Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-50

1993

DNA Mapping Algorithms: Fragment Matching Mistake Detection
and Correction

Jim Daues and Will Gillett

When using random clone overlap based methods to make DNA maps, fragment matching
mistakes, the incorrect matching of similar length restriction fragments, are a common problem
that produces incorrect maps. Previous work presented the Restricted Splitting Algorithm (or
RSA), which is useful for repairing a map containing a fragment mistake when the location of
the mistake is known. This work presents an algorithm, called FIX, which attempts to identify
the location of the fragment matching mistake and then uses the RSA to repair the map
containing the mistake. In essense, the two techniques combined constitute a hypothesis
formulation/hypothesis verification... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Daues, Jim and Gillett, Will, "DNA Mapping Algorithms: Fragment Matching Mistake Detection and
Correction" Report Number: WUCS-93-50 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/545

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/545?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/545

DNA Mapping Algorithms: Fragment Matching Mistake Detection and Correction

Jim Daues and Will Gillett

Complete Abstract:

When using random clone overlap based methods to make DNA maps, fragment matching mistakes, the
incorrect matching of similar length restriction fragments, are a common problem that produces incorrect
maps. Previous work presented the Restricted Splitting Algorithm (or RSA), which is useful for repairing a
map containing a fragment mistake when the location of the mistake is known. This work presents an
algorithm, called FIX, which attempts to identify the location of the fragment matching mistake and then
uses the RSA to repair the map containing the mistake. In essense, the two techniques combined
constitute a hypothesis formulation/hypothesis verification paradigm for correcting restriction maps that
contain fragment matching mistakes.

https://openscholarship.wustl.edu/cse_research/545?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/545?utm_source=openscholarship.wustl.edu%2Fcse_research%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages

DNA Mapping Algorithms: Fragment Matching
Mistake Detection and Correction

Jim Daues and Will Gillett

WUCS-93-50

October 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

This work was supported by the James S. McDonnell Foundation under Grant
87-24 and NIH under Grant R01 HG00I80.

ABSTRACT

When using random clone overlap based methods to make DNA maps, fragment matching mistakes,
the incorrect matching of similar length restriction fragments, are a common problem that produces
incorrect maps. Previous work presented the Restricted Splitting Algorithm (or RSA), which is useful for
repairing a map containing a fragment mistake when the location of the mistake is known. This work
presents an algorithm, called FIX, which attempts to identify the location of the fragment matching mistake
and then uses the RSA to repair the map containing the mistake. In essence, the two techniques combined
constitute a hypothesis formulation/hypothesis verification paradigm for correcting restriction maps that

contain fragment matching mistakes,

TABLE OF CONTENTS

1. Introduction .. - Eeaeerereaesueabisttet et be st are St et ae e e £es e bRt seE e s s rb e sae s b sa R
1.1. An Ovenrlew of DNA Mappmg eeerir e ne e emee T e et ah SRS et RS R S A s R s
1.2, Some Details Of DINA MADDINE covicviiirrireererereincssserssrstssrassmessssnessesssssssssssessressssessssessonsrsrsse

1.2.1. Data COUCCHOMN .ivirrervnrereraressramscneesesnessserssassssassssssssrasarsenesseraressrasssssisarsssassasssess spssesssns
1.2.2, Mapping Two Clones TOZCHNETccverreeenrreerirermsassasertesasssesssesssertsereesessssors stsressass
1.2.3. Mapping 8 St Of ClONES ..o s st rcctsmessee e sesasseamesane seans seseeses et ritssnssesasans
1.3. The Fragment Matching Mistake and Fragment SPHING ...vvvrveveeirssmnissssmsssrsmssessmsssassiones
1.4, Overview of Fragment Matching Mistake Detection and Correctionecccvcecssnnssssariens

2. TOPOIOZICAl SCANMITIE .ooveeieririiiieseisiisiestscs e s irscesrsssssassass s bssbsststass s assasssens st sresstsasssnenseransstssbssssesssnsss
2.1. Quick Overview ..

2.2, Finding All Valid C‘onﬁguranons

2.3. Finding ATVMLs for a Particular Conﬁgurzmon ...

2.3.1. An Informal EXamMPIe ...ovvvrriorieecin e simnnsiensesnssssnsssassnssssssas s ssssessssessssesssnssesas

2.3.2. More Formal Discussion and EXampleccoceceoisnneenssssrnssrssesesesesesesseesesssesmsssssasenes

3. Detecting Fragmnents t0 SPHL ...ueicceiirecceessreesiesessssconsonmsssssseessasessessssssnsassseseensasess sesasssssss sssrsssase
3.1 DVEIVIBW .eovececirec s crnesereesesesssaesesresesaes ssnesenssansanss orasess sssesms e sessessrossanss srmssns sebussnsrsansssrsnss
3.1.1. Heuristic Basis for Detecting Fragments t0 SPHE ..oocevceeererevensreresareserssnsesssssssrnssans
3.1.2. Limited Enumeration of Possible Underlying Realiiescorervrvnrsnnss .
3.1.3. Determining the Important Properties of a Possible Underlying Reality ...
3.1.4, Constructing (he SPIHL TADIE ..vvvvrviirrrrerrrrersrrarsrssrsessrmsrssssrrssrssssesass b sansssesasssasessassssnen
3.2. Limited Enumeration of Possible Underlying Realities ..o mreenrierecnnisnsssiinsmssnsseses
3.2.1. The First Level of the Enumerationcc.cocvmimmnnnenncmresne
3.2.2, The Second Level of the ENUMETALONcoccer s sssss s sssassss ssasssrssssasass
3.2.3. The Third Level of the ENUMETALON ..cviececrvenneirrecrsnssesescsnsissessssesssmesesssessarsss snssssns
3.3. Detailed Analysis of a PartiCular CASEveeueeircreeseersnsnecsrascsssesesessermesesesoessseesesersesestonsrssasss
3.4, Results of the Analysis OF Al CTASES ..veviereerrirnrenirernssssssssssssasasssirersssssses vessesresrssssssnssssnesens
3.5, Constructing the SPLEL TADIE vuviieeeeiservrssirirsiseresssnsimivsssssassosnssestossssssssssesnonessssssss sssassnsssses

4. Detecting Fragments 10 COMDINEuuiicereirreressrereserassrssesisissssnsassesssssessrasassssears sasnssasnsssssrosrasssases
4.1. Differences in the Limited Enumeration of Possible Underlying Realitiescoeniiinns
4.2, Limited Enumeration of Possible Underlying REAlILES ...cvivvrrrirrirerrrerressnrniresssssssssssesserssanae

4.2.1. The First Level of ENUMETatiON ..o veiicimimsimmimiiiciosmieioisesismasnsmssonsm ssssssenis
4.2.2. The Second Level of ENUMETALON ...ccccvverereierrsesnrrecsesenn e serescersssmsnssssssssssssssssnsaseses
4.3. Results of the Analysis 0Ff All CASESceciviireriniecssninisrresnesersnssessssssesssssnsonsensasssesosssorsansins
4.4, Constructing the Combineg TADIE ... ereessrsess s sssssrssnssrasassamessesess sonsabuess

5. COrrectiNg TWO MADS .rvvvreriviererrrrserassesierarmseassssssererssssessssssenstssses versvansnersansansrsansasersssnesssassarssmsssassss
5.1. The FIX AIZOTIRM .ot irrreisre s smicrmssses et soss st s sassssmassasaso s assssassasassessasmsssnssssns snsvases

6, CONCIUSION 1vsrerersrrvsrirerserrrrsreresssrnssrsrssresss sressrasesssssnsssonses ssntonsssarsssss iebestesssranssrs sonsstvansenasss T

h b B N =

12
14

19
19
22
24
24
25

45
45
45
46
48
49
50
50
52
52
54
56
66

70
70
72
72
73
13
78

79
79

84

Appendix A: Description of Functions not Defined by Pseudocodeveeccnirsresssssesreemreeserseensss

Appendix B: Notational Conventions in the PSeudocode ...

TABLE OF FIGURES

Figure 1; Random clone inSerts in CONIEXL v.iuvevmreerersrarerersrrsrsrresrarssseassassssserns
Figure 2: Making a clone from a ClONE MISBITc.cicrvvierriressrisierisessrsrssnsssssassessssmssssessasssesasesessassesannss

Figure 3: Set of clones to map

..

Figure 4: Map unit produced from mapping Clone 1 and Clone 3 ...,

Figure 5: Clones 1, 3,and 4
Figure 6: Clones 1, 2, 3, and 4

oooooooooooooooo

..

..

Figure 7: Completed mapping Of CLONE SCL ...ccc.cveierereceerineessceircec e st rsmsnrssssssssss s ssnssssssssesassrave

Figure 8: An ambiguous assimilation
Figure 9: Subset ambiguity
Figure 10: Two overlapping clones

Figure 11:
Figure 13;
Figure 14:
Figure 15:

Figure 17:

Figure 18:
Figure 19:

Figure 21:

Figure 23:
Figure 24:
Figure 25;
Figure 26: Pscudocode for scan_right
Figure 27:
Figure 28;
Figure 29;
Figure 30:
Figure 31;
Figure 32;
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

..

..

..

The fingerprints of the clones in Figure 10 .. sssssssses s
Figure 12: Map built from the fingerprints in FIgure 11 oo vcre it

Map produced by the RSA

Maps M1 and Mg .oreerennne

..

..

Maps M and M, and an ATVML X ocineiseeinienncss i ectsesesscsssanesessnssse ssnessssssrsssnseres
Figure 16: Maps M ", Mo, M1and @ MAICHLSE «..cv.eeeeeieierereserrere e rereseasarsssssessasseseseseasesesrasasssasisssssns
Examples of the virtual fragment CIASSEScccvierrvrscrreerssssisssnisssss s s srssravasens
Pseundocode for find_all_scans .

Pseudocode for topological_scan ﬂxed conflguratlon ..
Figure 20: Result of the scan in the right direCtioncveinveeiriessessnranans

Result of the scan in the lefl direCHION ... rerree s seerssrsienes s s ssssssesasssnsssaass
Figure 22: Possible starting groups for an assimilation ... nesssssasssens
Possible starting groups for an eXIERSION ...vciieiiriresrrnrer s e st s ssssssssressaressssses
Pseudocode for topological_scan_fixed_direClion . ccrrnrcremrmesisircns
Pseudocode for topological_scan_fixed_Star ... s sssssssns

...

Pseudocode for fiX_DY_IQROTe ...t s sssss s ssssssssssssasasssssssss
Pseudocode for fIX_DY ST ..ovicvvirrccersvrcreceraensrmrssnssss s sesnesesesanenesesnssesessssasssssssssssssns
Pseudocode for find_initial_Pantial_SCAMN ...vvvveeecramniessssrrnessersasenesesnsesesssssssssssssssesns
The PARTIAL_SCAN P50 cvievrverrrrrcsnnraerssesissn s sassssessssssessssssansanssssssesemnsssnssassns

The PARTIAL_SCAN P51 cciiirrcenvrrinnrrrssssssenesssssassssessassesssssssans

The PARTIAL_SCAN ps,
The PARTIAL_SCAN ps,

..

..

Pseudocode for Best_MaiCh_ahBad ... ieisesrrsssrsrsssre s esesrsresstrssssasassssssssesensssns
Looking ahead for @ MAIChIISEccerervimresrererersessesenssssissarismies st sstans e snsnsssssaressssessans

The PARTIAL_SCAN ps.
The PARTIAL_SCAN pss

..

..

0 OO0 ~) =1 th W N

10
11
12
13
i3
14
15
17
18
20
21
21
26
27
28
29
30
31
32
33
34
35
36
37
38
38
40
41
42
42

Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44;
Figure 45:
Figure 46:
Figure 47
Figure 48:
Figure 49;
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55;
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76
Figure 77:
Figure 78:
Figure 79
Figure 80:
Figuare 81:

The PARTIAL_SCAN [56 worevrervrernersnrermsmerrsrnsaresmssrssrnsssestasibessssssssssesessssessassssrnssnsansnssases
The PARTIAL_SCAN P57 ceiriieecciercrcesrcnni e ssccenracssamssssresssssssessasssssrassssstsssasssessassrerares
The PARTIAL_SCAN P53 e svsnssessesvessseses ssssssssenes smenssars snrrassenassasass snsns
The PARTIAL_SCAN D59 cevrrrrerrsraerrrssersimsessssrsimsssss iossasssssssssss it ssssssssanssessossssnessrass sose
The PARTIAL SCAN P51 evrrririsisrsisissmnsssrsssmsmsrsssesesssssrsnsnssssssas sesesrsmsmsesssbarmsbissasiss
The PARTIAL_SCAN D511 cvrrcrrermmroresrscsrirmsmrmsssresrareresrsnisas sessessanssssss sesssssssmssssssssssne
The SCAN S crerravararnerntaserarernvasaransestoretvbarabndbeteae e be st oeratas N e A SEL b e R ee L bR e ae e crE
THE SCAN 57 it assssssr e e s s sesssesssassnsasas

[lustration of the assumptions for the limited ENUMETALION .o.cccovrcceivvcciriminisissisissssnrsenens
A Specific iNAl CASE .ottt e ses st s s sbus e s b st SRR e g s n s .
Pushed virtual fragments
Summary of the mited ENUMETAHOM ..uvvivrvreeressisinassssmressesressassssssmesassasarssssssessssessasss
FINAL CASE ST1.2.2 oo cer e e se st s ene s e ses s seressns e e sas sa s d s sbs s s abab s s e asama e s me e snnane
A sketch of final CASE ST.1.T e rei s ss s ias s s ssssrasssese s e sasesras bessane sasasans
A sketch of final €ase ST.1.2 . sttt s s asme e s s b s a s
A sketch Of final Case ST.2.T .o resa e ss s s e mreas st sass e sa s s anan s s avars
A skelch of final CASE ST.2.2 . crerres s e sens st s sme s e esastsshssasar s pans
A SKetCh 0f final CASE S51.3.1 e v s e srsssa b bt sa s s s nna s sasa s prane s
A sketch of final €ase 51.3.2 ...t st st s sesee e st sasssasarevaseesenss
A sketch of final €888 STL.LLT v s sers s ses s ss s s e s s resanassbesbavaresrnennesss
A sketCh of final €aSE S11.1.2 e eecreerrrrrrrssennarsor e s srsss s rs s ta et brs s e nsas e s an s s snmsnnenas
A sketch of final CAsE S11.2.1 s n s s st s ss e s s saas e ansassabssenasanesae
A sketch of final case S11.2.2 .. sraerrenereess s cssareareessaessress s s bssassansssassnsnsns
A sketch of final case S12.1.1 . rersss e ee e ersersscsr st et saspsrssssssan sases
A sketch of final €58 S12.1.2 .. s ce e svnnrresrs e s ess s st b s assan s anssns s s s benensen
A sketch of final €ase SI2.2.1 et rrssrsr s e esarnssrrmr st st s pabs st s s s b nr e onn
A sketch of final €ase S12.2.2 .o ssas s s s sees s csnse e sm st sssbonbsssnasanan
A sketch of inal case S31.1.1 i st s s s bbb e s b e e
The split table after examining the first group of entriesvcovirnesns

The split table after examining the second group of ENTIES ..eieiiiissrssrmerserniiareason
The split table after examining final case S11.2.2 v s
Mustration of the assumptions for the limited ENUMETALON ...cvvrsnissasisneiensserssesasessans
Summary of the limited SRUMETAEON ..o vecviirrrr s isnirsc s s saessnsa e rasasass ans
A sketch O finAl CASE CL.1 ooiiiriivrrsrrrrmerressesseess s sre st s siesssessnssss sesmson e sas sasasensasersnensasans
A sketch OF fiNal €S C1.2 ..vvviveerrresnrcorissssssesrescersssssssssarssaseesesnesanesssessnsssssssssssssssassassnens
A sketch of final CASE C1.3 et vens st vvs s g s s s s s m s e sr s sssassne st ons
A sketch of final Case C2.1 .o e e s er st s sa s s ans
A sketch of final €ase CZ.2 v rrnrrcere e s s s serresanssnre shrss b bn s st sansasssnassnsssnsanes
A sketch of final €ase CA.1 .vricirrrcrrrerrerecss s rrens rorsinris s s s sss s ssasssasssssassnssanevasareasaes
A sketch of final cage C14,1 .riiriiiicsinnicce s e cnensaarsnaane

A sketch of final case C14.2ccivviirnvnnens

A portion Of 1he COMDING 18DIE 1vevivveirrisimrrrmirassrsssssissssseasssnsesssmess sessssssesssnissssssesss esensnvas
PSEUAOCOAE FOI TIX 1vvrvvrvrsrieesirerenessinsnssssanssesesesmasasssesrssses smesssssisssssssssesssenresmesnsseverarssssnssne i0s
Pseudocode for fix_DY_SPUL ..ccvvcririsinriniss st s ssssens

- iii -

42
43
43
43
43
44
44
44
47
48
53
54
54
56
57
58
58
59
60
60
61
62
62

A AR

65
67
68
69
71
73
74
74
75
76
76
77
77
78
79
80
80

Figure 82: Pseudocode for fix_by_COMBDING ..ovvvvvrererervasseernssassarens
Figure 83: Pseudocode for perform_splitsccvvveveee v v veveenerrerennns
Figure 84: Pseudocode for find_all_incorporationsccceeveemeees
Figure 85: Pseudocode for perform_combings ..o

TABLE OF TABLES

Table 1: Valid configurations for types of windowscccceeeivecrnnnenrns
Table 2: Possible results of a (0pological SCAN . csssssnssnnsnares
Table 3: The first-level €ases fOr SPLL vvvireeevecireerinisiresscssssmsrerasenns
Table 4: The second-level cases for SPIt .c.veevececcerecvininr e
Table 5: Possible results of a topological scan for final case S1.1.1 ...

..

..

..

..

..

...

..

..

