
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

1-1-2011 

Numerical Modeling and Optimization of Power Generation from Numerical Modeling and Optimization of Power Generation from 

Shrouded Wind Turbines Shrouded Wind Turbines 

Tudor Foote 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Foote, Tudor, "Numerical Modeling and Optimization of Power Generation from Shrouded Wind Turbines" 
(2011). All Theses and Dissertations (ETDs). 545. 
https://openscholarship.wustl.edu/etd/545 

This Thesis is brought to you for free and open access by Washington University Open Scholarship. It has been 
accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/545?utm_source=openscholarship.wustl.edu%2Fetd%2F545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

School of Engineering and Applied Science 

Department of Mechanical Engineering and Materials Science 

 

Thesis Examination Committee: 

Ramesh K. Agarwal, Chair 

David Peters 

Kenneth Jerina 

 

NUMERICAL MODELING AND OPTIMIZATION OF POWER GENERATION 

FROM SHROUDED WIND TURBINES 

by 

Tudor F. Foote 

 

A thesis presented to the School of Engineering 

of Washington University in partial fulfillment of the 

requirements for the degree of 

 

MASTER OF SCIENCE 

 

December 2011 

Saint Louis, Missouri 

 



ii 

 

ABSTRACT OF THE THESIS 

 

Numerical Modeling and Optimization of Power Generation from Shrouded Wind Turbines 

by 

Tudor F. Foote 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2011 

Research Advisor:  Professor Ramesh K. Agarwal 

 

In recent years, it has been theoretically suggested by some researchers that the power 

coefficient of a wind turbine can be increased beyond the Betz limit for a bare turbine by 

enclosing the turbine with a duct.  In this thesis, this potential for increases in power 

generation by adding a shroud around a turbine is investigated using numerical flow 

modeling.  Two configurations for ducted turbines are considered for numerical simulations 

and optimization.  The first configuration considers shrouds for standard horizontal axis 

wind turbines.  Several turbine diameters, wind speeds, and shroud sizes are considered.  The 

results show that shrouding can almost double the power that would be generated by a bare 

turbine.  The second configuration considers the potential of converting abandoned or 

unused farm silos into solar chimneys with low cost shape modification of the chimney to 

further augment the power generation.  The most effective, simple and low cost shape 

modification is found to be a diffuser added to the top of the silo, which can increase the 

power output by nearly 50%.  Increasing the buoyancy effect by heating the air at the base of 

the silo can further increase the power output by a significant amount, as much as 50%.  It 

should be noted that in this configuration, the effect of cross flow wind at the exit of the 

diffuser can have a negative effect on the generated wind power; however, it is surmised to 

be small.  Both these configurations are analyzed by employing computational fluid 

dynamics flow solver, which solves the Reynolds-Averaged Navier-Stokes equations, in 

conjunction with a two equation k-epsilon turbulence model.  The turbine is modeled as an 



iii 

 

actuator disk neglecting the rotational effects.  The diffuser shapes in both the 

configurations are optimized using a genetic algorithm.  The computations show that the 

shrouded turbines can generate greater power than that generated by the bare turbines and 

should be considered for small and medium size turbines.  Further investigation is needed in 

the overall economic benefit considering the initial investment, maintenance and life cycle 

costs.  The technical feasibility of shrouding a turbine and the structural integrity of a 

shrouded turbine are also major considerations. 

  



iv 

 

Acknowledgments 

 
My infinite gratitude goes to my parents, George and Lisa, for ensuring that all things are 

possible in my life.  Their support means the world to me, and is the foundation of all I 

build. 

 

Thanks to my friends and members of the CFD lab who have patiently listened and given 

their thoughts and advice as I worked through the finer points of this project.   

 

Thanks also to my thesis committee members, Dr. David Peters and Dr. Kenneth Jerina, for 

helping me along the way. 

 

Special thanks go to my advisor, Dr. Ramesh Agarwal, for opening doors for me, and 

providing consistent guidance and understanding as we worked together these past years.  

Working with him has been the highlight of my time at Washington University. 

 

 

Tudor F. Foote 

 

Washington University in St. Louis 

December 2011 

 

 

  



v 

 

Contents 

 

ABSTRACT OF THE THESIS .................................................................................. ii 

Acknowledgments ...................................................................................................... iv 

Contents ...................................................................................................................... v 

List of Tables ........................................................................................................... viii 

List of Figures ............................................................................................................ ix 

1.  Introduction ........................................................................................................... 1 

1.1  Motivation and Objective ............................................................................................... 1 

1.2  Previous Work .................................................................................................................. 1 

1.3  Theoretical Basis and Governing Equations ................................................................ 2 

1.3.1  Betz’s Model of a Wind Turbine ...................................................................... 2 

1.3.2  Actuator Disk Model ......................................................................................... 3 

2.  Modeling of a Shrouded Horizontal Axis Wind Turbine and Shroud Shape 

Optimization ............................................................................................................... 5 

2.1  CFD Modeling .................................................................................................................. 5 

2.2  Power Coefficient ............................................................................................................. 7 

2.3  The Genetic Algorithm ................................................................................................... 8 

2.3.1  Overview .............................................................................................................. 8 

2.3.2  Shroud Representation by a Bezier Curve ...................................................... 9 

2.3.3  CFD Evaluation of an Individual Shroud Shape ......................................... 10 

2.3.4  Advancing to the Next Generation with Crossover and Mutation ........... 11 

2.3.5  Example Convergence History of the Genetic Algorithm ......................... 13 

2.4  Results .............................................................................................................................. 17 

2.4.1  Configurations Considered ............................................................................. 17 

2.4.2  Effect of Turbine Radius ................................................................................. 20 

2.4.3  Effect of Wind Speed ...................................................................................... 22 

2.4.4  Effect of Shroud Diffuser Exit to Turbine Area Ratio ............................... 22 



vi 

 

2.4.5  Effect of Shroud Diffuser Exit Length ......................................................... 23 

2.4.6  Comparison of Present Results with the Results of Werle and Presz [1] 25 

2.4.7  Dependence of the Power Coefficient on the Area Used for Non-

Dimentionalization ......................................................................................................... 29 

2.5  Future Work .................................................................................................................... 31 

3.  Modeling of Wind Turbines in a Solar Chimney and Shape Optimization of a 

Diffuser at the Top of the Chimney ........................................................................... 32 

3.1  Introduction .................................................................................................................... 32 

3.2  Technical Approach ....................................................................................................... 33 

3.3  Results .............................................................................................................................. 36 

3.3.1  Configuration 1 ................................................................................................. 36 

3.3.2  Configuration 2 ................................................................................................. 40 

3.3.3  Configuration 3 ................................................................................................. 43 

3.3.4  Configuration 4 ................................................................................................. 46 

3.4  Diffuser Optimization ................................................................................................... 50 

3.4.1  CFD and Genetic Algorithm Implementation ............................................. 51 

3.5  Results .............................................................................................................................. 51 

3.5.1  Genetic Algorithm Convergence.................................................................... 52 

3.5.2  Data and Figures Related to Diffuser Optimization ................................... 54 

3.6  Future Work .................................................................................................................... 56 

4.  Conclusions .......................................................................................................... 58 

A.  Appendices ........................................................................................................... 60 

A.1  Optimized Shrouded Wind Turbines: Table of Results ........................................... 60 

A.2  Optimized Shroud Figures with Control Points ........................................................ 61 

A.3  Genetic Algorithm Code with Ancillary Files ............................................................ 68 

A.3.1  wing.java ............................................................................................................. 68 

A.3.2  Airfoil.java .......................................................................................................... 77 

A.3.3  generation.java ................................................................................................... 79 

A.3.4  gambitAirfoils.java ............................................................................................ 83 

A.3.5  AirfoilModifier.java ........................................................................................ 101 



vii 

 

A.3.6  BubbleSorter.java ............................................................................................ 103 

A.3.7  gambitTest.bat ................................................................................................. 105 

A.3.8  diffuserGambit.jou ......................................................................................... 105 

A.3.9  diffuser.dat ....................................................................................................... 106 

A.3.10  cleanup.bat ....................................................................................................... 107 

A.3.11  fluentTest.bat................................................................................................... 108 

A.3.12  fluentTemplate.jou ......................................................................................... 108 

References ................................................................................................................ 113 

Vita ........................................................................................................................... 114 

 

 

 

  



viii 

 

List of  Tables 

 
Table 2.1 Parameters used in various shroud configurations. ..................................................... 18 

Table 2.2  Power production and power coefficients for all optimized shroud configurations 

of Table 2.1. ............................................................................................................................... 19 

Table 3.1 Power Generated by the Turbine in Cylinderical Silo (Configuration 1A) of Figure 

2(a) and Turbine Efficiency ..................................................................................................... 38 

Table 3.2 Power Generated by the Turbine in Cylinderical Silo (Configuration 1B) of Figure 

2(a) and Turbine Efficiency ..................................................................................................... 40 

Table 3.3 Power Generated by the Turbine in Cylinderical Silo (Configuration 2A) with a 

Diffuser at top (Figure 2(c)) and Turbine Efficiency ........................................................... 41 

Table 3.4 Power Generated by the Turbine in Cylinderical Silo (Configuration 2B) with a 

Diffuser at top (Figure 3.2(c)) and Turbine Efficiency ....................................................... 43 

Table 3.5 Power Generated by the Turbine in a Cylinderical Silo (Configuration 3A) with a 

Venturi Surrounding it (Figure 3.2(b)) and Turbine Efficiency ......................................... 44 

Table 3.6 Power Generated by the Turbine in a Cylinderical Silo (Configuration 3A) with a 

Venturi Surrounding it (Figure 2(b)) and Turbine Efficiency ............................................ 46 

Table 3.7 Power Generated by the Turbine in Cylinderical Silo with a Venturi Surrounding it 

(Figure 3.2(b)) and a Diffuser at the Top of the Silo (Configuration 4A) and Turbine 

Efficiency .................................................................................................................................... 47 

Table 3.8 Power Generated by the Turbine in a Cylinderical Silo with a Venturi Surrounding 

it (Figure 3.2(b)) and a Diffuser at the Top of the Silo (Configuration 4B) and Turbine 

Efficiency .................................................................................................................................... 50 

Table 3.9  Configuration 2A ............................................................................................................. 54 

Table 3.10  Configuration 2B ........................................................................................................... 54 

Table A.1 Results for optimized shrouded HAWT. ..................................................................... 60 

 
  



ix 

 

List of  Figures 
 

Figure 2.1 Schematic of a shrouded wind turbine modeled as an actuator disk. ........................ 6 

Figure 2.2 Example of an optimized shroud shape with control points (Case 1a in Table 2.1).

...................................................................................................................................................... 10 

Figure 2.3  Schematic of information flow in the GA optimization process ............................ 10 

Figure 2.4 Convergence history of GA optimization process (Case 1d of Table 2.1). ............ 13 

Figure 2.5 Cp of all individuals in the GA convergence history within reasonable bounds 

(Case 1d of Table 2.1). .............................................................................................................. 14 

Figure 2.6  Velocity contours (m/s) for the best individual in generation 1 of Case 1d of 

Table 2.1, Cp=0.825. ................................................................................................................ 14 

Figure 2.7  Velocity contours (m/s) for the best individual from generation 50 of Case 1d of 

Table 2.1, Cp=0.877. ................................................................................................................ 15 

Figure 2.8  Velocity contours (m/s) for the best individual from generation 110 of Case 1d 

of Table 2.1, Cp=0.957 ............................................................................................................ 15 

Figure 2.9 Velocity contours (m/s) for the best individual in generation 220 of Case 1d of 

Table 2.1, Cp=1.027. ................................................................................................................ 16 

Figure 2.10  Velocity contours (m/s) for best individual in generation 349 of Case 1d of 

Table 2.1 (converged optimized shroud shape), Cp=1.069. ............................................... 16 

Figure 2.11 Schematic of the axisymmetric HAWT model- actuator disk and shroud 

dimensions. ................................................................................................................................ 17 

Figure 2.12 Optimized shroud shapes scaled to match a 5 ft radius turbine; these cases 

correspond to those given in Table 2.1. ................................................................................. 20 

Figure 2.13 Variation of Cp with turbine radius at two free stream wind velocities. ............... 21 

Figure 2.14 Optimized shroud shapes for six cases (1a, 1b, 2a, 2b, 3a, and 3b of Table 2.1).  

These cases correspond to those shown in Figure 2.13. ..................................................... 21 

Figure 2.15 The effect of the diffusers’ exit area to turbine area ratio on the shrouded turbine 

Cp. ............................................................................................................................................... 22 

Figure 2.16 Performance of shrouded turbines of various lengths L2. ...................................... 23 



x 

 

Figure 2.17 Variations of Cp for shrouded turbines of different lengths (cases 1d, 1e, and 1f 

of Table 2.1). .............................................................................................................................. 24 

Figure 2.18 Optimized shroud shapes for cases 1d, 1e, and 1f of Table 2.1. ............................ 24 

Figure 2.19 Velocity contours (m/s) for the flow field of Case 1f of Table 2.1 showing flow 

separation at the outer portion of the diffuser. .................................................................... 25 

Figure 2.20 Comparison of Cp for a bare and shrouded turbine with thrust coefficient using 

theoretical inviscid analysis and viscous CFD analysis.  (Figure from Werle and Presz 

[1], CFD data from Hansen et al. [13]) .................................................................................. 26 

Figure 2.21 Comparison of optimized shroud results to data for a shrouded wind turbine 

from Hansen et al. [13] as presented in Werle and Presz [1]. ............................................. 27 

Figure 2.22  Variation of Cp with Ct for an optimized shrouded wind turbine (Case 2a of 

Table 2.1). ................................................................................................................................... 28 

Figure 2.23 Cp of optimized shrouded wind turbines obtained by nondimentionalizing it by 

the turbine area and the shroud exit area. .............................................................................. 30 

Figure 3.1 A typical silo on a farm ................................................................................................... 34 

Figure 3.2 (a) Computational geometry of a cylindrical silo (without diffuser), (b) 

Computational geometry of a cylindrical silo with a venturi around the turbine, (c) 

Computational geometry of a cylindrical silo with diffuser on the top; L = Height of 

the silo, Dc = Interior Diameter of the Cylinderical Silo, Da = Diamer of the Turbine 

modeled as an Actuator Disc, l = Height of the Turbine from the Ground,  = 

Clearance between the Turbine and the Silo Wall, Dd = Diameter of the Exit Section 

of the Diffuse, α = Diffuser Angle, ξ and η define the Parameters related to Venturi. . 35 

Figure 3.3 Computational domain for flow inside the silo enclosing the turbine: velocity 

vectors and their magnitude. The silo has been rotated by 90deg. clockwise in this 

Figure. ......................................................................................................................................... 39 

Figure 3.4 Computational domain for flow inside the silo enclosing the turbine: static 

pressure contours and their magnitude. The silo has been rotated by 90deg. clockwise 

in this Figure. ............................................................................................................................. 39 



xi 

 

Figure 3.5 Zoomed-in-View of computational domain for flow inside the silo enclosing the 

turbine with a diffuser on the top: Velocity vectors and their magnitude. The silo has 

been rotated by 90deg. clockwise in this figure. ................................................................... 42 

Figure 3.6 Zoomed-in-View of computational domain for flow inside the silo enclosing the 

turbine with a diffuser on the top: static pressure contours and their magnitude. The 

silo has been rotated by 90deg. clockwise in this figure. ..................................................... 42 

Figure 3.7 Zoomed-in-View of computational domain for flow inside the silo with a turbine 

surrounded by the venturi (Configuration 3A) (Figure 2(b)): Velocity vectors and their 

magnitude. The silo has been rotated by 90deg. clockwise in this figure. ........................ 45 

Figure 3.8 Zoomed-in-View of computational domain for flow inside the silo with a turbine 

surrounded by the venturi: static pressure contours and their magnitude. The silo has 

been rotated by 90deg. clockwise in this figure. ................................................................... 45 

Figure 3.9 Zoomed-in-View of computational domain for flow inside the silo with a  turbine 

surrounded by the venturi and a diffuser on the top: Velocity vectors and their 

magnitude. The silo has been rotated by 90deg. clockwise in this figure. ........................ 48 

Figure 3.10 Zoomed-in-View of computational domain for flow inside the silo with a turbine 

surrounded by the venturi and a diffuser at the top: static pressure contours and their 

magnitude. The silo has been rotated by 90deg. clockwise in this figure. ........................ 49 

Figure 3.11  Convergence history of the GA for optimized diffuser Configuration 2A with 

4K temperature differential. The insets show total pressure contours and their 

magnitude in Zoomed-in-Views of the computational domain for flow inside the 

diffuser on top of the silo. The geometries are the individuals with the highest fitness 

value at the indicated generation. The silo has been rotated by 90 deg. clockwise in 

these figures. .............................................................................................................................. 53 

Figure 3.12  GA optimized diffuser shapes for Configuration 2A compared to the original 

cone diffuser for various temperature differentials. ............................................................. 55 

Figure 3.13 GA optimized diffuser shapes for Configuration 2B compared to the original 

cone diffuser for various temperature differentials. ............................................................. 56 

Figure A.1 Case 1a: optimized HAWT shroud with control points. .......................................... 61 

Figure A.2 Case 1b: optimized HAWT shroud with control points. ......................................... 62 



xii 

 

Figure A.3 Case 1c: optimized HAWT shroud with control points. .......................................... 62 

Figure A.4 Case 1d: optimized HAWT shroud with control points. ......................................... 63 

Figure A.5 Case 1e: optimized HAWT shroud with control points. .......................................... 63 

Figure A.6 Case 1f: optimized HAWT shroud with control points. .......................................... 64 

Figure A.7 Case 1g: optimized HAWT shroud with control points. .......................................... 64 

Figure A.8 Case 2a: optimized HAWT shroud with control points. .......................................... 65 

Figure A.9 Case 2b: optimized HAWT shroud with control points. ......................................... 65 

Figure A.10 Case 3a: optimized HAWT shroud with control points. ........................................ 66 

Figure A.11 Case 3b: optimized HAWT shroud with control points. ....................................... 66 

Figure A.12 Case 4a: optimized HAWT shroud with control points. ........................................ 67 

Figure A.13 Case 4b: optimized HAWT shroud with control points. ....................................... 67 

 



 

 

1 

 

Chapter 1 
 

 

1. Introduction 
 

1.1 Motivation and Objective 

The motivation for this work stems from the recent work reported in the literature that 

has shown that shrouding of wind turbines has the potential of increasing their power 

production.  In the early twentieth century, Betz showed that the maximum power 

production efficiency of a horizontal axis wind turbine (HAWT) cannot exceed 59.3% 

of the kinetic energy available in the wind facing the turbine.  This maximum possible 

value of the power coefficient is known as the “Betz limit.”  It has been shown by 

Werle and Presz [1] and Hansen et al. [2] among others that enclosing the turbine with a 

shroud can increase the turbine’s efficiency beyond the Betz limit.  The goal of this 

project is to numerically model the performance of shrouded wind turbines and 

optimize their power production by shape optimization of the shroud using a genetic 

algorithm. 

 

1.2 Previous Work 

 

Although windmills have existed for centuries, the understanding of their aerodynamics 

came about only at the beginning of the 20th century.  In 1919, Betz developed a model 

of a wind turbine and determined its performance by applying the principles of fluid 

conservation.  He determined that the maximum possible power that can be extracted 



 

 

2 

 

from a fluid stream facing the turbine is 59.3% which is now known in the literature as 

the Betz limit.  Currently, there are many excellent books that discuss and explain the 

aerodynamics, controls and performance of wind turbines. 

 

Wind turbine development has continued for almost a century.  Now, with increased 

emphasis of renewable energy, it is quickly becoming a highly developed worldwide 

industry with a rapidly increasing number of turbine installations around the globe.  

