theoretical framework. It worth to note that tIGP only marks the 

starting point of gelation. Another timescale parameter predicting the completeness of gelation is 

needed so as to provide a comprehensive description of the full transition process. 

1.3.2 Aerosol gelation in flames 

Spontaneous aerosol gelation was first observed in the sooting layer of a laminar acetylene 

diffusion flame (Sorensen et al. 1998). Many subsequent works by Sorensen’s group have focused 

on this flame system to understand the growth mechanism of large soot superaggregates (reaching 

1mm) which form gel-like networks in the thin layer of the cylindrical annular flame front 

(Sorensen and Hageman 2001; Sorensen et al. 2003; Kim et al. 2004). Kim et al. (2006) identified 

four distinct stages in the growth of soot particles from several tens of nanometer to millimeter. 

The size delimited Df values were reported to evolve from 1.8 to 2.5, and then from 1.4 to 1.9, 

revealing a possible 2-d DLCA – gelation (in the size range 1µm < Rg < 100µm) to take over the 

particle growth immediately after the classical 3-d DLCA – gelation (in the size range Rg < 1µm) 
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(Kim et al. 2006). This observation indicates that 3-d soot superaggregates with Df ≈ 2.5 and Rg ≈ 

1µm in turn serve as “supermonomers” for a late-stage large-scale cluster-cluster aggregation. 

Such a large-scale cluster-cluster aggregation (and subsequent gelation) is confined in a 2-d space 

because the cylindrical annular sooting layer of the acetylene diffusion flame appears thin when 

compared with the size of these large soot particles (Sorensen and Hageman 2001; Kim et al. 

2006). 

Another laboratory-scale combustion system facilitating aerosol gelation is buoyancy-opposed 

flame (BOF) aerosol reactor (reversed gravity or negative gravity flame as termed in Chakrabarty 

et al. 2012; 2014a). The BOF reactor consists of a Burke-Schumann type two-stage burner, which 

is operated in a down-fired configuration (Chakrabarty et al. 2012; 2014a). The opposing effects 

between buoyancy force and the reactor inflow triggers a recirculation in the flame body. Particles 

trapped in the recirculation attain a sufficiently long residence time and transition to gel phase. 

More detailed description on the schematic diagram of a BOF reactor is included in section 6.3.1 

of Chapter 6. Figure 1.8 shows the operation of an ethylene BOF reactor. Soot particles with a 

millimeter size are observed in the flame recirculation zone. The flame takes up a non-flickering 

“U-shape” geometry, preventing the shear-driven fragmentations of the gel particles. Chakrabarty 

et al. (2014a) performed off-line characterization on the millimeter-sized soot particles produced 

in an acetylene BOF reactor. Gel-like networks have been observed in configuration of monomers 

constituting these soot particles. However, the macroscopic morphology and Df of these particles 

remained understudied in those preliminary works. More investigation should be directed to 

understanding the detailed, size-delimited growth mechanism for these particles.  
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Figure 1.8. Photograph of an ethylene buoyancy-opposed flame (left). Soot particles trapped in the flame 
recirculation (right). 

 

Aerosol gelation also takes place in large scale combustion in nature, such as wildfires. Field 

researches have identified soot superaggregates with a Df ≈ 2.6 and a super-micron size from the 

major wildfires in India, Northern California, New Mexico, and Mexico City (Chakrabarty et al. 

2014b).  The estimated radiative forcing efficiencies of these soot superaggregates have been 

shown to deviate significantly from that of the freshly emitted DLCA aggregates and the spherical 

soot particles employed in climate models (Chakrabarty et al. 2014b; Bond et al. 2013; Cappa et 

al. 2012). The influence of these previously unrecognized pollutant on climate and human health 

remains an open research topic (Heinson et al. 2016).   
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1.3.3 Applying aerosol gelation to material synthesis 

Aerogels are meso-porous materials with ultra-low density and high surface area, which have a 

great potential in serving many energy and environmental applications, such as catalyst, water and 

air purification, space dust catching, and thermal insulations (Brinker and Scherer 2013; 

Dhaubhadel et al. 2007; Dhaubhadel 2008; Dhaubhadel et al. 2012; Chakrabarty et al. 2014a). 

Traditionally aerogel materials are synthesized with the liquid phase sol-gel technique, which 

involves a subsequent super critical point drying process (Brinker and Scherer 2013). Such a two-

step process is time-consuming and expensive. The advent of aerosol gelation has opened a new 

avenue for the synthesis of gel materials in gas-phase, which is a rapid single-step process and 

cost-effective (Dhaubhadel et al. 2007; Dhaubhadel 2008; Dhaubhadel et al. 2012; Chakrabarty et 

al. 2014a). The gel materials synthesized via aerosol route, were called aerosol gel, so as to be 

distinguished from the aerogel synthesized via liquid phase sol-gel route (Dhaubhadel et al. 2007).  

Laboratory synthesis of aerosol gel was first realized in the pioneer work by Dhaubhadel et al. 

(2007) with the technique of controlled detonation. In their study, precursor of aerosol gel 

materials (i.e. combustible gases, such as methane and silane) and oxygen are mixed in a closed 

chamber and subsequently denotated (Dhaubhadel et al. 2007; Dhaubhadel et al. 2012). The 

explosive reaction produces nanometer-sized monomers which rapidly aggregate and form the gel. 

Carbon and silica aerosol gels synthesized via controlled detonation were reported to have 

effective densities as low as 2.5 and 4 mg/cm3, respectively, and specific surface areas as high as 

350 and 500 m2/g, respectively (Dhaubhadel et al. 2007; Dhaubhadel et al. 2012).  

Flame synthesis of aerosol gel can be achieved using a BOF aerosol reactor. Chakrabarty et al. 

(2014a) demonstrated the synthesis of carbon aerosol gel using an acetylene-oxygen BOF aerosol 
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reactor. Millimeter-sized carbon aerosol gel particles were reported to have an effective density of 

about 4.5 mg/cm3 and a specific surface area of about 208 m2/g (Chakrabarty et al. 2014a). Figure 

1.9 shows the bulk morphology of carbon aerosol gel produced using flame synthesis. Unlike 

controlled detonation, flame synthesis of aerosol gel with BOF reactor is a continuous process and 

less hazardous, which opens new possibility for the synthesis of aerosol gel materials on an 

industrial scale (Chakrabarty et al. 2014a).  

The possibility of using BOF reactor to synthesize non-carbonaceous nanoparticles in gel forms 

was not explored in Chakrabarty’s preliminary works. Another open research topic is to establish 

control on the flame conditions, toward a controlled synthesis of materials with tailorable 

properties, such as monomer size, crystal phase, and morphology (Jiang et al. 2007; Thimsen and 

Biswas 2007; Kammler et al. 2001). 

 

Figure 1.9. Carbon aerosol gels produced with a buoyancy-opposed flame aerosol reactor. 
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1.4 Numerical Methods 

This section reviews two numerical methods used in this dissertation: FracMAP and off-lattice 

diffusion-limited cluster-cluster aggregation model.  

1.4.1 FracMAP 

FracMAP is a patented computer package designed to simulate fractal aggregates in 3-d space 

(Chakrabarty et al. 2009). It has been extensively used to establish the empirical relationships 

between the 3-d and 2-d projected properties of aerosol aggregates (Chakrabarty et al. 2011a; 

2011b; Pandey et al. 2015). FracMAP takes a set of user specified fractal parameters {Df, kf, a, N} 

as an input and generate aggregate with a Monte Carlo particle-cluster aggregation method. The 

algorithm starts out with two point-contact monomers, and sequentially attaches new monomers 

to the aggregates at random position until the designated N is reached. For each random addition 

of monomer, Rg is calculated from the resulting monomer configuration and compared to what Eq. 

(1.3) predicts with the designated {Df, kf, a, N}. The monomer configuration that provides the best 

fit is kept (Chakrabarty et al. 2009). Doing so, FracMAP generates 3-d aggregates precisely 

according to the input morphological parameters, which may take any arbitrary values within a 

physically reasonable range. FracMAP is also a static model, in which the monomer addition is 

not related to any timescale associated in the real-world aerosol systems. Thus, it is not suitable to 

study the kinetics of aggregate growth. 

1.4.2 Off-lattice DLCA model 

Off-lattice DLCA is a Monte Carlo model that closely mimics the real-world mechanism 

producing fractal aggregates via a diffusion-limited cluster-cluster aggregation growth (Meakin 

1984; Heinson 2015). The model simulates the dynamics of the entire sol system and takes user 
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specified inputs such as system volume V, total number of monomers ntot,0, and monomer radius 

a. The algorithm starts out by generating a rectangular box with V, which houses the aggregating 

sol system. Initially, ntot,0 monomers are placed at non-overlapping locations that are randomly 

chosen in the box. The algorithm proceeds by picking a particle (either cluster or monomer) with 

a probability that is inversely related to the particle mass N, and the particle that is picked will be 

moved along a random direction with a constant distance 2a. Once every ntot particles in the system 

are picked and moved, time increments a constant interval corresponding to the duration by which 

monomers move a root-mean-squared-displacement of 2a. Doing so, the algorithm drives the 

movements of particles per the Stokes-Einstein type of diffusion (Friedlander 2000; Heinson 2015). 

During the entire process, if two clusters collide, they will be joined together forming a new cluster. 

The algorithm iterates untill any user specified time, and aggregates produced in the system are 

studied for their morphologies in 3-d (Heinson et al. 2010; 2012). The time evolution of aggregate 

size distribution could also be tracked using the DLCA model, which can be used to study the 

kinetics of aggregate growth in cluster-dense condition and beyond gel point (Fry et al. 2002; 

Heinson et al. 2017).  

 

1.5 Contemporary Problems and Dissertation Outline 

The following dissertation comprises five self-contained chapters, each of which addresses one 

contemporary problem in the topical area of aerosol aggregation and gelation. Each chapter is 

structured with subsections in the following order: abstract, introduction, methods, results and 

discussion, conclusion, and the end-of-chapter references. A concluding chapter is provided at last, 

which summarizes the major findings in this dissertation. 
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Chapter 2 presents a mathematical study on the ballistic-to-diffusive (BD) transition in random 

walks. The BD transition, which has been ubiquitously observed from the random walkers from 

various stochastic systems (Pusey 2011; Solomon et al. 1993) and has been shown to influence the 

aggregation kinetics in DLCA system near the gelling condition (Sorensen and Chakrabarti 2011). 

In this mathematical study, the BD transition problem was approached with a novel method based 

on directional statistics. Generic mathematical expressions for the transition kinetics were derived 

and a method to estimate the full development of diffusion was introduced. This study is presented 

at the beginning of the dissertation to highlight that an accurate characterization of particle motion 

is always a prerequisite to study the kinetics of aggregation. 

Chapter 3 targets on the cluster-dilute aerosol aggregates with a characteristic length < 1µm. The 

fractal morphology parameters (Df and kf) and mass-mobility parameters (Dfm and kfm) had been 

misused by aerosol experimentalists in an interchangeable manner. This problem was reiterated 

here with empirical relationships among Df, kf, Dfm, and kfm established based on computer 

simulated aggregates of changing shape anisotropy. The influences of aggregate shape on the 

apparent monomer screening, and therefore on the mass-mobility relationships were discussed. 

Chapter 4 targets on the aerosol-to-gel transition occurring at the characteristic length ≈ 1µm. Our 

understanding on the kinetics of aerosol gelation remained incomplete due to the breaking down 

of Smoluchowski Equation, when the cluster volume fraction in the system reaches unity (the 

IGP). Yet the transition of monomers from aerosol phase to gel phase takes place in the post-IGP 

regime. This kinetic problem was approached with high temporal-resolution Monte Carlo 

simulations on the irreversible aggregation systems. System-independent power-law relationships 

were established to describe the transition kinetics in the pre- and post-IGP regimes. A new 

characteristic timescale parameter predicting the completeness of gelation was introduced.  
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Chapter 5 targets on the growth aerosol gel particles with a characteristic length > 1µm. Many 

previous studies (Sorensen and Hageman 2001; Sorensen et al. 2003; Kim et al. 2004; 2006) have 

exemplified that the growth mechanism of soot in the size range between 1µm and 100µm is highly 

system dependent. However, the millimeter-sized soot gel particles produced in the BOF aerosol 

reactor remained understudied, in terms of their macroscopic level fractal morphology and late-

stage growth mechanism. This problem was approached with a series of off-line characterizations 

on the packing density of soot produced in an ethylene-oxygen BOF. The fractal scaling law of 

packing density was established in a broad range across five-order-of-magnitude length. The late-

stage growth mechanisms of these particles were inferred with their Df values in each size-

delimited regime. 

Chapter 6 explores the possibility of using a BOF aerosol reactor to synthesize non-carbonaceous 

aerosol gels with tailorable material properties. Flame synthesis has been demonstrated as a 

versatile technology to produce various nanomaterials with well-defined material properties (Jiang 

et al. 2007; Thimsen and Biswas 2007; Kammler et al. 2001). Non-carbonaceous nanoparticles, 

such as titanium dioxide (TiO2) with potential applications in many energy and environmental 

settings, have yet been synthesized in a gel form using flame aerosol reactors. This chapter 

provides a proof of concept demonstrating that flame synthesis of TiO2 aerosol gels with controlled 

monomer size and crystal phase is feasible.  
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Abstract 

We establish the kinetics of ballistic-to-diffusive (BD) transition observed in two-dimensional 

random walk using directional statistics. Directional correlation is parameterized using the 

walker’s turning angle distribution, which follows the commonly adopted wrapped Cauchy 

distribution (WCD) function. During the BD transition, the concentration factor (ρ) governing the 

WCD shape is observed to decrease from its initial value. We next analytically derive the 

relationship between effective ρ and time, which essentially quantifies the BD transition rate. The 

prediction of our kinetic expression agrees well with the empirical datasets obtained from 

correlated random walk simulation. We further connect our formulation with the conventionally 

used scaling relationship between the walker’s mean-square displacement and time. 
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2.1 Introduction 

A century ago, Einstein theorized the existence of a ballistic regime in Brownian motion at 

infinitesimally small timescales (Pusey 2011; Huang et al. 2011). This prediction was recently 

validated in experiments involving high temporal-resolution particle-tracking techniques (Huang 

et al. 2011; Li et al. 2010) or conducted in rarefied surrounding environment (Blum et al. 2006; 

Blum et al. 2000). The ballistic-to-diffusive (BD) transition, however, is not limited to Brownian 

systems driven by thermal fluctuation. A vast body of multidisciplinary research findings have 

witnessed a transient ballistic regime before the full development of diffusive motions. Examples 

include the random walk of atom clusters (Luedtke and Landman 1999; Maruyama and Murakami 

2003), particle advection in weak turbulence (Solomon et al. 1993; Solomon et al. 1994), bacterial 

migration (Zhang et al. 2009), and animal foraging activities (Bartumeus et al. 2005; Getz and 

Saltz 2008). The kinetics of BD transition determines the critical timescale corresponding to the 

onset of diffusion and subsequent applicability of the diffusive approximation. Despite its wide 

practical significance, a generalized mathematical formulation of the transition kinetics remains 

elusive. When formulating a generalized kinetic expression, difficulty arises from the multitude of 

system-specific driving mechanisms, as well as the order-of-magnitude variances in system length 

scales (Maruyama and Murakami 2003; Solomon et al. 1993; Zhang et al. 2009; Bartumeus et al. 

2005). One viable approach is to interpret the BD transition from a statistical perspective, and past 

attempts have been made on this front using the central limit theorem (CLT) (Maruyama and 

Murakami 2003; Mantegna and Stanley 1994). Although it can satisfactorily explain the diffusive 

tendency of the random walk at large timescale, CLT ultimately fails to capture and parameterize 

the transition kinetics. 



37 
 

Here we interpret the BD transition in two-dimensional (2D) space using directional statistics 

(Mardia and Jupp 2009; Lee 2010; Batschelet 1981). More specifically, the subject of investigation 

is the probability distribution (P) of the walker’s turning angle (θ), which describes the correlation 

between the successive steps of motion. Experimentally, the acquisition of P(θ) is typically done 

using single-particle tracking techniques. If the motion is strictly ballistic, angle θ only takes value 

of 0 and the probability density of θ = 0 is infinitely large; thus, P(θ) is a Dirac δ function written 

as δ(0) (Bartumeus et al. 2005; Mardia and Jupp 2009; Lee 2010; Batschelet 1981). The 2D 

diffusion, on the other hand, is random walk manifesting an equiprobability of θ within the 

complete range between -π to π, and therefore, P(θ) is a circular uniform function of 1/(2π) 

(Bartumeus et al. 2005; Mardia and Jupp 2009; Lee 2010; Batschelet 1981). During the BD 

transition, the dissipation in the correlation of the random walk could be captured by the evolution 

of P(θ) from δ(0) to 1/(2π) when the timescale increases by order-of-magnitude. In directional 

statistics, one of the mathematical expressions that could capture this evolution is the wrapped 

Cauchy distribution (WCD) function (Bartumeus et al. 2005; Mardia and Jupp 2009; Lee 2010; 

Batschelet 1981). 

Equation (2.1) shows the formulation of WCD function centered at θ = 0, 

𝑃(𝜃, 𝜌) =
1 − 𝜌ଶ

2𝜋[1 + 𝜌ଶ − 2𝜌 cos(𝜃)]
;  𝜃 ∈ (−𝜋, 𝜋]                                  (2.1) 

where ρ ∈ [0, 1] is the concentration factor that governs the shape of the distribution (Bartumeus 

et al. 2005; Mardia and Jupp 2009; Lee 2010; Batschelet 1981). When ρ approaches 1 and 0, the 

WCD function asymptotes to the two extremities, δ(0) and 1/(2π), respectively. The kinetics of 
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BD transition could therefore be established by relating the decrease in ρ from 1 to 0 with a 

timescale parameter. 

We show in the subsequent paragraphs the BD transition observed in the 2D stochastic motion 

which was numerically simulated using the correlated random walk (CRW) model. The transition 

is tracked using the time-evolution of the random walker’s reorientation statistics, as well as the 

inflection observed in the spatiotemporal scaling relationship of the motion. Next, we formulate 

the kinetics of BD transition by establishing the mathematical relationship between the effective 

value of ρ and timescale. We conclude this paper by connecting our kinetic formulation with the 

spatiotemporal scaling relationship which has been commonly adopted in previous works (Pusey 

2011; Huang et al. 2011; Luedtke and Landman 1999; Maruyama and Murakami 2003; Solomon 

et al. 1993; Solomon et al. 1994; Zhang et al. 2009; Bartumeus et al. 2005; Getz and Saltz 2008). 

 

2.2 Methods 

The CRW simulation follows the procedure introduced in Refs. (Bartumeus et al. 2005; Haefner 

2005). A 2D unbounded, Cartesian space was created and the random walker was initially placed 

at the origin O (x = 0, y = 0, t = 0), where x and y represent the 2D coordinates. The parameter t 

represents simulation time which increments by unit timescale τ1. At the beginning of each 

timestep, a turning angle θ is randomly generated per the WCD function governed by a fixed shape 

factor ρ1 corresponding to the unit timescale τ1. The random generation of θ follows the cumulative 

inversion method outlined in Ref. (Haefner 2005). Next, the random walker moves according to 

the direction designated by θ with a constant step-length δ1. The algorithm repeats this procedure 
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until the last timestep tn = 106τ1 is reached and the trajectory of the random walker is recorded as 

an array [x(t), y(t)].  

From the trajectory [x(t), y(t)], the walker’s time-averaged mean-square displacement 〈𝛿ଶ〉 was 

calculated in a manner similar to that introduced in Refs. (Metzler et al. 2014; Andreanov and 

Grebenkov 2012): 

〈𝛿ଶ(𝜏)〉 =
𝜏ଵ

𝑡௡ − 𝜏
෍ ቂ൫𝑥(𝑡 + 𝜏) − 𝑥(𝑡)൯

ଶ
+ ൫𝑦(𝑡 + 𝜏) − 𝑦(𝑡)൯

ଶ
ቃ

௧೙ିఛ

௧ୀఛభ 

                  (2.2) 

where τ represents a finite time interval divisible by τ1. The walker’s turning angle θ corresponding 

to timescale τ > τ1 was calculated from its trajectory, specifically every three successive positions 

written as [x(t), y(t)], [x(t + τ), y(t + τ)], and [x(t + 2τ), y(t + 2τ)]. The detailed numerical method 

for this calculation is included in Appendix I, Section A1.1. We next divided the complete range 

of θ from -π to π equally into 500 bins and obtained P(θ) by counting the frequency of θ within 

each bin. The effective value of ρ at τ was determined by performing the least square fit to the 

corresponding P(θ) datasets per Eq. (2.1). 