Table &; Possible results of a topological scan for final €ase S1.1.2 . ecncscerrrssnesssnns

Table 7: Possible results of a topological scan for final case §1.2.1 ...
Table 8: Possible results of a topological scan for final case §1.2.2 ...
Table 9: Possible results of a topological scan for final case $1.3.1 ...
Table 10: Possible resulls of a topological scan for final case $1.3.2 .

Table 11: Possible results of a topological scan for final case S11.1.1
Table 12: Possible results of a topological scan for final case S11.1.2
Table 13: Possible results of a topological scan for final case 511.2.1
Table 14: Possible results of a topological scan for final case $11.2.2
Table 15: Possible results of a topological scan for final case §12.1.1
Table 16: Possible results of a topological scan for final case §12.1.2
Table 17: Possible results of a topological scan for final case §12.2.1

...

..

..

..

...

...

...

...

...

...

...

Table 18: Possible results of a topological scan for final case S12.2.2civmrernenerensesessesrsesnens
Table 19: Possible results of a topological scan for final case S31.1.1 .ccvvvrvvescennnes

Table 20: The first-level cases for COMBINE ...vevrrereeceeeereeroneceraesonas
Table 21: The second-level cases for Combinecvvvveneerriesesecens
Table 22: Possible results of a topological scan for final case C1.1 ...
Table 23: Possible results of a topological scan for final case C1.2 ...
Table 24: Possible results of a topological scan for final case C1.3
Table 25: Possible results of a topological scan for final case C2.1
Table 26: Possible results of a topological scan for inal €ase C2.2 ...vvvvvcvverrmsrrssiresssrseresrsesssssenss
Table 27: Possible results of a topological scan for final case C4.1 ...
Table 28: Possible results of a topological scan for final case CI4.1 .,
Table 29: Possible results of a topological scan for final case C14.2 .,

-iv -

..

..

..

..

..

..

..

..

..

81
82
82
83

23
49
51
52
57
57
58
59
59
60
61
61
62
63

SR8

66
72
73
74
75
75
76
76
77
77
78

1. Introduction

1.1. An Overview of DNA Mapping

DNA is the genetic material which supplies the blueprint for an organism’s development. A DNA
molecule is composed of nucleotides, with each nucleotide consisting of a sugar, a phosphate, and one of
the four bases: A (Adenine), T (Thymine), C (Cytosine), and G (Guanine). Nucleotides are distingunished
by the base they contain. Sugar-phosphate bonds bind the nuclectides into strands, and a base on one
strand can form hydrogen bonds with a base on another strand. However, only certain base pairings are
allowed: A bonds with T, and C bonds with G. Thus, A and T are known as complementary bases, as are
Cand G. A double-stranded DNA molecule is made of two complementary DNA nucleotide strands bound
together by base pairing, the base sequence on one strand determining the complementary sequence on the
other strand.

DNA restriction mapping [-10] geals with determining the positions of specific sites along a given
segment of DNA, which we will here refer to as a genome. The sites of interest are called restriction sites,
and cansist of a specific subsequence of DNA, often six nucleotides long. These restriction sites are
recognized by specific enzymes, known as restriction enzymes; a restriction enzyme cleaves (or cuts)
DNA that it encounters at these restriction sites, Thus, given appropriate conditions, a restriction enzyme
reacting with a strand of DNA will produce fragments of DNA whose lengths are the distances between
two successive restriction sites along the original DNA. The process of agarose gel electrophoresis can be
used to measure the approximate lengths of these fragments, which are known as restriction fragments, If
it were possible to (a) identify each restriction fragment present in the genome, (b) determine the length of
each restriction fragment, and (c) determine the order of the restriction fragments in the genome, then it
would be possible to consiruct the map of the resiriction sites,

The mechanism for obtaining this information is somewhat indirect. Ordering of the restriction
fragments is achieved by cleaving multiple copies of the original DNA at random positions to produce
randomly overlapping strands of DNA, known as clones. Each clone is digested by the restriction enzyme
of interest, and elecirophoresis is used (o determine the lengths of the resulting restriction fragments. This
list of restriction-fragment lengths is known as the fingerprint of the clone. Overlap between the clones is
inferred based on the similarity of the fingerprints of the restriction-fragment lengths, and the order of the
clones is inferred based on multiple-clone overlap. As overlap between the clones is inferred from a
significant number of restriction fragments of similar (within measurement error bounds) lengths, the exact
order of the restriction fragments within each clone may remain unknown; only the relative (partial)
ordering of large groups of fragments may be inferrable, As more clones are found to overlap a specific
region of the original genome, the positions of the clone ends are used to refine the original partial order of
the restriction fragments by reducing the size of the groups for which the fragment order is unknown.

This process of DNA restriction mapping is analogous to solving a large jigsaw puzzle. However,
the uncertainty of where a clone should be placed can be significant, due to measurement error (produced
during electrophoresis), experimental error (produced during cloning or digestion with the restriction
enzyme), and certain biological properties of the DNA being mapped (¢.g., two fragments of the same
length do not necessarily contain the same sequence of nucleotides). When putting together a jigsaw
puzzle, the pieces of the puzzle have several cues (shape, color, pattern on the surface) which can be vsed
to guide their ultimate positioning in the final solution. In DNA restriction mapping, the clones have no
shape or color, but the fingerprint information can be viewed as a pattern to be matched against potentially
overlapping clones. The objective is to find a consistent positioning of clones with respect to one another
in which fragments i different clones can be identified with one another while all fragments of each clone
remain contiguous and no gaps or unpaired fragments are present internally. There may be multiple
solutions to this restriction-map puzzle, and the one (or ones) which is (are) most compact is (are)
preferred.

DNA Mapping -2 FMMD&C

1.2. Some Details of DNA Mapping

This section presents a more in-depth discussion of the process described in the previous section.

1.2.1. Data Collection

The type of data considered in DNA mapping is clone fingerprint data. Prior to any mapping, the
genome t0 be mapped is duplicated using traditional biological means, Then, the DNA is randomly
cleaved into smaller sections by partially digesting it with a cloning restriction enzyme; this produces
random clone inserts. The partial digestion process causes different copies of the DNA to be cleaved at
some but not at all of the cloning restriction sites, This tends to produce clone inserts which have random
overlap with one another. This is depicted in Figure 1, where four clone inserts (which will be used later in
a running example) are shown in their positional context within the genome. The ends of these clones
correspond to sites randomly cleaved by the cloning restriction enzyme during the partial digestion; other
sites may be present within the clones at which cleavage did not occur.

The cloning restriction enzyme is usually selected to be different from any of the restriction enzymes
being mapped; in the protocol described here, it is assumed that they are different. This imptlies that clone-
end sites do not coincide with the sites of any of the restriction enzymes being mapped. Clone inserts are
inserted into a biological organism known as the 1 phage, which is a virus used as a cloning vector (i.e., 2
mechanism used to reproduce many copies of a clone insert). This is depicted in Figure 2. The body of the
A phage is removed {leaving a left and aright 1 arm) and is replaced by a clone insert. The A arms are
engineered so that they do not contain restriction sites corresponding to any of the restriction enzymes
being mapped. Since the site at the end of the clone insert does not correspond to a site of any restriction
enzyme being mapped, there is always a partial fragment at the end of each clone insert which remains
attached to the A arm as the clone is digested with a restriction enzyme being mapped. The A arms (with
the partial fragment attached) are large, and are thus easily identified during subsequent processing. Only
the complete fragments (i.e., those for which there are two delimiting restriction sites within the clone
insert itself) are selected for inclusion in the mapping activity.

The size of the clone inserts is limited by the packaging mechanism of the A phage. This size range
lies roughly between 10,000 and 25,000 base pairs (bp); The combination of the 4 phage and the inserted
DNA is known as a clone, because the 2 phage will be used to reproduce multiple copies of the clone

copies of the genome

... il [; hd | U F U
T £ T ¥ a7
.. L2 J hd | L L SLE SOOI I UUOUOPTPR
i L3 1 ¥ [L |
.. A N Ml bt |
T R T T 17 Tl T
......................... S LA d W L3 |
T T Fof ¢ T F 1
t3 5 o3 i3 13 ik 3 F1-] 15 e a% 1.0
1 1 3 4 3 L) 7 L] W 1 1’
.........................] [1] |]] 1t
T & I I P p— T e T T 1 .
45 125 3 19 £3 3 kT in 13 18 45 ATS

original genome

Figure 1: Random clone inserts in context

DNA Mapping -3- FMMD&C

(a) A phage
left 4 arm right A arm
body of A phage
{b) body removed
left A arm right 2 arm
[I L S S | LA
N T+ T2 1

(c) clone insert replaced
Figure 2: Making a clone from a clone insert

insert.

Enough independent A clones must be produced so that randomly selected clones will cover all (or
almost ali) of the genome. Overlapping clones can be viewed as redundant copies of the underlying
genome. The redundancy factor of a set of clones with respect to the underlying genome is the average
{over all nucleotides) of the number of times the underlying genome is duplicated. The higher the
redundancy factor, the higher the probability of covering the entire genome. A redundancy factor of
between five and ten is usual. This implies that any region of DNA from the original genome is likely to
appear in five {0 ten clones, on the average.

Since the inserts of DNA are the result of random cleavings, each insert may or may not contain
some overlap with another insert from roughly the same region. This partial overlap can mean that each of
two inserts contains DNA in addition to the region of overlap or that one insert is a subsection of another.
The success of DNA mapping depends on the fact that the clones contain these overlapping regions of
DNA. Itis this overlap which will allow the clones to be aligned in the order in which they existed in the
original genome.

After the clones are made, they are isolated and in vive DNA reproduction is employed to obtain
enough DNA for subsequent processing. For each clone, the DNA extracted from the amplification process
is completely digested by a restriction enzyme (the restriction enzyme being mapped), producing fragments
of DNA called restriction fragments. The Iengths of these fragments are then measured using agarose gel
electrophoresis technology. When an elecitric current is passed through an agarose gel in which DNA

DNA Mapping -4- FMMD&C

fragments have been placed, the fragments will migrate down the gel. It is easier for smaller fragments to
move through the gel than it is for larger ones, so the fragments arrange themselves in order of decreasing
length. This creates lanes of DNA fragments in which bands of DNA of the same length have migrated to
the same position in the gel. Afier the gel has been stained, these bands can be detected and their positions
in the gel determined. Reference lanes, containing DNA fragments of known length, are also present in
the gel. Using the positions of the bands in these reference lanes and the process of interpolation, it is
possible to estimate the lengths of restriction fragments in the data lanes. Unfortunately, standard agarose
gel electrophoresis technology is limited to measuring accurately fragments in a particular size range; here
the range is approximately 400 bp to 15 kilobase pairs (kb). Restriction enzymes can be chosen to assure
that most of the restriction-enzyme fragment-length data fall in this range.

There are (at least) two significant sources of error which create uncertainty about the data produced
by electrophoresis. The first is the classical problem of measurement error. From experimental
evidence! ”, it is known that the measured lengths of the same fragment measured multiple times (either as
it occurs in different clone inserts or when the same insert is measured multiple times) are normally
distributed about the true length of the fragment. This normal distribution is often characterized by giving
an error window (a percentage difference around the true length) into which almost all measured lengths of
the fragment will fall. Under some circumstances, it is possible to obtain a 3% error window around the
true length of the fragment, 1.5% on either side of the actual length. Thus, a fragment which is actoally
1000 bp in length may be measured as anywhere from 985 bp to 1015 bp. The second deals with
determining the multiplicity of different genomic fragments of similar length; these are referred to as
comigrating fragments, Two fragments of identical (or nearly identical} length will comigrate to the same
location in the gel, Thus, it is possible for two (or more) fragments to be in the same band when the gel is
stained. If this is not taken into account, the set of fragment lengths will not accurately reflect the number
of fragments present in the clone. It is possible but difficult to identify multiple comigration fragments,
The intensity of the stained DNA bands should decrease along the expanse of the gel, because there is less
DNA to stain in smaller fragments. Deviation from this expected intensity distribution can be used to
estimate the number of multiple restriction fragments present in a band.

1.2.2. Mapping Two Clones Together

The reason that clone data can be used 1o create a map of a genome is the fact that fragments which
come from a single clone must be contiguous in the original DNA sequence. Given just one clone, it is
impossible to know the ordering of the fragments within it; it is simply known that they are contiguous in a
certain region of the original DNA. A more refined view of that area can be created by considering other
clones which are suspected to overlap the same region. Consider one clone with fragment lengths {5000,
4000, 3000, 2000, 1000} and another with fragment lengths {6000, 5000, 3000, 2000, 1000, 900, 800},
Since these two clones share four fragments of the same lengths (5000, 3000, 2000, and 1000), it is highly
probable that they are partially overlapping clones from the same general region of the original DNA.
However, it is impossible to be sure these two actoally do overlap without doing more biclogical work.
Simply containing four fragments of the same lengths is no guarantee that two clones actually overlap,
since two fragments of the same (apparent) length are not necessarily the same fragment. One of the ways
that this is taken into account while mapping is to require apparent overlap of muitiple fragments before
assuming an actual overlap is present. Often, the minimum number of fragments which must seem to
overlap (before actual overlap is inferred) is taken to be four. This increases the probability that the two
clones actually share some region of the underlying genome.

Returning to the example, it is known that the five fragments in the first clone are contiguous (in
some order). Similarly, the seven fragments of the second clone must be contiguous. This is all that can be
determined from examining the clones independently of each other. However, more information can be
extracted by examining the two clones in concert.

DNA Mapping -5- FMMD&C

The four fragments which overlap also must be contiguous. This means that each clone can be
divided into two sets, one set containing the fragments which overlap and the other set containing all the
remaining fragments in the clone. In the first clone, these two sets are {4000} {5000, 3000, 2000, 1000},
while in the second clone they are {5000, 3000, 2000, 1000} {6000, 900, 800}, Since each of the two
clones contains a region overlapping with the other clone, it is possible to fit the two back together into one
partial sequence. This sequence is:

{4000} {5000, 3000, 2000, 1000} {6000, 900, 800}

First clone

Second clone

This ordering contains more information than either of the original two clones provided. Namely, it
is now known that there is a restriction site 4000 bp in from one end of the first clone. Similarly, there is a
restriction site 7,700 (6000 + 900 + 800) bp in from the other end of the of the second clone. The
information about this particular region of the genome is still relatively unrefined. It is known that there are
three sets of fragments, with one fragment in the first set, four fragments in the second set, and three in the
last set. These subdivisions, or sets, will be referred to as groups. It is known how the three groups are
positioned in relation to each other. It is not known, however, what the exact ordering of the fragments is
in the second two groups. To gain a higher level of refinement, more clones would need to be added to the
map.

The previous example is a trivial one, It ignored many of the problems which can oceur while
mapping, but its intent was to provide a first level of understanding about the basic process. With that
understanding, it is possible to approach the mapping of a more complex, more realistic example.

1.2.3, Mapping a Set of Clones
Figure 3 presents a set of clones suspected of coming from the same region of the genome. The

fragment lengths of each clone are sorted from longest to shortest, but this is for convenience only. Prior to
mapping, nothing is known about the ordering of the fragments in any of the clones.

#1 #2 #3 #4 #5
6198 8567 6109 8644 4087
4082 7605 4087 6110 1085
1614 1605 1139 1600 529
1592 1586 1078 1573 517
1150 1139 630 1146 406
1092 623 527 632 ———————

637 ——————— 515 e

513 e

Figure 3: Set of clones to map

DNA Mapping -6- FMMD&C

The first consideration is to determine which two clones should be mapped together initially. This is
one area where intuition and experience are useful. A poor choice will result in problems with mapping
later clones. Although intuition plays a large role in this initial choice, there are some guidelines which
may be followed. One of the easiest is to make the initial choice based on the number of fragments in the
clones, starting with the two clones which have the most fragments. In this case, these are Clones #1 and
#3.

One way to approach clone-clone mapping is to scan through the fragments of each clone searching
for a maich (i.e., two fragments whose lengths are within 3% of each other), starting with the largest
fragments, Using this approach, the first match discovered between Clones #1 and #3 would be
6198—6109. (Although not the same length, the two fragment lengths are within the 3% error window.)
After creating a match with two fragments, neither fragment is available for subsequent matches. Having
paired 6198 with 6109, the process of scanning for matches continues in the two lists of fragment lengths.
4082 and 4087 are within 3%, so they are matched. Next, although there is a fragment of length 1614 in
Clone #1, there is no corresponding fragment in Clone #3. Thus, 1614 does not match with anything. It is
possible to use the ordering of the fragments by size to cut down on the amount of work performed in
finding a match, If 1614 is under consideration, as soon as a fragment smaller than 1614 is found in the
second clone (keeping in mind that "smaller than" must take into account the 3% window), no further
searching for a match to this fragment is required. In this example, the search for a match for 1614 can stop
as soon as the fragment 1139 is seen in Clone #3.

As with 1614, 1592 is unable to match with anything in Clone #3. This means that the next match
that does occur is fragment length 1150 with fragment length 1139. This is followed by matching 1092
with 1078, and 637 with 630. There is now only one fragment left to examine in Clone #1 and two left to
consider in Clone #3. The fragment with length 513 is the only unexamined one in Clone #1. The problem
with matching it is that there are two possible matches. It might match with 527, or it might match with
515. Both are within the 3% error window. (A dual match like this is referred to as a similar match.) The
513515 match might be considered better since there is just a two base pair difference in these lengths,
whereas there is a fourteen base pair length difference between 513 and 527. Consequently, 513 is chosen
to match with 515, and 527 remains unmatched.