Significant gains have been made in efficiency; modern horizontal axis wind turbines are 

almost reaching the theoretical limit.  Recent researchers are trying to develop 

alternative configurations to bare HAWT to increase the theoretical limit and thereby 

bring down the cost of wind energy.  One such recent proposal to increase the 

aerodynamic efficiency of a wind turbine by has been to add a shroud or diffuser 

surrounding the turbine.  Among others, Werle and Presz [1] and Hansen et al. [2] have 

performed the theoretical analysis of shrouded wind turbines to demonstrate that 

indeed the power generated by a shrouded HAWT can be greater than that of a bare 

HAWT and that its power coefficient can exceed the Betz limit.  This concept has also 

been demonstrated in actual installation by the company FloDesign Inc., based in 

Wilbraham, MA.  The data of Werle and Presz [1] is employed in this paper for 

comparison.  It is important to note that there is some debate in the recent literature as 

to whether the shrouded turbines do in fact surpass the Betz limit.  Widnall [3] has 

argued that they do not if the power coefficient is determined by using the diffuser exit 

area of the shrouded turbine instead of the turbine area (or throat area).  Nevertheless, 

the total power generated by the shrouded turbine is greater than that of a bare turbine.   

 

1.3 Theoretical Basis and Governing Equations 

1.3.1 Betz’s Model of a Wind Turbine 

 



 

 

3 

 

The classical formulation of a wind turbine flow field is the Betz model.  This model 

considers an inviscid, incompressible flow past a turbine in a stream tube and applies 

mass flow continuity and the Bernoulli equation.  The inlet flow upstream of the turbine 

exhibits free stream properties of the wind such as velocity and pressure, and the exit 

flow downstream of the turbine is assumed to be at atmospheric pressure.  From 

continuity, the velocity in the immediate vicinity of the turbine on both the upstream 

and downstream sides must be equal, so the turbine must be considered only as a 

pressure discontinuity as it extracts energy.  Then the Bernoulli equation can be applied 

both upstream of the turbine between the inlet flow and the upstream face of the 

turbine, and downstream of the turbine between the downstream face of the turbine 

and the exit flow.  This application of the Bernoulli equation can determine the pressure 

differential across the turbine, which determines the generated power.  It can then be 

shown that the maximum possible power that can be extracted from the stream is 

16/27 or 59.3% of the available kinetic energy in the wind stream.  Hypothetically, if all 

the energy was removed, the velocity behind the turbine would become zero, i.e. the 

flow would stop.  This cannot happen in a steady state system; it is a violation of 

continuity.  The power coefficient of 16/27 is called Betz’s limit. 

 

1.3.2 Actuator Disk Model 

 

In this work, the turbine is modeled as an actuator disk, a commonly used simplification 

in the aerodynamic analysis of turbines.  The actuator disk models the turbine as a 

pressure discontinuity in the flow; the pressure drop across the actuator disk represents 

the energy extracted across the plane of the turbine.  This modeling concept is due to 

the Betz bare (unshrouded) horizontal axis wind turbine formulation mentioned in the 

previous section.  Mikkelsen [4] performs an excellent analysis of this model for wind 

turbines. 

 



 

 

4 

 

The actuator disk is an idealized model that does not account for any drag or losses at 

the turbine, or swirl of the turbine wake due to rotational effects.  The wake rotation is 

the single largest source of error in this model.  To determine the efficiency of a 

HAWT, taking into account its rotational speed, the number of blades and blade 

geometry, a number of empirical relations have been proposed by many researchers in 

the literature.  They are based of combining theoretical considerations with 

experimental data.  One such empirical formula is given in the book by Manwell et al. 

[5] and presented here as Equation 1.1.  It fits the experimental data reasonably well.  In 

equation 1.1, where λ is the tip speed ratio (rotational speed of the turbine/wind speed), 

n is the number of blades and Cl/Cd is the average lift to drag ratio of the turbine blade.  

It is important to note from equation 1.1 that the correction to Cp due to n, λ, and 

Cl/Cd is multiplicative to 16/27 (the ideal Betz limit). 

 

(1.1)  

 

The majority of the currently installed HAWTs have 3 blades and blade Cl/Cd of 25.  

Then the maximum Cp of these turbines according to Equation 1.1, with a tip speed 

ratio between 3 and 4, is approximately 0.42.  This is 71% of the Betz limit of 0.593.  

This equation provides a practically useful formula to account for the decrease in power 

coefficient from the one computed by the actuator disk model.  It is suggested (not 

proven) therefore that the actuator disk model based results in this thesis can be 

reduced by 29% to provide a more reasonable estimate of the actual power production 

of a HAWT.  This will not provide a precise estimate, however it will provide a 

conservative downward estimate of the actual Cp of a HAWT.  

  



 

 

5 

 

Chapter 2 

 

2. Modeling of  a Shrouded Horizontal 

Axis Wind Turbine and Shroud Shape 

Optimization 
 

This chapter describes the modeling of a shrouded horizontal axis wind turbine 

(HAWT) and shape optimization of its shroud.  The flow fields of the shrouded turbine 

were calculated using a CFD solver described in section 2.1, the turbine was modeled as 

an actuator disk inside the shroud.  The shroud shape was optimized using a Genetic 

Algorithm (GA) in order to optimize the generated power as described in section 2.3.  

Results are given in section 2.4, including the comparisons with previous work 

whenever possible. 

 

2.1 CFD Modeling 

 

The power output of a horizontal axis wind turbine (HAWT) within a shroud was 

modeled by employing an actuator disk model in the commercial computational fluid 

dynamics (CFD) solver FLUENT [6].  The geometry was generated around a fixed 

radius actuator disk; a contoured wall was created that represented the shroud around 

the turbine.  An axi-symmetric geometry for both the actuator disk and the shroud was 



 

 

6 

 

considered.  Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a 

two equation realizable k – ε model were employed to calculate the turbulent flow. 

 

The geometric models were created in the ANSYS Inc. software “GAMBIT” [7]. A 

structured mesh was generated in the axi-symmetric models, and the actuator disk was 

defined as a pressure discontinuity.  The pressure drop was calculated for each cell 

boundary on the actuator disk and was derived from first principles for a shrouded 

turbine as described below.  As with the Betz formulation, the inlet and outlet pressures 

were assumed to be atmospheric.  A schematic of a typical geometric model is shown in 

Figure 2.1. In Figure 2.1, stations 2 and 3 refer to the upstream and downstream sides 

of the actuator disk respectively.   

 

 

 

Denoting the velocity by “V” and the area by “A”, the application of the continuity 

equation to the geometry shown in Figure 2.1 gives: 

ଵܣ ଵܸ ൌ ଶܣ ଶܸ ൌ ଷܣ ଷܸ ൌ ସܣ ସܸ 

The application of the Bernoulli equation between stations 1 and 2 and between 3 and 4 

gives: 

ଵ݌ ൅
ଵ
ଶ
ߩ ଵܸ

ଶ ൌ ଶ݌ ൅
ଵ
ଶ
ߩ ଶܸ

ଶ 

ଷ݌ ൅
ଵ
ଶ
ߩ ଷܸ

ଶ ൌ ସ݌ ൅
ଵ
ଶ
ߩ ସܸ

ଶ 

Using the above two equations, obtain: 

ଷ݌ െ ଶ݌ ൌ
ଵ
ଶ
ሾߩ ସܸ

ଶ െ ଵܸ
ଶሿ 

2    3

1 

4

Figure 2.1 Schematic of a shrouded wind turbine modeled as an

actuator disk. 



 

 

7 

 

Or: 

ଷ݌ െ ଶ݌ ൌ ∆ܲ ൌ భ
మ
ߩ ൤ቀ஺మ

஺ర
ቁ
ଶ
െ ቀ஺మ

஺భ
ቁ
ଶ
൨ ଶܸ

ଶ   (2.1) 

Note that p1 = p4 = 0 as they are assumed to be at atmospheric gage pressure. 

 

Equation 2.1 gives the ideal pressure drop across the turbine based on the actuator disk 

model.  Note that the velocity V2 is the average local velocity at the turbine face.   

 

2.2 Power Coefficient 

 

In optimization of shroud shape for maximal power extraction from a shrouded 

turbine, the power coefficient Cp was the parameter that was maximized using the GA.  

The area-averaged wind velocity at the actuator disk Vt was related to the free stream 

wind velocity Vo to obtain: 

 

௣ܥ ൌ
∆P஺೟V౪
ഐ
మ
஺೟௏೚

య ൌ ൤ቀ஺మ
஺ర
ቁ
ଶ
െ ቀ஺మ

஺భ
ቁ
ଶ
൨ V౪

య

V౥
య ௣ܥ ൌ

ഐ
మ
஺೟௏೟

య

ഐ
మ
஺೟௏೚

య   (2.2) 

 

It should be noted that in equation 2.2, the actuator disk area At has been employed in 

the calculation of the power coefficient Cp.  This expression can give the value of 

Cp>0.593 (Betz limit) for a shrouded turbine.  Recently, Widnall [3] has pointed out 

that if instead of At , the exit area of the shroud is employed, Cp will not exceed the 

Betz limit.  This issue is addressed later in results section 2.4.7.   

 

 



 

 

8 

 

2.3 The Genetic Algorithm 

2.3.1 Overview 

 

One of the objectives of this project is to find the shroud shape that generates the 

optimal power production with given constraints. A Genetic Algorithm (GA) is 

employed to solve this shape optimization problem. The basic concept of a GA is to 

simulate a process of evolution where many individuals compete to procreate.  Each 

individual is evaluated for fitness.  The better ones are allowed to “breed” a new 

generation in a manner likely to produce individuals of greater fitness, and these replace 

the less fit individuals from the previous generation.  The new generation is then 

evaluated, and the process repeats.  A random mutation process is also included to 

allow for more significant changes in a single generation, as well as the possibility of 

creating a radically different individual with better fitness that would not have been 

found in the normal “breeding” process.  The principles of a GA have been explained 

in greater detail elsewhere [8-10].  

 

The Genetic Algorithm is a piece of software that holds and processes the information 

about the individuals.  It cannot evaluate the fitness of any individual however, so it 

calls the flow modeling software packages and collects the results.  For the purposes of 

this research, the GA software is written in the JAVA programming language. 

Compared with C and C++, JAVA has a simpler object-oriented model and fewer low-

level facilities. It has the advantage of being general-purpose, concurrent, class-based, 

and object-oriented.  JAVA has been specifically designed to have as few 

implementation dependencies as possible which render the programming applications 

to behave as "write once and run anywhere" [11, 12]. 

 

 



 

 

9 

 

2.3.2 Shroud Representation by a Bezier Curve 

 

Each individual shroud shape is represented by a Bezier curve.  Pierre Bezier developed 

the parametric curve in 1962 to describe the complex contours of automobile body 

shapes in a finite manner.  It employs a series of control points that are related by a 

parametric equation, equation 2.3, where n is the number of control points P. 

              

ሻݐሺܤ ൌ෍ቀ
݊
݅
ቁ ሺ1 െ ௜ݐሻ௡ି௜ݐ ௜ܲ , ݐ א ሾ0,1ሿ

௡

௜ୀ଴

                       ሺ2.3ሻ 

 

In this work, seven control points, each with radial and axial coordinates, were used to 

describe the shroud shapes.  The control points for the HAWT shroud were defined 

such that they were axially ordered with the middle control point within 1 axial foot of 

the turbine position and three points on either side.  For the airfoil shapes generated in 

this work, the complexity of the curves on either side of the turbine was sufficient to 

describe the optimized shapes. Limits were set for the maximum dimensions of the 

control points from practical considerations, in particular to prevent the shroud from 

becoming very large.  Figure 2.2 shows an example curve (Case 1a in Table 2.1 in results 

section 2.4) and its corresponding control points.  Note that the control point on the far 

right reached both the maximum radius of 8 and the maximum axial distance from the 

turbine plane of 5, as set by the user prescribed limits.   



 

 

10 

 

 

Figure 2.2 Example of an optimized shroud shape with control points (Case 1a in 

Table 2.1). 

 

 

2.3.3 CFD Evaluation of an Individual Shroud Shape 

 

Figure 2.3 shows the schematics of the optimization process illustrating the interaction 

between the GA, the mesh generator, and CFD flow solver. 

 

Figure 2.3  Schematic of information flow in the GA optimization process 

 

For any individual, the GA creates a data file from its control points that contains 

vertices for all of the relevant points of the geometry.  The GA then runs a batch file 

that opens the mesh generator and tells it to run a journal file that takes the geometry 

data file and creates a mesh.  The journal must be robust enough to account for the 

‐3.706, 5.622

‐3.706, 4.501

‐2.693, 5.227

0.594, 4.496

1.118, 4.587

2.261, 7.909

5.000, 8.001

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points



 

 

11 

 

possible variation in the geometries and still build a usable mesh.  Therefore, a fixed 

number of nodes are defined on the surfaces of the adjustable shape representing the 

shroud wall, and the mesh generator fits a fixed number of quadrilateral cells into the 

geometry based on those nodes.  The cells conform to the geometry even though the 

diffuser in the computational domain may change in geometry during the GA 

convergence process. Once the GA detects the mesh generator has finished its task, it 

calls a cleanup batch file to erase unnecessary temporary files, and then calls another 

batch file that opens the CFD flow solver.  This too has a robust journal file that sets 

the correct parameters and solves the flow in the mesh that was just created.  This 

journal is modified by the GA for each individual before the flow solver runs to ensure 

that it has the correct pressure drop as determined by Equation 2.1 for that individual.  

Once the flow solver completes its task, it records the fluid area-averaged flow velocity 

through the actuator disk.  This is then read by the GA and is used to calculate the 

fitness of the shroud shape.  The GA also imposes a penalty function for any control 

point that moves outside its intended domain by reducing its fitness by a factor of its 

distance out of bounds.  If there is an error such that the flow solver does not return a 

value, for example if the mesh is physically incorrect or the solver diverges and returns 

an unreasonable value, the fitness of the individual is set to -1 so that natural selection 

will remove it from the next generation, but it still contributes to the breeding process 

explained below. 

 

2.3.4 Advancing to the Next Generation with Crossover and 

Mutation 

 

In the implementation of the GA for shroud optimization, a generation size of 20 

individuals is used with a natural selection rate of 50% with no culling tolerance; that is, 

no attempt is made to remove similar shrouds.  Once the fitness values of all the 

individuals in a generation are determined, the worst 50% of each generation are 

replaced through an extrapolation-based crossover scheme. Reproduction is initiated by 



 

 

12 

 

randomly selecting two individuals in the generation.  The offspring individual is 

obtained by moving the components of each control point according to equation 2.4.  

Each new control point is set beyond the more fit parent’s control point value from the 

lesser parent’s control point value.  The distance it is moved beyond is a random 

fraction of the distance between the parents’ control points.   

  

  (2.4)   

 

Once the new generation of 20 airfoils is created, the mutation procedure occurs.  A 

random number generator uses the mutation rate to decide how many of the 20 

individuals to remove and replace with new, randomly generated, individuals.  Mutation 

allows for the possibility of rapid changes and advancement.  It also guards against 

becoming stuck in a relative maximum of fitness and missing the true maximal fitness. 

 

Each configuration in Table 2.1 in section 2.4 was run in the GA for 350 generations, as 

this number was determined to be sufficient for reasonable convergence without 

excessive computing time.  The number of control points was a large factor in 

determining the necessary number of generations.  The crossover function moves all the 

control points, so they must be simultaneously optimized.  The random guesses made in 

the first generation and by mutation can accelerate the process significantly.  The best 

way to make the process more rapid is to have small domains for each control point so 

that the random individuals will be close to the optimum.  This however runs the risk of 

placing the domains in the wrong positions and not obtaining the optimum individual.  

The control points of the final individual must be checked to see if they are on a 

boundary condition, since this condition indicates that its optimum position may be 

beyond the boundary. 

 

      21221 1,0, xxxxx  randcrossover



 

 

13 

 

2.3.5 Example Convergence History of the Genetic 

Algorithm 

As explained previously, the GA begins with a set of individuals whose control points 

are randomly generated within the area of the domain following certain constraints 

which are designed to improve the guessing process and limit the maximum extent of 

the shroud.  As the generations progress, the pool of individuals become more fit.  

Figure 2.4 shows the gradual improvement of the best individual (shroud shape) in each 

generation.  Due to mutation, the best individual may be removed periodically, but the 

trend is generally in the correct direction.  There are a significant number of poor 

individuals tested in the process.  Figure 2.5 shows all of the ones that returned Cp 

values within the acceptable range.  The following Figures 2.6 through 2.10 show the 

progression of shroud shapes and flow fields as the GA advanced. 

 

 

Figure 2.4 Convergence history of GA optimization process (Case 1d of Table 

2.1). 

 

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 1000 2000 3000 4000 5000 6000 7000

M
ax
 C
p
 o
f 
G
e
n
e
ra
ti
o
n

Individual Number



 

 

14 

 

 

Figure 2.5 Cp of all individuals in the GA convergence history within reasonable 

bounds (Case 1d of Table 2.1). 

 

 

Figure 2.6  Velocity contours (m/s) for the best individual in generation 1 of 

Case 1d of Table 2.1, Cp=0.825. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000

C
p

Individual Number



 

 

15 

 

 

Figure 2.7  Velocity contours (m/s) for the best individual from generation 50 of 

Case 1d of Table 2.1, Cp=0.877. 

 

 

Figure 2.8  Velocity contours (m/s) for the best individual from generation 110 of 

Case 1d of Table 2.1, Cp=0.957 



 

 

16 

 

 

Figure 2.9 Velocity contours (m/s) for the best individual in generation 220 of 

Case 1d of Table 2.1, Cp=1.027. 

 

 

Figure 2.10  Velocity contours (m/s) for best individual in generation 349 of Case 

1d of Table 2.1 (converged optimized shroud shape), Cp=1.069. 



 

 

17 

 

2.4 Results 

 

In this thesis, thirteen HAWT shrouds were optimized using the combination of a GA 

and a flow solver.  Turbine radius (Rt), wind speed (Vo), shroud exit area to turbine area 

ratio (Re
2/Rt

2), and shroud exit length (L2max) were all varied.  The effects of each of 

these four variables are discussed in subsequent sections.   

 

2.4.1 Configurations Considered 

 

Figure 2.11 below shows the schematic of the axi-symmetric shrouded wind turbine 

model. 

 

 

Figure 2.11 Schematic of the axisymmetric HAWT model- actuator disk and 

shroud dimensions. 

 

Error! Reference source not found. shows all the thirteen cases considered with their 

corresponding parameters.  These cases represent enough variation in various relevant 

parameters to provide sufficient information to draw reasonable conclusions. 



 

 

18 

 

 

Table 2.1 Parameters used in various shroud configurations. 

Case 

 

Rt  (ft) 
Vo 

(m/s) 
Re

2/Rt
2 L2 Max./Rt 

1.5 5.0 8.0 10.0 5.71 7.0 2.0 2.56 3.0 1.0 2.0 3.0

1a  X  X X X  

1b  X  X X X  

1c  X  X X  X 

1d  X  X X   X

1e  X  X X  X 

1f  X  X X X  

1g  X  X X X  

2a   X X X X  

2b   X X X X  

3a X   X X X  

3b X   X X X  

4a    X X X  X 

4b    X X X  X 

 

 

  



 

 

19 

 

Table 2.2 gives the power production data for the optimized shroud cases of Error! 

Reference source not found.. Figure 2.12 shows the optimized shroud shapes scaled 

and superimposed for a 5 ft turbine radius.  For individual figures of each optimized 

shroud with control points labeled, see section 5.1 in the Appendices. 

 

Table 2.2  Power production and power coefficients for all optimized shroud 

configurations of Table 2.1. 

Case
Power 

(W) Cp 
1a 717 0.86
1b 1294 0.84
1c 642 0.77
1d 889 1.07
1e 861 1.03
1f 755 0.91
1g 582 0.70
2a 1849 0.87
2b 3321 0.85
3a 65 0.87
3b 117 0.85
4a 2540 0.76
4b 4637 0.76

 

 



 

 

20 

 

 

Figure 2.12 Optimized shroud shapes scaled to match a 5 ft radius turbine; these 

cases correspond to those given in Table 2.1. 

 

2.4.2 Effect of Turbine Radius 

 

The size of the turbine over the range of radii tested does not have a discernible effect 

on the data computed in this thesis.  Two sets of identical tests at two wind speeds 

show little difference in performance outside the margin of error in the simulations as 

can be seen in Figure 2.13. Figure 2.14 shows the shroud shapes of these same cases 

and they are quite similar.  This is consistent with the observation that the viscous 

effects do not become dominant until the size of the turbine becomes very small; much 

smaller than the turbines analyzed in this work.   

