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and uses time and membership queries polynomial in s and logn for d any constant. Further, all
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the number of boxes and dimensions. Our new measure, [sigmal], is the number of segments in the target
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inside or entirely outside each of the other halfspaces defining the polyhedron. We then present an
improvement of our first algorithm that uses time and queries polynomial in [sigma] and log(n). The
hypothesis class used here is the decision trees of height at most 2*s*d. Further we can show that the
time and queries used by this algorithm are polynomial in d and log(n) for s any constant thus
generalizing the exact learnability of DNF formulas with a constant number of terms. In fact, this single
algorithm is efficient for either s or d constant.
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Absiract

We present two algorithms that use membership and equivalence queries to exactly
identify the concepts given by the union of s discretized axis-parallel boxes in d-dimensional
discretized Euclidean space where each coordinate can have n discrete values. The first
algorithm receives at most sd counterexamples and uses time and membership queries
polynomial in s and logn for d any constant. Further, all equivalence queries made can
be formulated as the union of O(sdlog s) axis-parallel boxes.

Next, we introduce a new complexity measure that better captures the complexity of
a union of boxes than simply the number of boxes and dimensions. Our new measure,
o, is the number of segments in the target polyhedron where a segment is a maximum
portion of one of the sides of the polyhedron that lies entirely inside or entirely outside
each of the other halfspaces defining the polyhedron. We then present an improvement of
our first algorithm that uses time and queries polynomial in & and logn. The hypothesis
class used here is decision trees of height at most 2s5d. Further we can show that the time
and queries used by this algorithm are polynomial in d and logn for s any constant thus
generalizing the exact learnability of DNF formulas with a constant number of terms. In
fact, this single algorithin is efficient for either s or d constant.

*This research was performed while visiting Washington University. Currently supported by the U.S.
Department of Energy under contract DE-AC04-76AL85000.
Supported in part by NSF Grant CCR-9110108 and an NSF NYI Grant CCR-9357707.



1 Introduction

Recently, learning geometric concepts in d-dimensional Euclidean space has been the subject
of much research. One such class of geometric concepts is unions of boxes. (By a “box”,
we mean an axis-aligned hypercuboid. So a box is the set of all points whose Cartesian
coordinates satisfy a given set of univariate linear inequalities.) We study this problem under
the model of learning with queries [1] in which the learner is required to output a final
hypothesis that correctly classifies every point in the domain as to whether or not it is inside
of one of the target boxes. To apply such a learning model to a domain such as learning boxes
(or unions of boxes) in d-dimensional Euclidean space, it is necessary to look at a discretized
(or digitalized) version of the domain. We use BOXZ to denote the class of axis-parallel boxes
aver {1,...,n}%. So d represents the number of dimensions and n represents the number of
discrete values that exist in each dimension. Let [7, j] denote the set {m € N} i < m < j}.
Then, Box% = {x¢_1 [k, k] | 1 € i < 7x < n}. So iz and i are the minimum and maximum
positive values of the k-th coordinate of a box. Note that by allowing equality of it and ji
we jnclude in Box¢ boxes with zero size in dimension k. Finally, let |J, Box¢ denote the class
of the union of at most s concepts from Box%¢. We note that it is easy to show that this class
is a generalization of disjunctive normal form (DNF) formulas and a special case of the class
of unions of intersections of half-spaces over {1,...,n}%.

In this paper, we first present an algorithm that uses membership and equivalence queries
to exactly learn the concepts given by the union of s axis-parallel boxes over {1,...,n}%
This algorithm receives at most sd counterexamples, makes O((4s)? + sdlogn) membership
queries, and uses O((4s)? + sdlogn) time. Thus our algorithm is the first algorithm to
exactly learn the union of s discretized boxes in d-dimensional discretized Euclidean space in
polynomial time in s and logn for any constant d.

The hypothesis class used by this algorithm, selected to keep the algorithm simple, can be
evaluated in time O(dlogs)l. However, in O((28)??) time we can transform our hypothesis
to the union of at most O(sdlog s) boxes for Box¢. Thus we obtain the even stronger result

that our algorithm can exactly learn the union of s axis-parallel boxes over {1,...,n}? while

1The hypothesis essentially partitions {1,.. .,n}? into at most (4s + 1)? regions where all points in any
region are classified as either positive or negative. The classifications for the regions are stored in a bit matrix,

and we use a set of d balanced binary search trees to efficiently find the region in which a point is contained.