Since there are no more fragments to consider, the mapping of Clone #1 with Clone #3 is complete.
There is now a fragment matching or fragmat (i.e., 6198—6109, 4082—4087, 1150—1139,
1092—1078, 637—630, 513—515) which describes the matches which exist between the two clones. Itis
also known which fragments in each clone did not pair. Using these data, the two clones can be put
together as shown in Figure 4. It is no longer proper to call this finished structure a clone, since it is not
that anymore. The term map unit is used to refer to the result of 2 mapping, such as this one. Map units
are formed by mapping (or fusing) any two structures together: two clones, a clone with an existing map
unit, or two map units. Map units generally contain more structure than the cbjects used to produce them.
Note that it is always possible to identify a contiguous sequence of groups in a map unit which corresponds
to an individual clone, as Figure 4 illustrates, because the fragments present in a clone must always remain

contiguous,

In a map unit, some of the fragment lengths are not the lengths of the original fragments present in
the clones. Instead, they are the average lengths of the fragments which matched. To emphasize this
distinction, the term virtual fragment is used to describe a fragment which is the result of some matching.
This is in contrast to real fragments, which are the actual fragments in the clones. The distinction often is
irrelevant, and the blanket term fragment is used in most cases. The notation vf<rfy,...,7f,>is used to
denote a virtual fragment composed of the real fragments rf,...,rf;. The active clone set (or ACS) of a
virtual fragment is the set of clones from which the real fragments composing the virtual fragment come.
Given two different map units constructed (in different ways) from the same set of clones but containing a
different number of fragments, the map unit containing the smaller number of fragments will be considered
more compact than the map unit containing the larger number of fragments.

DNA Mapping -7- FMMD&C

|
|
———————— i
!
4085 [clone #1
[
I
J
!

I
I
|
|
| clone #3
I
|
f

Figure 4: Map unit produced from mapping Clone 1 and Clone 3

Now that the first two clones are fused, it is time to map the remaining ones. Both #2 and #4 have
the same number of fragments, so ¢ither could be considered next. In this example, Clone #4 is chosen to
continue the mapping process with the map unit just produced (Figure 4). This mapping will not be
presented in as much detail, but the same ideas as previously presented are being followed. The 1614 and
1600 maich, as do the 1592 and 1573. Continuing, the 6154 and 6110 match, as do the 1145 and 1146, and
the 634 and 632. The map unit, as it now stands, is shown in Figure 5.

Clone #2 is chosen as the next one to add. The fragments with lengths 8644 and 8567 match. Other
matches are 1607—1605, 1583—1586, 1145—1139, and 633—623. Figure 6 shows the current state of the
map unit being produced from the original set of data,

Finally, the last clone (#5) is added to the map. The 4085 and 4087 maich, the 1085 and 1085 match,
the 514 and 517 match, and the 527 and 529 match. The final completed mapping of these five clones is

!
!
|
[
| #4
I
I
!

Figure 5: Clones 1, 3,and 4

DNA Mapping -8- FMMD&C

#2

Figure 6: Clones 1, 2, 3, and 4

Figure 7: Completed mapping of clone set

DNA Mapping -9. FMMD&C

New clones can be incorporated into a map unit in two ways, i.e., by extension or by assimilation.
An extension has occurred if the number of fragments in the resulting map unit is greater than the number
of fragments in the previous map unit, i.e., some fragment of the clone extends beyond the boundaries of
the original map unit. Each one of the clone incorporations performed in the previous example was an
extension. An assimilation has occurred if the number of fragments in the resulting map unit is equal to
the number of fragments in the previous map unit, i.e., every fragment in the clone matched with an already
existing fragment in the original map unit. In the previous example, the sequence of clone incorporations
was <#1,#3, #4, #2, #5>. If instead, the order had been <#1, #3, #2, #4, #5>, then clone #4 would have
been incorporated as an assimilation instead of as an extension.

It might be possible to incorporate a clone into 2 map unit in more than one way. Such a situation is
referred to as ambiguous. As an example, assume that there is a sixth clone, Clone #6 with fragment set
{6142, 4081, 1115, 629}, which is suspected to be from the same region of the genome as Clones #1
through #5. This new clone can be assimilated into the map unit shown in Figure 7. In fact, it can be
assimilated in two different ways. The two possible fragmats are (631—629, 6139—6142, 40854081,
1085—1115) and (1144—1115, 631—629, 6139—6142, 4085—4081). Both of these are topologically
feasible, and the corresponding map units are shown in Figure 8.

The structure of these two map units is significanily different. For instance, the map unit in Figure
8(a) contains one more group than the map unit in Figure 8(b). Also the map unit in Figare 8(a) restricts
fragment 1144 to be adjacent to the group containing fragments 1584 and 1606, whereas the map unit in
Figure 8(a) does not. Making a decision now about where a fragment must reside (when the decision is
clearly in question} can have significant ramifications for the incorporation of subsequent clones not yet
introduced. In such a case of ambiguous incorporation, a conservative approach is taken. That approach is
to defer the incorporation of the clone, putting it aside to be addressed later. It is possible that the
subsequent incorporation of other clones may add enough structure to the map unit that the deferred clone
can be unambiguously incorporated later,

There are several forms of ambiguity. External ambiguity occurs when it is possible to incorporate
a clone into a map unit in distinctly different regions (i.e., sequence of groups) of the map unit. Internal
ambiguity occurs when the clone can be incorporated in the same region in a number of different ways.
There are two forms of internal ambignity. The first is similar match ambiguity, which occurs when
multiple fragmats allow map units of different structure to be constructed. This is illastrated by the
example associated with Figure 8. The second is subset ambiguity, which occurs during assimilation
when a clone is assimilated into a single group of a map unit and the fragments of the clone are a proper
subset of the fragments of the group. As an example of this type of ambiguity, assume the state of clone
mapping is as depicted in Figure 4, i.e., only Clones #1 and #3 have been incorporated. Consider
attempting (o incorporate a new Clone #7, having fragment lengths {6158, 1151, 1079, 638}. This clone
assimilates within the middle group of the map unit with fragmat (6154—6158, 1145—1151, 1085—1079,
634—638). Even though there is no fragment confusion involved, there are four different map units which
can be constructed, as shown in Figure 9. Each of these map units represents a significantly different set of
underlying realities, and none of the map units is compatible with any other.

This example was complex enough to demonstrate the general nature of the DNA mapping process.
At first glance, DNA mapping may not appear to be a complex problem. However, the uncertainty about
the validity of the fragment length-data along with the problem of determining the order in which a set of
clones should be mapped together make the procedure a difficult one to automate effectively.

DNA Mapping -10- FMMD&:C

#2

i6

(a)
fragmat (631—629, 6139—6142, 40854081, 1085-1113)

§4

(b}
fragmat (1144-1115, 631-629, 6139-6142, 40854081}

Figure 8: An ambiguous assimilation

DNA Mapping -11- FMMD&C

(a)

(o)

(e)

{d)

Figure 9: Subset ambiguity

DNA Mapping -12- FMMD&C

1.3. The Fragment Matching Mistake and Fragment Splitting

This section attempls to expose, by example, the fundamental fragment confusion error that often
occurs during mapping, for which a fragment matching mistake detection and correction algorithm is
needed to resolve. Consider the simple case in which two clones are being considered for possible
incorporation. In this situation, the primary criterion for determining whether the two clones actually
overlap is the maximum number of real fragment matches that can be constructed from the fingerprints of
the two clones, i.e.,, the apparent overlap between the two clones. If this number is sufficiently high, then
actual overlap is declared and the real fragment matches are used to produce virtual fragments within the
resulting map.

It is natural to use the matchlist containing the most matches as the best approximation of the true
overlap relationship between the clones. In this situation there is usually no reason to believe thata
particular match is incorrect, since the desire is to produce the most compact map possible, given the data.
However, just because two real fragments match (i.e., their measured lengths are within 3%) does not imply
guarantee that they correspond to the same genomic fragment. A fragment matching mistake can occur .
when two real fragments of similar length occur in the genome roughly one clone length apart. This is also
referred to as the collapsed fragment error (e.g., in Gillett)m to emphasize the fact that two real
fragments from the underlying genome have been incorrectly collapsed into one fragment in the map being
constructed. Consider the example illustrated in Figure 10.

The top horizontal line in Figure 10 represents a section of a genome. The middle horizontal line
indicates the portion of the genome that Clone ¢, spans, and the bottom horizontal line indicates the portion
of the genome that Clone ¢, spans. The small vertical lines on all of these horizontal lines represent
restriction sites for the restriction enzyme being mapped. A number between two restriction sites indicates
the number of base pairs between those two restriction sites, i.e., the length of the restriction fragment.

Given that Figure 10 represents reality, Figure 11 gives two fingerprints that might be obtained from
gel electrophoresis applied to Clones ¢; and ¢,. (Some random measurement error has been introduced.)
Note that there are two different fragments of length 700 roughly one clone length apart which have the
potential to be confused with each other. The two fragments that are of primary concern are denoted f
and f 2.

1 1 1 1 1 1 1 3
5 7T 1 2650 9 5 6 4 7 0
0 0 0 0000 QO O 0 0 0 0
0 0 0 COOOCG O O 0 6 0 0
genome A~ I I T T O l ! [LA
1
€ [I I A
fa
2 I l | | |

Figure 10: Two overlapping clones

DNA Mapping -13- FMMD&C

€1 2
505 497
610 601

05 (f1) 692 (f2)
912 902
1021 1002
1111 1411
1223 1523

1630

Figure 11: The fingerprints of the clones in Figure 10

It is the data in Figure 11 that is used to determine the overlap between Clones ¢; and c;. The
maximum size matchlist is: [(505,497).(610,601),(705,692),(912,902),(1021,1002)]. (In this example the
maximum size matchlist is unique, but in general there may be more than one.) There is no information
available to indicate that real fragments f, and f, do not correspond to the same genomic fragment, and
thus should not be matched. Thus this maximum matching would be used to form the Map m in Figure 12,
where f, and f, are incorrectly matched together to form a virtual fragment of length 699,

Suppose that the mapper suspects that there is something wrong with m, and in particular with the
virtual fragment vf< fy, fo>. If the mapper suspects that vf<f,,f 2> is the result of an incorrect match, he or
she would want to decompose, or split, it into two virtual fragments, in order to undo the effects of the
incorrect match. The Restricted Splitting Algorithm, or the RSA (described in Daues) 121, creates a new
map by splitting a virtual fragment and then attempting to incorporate the subfragments that result from the
split into the map, {The RSA can also create new maps by combining virtnal fragments and then
attempting to place the fragment that results into the map.} Given m and vf<f,f2>, the RSA produces the
map given in Figure 13, Note that this map corresponds to the underlying reality,

v<f1.f2>

B e

b o 4l
B O
[P Ny
Wb
ORCh—

[E%] % 1 % 1o

—COtn

OO

NOADON
o

Figure 12: Map built from the fingerprints in Figure 11

DNA Mapping -14 - FMMD&C

vf<f1> vf<(2>
1 1 1 1 i 1
7 1 2 5 9 0 6 4 5 6
0 1 2 0 0 0 1 9 1 2 3
5 1 3 1 7 2 2 1 3 0

i I I ! I I

Figure 13: Map produced by the RSA
1.4. Overview of Fragment Matching Mistake Detection and Correction

Suppose m; and m» are two maps that should incorporate, but do not becanse one contains a
fragment matching mistake. A common indicator of such a situation is when a large matchlist can be
constructed between m; and mj, but a small number of topological constraints are violated by the
matchlist. In order to incorporate m, and my one must (1) locate the fragment matching mistake and (2)
repair the map containing the fragment matching mistake.

The RSA is designed to repair a map containing a fragment matching mistake given that the virtual
fragment containing the mistake has been identified. However, the RSA cannot locate the fragment
matching mistake. This report supplements the RSA by presenting a technique intended to locate a
fragment matching mistake. In this section, a general overview of this technique is presented.

The reader is advised to read Daues!' before attempting to understand the details embodied in this
report. Many supporting concepts are presented and explained there. These concepts and their
ramifications will be used here without any further discussion.

The focus of this report is an algorithm which will be referred to as FIX. FIX takes two windows, w;
and w, as input. Let m; be the map associated with wy and let my be the map associated with w,. Itis
assumed that either nt; or m, (but not both) contain a single fragment matching mistake. The output of
FIX is a set of triples of the form (m,",my"). Map m,’ is either m, or a result of applying the RSA to n1;.
Map m;’ is either m; or a result of applying the RSA to mj. I is the set of all possible incorporations of m;’
and my” with windows similar to w; and w,. FIX essentially returms ways that m; or nty can be repaired by
one application of the RS A, so that the maps incorporate within w, and w4,

FIX is a heuristic algorithm because several heuristics (including some within the RSA} are used to
reduce the runtime and number of solutions returned. As with most heuristic algorithms, the correctness of
FIX is not guaranteed. It is possible that FIX fails to find the solution that comresponds to reality.

FIX performs the function that the RSA does not, namely, the identification of which virtnal fragment
in the maps contains the fragment maiching mistake, FIX locates the virtnal fragment by performing a
topological scan of m; and m,. A topological scan produces a set of almost topelogically valid
matchlists (or ATVMLSs) between m; and m,. An ATVML is a matchlist that very nearly, but not quite,
satisfies the topological constraints required to incorporate the two maps. After finding the ATVMLSs, FIX
determines which virtual fragments are probably responsible for the violation of topological constraints.

DNA Mapping -15. FMMD&C
—— - — i
1857 2296
445 10362

852 446
1649 1861
421 2092 W,
1000 348
1730 1633
W, 2163 2163
521 1715
1997
2174
772
1523
1711
728
2708
e e ———————————
_ 2338
_ 1263
_ 1%
962
668
2149
M M,

Figure 14: Maps M and M,

Once these virtual fragments are identified, FIX determines which virtual fragments are likely to contain
the fragment matching mistake. This is accomplished through a detailed analysis of the effects thata
fragment matching mistake has upon a map. Then the RSA can be applied to each of these virtual
fragments. Finally, the results of the applying the RSA are collected and those results that allow

incorporation are returned by FIX,

A running example is used thronghout this report to help illustrate the concepts of FIX. Figure 14
illustrates two maps M, and M,, with windows W, and W,, respectively. W, and W, do not incorporate,
although it appears there is a significant amount of fragment overlap between them. (Two windows

DNA Mapping -16 - FMMD&C

incorporate when their respective maps incorporate using only fragments found inside the windows,) Itis
possible that a fragment matching mistake in either M, or M, is preventing incorporation. Thus, it is
appropriate to apply FIX to W, and W,. The remainder of this section is devoted to a very general look at
how FIX operates on W, and W,.

In this report, many maps will be drawn vertically, instead of horizontally. Even so, the terms "left”
and "right” are retained. In this context "left" refers to the top of the map and "right” refers to the bottom of
the map. (Le., when a map is drawn vertically, one starls listing the fragments at the left end of the map.)

By looking at the position of W, and W, within M, and M, it can be determined that there are four
ways My and M, might incorporate: {¢;) M; might extend to the right of M4, (¢;3) M might extend to the
right of M, with M, reversed, (c3) Mo might assimilate into M, or (c4) M, might assimilate into M, with
M, reversed. FIX attempts to construct ATVMLSs for each way that M, and M, might incorporate. In this
example, no ATVMLs are found using ¢y, ¢3 and ¢4. However, an ATVML x is found using ¢; and is
illustrated in Figure 15. Upon examining x, it is obvious that the virtual fragment of length 2163 in M,
{denoted vf,) is the source of the topological violation that prevents M, and M, from incorporating. No
virtual fragment in M; matches with vf;.

There are two approaches that can be used at this point. The first approach is to use the RSA to split
vf1. The subfragments of vf; might end up in locations where they do not interfere with incorporation in
the way that vf; does. When the RSA is used to split v, no maps are returned. Thus, the first approach
fails for this example.

The second approach is to use the RSA to split some virtual fragment in M, that is within range of
vf 1, with the hope that one of its subfragments will appear in a location where it matches with vf;. The
first step in this second approach is to find all virtual fragments in M, that are within range of vfy. The
virtual fragments of length 2163, 2174 and 2149 (denoted vf,, vfs and vf4, respectively in Figure 15) are
within range of vf,. No maps are returned when the RSA is used to split vf; and vf,. However, three
maps are returned when the RSA is used 1o split vf3, Thus, FIX has three new versions of A, and
determines which will incorporate with #,. It turns out that only one of these three maps incorporates with
M. This new map, M’, is illustrated in Figure 16, along with the matchlist that allows incorporation and
the map M that is the result of the incorporation. Thus, FIX retuns (M, M4, {M)],

In crder to simplify the presentation of maps, clone ends are not shown. Without knowing the clone
boundaries, it is impossible for the reader to verify that M,” is the result of splitting vf; in M,. The
importance of clone boundaries and details about how fragments are split can be found in Daues' 2,
Suffice it to say that as vf3 was split, one component of length 2183 (denoted by a "*" in Figure 16} was
added to the second group, previously containing {445, 852, 1649}, and the other component of length
2170 (denoted by a "+" in Figure 16) was added to the group previously containing {728, 2708}. Since the
group in M containing vf3 contained only one fragment, it is no longer present in M;". The addition of a
fragment to the second group, which is within range of vf, eliminates the topological barrier which
originally caused the incorporation to fail.

The remainder of this report is structured in the following manner. In §2, the construction of
ATVMLs (topological scanning) is discussed. In §3, the analysis of the effects of a fragment matching
mistake that requires the splitling of a virtual fragment to repair is presented. In §4, the analysis of the
effects of a fragment matching mistake that requires the combining of virtual fragments to repair is
presented. In §5, the overall strategy of FIX is presented. In most sections, examples are used to clarify
the concepts presented,

DNA Mapping -17- FMMB&C

2296

10362
446
1861

2992 W,
1000 848
1730 1633
W, 2163 = -yf, 2163 w---1- Wi

521 1715

1997

2174 = yfy

772

1523

1711

728

2708

2358

1263

1190

962

668

2149 = =yf,

1857
445
852
1649
421

i

Figure 15: Maps M and M, and an ATVML x

DNA Mapping -18- FMMD&C
1857 2296 2296
445 10362 10362
852 446 2992
1649 1861 1859
2183 * 2992 — 446
421 848 850
1000 1633 1641
1730 2163 2173
2163 T 1715 1723
521 421
1997 1000
772 2163
1523 521
1711 1997
728 772
2170 + 1523
2708 1711
2358 728
1263 2170
1190 2708
962 2358
668 1263
2149 1190

962

668

2149
My M, M

Figure 16: Maps M{’, M, M1 and a matchlist

DNA Mapping -19- FMMD&C
2. Topological Scanning

2.1, Quick Overview

The purpose of a topological scan is to locate portions of the two maps that nearly incorporate and
determine which virmal fragments prevent incorporation. This is accomplished by constructing ATVMLSs.
Before presenting the overview, a number of definitions are given.