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

‐5 0 5 10 15

Actuator Disk

Case 1a

Case 1b

Case 1c

Case 1d

Case 1e

Case 1f

Case 1g

Case 2a

Case 2b

Case 3a

Case 3b

Case 4a

Case 4b



 

 

21 

 

 

Figure 2.13 Variation of Cp with turbine radius at two free stream wind 

velocities. 

 

 

Figure 2.14 Optimized shroud shapes for six cases (1a, 1b, 2a, 2b, 3a, and 3b of 

Table 2.1).  These cases correspond to those shown in Figure 2.13. 

 

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 2 4 6 8 10

C
p

Turbine Radius (ft)

5.71 m/s

7.0 m/s

4

4.5

5

5.5

6

6.5

7

7.5

8

‐5 ‐3 ‐1 1 3 5

Actuator Disk

Case 1a

Case 1b

Case 2a

Case 2b

Case 3a

Case 3b



 

 

22 

 

2.4.3 Effect of Wind Speed 

 

The effect of wind speed on shroud shape optimization and its performance was also 

small but consistent.  Figure 2.13 shows that at higher wind speed the shrouded turbines 

were slightly less productive in generating power.  Viscous losses due at higher wind 

speeds are the most likely source of this lesser productivity.  There is no consistent 

trend in the shapes of the shrouds in Figure 2.14. 

 

2.4.4 Effect of Shroud Diffuser Exit to Turbine Area Ratio 

 

The ratio of the shroud exit area to the turbine area was the primary factor in 

determining shroud performance.  A strong positive correlation was observed in all the 

cases of Table 2.1 as shown in Figure 2.15.  The larger size diffusers caused greater flow 

velocities at the actuator disk, leading to higher power coefficients. 

 

 

Figure 2.15 The effect of the diffusers’ exit area to turbine area ratio on the 

shrouded turbine Cp. 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.00 1.00 2.00 3.00 4.00

C
p

Diffusers Exit to Turbine Area Ratio



 

 

23 

 

2.4.5 Effect of Shroud Diffuser Exit Length 

 

The length of the diffuser behind the actuator disk, L2, was not found to be a major 

factor in determining the performance of a shroud.  Figure 2.16 shows significant 

variation in Cp for both shorter lengths and does not indicate a clear trend beyond the 

selection of cases considered in this study.  However, for the three cases (Case 1d, Case 

1e, and Case 1f) that keep other factors equal except length L2, a strong correlation can 

be seen in the data in Figure 2.17.  The primary reason for this trend is the flow 

separation close to the surface of the diffuser.  All three cases have the same exit area 

which is 3 times the turbine area.  The three shroud shapes are shown together in Figure 

2.18.  Case 1d did not expand to its maximum allowable value of L2, suggesting that it is 

at an optimum angle.  The shorter diffusers create such steep angles that the flow 

separates and the diffusers become less efficient as can be seen in Figure 2.19.   

 

 

Figure 2.16 Performance of shrouded turbines of various lengths L2. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.000 5.000 10.000 15.000

C
p

Length of L2



 

 

24 

 

 

Figure 2.17 Variations of Cp for shrouded turbines of different lengths (cases 1d, 

1e, and 1f of Table 2.1). 

 

 

Figure 2.18 Optimized shroud shapes for cases 1d, 1e, and 1f of Table 2.1. 

 

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

0.000 5.000 10.000 15.000

C
p

Length of L2

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

‐5 0 5 10 15

Actuator Disk

Case 1d

Case 1e

Case 1f



 

 

25 

 

 

Figure 2.19 Velocity contours (m/s) for the flow field of Case 1f of Table 2.1 

showing flow separation at the outer portion of the diffuser. 

 

2.4.6 Comparison of Present Results with the Results of 

Werle and Presz [1] 

 

Werle and Presz [1] have computed the power coefficient of a shrouded turbine 

employing inviscid theoretical analysis.  Hansen et al. [13] have computed the power 

coefficient employing viscous CFD analysis.  Werle and Presz presented a figure with 

their calculations compared to those of Hansen et al. that related the power coefficient 

to the thrust coefficient for an example shrouded turbine.  This figure is reproduced as 

Figure 2.20. 

 



 

 

26 

 

 

Figure 2.20 Comparison of Cp for a bare and shrouded turbine with thrust 

coefficient using theoretical inviscid analysis and viscous CFD analysis.  (Figure 

from Werle and Presz [1], CFD data from Hansen et al. [13]) 

 

The power coefficient was previously formulated in Equation 2.2, but the comparison 

requires the thrust coefficient CT.  The thrust coefficient is the nondimentionalized 

form of the thrust force on the turbine normalized by the momentum in the free stream 

for an equivalent area; it is given by Equation 2.5 below. 

 

்ܥ ൌ
೟்

భ
మ
ఘ஺೟௏೚

మ    (2.5) 

 

Equation 2.6 defines the thrust force on the turbine as the pressure differential across 

the actuator disk multiplied by the surface area of the turbine.  The pressure differential 

has been previously defined in equation 2.1.  Combining Equation 2.1 with Equation 

2.5 gives Equation 2.7 for the thrust coefficient.   

 



 

 

27 

 

௧ܶ ൌ ሺ∆ ௧ܲሻܣ௧    (2.6) 

 

்ܥ ൌ ൤ቀ஺మ
஺ర
ቁ
ଶ
െ ቀ஺మ

஺భ
ቁ
ଶ
൨ ௏೟

మ

௏೚
మ  (2.7) 

 

It is worth noting that equation 2.7 is different from the way CT was calculated in Betz’s 

analysis.  In equation 2.7, the velocity at the turbine is a known quantity.  In Betz’s 

analysis, the wind velocity at the turbine is calculated from the inlet and outlet velocities.  

The formulation here is more direct because in the CFD environment, the flow 

properties can simply be read out without the necessity of inference. 

 

When the data for the optimized shrouded wind turbines generated in this thesis are 

plotted as Cp vs. CT similar to Figure 2.20, the results can be compared with those of 

Werle and Presz [1].  This is shown in Figure 2.21.  

 

Figure 2.21 Comparison of optimized shroud results to data for a shrouded wind 

turbine from Hansen et al. [13] as presented in Werle and Presz [1]. 

 

The comparisons in Figure 2.21 show that the present results are in reasonably good 

agreement with those reported previously in the literature.  However, it is important to 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

P
o
w
e
r 
C
o
e
ff
.,
 C
p

Prop Thrust Coefficient, Ct

CFD Data from 
Hansen et al. 
[13]

Present CFD 
Results for 
Optimized 
Shrouded Wind 
Turbines



 

 

28 

 

note that the present results are for optimized shrouded wind turbines in contrast with 

those reported by Werle and Presz [1]. 

 

Since the GA finds the optimum pressure coefficient at the actuator disk, the full range 

of thrust coefficients could not be shown by the optimized shrouded wind turbine data 

in Figure 2.21.  In order to demonstrate the trend shown by the CFD data in Werle and 

Presz’s [1] work, the pressure coefficient was varied for the optimized shrouded wind 

turbine (Case 2aof Table 2.1) from 0.05 to 1.5 and then Cp and Ct were computed.  

Figure 2.22 shows the close agreement between the present results with those of Werle 

and Presz.  For Case 2a of Table 2.1, the maximum Cp occurs at a point using the 

pressure coefficient calculated by the GA.  The deviation at high values of thrust 

coefficient is due to the tip gap present in this work and not in Werle and Presz’s.  As 

the actuator disk exerts more back pressure on the flow, a greater portion of it escapes 

through the gap resulting in a loss of pressure and power generation. 

 

 

Figure 2.22  Variation of Cp with Ct for an optimized shrouded wind turbine 

(Case 2a of Table 2.1). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
o
w
e
r 
C
o
e
ff
.,
 C
p

Prop Thrust Coefficient, Ct

CFD Data from 
Werle

Case 2a Data



 

 

29 

 

 

2.4.7 Dependence of the Power Coefficient on the Area Used 

for Non-Dimentionalization 

 

The intent of a shrouded wind turbine is to change the contours of the stream tube in 

order to improve the power generation potential.  By widening the inlet and the outlet 

relative to the turbine, the velocity of the wind at the throat increases, providing more 

energy production potential. 

 

The Betz limit states that a maximum of 16/27 of the momentum in a given flow can 

be extracted by a turbine.  The unshrouded or bare HAWT is modeled as an actuator 

disk inside a stream tube and the conservation equations of fluid dynamics are applied.  

The normalization area for power generation calculation is the swept area of the 

turbine.   

 

In a 2009 paper considering potential flow in an axisymmetric ducted wind turbine, 

Widnall [3] argued that, “if the power extraction of a ducted turbine as compared to the 

Betz model is referred to the exit area of the duct rather than the throat area, no power 

augmentation occurs” beyond the Betz limit.  The optimized shrouded wind turbines 

considered in this paper, in all thirteen cases, confirm her argument.   

 

The debate centers on how to normalize the power coefficient for the shrouded case.  If 

the normalization area remains the turbine area, then the increased power due to the 

diffuser can cause the Cp to exceed the Betz limit.  However, because the shroud has 

increased the cross-sectional area of the free stream that is disturbed, Widnall argues 

that the Betz limit is in fact not violated.  Cp simply needs to be normalized to the 

shroud exit area, which is a more reasonable approximation of the total energy available 

in the flow. 

 



 

 

30 

 

The calculations presented in this thesis for the optimized shrouded wind turbines 

support Widnall’s claim that with exit area normalization, the Betz limit is not violated.  

Figure 2.23 shows the power coefficients obtained by nondimentionalizing it by the 

turbine area and by the shroud exit area. 

 

When Cp is nondimentionalized by the turbine area, it exceeds the Betz limit of 

approximately 0.59 for all cases, but when it is nondimentionalized by the shroud exit 

area, the coefficients are significantly lower than the Betz limit.   

 

Figure 2.23 Cp of optimized shrouded wind turbines obtained by 

nondimentionalizing it by the turbine area and the shroud exit area. 

 

In Figure 2.23, Re
2/Rt

2 demonstrates a marginally inverse relationship with Cp.  This can 

be attributed to the increasing viscous losses due to higher fluid velocities as well as due 

to greater tip gap losses.  Additional testing would be necessary to quantify these effects 

more clearly and effectively.   

 

0

0.2

0.4

0.6

0.8

1

1.2

0.00 1.00 2.00 3.00 4.00

C
p
 

Re
2/Rt

2

Turbine 
Area 
Normalized

Exit Area 
Normalized



 

 

31 

 

The most significant result of Figure 2.23 is that the Betz limit is not violated using 

Widnall’s argument. 

 

2.5 Future Work 

 

Several aspects of the work performed in this thesis require further investigation.  There 

are several significant elements that should be considered to advance this work.  (1) 

Improve the actuator disk model by including rotational effects through blade element 

momentum theory.  This will result in more precise estimates of Cp.  (2) Model both 

internal and external flow around the shroud so that more accurate optimal 

aerodynamic shapes can be developed.  (3) Full 3-D CFD modeling of the blades’ 

interactions within the shroud are needed to develop viable real turbine systems.  (4) 

Determine the effects of shrouds on the turbine wakes within wind turbine farms.  It 

needs to be understood how shrouded HAWT would fit into the commercial wind farm 

structure.  (5)  Perform an analysis to determine how shrouded turbines compare to the 

standard HAWT in cost and performance.  (6) Perform full 3-D CFD optimization of 

shroud shape.  (7) Construct and test physical models.  The CFD data is purely 

academic until experimental data can validate the true performance of these systems. 



 

 

32 

 

Chapter 3 

 

3. Modeling of  Wind Turbines in a Solar 

Chimney and Shape Optimization of  

a Diffuser at the Top of  the Chimney 

 

3.1 Introduction 

 

In past several years, several studies have shown that shrouded wind turbines can 

generate greater power than bare turbines. A solar chimney not only generates an 

upward draft of the wind inside the solar tower but also creates a shroud around the 

wind turbine. A large number of silos stand empty on farms, especially in the mid-

western U.S. The objective of this study is to determine the potential of these silos in 

generating wind-power by installing a wind turbine inside the silo. Figure 3.1 shows a 

typical silo enclosed by the staves (blocks).  For the purposes of this thesis, a typical silo 

is 70 ft. in height and 15 – 18 ft. in outside diameter. The dimensions of a stave or block 

are 10 inch horizontal x 30 inch vertical x 3.5 inch thick. The staves are offset vertically 

by 6 inch as shown in Figure 3.1. These staves can be removed from various locations 

around the periphery of the silo and can serve as inlets for the outside air. The air drawn 

in through these inlets will move upward through the silo (like in a chimney) due to 

temperature differential between the lower and upper part of the silo (the air at lower 

part of the silo being at higher temperature). At the top, the silo will be open to the 



 

 

33 

 

outside atmosphere. A wind turbine can be installed inside the silo at a suitable height 

from the ground to extract the kinetic energy of the wind flowing upward from the 

inlets due to natural convection. The potential of this concept for wind power 

generation is evaluated by numerical simulation.  

 

3.2 Technical Approach 

 

The performance of a wind turbine inside a vertical silo is modeled by creating an 

actuator disk model in the CFD commercial solver FLUENT [5]. The geometries of the 

three configurations studied are shown in Figures 3.2(a), 3.2(b) and 3.2(c). In Figure 

3.2(a), the silo is modeled as a circular cylinder with top open to the atmosphere. In 

Figure 3.2(b), a venturi (a converging – diverging nozzle) is created around the turbine 

inside the silo. In Figure 2(c), a diverging diffuser section is placed on top of the silo; 

this section need not be made of staves and can be of a light weight structurally strong 

material to withstand the forces due to class – 3 wind. Various parameters shown in 

Figure 3.2 can be easily varied in the computer program to determine their effect on 

wind power generation. 

        

The geometric models of Figure 3.2 are created in the software “GAMBIT” [6]. A 

structured mesh is generated in the axisymmetric models.  The incompressible Navier-

Stokes equations solver in FLUENT, with Boussinesq approximation and a two 

equation realizable k – ε model is employed in all the calculations.  



 

 

34 

 

 

Figure 3.1 A typical silo on a farm 



 

 

35 

 

 

Figure 3.2 (a) Computational geometry of a cylindrical silo (without diffuser), (b) 

Computational geometry of a cylindrical silo with a venturi around the turbine, 

(c) Computational geometry of a cylindrical silo with diffuser on the top; L = 

Height of the silo, Dc = Interior Diameter of the Cylinderical Silo, Da = Diamer 

of the Turbine modeled as an Actuator Disc, l = Height of the Turbine from the 

Ground,  = Clearance between the Turbine and the Silo Wall, Dd = Diameter of 

the Exit Section of the Diffuse, α = Diffuser Angle, ξ and η define the Parameters 

related to Venturi. 

 



 

 

36 

 

 

 

 

3.3 Results 

 

As mentioned in the “Introduction” section, first the mathematical model (actuator 

disk) model was validated by computing the pressure coefficient (Cp) for a bare turbine; 

Cp value close to Betz’s limit (~0.59) was obtained. In the validation, the flow was 

assumed to be inviscid, incompressible and irrotational (potential flow). After the 

validation, calculations were performed for five cases using the dimensions of two 

typical silos of different diameters geometrically modeled as shown in Figure 3.2 and 

assuming class - 3 wind velocity: (a) bare turbine (without enclosing silo), (b) turbine 

enclosed by a cylindrical silo, (c) the turbine enclosed by the cylindrical silo with a 

diffuser at the top of the silo, (d) turbine surrounded by a converging – diverging 

venturi inside a cylindrical silo, and (e) turbine surrounded by a converging – diverging 

venturi inside a cylindrical silo with a diffuser at the top of the silo. The calculations for 

cases (b) – (e) were performed with a temperature differential between the ground and 

the top of the silo. Cp and generated power were calculated for the five cases. These 

results are described below: 

 

3.3.1 Configuration 1 

 

Configuration 1A (Figure 3.2(a)): L= 70 ft, l = 50 ft, Dc = 11 ft, Da = 10 ft,  = 0.5 

ft, ΔT = 0, 2, 4, 6, and 8 deg. The wind velocity of class 3 wind was assumed to be V = 

5.6m/s facing normal to the actuator disk (turbine).  

 



 

 

37 

 

Configuration 1B (Figure 3.2(a)): L= 70 ft, l = 50 ft, Dc = 17.6 ft, Da = 16 ft,  = 

0.8 ft, ΔT = 0, 2, 4, 6, and 8 deg. The wind velocity of class 3 wind was assumed to be V 

= 5.6m/s facing normal to the actuator disk (turbine).  

 

The difference between configuration 1A and 1B is in the diameters of the two silos Dc 

and diameters of the turbines Da. 

 

       It should be noted that the wind is sucked in through the openings created by 

removal of staves. We will call these openings as open-staves. Several effects can occur 

depending upon the placement of open-staves. If the open-staves are too close to the 

ground, the wind velocity will be significantly less than 5.6m/s. If they are 

approximately 4 -6 meters (15 – 20 ft.) above the ground, the wind velocity will be close 

to that in the atmosphere for that particular day. However, the wind will enter the silo 

nearly perpendicular to the cylindrical surface. As it moves upward in the silo, it creates 

a region of separation near the entrance of the open-staves. We studied this effect by 

assuming a cylindrical opening of 30 inch height at a distance of 5 meters (16 ft.) above 

the ground. It turns out that within a distance of less than 1 meter (~ 3 ft.), the flow 

becomes attached again. Therefore, assuming a wind of velocity V facing the turbine at 

a height of 50 ft from the ground is a reasonable and good approximation for the 

calculations.  

 

      The wind velocity in a vertical silo is also a function of the temperature differential 

between the ground and top of the silo. Since the silo height is only 70 ft, this 

temperature differential ΔT is very small; it is 0.025deg F (based on 0.00357deg.F /ft). 

The buoyancy effect increasing the speed of the upward flowing air is therefore very 

small. This effect can be increased by increasing the temperature of the sucked-in air 

near the ground by some means such as electric heaters appropriately placed or by 

placing solar panels near the ground to create a solar chimney configuration. The effect 

of increasing ΔT on increasing the upward wind velocity and therefore the turbine 

power is also calculated.  



 

 

38 

 

 

Table 3.1 provides the power generated by the turbine and the turbine efficiency for the 

cylindrical silo geometry of Configuration 1A (Figure 2(a)) and class -3 wind speed of 

5.6m/s for various values of ΔT.  

 

Table 3.1 Power Generated by the Turbine in Cylinderical Silo (Configuration 

1A) of Figure 2(a) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 290 785 0.37

2 328 785 0.42

4 367 785 0.47

6 408 785 0.52

 

From Table 3.1, it can be seen that the increase in ΔT increases the generated power as 

well as the turbine efficiency.  Figure 3.3 shows the entire computational domain 

employed for the case of the turbine inside the cylindrical silo. The silo has been rotated 

by 90deg. clockwise in this figure. It shows the velocity vectors indicating the direction 

and movement of the flow for ΔT = 0.  



 

 

39 

 

 

Figure 3.3 Computational domain for flow inside the silo enclosing the turbine: 

velocity vectors and their magnitude. The silo has been rotated by 90deg. 

clockwise in this Figure. 

 

Figure 3.4 Computational domain for flow inside the silo enclosing the turbine: 

static pressure contours and their magnitude. The silo has been rotated by 

90deg. clockwise in this Figure. 

 

Figure 3.4 shows the static pressure contours in the field (in Pascals) for ΔT = 0.  It 

shows that most of the pressure variation is confined to the region near the actuator 

disk; the pressure upstream of the disk is greater than that downstream as expected. 

Velocity and pressure contours similar to Figures 3.3 and 3.4 are obtained for other 

values of ΔT with minor changes. Table 3.2 provides the power generated by the 

turbine and the turbine efficiency for the cylindrical silo geometry of Configuration 1B 

(Figure 2(a)) and class -3 wind speed of 5.6m/s for various values of ΔT.  