 

2.3 Results and Discussion 

Figure 2.1 shows the random walk generated using a WCD function with ρ1 = 0.95. The walker’s 

trajectories observed under different timescales are colored in gray (τ = τ1) and black (τ = 102τ1). 

When τ increases by order-of-magnitude, the correlation between successive steps of the motion 

becomes elusive and a Brownian-like random walk behavior manifests. 
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Figure 2.1. Examples of the random walk simulated using a WCD function with ρ1 = 0.95. The walker’s 
trajectories observed under normalized timescale τ/τ1 = 1 and 102 are colored in gray and black, respectively. 

 

Figure 2.2(a) shows the scaling relationship between the walker’s normalized mean-square 

displacement and timescale 〈𝛿ଶ〉 𝛿ଵ
ଶ⁄ ∝ (𝜏 𝜏ଵ⁄ )ఊ . The BD transition could be inferred from the 

inflection in the power-law relationship, which is signified by the decrease in the exponent γ from 

2 to 1 (Pusey 2011; Huang et al. 2011). Corresponding to the regime in which the inflection takes 

place, we show the evolution of the walker’s P(θ) in Fig. 2.2(b). When timescale of observation is 

small, e.g., τ/τ1 = 4, P(θ) is centralized at θ = 0 and manifests a sharp peak. With increase in τ/τ1 

by two orders of magnitude, P(θ) broadens and approaches uniformity. Qualitatively, one could 

predict the onset of normal diffusion based on the increase in the width at half minimum of P(θ). 

Quantitatively, we performed least-square fitting on the measured P(θ) datasets (circles) per the 

WCD function (red lines) and good agreement was observed. The effective value of ρ is seen to 

decrease from ρ1 as τ/τ1 increases, and those values are labeled in the subpanels of Fig. 2.2(b). 
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Figure 2.2. (a) Normalized time-averaged mean-square displacement <δ2>/δ1
2 as a function of normalized 

timescale τ/τ1 for the random walk simulated with ρ1 = 0.95. Straight lines in the log-log plot have slopes of 
2 and 1, corresponding to the values of scaling exponent γ for ballistic motion and diffusion, respectively. 
(b) Evolution of the walker’s turning angle distribution P(θ) with τ/τ1 increasing from 4 to 128. Circles 
represent the P(θ) datasets empirically obtained from the CRW simulation. Red lines follow the WCD 
function (Eq. (2.1)) parameterized by the ρ values shown in each subpanel. 

 

The WCD function is not only limited to parameterizing the shape of P(θ) at unit timescale, it also 

accurately predicts the evolution of distribution shape with increasing τ. We next analytically 

derive the mathematical relationship between the effective ρ value and τ. Our derivation is based 

on correlating the probability density of turning angles observed with increasing timescales as: 

𝜏ଶ௜ = 2𝜏௜                                                                       (2.3) 

where τi represents any arbitrary timescale and τ2i represents the timescale twice larger than τi. Our 

goal here is to establish the relationship between the corresponding ρ2i and ρi.  

Figure 2.3(a) shows that when the motion is observed with timescale τi, the random walker is seen 

at five successive locations (black dots). From these five locations, three successive turning angles 

could be identified, and they are written as θi,1, θi,2, and θi,3. When the timescale increases by two 



42 
 

(that is τ2i), the walker could only be seen at three locations (blue dots in Fig. 2.3(b)), giving rise 

to one turning angle written as θ2i. This geometric presentation in Figure 2.3 implies that once 

three successive turning angles {θi,1, θi,2, θi,3} are observed at any timescale, one definite turning 

angle θ2i will be conceived at the timescale twice larger.  

 

Figure 2.3. (a) The random walker is seen at five locations (black dots) when the motion is observed with 
timescale τi, which gives rise to three successive turning angles θi,1, θi,2, and θi,3. (b) When the timescale 
increases by two, that is τ2i , the walker could only be seen at three locations (blue dots). Correspondingly 
one turning angle θ2i is conceived. Vectors shown in black δi and blue δ2i represent the net displacements 
of the walker during τi and τ2i, respectively. The magnitude of δi is assumed to be constant. 

 

Assuming the magnitude of displacement δi during τi to be constant, those turning angles shown 

in Fig. 2.3 could be related per the following relationship: 

𝜃ଶ௜ = 𝜃௜,ଶ +
1

2
(𝜃௜,ଵ + 𝜃௜,ଷ)                                                       (2.4) 

Angles in Eq. (2.4) are vector quantities and they take positive values along counterclockwise 

direction. Noting the probabilities for the onset of θi,1, θi,2, and θi,3 to be P(θi,1), P(θi,2), and P(θi,3), 

respectively, we write the probability for the successive occurrence of {θi,1, θi,2, and θi,3} as the 

product P(θi,1)P(θi,2)P(θi,3). Note that here we have assumed the onset of successive turning angles 

to be independent events, which differs fundamentally from the persistent random walk model 

introduced and adopted elsewhere (Masoliver et al. 1989). The probability P(θ2i) then could be 
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calculated by summing the values of P(θi,1)P(θi,2)P(θi,3) for all exclusive combinations of {θi,1, θi,2, 

θi,3} that satisfies Eq. (2.4). This relationship could be written as: 

𝑃(𝜃ଶ௜ , 𝜌ଶ௜) = ෍ 𝑃൫𝜃௜,ଵ, 𝜌௜൯𝑃൫𝜃௜,ଶ, 𝜌௜൯𝑃൫𝜃௜,ଷ, 𝜌௜൯

ఏ೔,మା
ଵ
ଶ

൫ఏ೔,భାఏ೔,య൯ୀఏమ೔

                    (2.5) 

Solving Eq. (2.5) with any arbitrary θ2i yields the relationship between ρ2i and ρi.  

We demonstrate the solution to Eq. (2.5) with θ2i = 0 as an example (and note that solving the 

equation with other θ2i values should yield the same result). The first independent variable θi,1 

takes value freely within the complete range between π to π; however, it takes value from the 

complete range twice until all exclusive outcomes are exhausted. The second independent variable 

θi,2 takes value in the range defined by θi,1, specifically, 𝜃௜,ଶ,௠௜௡ = −
ଵ

ଶ
൫𝜃௜,ଵ + 𝜋൯ and 𝜃௜,ଶ,௠௔௫ =

−
ଵ

ଶ
൫θ୧,ଵ − 𝜋൯ (more detailed discussions on the ranges for θi,1 and θi,2 are respectively included in 

Appendix I, Section A1.2 and A1.3). Once both θi,1 and θi,2 have been specified, there exists a 

unique 𝜃௜,ଷ = −𝜃௜,ଵ − 2𝜃௜,ଶ which satisfies our premise 𝜃ଶ௜ = 0. Therefore, the Eq. (2.5) yields to 

the following continuous form: 

𝑃(𝜃ଶ௜ = 0, 𝜌ଶ௜) = 

2 න න 𝑃൫𝜃௜,ଵ, 𝜌௜൯
ି

ଵ
ଶ

൫ఏ೔,భିగ൯

ఏ೔,మୀି
ଵ
ଶ

൫ఏ೔,భାగ൯

𝑃൫𝜃௜,ଶ, 𝜌௜൯𝑃൫−൫𝜃௜,ଵ + 2𝜃௜,ଶ൯, 𝜌௜൯𝑑𝜃௜,ଶ𝑑𝜃௜,ଵ

గ

ఏ೔,భୀିగ

      (2.6) 

The right-hand side of Eq. (2.6) was solved using Monte Carlo integration (Robert 2014) and the 

resultant relationship between ρ2i and ρi is plotted in Fig. 2.4 as the solid line. The empirical 
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datasets of ρ2i(ρi) determined from CRW simulation (shown as circles) agrees with the solution to 

Eq. (2.6).  

 

Figure 2.4. Relationship between ρ2i and ρi. Solid line follows the solution to the analytical equation (2.6). 
Circles represent empirical datasets obtained from CRW simulation by performing least square fitting to 
the measured P(θ) at changing τ. Dotted line follow Eq. (2.7). The dash-dot line represents a hypothetical 
relationship ρ2i = ρi. 

 

The dash-dot line in Figure 2.4 follows a hypothetical relationship 𝜌ଶ௜ = 𝜌௜ and it connects with 

the solution of Eq. (2.6) only at the two extremities: 𝜌ଶ௜ = 𝜌௜ = 1 and 𝜌ଶ௜ = 𝜌௜ = 0. These two 

connections imply that strict ballistic motion and fully developed diffusion will remain so, 

independent of the changing timescale. On the other hand, when 0 < 𝜌௜ < 1, the solution to Eq. 

(2.6) always resides below the hypothetical 𝜌ଶ௜ = 𝜌௜ line. This dictates that ρ will always decrease 

with increasing τ, or in other words, the correlated random walk appearing ballistic will eventually 

manifest as diffusive upon prolonged observation, regardless of how close ρ1 is to unity. To 
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conclude this part of discussion, we put forth the simpler expression in Eq. (2.7) which is obtained 

by performing a least square fit on the numerical solution to Eq. (2.6):  

𝜌ଶ௜

𝜌௜
=

1

2
(𝜌௜

ଶ + 1)                                                               (2.7) 

Note that the aforementioned deductions based on Eq. (2.6) is also captured by Eq. (2.7). Figure 

2.5 (a), (b) and (c) show the decrease in the effective value of ρ as a function of normalized 

timescale τ/τ1 for random walkers starting with ρ1 = 0.99, 0.95 and 0.50, respectively. The ρ values 

calculated using Eq. (2.6) and (2.7) are compared with that determined from CRW simulation. 

 

Figure 2.5. (a), (b) and (c) show the decrease in the effective value of ρ for random walker starting with ρ1 
= 0.99, 0.95 and 0.50, respectively. (d)-(f) show the corresponding normalized <δ2>/δ1

2 ~ (τ/τ1)γ  scaling 
relationship. (g)-(i) show the evolution of the scaling exponent γ. In (a)-(c) solid lines represent solutions 
to equation Eq. (2.6). Circles represent empirical datasets obtained from CRW simulation. Squares follow 
Eq. (2.7). In (d)-(i) solid line represents solution to equation sets (2.6) and (2.10). Circles represent empirical 
datasets calculated from CRW simulation using Eq. (2.2). Squares represent solution to equation sets (2.7) 
and (2.10). 
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We next connect the directional statistic interpretation of BD transition with the conventional 

spatio-temporal scaling relationship 〈𝛿ଶ〉 ∝ τγ of the random walker. Per Figure 2.3(b) the walker’s 

net displacement δ2i during τ2i could be related to the turning angle θi observed with τi (assuming 

constant net displacement δi during τi), that is 𝛿ଶ௜(𝜃௜) = 2𝛿௜cos(𝜃௜ 2⁄ ). Substitute the constant δi 

by 〈𝛿௜
ଶ〉ଵ/ଶ and the relationship yields to 𝛿ଶ௜(𝜃௜) = 2〈𝛿௜

ଶ〉ଵ/ଶcos(𝜃௜ 2⁄ ). Next, the ratio 〈𝛿ଶ௜
ଶ 〉 〈𝛿௜

ଶ〉⁄  

equals to the trigonometric moment of the WCD function parameterized by ρi: 

〈𝛿ଶ௜
ଶ 〉 〈𝛿௜

ଶ〉 = 4 න cosଶ(𝜃௜ 2⁄ )𝑃(𝜃௜ , 𝜌௜)
గ

ିగ

d𝜃௜ൗ                                       (2.8) 

The exact analytical solution to Eq. (2.8) is: 

                                  〈𝛿ଶ௜
ଶ 〉 〈𝛿௜

ଶ〉 = 2(𝜌௜ + 1)⁄                                                          (2.9) 

Generalization of Eq. (2.9) yields the expression for the walker’s normalized mean-square 

displacement 〈𝛿ଶ೙
ଶ 〉 𝛿ଵ

ଶ⁄  corresponding to timescale 𝜏ଶ೙/𝜏ଵ (where n is positive integer): 

〈𝛿ଶ೙
ଶ 〉 𝛿ଵ

ଶ⁄ = 2௡ ෑ(𝜌ଶ೘షభ + 1)

௡

௠ୀଵ

                                              (2.10) 

The solutions to equation sets (2.10) and (2.6) with ρ1 = 0.99, 0.95 and 0.50 are plotted in Figure 

2.5 (d)-(i) as the solid lines. Circles represent the empirical dataset obtained from the simulated 

random walk (〈𝛿ଶ〉 𝛿ଵ
ଶ⁄  is calculated using Eq. (2.2) for simulation). The comparison shows that 

our analytical solution gives accurate prediction to magnitude of the walkers 〈𝛿ଶ〉 as well as the 

earliness of BD transition. Eq. (2.10) could be also solved along with the simple expression of Eq. 

(2.7), which gives reasonably accurate results (squares). Figure 2.5 also shows that although the 

diffusive regime manifests earlier in the case of smaller ρ1, the shape of the decreasing trends of γ 
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and ρ appears invariant. This is because it always takes a fixed amount of time for ρ to decrease 

from one specific value to another per Eqs. (2.6) or (2.7).  

Rearranging Eq. (2.9) yields the relationship between γ2i and ρi: 

𝛾ଶ௜ = 1 + logଶ(𝜌௜ + 1)                                                       (2.11) 

which when solved with Eq. (2.6) or (2.7) provides the relationship between γ and ρ at a given τ. 

Figure 2.6 shows the relationship between γ and ρ obtained using our analytical formulations (solid 

and dotted lines) and from CRW simulation (circles). Good agreement is observed between the 

datasets.   

 

Figure 2.6. Relationship between γ and ρ. Solid line represents the solution to the equation set (2.11) and 
(2.6). Circles represent empirical datasets obtained from CRW simulation. Dotted line represents the 
solution to equation set (2.11) and (2.7).  
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2.4 Conclusion 

We now bring together our major findings and conclude this chapter. Relationship between the two 

parameters ρ and τ is formulated using Eq. (2.6)  (or Eq.  (2.7)), and therefore the kinetics of BD 

transition is quantified. The one-to-one correspondence between ρ and γ is established using Eq. 

(2.11), such that our kinetic expression is tied to the conventionally used spatial-temporal scaling 

relationship. Figure 2.7 shows the contour plots for γ as a function of ρ1 and τ/τ1. Using this figure, 

one could roughly estimate the value of γ corresponding to a particular timescale. Use of the contour 

lines, however, is not recommended if an exact solution is desired. An accurate estimation of γ still 

requires solving of Eq. (2.6) (or Eq. (2.7) and Eq. (2.11). In addition, we emphasize that the 

robustness of WCD function in describing the walker’s turning angle distribution remains to be 

tested experimentally for more complicated random walk processes, for example, particle motion 

in three-dimensional space with or without geometric confinements. The evolution of reorientation 

statistics for the random walk modulated with changing step-length distribution also requires 

further investigations (Bartumeus et al. 2005). We also point out that WCD is not the only function 

that finds applications in parametrizing random walk observed experimentally; future work will 

be directed toward generalizing the formulation presented in this work to the family of wrapped 

distribution functions (Mardia and Jupp 2009; Lee 2010; Batschelet 1981). 
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Figure 2.7. Contour plots of γ as a function of ρ1 and normalized timescale τ/τ1. 
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Chapter 3: Sensitivity Analysis of Aggregate 
Morphology on Mass-Mobility Relationship 

and Improved Parameterizations 
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Abstract 

Past studies have shown that the diffusion-limited cluster aggregation mechanism yields aggregate 

with a mass fractal dimension (Df) of around 1.8 and power-law prefactor (kf) ranging between 1.2 

and 2.5. For a fixed Df, an increasing kf physically manifests as decreasing shape anisotropy or the 

degree of “stringiness” of an aggregate. In this work, we investigate the effects of changing kf, 

monomer size (d), and number of monomers (N) of computer-simulated aggregates on their mass-

mobility scaling exponent (Dfm) and prefactor (kfm). Our simulation results for a statistically 

significant number of Df  = 1.78 ± 0.10 aggregates yield Dfm values of 2.20 ± 0.05. These values 

are in excellent agreement with previous experimental observations. While variations in Dfm were 

predominantly influenced by Df, kfm showed sensitivity to fluctuations in kf. The validity and 

accuracy of the empirical power-law exponent 1.08 used for estimating N in three dimensions from 

two-dimensional projection images was also evaluated. It was found that the exponent was only 

valid for aggregates with kf close to unity. A correction has been proposed to account for the 

enhanced apparent screening effects at large kf. 
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3.1 Introduction 

Random collision and irreversible aggregation of non-coalesced solid nanoparticles (hereafter 

called monomers) in gas phase, described by the mechanism of diffusion-limited cluster 

aggregation (DLCA), are ubiquitous in various natural and industrial scenarios ranging from soot 

formation in flames to nanomaterial synthesis in high-temperature reactors (Hyeon-Lee et al. 1998; 

Sorensen 2011; Chakrabarty et al. 2014). The resulting aggregate morphology is self-similar in 

nature over a finite length scale (i.e., monomer size), which facilitates fractal mathematics to 

describe its morphology. A power-law correlation, shown in Equation (3.1), between the total 

number of monomers (N) constituting an aggregate and the ratio of aggregate radius of gyration 

(Rg) to monomer radius (a) has been used to quantify the structure of aggregates (Sorensen 2001, 

2011): 

𝑁 = 𝑘௙ ൬
𝑅௚

𝑎
൰

஽೑

                                                                (3.1) 

where Df is the fractal dimension of an aggregate and kf is the scaling prefactor. Past few decades 

have seen a number of studies conducted to investigate the Df of aggregates formed via DLCA in 

different combustion systems (Friedlander 2000; Sorensen 2001, 2011). However, kf has been an 

understudied parameter, and has only recently been shown to be related to the shape anisotropy of 

aggregates (Heinson et al. 2010; Melas et al. 2014a). With decreasing kf, an aggregate with a fixed 

Df would turn “stringier-looking” as depicted in Figure 3.1. This change in aspect ratio represents 

the shape-governing role of kf from a macro-scale perspective, which helped reconcile the 

contradiction between the predictions of classical DLCA theory and the experimental observation 

of quasi-one-dimensional aggregates from premixed flames (Chakrabarty et al. 2009; Heinson et 

al. 2010). From a micro-scale perspective, Melas et al. (2014 a, b) reported that kf is related to the 
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local structural compactness of an aggregate. With increasing kf, the number density of three-

monomer angles increased significantly for ≤80°, indicating that monomers get packed more 

compactly (Melas et al. 2014a).  

 

Figure 3.1. Snapshots of fractal aggregate morphologies (generated using FracMAP) with Df = 1.78, N = 
50, and kf ranging between 1.0 to 2.5. Increase in the aspect ratio or shape anisotropy of aggregates is 
evident with decreasing kf. 

 

In spite of these recent advances in the physical characterization of fractal aggregates, there still 

lies an apparent gap in relating aggregate morphology to its mass-mobility characteristics 

(Sorensen 2011). With the advent of the particle mass-based classifier (McMurry et al. 2002; Park 

et al. 2004; Scheckman et al. 2009), there have been numerous studies conducted on characterizing 

aggregate morphology using the knowledge of particle mobility in the transition flow regime (0.1 

< Kn < 10 as defined in Sorensen 2011). These studies have used a power-law relationship between 

the aggregate mobility diameter and mass in the form of standard “fractal” equation, as shown in 

Equations (3.2a) and (3.2b): 

𝑀 = 𝑘௙௠ ൬
𝑑௠

𝑑
൰

஽೑೘

                                                          (3.2a) 

𝑁 = 𝐾௙௠ ൬
𝑑௠

𝑑
൰

஽೑೘

 and 𝐾௙௠ =
6𝑘௙௠

𝜌𝜋𝑑ଷ
                                         (3.2b) 
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where M is the aggregate mass; kfm is the aggregate mass-mobility prefactor; Dfm is the aggregate 

mass-mobility exponent; dm is the aggregate mobility diameter; and d is the monomer diameter. It 

is noteworthy that many of these studies have wrongly addressed Dfm as the true aggregate fractal 

dimension (Sorensen 2011, and references therein). Some studies have also remarked that freshly 

emitted aggregates, which according to the DLCA theory should possess Df  ~ 1.78, have fractal 

dimensions of around 2.2. Melas and co-workers (2014b) recently investigated variations in Dfm 

and kfm with different pairs of Df and kf in the transition regime; however, there is still much work 

to be done in establishing empirical relationships between Df, Dfm, kf, and kfm for aiding 

experimental research using the mass-mobility technique. In this work, an effort is made to 

establish these relationships for aggregates with Df, N, and kf respectively ranging between 1.68 

and 1.88, 5 and 500, and 1.0 and 2.5. Please note that the mass-mobility relationship in Equation 

(3.2a) could be rearranged in the form of Equation (3.2b) to better fit the purposes of this study. 