(See Section 4 for more details.)



making at most sd 4 1 equivalence queries? where each equivalence query is simply the union
of O(sdlog s) concepts from Box%, making O((4s)?+ sdlog n) membership queries, and using
O(sd - (25)*® + sdlogn) computation time. Thus for any constant d, this algorithm still uses
time and queries polynomial in s and logn.

Then, in the second half of this paper, we introduce a new complexity measure that better
captures the complexity of a union of boxes than simply the number of boxes and dimensions.
More specifically, our new measure, o, is the number of segments in the target concept (or
polyhedron) where a segment is a maximum portion of one of the sides of the polyhedron that
lies entirely inside or entirely outside each of the other halfspaces defining the polyhedron. It
is easily seen that ¢ < (2s)%. In this half of the paper we then present an improvement of our
first algorithm that uses time and queries polynomial in ¢ and logn. Thus, this algorithm
also uses time and queries polynomial in s and logn for d constant. More importantly, the
complexity is polynomial in log n and our complexity measure of the number of segments in
the target polygon. The hypothesis class used by this modified algorithm is decision trees
of height at most 2sd. Thus, observe that the hypothesis output (and the intermediate
hypotheses) can be evaluated in time polynomial without any restrictions on s or d. We then
show that the time and queries used by this new algorithm are polynomial in d and logn
for s any constant thus generalizing the exact learnability of DNF formulas with a constant
number of terms. Combining these two methods of analysis, we get the interesting result

that this single algorithm is efficient for either s or d constant.

2 Previous Work

The problem of learning geometric concepts over a discrete domain was extensively studied
by Maass and Turan [14, 15, 16]. One of the geometric concepts that they studied was the
class Box%. They showed that if the learner was restricted to only make equivalence queries
in which each hypothesis was drawn from BOX2 then Q(dlogn) queries are needed to achieve
exact identification [11, 16]. Auer [2] improves this lower bound to Q(Tf-;-g log n).

If one always makes an equivalence query using the simple hypothesis that produces the
smallest box consistent with the previously seen examples, then the resulting algorithm makes

O(dn) equivalence queries. An algorithm making O(2% log n) equivalence queries was given by

?The final equivalence query is the correct hypothesis, and thus at most sd counterexamples are received.



Maass and Turan [13, 15]. The best known result for learning the class Box? was provided
by the work of Chen and Maass [7] in which they gave an algorithm making O(d%logn)
equivalence queries. They also provide an algorithm to learn the union of two axis-parallel
rectangles in the discretized space {1,...,n} X {1,...,m} in time polynomial in logn and
log m, where one rectangle has a corner at (0, m) and the other has a corner at (n,0). Auer [2]
investigates exact learning of boxes where some of the counterexamples, given in response to
equivalence queries, are noisy. Auer shows that Box? is learnable if and only if the fraction of
noisy examples is less than 1/(d + 1) and presents an efficient algorithm that handles a noise
rate of 1/(2d + 1). More recently, Chen [5] gave an algorithm that used equivalence queries
to learn general unions of two boxes in the (discretized) plane. The algorithm uses O(log?n)
equivalence queries, and involves a detailed case analysis of the shapes formed by the two
rectangles. It does not appear to generalize easily to higher numbers of boxes or dimensions.

In work independent of ours, Chen and Homer [10] have given an algorithm to learn the
union of s rectangles in the plane using O(s®log n) queries (both membership and equivalence)
and O(s°log n) time. The hypothesis class of their algorithm is the union of 85? —2 rectangles.
In work subsequent to that presented here, Chen and Homer [6] have improved upon their
earlier result by giving an algorithm that learns the union of s boxes in d dimensions using
O(kHd+1)¢21og?4+! n) equivalence queries by applying techniques from recursive function
theory.