 

 

40 

 

 

Table 3.2 Power Generated by the Turbine in Cylinderical Silo (Configuration 

1B) of Figure 2(a) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 748 2016 0.37

2 907 2016 0.45

4 1075 2016 0.53

6 1253 2016 0.62

8 1439 2016 0.72

 

From Table 3.2, it can be seen that larger diameter silo and turbine generate greater 

wind power as expected. Also, like configuration 1A, the increase in ΔT increases the 

generated power as well as the turbine efficiency.  However, there is little difference in 

the turbine efficiency between configuration 1A and configuration 1B as expected. 

Figures analogous to Figures 3.3 and 3.4 are not presented for this configuration 

because they are qualitatively similar in flow pattern and contours. 

 

3.3.2 Configuration 2 

 

Configuration 2A (Figure 3.2(c)): L= 70 ft, l = 50 ft, Dc = 11 ft, Da = 10 ft,  = 0.5 

ft, α = 20 deg, Dd = 1.5x Dc, ΔT = 0, 2, 4, 6, and 8 deg. The wind velocity of class 3 

wind was assumed to be V = 5.6m/s facing normal to the actuator disk (turbine).  

 

Configuration 2B (Figure 3.2(c)): L= 70 ft, l = 50 ft, Dc = 17.6 ft, Da = 16 ft,  = 

0.8 ft, α = 20 deg, Dd = 1.5x Dc, ΔT = 0, 2, 4, 6, and 8 deg. The wind velocity of class 

3 wind was assumed to be V = 5.6m/s facing normal to the actuator disk (turbine).  

 



 

 

41 

 

Table 3.3 provides the power generated by the turbine and the turbine efficiency for the 

cylindrical silo geometry (configuration 2A) with a diffuser on the top (Figure 3.2(c)) 

and class -3 wind speed of 5.6m/s for various values of ΔT.  

 

Table 3.3 Power Generated by the Turbine in Cylinderical Silo (Configuration 

2A) with a Diffuser at top (Figure 2(c)) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 560 785.00 0.71

2 642 785.00 0.82

4 727 785.00 0.93

6 816 785.00 1.04

8 909 785.00 1.16

 

From Table 3.3, it can be seen that the diffuser on the top has a significant effect in 

increasing the turbine power as well as the turbine efficiency which further increases 

with increase in ΔT. Figure 3.5 shows the zoomed-in view of the computational domain 

near the actuator disk employed for the case of the turbine inside the cylindrical silo 

with a diffuser on the top. The silo has been rotated by 90deg. clockwise in this figure. 

It shows the velocity vectors indicating the direction and movement of the flow for ΔT 

= 6. Figure 3.6 shows the zoomed-in-view of static pressure contours in field (in 

Pascals) for ΔT = 6.  



 

 

42 

 

 

Figure 3.5 Zoomed-in-View of computational domain for flow inside the silo 

enclosing the turbine with a diffuser on the top: Velocity vectors and their 

magnitude. The silo has been rotated by 90deg. clockwise in this figure. 

 

 

Figure 3.6 Zoomed-in-View of computational domain for flow inside the silo 

enclosing the turbine with a diffuser on the top: static pressure contours and 

their magnitude. The silo has been rotated by 90deg. clockwise in this figure. 

 

Table 3.4 provides the power generated by the turbine and the turbine efficiency for the 

cylindrical silo geometry (configuration 2B) with a diffuser on the top (Figure 3.2(c)) 

and class -3 wind speed of 5.6m/s for various values of ΔT.  

 

 



 

 

43 

 

Table 3.4 Power Generated by the Turbine in Cylinderical Silo (Configuration 

2B) with a Diffuser at top (Figure 3.2(c)) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 1463 2016 0.73

2 1815 2016 0.90

4 2176 2016 1.08

6 2580 2016 1.28

8 2984 2016 1.48

 

From Table 3.4, it can be seen that the diffuser on the top has a significant effect in 

increasing the turbine power as well as the turbine efficiency which further increases 

with increase in ΔT. Also, it can be seen that larger diameter silo and turbine generate 

greater wind power as expected. Furthermore, like before for configuration 2A, the 

increase in ΔT increases the generated power as well as the turbine efficiency. Figures 

analogous to Figures 3.5 and 3.6 are not presented for this configuration because they 

are qualitatively similar in flow pattern and contours. 

 

3.3.3 Configuration 3 

 

Configuration 3A (Figure 3.2(b)): L= 70 ft, l = 50 ft, Dc = 11 ft, Da = 8 ft, ξ = 4 ft., 

η = 1.1 ft.,  = 0.4 ft, ΔT = 0, 2, 4, and 6 deg. This configuration is similar to the 

configuration in Figure 2(a) with a venturi surrounding the turbine.  

 

Configuration 3B (Figure 2(b)): L= 70 ft, l = 50 ft, Dc = 17.6 ft, Da = 12.8 ft, ξ = 4 

ft., η = 1.76 ft.,  = 0.64 ft, ΔT = 0, 2, 4, and 6 deg. This configuration is similar to the 

configuration in Figure 2(a) with a venturi surrounding the turbine.  

 



 

 

44 

 

Table 3.5 provides the power generated by the turbine and the turbine efficiency for the 

cylindrical silo geometry (configuration 3A) with a converging-diverging venturi (Figure 

2(b)) and class -3 wind speed of 5.6m/s for various values of ΔT.  

 

Table 3.5 Power Generated by the Turbine in a Cylinderical Silo (Configuration 

3A) with a Venturi Surrounding it (Figure 3.2(b)) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 297 502 0.59

2 336 502 0.67

4 376 502 0.75

6 418 502 0.83

8 462 502 0.92

 

In Table 3.5, it should be noted that the available wind power in this case is less 

compared to that in Tables 3.1 and 3.2 because the wind turbine diameter in this case is 

Da = 8 ft. compared to that in configurations 1A and 2A where the wind turbine 

diameter Da = 10ft.  The diameter of the turbine had to be less in this case because of 

the installation of the venturi. Nevertheless, Table 3.5 shows that the venturi 

surrounding the turbine (even for a smaller turbine) has a significant effect in increasing 

the turbine power as well as the turbine efficiency which further increases with increase 

in ΔT.         

         

Figure 3.7 shows the zoomed-in view of the computational domain near the actuator 

disk employed for the case of the turbine surrounded by a converging – diverging 

venturi inside the cylindrical silo. The silo has been rotated by 90deg. clockwise in this 

figure. It shows the velocity vectors indicating the direction and movement of the flow 

for ΔT = 6. Figure 3.8 shows the zoomed-in-view of static pressure contours in the 

field (in Pascals) for ΔT = 6.  



 

 

45 

 

 

 

Figure 3.7 Zoomed-in-View of computational domain for flow inside the silo 

with a turbine surrounded by the venturi (Configuration 3A) (Figure 2(b)): 

Velocity vectors and their magnitude. The silo has been rotated by 90deg. 

clockwise in this figure. 

 

 

 

Figure 3.8 Zoomed-in-View of computational domain for flow inside the silo 

with a turbine surrounded by the venturi: static pressure contours and their 

magnitude. The silo has been rotated by 90deg. clockwise in this figure. 

 

Table 3.6 provides the power generated by the turbine and the turbine efficiency for the 

cylindrical silo geometry (configuration 3B) (Figure 3.2(b)) and class -3 wind speed of 

5.6m/s for various values of ΔT.  

 



 

 

46 

 

Table 3.6 Power Generated by the Turbine in a Cylinderical Silo (Configuration 

3A) with a Venturi Surrounding it (Figure 2(b)) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 768 1285 0.60

2 931 1285 0.72

4 1104 1285 0.86

6 1286 1285 1.00

8 1478 1285 1.15

 

From Table 3.6, it can be seen that the converging-diverging venturi surrounding the 

turbine has a significant effect in increasing the turbine power as well as the turbine 

efficiency which further increases with increase in ΔT. Also, it can be seen that larger 

diameter silo and turbine generate greater wind power as expected. Furthermore, like 

before for configuration 3A, the increase in ΔT increases the generated power as well as 

the turbine efficiency. Figures analogous to Figures 3.7 and 3.8 are not presented for 

this configuration because they are qualitatively similar in flow pattern and contours. 

 

3.3.4 Configuration 4 

 

Configuration 4A (Figure 3.2(b) with a Diffuser on the top): L= 70 ft, l = 50 ft, Dc 

= 11 ft, Da = 8 ft, ξ = 4 ft., η = 1.1 ft.,  = 0.4 ft, α = 20 deg, Dd = 1.5 Dc, ΔT = 0, 2, 

4, and 6 deg. This configuration is similar to the configuration 3 with a diffuser on the 

top.  

 

Configuration 4B (Figure 3.2(b) with a Diffuser on the top): L= 70 ft, l = 50 ft, Dc 

= 17.6 ft, Da = 12.8 ft, ξ = 4 ft., η = 1.76 ft.,  = 0.64 ft, α = 20 deg, Dd = 1.5 Dc, ΔT 



 

 

47 

 

= 0, 2, 4, and 6 deg. This configuration is similar to configuration 3 with a diffuser on 

the top.  

 

Table 3.7 provides the power generated by the turbine and the turbine efficiency for the 

cylindrical silo geometry with a converging-diverging venturi (Figure 2(b)) surrounding 

the turbine and a diffuser at the top of the silo (configuration 4A), and class -3 wind 

speed of 5.6m/s for various values of ΔT.  

 

Table 3.7 Power Generated by the Turbine in Cylinderical Silo with a Venturi 

Surrounding it (Figure 3.2(b)) and a Diffuser at the Top of the Silo 

(Configuration 4A) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 422 502 0.84

2 483 502 0.96

4 548 502 1.09

6 615 502 1.22

8 684 502 1.36

 

In Table 3.7, it should be noted that similar to Table 3.5,  the available wind power in 

this case is less compared to that in Tables 3.1 and 3.3 because the wind turbine 

diameter in this case is Da = 8 ft. compared to that in configurations 1A and 2A where 

the wind turbine diameter Da = 10ft.  The diameter of the turbine had to be less in this 

case because of the installation of the venturi. Nevertheless, Table 3.7 shows that 

diffuser at the top of the silo has a significant effect in increasing the turbine power as 

well as the turbine efficiency (compare the results with those in Table 3.5), which 

further increases with increase in ΔT.         

         



 

 

48 

 

Figure 3.9 shows the zoomed-in view of the computational domain near the actuator 

disk employed for the case of the turbine surrounded by a converging – diverging 

venturi inside the cylindrical silo with a diffuser on the top. The silo has been rotated by 

90deg. clockwise in this figure. It shows the velocity vectors indicating the direction and 

movement of the flow for ΔT = 6. Figure 3.10 shows the zoomed-in-view of static 

pressure contours in field (in Pascals) for ΔT = 6.  

 

 

Figure 3.9 Zoomed-in-View of computational domain for flow inside the silo 

with a  turbine surrounded by the venturi and a diffuser on the top: Velocity 

vectors and their magnitude. The silo has been rotated by 90deg. clockwise in 

this figure. 

 



 

 

49 

 

 

Figure 3.10 Zoomed-in-View of computational domain for flow inside the silo 

with a turbine surrounded by the venturi and a diffuser at the top: static pressure 

contours and their magnitude. The silo has been rotated by 90deg. clockwise in 

this figure. 

 

Table 3.8 provides the power generated by the turbine and the turbine efficiency for the 

cylindrical silo geometry with a converging-diverging venturi (Figure 3.2(b)) surrounding 

the turbine and a diffuser at the top of the silo (configuration 4B), and class -3 wind 

speed of 5.6m/s for various values of ΔT.  

 

 

 

 

 

 

 

 



 

 

50 

 

Table 3.8 Power Generated by the Turbine in a Cylinderical Silo with a Venturi 

Surrounding it (Figure 3.2(b)) and a Diffuser at the Top of the Silo 

(Configuration 4B) and Turbine Efficiency 

ΔT 

(˚C)

Power

(W) 

Wind 

Energy 

(W) 

Cp 

0 1108 1285 0.86

2 1369 1285 1.06

4 1649 1285 1.28

6 1946 1285 1.51

8 2260 1285 1.76

 

In Table 3.8, it should be noted that similar to Table 3.6,  the available wind power in 

this case is less compared to that in Tables 3.2 and 3.4 because the wind turbine 

diameter in this case is Da = 12.8 ft. compared to that in configurations 1B and 2B 

where the wind turbine diameter Da = 16ft.  The diameter of the turbine had to be less 

in this case because of the installation of the venturi. Nevertheless, Table 3.8 shows that 

diffuser at the top of the silo has a significant effect in increasing the turbine power as 

well as the turbine efficiency (compare the results with those in Table 3.6), which 

further increases with increase in ΔT. Figures analogous to Figures 3.9 and 3.10 are not 

presented for this configuration because they are qualitatively similar in flow pattern and 

contours. 

 

 

3.4 Diffuser Optimization 

 

From the modeling of the four configurations in the previous section, the diffuser 

element was shown to be the dominant factor increasing the power output of the solar 

chimney.  It was however modeled only as a simple cone shape.  This presented an 



 

 

51 

 

opportunity to optimize the shape of the diffuser for the greatest power output by the 

included wind turbine.  Using a modified version of the GA used for the work 

presented in Chapter 2 and the same CFD software, Configurations 2A and 2B were 

optimized for the five temperature differentials modeled previously.   

 

3.4.1 CFD and Genetic Algorithm Implementation 

 

The modeling and optimization techniques used for the solar chimney diffuser derive 

from the methods previously explained.  The CFD model was the same as in 

Configuration 2, except that the diffuser shape was defined by four control points.  The 

important elements of the model remain the actuator disk’s pressure discontinuity and 

the Boussinesq Approximation that introduces buoyancy due to the temperature 

differential with the exterior.  The first control point was fixed at the top of the straight 

silo side where the conic diffuser began in the previous work.  To achieve results that 

were directly comparable to the non-optimized configuration, the optimized diffuser 

was limited to the same maximum radius and length as the diffusers in Configurations 

2A and 2B.  The genetic algorithm functions in the same manner as described in section 

2.2, but due to the smaller number of control points and less complex shape, it only 

required 150 generations to converge on a solution. 

 

 

3.5 Results 

 

The optimization of the solar chimney diffuser worked effectively and resulted in 

improvement in the power coefficient on the order of 7% for all cases.  The specifics 

are elucidated below after an explanation of the convergence history of one case. 

 



 

 

52 

 

3.5.1 Genetic Algorithm Convergence 

 

Figure 3.11 shows the “evolution” of the Configuration 2A diffuser shape with a 4K 

temperature difference in the implementation of the GA.  The initial randomly 

generated curves have poor fitness, but within a few generations, good diffuser shapes 

emerge.  The third inset figure (clockwise from bottom left) is from generation 5. The 

next significant improvement comes at generation 55 shown in the fourth inset figure.  

This has a power coefficient of 0.9916, while the best result shown in the fifth inset 

from generation 148 has a power coefficient of 0.9945.  The improvement is less than 1 

percent, but it makes up the majority of the processing time required by the GA. 

  



 

 

53 

 

Figure 3.11  Convergence history of the GA for optimized diffuser Configuration 

2A with 4K temperature differential. The insets show total pressure contours and 

their magnitude in Zoomed-in-Views of the computational domain for flow 

inside the diffuser on top of the silo. The geometries are the individuals with the 

highest fitness value at the indicated generation. The silo has been rotated by 90 

deg. clockwise in these figures. 

 

 

 

 

 

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

0 50 100 150

M
ax
im

u
m
 P
o
w
e
r 
C
o
e
ff
ic
ie
n
t

Generation



 

 

54 

 

3.5.2 Data and Figures Related to Diffuser Optimization 

 

The specific results of the diffuser optimization are tabulated in Tables 3.9 and 3.10.  

For comparison, the power generation and power coefficients of the cone-diffuser are 

reproduced to illustrate the increases due to optimization. 

 

Table 3.9  Configuration 2A 

ΔT (deg.) 

Power 

Generation 

Cone-Diffuser 

(W) 

Power 

Generation 

Optimized 

Diffuser (W) 

Cp  

(Cone-

Diffuser) 

Cp (Optimized 

Diffuser) 

0 560 600 0.71 0.76 

2 642 688 0.82 0.88 

4 727 781 0.93 0.99 

6 816 877 1.04 1.12 

8 909 987 1.16 1.26 

 

Table 3.10  Configuration 2B 

ΔT (deg.) 

Power 

Generation 

Cone-Diffuser 

(W) 

Power 

Generation 

Optimized 

Diffuser (W) 

Cp  

(Cone-

Diffuser) 

Cp (Optimized 

Diffuser) 

0 1463 1557 0.73 0.77 

2 1815 1938 0.90 0.96 

4 2176 2342 1.08 1.17 

6 2580 2768 1.28 1.38 

8 2984 3237 1.48 1.61 

 

 



 

 

55 

 

 

Figure 3.12  GA optimized diffuser shapes for Configuration 2A compared to the 

original cone diffuser for various temperature differentials. 

 

 

5.50

6.00

6.50

7.00

7.50

8.00

20.00 22.00 24.00 26.00 28.00 30.00

Cone Diffuser

Optimized, 0 dT

Optimized, 2 dT

Optimized, 4 dT

Optimized, 6 dT

Optimized, 8 dT



 

 

56 

 

 

Figure 3.13 GA optimized diffuser shapes for Configuration 2B compared to the 

original cone diffuser for various temperature differentials. 

 

 

3.6 Future Work 

 

There are many issues that require further investigation. (a) The proper placement of stave-

openings to draw wind inside the silo: If the stave-openings are very close to the ground, the 

wind velocity becomes very small because of the atmospheric boundary layer. Even if 

the stave-openings are at a reasonably higher level from the ground, their placement at a 

proper distance from the turbine is critical since the wind stream will separate away 

from the walls of the silo near the entrance of the stave-openings. (b) The increase in the 

updraft velocity of the wind because of temperature stratification:  For an average height of about 

70ft, the temperature differential ΔT between the bottom and top of the silo is very 

5.50

6.00

6.50

7.00

7.50

8.00

20.00 22.00 24.00 26.00 28.00 30.00

Cone Diffuser

Optimized, 0 dT

Optimized, 2 dT

Optimized, 4 dT

Optimized, 6 dT

Optimized, 8 dT



 

 

57 

 

small; it is 0.025deg F (based on 0.00357deg.F/ft). It is not enough to create any 

significant updraft and increase in wind velocity. The only way to increase the wind 

velocity upward is to provide heat at the lower level near the stave-openings. The 

calculations show that that larger ΔT increases the wind velocity and therefore the 

turbine power. However, the energy needed for heating the ground level air for a 

desired value of ΔT should be estimated and compared with the additional energy 

generated by the wind turbine (due to increase in wind speed) in order to determine the 

benefit of ground level heating. (c) The venturi shape (the axial length and boundary 

shape) should be optimized by using an optimization algorithm (e.g. a genetic algorithm) 

to extract maximum power from the wind. (d) The diffuser shape (the axial length and 

boundary shape) should be optimized by using an optimization algorithm (e.g. a genetic 

algorithm) to extract additional power from the wind while accounting for the cross-

flow of the free stream wind at the exit.  (e) The full scale 3D CFD simulations should be 

performed by including the knowledge from items (a) – (d) for a 3-bladed rotor with 

optimized blade designs for various blade tip to wind speed ratios (λ = Ω D/2V, where 

Ω = rotational speed of the rotor, D is the rotor diameter and V is the wind velocity 

facing the rotor).  

 

Addressing these four issues will help in determining the best possible configuration for 

generating maximum wind power from wind turbines enclosed by silos. Once this 

configuration is determined, the cost estimates for initial investment and return on 

investment (ROI) should be conducted taking into account the number of such 

installations as well as installation and maintenance issues. 