We normalized aggregate kfm with respect to single monomer mass and termed the resulting 

parameter as the universal mass-mobility prefactor, Kfm, because it is independent of both the 

material type and aggregate monomer size. Henceforth, Kfm will be used instead of kfm in the 

ensuing sections of this article. The scope of this study pertains to real-world, “unaged” 

combustion-generated aggregates occurring in the free molecular (Kn > 10) and the transition flow 

regimes. This chapter starts with a description of the numerical approach and concepts used for 

generating aggregates with known fractal morphologies and subsequently calculating their dm. 

Next, a section detailing our findings and the empirical relationships between the mass-mobility 

and structural parameters of aggregates follows. The article concludes with directions to future 

research needed on this topic. 
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3.2 Methods 

Generation of three-dimensional (3D) fractal aggregates was done using FracMAP, a patented 

aerosol simulation package, which applies the particle-cluster aggregation technique. Detailed 

description of this package can be found in recent publications (Chakrabarty et al. 2009, 2011a,b). 

In brief, values of N, Df, and kf are specified by the user prior to generating an aggregate. The 

algorithm proceeds by randomly attaching two monomers in point-contact. Next, it adds new 

monomers sequentially to the dimer such that the resulting Rg of the new aggregate always satisfies 

Equation (3.1) for the user-specified values of Df, and kf. This process of monomer addition 

continues until the user specified N is generated. The algorithm next identifies all possible stable 

resting orientations of the aggregate by randomly rotating it in 3D space and checking whether for 

each orientation, the aggregate center of mass rests above the area projected by three or more 

contact points of the fractal aggregate (Chakrabarty et al. 2009). If the center of mass lies within 

the defined projected area, the particular orientation is deemed as “stable,” and the algorithm 

proceeds to generate a pixelated two-dimensional (2D) projection image of the aggregate in that 

orientation. As a final step, the package analyzes the aggregate projected image for its 2D structural 

properties using various image-processing recipes. In this manner, FracMAP mimics the entire 

procedure from image generation to 2D structural characterization of aggregates as performed by 

aerosol experimentalists on electron micrographs of real-world particles using various image 

processing techniques (Chakrabarty et al. 2009). The dm of a simulated aggregate can be 

determined from its projected area (Aproj) equivalent diameter using the following equation: 

𝑑௠ = 2ඨ
𝐴௣௥௢௝

𝜋
                                                                (3.3) 
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This approach is also known as the projected area approximation, which has been validated 

theoretically in the free-molecular regime (Sorensen 2011). The drag applied on an aggregate can 

be regarded as the collective effect of ballistic collision of gas molecules on it. Therefore, the 

probability of collision is proportional to the cross-sectional (projected) area of an aggregate in the 

direction of flow. In the transition regime, the accuracy of this approximation has also been 

repeatedly verified in various experimental studies (Rogak et al. 1993; Chakrabarty et al. 2007; 

Sorensen 2011; Eggersdorfer et al. 2012). Recently, Melas et al. (2015) reported the range of 

validity of this approximation in the transition regime using the concept of monomer Knudsen 

number (Kna = λ/a; not to be confused with Kn). They showed that for Kna > 2, the projected area 

approximation held reasonably accurate. 

The simulation plan of this study is outlined in Table 3.1. Sets A, B, and C were run to investigate 

the influence of N, kf, and d on dm. For these three sets, Df was fixed at 1.78 and d was varied from 

10 to 40 nm. Each set comprised of seven subsets (A-1 to A-7) of simulation with N varying from 

5 to 500. For each subset, kf was varied from 1.0 to 2.5 in 0.3 increments, representative of the 

experimentally observed range of prefactor values for DLCA aggregates (projected) area (Koylu 

and Faeth 1995; Sorensen and Roberts 1997; Sorensen 2011). Sets D, E, and F were run with Df 

varying from 1.68 to 1.88 in 0.5 increments. These sets were specifically designed to investigate 

the effect of Df on Dfm. For each set, at least 1750 3D aggregates were generated with N chosen 

randomly between 5 and 500 for each aggregate. For each 3D aggregate generated, all possible 

stable orientations of the aggregate on a 2D plane were determined. Approximately 17,500 

pixilated images of aggregates for each set were analyzed for 2D structural properties. The results 

of our statistical analysis are plotted using mean values and one standard deviation. 
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Table 3.1 Simulation plan 

Set Sub-set 
Number of 

monomer, N 
Monomer 

diameter, d (nm) 
Fractal 

dimension, Df 
Fractal 

prefactor, kf 

A 

A-1 5 

10 1.78 
1.0 - 2.5 

(increment 
with 0.3) 

A-2 10 

A-3 50 

A-4 100 

A-5 200 

A-6 300 

A-7 500 

B 

B-1 5 

20 1.78 
1.0 - 2.5 

increment 
with 0.3) 

B-2 10 

B-3 50 

B-4 100 

B-5 200 

B-6 300 

B-7 500 

C 

C-1 5 

40 1.78 
1.0 - 2.5 

(increment 
with 0.3) 

C-2 10 

C-3 50 

C-4 100 

C-5 200 

C-6 300 

C-7 500 
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Set Sub-set 
Number of 

monomer, N 
Monomer 

diameter, d (nm) 
Fractal 

dimension, Df 
Fractal 

prefactor, kf 

D 

D-1 5 

10 
1.68 - 1.88 
(increment 
with 0.50) 

1.3 

D-2 10 

D-3 50 

D-4 100 

D-5 200 

D-6 300 

D-7 500 

E 

E-1 5 

20 
1.68 - 1.88 
(increment 
with 0.50) 

1.3 

E-2 10 

E-3 50 

E-4 100 

E-5 200 

E-6 300 

E-7 500 

F 

F-1 5 

40 
1.68 - 1.88 
(increment 
with 0.50) 

1.3 

F-2 10 

F-3 50 

F-4 100 

F-5 200 

F-6 300 

F-7 500 
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3.3 Results and Discussion 

3.3.1 Influence of monomer screening and fractal morphology 

Apparent screening between monomers in a 3D aggregate is an important concept relating fractal 

aggregate morphology and mobility. Let us consider an imaginary 3D aggregate comprising N 

monomers of diameter d. If monomers were to be aligned in point-contact on a planar surface, the 

resulting aggregate would assume a 2D structure (similar to graphene). The projected area of this 

aggregate would reach its maximum possible value in this 2D planar configuration with zero 

apparent screening between monomers. The aggregate dm in this case would simply be √𝑁𝑑. 

Deviating from this ideal configuration, which is usually the case for real-world aerosols, an 

aggregate would always assume a dm value smaller than √𝑁𝑑 In other words, non-zero screening 

between monomers would always ensure that the dm of an aggregate does not reach its theoretical 

maximum limit (√𝑁𝑑). A convenient way to parameterize the monomer screening effect is to 

normalize the dm of an aggregate to its theoretical maximum, as shown in Equation (3.4): 

Φ =
𝑑௠

√𝑁𝑑
                                                                    (3.4) 

We denote Φ as the apparent monomer screening factor. The lesser the degree of monomer 

screening, the closer the value of Φ gets to unity (or, in other words, dm approaches its theoretical 

maximum). The simple formulation in Equation (3.4) also reveals the collective influence of both 

the physical length scale an aggregate (√𝑁𝑑) and apparent screening between monomers (Φ) on 

the values of dm. Once the value of Φ at a specified morphology (with fixed Df, kf, N, and d) is 

known, dm could be readily calculated with the knowledge of their physical length scale 

represented by √𝑁𝑑.  
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Figure 3.2 shows the influence N and kf on Φ for aggregates with values of d: (a) 10 nm, (b) 20 

nm, and (c) 40 nm. The invariance of Φ with changing d is observed, because dm is linearly 

proportional to d as per Equation (3.4). Increases in kf and N were observed to influence Φ 

negatively. With increasing kf, the shape of an aggregate becomes more isotropic or compact, 

thereby increasing the degree of screening between monomers. On the other hand, increasing N 

dictates more monomers being packed in a certain configuration governed by Df. The probability 

of inter-monomer screen increases simply because more monomers are packed there.  These long-

range and small-scale effects of N and kf, respectively, on the degree of apparent screening agree 

with previous observations (Sontag and Russel 1987; Melas et al. 2014a). At fixed N, the kf of 

aggregates negatively correlates with dm, which can be attributed to enhancement in monomer 

screening while the aggregate physical scale remains unchanged. At fixed kf, N was observed to 

positively correlate with dm. The effect of increasing physical scale due to increasing N outweighs 

the increasing monomer screening effects in an aggregate, resulting in the observed positive 

correlation. The empirical equations connecting Φ, dm, N, kf, and d (as predicted by our simulation 

results in Figure 3.2) are listed below in Equations (3.5a) and (3.5b): 

Φ = 1.046(±0.012)𝑘௙
ି଴.଴଼ଷ(±଴.଴ଵଷ)

𝑁ି଴.଴ସ଻(±଴.଴଴ଶ)                              (3.5a) 

𝑑௠ = 1.05𝑘௙
ି଴.଴଼𝑁଴.ସହ𝑑                                                      (3.5b) 

The uncertainty in the coefficients represents 95% confidence bound. One should note that 

Equations (3.5a) and (3.5b) are applicable for aggregates with Df = 1.78. 
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Figure 3.2. Apparent screening factor Φ = dm/(N1/2d) as a function of monomer number (N) and fractal 
prefactor (kf) for aggregates with monomer diameters: (a) 10 nm, (b) 20 nm, and (c) 40 nm. 
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Aggregate Dfm and Kfm were estimated from the known fractal morphological parameters and 

mobility diameters using Equation (3.6), which is a rearranged form of Equation (3.2b): 

ln(𝑁) = ln൫𝐾௙௠൯ + 𝐷௙௠ln ൬
𝑑௠

𝑑
൰                                                (3.6) 

Figure 3.3 shows the regression analysis with kf varying from 1.0 to 2.5 and Df varying from 1.68 

to 1.88. Good linearity exists between ln(N) and ln(dm/d) for the entire range of N. The slope (S) 

and the intercept (I) corresponding to Dfm and ln(Kfm) in Equation (3.6) were estimated. Figure 3.4 

shows the Kfm values of aggregates with varying kf and Df. At a fixed Df, a positive dependency 

between Kfm and kf is clearly observed, which agrees with the findings of Melas et al. (2014b). At 

a fixed kf, the relationship between Kfm and Df is rather noisy and trivial: Kfm fluctuates 

approximately by ±3% around the average value. An empirical relationship between Kfm and kf is 

proposed as: 

𝐾௙௠ = 0.850(±0.024)𝑘௙
଴.ଷଵ଻(±଴.଴ସ଴)

                                             (3.7) 

Figure 3.5 shows variations in Dfm with changing kf and Df. At a fixed kf, by perturbing Df from 

1.68 to 1.88, an increase in Dfm is observed. What is not clear is the relationship between Dfm and 

kf at a fixed Df. We therefore conclude that the main effect on Dfm arises from changes in Df rather 

than kf. The range of Dfm also agrees with the experimentally found mean value of 2.2 (Sorensen 

2011). The empirical relationship between Dfm and Df is proposed as: 

𝐷௙௠ = 2.059(±0.054)𝐷௙
଴.ଵସଷ(±଴.଴ସହ)

                                             (3.8) 
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Figure 3.3. Linear regression analysis between ln(N) and ln(dm/d) per Equation (3.6). S stands for slope, 
which corresponds to Dfm. I stands for intercept, which corresponds to ln(Kfm). 
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Figure 3.4. Dependency of aggregate Kfm on Df and kf. 

 

 

Figure 3.5. Dependency of aggregate Dfm on Df and kf. 
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3.3.2 Relationship between 2D and 3D N 

A conventional approach to calculate N in 3D is by raising the estimated N in 2D (Nproj) to a power 

of 1.08, as shown in Equation (3.9a) (Brasil et al. 1999). Based on our simulation results, slight 

modifications were made to Equation (3.9a) by incorporating the role of kf on Nproj. Variation in kf 

influences the degree of apparent screening, which in turn influences the average vales of Nproj. 

The modified relation is shown in Equation (3.9b). The plots in Figure 3.6 compares the 

conventional (red solid line) and modified empirical form. The shaded area corresponds to the 

difference in estimated N in 3D. This difference becomes more pronounced with increasing Nproj. 

At a high kf, the enhanced apparent screening effect should not be overlooked when predicting the 

N in 3D. 

𝑁 = 𝑁௣௥௢௝
ଵ.଴଼                                                                   (3.9a) 

𝑁 = 𝑘௙
଴.ଵ଴𝑁௣௥௢௝

ଵ.଴଼                                                               (3.9b) 

 

Figure 3.6. Comparison between conventional and corrected correlation factors for predicting N from Nproj. 
The range of kf in the corrected correlation is varied between 1.0 and 2.5. 
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3.4 Conclusion 

In this work, a numerical analysis was conducted to investigate the influence of fractal morphology 

of aggregates on their mass-mobility relationship. The scope of our study was set to encompass 

the range of fractal parameters encountered in aggregates generated via the DLCA mechanism, 

which best represents the formation of real-world aggregates. Empirical relationships were 

established between aggregate fractal morphological parameters Df, kf, N, and d, and their 

corresponding mass-mobility parameters dm, Dfm, and kfm. The dependency of aggregate dm on kf, 

N, and d was discussed using the concept of apparent screening between monomers. The effect on 

Dfm primarily originated from Df than kf. On the contrary, kfm was found to be more sensitive to kf 

than Df. Positive dependency of Dfm on Df and that of Kfm on kf were observed. 

The conventional bridging power-law exponent of 1.08 for predicting N from Nproj was shown to 

be inaccurate in the limits of large N and kf. Correction to this bridging factor by taking into account 

large limit constraints was proposed. Future work needs to be in the direction of investigating the 

effects of inherent screening, resulting from inter-monomer sintering, on aggregate mass-mobility 

relationship. 
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Chapter 4: Kinetics of Sol-to-Gel Transition 
in Irreversible Particulate Systems 
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Abstract 

A comprehensive theory encompassing the kinetics of the sol-to-gel transition is yet to be 

formulated due to break-down of the mean-field Smoluchowski Equation. Using high temporal-

resolution Monte Carlo simulation of irreversible aggregation systems, we show that this transition 

has three distinct regimes with kinetic exponent z ∈ [1, 2) corresponding to aggregation of sol 

clusters proceeding to the ideal gel point (IGP); z ∈ [2, 5.7)  for gelation of sol clusters beyond 

IGP; and z ∈ [2, 3.5) for a hitherto unidentified regime involving aggregation of gels when 

monomer-dense. We further establish universal power-law scaling relationships that connect the 

kinetics of these three regimes. Improved parameterizations are performed on the characteristic 

timescale parameters that define each regime. 
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4.1 Introduction 

Aggregation is a phenomenon ubiquitous in colloidal and aerosol systems (Hausdorff 1918; 

Forrest andWitten 1979; Sorensen 2011; Family and Landau, 2013; Brinker and Scherer 2013). 

Upon dispersion, particles collide and often irreversibly stick together to form larger clusters. 

Provided the monomer-monomer contact is non-coalescent, the aggregates manifest a scale-

invariant, fractal-like morphology quantifiable with a mass fractal dimension (Df ) (Hausdorff 

1918; Forrest andWitten 1979; Sorensen 2011; Sandkühler et al. 2003). Prolonged aggregation 

leads to the phenomenon of gelation – a process involving the jamming together of ramified 

aggregates and the formation of volume-spanning networks with a characteristic Df ≈ 2.5 

(Sorensen et al. 1998; Sorensen and Chakrabarti 2011; Fry et al. 2002; Rottereau et al. 2004; 

Dhaubhadel et al. 2006). Gelation, as a phenomenon, has opened many avenues for synthesis of 

materials with unique properties (Brinker and Scherer 2013; Dhaubhadel et al. 2007; Chakrabarty 

et al. 2014a; Liu et al. 2015). The contemporary application of gelation theory extends to a broader 

context, for example, predicting the influence of wildfire emissions on climate change 

(Chakrabarty et al. 2014b; Kearney and Pierce 2012; Heinson and Chakrabarty 2016) and 

counteracting the formation of online extremist group supports (Manrique et al. 2018). Despite its 

wide-ranging applicability, the theory of gelation still grapples with the fundamental questions 

“How fast does a sol system gel and what are the associated critical time scales?” The difficulty 

in formulating a comprehensive kinetic theory stems from the break-down, at the onset of gelation, 

of the mean-field assumption which lies at the core of the governing Smoluchowski Equation (SE) 

(Sandkühler et al. 2003; Sorensen and Chakrabarti 2011; Fry et al. 2002; Rottereau et al. 2004; 

Friedlander 2000; Lattuada et al. 2003; Sandkühler et al. 2004). That is, SE, which tracks the time 

evolution of the system can only go so far in predicting the pre-onset of gelation, but not gelation 
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itself (Sorensen and Chakrabarti 2011; Fry et al. 2002). An alternate successful interpretation of 

the sol-gel phenomenon is the percolation theory, which is a static model and hence, cannot predict 

the kinetics (Stauffer 1976; DeGennes 1976; Stauffer et al. 1982). In this study, we address this 

long-standing problem by establishing a set of system-independent kinetic expressions capable of 

predicting the complete evolution of the sol-to-gel process. We do so by performing high temporal-

resolution analysis on the evolution of diffusion limited cluster-cluster aggregation (DLCA) 

systems, which have been recently shown to produce gels that share identical morphologies with 

those produced via the percolation model (Heinson et al. 2017). 

This chapter is organized as such: In 4.1.1 and 4.1.2, we briefly revisit the traditional 

interpretations of the gelation tendency and kinetics, respectively. Concepts regarding the critical 

conditions that define the transition regimes are introduced. In 4.2, we describe the numerical 

methods used in simulating the irreversible DLCA process. In 4.3, we present the main results of 

this study, along with discussion on the time-evolution of cluster mass distribution, the power-law 

scaling relationships of the transition kinetics, and important characteristic timescales. We 

conclude this paper with 4.4. 

4.1.1 Tendency of sol-to-gel transition 

The tendency of gelation stems from the simple fact that the Df of non-coalescent aggregates is 

always smaller than the spatial dimension (d). For example, DLCA aggregates have a Df = 1.8 in 

three-dimensional space (d = 3) (Sorensen and Chakrabarti 2011; Fry et al. 2002). As a result, 

when aggregates grow with Df < d, the increase in their average size outruns their average nearest-

neighbor separation. That said, the system inevitably evolves to crowded states (Sorensen and 

Chakrabarti 2011; Fry et al. 2002). When the total effective volume of all sol clusters reaches the 
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system volume (V), the system is said to reach ideal gel point (IGP) (Sorensen and Chakrabarti 

2011; Dhaubhadel et al. 2007). Note that the effective cluster volume here is the perimeter volume 

(Vp), which could be visualized as volume of an isotropic sphere caging the cluster (Oh and 

Sorensen 1997). One should not be confused with the solid volume (Vm) of the cluster, which is 

the sum of the volumes of its constituent monomers. Visually, the IGP is the point at which sol 

clusters start to interdigitate (Sorensen and Chakrabarti 2011; Dhaubhadel et al. 2007), and it 

precedes the physical occurrence of the first gel cluster that spans the entire system volume. The 

point corresponding to the occurrence of such system-spanning gel is called physical gel point or 

percolation point (Sorensen and Chakrabarti 2011). Past research has also outlined other methods 

to identify the onset of gelation in aggregation systems. For example, the occurrence of gel can be 

experimentally determined by observing the appearance of non-zero elasticity (Sandkühler et al. 