The orientation of a map is either asis or swap. That is, one can use a map as it appears (asis) or
one can reverse the order of the groups in the map (swap). The overlap relationship of maps m, and m, is
the manner in which m, and m, might incorporate, given that the orientation of m; and m, are fixed. An
overlap relationship has four possible states: (or,) »; extends to the right of m,, (ors) m, extends to the
right of m,, (or3) m-assimilates into m; and (or,) m, assimilates into m,. Finally, a configuration of m;
and my; is the aggregate of the orientations of m; and m; and their overlap relationship.- The configuration
and overlap relationship of two windows is simply the configuration and overlap relationship of the maps
associated with the windows.

Given two windows and a configuration, one can attempt to construct ATVMLs. There are two
major subphases of topological scanning. First, all possible configurations of the given windows are found.
(This is discussed in §2.2.) Then, ATVMLs are constructed for each configuration. (This is discussed in
§2.3.) More definitions will be useful in order to define the oulput of the topological scan.

Given an ATVML, x, the virtual fragments in the two maps can be partitioned into four classes. Let
w be the minimum size window in the map m that contains all virtual fragments in x. A virtual fragment vf
in m is a class 1 virtual fragment iff vf is not within w. A virtual fragment vfin m is a class 2 virtual
fragment iff vfisinx. A virtual fragment vfinm is a class 3 virtual fragment iff vf is within w but not in x,
and would have to be removed from m in order for x to be topologically valid, A virtual fragment vfin m is
a class 4 virtual fragment iff vf is within w but not in x, and does not have to be removed from m in order
for x to be topologically valid. Class 3 virtual fragments are also called discarded virtual fragments. Class
4 virtual fragments are also called ignored virtual fragments. The class of a virtual fragment is very
important when FIX determines which virtual fragments should be split or combined. (This is discussed in
more detail in §3 and §4.) In Figure 17, the ATVML of the running example first presented in §1.4 is
illustrated, along with the minimum size windows and an example of each virtual fragment class.

Topological scanning returns a set of tuples of the form (¢f,x,dy,d2). The tuple element ¢fisa
configuration, x is an ATVML, 4, is the set of discarded virtual fragments (class 3} in the first map and 4,
is the set of discarded virtmal fragments in the second map, Note that the class 1, class 2 and class 4 virtual
fragments can be computed given cf, x, d; and d,.

For the running example, topological scanning returns a single tuple, where the configuration has M,
and M asis with M, extending to the right of M5, the ATVML is
[(445,446),(852,848),(1649,1633),(1730,1715),(1857,1861)), d; = & and d, = (2163}.

The psendocode for the top level function in topological scanning, find_all_scans, is given in
Figure 18. find_all_scans takes two windows as input and returns a set of objects of type SCAN. SCAN
is a record-like structure with four fields: configuration, atvml, discards, and discards,. The field
configuration is an object of type CONFIGURATION, which is a record-like structure as well.
CONFIGURATION contains three fields: orientation;, orientation, and orelationship. The field
orientation, is the orientation of map associated with the first window and has one of two values: ASIS or
SWAP. The field orientation, is defined similarly for the map associated with the second window, The
field orelationship is the overlap relationship of the two maps. The field atvml in the type SCAN is a list
of pairs of virtual fragments, and discards; and discards; arc scts of virtual fragments.

DNA Mapping -20- FMMD&C

window 1857

SRR SR
446 window

852 N

1649 1861

421 2992 - —weas class 4
1000 848

class2 - —-q——-——-= 1730 1633
—-.—.
2163 \ 2163 < ----1 == class 3
521 1715

Figure 17: Examples of the virtual fragment classes

DNA Mapping -21- FMMD&C

SET

find_all_scans{w, wy)
WINDOW W Wa;

{

SCAN s;
PARTIAL_SCAN ps;
CONFIGURATION c;

SET ans,pss,cs;

ans « &,
¢s « find_all_valid_configurations{w;,w,};

forc e csdo
pss « topological_scan_fixed_configuration{w, ,ws,c};

for ps € pss do
s.configuration « ¢;
s.atvml «— ps.atvml;
s.discards; « ps.discards,;
s.discards, « ps.discards,;
ans <« ans « {s};

rof

rof

return{ans);

Figure 18: Pseudocode for find_all_scans

find_all_scans first finds all valid configurations for the two windows by calling the function
find_all_valid_configurations. (The operation of find_all_valid_configurations is examined in the next
section.) Then for each valid configuration, it calls the function topological_scan_fixed_configuration
(see Figure 19). topological_scan_fixed_configuration returns a set of PARTIAL_SCAN type objects
{exact structure given in §2.3.2} which represents the result of a topological scan of the two windows for a
particular configuration. However, the PARTIAL_SCANs contain information that is no longer necessary
once the scan is complete. Thus, after each call to topological_scan_fixed_configuration,
find_all_scans extracts the important information from each PARTIAL_SCAN to create a set of SCANs,
which it then returns.

SET

topological_scan_fixed_configuration(w;,w,,c)
WINDOW Wq,Wa!
CONFIGURATION ¢;

SET ans,scans) grr,SCANSRIGHT:

scans; gpr « topological_scan_fixed_direction({w,,wq,¢ LEFT);
scansggHT « topological scan_fixed_direction{w, w3,c,RIGHT);

ang — scans; prr W SCANSRIGHT:
return{ans);

Figure 19: Pseudocode for topological_scan_fixed_configuration

DNA Mapping -22- FMMD&C

The next two sections concentrate on the two components of find_all_scans. In §2.2, the
computation of all valid configurations is examined. In §2.3, the topological scanning of two windows for
a particular configuration is examined.

2.2, Finding All Valid Configurations

In this section, the algorithm for taking two windows and determining all valid configurations for
those windows is presented. Depending on the nature of the windows, there are certain restrictions on the
possible configurations. This algorithm looks at the position of each window with respect to its map and
then determines the valid configurations for those two windows,

A window w is an umbrella window if the leftmost group in w is the lefimost group in the map and
the rightmost group in w is the rightmost group in the map. A window w is a left end window if the
leftmost group in w is the leftmost group in the map and the rightmost group in w is:not the rightmost group
in the map. A window w is a right end window if the leftmost group in w is not the leftmost group in the
map and the rightrnost group in w is the rightmost group in the map. A window w is a middle window if
the leftmost group in w is not the leftmost group in the map and the rightmost group in w is not the
rightmost group in the map. Any window must be precisely one of the above types.

Thus, for two windows wy and w,, there are sixteen possible combinations of window types. Some
combinations are invalid (i.e., there is no configuration that allows the windows to incorporate). Theorems
1, 2 and 3 prove the invalidity of five particular combinations.

Theorem 1: If w; and w, are middle windows, then w; and wy cannot incorporate.

Proof: Let wy and w, be middle windows with a fixed configuration. Let g, be the group
immediately 1o the left of w,. Let g, be the group immediately to the left of w,. (Both g and g»
must exist because w, and w, are middle windows.) In order for w, and w; o incorporate, g; and .
g2 must have some overlap. However, since neither is in a window, that is impossible. Thus, wy
and w4 cannot incorporate. O

Theorem 2: If w is a right end window and w,, is a middle window, then w; and w, cannot
incorporate.

Proof: Let w; be aright end window and let w, be a middle window with a fixed configuration,
Let g; be the group immediately to the left of wy. Let g5 be the gronp immediately to the left of
w,. (Both g, and g, must exist.} In order for w; and ws to incorporate, g, and g, must have
some overlap. However, since neither is in a window, that is impossible. Thus, wy-and w; cannot

incorporate. O

Theorem 3: If w; is a left end window and w, is a middle window, then w; and w, cannot
incorporate.

Proof: Similar to Theorem 2, 0

In addition to these combinations being invalid, other combinations restrict the possible
configurations of the two windows. Theorem 4 proves the existence of restrictions in one particular
combination.

Theorem 4; If w, is a middle window and w- is an umbrella window, then wy cannot extend w,.

Proof: Let w; be a middle window and let w; be an umbrella window., Assume w extends to the

DNA Mapping -23- FMMD&C

right of wy. Then there must be overlap between w, and the leftmost group g in the map
associated with wy. However, g is not in wy. Thus, incorporation is impossible. A similar
argument holds if w, extends to the left of wy. O

The results of these theorems are summarized in Table 1. Entries in the table marked "INV" indicate
that the particular combination of window types is invalid, Otherwise, the entry contains triples, one for
cach valid configuration, of the form (orientation; ,orientation,,orelationship).

The function find_all_valid_configurations takes two windows and returmns a set of
CONFIGURATION type objects, which represents the set of valid configurations for the given windows.

The computation of find_all_valid_configurations for the running example is now examined. W, is
a left end window and W, is an umbrella window. Thus, W5 could assimilate into Wy, or W, could extend
right of W,. In either case, the orientation of W5.could be asis or swap. (Note that-one could vary the
orientation of W also, but in this case it has been arbitrarily decided that the orientation of W, is varied.)
‘Thus, there are four valid configurations, and the set returned by find_all_valid_configurations is

{ef 1,6 2.6f 3.6 4}, where

¢f 1 = lorientation; = ASIS, orientation, = ASIS, orelationship = OR1|,
of o = lorientation, = ASIS, orientation, = SWAP, orelationship = OR1l,
¢f 5 = lorientation; = ASIS, orientation, = ASIS, orelationship = CR4l,
of 5 = lorientation; = ASIS, crientation, = SWAP, orelationship = CR4l,

Valid configurations for types of windows

W —
wo 4 left end right end umbrella middle
(asis,asis,or,)
.. wap,asis,or
left end INV (asis,asis,or,) (swap,asis,ora) INV
(asis,asis,ora)
(swap,asis,ors)
(asis,asis,or)
. . swap,asis,or
rightend | (asis,asis,or;) INV (ap,as 1) INV
(asis,asis,ors)
(swap,asis,ors)
(asis,asis,or) (asis,asis,orq) (asis,asis,or4)
(asis,swap,or;) | (asis,swap,ory) .
m r 1] ‘, N > -S T 3 y , .
umbrelia (asis,asis,ory) (asis,asis,ora) (asis,any.any) (asis,swap,ors)
{asis,swap,ors) | (asis,swap,ors)
middle INV INV (asis,asis,or) INV
(swap,asis,ors)
Table 1

DNA Mapping -24. FMMD&C

2.3. Finding ATVMLs for a Particular Configuration

The details of computing ATVMLS for a fixed configuration are presented in this section. However,
it is helpful to examine the motivation and flavor of the algorithm with an informal example of the
computation of an ATVML. before the details and pseudocode are presented. This example is presented in
§2.3.1. The pseudocode and a more formal example are given in §2.3.2.

2.3.1. An Informal Example

Consider the running example once again. The iraditional method for finding matchlists between two
windows is to aggregate the virtual fragments from each window into a single set, and then perform a large
number of pairwise comparisons between a fragments from one set and fragments from the other set. For
example, the set of virtual fragments from W, is

{421,445,521,728,772,852,1000,1523,1649,1711,1730,1857,1997,2163,2174,2708 }
and the set of virtual fragments from W is
{446,848,1633,1715,1861,2163,2296,2992,10362}.
Then there are four maximum size matchlists that can be formed from these two sets, one of which is
((445,446),(852,848),(1649,1633),(1730,1715),(1857,1861),(2163,2163)].
The problem is that although it is easy to determine that this matchlist is not topologically valid, it is
difficult to determine why it is not topologically valid, When the virtual fragments from different groups
are aggregaied into the same set, much topological constraint information is lost. This information cannot
be regained from the matchlist. If the matchlist is constructed in a way such that this information is not
lost, then perhaps the reasons for topological constraint violations will be clearer.

One way to accomplish this is to bring matchlist construction down to the group level. The idea is to
pick a starting group in each window and a direction, and then move in the selected direction group by
group, building an overall matchlist from the best matchlists that can be constructed between the current
groups. If a point is reached where matchlist construction cannot continue due to a topological constraint
violation caused by a single virtual fragment, then that virtual fragment is discarded (conceptually removed
from the map). Then matchlist construction continues. If a matchlist of significant size can be constructed
by discarding a small number of virtual fragments, then this matchlist is an ATVML., If a large number of
virtnal fragments must be discarded in order to eliminate topological violations before a matchlist of
significant size is constructed, then no ATVML is constructed.

Cansider the configuration ¢f, the starting group {1857} in W1, the starting group {446,1861,2992)
in W,, and the right scan direction. A maximum size matchiist that can be constructed between the two
groups is [(1857,1861)]. The virtual fragments that did not match are examined to see if they violate
topological constraints. All virtuai fragments in {1857) are part of the matchlist, but there are two virtual
fragments in {446,1861,2992} that are not. However, these two virtual fragments could He to the left of
W. Thus, they do not violate topological constraints. Since {1857} is used entirely by the matchlist, the
group immediately to the right, {445,852,1649], is considered. Now a maximum size matchlist is
constructed between {445,852,1649} and {446,2992}, the set of virtual fragments in the current group of
W, that have not matched yet. The matchlist constrocted is [(445,446)], which can be appended to the
previously constructed matchlist to form [{1857,1861),(445,446)].

At this point, there are virtual fragments in both windows that have not matched and the matchlist
constructed is too small to be considered significant, However, the virtual fragment not matched in W,
namely 2992, could lie to the left of W (i.e., it can be ignored). Assuming this is true, matchlist
construction can continue by moving to the group immediately to the right of {446,1861,2992}, namely
[848).

DNA Mapping -25- FMMD&C

The maximum matchlist construcied between {852,1649} and {848) is [(852,848)]. Now the overall
matchlist is [(1857,1861),(445,446),(852,848)]. There are no unmatched virtual fragments in Wy, so the
group immediately right of [848} is considered, namely {1633,2163), The maximum matchlist
constructed between {1649) and {1633,2163} is [(1649,1633)]. Now the overall matchlist is
[(1857,1861),(445,446),(852,848).(1649,1633)]. There are no unmaiched virtual fragments in ¥, so the
group immediately right of {445,852,1649} is considered, namely {421,1000,1730}. No non-empty
matchlists exist between {421,1000,1730} and {2163].

Unlike the previous instance where unmatched virteal fragments existed in both windows, further
matchlist construction is hindered by a topological constraint at this point. 2163 (in W) cannot lie in the
stretch of genome outside of W, nor can 421, 1000 or 1730 (in W) lie cutside of W,. If one scans W, to
the right a bit, the virmal fragment 1715 is encountered. This could match with 1730. Thus, if 2163 is
discarded, matchlist construction could continue, A similar situation exists in the other map as well, If
421, 1000 and 1730 are discarded, then 2163 in W5 could match with 2163 in W,. However, it is desirable
to discard as few virtual fragments as possible. Thus, the preferred choice at this point is to discard 2163
(in W) and move on to the next group in W,. It is important to note how looking ahead helps decide the
best course of action. The importance of this will become clear in §2.3.2,

Then the maximum matchlist between {421,1000,1730} and {1715} is [(1730,1715)], and the overall
matchlist is [(1857,1861),(445,446),(852,848),(1649,1633),(1730,1715)]. At this point, W, ends. The
overall matchlist is of significant size. Thus, it is an ATVML and 2163 in W, is the only discarded virtual
fragment. (This ATVML corresponds to the one illustrated in Figure 17.)

This quick example exposes the flavor of the topological scanning algorithm, but it illustrates only a
small part of the computation necessary. For example, other ATVMLs might be found if (1} different
starting groups are selected, (2) a different scan direction is selected and (3) more than one matchlist is
found between two groups. In addition, there are many details left unspecified, such as (1) the exact
method for deciding what virtual fragments are discarded or ignored, (2) the maximum number of
discarded virtual fragments allowed and (3) how to handle multiple maximum size matchlists. These issues
are discussed in more detail in the next secticn,

2.3.2. More Formal Discussion and Example

Given two windows and a configuration, there are stifl two choices to be made before ATVMLs can
be constructed. The first is to select a scan direction and the second is to select starting groups. First, the
scan direction is discussed.

It may seem that it is not necessary for a map to be scanned in both directions. However, it is
necessary to scan in both directions. To understand why, consider Figures 20 and 21. In both figures, two
windows and an ATVML are illustrated. Each virtnal fragment in the windows is denoted by a letter, such
that two virtual fragments are within range if and only if they are denoted by the same letter. Figure 20
illustrates an ATVML constructed by starting at the lefimost group in each window ({A]) and scanning the
maps in the right direction. Figure 21 illustrates an ATYML constructed by starting at the rightmost group
in each window ({E)) and scanning the maps in the left direction. The ATVMLs are slightly different,
depending on the direction of the topological scan. In addition, the virtual fragments which are discarded
are different. Thus, the direction of the topological scan can affect the result of the scan. Therefors, it is
necessary to scan in both directions.

Now the issue of selecting stariing groups is discussed. Assuming a scan direction has been chosen,
one must still select the group in each window at which to begin the scan. In the examples in Figures 20
and 21, the groups at the end of the window were selected as the starting groups. However, in §2.3.1, the
starting group in W, was not the group at the end of W5. In general, it cannot be known beforehand which

DNA Mapping -26- FMMD&C

scan
direction

windgxif_
A
. x " -
C \—' B
D ~\— C
c N D
window

Figure 20: Result of the scan in the right direction

DNA Mapping -27- FMMD&C

scan
direction
window
e e
A
-_— r————— —]
RN
C B
D c
— X_
E —_— E
i —_—

window

Figure 21: Result of the scan in the left direction

starting groups will lead to ATVMLs. Thus, more than one possibility must be considered. The overlap
relationship of the two windows determines which possibilities must be attempted.