 

 

 

  



 

 

58 

 

Chapter 4 

 

4. Conclusions 

 

In this thesis, we have investigated the potential of shrouded wind turbines for 

increased power generation, compared to bare turbines, by CFD simulations.  Two 

configurations for ducted turbines were considered for numerical simulations and 

optimization. Both of the configurations were analyzed by employing a computational 

fluid dynamics flow solver, which solves the Reynolds-Averaged Navier-Stokes 

equations in conjunction with a two equation k-epsilon turbulence model.  The turbine 

was modeled as an actuator disk neglecting the rotational effects. The first configuration 

considered shrouds for standard horizontal axis wind turbines.  Several turbine 

diameters, wind speeds, and shroud sizes were considered.  It was found that shrouding 

can almost double the power that would be generated by a bare turbine.  The second 

configuration considered the potential of converting abandoned or unused farm silos 

into solar chimneys with low cost shape modification of the chimney to further 

augment the power generation.  The most effective, simple and low cost shape 

modification was found to be a diffuser added to the top of the silo, which increased 

the power output by nearly 50%.  Increasing the buoyancy effect by heating the air at 

the base of the silo further increased the power output by a significant amount (as much 

as 50%).  The diffuser shapes for both the configurations were optimized using a 

genetic algorithm. In summary, the computations showed that the shrouded turbines 

can generate greater power than that generated by the bare turbines and therefore 

should be considered for small and medium size turbines. Further investigation is 

needed in the overall economic benefit considering the initial investment, maintenance 



 

 

59 

 

and life cycle costs.  The technical feasibility of shrouding a turbine and the structural 

integrity of a shrouded turbine are also major considerations.   



 

 

60 

 

A. Appendices 

 

A.1 Optimized Shrouded Wind Turbines: Table 

of Results 

Table A.1 Results for optimized shrouded HAWT. 

Case Vt: Ct: Fan Coeff. Power (W) Cp Cp_exit 
1a 6.9061 0.7126 0.2984 717 0.862 0.337 
1b 8.2067 0.7202 0.3209 1294 0.844 0.330 
1c 6.5517 0.6724 0.3128 642 0.772 0.387 
1d 7.5762 0.8054 0.2802 889 1.069 0.356 
1e 7.7299 0.7644 0.2555 861 1.035 0.345 
1f 6.8397 0.7574 0.3233 755 0.907 0.306 
1g 6.0161 0.6644 0.3666 582 0.700 0.353 
2a 6.9236 0.7159 0.2983 1849 0.868 0.339 
2b 8.3053 0.7132 0.3103 3321 0.846 0.334 
3a 6.3712 0.7806 0.3840 65 0.871 0.340 
3b 8.1974 0.7218 0.3224 117 0.845 0.330 
4a 6.5091 0.6694 0.3155 2540 0.763 0.382 
4b 7.9329 0.6673 0.3183 4637 0.756 0.379 

 



 

 

61 

 

A.2 Optimized Shroud Figures with Control 

Points 

 

Figure A.1 Case 1a: optimized HAWT shroud with control points. 

 

‐3.706, 5.622

‐3.706, 4.501

‐2.693, 5.227

0.594, 4.496

1.118, 4.587

2.261, 7.909 5.000, 8.001

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points



 

 

62 

 

 

Figure A.2 Case 1b: optimized HAWT shroud with control points. 

 

 

Figure A.3 Case 1c: optimized HAWT shroud with control points. 

 

‐3.706, 5.624

‐3.706, 4.415

‐1.242, 5.338

0.717, 4.528

0.795, 4.867

2.275, 7.984

5.000, 8.001

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points

‐2.203, 5.393

‐2.187, 4.775

‐2.033, 5.376

0.207, 4.307

1.168, 5.180

5.575, 6.648

9.947, 7.064

0

1

2

3

4

5

6

7

8

9

‐4 ‐2 0 2 4 6 8 10 12

Shroud Wall

Control Points



 

 

63 

 

 

Figure A.4 Case 1d: optimized HAWT shroud with control points. 

 

 

Figure A.5 Case 1e: optimized HAWT shroud with control points. 

 

‐2.222, 6.156

‐2.212, 5.020

‐1.913, 5.619

‐0.854, 4.652

5.074, 5.368

7.486, 8.173 14.280, 8.660

0

1

2

3

4

5

6

7

8

9

‐5 0 5 10 15

Shroud Wall

Control Points

‐4.449, 6.128

‐4.448, 5.288

‐3.818, 5.308

0.985, 4.499

1.589, 4.972

6.621, 8.509 9.903, 8.660

0

1

2

3

4

5

6

7

8

9

‐10 ‐5 0 5 10 15

Shroud Wall

Control Points



 

 

64 

 

 

Figure A.6 Case 1f: optimized HAWT shroud with control points. 

 

 

Figure A.7 Case 1g: optimized HAWT shroud with control points. 

 

‐4.400, 5.702

‐4.399, 4.653

‐3.156, 4.876

0.489, 4.638

2.047, 4.865

2.534, 8.532 4.913, 8.602

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points

‐3.841, 5.179

‐3.841, 4.625

‐3.580, 4.388

0.986, 4.974

1.110, 5.111

4.117, 6.511

4.850, 7.037

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points



 

 

65 

 

 

Figure A.8 Case 2a: optimized HAWT shroud with control points. 

 

 

Figure A.9 Case 2b: optimized HAWT shroud with control points. 

 

‐3.707, 5.624

‐3.707, 4.986 ‐3.472, 4.932

0.769, 4.499

1.136, 4.698

2.284, 7.887 5.001, 8.000

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points

‐2.502, 5.771

‐2.501, 5.031 ‐1.723, 4.666 0.719, 4.779

2.099, 5.800

2.252, 7.572 4.992, 7.962

0

1

2

3

4

5

6

7

8

9

‐4 ‐2 0 2 4 6

Shroud Wall

Control Points



 

 

66 

 

 

Figure A.10 Case 3a: optimized HAWT shroud with control points. 

 

 

Figure A.11 Case 3b: optimized HAWT shroud with control points. 

 

‐3.695, 5.625

‐3.694, 4.192

‐0.147, 5.139

0.720, 4.529

2.140, 6.340

2.552, 7.904

5.001, 8.002

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points

‐3.774, 5.623

‐3.774, 4.543

‐0.985, 5.357

0.469, 4.500

1.225, 4.867

2.677, 7.916

4.951, 7.999

0

1

2

3

4

5

6

7

8

9

‐6 ‐4 ‐2 0 2 4 6

Shroud Wall

Control Points



 

 

67 

 

 

Figure A.12 Case 4a: optimized HAWT shroud with control points. 

 

 

Figure A.13 Case 4b: optimized HAWT shroud with control points. 

 

 

‐2.208, 5.380

‐2.208, 4.783

‐2.091, 5.375

0.194, 4.306

1.803, 5.144

4.837, 6.645

9.992, 7.064

0

1

2

3

4

5

6

7

8

9

‐4 ‐2 0 2 4 6 8 10 12

Shroud Wall

Control Points

‐2.202, 5.390

‐2.202, 4.769

‐2.013, 5.384

0.147, 4.300

2.169, 5.107

5.668, 7.071

9.990, 7.064

0

1

2

3

4

5

6

7

8

9

‐4 ‐2 0 2 4 6 8 10 12

Shroud Wall

Control Points



 

 

68 

 

A.3 Genetic Algorithm Code with Ancillary Files 

 

This is the complete text of the Genetic Algorithm Java files, as well as the text of the 

external files called in the process of running the code. Section headings are the file 

names. 

 

A.3.1 wing.java 

 
package wing; 
 
 
 public class wing { 
  private int genSize, numGens, E, existingGenerations; 
  private double removePercentage, mutRate; 
  public static Airfoil bestAirfoil; 
  private generation one; 
  double t; 
 
   
  public wing(int genSize, int numGens, double 
removePercentage, double mutRate){ 
   this.genSize = genSize; 
   this.numGens = numGens; 
   this.removePercentage = removePercentage; 
   E = (int) Math.round(genSize * 
this.removePercentage); 
   this.mutRate = mutRate;   
    
  } 
   
  public void runOptimization(){ 
   //one = manyIndividuals(); 
   one = existingIndividuals(1); 
   bestAirfoil = new Airfoil(); 
    
   for (int i=1; i<numGens; i++){ 
    one.determineFitness(i); 
    
    /**Find airfoil with highest coefficient of 
lift */ 
    System.out.println("***** Generation " + i + 
"*****"); 
    bestAirfoil = one.getBestAirfoil(); 
    System.out.println("Best airfoil Cp = " + 
bestAirfoil.getFitness()); 



 

 

69 

 

    
    /**Create new generations to find best 
airfoil*/ 
    advanceGen(); 
   } 
    
  } 
   
 public Airfoil generateIndividual(){ 
   
  Airfoil airfoil = new Airfoil(); 
 
  double X6=AirfoilModifier.minX6+Math.random() * 
(AirfoilModifier.maxX6-AirfoilModifier.minX6); 
  double X5=AirfoilModifier.minX5+Math.random() * (X6-
AirfoilModifier.minX5); 
  double X4=AirfoilModifier.minX4+Math.random() * (X5-
AirfoilModifier.minX4); 
  double X3=AirfoilModifier.minX3+Math.random() * (X4-
AirfoilModifier.minX3); 
   
  double X7=X6+                   Math.random() * 
(AirfoilModifier.maxX7-X6); 
  double X8=X7+                   Math.random() * 
(AirfoilModifier.maxX8-X7); 
  double X9=X8+                   Math.random() * 
(AirfoilModifier.maxX9-X8); 
   
  double Y3=AirfoilModifier.minY3+Math.random() * 
(AirfoilModifier.maxY3-AirfoilModifier.minY3); 
  double Y4=AirfoilModifier.minY4+Math.random() * 
(AirfoilModifier.maxY4-AirfoilModifier.minY4); 
  double Y5=AirfoilModifier.minY5+Math.random() * 
(AirfoilModifier.maxY5-AirfoilModifier.minY5); 
  double Y6=AirfoilModifier.minY6+Math.random() * 
(AirfoilModifier.maxY6-AirfoilModifier.minY6); 
  double Y7=AirfoilModifier.minY7+Math.random() * 
(AirfoilModifier.maxY7-AirfoilModifier.minY7); 
  double Y8=AirfoilModifier.minY8+Math.random() * 
(AirfoilModifier.maxY8-AirfoilModifier.minY8); 
  double Y9=AirfoilModifier.minY9+Math.random() * 
(AirfoilModifier.maxY9-AirfoilModifier.minY9); 
   
  Airfoil airfoilgen = new 
Airfoil(X3,Y3,X4,Y4,X5,Y5,X6,Y6,X7,Y7,X8,Y8,X9,Y9); 
  AirfoilModifier.modAirfoil(airfoilgen); 
  airfoil = airfoilgen; 
   
  return airfoil;   
    } 
 
  
   
 private generation manyIndividuals(){ 



 

 

70 

 

  //new generation of airfoils 
  generation airfoils = new generation(genSize); 
   
  //loop to generate genSize airfoils 
  for(int i=0;i<genSize;i++){ 
   airfoils.addAirfoil(generateIndividual()); 
  } 
   
  return airfoils; 
 } 
 
 /**create generation with existing wings**/ 
 private generation existingIndividuals(int 
existingGenerations){ 
  //Input the generation 
  this.existingGenerations = existingGenerations;  
   
  //new generation of wings 
  generation airfoils = new generation(genSize); 
   
  //add existing wings manually  
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
  airfoils.addAirfoil(new Airfoil()); 
   
  airfoils.addAirfoil(FromRecord(-2.203148738270498, 
5.393070851734786, -2.187450061351378, 4.774690986521157, -
2.033185488350599, 5.375622047373333, 0.2071159316701668, 
4.30693343712174, 1.1675404372777267, 5.180456711640752, 
5.575394178619769, 6.6483017687088175, 9.947163978226866, 
7.064226770987885)); 
  airfoils.addAirfoil(FromRecord(-
2.2031563688838394,5.38974204644828,-
2.187519415256461,4.765324729035233,-
2.032589081851058,5.375624069892875,0.20688284397129159,4.3079542981
57818,1.1285085316013237,5.181228539118404,6.0919799017645575,6.6481
80476693175,9.9471154690912,7.064225956209522)); 
  airfoils.addAirfoil(FromRecord(-
2.203242972318233,5.428435754003545,-
2.188946662658091,4.604890879280909,-
2.0333691081836083,5.375020138070308,0.18670313501311064,4.338337757
39219,2.0413081291653565,5.170381945315839,5.481685780565558,6.66198
243600454,9.943601873269163,7.064199988243365)); 
  airfoils.addAirfoil(FromRecord(-
2.203292492284962,5.431043102577696,-
2.189234769990262,4.568255531386719,-
2.0333597700161934,5.374848000148967,0.1676513091246766,4.3514245564



 

 

71 

 

236465,2.2299930120556,5.161370564983122,4.339165577643721,6.6685315
885925185,9.943385743272596,7.06418144283336)); 
  airfoils.addAirfoil(FromRecord(-
2.203139636591628,5.44889706697271,-
2.188055966731389,4.610273765570841,-
2.0353139875454733,5.375566255298646,0.19562973119910243,4.326836201
697043,1.909620439894519,5.180671986463295,5.7233578223442425,6.6613
15078035779,9.943343999324249,7.064228186980254)); 
  airfoils.addAirfoil(FromRecord(-
2.2031765431713892,5.396705637675992,-
2.1874099772398274,4.732792807576367,-
2.036036217855667,5.375659926189331,0.2057733558680029,4.31612789687
25005,0.7377918367789627,5.179930277102026,6.312642602467313,6.65890
31113421,9.946514730895467,7.064225583498222));   
  airfoils.addAirfoil(FromRecord(-
2.2031704188617858,5.384780920287789,-
2.187730676813248,4.755287684620443,-
2.031772219468423,5.375627016797401,0.20604102424041873,4.3104138896
22369,0.9196178284377317,5.182528953205678,6.67000510253117,6.647289
6671883,9.94704965965121,7.0642239092848085)); 
  airfoils.addAirfoil(FromRecord(-
2.203179101171859,5.3864499679385744,-
2.187866144622038,4.763366721000551,-
2.028965610797605,5.375827135265614,0.20263297829501306,4.3093444987
88545,0.6656225169940884,5.178866525861145,6.72903414911511,6.643479
935572796,9.947107658312234,7.064225195401249)); 
  airfoils.addAirfoil(FromRecord(-
2.2031836399469773,5.389258883922361,-
2.190455421742542,4.769493146820115,-
2.028763066478957,5.3760501342603355,0.19969930819437232,4.309831528
6345095,0.5131890481462964,5.176460218382226,6.723057870108455,6.642
657034026507,9.947491599837884,7.064228815380099)); 
  airfoils.addAirfoil(FromRecord(-
2.2031561361060077,5.389638787450879,-
2.1883829390327487,4.740473422102478,-
2.0329156073865047,5.376058609198227,0.20374769247375832,4.321783712
62854,0.9370794692122187,5.182079140667373,6.578434495018177,6.65234
8109639632,9.946286188354772,7.064224247053876)); 
   
  return airfoils; 
 } 
 
 
 
 
 public void advanceGen(){ 
  System.out.println("Begin advance gen"); 
  generation nextGen = new generation(genSize); 
   
  /**Create E number of new airfoils by using coordinates 
from two random airfoils from the previous generation*/ 
  int count = 0; 
   
  while(count<E){ 



 

 

72 

 

    
    
   Airfoil airfoil1 = 
one.getAirfoil((int)Math.floor(Math.random()*genSize)); 
   Airfoil airfoil2 = 
one.getAirfoil((int)Math.floor(Math.random()*genSize)); 
   if(airfoil1 != airfoil2){ 
    Airfoil 
airfoilCrossover=crossover(airfoil1,airfoil2); 
    nextGen.addAirfoil(airfoilCrossover); 
    count++; 
        
    } 
   } 
      
   /**Check to make sure it works*/ 
   System.out.print("***Next generation of 
airfoils***"); 
   nextGen.outputAirfoils(); 
   
  /**Remove E number of airfoils from the previous 
generation with the highest Cp*/ 
  naturalSelection(); 
    
  /**Add surviving airfoils to nextGen of airfoils*/ 
  for(int i=0;i<one.getAirfoilVectorSize();i++){ 
   nextGen.addAirfoil(one.getAirfoil(i)); 
  } 
   
    
  /**Mutate*/ 
  mutate(nextGen); 
   
  /**Check to make sure it works*/ 
  System.out.println("***Next generation of airfoils with 
survivors (and mutants)***" + "\r"); 
  nextGen.outputAirfoils(); 
   
  /**Original generation becomes nextGen*/ 
  one = nextGen; 
   
   
 } 
 
 /**Take coordinates of two airfoils and combine them to get a 
new airfoil*/ 
 private Airfoil crossover(Airfoil airfoil1, Airfoil airfoil2){ 
   
  System.out.println("Begin crossover"); 
  //double x0_1,x0_2; 
  double x3_1,x3_2; 
  double y3_1,y3_2; 
  double x4_1,x4_2; 
  double y4_1,y4_2; 



 

 

73 

 

  double x5_1,x5_2; 
  double y5_1,y5_2; 
  double x6_1,x6_2; 
  double y6_1,y6_2; 
  double x7_1,x7_2; 
  double y7_1,y7_2; 
  double x8_1,x8_2; 
  double y8_1,y8_2; 
  double x9_1,x9_2; 
  double y9_1,y9_2; 
   
   
   
  if(airfoil1.getFitness() > airfoil2.getFitness()){ 
   x3_2 = airfoil1.X3; 
   y3_2 = airfoil1.Y3; 
   x4_2 = airfoil1.X4; 
   y4_2 = airfoil1.Y4; 
   x5_2 = airfoil1.X5; 
   y5_2 = airfoil1.Y5; 
   x6_2 = airfoil1.X6; 
   y6_2 = airfoil1.Y6; 
   x7_2 = airfoil1.X7; 
   y7_2 = airfoil1.Y7; 
   x8_2 = airfoil1.X8; 
   y8_2 = airfoil1.Y8; 
   x9_2 = airfoil1.X9; 
   y9_2 = airfoil1.Y9; 
    
   x3_1 = airfoil2.X3; 
   y3_1 = airfoil2.Y3; 
   x4_1 = airfoil2.X4; 
   y4_1 = airfoil2.Y4; 
   x5_1 = airfoil2.X5; 
   y5_1 = airfoil2.Y5; 
   x6_1 = airfoil2.X6; 
   y6_1 = airfoil2.Y6; 
   x7_1 = airfoil2.X7; 
   y7_1 = airfoil2.Y7; 
   x8_1 = airfoil2.X8; 
   y8_1 = airfoil2.Y8; 
   x9_1 = airfoil2.X9; 
   y9_1 = airfoil2.Y9; 
    
    
  } else { 
   x3_1 = airfoil1.X3; 
   y3_1 = airfoil1.Y3; 
   x4_1 = airfoil1.X4; 
   y4_1 = airfoil1.Y4; 
   x5_1 = airfoil1.X5; 
   y5_1 = airfoil1.Y5; 
   x6_1 = airfoil1.X6; 
   y6_1 = airfoil1.Y6; 



 

 

74 

 

   x7_1 = airfoil1.X7; 
   y7_1 = airfoil1.Y7; 
   x8_1 = airfoil1.X8; 
   y8_1 = airfoil1.Y8; 
   x9_1 = airfoil1.X9; 
   y9_1 = airfoil1.Y9; 
    
   x3_2 = airfoil2.X3; 
   y3_2 = airfoil2.Y3; 
   x4_2 = airfoil2.X4; 
   y4_2 = airfoil2.Y4; 
   x5_2 = airfoil2.X5; 
   y5_2 = airfoil2.Y5; 
   x6_2 = airfoil2.X6; 
   y6_2 = airfoil2.Y6; 
   x7_2 = airfoil2.X7; 
   y7_2 = airfoil2.Y7; 
   x8_2 = airfoil2.X8; 
   y8_2 = airfoil2.Y8; 
   x9_2 = airfoil2.X9; 
   y9_2 = airfoil2.Y9; 
  } 
   