2004; Zaccone et al. 2009; Kroy et al. 2004). Theoretically, 1% of effective cluster volume fraction 

has also been shown as an indicator of imminent gelation (Heine and Pratsinis), consistent with 

the onset of the cluster-dense regime (Fry et al. 2002), beyond which the aggregation system 

deviates from the SE dynamics. 

4.1.2 Kinetics of sol-to-gel transition 

The existing kinetic theory discusses the sol-to-gel transition within two major regimes (Sorensen 

and Chakrabarti 2011; Fry et al. 2002; Rottereau et al. 2004; Sandkühler et al. 2004). Prior to IGP 

(hereafter Regime I), the transition is driven by the random collision and aggregation of particles 

that freely diffuse in system space, and the mean-field assumption holds valid (Sorensen and 

Chakrabarti 2011; Fry et al. 2002; Rottereau et al. 2004; Sandkühler et al. 2004); Beyond the IGP 

(hereafter Regime II), the free space in the system is largely taken, and as a result, the motion of 

clusters is significantly restricted. From this point on, the interconnection among neighboring sol 
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clusters starts to form, eventually leading to the onset of the gelling network (Sorensen and 

Chakrabarti 2011; Fry et al. 2002; Rottereau et al. 2004; Sandkühler et al. 2004). When all 

aggregates in the system are incorporated into one single volume-spanning particle, the system is 

said to reach final gel state (FGS) (Sorensen and Chakrabarti 2011).  

The transition kinetics in Regime I is governed by the SE parameterized with aggregation kernels 

which depend on factors such as the relative motion between colliding particles and the cluster 

internal structure (Sandkühler et al. 2003; Sorensen and Chakrabarti 2011; Friedlander 2000). 

Solution to SE with homogeneous kernel leads to the scaling relationship between total number of 

clusters in the system (ntot) and inverse time (t-1), 𝑛௧௢௧ ∝ 𝑡ି௭ , where the kinetics exponent (z) 

quantitatively measures how fast aggregation proceeds (Sorensen and Chakrabarti 2011; Fry et al. 

2002; Oh and Sorensen 1997). Regime I is further divided into two sub-regimes – cluster-dilute 

and dense – per the value of z (Sorensen and Chakrabarti 2011): Cluster-dilute regime describes 

the initial aggregation stage, during which Brownian kernel holds, yielding z = 1 (Sorensen and 

Chakrabarti 2011; Fry et al. 2002; Oh and Sorensen 1997). Subsequently, the kinetics of 

aggregation tend to speed up as the system evolves to the cluster-dense regime, along with an 

increase in the value of z to about two near IGP (Sorensen and Chakrabarti 2011; Fry et al. 2002). 

A past theoretical modeling study found that the mean-field kinetics still holds valid although the 

kinetics is enhanced due to system crowding (Fry et al. 2002). This finding is in good agreement 

with later experiments conducted on a reaction-limited system, wherein the second order kinetics 

is observed to prevail, even in extremely dense system very close to the gel point (Sandkühler et 

al. 2004). The kinetic modeling in Regime II remains an active research direction. Fry et al. (2002) 

empirically mapped the values of increasing z with respect to t for the DLCA systems transitioning 

between IGP and FGS (i.e. the Post-IGP Regime). Rottereau et al. (2004) quantitated the late-stage 
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process using the concepts as evolution of connectivity between clusters. However, no explicit 

kinetic expression has been formulated for Regime II to our knowledge. Purely mathematical 

based analysis – an application of SE while disregarding the breaking down of mean-field 

assumption – has led to the advent of mathematical gelation (Van Dongen and Ernst 1985). Such 

a model, however, has been shown to ultimately fail on real world colloidal systems (Sandkühler 

et al. 2004). Lushnikov (2006) introduced a truncated model by immediately removing heavy 

particles (gels) with mass greater than a cutoff value, which reconciles the paradoxical behavior 

of SE, at a cost of violating mass conservation.  

 

4.2 Methods 

Our off-lattice DLCA model follows that introduced in previous publications (Heinson et al. 2017; 

Meakin 1984). The model algorithm starts out by generating a cubic simulation box with three 

million randomly placed monomers. The monomer volume fraction (fvm) is controlled by 

specifying the V of the simulation box, 

𝑓௩௠ =
ସ

ଷ
𝜋𝑎ଷ ௡೟೚೟,బ

௏
                                                               (4.1)              

where a is a monomer radius in arbitrary units, and ntot,0 denotes the total number of particle 

(cluster) at t = 0, which is equal to the conserved total number of monomers in the system. The 

simulation proceeds by randomly picking a cluster of mass N (number of constituent monomers, 

and N = 1 for monomer) and moving it by 2a in a random direction with probability 𝑁ିଵ ஽೑⁄  per 

Stokes-Einstein diffusion (Friedlander 2000). The algorithm tracks the total number of clusters 

(ntot), and once every ntot clusters have been picked, t is incremented by unit simulation time ts. We 
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define ts as the time interval during which monomers move by a root-mean-squared-displacement 

of 2a (See Appendix II Section A2.1 for derivation):                                

𝑡௦ =
4𝜋𝜇𝑎ଷ

𝑘஻𝑇
                                                                  (4.2) 

 
where kB, T, and µ respectively represent the Boltzmann constant, temperature, and viscosity of 

the surrounding gas (Friedlander 2000). During the process, if two clusters collide, they are joined 

together forming a new cluster, and ntot decreases by one. The above procedure was repeated until 

ntot = 1, that is, the FGS was attained, and the corresponding time was deemed tFGS. By the end of 

each run, the algorithm outputted a list for cluster N for every t that incremented by ts in the range 

between 0 and tFGS. We next calculated, from the list, the cluster mass frequency distribution 

(hereafter, mass distribution), written as n(log10N, t/ts)/ntot(t/ts), where n denotes the number of 

clusters having N monomers at time t. 

 

4.3 Results and Discussion 

4.3.1 Evolution of cluster mass distribution 

Figure 4.1 shows the contour plots of aggregate mass distributions in the log10N – t/ts space for 

systems of various fvm. Panel (a) demonstrates the mean-field growth of sol clusters which is 

typically seen in Regime I, during which the kinetics could be described with the exact solution to 

SE (Sorensen and Chakrabarti 2011; Fry et al. 2002; Friedlander 2000; Oh and Sorensen 1997). 

Next, we discuss the onset of gelation and the subsequent Regime II by comparing the cluster mass 
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distributions with the analytical solution values of average cluster mass at the IGP (written as 

NIGP): 

𝑁ூீ௉ = 𝑘௙൫𝑅௚,ூீ௉ 𝑎⁄ ൯
஽೑

                                                      (4.3a) 

 with 𝑅௚,ூீ௉ = 𝑎 ቈ𝑓௩௠
ିଵ𝑘௙ ൬

஽೑

஽೑ାଶ
൰

ଷ ଶ⁄

቉

ଵ ൫ଷି஽೑൯⁄

                                    (4.3b) 

where Rg,IGP is the average radius of gyration (a linear size) of aggregates at the IGP and kf is the 

fractal prefactor in the scaling relation. Eq. (4.3a) follows mass scaling power-law relationship 

with kf = 1.3 and Df = 1.8 describing the morphology of DLCA. Eq. (4.3b), originally introduced 

in Ref. (Fry et al. 2004), is reached when one equalizes the system V to the total cluster VP. 

Panel (b)–(e) show that when sol clusters grow, their geometric mean mass value, represented by 

<log10N> (red dashed lines), asymptotes to the log10NIGP value (red solid lines) predicted by Eq. 

(4.3a). Subsequently, the IGP could be identified at the point where <log10N> reaches log10NIGP 

(See Appendix II, Section A2.2 for more detail), and the corresponding time is regarded as the 

ideal gel time (tIGP). In Figure 4.1 we mark the IGP at the points (N = NIGP; t = tIGP) using triangle 

symbols. One could observe (in Fig. 4.1(b)–(e)) that immediately after IGP, the mass distribution 

becomes bimodal, indicating the onset of a separate phase, the gel. Subsequently, the gel clusters 

in the systems continuously grow by scavenging the remaining sol clusters whose mass distribution 

stays invariant with <log10N> closely matching log10NIGP.  
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Figure 4.1. Time-evolution of the aggregate mass distribution for DLCA systems with fvm = 0.001 (a), 0.005 
(b), 0.01 (c), 0.02 (d), 0.05 (e), and 0.1 (f). The solid lines represent the analytical solution values to the 
characteristic cluster mass at the IGP, log10NIGP, which follows Eq. (4.3). The dashed lines represent the 
geometric mean values of cluster mass, <log10N>. In panels (b)–(f), triangles and circles, respectively 
represent tIGP and tFGS, which are determined from the simulations. Squares indicate the time when sol 
clusters deplete, tIGP + td, and td is solved using Eq. (4.4). All timescales are presented in units of ts. 
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Another important observation from the evolution of mass distribution is that beyond IGP, a 

considerable amount of time is always needed for the total conversion of sol clusters to gel phase, 

as shown in Figure 4.1. We next discuss how to quantify the length of the time interval between 

IGP and the total conversion of sol clusters, which is written as td in the context of this paper. 

Recall that IGP is the point where the perimeter volume fraction of sol clusters reaches unity 

(Sorensen and Chakrabarti 2011; Fry et al. 2004). Such a condition, however, does not guarantee 

the immediate formation of the interconnection among neighboring sol clusters (hence td exists). 

This seemingly contradictory observation can be explained by the fact that fractal clusters only 

partially fill the Euclidean space. In other words, free spaces within the Vp always exist, so that the 

neighboring sol clusters at IGP could remain interdigitating, instead of forming connections (such 

configuration is qualitatively described by the schematic diagram in Fig. 4.2). Quantitatively, we 

measure the free spaces with 𝑉௣,ூீ௉ − 𝑉௠,ூீ௉  (subscripts indicating parameters at IGP). This 

volume difference, when raised to power of 2/3, yields a square of a length scale whose square 

root approximately measures the average distance by which clusters need to travel in order to 

connect with their neighbors. Write the diffusivity of cluster at IGP as DIGP, and the rearrangement 

of diffusion equation in three dimensional space yields to 𝑡ௗ =
൫௏೛,಺ಸ ି௏೘,಺ಸು൯

మ య⁄

଺஽಺ಸು
. We show a step-

by-step derivation in Appendix II Section A2.3 that td, after being normalized by ts, is a function 

of fvm only, written as: 

𝑡ௗ

𝑡௦
=

1

4
൤
4

3
𝜋(1 − 𝑓௩௠)൨

ଶ
ଷ

ቆ
𝐷௙

𝐷௙ + 2
ቇ

൫ଶ஽೑ାଷ൯ ൫଺ିଶ஽೑൯ൗ

൫𝑘௙𝑓௩௠
ିଵ൯

ଷ ൫ଷି஽೑൯⁄
                  (4.4) 

In Figure 4.1 we mark the critical points corresponding to the total conversion of sol clusters at (N 

= NIGP, t = tIGP + td) using square symbols. Good agreements between the predictions by Eq. (4.4) 
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and the simulations are seen for systems with different fvm. Note that td is always inversely related 

to the fvm. Qualitatively, this is because a denser system (with higher fvm) reaches IGP with average 

sol clusters of smaller mass NIGP, which are in turn characterized with smaller Vp,IGP - Vm,IGP, and 

simultaneously larger DIGP. One could also observe such inverse correlation between td and fvm in 

Figure 4.1(b)-(e). For example, when a system is sufficiently dilute (fvm = 0.005 and 0.01), the total 

conversion of sol clusters occurs at a timescale comparable to that of the FGS, formally written as 

tIGP + td ≈ tFGS. With a further increase in fvm (from 0.02 to 0.05), td decreases, the total conversion 

of sol clusters precedes FGS, and the time interval between tIGP + td and tFGS becomes non-trivial. 

Such tendency reaches an extremity when fvm = 0.1, as shown in Figure 4.1(f), where tIGP + td << 

tFGS and the system evolves with a unimodal cluster mass distribution throughout the entire 

process. This unimodality implies that sol clusters and gels no longer coexist. For these extremely 

dense systems (fvm = 0.05 and 0.1), the transition process beyond the tIGP + td is defined as Regime 

III, which differs fundamentally from the classical picture of sol-to-gel transition observed in 

monomer dilute systems (Sorensen and Chakrabarti 2011) 

 

Figure 4.2. Schematic diagrams showing the interdigitating (a) and connected (b) fractal clusters. Individual 
clusters are colored differently. Dashed circle represents the effective volume of the clusters. In (a), fractal 
clusters highly interdigitate. Although the effective volume of clusters saturates the system, connections 
among clusters are not guaranteed. In this case, clusters could still move around freely until they connect 
with their neighbors. (b) shows the condition at which all clusters are connected, resulting in the onset of 
gel. 
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4.3.2 Scaling law for aggregation and gelation kinetics 

We next demonstrate that the kinetics within Regimes I, II and III could be unified on coherent 

power-law relationships, when the transition is observed with two timescales, first, the 

characteristic time for Brownian aggregation (tc), and second, the tIGP introduced in previous 

paragraphs. In Regime I, solving SE with homogeneous Brownian kernel provides the scaling law 

parameterized with z = 1 (Sorensen and Chakrabarti 2011; Friedlander 2000): 

𝑛௧௢௧

𝑛௧௢௧,଴
= ൬1 +

𝑡

𝑡௖
൰

ିଵ

                                                           (4.5) 

and 𝑡௖ =
3𝜇𝑉

4𝑘஻𝑇𝑛௧௢௧,଴
                                                            (4.6) 

According to Eq. (4.5) we empirically determine tc from DLCA simulations at the time when ntot 

decreases to half of the initial values (Refer to Appendix II Section 2.4 for more details). 

Figure 4.3(a) shows that when t is normalized per 1 + t/tc, the early stages of the transition are 

unified and the trends of ntot/ntot,0 follow Eq. (4.5) with z = 1, indicating that the Brownian 

aggregation mechanism prevails. This is especially true for fvm = 0.001, whereas the behavior 

becomes more rapid than Eq. (4.5) for progressively larger fvm. This deviation from Eq. (4.5) 

indicates subsequent cluster-dense conditions, and the kinetics speed up with the kinetic exponent 

z taking on values larger than unity, during which the driving mechanism of aggregation becomes 

ballistic-limited as the interdigitating aggregates have no more free space to diffuse (Sorensen and 

Chakrabarti 2011; Fry et al. 2002; Liu et al. 2018). 
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Figure 4.3. (a) and (c) show that early stages of aggregation are unified by Eq. (4.5) when observed with 
normalized time 1 + t/tc. (b) and (d) show that the late stages of transitions, when observed with normalized 
time 1 + t/tIGP, are unified by Eq. (4.7). Dashed line in (d) has a slope of about 3.5, and the arrow indicates 
an inflection in transition kinetics. 

 

Figure 4.3(b) shows that the late stages of the transition are unified upon normalizing t according 

to 1 + t/tIGP. A universal power-law relationship manifests as, 

𝑛௧௢௧

𝑛௧௢௧,ூீ௉
= 2௭ಷಸೄ ൬1 +

𝑡

𝑡ூீ௉
൰

ି௭ಷಸೄ

                                                (4.7) 
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where zFGS ≈ 5.7 is the kinetic exponent reported at the FGS (Fry et al. 2002). The z takes on a 

terminal value because only when t >> tIGP (that is, a condition approaching FGS) could Eq. (4.7) 

be reduced to 𝑛௧௢௧ ∝ 𝑡ି௭. The prefactor, taking up the expression of 2௭ಷಸೄ , satisfies ntot = ntot,IGP 

when t = tIGP. The two power-law relationships, Eq. (4.5) and the new Eq. (4.7) provide a complete 

description for the full so-to-gel transition within regimes I and II. 

Regime III occurs in system fvm = 0.1 with a counterintuitively slower kinetics. Figure 4.3(c) shows 

that the decrease in ntot/ntot,0 for fvm = 0.1 falls behind that for fvm = 0.05. When observed with 1 + 

t/tIGP, a less steep decreasing trend of ntot/ntot,IGP is seen (Panel(d)) when fvm = 0.1. Eq. (4.7) still 

holds valid while a zFGS ≈ 3.5 fits the data best, per the red solid line in panel (d). This slower rate 

– in a denser system – could be due to the abundance gel clusters which are considerably less 

mobile. Qualitatively speaking, the extremely dense system facilitates almost an instantaneous 

gelation of sol clusters, but the resultant abundance of gels slows down the system progressing 

from IGP to FGS. Figure 4.3(d) shows that the decreasing trend of ntot/ntot,IGP for the system with 

fvm = 0.05 originally follows Eq. (4.7) with zFGS ≈ 5.7 until reaching an inflection point indicated 

by the arrow in (d). Beyond the inflection, the trend asymptotes to the less steep one governed by 

zFGS ≈ 3.5. Note that this inflection occurs approximately at tIGP + td of the system (see Fig. 4.1(e)), 

indicating that a slowing down of kinetics is indeed a characteristic of the system in which only 

gel clusters exist. These dense gelation systems near fvm = 0.1 are traditionally discussed in the 

framework of static percolation and thermodynamics (Stauffer 1976; DeGennes 1976; Stauffer et 

al. 1982; Heinson et al. 2017) and here we emphasize that the kinetic aspect should not be 

overlooked. 
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4.3.3 Improved parameterization on characteristic timescales 

We next evaluate the existing analytical expressions for the important characteristic timescales 

that are involved in the sol-to-gel transition process. Combining Eq. (4.6) with (4.1) and (4.2) 

yields the analytical expression for tc in units of ts: 

𝑡௖

𝑡௦
=

1

4
𝑓௩௠

ିଵ                                                                    (4.8) 

Figure 4.4 compares the prediction of Eq. (4.8) with the tc/ts determined from simulations. The 

exponent -1 fails at large fvm, indicating that the aggregation in these extremely dense systems 

deviates from the Brownian kernel at a very early point. The enhanced kinetics lead to the tc being 

smaller than what Eq. (4.8) predicts. The upper limit for fvm is the percolation threshold, at which 

point the volume-spanning gel is instantaneously formed, and so that both tc and tIGP decrease to 

zero. Ref. (Powell 1979) reports the critical volume fraction (ΦP) to be about 0.18 (black line in 

Fig. 4.4) at which a system of randomly packed hard spheres reaches percolation threshold in 

three-dimensional space. We introduce a semiempirical expression of tc for the dense DLCA 

systems near the percolation threshold as: 

𝑡௖

𝑡௦
=

1

4
(𝑓௩௠

ିଵ − Φ௉
ିଵ)                                                            (4.9) 

The prediction by Eq. (4.9) is plotted in Figure 4.4 and it captures the dramatic decrease in the tc/ts 

near ΦP. Similarly, we provide an improved parameterization of tIGP for these dense DLCA 

systems, 

𝑡ூீ௉

𝑡௦
=

1

4
(𝑓௩௠

ିଵ − Φ௉
ିଵ) ൦𝑏ି

ଵ
௭𝑓௩௠

஽೑

൫஽೑ିଷ൯௭
ቆ

𝐷௙

𝐷௙ + 2
ቇ

ଷ஽೑

൫଺ିଶ஽೑൯௭
𝑘

௙

ଷ

൫ଷି஽೑൯௭
− 1൪            (4.10) 
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where b originates from a power-law relationship <N> = b(1 + t/tc)z quantifying the aggregate 

growth when cluster-dense condition sets in (Oh and Sorensen 1997). The step-by-step derivation 

of Eq. (4.10) is outlined in Appendix II Section A2.5. The determination of the values for b and z 

from DLCA is discussed in Section A2.6. Figure 4.4 also compares the prediction of Eq. (4.10) 

(solved with Df = 1.8, kf = 1.3, z = 1.5 and b = 0.2) to the tIGP/ts determined from simulations.  