Suppose that the overlap relationship between windows wy and wy is that w, assimilates into wy,
This overlap relationship places certain constraints on the virtual fragments in the windows. For instance,
the leftmost virtual fragment of w, cannot be to the left of the leftmost virtual fragment of w,. Likewise,
the rightmost virtual fragment of w, cannot be to the right of the rightmost virtual fragment of w,. Itis
said that w starts before (i.e., is more to the left than) w., and ends after (is more.to the right than} w,, In
an assimilation, all virtoal fragments in the smaller window must match with some other virtual fragment.
So unless a virtual fragment in w, is discarded, it must be in the ATVML. This implies that virtual
fragments in w, cannot be ignored.

It is known that the leftmost group of wy overlaps with some group in wy, but which group is not
known. In addition, there is no heuristic for determining a group that is preferred for wy to overlap. Thus,
the starting group of w. is always the leftmost group and the starting group of wi could be any group in wy,
as long as w, still ends after w,. (This is illustrated in Figure 22.) The dashed lines indicate the groups
with which the leftmost group in wy must be paired as the starting group in w,

Suppose that the overlap relationship between wy and w, is that w, extends to the right of w;. This
implies that w, starts before w- and w, ends after w;. It is known that the leftmost group of w- overlaps
with some group in wy, but which group is not known. In this case, there is a heuristic for determining a
group that is preferred for w, to overlap. Similar to before, the starting group of w; is always the leftmost
group and the starting group of wy could be any group in wy, as long as w, ends after wy. (Thisis

DNA Mapping -28. FMMD&C

_’,
-
...."v_‘.. +
-
e
-
-
P
- [
’
Wy -~ ‘7 wa
’/
ks
s 7
"‘ '4
7/
/]
+

Figure 22: Possible starting groups for an assimilation

illustrated in Figure 23.) The difference is that given a choice between different ways of extending wy with
wo, the one that produces the greatest overlap is preferred. Thus, one first attempts to construct an ATVML
starting with the leftmost group in w,. If an ATVML is constructed, then the topological scan for this
direction is terminated. If no ATVML is constructed, then the next to leftmost group in wy is used as the
starting group. This step is repeated until an ATVML is constructed or until all groups within w, have been
used as the starting group. With this technique, the greatest possible overlap between w; and w i3
obtained,

Thus, in order to be sure that most possibilities for constructing ATVMLs have been explored, the
topological scan must be performed in both directions (left and right) and with all possible starting groups
that are applicable for the given configuration. This is reflected in the psendocode for the function
topological_scan_fixed_configuration (see Figure 19) and the function
topological_scan_fixed_directicn (see Figure 24).

The function topological_scan_fixed_configuration takes two windows and a configuration as
input and returns a set of PARTIAL_SCAN type objects, which represents the result of all topological
scans for this given configuration. It accomplishes this by calling topological_scan_fixed_direction
twice. It specifies the scan direction as left in the first call and as right in the second call. The set of
PARTIAL_SCAN type objects that are returned by each call to topclogical_scan_fixed_direction are
unioned and returned.

The function topological_scan_fixed_direction takes two windows, a configuration and a direction
as input and returns a set of PARTIAL_SCAN type objects, which represents the result of all topological
scans for the given configuration and direction. It is in topological_scan_fixed_direction that the

DNA Mapping

-29.
— -
-~ _
-1————::7
-2
PR
W I” ’z/,
1 ’, Wa
’
’
///
¥ !
¢
/
L

Figure 23: Possible starting groups for an extension

FMMD&:C

DNA Mapping <30 FMMD&C

SET
topological_scan_{ixed_direction{w,; w,,c,dir)
WINDOW W1.Wa,
CONFIGURATION ¢;
DIRECTION dir;
|
INTEGER starts,ends;
SET ans;
LIST $51,852;
ans « &

ss; « window_find_vfrag_setseq(w,); ss1 « window_find_vfrag_setseq(wa);
if {c.orientation; = SWAP xor dir = LEFT) then ss; « list_reverse(ss;); fi
if (c.arientationy = SWAP xor dir = LEFT) then ss; « list_reverse(ss;); fi

case
subcase {c.orelationship = OR3)
starts «- 2; ends - 2;
subcase (c.arelationship = OR4)
starts «— 1, ends « 1;
subcase {(c.orelationship = OR1 and dir = RIGHT) or
(c.orelationship = OR2 and dir = LEFT))
starts ¢ 2; ends ¢ 1;
subcase ({c.orelationship = OR1 and dir = LEFT} or
{c.orelationship = CR2 and dir = RIGHT))
starls ¢ 1; ends « 2;
esac

if (c.orefationship = OR3 or c.orelationship = OR4)
then
while {ss5; £ [J and ss; #[]) do
ans « ans w topological_scan_{ixed_start(ss,;, ss,,starls, ends);

SSgtas < SSgtansl2i--Li
od
else
white (ss; # [and ss; # [] and ans = &) do
ans « topological_scan_fixed_start(ss,,ss,,5tarts,ends);

SSstarts « SSstaris]2,--.];
od
fi

return{ans};

Figure 24: Psendocode for topological_scan_fixed_direction

different starting groups are addressed. By examining the overlap relationship and the scan direction,
topological_scan_fixed_direction determines which window should start first and which window should
end later. In addition, topological_scan_fixed_direction isclates the virtual fragments of interest by
extracting the virtual fragment set sequence {or VFSS) of each window. The VFSS of a window wisa
list of sets of virtual fragments that corresponds (o the partial order of the virtual fragments within the
window. For example, the VFSS of W, is
[£{2296],{10362},(446,1861,2092},(848},{1633,2163},{1715]].
The VFSS is used at this point (1) to make the virtual fragment information easier to manipulate and (2) to
allow such manipulation withount modifying the criginal windows.

Then topological_scan_fixed_direction calls topological_scan_fixed_start (see Figure 25) with
the proper VFSSs and starting positions until each starting group has been used (if the overlap relationship
indicates an assimilation) or until a scan succeeds in constructing at least one ATVML (if the overlap
relationship indicates an extension).

DNA Mapping -31- FMMD&C

SET
topological_scan_fixed_start(ss,,55,;,5tarts,ends)
LIST §81,553;
INTEGER starts,ends;
{
INTEGER not_ends;
LIST ml;
STACK s,
PARTIAL_SCAN ps;
SET ans,mis lfsy ,lfsy;
ans « &;

if {ends = 1} then not_ends « 2; else not_ends « 1; i
ps ¢ find_initial_partial_scan{ss;,ssz);

s «- emply_stack;

stack_push(s,ps);

while (s # empty_stack) do
ps « stack_pop(s);

if (ps.cfs; = NULL or ps.cfs, = NULL})
then
if (Ips.atvml} 2 MIN_OVERLAP and ps.sSpat_ongs = (I}
then ans « ans U {ps};
fi
else
mls « find_best_matchlists(ps.cfs; ,ps.cfs,);

forml e mls do
Ifs; « ps.cfs; — left_elements_of(ml};
s, e ps.cls, — right_elements_of(mi);

if (If51 =@ or lsz = @)
then s « scan_right{ml,ps.s lfs, ifs; starts);
else
if {ps.first_set)
then s « fix_by_ignore{ml,ps,s,starts);
else s « fix_by_discard{ml, ps,s,fs, Ifs,);
i
fi
rof
fi
od

refurn(ans);

Figure 25: Pseudocode for topological_scan_fixed_start

Before examining topological_scan_fixed_start in detail, a number of definitions are useful.
Recall that in the example of §2.3.1, the maximum size matchlists between a set of virtual fragments from
each window were computed. The set of virtual fragments from a window that maximum size matchlists
are computed from at a particular time is called the current virtual fragment set (or current fragment set
or CFS) of the window. Matchlists computed between CFSs are called local matchlists. Also recall that
after a maximum size matchlist was computed, the virtual fragments that did not appear in a local matchlist
were of importance. The set of virtual fragments in a current fragment set s that do not appear in a local
matchlist x is the leftover virtual fragment set (or leftover fragment set or LFS) of 5 and x. The CFS
and LFS are used to keep track of where the scan is and how it should continue.

DNA Mapping -32- FMMD&C

The scheme used in topological_scan_fixed_start is as follows. Initially, there is one ATVML
which is empty and the CFS of each VFSS is the set of virtual fragments in the starting group, All
maximum size local matchlists between the CFSs of each window is computed. Each local matchlist is
appended to the previous ATVML to form a new and distinct ATVML and the LFS for each window with
respect to each local matchlist is computed. The LFS corresponding to each new ATVML is examined,

Let ml be the ATVML corresponding to some LFS, If at least one of the LFSs is empty, then there are no
topological problems introduced by ml. New CFSs are computed and the topological scan continues. (This
processing is performed by the function scan_right, whose psendocode is given in Figure 26.)

If neither LFS is empty, then there is a topological problem introduced by ml. If this problem can be
avoided by ignoring some virtual fragments, then those virtual fragments are ignored, new CFSs are
computed and the topological scan continues. (This processing is performed by the function
fix_by_ignore, whose pseudocode is given in Figure 27.} Otherwise, if this problem can be avoided by
discarding virtual fragments, then those virtual fragments are discarded, new CFSs-are computed and the .
topological scan continues. (This processing is performed by the function fix_by_discard, whose
pseudocode is given in Figure 28.) If the problem cannot be avoided by ignoring or discarding virtual
fragments, then m! is not part of an ATVML and the scan with m/ is terminated.

STACK

scan_right(ml,ps,s,Ifs, ifs,,starts)
LIST mi;
PARTIAL_SCAN ps;
STACK s,
SET Ifs;,)is3;
INTEGER starts;

{
STACK ans;

PARTIAL_SCAN ps;

ps' « ps;
ps'.atvml « ps'.atvml §| ml;

if (Ifs; = @)
then
ps’.cfs; « ps'.ss{1};
ps'.ss; « ps'.ssf2,..];
if (starts = 1) then ps'firsi_set « FALSE; fi
glse
ps'.cfs; « Ifsy;
fi

if ("Sz = @)
then
ps'.cfs; « ps.ssyf1];
ps'.88; ¢ ps’.ssy(2,...];
if (starts = 2} then ps'.first_set « FALSE; fi
else
ps'.cfsy « lfsy;
fi

ans ¢ s; stack_push{ans ps');
returns{ans);

Figure 26: Pscudocode for scan_right

DNA Mapping -33- FMMD&C

STACK
fix_by_tgnore(ml,ps,s,starts)
LIST mi;
PARTIAL_SCAN ps;
STACK s,
INTEGER starts;
{
STACK ans;

PARTIAL_SCAN ps’;
ans «- §;

if (ml # [or ps.atvml £[]}
then

ps’ e ps;
ps’.atvml « ps’.atvml]| mi;
ps'.CfSgtans PS'.SSstans{1];
PS'.SSgians ¢ PS'.SSgrars[2,.. 1
ps'.first_set & FALSE;
stack_push{ans,ps'});

fi

return{ans);

Figure 27: Pseudocode for fix_by_ignore

DNA Mapping -34- FMMDG&C

STACK
fix_by_discard({ml,ps,s,fs,Ifs5)
LIST ;

m
PARTIAL_SCAN ps;

STACK s
SET Ifsy,lfs;
{
INTEGER ij,dry,drs;
BOCLEAN discard, discard,,discard|;
MATCH_TYPE mity,mity;
STACK ans;

PARTIAL_SCAN ps';

discard; « FALSE; discard; « FALSE; discard,,; « FALSE;)
ans « s; dr; « MAX_DISCARDS - |ps.discards, |; dry « MAX_DISCARDS - |ps.discards,|;
mt; « best_match_ahead(lfs;,ps.ssy); mt; « best_match_ahead(ifs,,ps.ss,);

if ((mt; = MATCHED and mt, = MATCHED) or {mt; = RAN_OUT and mt, = RAN_OUT}}
if (iifs,| = 1) then discard, « TRUE; fi
if (lifsy] = 1) then discard, « TRUE; fi

fi

if ((mf; = NOT_MATCHED and mt; = MATCHED) or {mt; = RAN_QUT and mt; = MATCHED) or
{mt; = NOT_MATCHED and mt; = BAN_QUT))
if {|lfs;| = 1) then discard, « TRUE; else if (lis,] = 1) then discard, « TRUE; fi ti
fi

if ((mt; = MATCHED and mty = NOT_MATCHED] or (mt; = MATCHED and mt, = RAN_CUT) or
{mt; = RAN_OUT and mt, = NOT_MATCHED))
if (|Ifs4] = 1) then discard, « TRUE; else if {|Ifs;| = 1) then discard; « TRUE; fi fi
fi

if {|lfs;] = 1 and |ifs;| = 1 and mt; = NOT_MATCHED and mt; = NOT_MATCHED)}
then discardy .o « TRUE;
]

if (discard;,; and dr; > 0 and drp > 0)
then

ps’ < ps;
ps’.atvmi ¢ ps'.atvmi || mi;
ps'.discards; « ps'.discards; w Ifs;; ps'.discards, « ps'.discards; U fsa;
ps'.cfs; « ps'.ss{1]; ps'.ss; « ps'.s5i[2,...];
ps'.cfsy « ps'.ss.[1]: ps'.ss; « ps'ssy(2,..];
ps"first_set « FALSE;
stack_push{ans,ps');

fi

forie {1,2) do
if (discard; and dr; > 0)
then

if i=1)thenj« 2;elseje 1;fi
ps' « ps;
ps'.atvml « ps'.atvml || mi;
ps'.discards; « ps’.discards; w Ifs;;
ps'.cfs; « ps'.ss;[1]; ps'.s5; « ps’.ssi(2,..];

ps’.cfs| « lfsy;
if (starts = i) then ps’.first_set « FALSE: fi
stack_push(ans,ps");
fi
rof
return{ans);

Figure 28: Psendocode for fix_by_discard

DNA Mapping -35- FMMD&C

If either of the new CFSs is NULL, then the scan cannot continue. At this point, the ATVML
corresponding o these CFSs is examined. If the size of the ATVML is greater than or equal to the
minimam overlap requirement for incorporation (see §1.2.2) and the VFSS corresponding to the map that
ends before the other is completely scanned, then this ATYML (and other related information) is placed in
the set to be returned by topological_scan_fixed_start.

The key data structure in topological_scan_fixed_start is PARTIAL_SCAN, which represents the
current state of the topological scan for a particular ATVML. PARTIAL_SCAN is a record-like structure
containing eight fields: ss,, $3,, ¢fs;, ¢fs,, atviml, discards;, discards, and first_set. The fields ss; and
58, are VFSSs, ¢fs; and cfs, are CFSs, atvm! is an ATVML, discards; and discards, are sets of
discarded virtual fragments and first_set is a Boolean that indicates whether any of the virtual fragments in
the leftmost set of the original VFSS of the map that starts first are still in the CFS. (This is necessary for
determining if virtual fragments can be ignored.) A stack of PARTIAL_SCANS is used to keep track of the
different possible ATVMLs which can be constructed.

The running example is now used to present the remaining details of topological scanning, in which
the trace of the call find_all_scans(W;,W,) will be presented. The set ans is set to & and the function
find_all_valid_configurations is called. This call has already been examined in §2.2 and returns
{ef1.¢f2.0F 3,6 4). Then find_all_scans calls topological_scan_fixed_configuration four times. The
first call (which uses ¢f ;) will be examined in detai! and the other calls will not.

In the first call, topological_scan_fixed_configuration calls topological_scan_fixed_direction
(W, W,.cf 1 ,LEFT). Then topological_scan_fixed_direction computes the VFSSs of W, and W, by
calling window_find_vfrag_setseq twice. Because ¢f .orientation, = ASIS, ¢f ;.orientation, = ASIS
and dir = LEFT, both VFSSs are reversed. As aresult, 88, =
[{728,2708},{1523,1711},(772},{2174},{1997},{521},{2163},{421,1000,1730},{445,852,1649},{1857]]
and s, = [{1715),{1633,2163},(848),{446,1861,2992},{10362},{2296}]. Because ¢f,.orelationship =
OR1, starts = 1 and ends = 2. Then a loop is entered where topological_scan_fixed_start is called
repeatedly until it returns 2 non-empty set or until one of the VESSs is exhausted.

The first call to topological_scan_fixed_start is now examined. The set ans is setto @. Any
PARTIAL_SCAN which includes an ATVML of significant size will be placed in ans. A call to
find_initial_partial_scan creates a PARTIAL_SCAN psy that represents the initial state of the search for
ATVMLs. (The pseudocode for find_initial_partial_scan is given in Figure 29, and the values of the

PARTIAL_SCAN
find_initial_partial_scan(ss,,5s2)

LIST $51,552;
{

PARTIAL_SCAN ans;

ans.cls; « ss,{1]; ans.ss; « s5[2...];
ans.cls, + s8,[1]; ans.ss; ¢ 534(2,...];
ans.atvml « [];

ans.discards; « &J; ans.discardss «- &;
ans.first_set « TRUE;

return{ans);

Figure 29: Pseudocode for find_initial_partial_scan

DNA Mapping - 36 - FMMD&C

various fields of psp are given in Figure 30.) Then psy is pushed onto an empty stack § and the whife loop
is entered. The object on top of the stack, ps, at this point, is popped off of the stack, leaving it empty. pso
is now the curreat PARTIAL_SCAN of interest. Neither CFS of psg is NULL, and thus the set of
maximum size local matchlists between the CFSs ({728,2708} and {1715}) is computed. In this case, the
empty matchlist is the only local matchlist. Next the LFSs with respect to the empty list are computed,
resulting in Ifs; = {728,2708} and ifs, = {1715]}. Since neither lfs; nor lfs; is the empty set, there must
be a topological violation, Recall that there are two ways to handle such topological violations: ignore or
discard virtual fragments,

Since psq.first_set is true, the virtual fragments in If$; are from the starting group of Wy, This
implies that it is possible that these virteal fragments can be ignored. Thus, the function fix_by_ignore is
called. fix_by_ignore takes as input a local matchlist mi, a PARTIAL_SCAN ps, a stack s of
PARTIAL_SCANs and an integer starts (which in this call are [], psy, an empty stack, and 1,
respectively). fix_by_ignore determines if the members of the LES of the starting window can be ignored.
The basic premise behind fix_by_ignore is to create a new PARTIAL_SCAN object for each possible way
of ignoring virtual fragments, push these PARTIAL_SCANSs on top of the given stack and retum the stack.
{fix_by_discard and scan_right use the creation of new PARTIAL_SCANSs and the stack in a similar
manner.)