  /**Create new airfoils coordinates with crossover of two 
old airfoils biasing towards airfoil with smaller Cp*/ 
  //double x0 = Math.random()*(x0_2-x0_1) + x0_2;  
  double x3 = Math.random()*(x3_2-x3_1) + x3_2;  
  double y3 = Math.random()*(y3_2-y3_1) + y3_2; 
  double x4 = Math.random()*(x4_2-x4_1) + x4_2;  
  double y4 = Math.random()*(y4_2-y4_1) + y4_2;  
  double x5 = Math.random()*(x5_2-x5_1) + x5_2;  
  double y5 = Math.random()*(y5_2-y5_1) + y5_2; 
  double x6 = Math.random()*(x6_2-x6_1) + x6_2;  
  double y6 = Math.random()*(y6_2-y6_1) + y6_2;  
  double x7 = Math.random()*(x7_2-x7_1) + x7_2;  
  double y7 = Math.random()*(y7_2-y7_1) + y7_2;     
  double x8 = Math.random()*(x8_2-x8_1) + x8_2;  
  double y8 = Math.random()*(y8_2-y8_1) + y8_2; 
  double x9 = Math.random()*(x9_2-x9_1) + x9_2;  
  double y9 = Math.random()*(y9_2-y9_1) + y9_2; 
   
   
  Airfoil airfoil = new 
Airfoil(x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8,x9,y9); 
  AirfoilModifier.modAirfoil(airfoil); 
   
  return airfoil; 
     
 } 
 
 private void naturalSelection(){ 
  System.out.println("Begin natural selection"); 
  BubbleSorter.sort(one); 
  one.removeAirfoils(genSize-E); 



 

 

75 

 

 } 
 
 private void mutate(generation nextGen){ 
  for(int i=0;i<nextGen.getGenSize();i++){ 
   if(Math.random() <= mutRate) { 
    
    Airfoil airfoiladd = new Airfoil(); 
    Airfoil airfoilremove = new Airfoil(); 
    
    
    Airfoil airfoil = nextGen.getAirfoil(i); 
     
    double 
x6=AirfoilModifier.minX6+Math.random() * (AirfoilModifier.maxX6-
AirfoilModifier.minX6); 
    double 
x5=AirfoilModifier.minX5+Math.random() * (x6-AirfoilModifier.minX5); 
    double 
x4=AirfoilModifier.minX4+Math.random() * (x5-AirfoilModifier.minX4); 
    double 
x3=AirfoilModifier.minX3+Math.random() * (x4-AirfoilModifier.minX3); 
     
    double x7=x6+                   
Math.random() * (AirfoilModifier.maxX7-x6); 
    double x8=x7+                   
Math.random() * (AirfoilModifier.maxX8-x7); 
    double x9=x8+                   
Math.random() * (AirfoilModifier.maxX9-x8); 
     
    double 
y3=AirfoilModifier.minY3+Math.random() * (AirfoilModifier.maxY3-
AirfoilModifier.minY3); 
    double 
y4=AirfoilModifier.minY4+Math.random() * (AirfoilModifier.maxY4-
AirfoilModifier.minY4); 
    double 
y5=AirfoilModifier.minY5+Math.random() * (AirfoilModifier.maxY5-
AirfoilModifier.minY5); 
    double 
y6=AirfoilModifier.minY6+Math.random() * (AirfoilModifier.maxY6-
AirfoilModifier.minY6); 
    double 
y7=AirfoilModifier.minY7+Math.random() * (AirfoilModifier.maxY7-
AirfoilModifier.minY7); 
    double 
y8=AirfoilModifier.minY8+Math.random() * (AirfoilModifier.maxY8-
AirfoilModifier.minY8); 
    double 
y9=AirfoilModifier.minY9+Math.random() * (AirfoilModifier.maxY9-
AirfoilModifier.minY9); 
     
    Airfoil mutant = new 
Airfoil(x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8,x9,y9); 
    AirfoilModifier.modAirfoil(mutant); 



 

 

76 

 

     
     
     
      
     airfoiladd = mutant; 
     airfoilremove=airfoil; 
      
     
      
    nextGen.removeAirfoil(airfoilremove); 
    System.out.println("Airfoil removed for 
mutation"); 
    nextGen.addAirfoil(airfoiladd); 
    System.out.println("Airfoil added for 
mutation"); 
   } 
  } 
 } 
 
 public void EvaIndividual(double X3, double Y3, double X4, 
double Y4, double X5, double Y5, double X6, double Y6, double X7, 
double Y7, double X8, double Y8, double X9, double Y9){ 
  double timeStep=0.02; 
  Airfoil af=new Airfoil( X3,  Y3,  X4,  Y4,  X5,  Y5,  
X6,  Y6,  X7,  Y7,  X8,  Y8,  X9,  Y9); 
  gambitAirfoils gt=new gambitAirfoils(af); 
  gt.buildAirfoil(timeStep); 
   
   
  gt.publishFile("diffuser.dat"); 
  gt.setCoefficient(); 
 } 
  
 public Airfoil FromRecord(double X3, double Y3, double X4, 
double Y4, double X5, double Y5, double X6, double Y6, double X7, 
double Y7, double X8, double Y8, double X9, double Y9) { 
  Airfoil foil= new Airfoil( X3,  Y3,  X4,  Y4,  X5,  Y5,  
X6,  Y6,  X7,  Y7,  X8,  Y8,  X9,  Y9); 
  return foil; 
 } 
  
 public static void main(String[] args){ 
  wing firstTry = new wing(20,350,0.5,0.04);     
//(Generation size, number of Gens, selection rate, mutation rate) 
  //firstTry.EvaIndividual(-
3.707035639192833,5.624203134918806,-
3.706662087140752,4.985808753989674,-
3.4723243280406546,4.931716006530891,0.7693404695050218,4.4994021759
60706,1.1356468799647224,4.697972648066941,2.2836468994641668,7.8867
90558583122,5.001192838767047,7.999725825385547); 
  firstTry.runOptimization(); 
 
 } 
  



 

 

77 

 

 
} 
 

 

A.3.2 Airfoil.java 

 
package wing; 
 
public class Airfoil { 
 public double 
X3,Y3,X4,Y4,X5,Y5,X6,Y6,X7,Y7,X8,Y8,X9,Y9,X10,X11; 
  
 public double fitness;   
 public double X1=0, Y1=0, X2=0, Y2=5, Y10=0, Y11=0; 
 
 /**Constructor for copying an existing airfoil**/ 
 public Airfoil(Airfoil af){ 
 
 this(af.X3,af.Y3,af.X4,af.Y4,af.X5,af.Y5,af.X6,af.Y6,af.X7,af.
Y7,af.X8,af.Y8,af.X9,af.Y9 ); 
  } 
  
 /**Default constructor.  Initialize everything to 0.**/ 
 public Airfoil(){ 
  X3=0; 
  X4=0; 
  X5=0; 
  X6=0; 
  X7=0; 
  X8=0; 
  X9=0; 
   
  Y3=0; 
  Y4=0; 
  Y5=0; 
  Y6=0; 
  Y7=0; 
  Y8=0; 
  Y9=0; 
  fitness = 0; 
 } 
  
 /**Main constructor**/ 
 public Airfoil(double X3, double Y3, double X4, double Y4, 
double X5, double Y5, double X6, double Y6, double X7, double Y7, 
double X8, double Y8, double X9, double Y9 ){ 
  this.X3=X3; 
  this.X4=X4; 
  this.X5=X5; 



 

 

78 

 

  this.X6=X6; 
  this.X7=X7; 
  this.X8=X8; 
  this.X9=X9; 
  this.X10=X9; 
  this.X11=X3; 
   
  this.Y3=Y3; 
  this.Y4=Y4; 
  this.Y5=Y5; 
  this.Y6=Y6; 
  this.Y7=Y7; 
  this.Y8=Y8; 
  this.Y9=Y9; 
  this.fitness = 1000000; 
 } 
  
 public Airfoil(double X3, double Y3, double X4, double Y4, 
double X5, double Y5, double X6, double Y6, double X7, double Y7, 
double X8, double Y8, double X9, double Y9, double fitness ){ 
  this.X3=X3; 
  this.X4=X4; 
  this.X5=X5; 
  this.X6=X6; 
  this.X7=X7; 
  this.X8=X8; 
  this.X9=X9; 
  this.X10=X9; 
  this.X11=X3; 
   
  this.Y3=Y3; 
  this.Y4=Y4; 
  this.Y5=Y5; 
  this.Y6=Y6; 
  this.Y7=Y7; 
  this.Y8=Y8; 
  this.Y9=Y9; 
     
    this.fitness = fitness; 
 } 
  
   
     
 public double getX3(){ 
  return X3; 
 } 
 public double getY3(){ 
  return Y3; 
 } 
 public double getX4(){ 
  return X4; 
 } 
 public double getY4(){ 
  return Y4;  



 

 

79 

 

 } 
 public double getX5(){ 
  return X5; 
 } 
 public double getY5(){ 
  return Y5; 
 } 
 public double getX6(){ 
  return X6; 
 } 
 public double getY6(){ 
  return Y6; 
 }  
 public double getX7(){ 
  return X7; 
 } 
 public double getY7(){ 
  return Y7; 
 } 
 public double getX8(){ 
  return X8; 
 } 
 public double getY8(){ 
  return Y8; 
 } 
 public double getX9(){ 
  return X9; 
 } 
 public double getY9(){ 
  return Y9; 
 } 
 public double getFitness(){ 
  return fitness; 
 }   
 
} 
 

A.3.3 generation.java 

 

package wing; 

 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileWriter; 

import java.util.Vector; 



 

 

80 

 

 

public class generation { 

 private Vector<Airfoil> airfoils; 

 private int genSize; 

 private double timeStep = 0.02; 

  

 public generation(int genSize){ 

  this.genSize = genSize; 

  this.airfoils = new Vector<Airfoil>(); 

 } 

   

 public void addAirfoil(Airfoil airfoil){ 

  airfoils.add(airfoil); 

 } 

 

 public void replaceAirfoil(Airfoil airfoil, int i){ 

  airfoils.removeElementAt(i); 

  airfoils.insertElementAt(airfoil,i); 

 } 

 

 public Airfoil getAirfoil(int i){ 

  return airfoils.elementAt(i); 

 } 

  

 public int getGenSize(){ 

  return genSize; 

 } 

  

 public int getAirfoilVectorSize(){ 

  return airfoils.size(); 



 

 

81 

 

 } 

 

 public void removeAirfoils(int num){ 

  for(int i=0;i<num;i++){ 

   airfoils.removeElementAt(0); 

  } 

 } 

  

 public boolean removeAirfoil(Airfoil airfoil){ 

  return airfoils.remove(airfoil); 

 } 

  

 /**Get the airfoils and their X1,X2,Y1,Y2,M1,M2,M3,N1,N2,N3 values*/ 

 public void outputAirfoils(){ 

  for(int i=0;i<airfoils.size();i++){ 

   Airfoil af = airfoils.elementAt(i); 

   System.out.println("Airfoil variables: " + af.X3 + ", " + af.Y3 + 

", " + af.X4 + ", " + af.Y4 + ", " + af.X5 + ", " + af.Y5 + ", " + af.X6 + ", " + af.Y6 + 

", " + af.X7 + ", " + af.Y7 + ", " + af.X8 + ", " + af.Y8 + ", " + af.X9 + ", " + af.Y9 + 

", " + "fitness: " + af.fitness); 

    

  }   

 } 

  

 /**create the coordinates for this generation of airfoils and store in vector 

"airfoils"*/ 

 public void determineFitness(int generation){ 

  for(int i=0;i<airfoils.size();i++){ 

   Airfoil airfoil = airfoils.elementAt(i); 

   gambitAirfoils gt = new gambitAirfoils(airfoil); 



 

 

82 

 

   gt.buildAirfoil(timeStep); 

   airfoils.elementAt(i).fitness = 

gt.getScoreWithFluent(generation,i,airfoils.elementAt(i).fitness); 

   try{ 

    BufferedWriter recordWriter =  new 

BufferedWriter(new FileWriter(new File("record.txt"), true)); 

    recordWriter.write("Generation: " + generation +  "; (" 

+ airfoils.elementAt(i).getX3()+ "," + airfoils.elementAt(i).getY3() + "," + 

airfoils.elementAt(i).getX4() + "," + airfoils.elementAt(i).getY4()+ "," + 

airfoils.elementAt(i).getX5() + "," + airfoils.elementAt(i).getY5() + "," + 

airfoils.elementAt(i).getX6() + "," + airfoils.elementAt(i).getY6() + "," + 

airfoils.elementAt(i).getX7() + "," + airfoils.elementAt(i).getY7() + "," + 

airfoils.elementAt(i).getX8() +"," + airfoils.elementAt(i).getY8() +"," + 

airfoils.elementAt(i).getX9() +"," + airfoils.elementAt(i).getY9()+ ") fitness: " + 

airfoils.elementAt(i).fitness + "\r"); 

    recordWriter.close(); 

   } 

   catch(Exception e){ 

    e.printStackTrace(); 

   } 

  } 

 } 

  

 /**Get airfoil of the generation that has the highest coefficient of lift*/ 

 public Airfoil getBestAirfoil(){ 

  //Airfoil bestAirfoil = new Airfoil(); 

  for(int i=0;i<airfoils.size();i++){ 

   System.out.println("Currently running airfoil Cp = " + 

airfoils.elementAt(i).getFitness()); 



 

 

83 

 

   if(airfoils.elementAt(i).getFitness() > 

wing.bestAirfoil.getFitness()){ 

    wing.bestAirfoil = airfoils.elementAt(i); 

   } 

  } 

  System.out.println("New best airfoil Cp = " + 

wing.bestAirfoil.getFitness()); 

  return wing.bestAirfoil; 

 } 

} 

 

A.3.4 gambitAirfoils.java 

package wing; 

 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.text.DecimalFormat; 

 

 

    

public class gambitAirfoils { 

 public static final double X1=0, Y1=0, X2=0, Y2=5, Y10=0, Y11=0; 

 public static final int extraPoints = 5; 

 public double 

X3,Y3,X4,Y4,X5,Y5,X6,Y6,X7,Y7,X8,Y8,X9,Y9,X10,X11,Ax,Bx,Cx,Dx,Ex,Fx,Ay,By,C

y,Dy,Ey,Fy,fitness, thickness, penalty, F; 



 

 

84 

 

 public double[] xPoints, yPoints; 

 public int iterations, 

A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16; 

 public double max=0; 

 public String coefficient; 

 public Double fanCoeff; 

  

 public static final double freeVel = 5.71; 

 public static final double rho = 1.225; 

  

 public static final double minX3=-8; 

 public static final double maxX3=-.5; 

 public static final double minX4=-8; 

 public static final double maxX4=-.5; 

 public static final double minX5=-4; 

 public static final double maxX5=-.1; 

 public static final double minX6=-1; 

 public static final double maxX6=1; 

 public static final double minX7=.1; 

 public static final double maxX7=9; 

 public static final double minX8=2; 

 public static final double maxX8=10; 

 public static final double minX9=3; 

 public static final double maxX9=10; 

  

 public static final double minY3=5; 

 public static final double maxY3=6; 

 public static final double minY4=4; 

 public static final double maxY4=6; 

 public static final double minY5=4; 



 

 

85 

 

 public static final double maxY5=6; 

 public static final double minY6=4.3; 

 public static final double maxY6=5; 

 public static final double minY7=4; 

 public static final double maxY7=7; 

 public static final double minY8=5; 

 public static final double maxY8=7.071; 

 public static final double minY9=7; 

 public static final double maxY9=7.071; 

  

 public gambitAirfoils(Airfoil af){ 

  this.X3 = af.X3; 

  this.Y3 = af.Y3; 

  this.X4 = af.X4; 

  this.Y4 = af.Y4; 

  this.X5 = af.X5; 

  this.Y5 = af.Y5; 

  this.X6 = af.X6; 

  this.Y6 = af.Y6; 

  this.X7 = af.X7; 

  this.Y7 = af.Y7; 

  this.X8 = af.X8; 

  this.Y8 = af.Y8; 

  this.X9 = af.X9; 

  this.Y9 = af.Y9; 

   

  this.X10 = af.X9; 

  this.X11 = af.X3; 

   

   



 

 

86 

 

  this.Fx = getFx(); 

  this.Ex = getEx(); 

  this.Dx = getDx(); 

  this.Cx = getCx(); 

  this.Bx = getBx(); 

  this.Ax = getAx(); 

  this.Fy = getFy(); 

  this.Ey = getEy(); 

  this.Dy = getDy(); 

  this.Cy = getCy(); 

  this.By = getBy(); 

  this.Ay = getAy(); 

  

   

 } 

  

  public void buildAirfoil(double timeStep){ 

   iterations = (int) (1/timeStep); 

   xPoints = new double[iterations + extraPoints]; 

   yPoints = new double[iterations + extraPoints]; 

   //mPoints = new double[iterations + extraPoints]; 

   //nPoints = new double[iterations + extraPoints]; 

   double t = 0; 

    

   //bezier curve first 

   for(int i=0;i<iterations;i++){ 

    xPoints[i] = X3*Math.pow(1-t, 6) 

       +X4*6*t*Math.pow(1-t, 5) 

       +X5*15*Math.pow(t, 

2)*Math.pow(1-t, 4)  



 

 

87 

 

       +X6*20*Math.pow(t, 

3)*Math.pow(1-t, 3)  

       +X7*15*Math.pow(t, 

4)*Math.pow(1-t, 2)  

       +X8*6*(Math.pow(t, 5))*(1-t) 

       +X9*Math.pow(t, 6);  

   

    //System.out.println(xPoints[i]); 

     

    yPoints[i] = Y3*Math.pow(1-t, 6) 

       +Y4*6*t*Math.pow(1-t, 5) 

       +Y5*15*Math.pow(t, 

2)*Math.pow(1-t, 4)  

       +Y6*20*Math.pow(t, 

3)*Math.pow(1-t, 3)  

       +Y7*15*Math.pow(t, 

4)*Math.pow(1-t, 2)  

       +Y8*6*(Math.pow(t, 5))*(1-t)  

       +Y9*Math.pow(t, 6); 

    //System.out.println(yPoints[i]); 

     

     

     

    /** xPoints[i] = (Ax*Math.pow(t,6)) + 

(Bx*Math.pow(t,5)) + (Cx*Math.pow(t,4)) + (Dx*Math.pow(t,3)) + (Ex*Math.pow(t,2)) 

+ Fx*t + X3; 

    yPoints[i] = (Ay*Math.pow(t,6)) + (By*Math.pow(t,5)) + 

(Cy*Math.pow(t,4)) + (Dy*Math.pow(t,3)) + (Ey*Math.pow(t,2)) + Fy*t + Y3; 

    System.out.println(yPoints[i]); 

    **/ 



 

 

88 

 

    //mPoints[i] = (Dm*Math.pow(t,4)) + 

(Em*Math.pow(t,3)) + (Fm*Math.pow(t, 2)) + Gm*t+X0; 

    //nPoints[i] = (Dn*Math.pow(t,4)) + 

(En*Math.pow(t,3)) + (Fn*Math.pow(t, 2)) + Gn*t+Y0; 

    t = t + timeStep; 

   } 

    

   //Add tail points 

   for(int j=iterations;j<iterations+extraPoints;j++){ 

    if(j==iterations){ 

     xPoints[iterations] = X9; 

     yPoints[iterations] = Y9; 

    }if(j==iterations+1){ 

      xPoints[iterations+1] = X1; 

      yPoints[iterations+1] = Y1; 

    }if(j==iterations+2){ 

       xPoints[iterations+2] = X2; 

       yPoints[iterations+2] = Y2; 

    }if(j==iterations+3){ 

        xPoints[iterations+3] = 

X10; 

        yPoints[iterations+3] = 

Y10; 

    }if(j==iterations+4){ 

        

 xPoints[iterations+4] = X11; 

        

 yPoints[iterations+4] = Y11; 

        } 

         



 

 

89 

 

    } 

 } 

   

  

    

  public double getFitness(){ 

    return fitness; 

   } 

  public synchronized double getScoreWithFluent(int generation, int iteration, 

double oldfit){ 

      //System.out.println("Fitness: " + oldfit); 

   if (oldfit != 1000000){ 

    return oldfit; 

   } 

     

   else 

   publishFile("diffuser.dat"); 

   //System.out.println("Ymiddle = " + yPoints[iterations/2+1]); 