 

Figure 4.4. Characteristic timescales tc, tIGP and tFGS as functions of fvm. The timescale parameters 
determined from DLCA simulations are compared with their analytical solution values. 

 

The traditionally used expression (Sorensen and Chakrabarti 2011; Dhaubhadel et al. 2007) for 

tIGP is also evaluated here: 𝑡ூீ௉ ≈ 𝑎ଷ𝐾ିଵ𝑓௩௠
ିଶ.ହ, which after being combined with Eq. (4.2) yields 

to: 

𝑡ூீ௉

𝑡௦
=

3

16𝜋
𝑓௩௠

ିଶ.ହ                                                            (4.11) 
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Figure 4.4 shows that Eq. (4.11) overestimates tIGP by a factor less than two. 

The summation of Eq. (4.10) (or (4.11)) and (4.4) provide analytical solution values for (tIGP + 

td)/ts, which are compared with the tFGS/ts determined from simulations. We again observe that a 

dilute system reaches FGS when the total conversion of sol clusters is attained (tIGP + td ≈ tFGS), 

but when monomer dense, the time interval between tIGP + td and tFGS becomes significant, during 

which regime III takes over the kinetics.  

Figure 4.4 and Eqs. (4.4), (4.8)-(4.11) also show that the timescale parameters – tc ,tIGP, and td – 

are functions of fvm only. Those parameters are scale independent. Their values are not sensitive to 

changes in system size V, as long as fvm is fixed. Note that the parameters, ntot and tFGS, however, 

are scale dependent. Their values are sensitive to system size and hence they are functions of both 

fvm and V. We show in Appendix II Section A2.7 that 𝑛௧௢௧ ∝ 𝑉 , and 𝑡ிீௌ ∝ 𝑉ଵ ௭ಷಸೄ⁄ . The 

dependence of tFGS on V is rather insignificant when system is dilute, because zFGS takes a value as 

large as 5.7. The influence of system scale becomes pronounced when system is dense. At last, we 

need to emphasize that the entire discussion of scale-independence is built upon an important 

prerequisite – that the system should be at least large enough, such that for any given fvm, the ntot,0 

is always much larger than NIGP. This condition guarantees that statistically significant number of 

clusters exist in the system beyond IGP. 
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4.4 Conclusion 

We conclude the chapter with Figure 4.5 which schematically illustrates the comprehensive 

picture. The transition Regimes I-III and the corresponding kinetic formulations (Eqs. (4.5) and 

(4.7)) are presented with the characteristic timescales, tc, tIGP, and tIGP + td serving as milestones.  

 

Figure 4.5. The kinetics of full sol-to-gel transition 

 

Please note that the regime I and II are separated per tIGP at which point SE breaks down, but 

kinetics 1 fails at t ≈ tc, the time at which Brownian aggregation kernel no longer holds valid (the 

cluster-dense condition sets in)  (Sorensen and Chakrabarti 2011; Fry et al. 2002). Regime II and 

III start out simultaneously at IGP, but II tends to dominate over III because number of gel clusters 

in a system is typically negligible compared to that of the sol clusters. Regime III only takes 



91 
 

precedence after II reaches its completion, that is tIGP + td < t < tFGS, which only manifests when 

monomer dense. The latest study (Heinson et al. 2018) on the gelation in DLCA system with fvm = 

0.1 reveals a breakdown of the invariance between the mass and surface fractal dimension values 

for monomer-dense gels. This observation indicates that Regime III is indeed a distinct transition 

process, regarding both kinetics and the morphologies of resultant gel particles. Future research 

on this topic should be directed toward experimental studies on the late-stage Regime III in the 

dense aggregation systems, with an emphasis placed on the kinetic perspective. Another interesting 

topic for future research is to investigate the gelation kinetics in the systems with fvm varying as a 

function of t. For example, changing system V as aggregation proceeds, which has been shown 

critical in studying more realistic aggregation systems with polydispersed constituent monomers 

(Goudeli et al. 2016). 
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Abstract 

Flame soot particles have been observed to take a broad size range: Their radius of gyration (Rg) 

extends from few hundreds nanometer to nearly one millimeter depending on the scale of the 

combustion systems. The morphology, as well as packing density (θf, volume fraction of solid 

matter) of these particles at long range limit of Rg have yet to be comprehensively studied, 

especially beyond the length scale of aerosol gelation. In this work, we experimentally map the 

scaling laws for packing density (θf, solid component volume fraction) of soot aggregates across 

five orders of magnitude of size (Rg/a, normalized radius of gyration by monomer radius). The θf  

– Rg/a scaling relationship evolves through three successive regimes with distinct power-law 

exponents of – 1.20 ± 0.01, – 0.58 ± 0.06, and – 1.31 ± 0.14. The first cross-over agrees with the 

classical aerosol-to-gel transition theory. This agreement, however, breaks down at the second 

cross-over point, where a late-stage cluster-cluster aggregation of aerosol gels takes over. 
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5.1 Introduction 

Soot aggregates are produced from incomplete combustion of hydrocarbon fuels in a wide range 

of natural and anthropogenic systems, for example, vehicular engines, biomass burning, and 

wildfires (Chao et al. 1998; Park et al. 2004; Kumfer et al. 2006; Law 2010; Rehman et al. 2011; 

Chakrabarty et al. 2014a). These aggregates constitute of repeating near-spherical monomers and 

are fractal-like and porous in their morphology and composition, respectively (Forrest and Witten 

1979; Sorensen 2001, 2011). The packing density (θf) – defined as the fraction of the sub-volume 

taken by solid matter – is a fundamental property of these aggregates with many important 

implications. θf determines the transport characteristics and radiative forcing of these aggregates 

in the atmosphere (Bond et al. 2013; Chakrabarty et al. 2014a; Liu and Chakrabarty 2016; Heinson 

and Chakrabarty 2016). Accurate knowledge of θf is necessary to determine the extent of particle 

deposition in human lungs (Taulbee and Yu 1975; Hinds 1999). When it comes to synthesis of 

these aggregates for commercial purposes, a control of θf renders tailoring of desirable material 

properties, such as permeability, mechanical strength, thermal, and electrical conductivities 

(Johnson et al. 1996; Sánchez-González et al. 2005; Dhaubhadel et al. 2007; Greaves et al. 2011; 

Sakai et al. 2016). 

Aggregate θf scales with radius of gyration (Rg) following a fractal power-law relationship, 

𝜃௙ = 𝑘௙൫𝑅௚ 𝑎⁄ ൯
஽೑ିଷ

                                                            (5.1) 

where kf is the fractal prefactor, a is one monomer radius, and Df is the mass fractal dimension that 

controls how fast θf decreases with increasing Rg (Forrest and Witten 1979; Sorensen 2001, 2011; 

Zangmeister et al. 2014). The value of Df provides insight into the aggregate growth mechanism 
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in a system. Aerosol aggregates with Rg < 1 mm have been shown to grow via the diffusion-limited 

cluster-cluster aggregation (DLCA) mechanism with a characteristic Df ≈ 1.78 (Sorensen 2001, 

2011). Beyond this size range, DLCA aggregates that are non-coalescent tend to behave as “super-

monomers” and jam together to form percolated networks (or aerosol gels) with a Df ≈ 2.5 

(Sorensen et al. 1998; Sorensen and Chakrabarti 2011). The gelation of aerosol aggregates was 

first observed by Sorensen et al. (1998) and termed as aerosol gelation (Sorensen and Chakrabarti 

2011). The theory of aerosol gelation is however not exhaustive to describe the growth of particles 

with large Rg. Multiple mechanisms have been suggested to take precedence successively in the 

growth regime Rg > 1 mm (Kim et al. 2006). This implies a varying power-law exponent for θf in 

the large Rg/a limit, different from that predicted by the classical percolation model, ca.  – 0.5. 

There exist very limited studies on the experimental determination of θf for fractal aggregates with 

Rg/a reaching the large limit. Manley et al. (2004) showed aggregate structure tends to 

catastrophically break down when Rg/a reaches 103; thus, the direct measurement of θf for the 

particles that are intact could be hindered by their mechanical instability. More recently, 

Zangmeister et al. (2014) reported the measurement of θf for rigid aggregates subjected to 

omnidirectional compaction forces. A remarkable scale-invariant θf ≈ 0.36 of the aggregates was 

observed for Rg/a across many orders of magnitude (Zangmeister et al. 2014). This confounding 

scale-independence, implying lack of any growth mechanism beyond percolation, has in part 

motivated this current study. Our objective herein is to provide a complete picture of the scaling 

relationship of θf across five orders of magnitude of Rg/a for freshly produced soot aggregates and 

infer their size delimited growth mechanism. 
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5.2 Methods 

5.2.1 Characterization of sub-micron size aggregates 

For soot aggregates with Rg < 1 mm, we deduced their θf based on previously published mass-

mobility experimental data. Cross et al. (2010) had generated nascent soot aggregates using an 

ethylene flat flame burner and measured the mass (M) of these aggregates with certain mobility 

diameter (dm) using a tandem differential mobility analyzer (DMA) – centrifugal particle mass 

analyzer (CPMA) – condensational particle counter (CPC) setup (Park et al. 2004; Cross et al. 

2010; Zangmeister et al. 2014). We estimated N of these aggregates from the aggregate-to-

monomer mass ratios. The monomer density ρ and average radius a were taken as 1812 kg/m3 and 

16 nm, respectively (Cross et al. 2010; see Appendix III Section A3.1). We estimated aggregate 

Rg from their dm using the well-established empirical relationship for DLCA aggregates with N < 

100 (Sorensen 2011): 

𝑑௠

2𝑅௚
= 1.29𝑁ି଴.ଵ                                                              (5.2) 

Finally, we calculated aggregate θf using the expression: 

𝜃௙ =
3𝑀

4𝜋𝑅௚
ଷ𝜌

                                                                   (5.3) 

5.2.2 Characterization of super-micron size aggregates 

Soot aggregates with Rg > 1 mm were generated using a novel buoyancy-opposed flame (BOF) 

reactor (Chakrabarty et al. 2012, 2014b; Liu et al. 2015) fueled by ethylene. Emitted particles were 

collected onto conducting carbon films (Ted Pella Inc., Redding, CA, USA) installed in a 
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multistage size-segregated aerosol impactor (MPS-6, California Measurements Inc., Sierra Madre, 

CA, USA). Aggregate morphology was characterized using scanning electron microscope (SEM, 

Nova-230, FEI, Hillsboro, OR, USA) and custom-built image processing software. The number of 

monomers constituting an aggregate as seen in an image (N2d) was estimated by the ratio of the 

aggregate’s projected area (Ap) to the monomer cross-section area πa2. N2d was next converted to 

its three-dimensional (3-d) N based on an empirical relationship established computationally using 

the off-lattice DLCA model (see Appendix III Section A3.2): 

𝑁 = 0.93𝑁ଶௗ
ଵ.ଵ଺                                                                 (5.4) 

We determined the Rg of an aggregate from its pixelated SEM image by calculating the root mean 

square distance of all pixels (within the aggregate perimeter) from the aggregate geometric center. 

The θf of these particles was calculated with the knowledge of their N, a, and Rg using the equation: 

𝜃௙ = 𝑁൫𝑎 𝑅௚⁄ ൯
ଷ

                                                                (5.5) 

Please note that we assumed in Equation (5.5) the Rg calculated from two-dimensional (2-d) 

microscope image to be equal to the true Rg of the aggregates in 3-d. Chakrabarty et al. (2011) 

showed in their simulation work the ratio of 2-d to 3-d Rg to be about 0.93 for DLCA aggregates 

in cluster-dilute regime. We show in the Appendix III Section A3.3 that the ratio is about 0.98 for 

cluster-dense gels.  

We calculated the structure factor (S) of the sampled aggregates by performing Fourier transform 

on their projected images (Sorensen 2001; Heinson et al. 2017). Determination of S facilitated the 

double-checking for accuracy and consistency of Df for these particles, per the scaling relationship 

that holds in the reciprocal-space (Sorensen 2001; Heinson et al. 2017): 
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𝑆 ∝ ൫𝑞𝑅௚൯
ି஽೑

                                                                  (5.6) 

In another set of experiments, we dropped a total of 117 aggregates freshly produced from the 

ethylene BOF in the size-range 100 mm < Rg < 1.5 mm into stagnant air at 25 °C and 1 atm. The 

M of these aggregates were estimated from their terminal settling velocity vts based on the Stokes 

law (Friedlander 2000), 

𝑀 = 𝑔ିଵ6𝜋𝜇𝑅௚ ൥1 + 0.158 ൬
2𝜌௙𝑣௧௦𝑅௚

𝜇
൰

ଶ ଷ⁄

൩ 𝑣௧௦                                  (5.7) 

where g is gravitational acceleration, µ and ρf are the air dynamic viscosity and density with the 

value of 1.8 × 10−5 Pa⋅s and 1.29 kg/m3, respectively. Note that the measured vts was divided by a 

factor C = 6.15 ± 2.15 prior to the calculation of M using Equation (5.7), per the work of Johnson 

et al. (1996). This precaution was taken to compensate for the systematic over-estimation of M 

when applying Stokes law on fractal aggregates that are porous and permeable (Johnson et al. 

1996). The Rg of these aggregates were determined from their pixelated optical microscope images, 

according to the similar method discussed in previous paragraph. The θf of this set of aggregates 

was next determined using Equation (5.3).We find it important to mention the assumption made 

when using Equations (5.3) and (5.5). The bulk volume of a fractal aggregate is approximated to 

be that of a sphere with radius Rg. The uncertainties that could stem from this assumption are 

investigated in detail in the Results section. 

5.2.3 Numerical simulation 

We performed two sets of numerical investigation to complement and theoretically validate our 

experimental findings. The first set of simulations involved generating 53,483 aggregates using 
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the off-lattice DLCA algorithm (Meakin 1985; 1999). The detailed description of this algorithm 

can be found in references (Heinson and Chakrabarty 2016; Heinson et al. 2017; Heinson 2015). 

The initial monomer volume fraction (fvm), which is an important control parameter for aerosol 

aggregation, was varied between the extreme values of 0.001 and 0.1. The influence of fvm on the 

earliness of aerosol gelation was comprehensively discussed in Reference (Sorensen and 

Chakrabarti 2011). The second set of simulations involved using the percolation model to generate 

104 aggregates (Stauffer and Aharony 1994; Heinson 2015). θf of all numerically generated 

aggregates were calculated using Equation (5.5). Table 5.1 summarizes the various experimental 

and numerical techniques employed in this study to generate and characterize particles in different 

size ranges for determination of their θf. The source of the mass-mobility data, based on which we 

inferred the θf for aggregates in the extremely small Rg/a limit, is also listed in Table 5.1 

Table 5.1 Source of previously published data involved in our analysis and the experimental 
methods employed in this work 

Group Index Size Range Rg/a Particle Source 
Characterization 

Method 

A 1-20 Kerosene flame DMA-CPMA-CPC 

B 
2-400 

Off-lattice 
DLCA 
model 

 

fvm = 0.001 

N/A 

C fvm = 0.003 

D 
2-300 

fvm = 0.01 

E fvm = 0.02 

F 2-200 fvm = 0.1 

G 3-1,000 Percolation model 

H 30-5,000 
Ethylene BOF 

SEM Image processing 

I 3,000-50,000 Stokes Law Eq. (5.3) 
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5.3 Results and Discussion 

5.3.1 Spherical approximation of aggregate bulk volume 

The uncertainty that stems from applying spherical geometry to approximate the bulk volume for 

aggregates, that is, 𝑉௔௚௚(௦௣௛௘௥ ) =
ସ

ଷ
𝜋𝑅௚

ଷ is determined in this section. We do so by comparing 

Vagg(sphere) to 𝑉௔௚௚(௘௟௟௜௣௦௢௜ௗ) =
ସ

ଷ
𝜋𝑅ଵ𝑅ଶ𝑅ଷ, where R1, R2, and R3 are the three principal radii of an 

aggregate as well as an ellipsoid tightly bounding the aggregate. It has been shown that the use of 

these three principal radii takes into account the aggregate shape anisotropy (Heinson et al. 2010). 

In Figure 5.1, we plot the ratio Vagg(sphere)/Vagg(ellipsoid) as a function of aggregate shape anisotropy 

A = R1/R3 for particles generated in experimental sets N1, N5, and N6. These three sets of particles 

represent cluster-dilute DLCA, cluster-dense DLCA, and gel particles, respectively. One can see 

from Figure 5.1 that with increasing A, the ratio Vagg(sphere)/Vagg(ellipsoid) increases monotonically for 

all particle sets. This trend implies that a spherical approximation leads to overestimation of the 

bulk volume of highly anisotropic aggregates with large A. However, had we used aggregate 

perimeter radius instead of its Rg, the ratio Vagg(sphere)/Vagg(ellipsoid) would always be greater than 1 

for all aggregates. In other words, the use of Rg partially compensates for the overestimation 

stemming from the spherical volume approximation. For cluster-dilute DLCA aggregates, whose 

A distribution peaks at 2.5 (Heinson et al. 2010), the Rg-based spherical geometry reasonably 

approximates the aggregate bulk volume. We should also emphasize here that when DLCA 

aggregates gel, the shape of the resulting gel particles tends to be more isotropic with smaller A. 

As A decreases, the bulk volume of gels would be underestimated, which would yield an 

overestimated θf. Finally, it is worth mentioning that the fractal scaling of θf would remain 

unaffected regardless of how the bulk volume of a particle is approximated. That is to say, the 
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scaling exponent of θf would always be equal to Df −3 so long as a Euclidean object is chosen to 

represent the encompassing space. 

 

Figure 5.1. Ratio of Vagg(sphere) = 4πRg
3/3 to Vagg(ellipsoid) = 4πR1R2R3/3 as a function of shape anisotropy A = 

R1/R3 of the aggregates (or gels) numerically generated using off-lattice DLCA model (sets N1 and N5) and 
percolation model (set N6). 

 

5.3.2 Fractal scaling of θf 

Figure 5.2 shows the comparison of the θf − Rg/a scaling relationships between aggregates studied 

by Cross et al. (2010) and that of sets N1–N6 from this study. Good agreement between Cross et 

al. (2010) and set N1 aggregates could be seen. Empirical fit to the data of set N1 aggregates 

following Equation (5.1) reveals an ensemble average Df = 1.80 ± 0.01, which is in good agreement 

with the prediction of DLCA growth mechanism in a cluster-dilute Brownian system (for example, 

fvm = 0.001). Comparison between sets N1 and N2 aggregates shows that for initial monomer fvm 

= 0.003, the decreasing trends of θf starts to deviate from the prediction of DLCA (black line) at 
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Rg/a = ca. 102. This inflection is an indication of the onset of aerosol gelation. Comparison between 

aggregates corresponding to sets N1–N5 shows that with an increase of initial monomer fvm, the 

inflection point shifts toward smaller Rg/a. This implies that gelation of DLCA aggregates takes 

place more readily in a denser (high fvm) sol system, which is in agreement with the prediction of 

aerosol-to-gel theory (Sorensen and Chakrabarti 2011). When an aggregating system starts out 

under extremely dense conditions, which correspond to fvm = 0.1 (set N5 aggregates), the scaling 

relationship of θf asymptotes to what the percolation model predicts (see the red line and set N6 

data). Empirical fitting of the data corresponding to set N6 aggregates reveals a Df = 2.42 ± 0.03, 

which closely matches the Df ≈ 2.5 value observed for gels. Summarizing Figure 5.2, we show the 

evolution of θf − Rg/a scaling relationships for aerosol aggregates in the small Rg/a limit. 

 

Figure 5.2. The θf − Rg/a scaling relationship of soot aggregates studied by Cross et al. (2010) compared 
to that of sets N1–N6 from this study. Error bars represent one geometric standard deviation. Least-square 
fitting of the data of sets N1 and N6 yields θf  = 1.28 ± 0.03(Rg/a) – 1.20 ± 0.01 (lower black line) and θf  = 
0.74 ± 0.08(Rg/a) - 0.58 ± 0.06 (upper red line), respectively. 



107 
 

Figure 5.3 shows the microscope images of the BOF-produced soot particles in the large Rg/a limit 

(corresponding to sets E1 and E2). We present this series of microscope images at changing 

degrees of magnification to give the readers a qualitative feel of the morphology of cluster-dense 

soot produced by our reactor. The constituent monomers, with a mean radius = 30 nm, are near 

spherical and point-contacting. At larger length scales, the monomers are no longer discernible; 

however, the fractal nature of the aggregates is still preserved, implying scale-dependence of θf.  