In the running example, it is known that the members of the LES of the starting window are from the
starting group of that window, and thus it is possible that these virtual fragments actually lie to the left of
virtual fragments in the ATVML that is being constructed. Thus, it would certainly be a valid course of
action if these virtual fragments were ignored. However, in order to make the scanning algorithm more
efficient, these virtual fragments will not be ignored in this particular case. To examine why, consider the
following possibility.

Let g, be the starting group of a starting window and let g, be the group immediately to the right of
£1. Suppose that all the virtual fragments in g, are in that window’s LFS. If one then ignores the virtnal
fragments in that LFS, any ATVMLs that are constructed after that point will actually begin in g,. Those
same ATVMLs will be constructed when g, is used as the starting group. This means some computation is
unnecessarily duplicated. By not allowing the virtual fragments in an LFS that contains all the virtnal
fragments of the starting group, such duplication can be avoided. To explicitly check for this could be time
consuming, but fortunately the following two, very simple, conditions act as indicators of this situation.

{xx1) The local matchlist is empty.
(xx3) The ATVML of the PARTIAL_SCAN is empty.

So if xx; and xx; both hold, fix_by_ignore does not allow virtual fragments to be ignored and
simply returns the stack . If either xx; or xx; fails to hold, then fix_by_ignore allows the virtual
fragments in the LFS to be ignored. It accomplishes this by creating a new PARTIAL_SCAN where

(1) the ATVML is the ATVML of the original PARTIAL_SCAN with the local matchlist appended
and

atvml =] cis, = {728,2708) cfgy = {1715)
ss, =[{1523,1711},{772}....] 58, =[[1633,2163},{848)}....]
discards, =@ discards, =@ first_set=TRUE

Figure 30: The PARTIAL_SCAN ps,

DNA Mapping -37- FMMD&C

@ the Ieftmost set of virtual fragments in the VFSS of the starting window is extracted and becomes
the CFS of that window.

The new PARTIAL_SCAN is pushed onto s, and s is returned.

In our example, conditions xx; and xx, do hold and thus, fix_by_ignore does not ignore any virtual
fragments. It simply returns the stack s, which is empty.

Control returns to topological_scan_fixed_start, which then sets 8 to be the empty stack. The
while loop is exited and fopological_scan_fixed_start returns @. This means
topological_scan_fixed_start could not construct any ATVMLSs using {728,2708] as the starting group of
W,.

Now control returns to topological_scan_fixed_direction, The leftmost member of 58, is .
extracted resulting in 85, =

[{1523,1711},(772},{2174},{1997},{521},{2163},{421,1000,1730],{445,852,1649]), 1857].
This effectively causes the new starting group to be the next group immediately to the right of the previous
starting group. Then topological_scan_fixed_start is called a second time,

A call to find_initial_partial_scan creates a PARTIAL_SCAN ps,, which represents the initial state
of the search for ATVMLs with this new starting group (and is illustrated in Figure 31). ps; is pushed onto
the stack s and the while loop is entered. ps; is immediately popped off of the stack and becomes the
current PARTIAL_SCAN. Neither CFS of ps; is empty, so the maximum size local matchlists between
them ({1523,1711) and {1715}) are computed. One matchlist is found, [(1711,1715)]. Now the LFS of
each CFS with respect to this matchlist is computed, resulting in Ifs; = {1523} and lfs, = @. The fact that
Ifs, is the empty set means that the focal matchlist does not introduce any topological violations.
scan_right is called to reset the CFSs so that scanning may continue.

scan_right takes as input a local matchlist ml, a PARTIAL_SCAN ps, a stack s, LFSs Ifs; and ifs,
and an integer starts (which in this case are [(1711,1715)], psy, an empty stack, {1523}, @ and 1,
respectively). It creates a new PARTIAL_SCAN from the given one by (1) appending the local matchlist
to the ATVML of the given PARTIAL_SCAN and if necessary, (2) extracting the leftmost set of virtual
fragments in the VFSS of the starting window and assigning it 1o be the new CFS of that window. Then
this new PARTIAL_SCAN is pushed cnto 5, and S is returned.

In the running example, the PARTIAL_SCAN ps, is created (see Figure 32). Note that the local
matchlist ([(1711,1725)]) has been appended to the ATVML of ps; ({I) to produce the ATVML of ps,.
Also note that the leftmost set in ps,.SS, has been extracted and assigned to ps,.cfs;. These actions set up
for further ATVML construction by bringing out the next group’s virtual fragments into the CFS, where it
is possible for them to become part of the next local matchlist. ps, is pushed onto s and scan_right
returns.

atvmi =[] cfsy = {1523,1711} cfsy = {1715}
ss; = [{772],{2174]),..] s8,=[{1633,2163},{848}....]
discards, =@ discards; =& first_set=TRUE

Figure 31: The PARTIAL_SCAN ps,

DNA Mapping -38- FMMD&C

atvml = [(1711,1725)] cfs; = {1523} cfs, = {1633,2163)
88, =[(772),{2174])...] &8, =[[848],(446,1861,2992},...]
discards; =& discards, =@ firsi_set = TRUE

Figure 32: The PARTIAL_SCAN ps,

Control returns to topological_scan_fixed_start and now s contains only ps,. The while lcop
continues and psy is popped olf of s 10 become the current PARTIAL_SCAN. Now the maximum size
Iocal matchlists between the CFSs ({1523} and {1633,2163}) are computed. The only one in this case is
the empty list. The LFSs are computed, resulting in ifs; = {1523} and lfs, = {1633,2163}. Since neither
LFS is empty, some topological violation has occurred. Since ps, first_set is TRUE, fix_by_ignore is
called,

In this call to fix_by_ignhore, the ATVML of the given PARTIAL_SCAN is non-empty. Thus,
condition xx; does not hold and the virtual fragments in the LFS of the starting window can be ignored. So
anew PARTIAL_SCAN ps; is created (see Figure 33) and pushed onto S. No virtual fragments in the
starting group of the starting window are still in the CFS of that window because they have just been
ignored and the field pss.first_set is set to FALSE to reflect this fact. This will prevent any other virtual
fragments from being ignored when building upon the ATVML of pss.

Control returns to topological_scan_fixed_start and now s contains only pss. Again, the while
loop continues and pss is popped off of § 10 become the current PARTIAL_SCAN. Now the maximum
size local matchlists between the CFSs ({772} and {1633,2163}) are computed. Once again, the only
matchlist is the empty list. Recall that ps4.first_set is FALSE. Thus, fix_by_ignore cannot be called at
this point. Instead, the function fix_by_discard is called.

fix_by_discard takes as input a local matchlist mi, a PARTIAL_SCAN ps, a stack of
PARTIAL_SCANs s, and two LFSs ifs; and Ifs,. The objective of fix_by_discard is to find reasonable
(but not necessarily all) ways of discarding virtual fragments in the current LFSs so that the construction of
ATVMLs can continue.

Recall that the reason for the construction of ATVMLs is to determine possible overlap between two
windows without resorting to an algorithm where (1) topological constraints are completely ignored or (2)
topological constraints are strictly enforced. The objective is to have an approach which is somewhere
between these two extremes, while leaning toward the second extreme. In other words, although
topological constraints should not be stricily enforced, one does not want to allow too many topological
constraints to be violated. In order to fulfill this objective, the following rules are enforced when making
decisions about discarding virtual fragments.

atvmi = [(1711,1725)] cfg; = {772} cfs, = {1633,2163}
ssy = [{2174),{1997)...] S, = [{848},{446,1861,2992],...]
discards; =@ discards,; =& first_set = FALSE

Figure 33: The PARTIAL_SCAN ps,

DNA Mapping -39- FMMD&C

{dc)} Nomore than one virtnal fragment in a particular group may be discarded.

(dcz) Nomore than a predetermined number (MAX_DISCARDS) of virtual fragments in a particular
window can be discarded.

In this report, it is assumed that the value of MAX_DISCARDS is two. This value seems to work
well for the kinds of examples to which FIX has been applied. It is certainly possible that a different value
may work better for examples with different characteristics. However, the particular value one chooses has
an effect upon the analysis to be presented in §3 and §4. A slightly different analysis would be required for
values of MAX_DISCARDS other than two. This will become clear in §3 and §4.

Also keep in mind that dc, and de, are only heuristics. More sophisticated rules similar to de; and
deg might improve the performance of FIX. Again, changes to these rules might require a different
analysis in §3 and §4. The appeal of dc; and de, is that they are relatively simple and seem to work well
for the kinds of examples to which FIX has been applied.

It may be reasonable to avoid topological violations by (1) discarding a virtual fragment from Wy, (2)
discarding a virtual fragment from W or (3) discarding a virtual fragment from both W, and W,. The
primary question is: How should fix_by_discard decide which of these possibilities are reasonable in a
particular situation? The key to answering this question is in the function best_match_ahead (see Figure
34). best_match_ahead answers the question: Does a topologically valid matchlist exists between the
virtual fragmenits in the LFS associated with a window and virtual fragments in the other window, if the
virtual fragments in the LFS associated with the second window are discarded? To see why this question is
important, consider the situation illustrated in Figure 35.

The solid lines between the windows Z, and Z, denote the current ATVML. Suppose that at this
point, the LFS associated with the Z, contains virtual fragments from the group g; and the LFS associated
with Z, contains only a virtual fragment from the group g,. Suppose that one finds that a topologically
valid matchlist exists between the virtual fragments in the LES of Z; and the virtual fragments in the
groups immediately to the right of g,. (This matchlist is represented by the dashed lines.) This situation
indicates that if the virtual fragment in the LFS of Z, is discarded, the chances of constructing an ATVML
of significant size are greatly increased. That is, because a matchlist is found by "looking ahead”,
discarding a particular virtnal fragment is determined to be a reasonable course of action. The functicn
best_match_ahead performs this "lockahead" and returns whether such matchlists are found.

best_match_ahead takes as input a set of virtual fragments s and a VFSS ss. It retumns one of the
following three codes: MATCHED, NOT_MATCHED or RAN_OUT. best_match_ahead returns
MATCHED if a topologically valid matchlist exists between the virtual fragments in § and ss such that (1)
it starts at the left end of 55 and (2) it uses all members of 5. best_match_ahead returns RAN_OUT if a
topologically valid matchlist exists between the virtual fragments in § and s such that at least one member
of s is used, but no matchlist exists which uses all members of s. Otherwise, best_match_ahead returns
NOT_MATCHED. (In the example illustrated in Figure 35, best_match_ahead returns MATCHED.)

Now the discussion returns to the operation of fix_by_discard. fix_by_discard calls
best_maich_ahead twice. The first time it uses Ifs; and ps. 55,. (Le., is there a matchlist between the
LFS of W, and the virtual fragments beyond the current group of W,?) The code returned is then assigned
to mit;. The second time it uses Ifs, and ps. 88;, The code returned is then assigned to mt,. In the running
example, the first call to best_maich_ahead (where s = {772) and s =
[{848),{446,1861,2992},{10362},{2296}]) returns NOT_MATCHED. The second call (where s =
{1633,2163} and 55 = [{2174},{1997},{521},{2163),{421,1000,1730},{445,852,1649},{1857}] also
returns NOT_MATCHED.

DNA Mapping -40 - FMMD&C

MATCH_TYPE
best_match_ahead{s,ss)
SET s;
LisST 8S;
{
MATCH_TYPE ans;
SET s’ mis;
LIST ss’ ml;
if (s = @)
then ans « MATCHED:;
else

if{ss =01
then ans « RAN_QUT:
else
ans « NOT_MATCHED;
mls « find_best_matchlists(s,ss[1]};

for ml e mils do
8" ¢« s — left_elements_of(ml);
if (s" = @)
then ans ¢« MATCHED;
else
if {Iml} = Iss[1}))
then
ss’ « ssf2,..];
if {best_match_ahead(s’,ss”) = MATCHED)
then ans «— MATCHED;
fi
fi
fi
rof
fi
fi

return{ans};

Figure 34: Pseudocode for best_match_ahead

DNA Mapping -41. FMMD&C

scan
direction
1 ———————— ——
-
Zi
RN 22
& NN
~
Y
N - -
—
Zy
g

Figure 35: Looking ahead for a matchlist

Now, fix_by_discard must decide which (if any) virtual fragments can be discarded based on rules
dcy and dc, and the results of the calls to best_match_ahead. The results from the running example
indicate that (1) discarding just the virtual fragment in the LFS of W, does not greatly increase the chances
of building a large ATVML and (2) discarding just the virtual fragment in the LFS of W, does not greatly
increase the chances of building a large ATVML, (Note that since the LFS of W, contains more than one
virtual fragment, they cannot be discarded withoul violating dc; anyway.) Thus, the only way to increase
the chances of building a large ATVML is to discard the virtual fragments in both LESs. However, since
the LFS of W, contains more than one member, they cannot be discarded without violating rule dcy. Thus,
fix_by_discard has no reasonable way to discard virtual fragments at this point, so it creates no new
PARTIAL_SCANs and simply returns the stack s.

Control returns to topological_scan_fixed_start and s becomes the empty stack. Thus, the while
loop is exited and lopological_scan_fixed_start returns &, indicating that no ATVMLs could be
constructed using {1523,1711} as the starting group of W,.

The next five calls to topological_scan_fixed_start (which use {772}, {2174}, {1997}, {521] and
{2163] as the starting group of W, respectively) all return &, In fact, each of these calls is unable to build
an ATVML of size one, much less one of a significant size.

The next call to topological_scan_fixed_start is different; it uses {421,1000,1730} as the starting
group of W, It first calls find_initial_partial_scan, which creates the PARTIAL_SCAN ps, (see Figure
36). ps4 is pushed onto s, the while loop is entered and ps, is popped off of S to become the current
PARTIAL_SCAN. The maximum size local matchlist between the CFSs ({421,1000,1730} and {1715})

DNA Mapping -42 - FMMD&C

atvml =[] cfs, = {421,1000,1730} cfs, = {1715}
ss; = [{445,852,1649},{1857}] ss, =[{1633,2163},(848)...]
discards; =@ discards, =& first_set=TRUE

Figure 36: The PARTIAL_SCAN ps,

are compuied, One matchlist is found, [(1730,1715)]. The LFSs are computed, resulting in Ifs; =
{421,1000) and Ifs; = &. Since Ifs; is empty, no topological violations exist and scan_right is called.
scan_right creates a new PARTIAL_SCAN pss (see Figure 37) and retumns a stack containing only pss.

Control returns to topological_scan_fixed_start and pss is popped off of S to become the current
PARTIAL_SCAN. The maximum size local matchlists between the CFSs ({421,1000} and {1633,2163)})
are computed. The only such matchlist is the empty list. The LFSs are computed again, resulting in Ifs; =
{421,1000} and ¥fs; = {1633,2163}. Since neither LFS is empty, some topological violation exists. Since
pss first_set is TRUE, fix_by_ignore is called.

fix_by_ignore successfully ignores the virtual fragments in the LFS of W, creating the
PARTIAL_SCAN psg (see Figure 38) and returning a stack containing only pse.

Control returns to topological_scan_fixed_start and pss is popped off of S to become the current
PARTIAL_SCAN. The maximum size local matchlists between the CFSs ({445,852,1649} and
{1633,2163}) are computed. One matchlist is found, [(1649,1633)]. The L¥Ss are computed again,
resulting in Ifs; = {445,852} and lfs; = {2163). Since neither LFS is empty, some topological violation
exists. Since psg.first_set is FALSE, fix_by_discard is called.

As in the previous call to fix_by_discard, the function best_match_ahead is called twice. In the
first call, best_match_ahead successfully finds a topologically valid matchlist between Ifs; and psq.85;
(namely [(445,446).(852,848)]) and thus it returns MATCHED., In the second call, best_match_ahead
fails to find any matchlists between IfS, and psg.5$; and thus it returng NOT_MATCHED. Again,
fix_by_discard must decide what is a reasonable course of action given these results while still following
rules de; and de,. In this case, the chances of constructing a significant ATVML are increased if the
member of Ifs, (i.e., 2163) is discarded (because the first call to best_match_ahead returned
MATCHED). Since llfs,! = 1 and there have been no previous discards, rules dc, and de; are not violated.

atvmi =[(1730,1715)] cfs; = (421,1000) cfs, = {1633,2163}
557 = [{445,852,1649},{1857}] ss, =[{848},{446,1861,2992},...]
discards; =@ discards, =@ first_set= TRUE

Figure 37: The PARTIAL_SCAN pss

atvml=[(1730,1715)] cfs; = {445,852,1649] cfs, = {1633,2163}
88; = [{1857}1 s5;=[{848},{446,1861,2092},...]
discards, =& discards, =@ first_set = FALSE

Figure 38: The PARTIAL_SCAN pss

DNA Mapping -43 - FMMD&:C

The chances of constructing a significant ATVML are not increased if the members of the Ifs; are discarded
{because the second call to best_match_ahead returned NOT_MATCHED). Thus, fix_by_discard
creates one new PARTIAL_SCAN ps; (see Figure 39} and returns a stack containing only ps;. (Note that
the set ps;.discards, contains 2163, the discarded virtual fragment.)