    

    

   setCoefficient(); 

    

   if (fanCoeff<0.1) { 

    return -1; 

   } 

    

   try{ 

    Process gambitProc = 

Runtime.getRuntime().exec("gambitTest.bat"); 

    gambitProc.waitFor(); 



 

 

90 

 

    System.out.println("gambitTest Ran"); 

    Process cleanupProc = 

Runtime.getRuntime().exec("cleanup.bat"); 

    cleanupProc.waitFor(); 

    System.out.println("cleanup Ran"); 

    File mesh = new File("diffuser.msh"); 

    if(!mesh.exists()){ 

     System.out.println("no mesh"); 

     return -1; 

    } 

    Process fluentProc = 

Runtime.getRuntime().exec("fluentTest.bat"); 

    File transcript = new File("trans.jou"); 

    System.out.println("Fluent Ran"); 

    //wait and check for Fluent's return at one second 

intervals 

    for(int s=0; s<180; s++){ 

     wait(1000); 

     if(transcript.exists()){ 

      break; 

     } 

    } 

 

    //if Fluent did not return... 

    if(!transcript.exists()){ 

     publishFile("trans.jou"); 

     System.out.println("FLUENT DID NOT 

RETURN A RESULT FOR THIS CASE: #" + iteration); 

     Process fluentKill = 

Runtime.getRuntime().exec("fluentKill.bat"); 



 

 

91 

 

     fluentKill.waitFor(); 

     return -1; 

    } 

     

    BufferedReader mo1Input =  new BufferedReader(new 

FileReader(new File("surf-mon-1.out"))); 

    //BufferedReader mo2Input =  new 

BufferedReader(new FileReader(new File("monitor-2.out"))); 

    //System.out.println("mo1Input= "+mo1Input); 

    double mo1 = 100000; 

    //double mo2=  100000; 

    String linemo1; 

    //String linemo2; 

     

    //skip the first two lines 

     

    for(int i=0;i<1001;i++){ 

     mo1Input.readLine(); 

     //mo2Input.readLine(); 

    } 

    //System.out.println("mo1Input="+mo1Input); 

        linemo1 = mo1Input.readLine(); 

        //linemo2 = mo2Input.readLine(); 

        //System.out.println("linemo1"+linemo1); 

     linemo1 = linemo1.substring(5); 

     //System.out.println("linemo1= "+linemo1); 

     //linemo2 = 

linemo2.substring(linemo2.indexOf("\t")+5);   

     mo1 = Double.parseDouble(linemo1); 

     //System.out.println("mo1"+mo1); 



 

 

92 

 

     //mo2 = Double.parseDouble(linemo2); 

     double 

Cp=fanCoeff*mo1*mo1*mo1/(.5*rho*freeVel*freeVel*freeVel); 

       

     

     System.out.println("FanVel = " + mo1); 

     //System.out.println("p2 = " + mo2); 

     System.out.println("Cp = " + Cp); 

     //return Cp; 

      

     A1=0; A2=0; A3=0; A4=0; A5=0; A6=0; A7=0; 

A8=0; A9=0; A9=0; A10=0; A11=0; A11=0; A12=0; A13=0; A14=0; A15=0; A16=0; 

      

     if(X3 < minX3) 

      A1=-1; 

     else if(X3 > maxX3) 

      A1=1;      

      

     if(X4 < minX4) 

      A2=-1;  

     else if(X4 > maxX4) 

      A2=1; 

      

     if(X5 < minX5) 

      A3=-1; 

     else if(X5 > maxX5) 

      A3=1;      

      

 

     if(X6 < minX6) 



 

 

93 

 

      A4=-1; 

     else if(X6 > maxX6) 

      A4=1; 

      

     if(X7 < minX7) 

      A5=-1; 

     else if(X7 > maxX7) 

      A5=1; 

 

     if(X8 < minX8) 

      A6=-1; 

     else if(X8 > maxX8) 

      A6=1; 

 

     if(X9 < minX9) 

      A7=-1; 

     else if(X9 > maxX9) 

      A7=1; 

      

      

     if(Y3 < minY3) 

      A8=-1; 

     else if(Y3 > maxY3) 

      A8=1; 

         

     if(Y4 < minY4) 

      A9=-1; 

     else if(Y4 > maxY4) 

      A9=1; 

      



 

 

94 

 

     if(Y5 < minY5) 

      A10=-1; 

     else if(Y5 > maxY5) 

      A10=1; 

      

     if(Y6 < minY6) 

      A11=-1; 

     else if(Y6 > maxY6) 

      A11=1; 

      

     if(Y7 < minY7) 

      A12=-1; 

     else if(Y7 > maxY7) 

      A12=1; 

      

     if(Y8 < minY8) 

      A13=-1; 

     else if(Y8 > maxY8) 

      A13=1; 

      

     if(Y9 < minY9) 

      A14=-1; 

     else if(Y9 > maxY9) 

      A14=1; 

       

     System.out.println(" X3:" + A1 + " X4:" + A2 + 

" X5:" + A3+ " X6:" + A4+ " X7:" + A5+ " X8:" + A6+ " X9:" +A7 +  

       " Y3:" + A8 + " Y4:" + A9 + " 

Y5:" + A10+ " Y6:" + A11+ " Y7:" + A12+ " Y8:" + A13 + " Y9:" + A14);    

 //+ "A12 = " + A12 +"A13 = "+ A13+ "A14 = " +A14 ); 



 

 

95 

 

      

     penalty=20*( 

       A1*A1*(A1*((X3-minX3)+(X3-

maxX3))-(maxX3-minX3))*(A1*((X3-minX3)+(X3-maxX3))-(maxX3-minX3)) 

       +A2*A2*(A2*((X4-minX4)+(X4-

maxX4))-(maxX4-minX4))*(A2*((X4-minX4)+(X4-maxX4))-(maxX4-minX4)) 

       +A3*A3*(A3*((X5-minX5)+(X5-

maxX5))-(maxX5-minX5))*(A3*((X5-minX5)+(X5-maxX5))-(maxX5-minX5)) 

       +A4*A4*(A4*((X6-minX6)+(X6-

maxX6))-(maxX6-minX6))*(A4*((X6-minX6)+(X6-maxX6))-(maxX6-minX6)) 

       +A5*A5*(A5*((X7-minX7)+(X7-

maxX7))-(maxX7-minX7))*(A5*((X7-minX7)+(X7-maxX7))-(maxX7-minX7)) 

       +A6*A6*(A6*((X8-minX8)+(X8-

maxX8))-(maxX8-minX8))*(A6*((X8-minX8)+(X8-maxX8))-(maxX8-minX8)) 

       +A7*A7*(A7*((X9-minX9)+(X9-

maxX9))-(maxX9-minX9))*(A7*((X9-minX9)+(X9-maxX9))-(maxX9-minX9)) 

      

       +A8*A8*(A8*((Y3-minY3)+(Y3-

maxY3))-(maxY3-minY3))*(A8*((Y3-minY3)+(Y3-maxY3))-(maxY3-minY3)) 

       +A9*A9*(A9*((Y4-minY4)+(Y4-

maxY4))-(maxY4-minY4))*(A9*((Y4-minY4)+(Y4-maxY4))-(maxY4-minY4)) 

       +A10*A10*(A10*((Y5-

minY5)+(Y5-maxY5))-(maxY5-minY5))*(A10*((Y5-minY5)+(Y5-maxY5))-(maxY5-

minY5)) 

       +A11*A11*(A11*((Y6-

minY6)+(Y6-maxY6))-(maxY6-minY6))*(A11*((Y6-minY6)+(Y6-maxY6))-(maxY6-

minY6)) 

       +A12*A12*(A12*((Y7-

minY7)+(Y7-maxY7))-(maxY7-minY7))*(A12*((Y7-minY7)+(Y7-maxY7))-(maxY7-

minY7)) 



 

 

96 

 

       +A13*A13*(A13*((Y8-

minY8)+(Y8-maxY8))-(maxY8-minY8))*(A13*((Y8-minY8)+(Y8-maxY8))-(maxY8-

minY8)) 

       +A14*A14*(A14*((Y9-

minY9)+(Y9-maxY9))-(maxY9-minY9))*(A14*((Y9-minY9)+(Y9-maxY9))-(maxY9-

minY9)) 

      ); 

      

     System.out.println("penalty = "+ penalty); 

      

    F=Cp-penalty; 

    if (Cp>2.5){ 

     System.out.println("FLUENT RETURNED 

SPURIOUS RESULT FOR THIS CASE: #" + iteration); 

     return -1; 

    } 

    System.out.println("fitness = "+ F); 

    return F; 

    

  } 

    

   catch(Exception e){ 

    e.printStackTrace(); 

    return -1; 

   } 

  } 

   

  public static String truncate(String value, int length) 

  { 

    if (value != null && value.length() > length) 



 

 

97 

 

      value = value.substring(0, length); 

    return value; 

  } 

   

  public void setCoefficient() { 

    

   double coefficientLong = -0.5*rho*( 

(yPoints[24]*yPoints[24]*yPoints[24]*yPoints[24]/(yPoints[50]*yPoints[50]*yPoints[50]*

yPoints[50])) - 

(yPoints[24]*yPoints[24]*yPoints[24]*yPoints[24]/(yPoints[0]*yPoints[0]*yPoints[0]*yP

oints[0])) ); 

    

   fanCoeff = coefficientLong; 

   coefficient = truncate(Double.toString(coefficientLong), 8); 

   System.out.println("Fan Coefficient: " + coefficient); 

    

    

   try { 

    BufferedReader r = new BufferedReader(new 

FileReader("diffuserTemplate.jou")); 

    BufferedWriter w = new BufferedWriter(new 

FileWriter("diffuserFluent.jou")); 

    String line; 

    while((line = r.readLine()) != null) { 

     line = line.replaceFirst("xxxx", coefficient); 

     w.write(line); 

     w.newLine(); 

    } 

    r.close(); 

    w.close(); 



 

 

98 

 

   } catch(Exception e) { 

    e.printStackTrace(); 

   } 

 } 

 

  public boolean publishFile(String filename){ 

     try{ 

        // Create file  

        FileWriter fstream = new FileWriter(filename); 

        BufferedWriter out = new BufferedWriter(fstream); 

        out.write(2*xPoints.length+ " 2\n"); 

        for(int i=0;i<xPoints.length;i++){ 

         out.write(xPoints[i]+ " " + yPoints[i] + " 0\n"); 

        } 

         

         

         

        out.close(); 

        return true; 

     } 

     catch (Exception e){ 

      System.err.println("Error: " + e.getMessage()); 

      return false; 

     } 

  } 

   

  //coefficients of 7 ctrl pts 

  public double getFx(){ 

   return -6*X3+X4; 

  } 



 

 

99 

 

   

  public double getEx(){ 

   return 15*X3-5*X4+X5; 

  } 

   

  public double getDx(){ 

   return -20*X3+10*X4-4*X5+X6; 

  } 

   

  public double getCx(){ 

   return 15*X3-10*X4+6*X5-3*X6+X7; 

  } 

   

  public double getBx(){ 

   return (-6*X3+5*X4-4*X5+3*X6-2*X7+X8); 

  } 

   

  public double getAx(){ 

   return X3-X4+X5-X6+X7-X8+X9; 

  }  

 

  public double getFy(){ 

   return -6*Y3+Y4; 

  } 

   

  public double getEy(){ 

   return 15*Y3-5*Y4+Y5; 

  } 

   

  public double getDy(){ 



 

 

100 

 

   return -20*Y3+10*Y4-4*Y5+Y6; 

  } 

   

  public double getCy(){ 

   return 15*Y3-10*Y4+6*Y5-3*Y6+Y7; 

  } 

   

  public double getBy(){ 

   return (-6*Y3+5*Y4-4*Y5+3*Y6-2*Y7+Y8); 

  } 

   

  public double getAy(){ 

   return Y3-Y4+Y5-Y6+Y7-Y8+Y9; 

  }  

   

  //followings are coefficient for 2 ctrl pts 

  /**public double getCx(){ 

   return 3*(X4-X3); 

  } 

   

  public double getBx(){ 

   return 3*(X5-X4)-3*(X4-X3); 

  } 

   

  public double getAx(){ 

   return X6-X3-3*(X4-X3)-3*(X5-X4)+3*(X4-X3); 

  } 

   

  public double getCy(){ 

   return 3*(Y4-Y3); 



 

 

101 

 

  } 

   

  public double getBy(){ 

   return 3*(Y5-Y4)-3*(Y4-Y3); 

  } 

   

  public double getAy(){ 

   return Y6-Y3-3*(Y4-Y3)-3*(Y5-Y4)+3*(Y4-Y3); 

  } 

  **/ 

   

} 

 

A.3.5 AirfoilModifier.java 

 
package wing; 
 
public class AirfoilModifier { 
 public static final double minX3=-8; 
 public static final double maxX3=-.5; 
 public static final double minX4=-8; 
 public static final double maxX4=-.5; 
 public static final double minX5=-4; 
 public static final double maxX5=-.1; 
 public static final double minX6=-1; 
 public static final double maxX6=1; 
 public static final double minX7=.1; 
 public static final double maxX7=9; 
 public static final double minX8=2; 
 public static final double maxX8=10; 
 public static final double minX9=3; 
 public static final double maxX9=10; 
  
 public static final double minY3=5; 
 public static final double maxY3=6; 
 public static final double minY4=4; 
 public static final double maxY4=6; 
 public static final double minY5=4; 
 public static final double maxY5=6; 
 public static final double minY6=4.3; 
 public static final double maxY6=5; 



 

 

102 

 

 public static final double minY7=4; 
 public static final double maxY7=7; 
 public static final double minY8=5; 
 public static final double maxY8=7.071; 
 public static final double minY9=7; 
 public static final double maxY9=7.071; 
  
   
 public static void modAirfoil(Airfoil af 
   ){ 
  /** make sure all the variables in the right range**/ 
  /**if(af.X4 < minX4) 
   af.X4 = minX4; 
  else if(af.X4 > maxX4) 
   af.X4 = maxX4; 
  else 
   af.X4 = af.X4; 
    
  if(af.X5 < minX5) 
   af.X5 = minX5; 
  else if(af.X5 > maxX5) 
   af.X5 = maxX5; 
  else 
   af.X5 = af.X5; 
   
  if(af.X6 < minX6) 
   af.X6 = minX6; 
  else if(af.X6 > maxX6) 
   af.X6 = maxX6; 
  else 
   af.X6 = af.X6; 
   
  if(af.Y4 < minY4) 
   af.Y4 = minY4; 
  else if(af.Y4 > maxY4) 
   af.Y4 = maxY4; 
  else 
   af.Y4 = af.Y4; 
   
  if(af.Y5 < minY5) 
   af.Y5 = minY5; 
  else if(af.Y5 > maxY5) 
   af.Y5 = maxY5; 
  else 
   af.Y5 = af.Y5; 
   
  if(af.Y6 < minY6) 
   af.Y6 = minY6; 
  else if(af.Y6 > maxY6) 
   af.Y6 = maxY6; 
  else 
   af.Y6 = af.Y6;**/ 
   
   



 

 

103 

 

  /**make x1,x2,m1,m2 in order**/ 
  if(af.X5>af.X6) 
   af.X5=af.X6-Math.random() * (af.X6-minX5); 
   
  if(af.X5<af.X4) 
   af.X4=af.X5-Math.random() * (af.X5-minX4); 
  if(af.X4<af.X3) 
   af.X3=af.X4-Math.random() * (af.X4-minX3); 
   
  if(af.X7<af.X6) 
   af.X7=af.X6+Math.random() * (maxX7-af.X6); 
  if(af.X8<af.X7) 
   af.X8=af.X7+Math.random() * (maxX8-af.X7); 
  if(af.X9<af.X8) 
   af.X9=af.X8+Math.random() * (maxX9-af.X8); 
   
 } 
/** 
 public static void modgenerateIndividual(Airfoil af 
 ){ 
  gambitAirfoils gt = new gambitAirfoils(af); 
  gt.buildAirfoil(0.02); 
 
 System.out.println("maxthickness1="+gt.getmaxThickness()); 
  if 
(gt.getmaxThickness()<=0.35&&gt.getmaxThickness()>=0.30){ 
   af.X1 = af.X1; 
   af.Y1 = af.Y1; 
   af.X2 = af.X2; 
   af.Y2 = af.Y2; 
   af.M1 = af.M1; 
   af.M2 = af.M2; 
   af.N1 = af.N1; 
   af.N2 = af.N2; 
   af.N3 = af.N3;} 
  else{    
    af=gaflatback.generateIndividual();} 
 }**/ 
 
} 
 

A.3.6 BubbleSorter.java 

 
package wing; 
 
import java.util.Vector; 
 
/* 
 * @(#)BubbleSortAlgorithm.java 1.6 95/01/31 James Gosling 
 * 



 

 

104 

 

 * Copyright (c) 1994 Sun Microsystems, Inc. All Rights Reserved. 
 * 
 * Permission to use, copy, modify, and distribute this software 
 * and its documentation for NON-COMMERCIAL purposes and without 
 * fee is hereby granted provided that this copyright notice 
 * appears in all copies. Please refer to the file "copyright.html" 
 * for further important copyright and licensing information. 
 * 
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY 
OF 
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT 
LIMITED 
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE 
FOR 
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING 
OR 
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. 
 */ 
 
/** 
 * A bubble sort demonstration algorithm 
 * SortAlgorithm.java, Thu Oct 27 10:32:35 1994 
 * 
 * @author James Gosling 
 * @version  1.6, 31 Jan 1995 
 * 
 * Modified 23 Jun 1995 by Jason Harrison@cs.ubc.ca: 
 *   Algorithm completes early when no items have been swapped in 
the  
 *   last pass. 
 *    
 * 
 */ 
public class BubbleSorter { 
  public static void sort(generation a){  
      for (int i = a.getGenSize(); --i>=0; ) { 
       boolean flipped = false; 
       for (int j = 0; j<i; j++) { 
 
        if (a.getAirfoil(j).getFitness() > 
a.getAirfoil(j+1).getFitness()) { 
         Airfoil T = a.getAirfoil(j); 
         a.replaceAirfoil(a.getAirfoil(j+1), 
j); 
         a.replaceAirfoil(T,j+1); 
         flipped = true; 
        } 
       } 
       if (!flipped) { 
        return; 
       } 
         } 
     } 



 

 

105 

 

 
} 

A.3.7 gambitTest.bat 

 
DEL "diffuser.msh" 
C:\Fluent.Inc\ntbin\ntx86\gambit -inputfile "diffuserGambit.jou" 
 

A.3.8 diffuserGambit.jou 

 
/ Journal File for GAMBIT 2.4.6, Database 2.4.4, ntx86 SP2007051421 
/ Identifier "default_id18208" 
/ File opened for write Wed Nov 03 17:00:12 2010. 
/ERROR occurred in the next command! 
import vertexdata "C:\\FOOTE\\FirstGA\\wing\\diffuser.dat" 
edge create straight "vertex.52" "vertex.53" 
edge create straight "vertex.55" "vertex.52" 
edge create straight "vertex.52" "vertex.54" 
edge create straight "vertex.55" "vertex.1" 
edge create straight "vertex.54" "vertex.51" 
edge create nurbs "vertex.1" "vertex.2" "vertex.3" "vertex.4" "vertex.5" \ 
  "vertex.6" "vertex.7" "vertex.8" "vertex.9" "vertex.10" "vertex.11" \ 
  "vertex.12" "vertex.13" "vertex.14" "vertex.15" "vertex.16" "vertex.17" \ 
  "vertex.18" "vertex.19" "vertex.20" "vertex.21" "vertex.22" "vertex.23" \ 
  "vertex.24" "vertex.25" "vertex.26" "vertex.27" "vertex.28" "vertex.29" \ 
  "vertex.30" "vertex.31" "vertex.32" "vertex.33" "vertex.34" "vertex.35" \ 
  "vertex.36" "vertex.37" "vertex.38" "vertex.39" "vertex.40" "vertex.41" \ 
  "vertex.42" "vertex.43" "vertex.44" "vertex.45" "vertex.46" "vertex.47" \ 
  "vertex.48" "vertex.49" "vertex.50" "vertex.51" interpolate 
vertex create coordinates 0 9 0 
edge create straight "vertex.53" "vertex.56" 
edge split "edge.6" tolerance 1e-06 edge "edge.7" connected 
edge create straight "vertex.53" "vertex.57" 
face create wireframe "edge.4" "edge.6" "edge.9" "edge.1" "edge.2" real 
face create wireframe "edge.8" "edge.9" "edge.1" "edge.3" "edge.5" real 
undo begingroup 
edge picklink "edge.1" "edge.2" "edge.3" "edge.8" "edge.6" 
edge mesh "edge.6" "edge.8" "edge.3" "edge.2" "edge.1" successive ratio1 1 \ 
  intervals 70 
undo endgroup 
undo begingroup 
edge picklink "edge.5" "edge.4" 



 

 

106 

 

edge mesh "edge.4" "edge.5" successive ratio1 1 intervals 90 
undo endgroup 
undo begingroup 
edge picklink "edge.9" 
edge mesh "edge.9" successive ratio1 1 intervals 20 
undo endgroup 
face mesh "face.1" "face.2" map size 1 
physics create btype "PRESSURE_INLET" edge "edge.4" 
physics create btype "FAN" edge "edge.1" 
physics create btype "PRESSURE_OUTLET" edge "edge.5" 
physics create btype "AXIS" edge "edge.2" "edge.3" 
physics create btype "WALL" edge "edge.6" "edge.8" 
physics create btype "INTERIOR" edge "edge.9" 
export fluent5 "C:\\FOOTE\\FirstGA\\wing\\diffuser.msh" nozval 
 

A.3.9 diffuser.dat 

 

This file is created for each individual and holds the vertex data of the shroud for the 

journal running in GAMBIT.  This is an example of the file from Case 2a. 