 

Figure 5.3. Morphologies of BOF produced soot (sets E1 and E2) at three different length scales. (a) SEM 
image showing the shape of the soot monomers. (b) The probability distribution of the monomer diameter 
2a. Columns (red) represent the normalized counts of monomers within each size bin having a width of 5 
nm. The solid line represents a Gaussian fit that peaks at 60.2 nm. (c) SEM image showing the soot 
morphology at micrometer scale. (d) Optical microscope image showing soot morphology at millimeter 
scale. 
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Figure 5.4 shows the comparison of θf − Rg/a scaling relationship for particles corresponding to 

sets N6, E1, and E2. The E1 dataset, obtained from digital processing of SEM images of BOF-

generated soot, deviates slightly from the prediction of the percolation model (red dash line). This 

slight deviation may arise from the artifacts associated with the particle sampling process. Inertial 

impaction could cause deformation of an aggregate's silhouette (or outer structure) but not its 

internal structure and monomer packing arrangements. This is evident from the structure factor 

S(qRg) plot in Figure 5.5, which contains details on a particle's internal structure. Beyond the 

Guinier regime (qRg > 1), S is observed to scale with qRg
−2.5 in concurrence with the Df of gels. 

 

Figure 5.4. The θf − Rg/a scaling relationship of particles corresponding to sets N6, E1, and E2. Error bars 
represent one geometric standard deviation for N6 and E1 datasets. For the E2 dataset, errors stem from the 
uncertainty in C = 6.15 ± 2.15 as reported by Johnson et al. (1996). Least-square fitting of the data of set 
E2 yields θf  = 130.20 ± 164.12(Rg/a) – 1.31 ± 0.14 (right-most blue line). 
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Figure 5.5. SEM image of a typical particle from set E1 and its structure factor in reciprocal space S(qRg). 
Black line with a slope = – 2.5 serves as a guide to eyes. 

 

Particles corresponding to sets E1 and E2 have Rg/a in the large limit, that is, ≥103. The power-

law exponent of θf versus Rg/a for these particles gradually decreases to a new value of −1.31 ± 

0.14 (blue dash line). Per Equation (5.1), this exponent suggests a distinct Df ≈ 1.7, which implies 

a growth mechanism involving the cluster-cluster aggregation of individual gel particles. Visually, 

we are encountering a scenario where for Rg/a >103 the volume spanning gels start to act like 

monomers and participate in a late-stage cluster-cluster aggregation process. The dynamics of this 

late-stage aggregation, which is beyond the typical length-scale of aerosol gelation (Kim et al. 

2006), has yet to be systematically studied in flame systems. 

We make an attempt to provide a phenomenological understanding of the occurrence of this late-

stage aggregation of gel particles, which is observed experimentally but not captured theoretically 
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in our simulations. Aggregation in open-flow systems, such as flames, deviates from the idealized 

systems described in the aerosol-to-gel transition theory (Sorensen and Chakrabarti 2011). The 

spatial distribution of particle fvm could be largely inhomogenous in flames. This gives rise to 

“dense-spots” in which the fvm of particles is substantially higher than the surroundings, and gels 

with Df ≈ 2.5 are readily formed. For example, Figure 5.6a shows a “dense-spot” in the body of 

our BOF. The sub-volume wherein the recirculating particle-laden gas flow makes a “U-turn” 

becomes densely populated with DLCA aggregates (see the location indicated by the red arrow in 

panel (a)). At this dense-spot, the aerosol-to-gel transition is so prominent that it is visible to naked 

eyes. Next, the individual gel particles formed in these dense-spots are observed to be spatially 

spreading out (see Figure 5.6b). These diverging gel particles, whose average nearest neighbor 

separation distance is much larger than their average size, eventually start to behave as monomeric 

units leading to collision with each other before irreversibly forming the millimeter-size, chain-

like, and open-structure aggregates demonstrating a low Df of ≈1.7 (see the particle indicated by 

the blue arrow in panel (b)). A qualitative explanation for why the Df of these particles appears to 

be smaller than the typical value of 1.8–1.9 expected for a 3-d cluster-cluster aggregation 

mechanism is briefly provided here. In situ tracking of particle motion in our flame system reveals 

that the particle trajectories are tightly bound in a 3-d annular region (please refer to the figure in 

the Appendix III Section A3.4). The thickness of this annular is about 5 mm, which is slightly 

larger than the mean size of these particles. This confined geometry limits the collisions between 

a pair of particles to be quasi 3-d in nature, meaning that the probability of particle–particle 

collision along the radial direction is comparatively lower than along the angular and vertical 

directions. We infer that this constrained collisional arrangement may have led to a Df slightly 

smaller in value than that resulting from unconstrained omni-directional 3-d cluster-cluster 
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aggregation. On the other hand, this value is still much greater than Df ≈ 1.4 resulting from a 2-d 

cluster-cluster aggregation growth mechanism (Sorensen and Hageman 2001). 

 

Figure 5.6. Photographs of the ethylene BOF. Scale bars are both 5 mm. Panel (a) shows a “dense-spot” 
location (indicated by the arrow) where sub-micron DLCA soot aggregates undergoes aerosol gelation. 
Panel (b) shows the spatial spreading out of gel particles, who then participates in late-stage cluster-cluster 
aggregation as monomeric units. The resulting macro particle (or aggregated gels) has a low Df (the one 
marked by the arrow). 
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5.4 Conclusion 

We now stitch together and summarize the results from above and draw a picture of the scaling 

variance for θf as a function of Rg/a across five orders of magnitude length scale (Figure 5.7). θf 

decreases in distinct power-law exponents of −1.20 ± 0.01, −0.58 ± 0.06, and −1.31 ± 0.14 

successively. Fractal nature of soot aggregates is shown to hold even as Rg/a reaches the extremely 

large limit of 5 × 104. The θf – Rg/a scaling power-law exponents reveal three successive aggregate 

growth regimes, namely, aggregation of sol clusters (DLCA), gelation of sol clusters, and cluster-

cluster aggregation of gels.  

 

Figure 5.7. Generalized picture of the scale dependence of θf for soot aggregates. With Rg/a increasing from 
1 to 5 × 104, three successive growth regimes were identified, namely, aggregation of sol clusters (DLCA), 
gelation of sol clusters, and cluster-cluster aggregation of gels. These growth mechanisms are sketched on 
top of the figure with their corresponding cross-over points at Rg/a = 5 and 103. Note that these cross-over 
Rg/a could be highly system dependent. Blacklines with slopes = – 1.2, – 0.4, and – 1.3 serve as guide to 
eyes. 
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The late-stage recurrence of cluster-cluster aggregation in the large Rg/a limit, ca. ≥103, could be 

system dependent and needs to be verified for other sol systems (Sorensen and Feke 1996 

Sorensen; Sorensen and Hageman 2001; Kim et al. 2006). Our observation of this fractal scale 

dependence of θf in the large Rg/a limit has important implications for the synthesis of materials 

with tunable porosity, extremely low density and refractive index, and high surface area per unit 

volume (Johnson et al. 1996; Sánchez-González et al.; Dhaubhadel et al. 2007; Greaves et al. 2011; 

Chakrabarty et al. 2014b; Liu et al. 2015; Sakai et al. 2016) and accurate estimation of radiative 

forcing by carbonaceous aerosols (Bond et al. 2013; Chakrabarty et al. 2014a; Heinson and 

Chakrabarty 2016). 
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Abstract 

Aerosol gels are a novel class of materials with potential to serve in various energy and 

environmental applications. In this work, we demonstrate the synthesis of titanium dioxide (TiO2) 

aerosol gels using a methane-oxygen co-flow diffusion flame reactor operated in down-fired 

configuration (fuel flow in the direction opposite to buoyancy forces). Titanium tetraisopropoxide 

was fed as a precursor to the flame under different operating conditions. Control of the monomer 

size and crystalline phase of TiO2 gel particles was achieved by adjusting the flame operating 

conditions, specifically the flame temperature, which was shown to significantly influence the 

phase transformation and rate of particle growth and sintering. The resulting materials were 

characterized for their physical and optical properties. Results showed that the TiO2 aerosol gels 

had effective densities in the range 0.021–0.025 g/cm3, which is 2 orders of magnitude less than 

the theoretical mass density of TiO2. The monomer size distribution and crystalline phase, and 

UV-Vis absorbance spectra of the gels showed distinct characteristics as a function of flame 

temperature. 
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6.1 Introduction 

Aerosol gels exhibit unique material properties such as ultralow density and high surface area that 

give rise to their potential in various environmental applications such as catalysis, water and air 

purification, and photovoltaic (Dhaubhadel et al. 2007; Dhaubhadel et al. 2012). Synthesis of 

aerosol gel in gas phase has been recently demonstrated as a viable and economical alternative to 

the conventional wet sol-gel process, which is both time-consuming and expensive (Dhaubhadel 

et al. 2007; Brinker and Scherer 2013; Chakrabarty et al. 2014). The fundamentals of aerosol 

gelation theory have been thoroughly investigated in the last two decades, primarily by Sorensen's 

group at the Kansas State University (Sorensen et al. 1998; Dhaubhadel et al. 2007; Sorensen and 

Chakrabarti 2011). On the experimental front, novel techniques have been demonstrated for lab-

scale synthesis of various aerosol gel materials (Dhaubhadel et al. 2007; Chakrabarty et al. 2014). 

However, much work still remains to establish gas phase as a scalable synthesis route for 

production of aerosol gels with controlled properties. In particular, control of monomer size in 

aerosol gels is needed because of its importance in governing the specific surface area (SSA), 

mobility, and optical properties of these materials. 

In this study, we demonstrate the gas-phase synthesis of titanium dioxide (hereafter, TiO2) aerosol 

gels with controlled monomer size and crystalline phase using a diffusion flame aerosol reactor 

operated in a buoyancy-opposed configuration (Chakrabarty et al. 2012; 2014). Flame aerosol 

reactors have been widely adopted by industries for cost-effective, continuous and one-step 

synthesis of a wide variety of nanomaterials. TiO2, a material with versatility in practical 

applications ranging from white pigment to photocatalyst, has not yet been synthesized in a gel 

form via gas phase processes. At the same time, its well-investigated material properties as a 
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function of process parameters make it an ideal reference material to demonstrate the extent of 

control in our synthesis process (Jiang et al. 2007). A brief review of gas-phase gelation theory 

and the necessary criteria for designing a flame reactor are discussed in the next paragraph. This 

is followed by a section on experimental setup and analytical procedures. Next, results and findings 

of this study are discussed. The chapter concludes with summarizing our major findings and 

pointing to future research directions. 

 

6.2 Criteria for Designing Gas-Phase Gelation Reactor 

In gas phase, aerosol gelation starts out with individual nanoparticle monomers colliding in the 

“cluster-dilute” regime via the diffusion-limited cluster agglomeration (DLCA) mechanism to 

form submicron-sized aggregates with a fractal dimension Df = ca. 1.8 (Sorensen and Chakrabarti 

2011). Such a non-coalescing behavior of the aggregating monomers is an important prerequisite 

for gelation to take place in gas phase (Dhaubhadel et al. 2007). With time, if the scaling 

dimensionality of the growing DLCA collisional system remains smaller than three, the condition 

for “cluster dense” agglomeration sets in. The available free volume inside the system then begins 

to get progressively occupied by DLCA aggregates to the point where the cluster volume fraction 

fvc, defined as the ratio of total perimeter volume of DLCA aggregates to the system volume, starts 

to approach unity (Sorensen and Chakrabarti 2011). When fvc reaches unity, DLCA aggregates 

start to form network-spanning superaggregates and eventually, gels with a characteristic Df = ca. 

2.5. Such threshold condition (fvc = 1) is called ideal gel point (IGP), and the amount of time 

required for DLCA systems to reach IGP can be quantified as:   

𝑡ூீ௉ =
4

3
𝜋𝐾ିଵ𝑎ଷ𝑓௩௠

ିଶ.ହ                                                         (6.1) 



122 
 

where K is the aggregation kernel, a is the radius of constituent monomers, and fvm is the volume 

fraction of monomers in the system (Dhaubhadel et al. 2007). In order to reach the conditions for 

gelation, the particle residence time tres should be greater than the threshold gelation time in the 

system, that is tres > tIGP.  

The possible roadblock involved in controlling monomer size in gas-phase systems hence arises 

from the third order dependency of tIGP on the monomer radius, as revealed by Equation (6.1). A 

small increase in the monomer size would substantially increase tgel, which would need to be 

facilitated by the gas-phase reactors. Typical particle tres in these reactors is in the order of a few 

hundred milliseconds (Chakrabarty et al. 2014) and increasing it to reach gelling conditions would 

require doing major structural modifications to the reactor design (e.g., increasing the reactor 

length). One way to overcome this difficulty is by operating a flame aerosol reactor in downfired 

buoyancy-opposed configuration. A past study has demonstrated the unique capability of a down-

fired diffusion flame system to synthesize gel materials by enhancing particle tres by as much as 6 

orders of magnitude compared to that of the conventional up-fired configuration (Chakrabarty et 

al. 2014). The different operating conditions of this reactor and their influence on gel properties 

are described in detail in the subsequent sections. 
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6.3 Methods 

6.3.1 Schematic diagram of reactor setup 

Figure 6.1 shows the schematic diagram of the flame reactor setup used in this study. A Burke-

Schumann type co-flow diffusion flame burner was operated in down-fired configuration. The 

burner consists of two concentric stainless-steel tubes with 16- and 70-mm inner diameters, 

respectively. A honeycomb flow straightener was attached to the outer concentric tube to 

straighten the co-flow stream. A quartz tube with 70 mm inner diameter and 402 mm length, used 

for housing the flame, was attached to the burner. Methane (CH4) served as the combustible 

hydrocarbon fuel in this work, and was delivered through the inner concentric tube (burner head) 

at a constant volumetric flow rate of 1.0 lpm. Oxygen (O2) served as the oxidizer and was delivered 

through the outer concentric tube at a volumetric flow rate of 10.0 lpm. Nitrogen (N2) dilution, 

with flow rate varying from 0 to 30 lpm, was applied to the O2 stream prior to entering the burner 

for the purpose of adjusting the flame temperature. Titanium tetraisopropoxide (TTIP), the 

precursor for TiO2, was fed into the system from a bubbler via N2 carrier gas. The flow rate of N2 

carrier stream was maintained at 1.0 lpm. The temperature of the water bath housing the TTIP was 

set at 80 °C to maintain the precursor feed rate at a steady 0.334 mmol/min, as per the calculations 

proposed by Siefering and Griffin (1990). A heating tape maintained at 250 °C was wrapped 

around the TTIP delivery line to prevent the condensation of TTIP vapor onto the line surface. A 

bypass line without the TTIP feed was also installed to facilitate study of the TTIP-free 

hydrocarbon flame system. The flow rate of CH4, O2, and N2-TTIP were controlled with mass flow 

controllers (Airgas Inc., PA, USA) The N2 dilution flow was controlled using the combination of 

a needle valve and rotameter. The flow rates of all species mentioned above were controlled and 

measured at standard temperature and pressure conditions (25 °C and 1 atm).  



124 
 

 

 

 

Figure 6.1. Schematic diagram of the buoyancy-opposed flame aerosol reactor. Q denotes volumetric flow 
rate of each species. Subscripts C and D respectively stand for the “carrier” and the “dilutor” nitrogen. 
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6.3.2 Characterization of the buoyancy-opposed flame 

Prior to synthesizing TiO2 aerosol gel, specific emphasis was placed to understand the influence 

of N2 dilution on flame temperature condition. The precursor bubbler was bypassed in this part of 

the experiment. Seven operating conditions, outlined in Table 6.1, were identified with volumetric 

flow rates of N2 ranging between 0 and 30.0 lpm in 5 lpm increments.  

Table 6.1 The different flame operating conditions of this study achieved by varying the amount 
of N2 dilution in the co-flow stream. Q stands for the volumetric flow rate of each species. Units 
are all in lpm. 

Conditions QCH4 QO2 QN2,D (Dilutor) Qco-flow QN2,C (TTIP carrier) 

I 

1 10 

0 10 

1 

II 5 15 

III 10 20 

IV 15 25 

V 20 30 

VI 25 35 

VII 30 40 

 

Flame temperatures were measured using a K-type thermocouple with bead diameter = 0.80 mm. 

The measurements were carried out at two specific locations: (i) the flame center, and (ii) the flame 

annular region. In the case of (i), the thermocouple bead was placed at the position along the axis 

of the cylindrical flame body at a distance of half the flame length from the burner head. In the 

case of (ii), the thermocouple bead was placed at the radially outermost position near the flame 

bottom. The measurement of temperature in the flame annular region holds valid under the 

assumption that the axial component of temperature gradient is negligible compared to its radial 
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counterpart. Photographs of the flame body corresponding to these operating conditions were taken 

in a dark room. 

6.3.3 Synthesis and characterization of TiO2 aerosol gels 

We performed the TiO2 aerosol gel synthesis at the two extreme operating conditions, I and VII 

(Table 6.1). Effective density of the gel sample before and after mechanical crushing with mortar 

and pestle was evaluated by measuring the weight of sample loaded in a container of known 

volume, according to the method outlined in Ref. (Dhaubhadel et al. 2007). Elemental composition 

of the samples in the product material were identified using energy dispersive X-ray spectroscopy 

(EDX, SEM FEI Nova 230). Purity of the material was evaluation based on weight percent values 

of elemental Ti and O.  

The morphology of TiO2 aerosol gel was investigated with scanning electronic microscope (SEM 

FEI Nova 230). SSA and equivalent monomer diameter (Dp,BET) of TiO2 aerosol gels were 

determined using the Brunauer–Emmett–Teller (BET) methodology with N2 as an adsorbate. The 

crystalline phase of TiO2 was examined with a Bruker d8 X-ray diffractometer with diffraction 

angle ranging from 2.5° to 30°.  

TiO2 aerosol gel absorbance spectrum in the ultraviolet (UV) and visible range was determined 

using a Perkin Elmer UV-Vis spectrometer. Absolute ethyl alcohol was used to disperse the 

samples. Sample suspension was loaded in a quartz micro cuvette with a 10 mm transmitted path 

line. Transmittance was measured using an integrating sphere. Absorbance was subsequently 

evaluated from the transmittance measurements (Perkampus et al. 1992). 
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6.4 Results and Discussion 

6.4.1 Influence of nitrogen dilution on flame temperature 

As in conventional diffusion flames, control of temperature in a down-fired buoyancy-opposed 

diffusion flame could be achieved by addition of inert gases to the co-flow gas stream. In this 

study, a decrease in temperature from 1250 °C to 590 °C at the flame annular region was observed 

upon incremental addition (0–30 lpm) of N2 dilution to the co-flow gas stream (Figure 6.2). With 

the increase in flow rate of N2 dilution, the total specific heat of the system is increased, hence 

resulting in a decrease in adiabatic flame temperature. The increased amount of N2 in the system 

also absorbs sensible heat from combustion, further lowering the temperature of the system. The 

temperature of the flame center was always lower compared to the annular regions. The 

temperature of the flame’s annular region is an important control parameter for particle synthesis. 

Although gelation of aggregates take place throughout the flame body, the gel particles have been 

observed to reside the maximum duration in the flame’s annular region. It is likely that we could 

have underestimated the flame temperatures by not accurately accounting for the radiative heat 

losses associated with the surface of thermocouple beads (Shannon and Butler 2003). Nonetheless, 

we anticipate this error to be negligible due to the small bead size (0.80 mm in diameter) of our 

thermocouple used in this study (Hindasageri et al. 2013). Figure 6.3 shows the increase in flame 

lengths and subsequent change in flame color with N2 dilution ranging between 0 and 30 lpm in 5 

lpm increment (from condition I to VII outlined in Table 6.1). The decrease in flame temperature 

could be qualitatively seen as the bluing of the flame body from the snapshot images in the figure. 