Control returns to topological_scan_fixed_start and psy is popped off of s to become the current
PARTIAL_SCAN. The maximum size local matchlists between the CFSs ({445,852} and {848}) are
computed. One matchlist is found, [(852,848)]. The LFSs are computed again, resulting in ifs, = [445}
and lfs, = @. Since Ifs, is empty, no topological violations have been introduced and scan_right is called.
scan_right creates a new PARTIAL_SCAN psy (see Figure 40) and returns a stack containing only pss.

The next two passes through the while loop in topological_scan_fixed_start are similar, resulting
in the creation of PARTIAL_SCANs psg and psyg (see Figures 41 and 42, respectively). So at this point
Ps1p is the current PARTIAL_SCAN. However, unlike all previous cases, one of the CFSs is NULL (ie.,
there are no more virtual fragments left in one of the VFS8S8s). Thus, the construction of ATVMLs cannot:
continue. The question at this point is: Does ps,o represent an ATVML of interest? It does if the following
conditions hold.

(fa;) The size of the ATVML is greater than or equal to the minimum size fragment overlap required for
window incorporation (MIN_OVERLAP).

atvml = [(1730,1715),(1649,1633)] cfs, = [445,852) cis, = {848}
ss; ={{1857}] ss; = [{446,1861,2092],{10362},{2296}]
discards; =@ discards, = (2163} first_set = FALSE

Figure 39: The PARTIAL_SCAN psq

atvnl = [(1730,1715),(1649,1633),(852,848)] cfs, = (445} cfs; = {446,1861,2992)
s8; =[{1857}] ss,=[{10362},{2296}]
discards; =& discards, = {2163} first_set = FALSE

Figure 40: The PARTIAL_SCAN ps;

atvml = [(1730,1715),(1649,1633),(852,848),(445,446)] cfs, = {1857) cfs, = {1861,2992}
88, =] ss; = [{10362},{2296)]
discards, =& discards, = {2163} first_set = FALSE

Figure 41: The PARTIAL_SCAN psy

atvml = [(1730,1715),(1649,1633),(852,848),(445,446),(1857,1861)] cfs; = NULL cfs, = {2992}
85 =] $5, = [{10362),{2296}]
discards, =@ discards, = {2163} first_set=FALSE

Figure 42: The PARTIAL_SCAN psyp

DNA Mapping -44 . FMMD&C

(iaz) The VFSS associated with the window that is supposed to end later (indicated by ends) is empty.

Condition ia; ensures that the ATVML is of significant size. Condition ia, ensures that the
configuration of the windows determined by the ATVML agrees with the configuration that was expected.

Assuming the value of MIN_CVERLAP is four (a common value), psip satisfies conditions ia; and
iaz. Thus, psyp is placed in ans, resulting in ans = { ps;g). The stack s is now empty, and thus the while
loop is exited and topological_scan_fixed_start returns { ps;o].

The final two calls to topological_scan_fixed_start for the configuration ¢f use [445,852,1649)
and {1857} as the starting group of W, respectively. Both calls retwrn &, primarily because no virtual
fragments are available in W, to match with 1715, Thus, the call to topological_scan_fixed_direction
withwy = Wy, Wy = W, ¢ = ¢f; and dir = LEFT returns { psyg}.

So the left scan of W, and W, for the configuration ¢f; is complete. Next, the right scan of W, and
W for the configuration ¢f; occurs. None of the details of this scan will be presented. Itisrelatively easy
to see that the same ATVML found in the left scan is found in the right scan, except that it is constructed in
the opposite order. The call to topological_scan_fixed_direction with wy = Wy, wy = Wy, € = ¢f; and dir
= RIGHT returns { psy,} (see Figure 43). Thus, the function topological_scan_fixed_configuration
returns { psi0.p511).

Control finally retums to find_all_scans and pss is set to { ps;g,ps;;). Each PARTIAL_SCAN in
pss is used to create a SCAN type object. Some of the information in the PARTIAL_SCAN is no longer
necessary and the information that is necessary is placed in the SCAN that is created. The SCAN s, (see
Figure 44) is created from ps;p. The SCAN 53 (see Figure 45) is created from psy;. Both s; and s, are
placed in the set ans.

The next three calls to topological_scan_fixed configuration {(which use ¢f, ¢f 3 and ¢f 4) all
return &, Thus, find_all_scans returns {s;,5,}.

atvml = [(1857,1861),(445,446),(852,848),(1649,1633),(1730,1715)]
cfs; = {421,1000) ¢fs, = NULL

ss; ={{2163},{521},..] ss;=]]

discards; =& discards, = {2163) first_set = FALSE

Figure 43: The PARTIAL_SCAN psy;

atvml = [(1730,1715),(1649,1633),(852,848),(445,446),(1857,1861)]
discards; =@ discards; = {2163} c=cfy

Figure 44; The SCAN s,

atvmi = [(1857,1861),(445,446),(852,848),(1649,1633),(1730,1715)]
discards, =@ discards, = {2163] c=¢fy

Figure 45: The SCAN s,

DNA Mapping -45- FMMD&C

Thus, the result of the topological scanning of W, and W results in two ATVMLSs, one being the
reverse of the other, In both cases, one virtual fragment had to be discarded and the topological scan has
pinpointed a definite problem preventing the incorporation of W, and W,. The next sections show how this
information can be used to help repair a fragment matching mistake.

3. Detecting Fragments to Split

In this section, another component of FIX is examined in detail. This component uses (a)
information that can be obtained from the maps (primarily from topological scanning) and (b) information
about how a fragment matching mistake affects a map in order to make educated guesses about which
virtual fragments may be part of a fragment matching mistake. In particular, it is concerned with fragment
matching mistakes that require a split to repair. This component is the result of a detailed case analysis
which links possible observable results from topological scanning with possible underlying realities
containing a fragment matching mistake,

In §3.1, an overview of this component is presented. In §3.2, the method for enumerating possible
underlying realities is discussed. One specific underlying reality is analyzed in-depth in §3.3. The resulis
of the analysis of each underlying reality is presented in §3.4. Finally in §3.5, the method for constructing
a table which identifies virtual fragments that are likely to contain a fragment maiching mistake is
presented.

3.1. Overview

3.1.1. Heuristic Basis for Detecting Fragments to Split

The ultimate goal of this component is to be able to determine which virtual fragments are likely to
contain a fragment matching mistake. This component is based upon the following proposition.

Proposition P: If a correct map and a map containing a particular fragment matching mistake exhibit a set
of properties X, then two different maps which exhibit the properties in X contain that particular fragment
matching mistake.

Obviously, P is going to be incorrect some of the time. To make malters worse, it is possible that two
sets of maps involving similar, but not ideniical, fragment matching mistakes may exhibit the same set of
properties. Thus, given two maps that exhibit a particular set of properties, there may be more than one
fragment matching mistake which is consisient with the observable results. It cannot be known which
mistake is the one that actually occurred.

However, there are some things that can be done to increase the probability that P is correct. The
probability that P is correct increases as the set of properties of interest becomes larger and if the properties
used are particularly sensitive to fragment matching mistakes.

For this report, there are two properties which are used in conjunction with P. The first property is
the results obtained from topological scanning. The number of class 3 fragments is especially important.
The second property is of interest only if one of the maps assimilates into the other. This property is the
size of a "regular” (i.e., non-topological) maximum size matchlist in the minirmum size window in the map
which is assimilating. (This will become clearer later in the report.)

DNA Mapping - 46 - FMMD&:C

3.1.2. Limited Enumeration of Possible Underlying Realities

If it were possible to completely enumerate and describe each underlying reality (i.e., the sites in a
genome and the set of clones used to construct two maps) that leads to a fragment matching mistake, one
could look at each reality and determine what the resulting two computed maps would look like. Then
given two maps, m; and ms, where one of the maps contains a fragment matching mistake, one could find
the underlying reality (or realities) which result in m; and m, and the correct versions of m; and m, could
be determined.

Unfortunately, it is intractable to perform such a complete enumeration. So instead of trying to
completely enemerate and describe the possible underlying realities, a limited enumeration is performed.
This enumeration is limited in two ways.

The first is to discard some underlying realities that can be deemed to be of no interest in solving the
current problem, The second is not to be concerned with all properties of the underlying reality, but only
with a few selected properties deemed important {o the current problem. With this approach, a large set of
underlying realities can be collapsed into a single case when they exhibit the same values for the selected
set of properties.

Since this report is concerned with detecting a single fragment matching mistake, any underlying
reality which results in no fragment matching mistake or more than one fragment matching mistake will be
classified as of no interest. This eliminates many underlying realities from having to be considered. The
limited enumeration is based upon the assumption that the underlying reality is such that a single fragment
matching mistake has occurred. This assumption must be made more specific to be of use in this analysis.
Figure 46 illustrates the situation which is assumed to exist. The following conditions are assumed to hold:

4)) There are two genomic fragments gf; and gf, of similar length about one clone’s length apart.
(%) There is a clone ¢, containing a real fragment rf, that corresponds to gf ;.

3) There is a clone ¢, containing a real fragment 7f5 that corresponds to gf 5.

(4) There is a map m, containing ¢; and c,, which is correct except that rf; and rf, are incorrectly

matched to form a virtual fragment vf ;.

&) There is a map m, which is correct and may contain virtual fragments vf, and vf5, which
correspond to rf; and rf4, respectively.

Given these assumptions, m; and m, are likely to have significant overlap. However, they will not
incorporate because vf; and vf; cannot both match with vf . If topolegical scanning were applied to s
and 1y, it is likely an ATVML of significant size would be constructed. Let w, be the minimum size
window of m, with respect to that ATVML. Let wy be the minimum size window of m, with respect to
that ATVML.

The details important to the enumeration are broken into several levels. The first level is concerned
with the position of m3, wy and wy with respect to g, ¥1, ¥a, g1 and gf ;. More specifically, the
following conditions are important:

(/1) my covers the streich of genome containing gf,.

(Jja) my covers the stretch of genome containing gf ;.

DNA Mapping -47 - FMMD&C

&h &2
genome |~ [[] N
1
] I I
12
Ca l I
Wy
o
my N | | LA
W‘l? sz?
", T | f {1 N
W2

Figure 46: Illustration of the assumptions for the limited enumeration
(jfs) w. contains vf,.
(jis) W, contains vf,,
(jis} wy contains vfy.

Each condition can be true or false. Thus there are 32 possible combinations of the values of jj;
through jjs. Luckily, most of the combinations are either impossible, very unlikely, of no interest or are
symmetric to other cases. The impossible, unlikely and uninteresting combinations are completely ignored
and only one of each symmetric pair is considered. (The determination of which cases are of interest is
examined in §3.2.)

In the second level of enumeration, each first-level case that is still of interest is broken up into
subcases. There is only one detail of importance in the second level of enumeration: the true overlap
relationship of m; and m,. Sometimes, not all overlap relationships are possible for a specific subcase of
the first level. (Again, the determination of which overlap relationships are possible for a given first-level
subcase is presented in §3.2.)

In the third level of enumeration, each combination of a first and second-level subcase that is still of
interest is broken down even further. The important detail for the third level of enumeration is the number
of pushed virtual fragments of length similar 10 vf in w;. What exactly pushed virlual fragments are and

DNA Mapping -48 - FMMD&C

why they are important is examined in §3.2.

These three levels of case breakdown create a number of final cases. A specific example of one such
case is ilfustrated in Figure 47. In this illustration, ji;, ji; and jjs are true, jj, and jj, are false, m; extends
to the right of m, and there is one pushed virtual fragment v in wy of length similar to ¥f .

3.1.3. Determining the Important Properties of a Possible Underlying Reality

Each final case (like the one presented at the end of the previous section) is specific enough that one
can ask detailed questions about the possible observable results of a topological scan. The approach taken
here is to initially focus on the class of certain virtual fragments of interest in m;. Given that these
fragments are of a particular class, often the class of the virtual fragments of interest in m, is uniquely
determined, or at the very least restricted somewhat.

Consider the case illustrated in Figure 47. The virtual fragments of interest are yfp and vf” in m; and
vfy in my. Since vfy and vf” are in wy, neither can be class 1. (Recall that class 1 fragments are, by
definition, not in the window.) However, vfp and yf " might be class 2, 3 or 4. So it is assumed that vfg is
class j and vf” is class k (where f, k € {2,3,4)); for each of these possibilities, the analysis determines the
class of yf;. Table 2 illustrates the result of that analysis.

g &
genome | A\ | i [] N
1
¢ |
2
Wi
il o
"y vl i Y e
vy
iy v/\) l I
W2

Figure 47: A specific final case

DNA Mapping -49 - FMMD&C

class(vfy) —
class(vf") 4 2 3 4
2 IMP v o=3, vf1=2, vf'=2 INC
3 Vf0=2, ‘ff1=2s ‘ff’=3 ‘ffO=3a ‘f1:3: ‘ff’:3 “f()":‘i” Wri=3i Yf’=3
4 INC Vo=3, vf1=3, vf'=4 | vfo=4, vf1=3, v =4
Table 2

Possible results of a topological scan

In Table 2, a row represents a fixed class for v/’ and a column represents a fixed class for vf;. A cell
in Table 2 shows the class of each virtual fragment of interest. A cell containing "IMP" indicates that the
particular combination of classes for vf, and v’ represented by that cell is impossible, and hence is of no
interest in this analysis, A cell containing "INC" indicates that the particular combination of classes for vf,
and vf” represented by that cell results in incorporation of m; and m,. However, this entire analysis is
based upon the assumption that m; and m; do not incorporate, and hence such a case is of no interest in this
analysis.

Exactly how this table is derived in explained in more detail in §3.3. What is important to note at
this point is that the table links an underlying reality (i.e., the particular final case) and observable
properties of the two maps (i.e., the resulls of a topological scan); these observable properties correspond to
identifying which fragments fall into the different classes. This link is the key is being able to determine
the location of virtual fragments containing fragment matching mistakes,

For instance, suppose that two non-incorporating maps x, and x, existed where
(1) it appears that x, extends to the right of x, and

2 a topological scan of x; and x, results in one class 3 fragment in x, and class 2 fragments in x;
and x, that are of similar length to the class 3 fragment.

These results match those of entry (1,2) in Table 2. Entry {r,c) of a table is the cell in row r and
column ¢. Note this refers to the row and column position and not the class the row or column represents.)
It may be the case that the underlying reality that resulted in x, and x; is that iflustrated in Figure 47. If
that is truly the case, one could deduce that the class 3 virtual fragment in x, is a result of a fragment
matching mistake. Thus, it should be possible to incorporate x, and x, if that fragment is split.

3.1.4. Constructing the Split Table

If each final case is analyzed in the manner described in the previous section, the data from each table
created can be organized into a larger table which indicates which virtual fragments to split given the
results of topological scanning. This table is called the split table. The format and construction of the split
table is presented in §3.5. The split table is the end result of the analysis of this section and is used by FIX.

DNA Mapping -50- FMMD&C

3.2, Limited Enumeration of Possible Underlying Realities

In this section, the limited enumeration of the possible underlying realities is discussed in more detail
than in the previous section.

The enumeration begins by assuming the existence of a fragment matching mistake in a map m, due
to the incorrect matching of two nearby genomic fragments gf; and gf; of similar length. Then the
existence of a mistake free map mj is assumed. (This situation is iflustrated in Figure 46.) Note that no
generality is lost upon assuming that m, contains the fragment matching mistake and not my, since the
maps could casily be renamed.

3.2.1, The First Level of the Enumeration

The enumeration of the possible underlying realities is done in several levels, In.the firstlevel; the
conditions ji; through Jjjs are used to create 32 possible subcases (since each condition may be true or
false). However, only four of these cases really need (o be considered for further analysis, The other 28
cases are either impossible, highly unlikely, of no interest to the current situation or are symmetric to other
cases. No further analysis is performed on those cases. Table 3 contains each of the 32 cases and a remark
for each indicating whether it is of interest or not. In order to clarify why certain cases are of no interest,
several are examined at this point.

Consider case S32 from Table 3. Since jj; and jj, are both false, mq does not overlap m; anywhere
near the location of the fragment matching mistake. Thus, it is highly unlikely that m; is going to provide
any information about the location of the fragment matching mistake, Thus, case S32 is simply of no
interest in this analysis and is ignored.

The following theorems are used to eliminate a number of cases.

Theorem 8: ji3 — jf;

Procf: Assume jj5 is true. Then wy contains vf;. Since vf is the virtual fragment corresponding
to gf 1, my must cover the stretch of genome containing gf;. Therefore, jj; is true. O

Theorem 6: jjs — jj»

Proof: Similar to the proof of Theorem 5. &

Theorems 5 implies that any case where jf; is true and jj, is false is impossible. This eliminates
cases $17-820 and S25-828. Theorem 6 implies that any case where jj; is true and jj, is false is
impossible. This eliminates cases $9-810, $13-S14, $25-826 and $29-830.

Some of the cases are deemed unlikely enough that they are not analyzed further. For instance,
assume that jj, is true, i.e., mq covers the stretch of genome containing gf;. Thus, m, contains vf ;.
However, m, also covers the stretch of genome containing gf ;. Thus, it is highly likely that vf; will be in
wy, because m, and m, overlap near gf; and windows always cover at least the portion of the maps which
overlap. Thus, it is highly likely that jf; is true. So any case where jf, is true and j; is false is deemed
unlikely enough to be ignored. This eliminates cases $5-S8 and §13-516.

A similar argument exists for jj, and jjs. This eliminates cases $3-84, §7-58, §19-820 and
523-S24. Another similar argument exists to show that if jj; and ji, are true, then it is highly likely that
Jis isirue. This eliminates cases 52, 54, 56 and S8.