 

110 2 
-3.707035639192833 5.624203134918806 0 
-3.705010802206705 5.550952334764735 0 
-3.6969338339862823 5.483854984874721 0 
-3.6801211082192835 5.422155306186885 0 
-3.652452946768152 5.3652073081701 0 
-3.6123225502438956 5.312472302602039 0 
-3.5585867996455938 5.263515995513405 0 
-3.4905189290655025 5.218005157298251 0 
-3.4077630694597927 5.17570387099048 0 
-3.31029066348492 5.136469358706467 0 
-3.1983587513996077 5.100247386253809 0 
-3.0724701280324758 5.067067245906265 0 
-2.9333353708152723 5.037036317344785 0 
-2.7818367388817515 5.010334206764702 0 
-2.6189939432321667 4.9872064641490725 0 
-2.445931787963385 4.967957878708145 0 
-2.263849682564642 4.952945352484972 0 
-2.0739930252789134 4.942570352127173 0 
-1.8776264575299102 4.937270938824826 0 



 

 

107 

 

-1.6760089894147072 4.937513376414511 0 
-1.4703709962619913 4.943783317649484 0 
-1.261893086255942 4.956576568636005 0 
-1.0516868391257304 4.976389431435791 0 
-0.8407774159006483 5.003708624834629 0 
-0.630088039730865 5.039000783277116 0 
-0.42042634777380883 5.082701533967543 0 
-0.21247261414616736 5.135204152136927 0 
-0.006769843941527395 5.196847794476178 0 
0.19628426168636945 5.267905310735407 0 
0.396443469374743 5.348570633489376 0 
0.593617306337263 5.438945746069096 0 
0.7878734820839135 5.539027228659554 0 
0.9794384390752296 5.648692382563592 0 
1.1686960323109097 5.767684932631919 0 
1.3561843378528007 5.895600307859273 0 
1.5425905902822585 6.031870500146715 0 
1.7287442490918812 6.175748501230071 0 
1.9156081940116167 6.326292317774511 0 
2.104268049269246 6.482348564635279 0 
2.2959196367852366 6.642535636284541 0 
2.491854558301975 6.805226456404403 0 
2.693443906447368 6.968530805646054 0 
2.902120104732825 7.130277227555049 0 
3.119356876485604 7.287994512662741 0 
3.346647342715543 7.438892760743849 0 
3.5854802489161584 7.579844021240172 0 
3.8373143208001177 7.7073625118504365 0 
4.103550748969089 7.817584415286291 0 
4.385503802517964 7.906247254194441 0 
4.684369571573453 7.968668844244929 0 
5.001192838767047 7.999725825385547 0 
0.0 0.0 0 
0.0 5.0 0 
5.001192838767047 0.0 0 
-3.707035639192833 0.0 0 
 
 

A.3.10 cleanup.bat 

DEL *default* 

DEL "trans.jou" 

 



 

 

108 

 

A.3.11          fluentTest.bat 

 

Start C:\Foote\FirstGA\wing\fluent 2ddp -g -i 

"C:\Foote\FirstGA\wing\diffuserFluent" 

 

A.3.12 fluentTemplate.jou 

 

This is the template file that is read by the GA to create the diffuserFluent.jou file that is 

the journal file called by fluentTest.bat and used by the flow solver FLUENT to 

evaluate each individual.  To modify the dimentions of the system the scaling factor can 

be changed, and to modify the free stream velocity, the pressure inlet can be modified 

to match the stagnation pressure of the velocity desired.  This example is from Case 2a. 

 

(cx-gui-do cx-activate-item "MenuBar*ReadSubMenu*Mesh...") 
(cx-gui-do cx-set-text-entry "Select File*FilterText" "c:\foote\firstga\wing\*") 
(cx-gui-do cx-activate-item "Select File*Apply") 
(cx-gui-do cx-set-text-entry "Select File*Text" "diffuser.msh") 
(cx-gui-do cx-activate-item "Select File*OK") 
(cx-gui-do cx-set-toggle-button 
"General*Frame1*Table1*Frame2(Solver)*Table2(Solver)*Frame6(2D 
Space)*ToggleBox6(2D Space)*Axisymmetric" #f) 
(cx-gui-do cx-activate-item 
"General*Frame1*Table1*Frame2(Solver)*Table2(Solver)*Frame6(2D 
Space)*ToggleBox6(2D Space)*Axisymmetric") 
(cx-gui-do cx-activate-item 
"General*Frame1*Table1*Frame1(Mesh)*ButtonBox1(Mesh)*PushButton1(Scale)") 
(cx-gui-do cx-set-list-selections "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*DropDownList2(Mesh Was Created In)" '( 5)) 
(cx-gui-do cx-activate-item "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*DropDownList2(Mesh Was Created In)") 
(cx-gui-do cx-activate-item "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*PushButton4(Scale)") 
(cx-gui-do cx-set-toggle-button "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*Frame1*ToggleBox1*Specify Scaling Factors" 
#f) 



 

 

109 

 

(cx-gui-do cx-activate-item "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*Frame1*ToggleBox1*Specify Scaling Factors") 
(cx-gui-do cx-set-real-entry-list "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*Frame3(Scaling Factors)*RealEntry1(X)" '( 1.6)) 
(cx-gui-do cx-set-real-entry-list "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*Frame3(Scaling Factors)*RealEntry2(Y)" '( 1.6)) 
(cx-gui-do cx-activate-item "Scale 
Mesh*Frame2(Scaling)*Table2(Scaling)*PushButton4(Scale)") 
(cx-gui-do cx-activate-item "Scale Mesh*PanelButtons*PushButton1(Close)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton3(Models)") 
(cx-gui-do cx-set-list-selections "Models*Frame1*Table1*Frame1*List1(Models)" '( 2)) 
(cx-gui-do cx-activate-item "Models*Frame1*Table1*Frame1*List1(Models)") 
(cx-gui-do cx-activate-item "Models*Frame1*Table1*PushButton2(Edit)") 
(cx-gui-do cx-set-toggle-button "Viscous 
Model*Frame1*Table1*Frame1(Model)*ToggleBox1(Model)*k-epsilon (2 eqn)" #f) 
(cx-gui-do cx-activate-item "Viscous 
Model*Frame1*Table1*Frame1(Model)*ToggleBox1(Model)*k-epsilon (2 eqn)") 
(cx-gui-do cx-set-position "Viscous Model" '(x 140 y 230)) 
(cx-gui-do cx-activate-item "Viscous Model*PanelButtons*PushButton1(OK)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton4(Materials)") 
(cx-gui-do cx-set-list-selections "Materials*Frame1*Table1*Frame1*List1(Materials)" '( 
1)) 
(cx-gui-do cx-activate-item "Materials*Frame1*Table1*Frame1*List1(Materials)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton7(Boundary 
Conditions)") 
(cx-gui-do cx-set-list-selections "Boundary 
Conditions*Frame1*Table1*Frame1*List1(Zone)" '( 4)) 
(cx-gui-do cx-activate-item "Boundary 
Conditions*Frame1*Table1*Frame1*List1(Zone)") 
(cx-gui-do cx-activate-item "Boundary 
Conditions*Frame1*Table1*Frame2*Table2*Frame4*Table4*Frame1*ButtonBox1*Pus
hButton1(Edit)") 
(cx-gui-do cx-set-real-entry-list "pressure-inlet-8-
1*Frame4*Frame3(Momentum)*Frame1*Table1*Frame5*Table5*RealEntry2(Gauge 
Total Pressure)" '( 20)) 
(cx-gui-do cx-activate-item "pressure-inlet-8-1*PanelButtons*PushButton1(OK)") 
(cx-gui-do cx-set-list-selections "Boundary 
Conditions*Frame1*Table1*Frame1*List1(Zone)" '( 2)) 
(cx-gui-do cx-activate-item "Boundary 
Conditions*Frame1*Table1*Frame1*List1(Zone)") 
(cx-gui-do cx-activate-item "Boundary 
Conditions*Frame1*Table1*Frame2*Table2*Frame4*Table4*Frame1*ButtonBox1*Pus
hButton1(Edit)") 
(cx-gui-do cx-activate-item "Fan*Frame3*Frame1(Pressure-Jump 
Specification)*Frame1*Table1*Frame4*Frame2*PushButton2(Edit)") 



 

 

110 

 

(cx-gui-do cx-set-integer-entry "Polynomial 
Profile*Frame1*IntegerEntry3(Coefficients)" 2) 
(cx-gui-do cx-activate-item "Polynomial Profile*Frame1*IntegerEntry3(Coefficients)") 
(cx-gui-do cx-set-integer-entry "Polynomial 
Profile*Frame1*IntegerEntry3(Coefficients)" 3) 
(cx-gui-do cx-activate-item "Polynomial Profile*Frame1*IntegerEntry3(Coefficients)") 
(cx-gui-do cx-set-real-entry-list "Polynomial 
Profile*Frame2(Coefficients)*Table2(Coefficients)*RealEntry3(3)" '(xxxx)) 
(cx-gui-do cx-activate-item "Polynomial Profile*PanelButtons*PushButton1(OK)") 
(cx-gui-do cx-activate-item "Fan*Frame3*Frame1(Pressure-Jump 
Specification)*Frame1*Table1*Frame4*Frame2*RealEntry3") 
(cx-gui-do cx-set-toggle-button "Fan*Frame3*Frame1(Pressure-Jump 
Specification)*Frame1*Table1*Frame1*Table1*CheckButton1(Reverse Fan Direction)" 
#f) 
(cx-gui-do cx-activate-item "Fan*Frame3*Frame1(Pressure-Jump 
Specification)*Frame1*Table1*Frame1*Table1*CheckButton1(Reverse Fan 
Direction)") 
(cx-gui-do cx-activate-item "Fan*PanelButtons*PushButton1(OK)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton12(Solution 
Methods)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton13(Solution 
Controls)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton14(Monitors)") 
(cx-gui-do cx-activate-item "Monitors*Frame1*Table1*PushButton2(Edit)") 
(cx-gui-do cx-set-toggle-button "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton10" #t) 
(cx-gui-do cx-activate-item "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton10") 
(cx-gui-do cx-set-toggle-button "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton16" #t) 
(cx-gui-do cx-activate-item "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton16") 
(cx-gui-do cx-set-toggle-button "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton22" #t) 
(cx-gui-do cx-activate-item "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton22") 
(cx-gui-do cx-set-toggle-button "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton28" #t) 



 

 

111 

 

(cx-gui-do cx-activate-item "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton28") 
(cx-gui-do cx-set-toggle-button "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton34" #t) 
(cx-gui-do cx-activate-item "Residual 
Monitors*Frame1*Table1*Frame2*Table2*Frame1(Equations)*Table1(Equations)*Che
ckButton34") 
(cx-gui-do cx-activate-item "Residual Monitors*PanelButtons*PushButton1(OK)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton15(Solution 
Initialization)") 
(cx-gui-do cx-set-real-entry-list "Solution Initialization*Frame1*Table1*Frame4(Initial 
Values)*Table4(Initial Values)*RealEntry2(Axial Velocity)" '( 6.3)) 
(cx-gui-do cx-activate-item "Solution Initialization*Frame1*Table1*Frame4(Initial 
Values)*Table4(Initial Values)*RealEntry2(Axial Velocity)") 
(cx-gui-do cx-activate-item "Solution 
Initialization*Frame1*Table1*Frame6*ButtonBox6*PushButton1(Initialize)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton17(Run Calculation)") 
(cx-gui-do cx-set-integer-entry "Run 
Calculation*Frame1*Table1*IntegerEntry8(Number of Iterations)" 1000) 
(cx-gui-do cx-activate-item "Run Calculation*Frame1*Table1*IntegerEntry8(Number 
of Iterations)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton14(Monitors)") 
(cx-gui-do cx-activate-item 
"Monitors*Frame1*Table1*Frame4*Table4*PushButton1(Create)") 
(cx-gui-do cx-set-list-selections "Surface 
Monitor*Frame1*Table1*Frame2*Table2*DropDownList1(Report Type)" '( 6)) 
(cx-gui-do cx-activate-item "Surface 
Monitor*Frame1*Table1*Frame2*Table2*DropDownList1(Report Type)") 
(cx-gui-do cx-set-list-selections "Surface 
Monitor*Frame1*Table1*Frame2*Table2*DropDownList2(Field Variable)" '( 2)) 
(cx-gui-do cx-activate-item "Surface 
Monitor*Frame1*Table1*Frame2*Table2*DropDownList2(Field Variable)") 
(cx-gui-do cx-set-list-selections "Surface 
Monitor*Frame1*Table1*Frame2*Table2*DropDownList3" '( 1)) 
(cx-gui-do cx-activate-item "Surface 
Monitor*Frame1*Table1*Frame2*Table2*DropDownList3") 
(cx-gui-do cx-set-list-selections "Surface 
Monitor*Frame1*Table1*Frame2*Table2*Frame5*Table5*Frame1*List1(Surfaces)" '( 
2)) 
(cx-gui-do cx-activate-item "Surface 
Monitor*Frame1*Table1*Frame2*Table2*Frame5*Table5*Frame1*List1(Surfaces)") 



 

 

112 

 

(cx-gui-do cx-set-toggle-button "Surface 
Monitor*Frame1*Table1*Frame1*Table1*Frame2(Options)*Table2(Options)*CheckBu
tton4(Write)" #f) 
(cx-gui-do cx-activate-item "Surface 
Monitor*Frame1*Table1*Frame1*Table1*Frame2(Options)*Table2(Options)*CheckBu
tton4(Write)") 
(cx-gui-do cx-activate-item "Surface Monitor*PanelButtons*PushButton1(OK)") 
(cx-gui-do cx-activate-item "NavigationPane*Frame1*PushButton17(Run Calculation)") 
(cx-gui-do cx-activate-item "Run 
Calculation*Frame1*Table1*PushButton18(Calculate)") 
(cx-gui-do cx-activate-item "Question*Cancel") 
(cx-gui-do cx-activate-item "Warning*OK") 
(cx-gui-do cx-activate-item "Information*OK") 
(cx-gui-do cx-activate-item "MenuBar*WriteSubMenu*Profile...") 
(cx-gui-do cx-set-list-selections "Write Profile*Frame2*List2(Surfaces)" '( 2)) 
(cx-gui-do cx-activate-item "Write Profile*Frame2*List2(Surfaces)") 
(cx-gui-do cx-set-list-selections "Write Profile*Frame3*List3(Values)" '( 9)) 
(cx-gui-do cx-activate-item "Write Profile*Frame3*List3(Values)") 
(cx-gui-do cx-activate-item "Write Profile*PanelButtons*PushButton1(OK)") 
(cx-gui-do cx-set-text-entry "Select File*Text" "fanvelocityprofile") 
(cx-gui-do cx-activate-item "Select File*OK") 
(cx-gui-do cx-activate-item "Write Profile*PanelButtons*PushButton2(Cancel)") 
(cx-gui-do cx-activate-item "MenuBar*WriteSubMenu*Stop Transcript") 
(cx-gui-do cx-set-text-entry "Select File*FilterText" "c:\foote\firstga\wing\*") 
(cx-gui-do cx-activate-item "Select File*Apply") 
(cx-gui-do cx-set-text-entry "Select File*Text" "trans.jou") 
(cx-gui-do cx-activate-item "Select File*OK") 
(cx-gui-do cx-activate-item "MenuBar*WriteSubMenu*Stop Transcript") 
(cx-gui-do cx-activate-item "MenuBar*FileMenu*Exit") 
(cx-gui-do cx-activate-item "Warning*OK") 
 

 

 

  



 

 

113 

 

References 

 

[1] Michael Werle, FloDesign Inc.; Walter Presz, FloDesign Inc. Journal of  

Propulsion and Power 2008, 0748-4658 vol.24 no.5 (1146-1150). doi: 

10.2514/1.37134 

[2] Hansen, M.O.L., Aerodynamics of Wind Turbines, Earthscan, Sterling, VA, 2000.  

[3] Widnall, Sheila.  Potential Flow Calculations of Axisymmetric Ducted Wind Turbines.  

Massachusetts Institute of Technology, July 2009. 

[4] Mikkelsen, R., “Actuator Disc Methods applied to Wind Turbines,” PhD thesis, 

Technical University of Denmark, Copenhagen, June 2003.  

[5] Manwell, J.F., McGowan, J.G. and Rogers, A.L., Wind Energy Explained, John 

Wiley, 2nd edition, 2009. 

[6]  FLUENT 12.1: Flow Modeling Software, Ansys Inc., 2009.  

[7]  GAMBIT 6.2: Geometry and Mesh Generation Preprocessor, Ansys Inc., 2007. 

[8]  Pratihar, D. K., Soft Computing. Narosa Publishing House: New Delhi, India, 

2008. 

[9]  Holland, J. H. Adaptation in Natural and Artificial Systems, The University of 

Michigan Press: Ann Arbor, MI, U.S.A., 1975. 

[10]  Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 

Addison-Wesley: Reading, MA, 1989. 

[11]  "Programming Language Popularity," 2009.  

[12]  "TIOBE Programming Community Index," 2009.  

[13] Hansen, M. O. L., Sorensen, N. N., Flay, R. G. J., Effect of Placing a Diffuser around 

a Wind Turbine. Wind Energy, 2000; 3:207-213 (DOI: 10.1002/we.37). 

 

  



 

 

114 

 

Vita 

 

Tudor F. Foote 

 

Date of Birth  August 15, 1986 

 

Place of Birth  Concord, Massachusetts 

 

Degrees  B.S. Mechanical Engineering, May 2010 

   M.S. Mechanical Engineering, December 2011 

    

Publications T. Foote and R. K. Agarwal, “Power Generation from Wind 

Turbines in a Solar Chimney,” ASME Paper ESFuelCell 2011-

54085, Proc. of ASME 2011 Energy Sustainability and Fuel Cell 

Conference, Washington D.C, 7-10 August 2011. 

 

 T. Foote and R. K. Agarwal, “Optimization of Power 

Generation from Shrouded Wind Turbines,” submitted for 

presentation at the AIAA Fluid Dynamics Conference, New 

Orleans, 25-28 June 2012. 

 

 

December 2011 

  


	Numerical Modeling and Optimization of Power Generation from Shrouded Wind Turbines
	Recommended Citation

	Microsoft Word - Foote_Tudor_MSThesis_2012-01-3