A lower temperature decreased the rate of CH4 decomposition and suppressed soot formation, 

resulting in the blue color of the soot-free flame. It is to be noted that changing of the flame color 

from yellow to blue does not happen instantaneously with switching of the flame operating 
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conditions. As shown via the sequence of photographs in Figure 6.4, there was a latency period of 

approximately 3 min between the color changes, which could be attributed to the residual soot 

particles trapped in the flame vortices continuing to give off yellow incandescence. This latency 

period could be qualitatively translated as the maximum residence time of the gel particles before 

they gravitationally settle out. 

 

Figure 6.2. Temperature measurement at the flame center (dashed line) and annular region (solid line) under 
different operating conditions with N2 dilution (0 to 30 lpm) applied to the co-flow stream. 

 

Figure 6.3. (a–g): Photographs of flame operated at conditions I–VII of Table 6.1. Volumetric flow rate of 
CH4 and O2 were kept at 1 and 10 lpm, respectively. N2 dilution in co-flow stream varied from 0 to 30 lpm 
in 5 lpm increments. 
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Figure 6.4. (a–f) Photographs of flame body taken at 10, 30, 60, 90, 120, and 180 s after flame condition 
was switched from condition I to V of Table 6.1. 

 

6.4.2 Influence of flame temperature on TiO2 aerosol gel properties 

Continuous aerosol gelation of TiO2 nanoparticles was visually observable in the flame body upon 

addition of TTIP precursor to the system. Physical size of the individual gel particles reached 

submillimeter in size before gravitationally settling out. Henceforth, in this article, the TiO2 gel 
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particles produced in high temperature condition I and low temperature condition VII (Table 6.1) 

are denoted as TiO2 aerosol gel type 1 (TG1) and type 2 (TG2), respectively. As shown in Figure 

6.5, Ti and O atoms were the primary compositional elements detected in the EDX spectra of the 

gel particles. In the case of TG1, presence of silicon was observed due to the interference of the 

silicon wafer substrate on which the gel particles were sampled. The weight percent of carbon 

elements in TG1 and TG2 were 1.83 and 1.73, respectively, suggesting that the gel particles were 

generally free from carbon contamination. For synthesizing TG1, the flame was operated with pure 

O2 in the co-flow stream, which facilitated rapid and complete oxidation of any solid carbonaceous 

products. In the case of TG2, the flame was operated below sooting limit, thereby inhibiting 

formation of any solid carbon products.  

 

Figure 6.5. EDX spectra with element weight percentage of TiO2 aerosol gels synthesized at 1250 °C (TG1) 
and 590 °C (TG2). 
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The effective densities of uncrushed TG1 and TG2 particles were measured to be 0.025 and 0.021 

g/cm3, respectively. In comparison to TG2, the TG1 sample demonstrated greater rigidity and 

mechanical strength by resisting structural fragmentation upon mechanical crushing with bare 

hands. The effective densities of the crushed samples were 0.829 and 0.838 g/cm3, respectively. 

The large differences between the effective densities and the theoretical TiO2 material density 

(4.23 g/cm3) is an evidence of the “fluffiness” or large fraction of air voids inside the aerosol gel 

materials (Dhaubhadel et al. 2007). Note that the effective densities of the TiO2 gel particles in 

this study are approximately four to five times greater than that of the carbon gel particles 

synthesized in a recent study using the same reactor (Chakrabarty et al. 2014). Leaving aside the 

fact that the mass density of TiO2 is greater than that of carbon, the high degree of sintering 

between the TiO2 monomers could have contributed to their higher effective density. Sintering and 

necking of monomers significantly reduced the volume fraction of voids in the gel materials.  

Figure 6.6 (a, c, and e for TG1; b, d, and f for TG2) shows the TiO2 gel morphologies at different 

magnifications. Optical photographs (panel (a) and (b)) show that bulk aerosol gels were white in 

color and submillimeter in average size. From the SEM images (panel (c)–(f)), the highly porous 

nature of the material is seen. In panel (c) and (d), the typical volume spanning and network-like 

structure of aerosol gels can be observed (Brinker and Scherer 2013). Upon zooming in, the 

crystalline nature of TiO2 monomers and their degrees of sintering are observed. Interparticle 

necking interfered with the accurate determination of monomer size distribution from SEM 

images. Due to this, the average monomer sizes of different samples were also estimated using the 

BET technique (Akbari et al. 2011). 
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Figure 6.6. (a) and (b) Optical photographs of TG1 and TG2 bulk samples. (c) and (e) SEM images of TG1 
particles at different magnifications. (d) and (f) SEM images of TG2 particles at different magnifications. 
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Our results of the monomer number size distribution are shown in Figure 6.7. The average 

monomer size of the TG1 sample was an order of magnitude greater than that of TG2. This is 

because of the increased particle growth and sintering rate in a higher temperature reaction system, 

such as that of TG1 (Kammler et al. 2001; Cho and Biswas 2006). Figure 6.8 shows the SSA versus 

monomer diameter of TG1 and TG2 samples. In the same figure, comparison of our results with 

previous findings is made (Jang and Kim 2001; Jiang et al. 2007; Suttiponparnit et al. 2011). The 

SSA values of aerosol gels produced in this work were on the lower side owing to the larger 

monomer diameter and high degree of necking between the monomers. 

 

Figure 6.7. Monomer size distribution of TG1 and TG2 (squares), as determined by SEM analysis. Vertical 
solid lines represent the values determined using BET technique. 
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Figure 6.8. Specific surface area (SSA) of TG1 and TG2 are functions of monomer size, and its comparison 
with previous findings by different research groups. Note: BET equivalence monomer size Dp,BET = 
6/(SSA·ρ). 

 

Figure 6.9 shows the X-ray diffraction patterns of TiO2 gel samples. Monocrystalline anatase and 

rutile phases of TiO2 were identified in TG2 and TG1, respectively. Their distinct crystal phase 

shows up due to their synthesizing temperature conditions. Past studies showed that TiO2 crystal 

formation always starts from anatase phase owing to its lower surface free energy (Yang et al. 

1996; Banfield 1998; Ghosh et al. 2004). Anatase to rutile (ATR) phase transformation has been 

theorized to occur when temperature of the system is high enough to sustain the nonreversible 

rearrangement of the crystal lattice structure (Hanaor and Sorrell 2011). Thus, the kinetics of ATR 

transformation is temperature dependent and has been shown to be “immeasurably slow” for 

temperatures below 610 °C (Rao 1961). This threshold is very close to the operating temperature 

of our flame used for synthesizing TG2. Hence, it is no surprise that we observed pure anatase 
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phase comprising the TG2 sample. On the other hand, the higher temperature used for synthesizing 

TG1 led to its complete ATR transformation in its composition. 

 

Figure 6.9. X-ray diffraction patterns of TG1 and TG2 and their comparison with the standard spectra of 
pure rutile and anatase TiO2. 

 

Figure 6.10 shows the UV-Vis absorbance spectra of TG1 and TG2 in comparison to that of the 

industry-standard P25 (Sigma-Aldrich, St. Louis, MO, USA). The absorbance spectrum of TG2 

demonstrates a similar pattern to P25 due to both materials’ similar crystalline composition 

(anatase) and monomer size. The absorbance shoulder in both samples occurs around 325 nm of 

the incident light wavelength. Beyond this point, absorbance attenuates with increasing 

wavelength. This is in good agreement with the well-investigated optical properties of TiO2 

(Ceylan et al. 2013). On the contrary, TG1 demonstrates a rather unconventional absorbance 

spectrum: a flat and slowly attenuating curve. One possible explanation of this behavior could be 
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the enhancement in scattering by the larger monomers of the TG1 sample. When monomer size 

reaches as high as 300 nm, the scattering efficiency dominates over absorption irrespective of 

change in wavelengths in the UV-Vis spectrum. 

 

Figure 6.10. UV-Vis absorbance spectra of TG1 and TG2 particles and their comparison with the spectrum 
of TiO2 P25. The arrows represent the absorbance shoulders observed in the spectra of TG2 and P25 
samples. 

 

6.5 Conclusion 

In this work, the phenomenon of aerosol gelation in a down-fired, buoyancy-opposed diffusion 

flame systems was utilized to synthesize TiO2 gels. The in-flame aerosol trapping effect was 

reproduced under varying flame operating conditions of N2 dilution ranging between 0 and 30 lpm. 
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The corresponding flame temperatures ranged between 1250 °C and 590 °C. Control of the 

morphology and crystalline phase of TiO2 aerosol gels was achieved by exploiting the dependency 

of monomer growth rate and crystal transformation on temperature. Doping of TiO2 with soot 

particles was avoided by operating the flame in extreme temperature conditions. 

The effective densities of TiO2 aerosol gels synthesized in high (TG1) and low (TG2) temperature 

conditions were measured to be 0.025 and 0.021 g/cm3, respectively, before mechanical crushing, 

and 0.829 and 0.838 g/cm3, respectively, after crushing. The average monomer diameters of TG1 

and TG2 samples were 181 and 31 nm, respectively, based on SEM images, and were 338 and 39 

nm, respectively, based on measurements by the BET technique. The large difference in monomer 

size distribution was primarily attributed to the difference in particle growth rates at different 

operating temperature conditions. Monocrystallite rutile and anatase phases of TiO2 were detected 

in TG1 and TG2, respectively, with high degree of purity. TG2 demonstrated typical UV-Vis 

absorbance spectrum associated with anatase TiO2; while an overall flattened absorbance spectrum 

was seen in the case of TG1. Further investigation is required to fully understand this nonvarying 

behavior of absorbance with changing wavelength. 

Future research needs to be directed toward in situ studies of gel formation and aerosol growth 

mechanism using small angle static light scattering and thermophoretic sampling techniques 

(Dobbins and Megaridis 1987; Sorensen et al. 1992). How the gel formation mechanism changes 

as a function of temperature and other flame parameters is another uninvestigated area of research. 

Finally, efforts will be made in subsequent work to present more accurate measurements of 

temperature profile after applying proper radiative corrections and particle residence time. 
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Chapter 7: Conclusion and Future Work 
Directions  
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This chapter summarizes the major findings of the works presented in this dissertation and 

provides suggestions on the future research directions. 

The ubiquitous ballistic-to-diffusive (BD) transition in random walks, which has been shown to 

influence the aggregation kinetics near the gelling condition, was studied using directional 

statistics (Chapter 2). The BD transition for a two-dimensional (2-d) random walk was modelled 

using the time-evolution of the walkers turning angle distribution P(θ), which evolves from a delta 

function to a circular uniform distribution with increasing time. This flattening of P(θ) can be 

accurately parameterized using a wrapped Cauchy distribution (WCD) with a shape factor 

decreasing from unity to zero. Good agreements were observed between our directional statistical 

description and the traditionally used power-law scaling relationship for walkers mean squared 

displacement (MSD). The kinetics of BD transition was established with mathematical expressions 

that connect the shape factor of WCD, the power-law exponent of MSD, and time. Future works 

should be directed toward generalizing the BD transition kinetics to three-dimensional random (3-

d) walk. It worth to note that the spherical uniform distribution in 3-d differs from the circular 

uniformity in 2-d with a biased sin(|θ|) functionality. Thus, the onset of diffusional motion should 

be modelled using the flattening of a 𝑄(𝜃) =
௉(ఏ) ୱ୧୬(|ఏ|)⁄

∫௉(ఏ) ୱ୧୬(|ఏ|)⁄ ௗఏ
, instead of P(θ). Another interesting 

research topic is to investigate the transition behavior for walkers that are subject to geometric 

confinements in both 2-d and 3-d spaces.  

The influence of fractal morphology on aerosol mass-mobility relationship was investigated for 

aggregates produced via diffusion-limited cluster-cluster aggregation (DLCA) in cluster-dilute 

regime (Chapter 3). The Empirical relationship was established between the aggregate 

morphological parameters and mass-mobility scaling parameters. Furthermore, the decreasing 
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trend in aggregates mobility diameter with an increase in kf, was interpreted with the concept of 

apparent screening between monomers at changing degree of shape anisotropy. Future studies on 

this topic should incorporate a more realistic aggregate morphology, such as poly-dispersed 

monomers and monomer necking, into the parameterization of mass-mobility relationship.  

The kinetics of aerosol gelation was comprehensively studied using high temporal-resolution 

Monte Carlo simulations of irreversible DLCA systems (chapter 4). System independent scaling 

relationships were established to describe the transition kinetics in both the pre-IGP and the 

previously understudied post-IGP regimes. Improved parameterizations were provided for the 

important characteristic timescale parameters in the existing theoretical framework of aerosol 

aggregation and gelation. A new timescale parameter predicting the completeness gelation in the 

post-IGP regime was introduced. A new mechanism, which involves the aggregation of gels, was 

introduced to interpret the particle growth in extremely dense DLCA systems. Future studies 

should focus on investigating the onset of this distinct late-stage kinetics in DLCA with a monomer 

volume fraction in the range between 0.05 and 0.1.  

Fractal scaling law for the packing density of soot aggregates produced from an ethylene-oxygen 

buoyancy-opposed flame (BOF) was experimentally mapped out across five orders of magnitude 

length scale (chapter 5). An inflection in the power-law scaling relationship was observed in the 

super-micron size range, which is characterized with a decrease in aggregates fractal dimension 

(Df) value from about 2.5 to 1.7. The reappearance of the small Df indicates that a cluster-cluster 

aggregation of gels takes over the late-stage growth mechanism for the millimeter-sized particles. 

Future research should be directed to parameterizing the aggregation kernel of the gel particles 

trapped in the recirculation zone of the BOF reactor. 
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Controlled synthesis of titanium dioxide (TiO2) aerosol gels was realized using a methane-oxygen 

BOF aerosol reactor with titanium tetraisopropoxide precursor (Chapter 6). The in-flame aerosol 

trapping effect was reproduced in the BOF reactor at a variety of operating conditions. Control of 

flame temperature was established in the range between c.a. 600 and 1300 °C with the application 

of nitrogen dilution at variable flow rates. Control of the morphology and crystal phase of the TiO2 

was achieved by exploiting the dependencies of monomer sintering and crystal phase 

transformation on temperature. Future studies should focus on experimentally mapping out the 

temperature-time history of the aerosol gel particles in the BOF reactor operated at changing 

conditions. 
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Appendix I. Supporting Materials for 
Chapter 2 
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A1.1 Determining θ from Trajectory 

The turning angle θ of could be determined from three successive positions of the walker, 

[𝑥(𝑡), 𝑦(𝑡)], [𝑥(𝑡 + 𝜏), 𝑦(𝑡 + 𝜏)] and [𝑥(𝑡 + 2𝜏), 𝑦(𝑡 + 2𝜏)], which are termed as A, B, and C, 

respectively. We calculate θ by finding the angle of BCሬሬሬሬሬ⃑  relative to ABሬሬሬሬሬ⃑ . Note that θ takes value 

between -π to π and counterclockwise is regarded positive for angle. Define φAB to be the angle of 

vector ABሬሬሬሬሬ⃑  relative to positive x-axis. Note that φAB ∈ [0, 2π), and it increases as ABሬሬሬሬሬ⃑  rotates around 

A along counterclockwise direction (φAB = 0 when ABሬሬሬሬሬ⃑  is parallel to x and points to the positive 

direction). We calculate the φAB as follows: 

𝜑୅୆ = 𝑘𝜋 + arctan ቈ
𝑦(𝑡 + 𝜏) − 𝑦(𝑡)

𝑥(𝑡 + 𝜏) − 𝑥(𝑡)
቉ 

and  𝑘 = ቐ

0      if 𝑥(𝑡 + 𝜏) > 𝑥(𝑡) and 𝑦(𝑡 + 𝜏) > 𝑦(𝑡) 

1                                              if 𝑥(𝑡 + 𝜏) < 𝑥(𝑡)

2      if 𝑥(𝑡 + 𝜏) > 𝑥(𝑡) and 𝑦(𝑡 + 𝜏) < 𝑦(𝑡)
                           (A1.1) 

Similarly, we calculate the angle φBC of vector BCሬሬሬሬሬ⃑  relative to positive x-axis: 

𝜑୆େ = 𝑘𝜋 + arctan ቈ
𝑦(𝑡 + 2𝜏) − 𝑦(𝑡 + 𝜏)

𝑥(𝑡 + 2𝜏) − 𝑥(𝑡 + 𝜏)
቉ 

and  𝑘 = ቐ

0      if 𝑥(𝑡 + 2𝜏) > 𝑥(𝑡 + 𝜏) and 𝑦(𝑡 + 2𝜏) > 𝑦(𝑡 + 𝜏) 

1                                                        if 𝑥(𝑡 + 2𝜏) < 𝑥(𝑡 + 𝜏)

2      if 𝑥(𝑡 + 2𝜏) > 𝑥(𝑡 + 𝜏) and 𝑦(𝑡 + 2𝜏) < 𝑦(𝑡 + 𝜏)
               (A1.2) 

At last, we calculate θ using φAB and φBC: 

𝜃 = 2𝑚𝜋 + 𝜑୆େ − 𝜑୅୆ 
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and  𝑚 = ቐ

0                                           if |𝜑୆େ − 𝜑୅୆| < 𝜋

−1        if  |𝜑୆େ − 𝜑୅୆| > 𝜋 and 𝜑୆େ > 𝜑୅୆

1            if  |𝜑୆େ − 𝜑୅୆| > 𝜋 and 𝜑୆େ < 𝜑୅୆

                            (A1.3) 

 

 

A1.2 Enumeration of θi,1  

Define that a walker is seen at positions O, A, B, C and D when t increments by τi. Figure A1.1 

demonstrates the relationship between the turning angles and the corresponding vector pairs. Note 

that the following discussion is based on the assumption that the net displacement δi during τi is 

constant, or หOAሬሬሬሬሬ⃑ ห = หABሬሬሬሬሬ⃑ ห =  หBCሬሬሬሬሬ⃑ ห = หCDሬሬሬሬሬ⃑ ห = 𝛿௜ . The counterclockwise direction is regarded 

positive for angles. 

 

Figure A1.1. When the walker is observed with timescale τi, it is seen at five successive locations O, A, B, 
C and D.  

 

Next, set up a Cartesian coordinate with O serving as the origin and OBሬሬሬሬሬ⃑  representing the positive 

x-axis, as shown in Figure A1.2. Define ω to be the angle of OAሬሬሬሬሬ⃑  relative to positive y-axis. One 
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could observe that the range for θi,1 is unrestricted, and θi,1 takes value from 0 to −2𝜋 twice before 

all possible configurations are exhausted. Specifically, an enumeration is outlined in the following: 

(i). When ω decreases from 0 to −𝜋/2, correspondingly A migrates from (0, 𝛿௜) through the 1st 

quadrant to (𝛿௜, 0),  𝜃௜,ଵ increases from −𝜋 to 0.  

(ii) When ω decreases from −𝜋/2 to −𝜋, correspondingly A migrates from (𝛿௜, 0) through the 2nd 

quadrant to (0, −𝛿௜),  𝜃௜,ଵ increases from 0 to 𝜋. 

(iii). When ω decreases from  −𝜋 to −3𝜋/2, correspondingly A migrates from (0, −𝛿௜) through 

the 3rd quadrant to (−𝛿௜, 0), 𝜃௜,ଵ increases from −𝜋 to 0.  

(iv). When ω decreases from  −3𝜋/2 to −2𝜋, correspondingly A migrates from (−𝛿௜, 0) through 

the 4th quadrant to (0, 𝛿௜), 𝜃௜,ଵ increases from 0 to 𝜋.  

 

Figure A1.2. Enumeration of θi,1. 
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A1.3 Enumeration of θi,2 

The range for θi,2 is discussed under the condition that both θi,1 and θ2i are specified. Note that θi,1 

could take any arbitrary value but θ2i = 0. As shown in Figure A1.3, segment PQ which is 

perpendicular to x-axis passes it through B. The half-circle (dashed curve) has a radius of 𝛿௜ and it 

intercepts with the x-axis at R. Note that since vector OBሬሬሬሬሬ⃑  is set as positive x, the condition θ2i = 0 

requires that BDሬሬሬሬሬ⃑  also resides on x-axis and points to the positive direction. In other words, vector 

CDሬሬሬሬሬ⃑  has to connect with x-axis at the position D satisfying xD > xB. 

 

Figure A1.3. Enumeration of θi,2. 