DNA Mapping

-51-

Case | Jjj1 | Ja | Jia | Jia | Jis Remark
S1 T T T T T OK
52 T T T T F Unlikely
S3 T T T F T Unlikely
54 T T T F F Unlikely
55 T T F T T Unlikely
S6 T T F T F Unlikely
s7 | T|T|F|F|T Unlikely
S8 T T F F F Unlikely
59 T F T T T Impossible
S10 T F T T F Impossible
S11 T F T F T OK
S12 T F T F F OK
513 T F F T T Impossible
S14 T F F T F Impossible
S15 T F F F T Unlikely
S16 T F F F F Unlikely
517 F T T T T Impossible
518 F T T T F Impossible
519 F T T F T Impossible
520 F T T F F Impossible
521 F T F T T | Symmetric to §11
522 F T F T F | Symmetric to §12
523 F T F F T Unlikely
524 F T F F F Unlikely
525 F F T T T Impossible
$26 F F T T F Impossible
527 F F T F T Impossible
528 F F T F F Impossible
$29 F F F T T Impossible
S30 F F F T EF Impossible
531 F F F F T OK
532 F F F F F Of No Interest

Table 3

The first-level cases for Split

FMMD&C

Some of the cases are symmetric to other cases, at least for the purposes of this analysis. Consider
cases S11 and S21. The analysis of case $21 will be the same as the analysis of case S11, except that in
case S21, vf, appears wherever vf; appears in case S11. This is true because vf, and vf, are of similar
length and are in similar positions with respect 1o the other fragments of interest in the analysis (most
importantly vf). Thus, case S$21 is not analyzed further. A similar situation exists for cases $12 and S22,

Thus, case S22 is not analyzed further.

So at the end of the first level of the enumeration, there are four major cases (S1, S11, $12 and S31)
which are to be analyzed by a second level of enumeration. Details about this second level are presented in

DNA Mapping -52- FMMD&C
the next section.

3.2.2. The Second Level of the Enumeration

The second level of the enumeration involves breaking down the remaining first-level cases based
upon the true overlap relationship of the maps m; and m,. Since there are four possible overlap
relationships between any two maps, each of the first-level cases is broken into four subcases. However,
Jjust like many first-level cases, some of these second-level cases are either impossible or are symmetric to
other cases. Table 4 summarizes the status of the second-level cases.

A cell in Table 4 containing "OK" indicates that the particular combination of first-level case and
overlap relationship of m; and m, represented by that cell is valid and will undergo further analysis. A cell
in Table 4 containing "IMP" represents an impossible combination of first-level case and overlap
relationship. These subcases will not be analyzed further. A cell in Table 4 containing "SYM" represents a
combination that is symmetric to some other combination, These subcases will not be analyzed further.

It turns out that only one subcase is ignored due to symmetry, The case represented by entry (1,2) is
symmetric to the case represented by entry (1,1). Note that is does not matter which map extends to the
right because one could "flip" both maps of entry (1,1) and obtain the maps of entry (1,2) and vice-versa,
Thus, it is arbitrarily decided to use entry (1,1} and ignore entry (1,2).

There are several subcases which are ignored because they are impossible. For instance, consider the
subcases of the first-level case S11. In case S11, jj; is false and thus m, does not cover the stretch of
genome containing gf 5. However, m; does cover the stretch of genome containing gf5. Thus, itis
impossible for m; to assimilate into m,. For the same reason, n, cannot extend to the right of m;. This
eliminates the subcases represented by entries (2,2) and (2,3) of Table 4. Similar analysis are used to
construct the remainder of Table 4.

So at the end of the second level of the enumeration, there are eight subcases which are to be
analyzed by a third level of enumeration. Details about this third level are presented in the next section,
3.2.3. The Third Level of the Enumeration

The third level of the enumeration involves breaking down the remaining second-level cases based
upon the number of pushed virtual fragments in w; that are of length similar to vfo.

Let x; be a virtual fragment containing a fragment matching mistake. Often, there are virtual
fragments near xg that are of similar length. Often these virtual fragments are composed of real fragments

Overlap Relationship —
Case 4 ory ory, | ors | ors
S1 OK | SYM | OK | OK
S11 OK | IMP | IMP | OK
S12 OK | IMP | IMP | OK
531 IMP | IMP | IMP | OK
Table 4

The second-level cases for Split

DNA Mapping -53- FMMD&C

that correspond to one of the genomic fragments that is involved in the matching mistake. Sometimes, a
virtual fragment of this variety exists on both sides of x;. These virtual fragments tend to get "pushed”
away from their true position. This is illustrated in Figure 48. The fragments gf 1, gf2, 1f1 and 1f'> have
the same properties as in previous illustrations. What is important to note here is that there could be other
clones besides ¢, and ¢4 which contain gf; and produce real fragments which correctly match to form the
virtnal fragment x,. However, because x4 contzins one of the real fragments that truly belongs to x;, x; is
pushed away from x,, causing x; to appear a little to the Ieft of where it should be. A similar phenomena
can occur with xg and x,. Virtual fragments like x; and x, are called pushed fragments.

Because pushed fragments are slightly out of position, they may not match with virtal fragments in
other maps, as one would expect. Thus, pushed fragments may stand out in topological scans and help
pinpeint the location of the fragment matching mistake.

The third level of the enumeration is based upon the number of pushed fragments within wy. Each
second-level case (except one) is broken inte a subcase where there are no pushed fragments and-another
subcase where there is exactly one pushed fragment. The enumeration would be more complete if subcases
for more than one pushed fragment were considered, but using just two subcases accounts for most realistic
sitnations and keeps the analysis from becoming more complex. Notice that in case $31, there is no final
case for the existence of one pushed fragment. This final case was deemed unlikely because gf; and gf; lie
outside of w,,

The tree illustrated in Figure 49 summarizes the limited enumeration, Each final case is given a label
for future reference.

This section has presented considerable detail on the manner in which possible underlying realities
are enumerated. The next section presents a detailed look at how one particular final case of the
enumeration is analyzed, so that it may be used to construct the split table.

&fy &l
genome A~ || [] N
1
(4] | I
tf2
Cy I I
pol Xg = <lf1,lf2,...> X9

Figure 48: Pushed virual fragments

DNA Mapping -54- FMMD&C

s1 s1\ Si2 s31

or ors or4 ory ory ory or4 ory

S1.1.1 81.1.2 S1.2.1 S1.2.2 §1.3.1 S1.3.2 S1l.1.1 S11.2.1 S12.1.1 S12.2.1 S31.1.1
S11.1.2 S1122 S12.1.2 512.2.2

Figure 49: Summary of the limited enumeration

3.3. Detailed Analysis of a Particular Case

Each of the final cases in the limited enumeration represents one possible underlying reality. The
next step in the analysis is to examine each final case and determine the important observable properties of
this underlying reality. In this section, the determination of the important visible properties of final case
S$11.2.2 is presented. (This is the subcase corresponding to Table 2.) Case §11.2.2 is illustrated in Figure
50. Since jj, istrue, vf isin wy. Since jjs is true, vf is in w,. In addition, m, almost assimilates into m;
and exactly one pushed fragment vf” exists in w;.

There are two properties of interest. The first is the result of a topological scan of m, and m,. The
second is the size of a non-topological matchlist with respect to the number of virtual fragments in the
minimum size window (of an ATVML between m; and my) of the assimilating map. (The second property
is ignored if the overlap relationship of the two maps does not involve an assimilation.) Final case §11.2.2
is now examined with respect to the these two properties,

w1

g
S

v

Wi

Figure 50: Final case $11.2.2

DNA Mapping -55. FMMD&C

Recall that mj is assumed to be a correct map and that m, is correct except for one fragment
matching mistake. This means that all of the virtual fragments in Figure 50 are correct, except for those in
w; that are explicitly denoted in Figure 50 (i.e., vy and vf'). Thus, those virtual fragments in w; and wy
that are not explicitly denoted match in a way that corresponds to the underlying reality. Given this, what
would happen if one tried to construct a non-topological matchlist between the virtual fragments in w, and
wy? All the virtwal fragments in w+ that are not explicitly denoted match with the virtual fragments in wy
that are not explicitly denoted. The only explicitly denoted fragment in w, is vf;. 1t has a length similar to
vfo and vf’. Thus, vf; matches with either vf, or vf’. (Recall that topological constraints are not
considered.) So all virtual fragments in wy are in the non-topological matchlist between wy and ws. In
other words, the size of non-topological matchlist is equal to the number of virtual fragments in the
window of the assimilating map, This is the first observable property of the two maps,

The other observable property of interest is the result of a topological scan. The approach taken here
is to assume that certain virtnal fragments in m, are of a particular class. (Recall that the class of a virtual
fragment is determined by a topological scan.) Then the class of certain virtual fragments in m, are
determined, or at least restricted.

The virtual fragments of interest in final case §11,2.2 are those which are explicitly denoted in Figure
50 (i.e., vfo, ¥f) and yf"). These fragments are of interest because they are the fragments that have some
relationship to the fragment matching mistake. It is these fragments that are likely to stand out (i.e., be
class 3) and give clues about the location of the mistake. The other fragments have little relationship to the
mistake and thus are not likely to provide useful informaticn about its location.

Fragments vfp and vf" are assumed to be of particular classes and from this the class of vf, is
determined. The analysis is simplified by observing that since vfy and vf” are within w,, they cannot be
class 1 fragments. However, they could be class 2, 3 or 4. Each combination is examined and the resnits
are summarized in Table 2,

First, consider entry (1,1) of Table 2. This entry represents the assumption that both vfy and vf’ are
class 2 fragments. This means that both vfg and vf” are matched in the ATVML of the topological scan.
The virtual fragments in w, that are not explicitly denoted match with the virtual fragments in w that are
not explicitly denoted in a way that corresponds to the underlying reality. This means that all virtual
fragments in wo that are not explicitly denoted match with some virtual fragment in wy that is not explicitly
denoted. Thus, neither vfy nor vf” match a virtual fragment in w, that is not explicitly denoted. Therefore,
the only virtual fragment that vf or v could match is vf,. However, it is impossible for both fragments to
match vf; at the same time in a particular ATVML. Thus, it is impossible for both yf and vf” to be class 2
fragments. This is reflected in entry (1,1) of Table 2.

Next, consider entry (3,1) of Table 2. This entry represents the assumption that vf' is class 2 and vf’
isclass 4. This means that vf is in the ATVML. It also means that vf does not match anything, but is
near the end of wy, where it would not prevent the incorporation of m; and my. The earlier statement about
how the fragments not explicitly denoted match applies here as well. Thus, the only virtual fragment in w,
that vf o can match is vf,. Thus, all virtual fragments in w, maich or are near the end of w, and all virtual
fragments in w, match, Therefore, m, and m4 incorporate. However, this entire analysis is based upon the
assumption that m; and m, do not incorporate. Thus, this case is of no interest and is not analyzed further.
This is reflected in entry (3,1} of Table 2. The analysis of entry (1,3} is essentially the same as that for
entry (3,1) and thus is of no interest,

Now consider entry (3,3) of Table 2. This entry represents the assumption that both vf g and vf” are
class 4 fragments. This means that neither vfy nor v’ match, but both are near the end of w,, where they
would not prevent the incorporation of m; and m,. This means no virtual fragment in w is available to
match vf,. Thus, vf, cannot be class 2. If vf, were class 4, then m, and m; would incorporate. Again,
this entire analysis is based upon the assumption that #1; and m, do not incorporate. Thus, vf; cannot be

DNA Mapping - 56 - FMMD&:C

class 4. Therefore, vf; must be class 3. This is reflected in entry (3,3) of Table 2.

Next, consider entry (2,1) of Table 2. This entry represents the assumption that vf g is class 2 and vf*
is class 3. Thus, vfq matches some virtual fragment in w,. The only virtual fragment in w,, that it could
match is vfy. Therefore, vf; is class 2. This is reflected in entry (2,1) of Table 2. The analysis of entry
(1,2) is symmetric to that of entry (2,1). This is reflected in entry (1,2) of Table 2.

Now consider entry (2,2) of Table 2. This entry represents the assumption that both vfp and v are
class 3 fragments. This means that neither vf, nor vf* match any fragments in w,, bug both are in a position
that would prevent the incorporation of m; and my. That is, neither vfy nor vf” are near an end of w;.
However, it is highly likely that vf; is somewhere between vf, and vf”. Thus, it is highly unlikely that vf,
is near an end of wy. Therefore, it is unlikely that vf, is class 4. In addition, since neither vfy nor vf”
match any fragments in wy, there are no fragments that could match with vf,. So vf; is not class 2 either.
Thus, vf; must be class 3. This is reflected in entry (2,2) of Table 2.

Next, consider entry (3,2) of Table 2. This entry represents the assumption that vfp 18 class 3 and vf”
is class 4. For reasons similar to those of entry (2,2), it is highly unlikely that vf; is near an end of wy and
there are no fragments that could match vf,. Thus, vf, is ¢lass 3. This is reflected in entry (3,2) of Table 2.
The analysis of entry (2,3) is symmetric to that of entry (3,2). This is reflected in entry (2,3) of Table 2.

Now each entry in Table 2 has been examined in detail. In the next section, the results of similar
analyses for the other final cases in the limited enumeration are presented, without the level of detail given
in this section.

3.4. Resulis of the Analysis of All Cases

This section summarizes the results of performing an analysis like the one in §3.3 for each possible
underlying reality identified by the limited enumeration. For each case, a skeich of the underlying reality
and a table (in the same format as Table 2) summarizing the results of the analysis are given. In cases that
involve an assimilation, the data concerning the maximum size non-topological matchlist (denoted m!) is
given directly above the table.

Wy

vfo

v vf2

ny \/\ ll 1] y

Wy

Figure 51: A sketch of final case §1.1.1

DNA Mapping -57- FMMD&C
class{vfy)
2 1f0=2: th=2’ #2:3 OR
vfo=2, vf1=3, f2=2
3 Wo=3, vf1=3, yf»=3
4 vfo=4, v 1=3, 1f ;=3
Table 5
Possible resnlts of a topological scan for final case S1.1.1
Wy
o’ o
vy va
- — LI LI 1
Wa
Figure 52: A sketch of final case 51.1.2
class(yfo) —
class(yf) 4 2 3 4
2 INC V=3, ¥f1=3, ¥2=2, f 2 OR | o=+, 1=3, =2, v/'=2 OR
vfo=3, ¥f1=2, ¥f2=3, vf"=2 v o=4, ¥1=2, vf2=3, vf'=2
vfo=2, vf1=3, vf»=2, vf'=3 OR =3 yF =3, yfa=3. vf'= =4, vf =3, v ,=3, vf'=
3 W a2 U =20 f 223 =3 ¥ o=3, vf1=3, ¥f =3, vf’=3 o o=4, ¥ =3, vf2=3, vf'=3
vfo=2, vf1=3, ¥f =2, vf '=4 OR . _ o
) Wom2 V12, of =3, y'=d | om3i=3 a=d e IMP

Possible results of a topological scan for final case $1.1.2

Table 6

DNA Mapping - 58 - FMMD&C
id
fo
my ! Y
1 W2
My A L |] N
wa
Figure 53: A sketch of final case §1.2.1
lmdl = T]
class(vfp)
2 \fg=2., 1f1=3’ ‘f2=2 CR
Wo=2, vf1=2, vf =3
3 vfo=3, vf1=3, yfp=3
4 IMP
Table 7
Possible results of a topological scan for final case S1.2.1
Wi
v’ vfo
my [I Y
vy vf2
Wa

Figure 54: A sketch of final case §1.2.2

DNA Mapping -59- FMMD&C

lmdl = lwy|

class(vfy) -
class(f) 4 2 3 4

¥ o=3, vf1=3, vf2=2, v =2 OR IMP

2 INC ’
vfo=3, vf1=2, vf3=3, vf'=2
=2, vf1=3, vf>=2, vf'=3 OR ’
3 Lf‘}oﬁ\?r‘lfﬁ;f‘}ﬁgvf '=3 W 0=3, ¥ 1=3, vf2=3, vf =3 IMP
4 IMP VP IMP

Table 8
Possible resulis of a topological scan for final case $1.2.2

W

vfo

vf1 vf2

Wa

Figure 55: A sketch of final case $1.3.1

Il = lwyf - 1
class{vf)
, | ¥o=2. =3, ¥z=20R
vfo=2, W 1=2, uf =3
3 Vfo=3, f1=3, v =3
4 vfo=4, if =3, 1f,=3
Table 9

Possible results of a topological scan for final case $1.3.1

DNA Mapping - 60 - FMMD&C
Wi
vf’ o
"y \/\ ¥ l | I I | | \/\
v 2
my ‘ || | | ‘
Wi
Figure 56; A sketch of final case 51.3.2
il = lwsyl
class(yfg) —
class(yf") 2 3 4
2 INC vfo=3, vf1=3, vf2=2, of =2 OR | vfo=4, vf1=3, =2, yf'=2 OR

Vf0=3, Vf1=2, lﬂr2=3, I{f’=2

vfo=4, vf1=2, vf2=3, Vf’=2

Vf0=2, Vf1=3, 1f2=2, 1f'=3 OR

i VFo=2, v172, vfa=3, uf =3 vf0=3, vf1=3, vf2=3, f'=3 v o=4, v1=3, =3, vf'=3
Vfo"——"‘?., Vf1=3, ‘ff2=2v ‘df’=4 OR = = = = = = = =
4 Vf0=2, Vf1=2, Vf2=3, Wcl=4 vfﬂ""’3= er"'"3= Yf?."3= ‘ff =4 ",’,7“0—‘4: Yfl_s’ 13(.2—3: Vf =4
Table 10
Possible results of a topological scan for final cagse §1.3.2
ud|
vfo
m, [[A~
v

Wi

Figure 57: A sketch of final case §11.1.1

	DNA Mapping Algorithms: Fragment Matching Mistake Detection and Correction
	Recommended Citation
	DNA Mapping Algorithms: Fragment Matching Mistake Detection and Correction

	tmp.1453823647.pdf.Hu7dL