 

The half circle PRQ෣ exhausts all possible positions for C under the premise of θ2i = 0. In other 

words, C could only reside on PRQ෣ such that the vector CDሬሬሬሬሬ⃑  could subsequently connect x-axis at 
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D with a constant length 𝛿௜. The maximum and minimum of θi,2 (indicated in Fig. A1.3 by the 

red arrows) are dictated by the value of θi,1, which could be written as: 𝜃௜,ଶ,௠௜௡ = −
ଵ

ଶ
൫𝜃௜,ଵ + 𝜋൯ 

and 𝜃௜,ଶ,௠௔௫ = −
ଵ

ଶ
൫𝜃௜,ଵ − 𝜋൯.
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A2.1 Derivation of Equation (4.2) 

The off-lattice DLCA model operates with a unit timescale 𝑡௦ during which monomers move by a 

root-mean-squared-displacement ඥ〈𝛿ଶ〉  that equals the monomer diameter 2𝑎 . In three-

dimensional space,  

〈𝛿ଶ〉 = 6𝐷𝑡                                                         (A2.1) 

where 𝐷 = 𝑘஻𝑇 (6𝜋𝜇𝑎)⁄  is the monomer diffusivity when under Stokes-Einstein diffusion. 

Substituting the 〈𝛿ଶ〉, 𝑡, and 𝐷 by 4𝑎ଶ, 𝑡௦ , and 𝑘஻𝑇 (6𝜋𝜇𝑎)⁄ , respectively, Eq. (A2.1) becomes 

𝑡௦ = 4𝜋𝜇𝑎ଷ 𝑘஻𝑇⁄ , which is Eq. (4.2) in chapter 4. 
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A2.2 Determination of tIGP from DLCA 

The determination of 𝑡௖  from DLCA data follows the rule 〈𝑁(𝑡ூீ௉)〉 = 𝑁ூீ௉ . Visually, this 

treatment is shown in Figure A2.1. Note that the characteristic time is reported in units of 𝑡௦. 

 

Figure A2.1. Increase in 〈𝑁〉 as a function of simulation time t/ts for DLCA starting out with 𝑓௩௠ = 0.005 
(a), 0.01 (b), 0.02 (c), 0.05 (d), and 0.1 (e). Black solid curves represent <N>. Blue solid lines mark the 
values for NIGP calculated per Eq. (4.3) in chapter 4. Red lines mark the critical tIGP/ts, at which <N> reaches 
the NIGP value for that system. 
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A2.3 Derivation of Equation (4.4) 

The volume occupied by the solid components of an aggregates is 𝑉௠ =
ସ

ଷ
𝜋𝑎ଷ𝑁. For the average 

cluster at IGP, we have, 

  𝑉௠,ூீ௉ =
ସ

ଷ
𝜋𝑎ଷ𝑁ூீ௉                                                       (A2.2) 

Combining 𝑁ூீ௉ = 𝑘௙൫𝑅௚,ூீ௉ 𝑎⁄ ൯
஽೑  and 𝑅௚,ூீ௉ = 𝑎 ቈ𝑓௩௠

ିଵ𝑘௙ ൬
஽೑

஽೑ାଶ
൰

ଷ ଶ⁄

቉

ଵ ൫ଷି஽೑൯⁄

 (which are 

respectively the Eq. (4.3a) and (4.3b) in Chapter 4), we get, 

  𝑁ூீ௉ = 𝑓௩௠

஽೑ ൫஽೑ିଷ൯⁄
𝑘

௙

ଷ ൫ଷି஽೑൯⁄
൬

஽೑

஽೑ାଶ
൰

ଷ஽೑ ൫଺ିଶ஽೑൯⁄

                              (A2.3) 

Substituting the 𝑁ூீ௉  in Eq. (A2.2) using (A2.3), we get the dimensionless form of aggregate 

volume, 

   
௏೘,಺ಸು

௔య
=

ସ

ଷ
𝜋𝑓௩௠

஽೑ ൫஽೑ିଷ൯⁄
𝑘

௙

ଷ ൫ଷି஽೑൯⁄
൬

஽೑

஽೑ାଶ
൰

ଷ஽೑ ൫଺ିଶ஽೑൯⁄

                          (A2.4) 

The perimeter volume of an aggregates is 𝑉௣ =
ସ

ଷ
𝜋𝑅ଷ, where 𝑅 is the perimeter radius (Oh and 

Sorensen 1997) and it is related to 𝑅௚ per 𝑅 = 𝑅௚ൣ൫𝐷௙ + 2൯ 𝐷௙ൗ ൧
ଵ ଶ⁄

. Thus, for the average cluster 

at IGP, we have, 

  𝑉௣,ூீ௉ =
ସ

ଷ
𝜋𝑅௚,ூீ௉

ଷ ൬
஽೑ାଶ

஽೑
൰

ଷ ଶ⁄

                                               (A2.5) 
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Substituting the 𝑅௚,ூீ௉  in Eq. (A2.5) using 𝑅௚,ூீ௉ = 𝑎 ቈ𝑓௩௠
ିଵ𝑘௙ ൬

஽೑

஽೑ାଶ
൰

ଷ ଶ⁄

቉

ଵ ൫ଷି஽೑൯⁄

 (which is Eq. 

(4.3b) in Chapter 4), we get the dimensionless form of perimeter volume,  

   
௏೛,಺ಸು

௔య
=

ସ

ଷ
𝜋𝑓௩௠

ଷ ൫஽೑ିଷ൯⁄
𝑘

௙

ଷ ൫ଷି஽೑൯⁄
൬

஽೑

஽೑ାଶ
൰

ଷ஽೑ ൫଺ିଶ஽೑൯⁄

                           (A2.6) 

Combining Eq. (A2.4) and (A2.6), we get the expression for the free volume within the perimeter 

volume of the average clusters at IGP, 

   
௏೛,಺ಸುି௏೘,಺ಸು

௔య
=

ସ

ଷ
𝜋(1 − 𝑓௩௠) ቈ𝑘௙ ൬

஽೑

஽೑ାଶ
൰

஽೑ ଶ⁄

𝑓௩௠
ିଵ቉

ଷ ൫ଷି஽೑൯⁄

                   (A2.7) 

The Stokes-Einstein diffusivity of the average cluster at IGP is written as 𝐷ூீ௉ =
௞ಳ்

଺గఓோ೒,಺ಸು
, and 

when combined with 𝑡௦ =
ସగఓ௔య

௞ಳ்
 (which is Eq. (4.2) in Chapter 4), it yields to a dimensionless 

expression:                                                        

௧ೞ஽಺ಸು

௔మ
=

ଶ

ଷ
ቀ

ோ೒,಺ಸು

௔
ቁ

ିଵ

                                                    (A2.8) 

Substituting the 𝑅௚,ூீ௉  using 𝑅௚,ூீ௉ = 𝑎 ቈ𝑓௩௠
ିଵ𝑘௙ ൬

஽೑

஽೑ାଶ
൰

ଷ ଶ⁄

቉

ଵ ൫ଷି஽೑൯⁄

 (which is Eq. (4.3b) in 

Chapter 4), Eq. (A2.8) becomes: 

௧ೞ஽಺ಸು

௔మ
=

ଶ

ଷ
ቈ𝑓௩௠

ିଵ𝑘௙ ൬
஽೑

஽೑ାଶ
൰

ଷ ଶ⁄

቉

ଵ ൫஽೑ିଷ൯⁄

                                        (A2.9) 
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The characteristic time 𝑡ௗ =
൫௏೛,಺ಸುି௏೘,಺ಸು൯

మ/య

଺஽಺ಸು
 can be reached by rearranging Eq. (A2.1). After 

being combined with Eq. (A2.7) and (A2.9), the expression of 𝑡ௗ yields to the dimensionless form 

shown in Chapter 4 as Eq. (4.4):   

𝑡ௗ

𝑡௦
=

1

4
൤
4

3
𝜋(1 − 𝑓௩௠)൨

ଶ/ଷ

ቆ
𝐷௙

𝐷௙ + 2
ቇ

൫ଶ஽೑ାଷ൯ ൫଺ିଶ஽೑൯ൗ

൫𝑘௙𝑓௩௠
ିଵ൯

ଷ ൫ଷି஽೑൯⁄  
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A2.4 Determination of tc from DLCA 

The determination of 𝑡௖  from DLCA data follows the rule 𝑛௧௢௧(𝑡௖) = 𝑛௧௢௧,଴ 2⁄ , according to 

௡೟೚೟

௡೟೚೟,బ
= ቀ1 +

௧

௧೎
ቁ

ିଵ

(which is Eq. (4.5) in Chapter 4). Visually, this treatment is shown in Figure 

A2.2. Note that the characteristic time is reported in units of 𝑡௦. 

 

Figure A2.2. Decrease in 𝑛௧௢௧ as a function of simulation time t/ts for DLCA starting out with fvm = 0.001 
(a), 0.005 (b), 0.01 (c), 0.02 (d), 0.05 (e), and 0.1 (f). Black solid curves represent ntot. Blue solid-lines and 
dotted lines mark the values for ntot,0 and ntot,0/2, respectively. Red lines mark the critical tc/ts, at which ntot 
reaches the value of ntot,0/2 for that system. 
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A2.5 Derivation of Equation (4.10) 

Per Ref. (Oh and Sorensen 1997), solution to SE with homogenous kernel yields the average 

DLCA cluster mass 〈𝑁〉 ∝ (1 + 𝑡 𝑡௖⁄ )௭ , and we use the following power-law relationship to 

describe the particle growth in the cluster-dense regime: 

〈𝑁〉 = 𝑏(1 + 𝑡 𝑡௖⁄ )௭                                                       (A2.10) 

where 𝑏 and 𝑧 are assumed to take constant values for simplicity. Combining Eq. (A2.10) and Eq. 

(A2.3) under the condition 〈𝑁〉 = 𝑁ூீ௉ at 𝑡 = 𝑡ூீ௉ gives:  

𝑡ூீ௉ = 𝑡௖ ቎𝑏ି
భ

೥𝑓୴୫

ವ೑

ቀವ೑షయቁ೥
൬

஽೑

஽೑ାଶ
൰

యವ೑

ቀలషమವ೑ቁ೥
𝑘

௙

య

ቀయషವ೑ቁ೥
− 1቏                                (A2.11) 

Replacing the 𝑡௖ with the right-hand-side of 
௧೎

௧ೞ
=

ଵ

ସ
(𝑓௩௠

ିଵ − Φ௉
ିଵ) (which is Eq. (4.9) in Chapter 4), 

we get: 

௧಺ಸು

௧ೞ
=

ଵ

ସ
(𝑓௩௠

ିଵ − Φ௉
ିଵ) ቎𝑏ି

భ

೥𝑓௩௠

ವ೑

ቀವ೑షయቁ೥
൬

஽೑

஽೑ାଶ
൰

యವ೑

ቀలషమವ೑ቁ೥
𝑘

௙

య

ቀయషವ೑ቁ೥
− 1቏, which is Eq. (4.10) in Chapter 4 
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A2.6 The power-law growth of DLCA aggregates in the 

cluster-dense regime 

Figure A2.3 shows the onset of the power-law relationship between 〈𝑁〉  and 1 + 𝑡 𝑡௖⁄  in the 

cluster-dense regimes. Parallel trends with a constant exponent 𝑧 of about 1.5 are observed for 

DLCA systems starting out with different values of 𝑓௩௠ . A Rigorous treatment requires 

parameterizing the prefactor 𝑏 in Eq. (A2.10) as a function of 𝑓௩௠. We, however, use a constant 

𝑏 = 0.2 so as to reach a simpler final expression of Eq. (4.10) in Chapter 4. 

 

Figure A2.3. Increase in <N> as a function of 1 + t/tc for the aggregates in DLCA systems during the time 
interval between the begin of aggregation and the IGP.   
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A2.7 Discussions on scale-dependent parameters  

In this section, we show that 𝑛௧௢௧ and 𝑡ிீௌ are scale-dependent variables and derive the scaling 

relationships that connects their values with system size 𝑉. 

Given the conservation of monomers (Sorensen and Chakrabarti 2011), one could assume 𝑛௧௢௧ ≈

𝑛௧௢௧,଴ 〈𝑁〉⁄ . At IGP, such relationship yields to: 

 𝑛௧௢௧,ூீ௉ ≈ 𝑛௧௢௧,଴ 𝑁ூீ௉⁄                                                   (A2.13) 

Substitute 𝑁ூீ௉ using Eq. (A2.3), and assume 𝐷௙ = 1.8: 

 𝑛௧௢௧,ூீ௉ ≈ 𝑛௧௢௧,଴𝑓௩௠
ଵ.ହ                                                   (A2.14) 

The power-law relation 
௡೟೚೟

௡೟೚೟,಺ಸು
= 2௭ಷಸೄ ቀ1 +

௧

௧಺ಸು
ቁ

ି௭ಷಸೄ

 (which is Eq. (4.7) in Chapter 4) provides: 

𝑛௧௢௧ =  𝑛௧௢௧,ூீ௉ ቀ1 +
௧

௧಺ಸು
ቁ

ି௭ಷಸೄ

                                          (A2.15) 

Substitute 𝑛௧௢௧,ூீ௉ with Eq. (A2.14) and then substitute 𝑡 𝑡ூீ௉⁄  with  
௧಺ಸು

௧ೞ
=

ଷ

ଵ଺గ
𝑓௩௠

ିଶ.ହ (which is Eq. 

(4.11) in Chapter 4), the Eq. (A2.15) yields to: 

𝑛௧௢௧ ≈ 𝑛௧௢௧,଴𝑓௩௠
ଵ.ହ ቀ1 +

ଵ଺గ

ଷ

௧

௧ೞ
𝑓௩௠

ଶ.ହቁ
ି௭ಷಸೄ

                                    (A2.16) 

Towards the late-stage, that is 𝑡 ≫ 𝑡ூீ௉, Eq. (A2.16) can be simplified as following: 

𝑛௧௢௧ ≈ 𝑛௧௢௧,଴𝑓௩௠
ଵ.ହିଶ.ହ௭ಷಸೄ𝑡ି௓ಷಸೄ                                           (A2.17) 
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Substitute the 𝑛௧௢௧,଴ using 𝑓௩௠ =
ସ

ଷ
𝜋𝑎ଷ ௡೟೚೟,బ

௏
 (which is Eq. (4.1) in Chapter 4), and get: 

𝑛௧௢௧ ≈ 𝑉𝑓௩௠
ଶ.ହ(ଵି௭ಷಸೄ)

𝑡ି௓ಷಸೄ                                            (A2.18) 

At FGS, 𝑛௧௢௧ = 1 and 𝑡 = 𝑡ிீௌ, and Eq. (A2.18) gives: 

𝑡ிீௌ ≈ 𝑉ଵ ௓ಷಸೄ⁄ 𝑓௩௠
ଶ.ହ(ଵି௭ಷಸೄ) ௓ಷಸೄ⁄                                          (A2.19) 
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A3.1 Inference of monomer radius and material density of 

the nascent soot aggregates from their mass-mobility data 

published in Cross et al. (2010). 

The monomer radius (a), material density (ρ) were inferred from the datapoints in Figure 6 of 

Reference (Cross et al. 2016). The first data point (in Figure 6 of Cross et al. 2016) at dm = ca. 32 

nm and M = ca. 0.03 fg was inferred to be representing a nascent soot monomer, considering the 

magnitude of dm. We assume the monomer to be spherical shape and the dm can be regarded to be 

the geometric diameter of the sphere because the particle is within the free molecular flow regime 

(Sorensen 2011). The material density ρ can be inferred using the equation 361 md

M





 , which 

yields ρ = 1812 kg/m3. The value of ρ matches the generally accepted value for nascent soot 

particle, 1.8 g/cm3, which confirmed that the first data point in Figure 6 of Cross et al. 2016 indeed 

represents monomer. This is because the density expression 361 md

M





 only holds for 

monomers which are of Euclidean geometry and non-porous. The monomer a was regarded as half 

of monomer dm and thus a = 16 nm. 

The Table A3.1 label the M and dm data extracted from Figure 6 of Cross et al. (2010). Number of 

constituent monomer in aggregates N was estimated from the mass ratio of aggregate and 

monomer. The Radius of gyration Rg was next estimated using the empirical relationship

1.029.1
2

 N
R

d

g

m  proposed by Sorensen (2011). Note that the value of N calculated from mass 
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ratio is non-integer because of the uncertainty in the value of mass measured using the centrifugal 

particle mass analyzer. We used the non-integer N for the estimation of aggregate Rg. 

 

Table A3.1 The fractal parameters of nascent soot aggregates inferred from the mass-mobility data 
published in Cross et al. (2010) 

 

dm (nm) M (fg) N Rg (nm) Rg/a 

31.538 0.030 1.000 NA NA 

49.851 0.090 3.039 21.594 1.369 

51.979 0.090 3.014 22.497 1.427 

51.576 0.100 3.360 22.566 1.431 

53.219 0.100 3.360 23.285 1.477 

55.936 0.131 4.390 25.137 1.594 

66.301 0.180 6.031 30.757 1.950 

69.315 0.190 6.395 32.344 2.051 

80.035 0.231 7.750 38.071 2.414 

89.573 0.350 11.770 44.426 2.817 

100.230 0.391 13.121 50.254 3.187 

100.239 0.462 15.508 51.106 3.241 

99.722 0.510 17.144 51.355 3.257 

115.144 0.603 20.264 60.297 3.824 

127.183 0.801 26.923 68.521 4.345 

132.621 0.901 30.265 72.292 4.584 

133.317 0.916 30.775 72.793 4.616 
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A3.2 Empirical relationship between the number of 

monomers in the three-dimensional gel particles and the 

number of monomers in their projections. 

We sampled 7,563 individual aggregates generated using the dense DLCA model and their two-

dimensional (2-d) projected images were taken from random orientations. The number of 

monomers seen in the projection (N2d) of these gel particles were obtained via dividing their 

projected area by monomer cross-section area. Figure A3.1 shows the log-log plot of total number 

of monomers in 3-d (N) versus N2d for these numerically generated gels. The empirical relationship 

𝑁 = 0.93𝑁ଶௗ
ଵ.ଵ଺ (black line in Figure A3.1) was obtained by fitting the data according to a power-

law. 

 

Figure A3.1. Empirical relationship between N and N2d for gels simulated using the dense DLCA model. 
Solid line follows N = 0.93N2d

1.16. 
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A3.3 Comparison between 2-dimensional radius of gyration 

and 3-dimensional radius of gyration for gel particles in 

cluster-dense regime. 

We sampled 7,563 individual aggregates generated using the dense DLCA model. The ratio of 

their 2-d radius of gyration (Rg,2d) to 3-d radius of gyration (Rg,3d) are plotted in Fig. A3.2 with N 

across three order of magnitudes. The average value of Rg,2d/Rg,3d is 0.98 and one standard 

deviation is 0.03. 

 

Figure A3.2. Ratio of Rg,2d to Rg,3d for aggregates simulated using dense DLCA model. 
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A3.4 Motion of the near millimeter-size soot particles in our 

ethylene buoyancy-opposed flame 

Figure A3.3 shows the trajectories of nine millimeter-size soot particles in the body of our ethylene 

buoyancy-opposed flame. The Cartesian coordinates were set as following: the origin sits at the 

center of the burner mouth. The xy plane is horizontally set and the z axis measures the vertical 

distance to the surface where the burner mouth resides. The cylindrical coordinates are set up as 

following: the origin is identical to that of the Cartesian coordinates. rθ is horizontally set with θ 

measuring the angle along counterclockwise direction. One could observe that the motion of the 

particles is restricted to a 3-d annular region close to the flame front. The annular thickness of 

about 5mm can be roughly estimated from the right panel trajectory diagram of Figure A3.3. This 

thickness is slightly larger than the size of these particles, which dictates that the binary collisions 

will take place predominately along the z and θ direction. The collisions along r direction are still 

possible albeit with smaller probability. This quasi three dimensional collision arrangement may 

have led to a value of Df of these particles to be smaller than that of particles growing via 3-d 

cluster-cluster aggregation (Df   ≈ 1.8 - 1.9), but still greater than Df  ≈ 1.4 value resulting from  2-

d cluster-cluster aggregation.  

 

Figure A3.3. Trajectories of 9 particles in the body of our ethylene buoyancy-opposed flame. 
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