Closely related to the problem of learning the union of discretized boxes, is the problem
of learning the union of non-discretized boxes in the PAC model [18]. Blumer et al. [4]
present an algorithm to PAC-learn an s-fold union of boxes in E? by drawing a sufficiently
large sample of size m = poly (%,lg -}, s, d), and then performing a greedy covering over the
at most (5% ? boxes defined by the sample. Thus for d constant this algorithm runs in
polynomial time. Long and Warmuth [12] present an algorithm to PAC-learn this same class
by again drawing a sufficiently large sample and constructing a hypothesis that consists of

at most 3(2d)* boxes consistent with the sample. Thus both the time and sample complexity

of their algorithm depend polynomially on s, d*, %, and g % So for s constant this yields an
efficient PAC algorithm.

We note that either of these PAC algorithms can be applied to the class |J, Box% giving
efficient PAC algorithms for this class for either d constant or s constant. As discussed by

Maass and Turan [16] the task of a concept learning algorithm is to provide a “smart” hy-



pothesis based on the data available. The results from Blumer et. al [4] show that under the
PAC model any concise hypothesis that is consistent with the data is “smart enough”. In
other words, the PAC model provides no suitable basis for distinction among different consis-
tent hypotheses. On the other hand, a method for defining a “smart” hypothesis is implicitly
contained within the exact learning model. One must select hypotheses for the equivalence
queries so that sufficient progress is made with each counterexample. This requirement of se-
lecting a “smart” hypothesis makes the problem of obtaining an efficient algorithm to exactly
learn the class | J, Box? significantly harder than obtaining the corresponding PAC result.
Finally, under a variation of the PAC model in which membership queries can be made,
Frazier et al. [9] have given an algorithm to PAC-learn the s-fold union of boxes in E¢ for
which each box is entirely contained within the positive quadrant end contains the origin.
Furthermore, their algorithm learns this subclass of general unions of boxes in time poly-
nomial in both s and d. Recall that since |J, Box? generalizes DNF, a polynomial-time
algorithm for arbitrary d and s would solve the problem of learning DNF. Observe that the
class considered by Frazier et al. is a generalization of the class of DNF formulas in which

all variables only appear negated.

3 Definitions

The learning model we use in this paper is that of learning with queries developed by An-
gluin [1]. In this model the learner’s goal is to learn ezactly how an unknown, Boolean-valued
target function f, drawn from concept class C, classifies as positive or negative, all instances
from. instance space X. It is often convenient to consider a concept as the set of instances
that it classifies as positive. Thus, for each concept f € C, f C X'. We say that z is a positive
instance for target concept f if x € f (also denoted f(z) = 1) and say that z is a negative
instance otherwise (also denoted f(z) = 0). A hypothesis is a polynomial-time algorithm
that, given any = € X, outputs a prediction for f(z).

As mentioned above, the learning criterion in this paper is that of ezact identification.
In order to achieve exact identification, the learner’s final hyptothesis, i, must be such that
h(x) = f(z) for all instances 2 € A’. To achieve this goal the learner is provided with queries
with which to learn about f. Qur algorithms for learning |J, Box% use membership queries
and equivalence queries. A membership query, MQ(z), returns “yes” if f(z) = 1 and returns

“no” if f(z) = 0. An equivalence query, EQ(h), returns “yes” if h is logically equivalent to



f or returns a counterexample otherwise. A positive countererample x is an instance such
that f(z) = 1 and A(z) = 0. Similarly, a negative counterezample is such that f{z) = 0 and
h(z)=1.

Another important learning model is the PAC model introduced by Valiant [18]. In this
model the learner is presented with labeled examples chosen at random according to an
unknown, arbitrary distribution D over the instance space. The learner’s goal is to output a
hypothesis that with high probability, at least (1 — &), correctly classifies most of the instance
space. That is, the weight, under D, of misclassified instances must be at most e. The
learner is permitted time polynomial in 1/e, 1/§ and relevant size measures to formulate a
hypothesis.

Throughout this paper we use ¥, ..., ¥ to denote the d dimension variables. An alternate
view of a concept f € |J, BOX2 that we use is to treat it as an axis-aligned d-dimensional
discretized polyhedron. For the remainder of this paper, when using the word “polyhedron”
we refer to such an axis-parallel discretized polyhedron. Observe that each box is defined by
the intersection of at most 2d halfspaces, two in each dimension. Thus, it follows that there
are at most 2sd halfspaces that define the target polyhedron. We introduce the following

definition:

Definition 1 For a concept f € |J, BOXZ, we define a dimension i, +/— pair to be a positive
point py = (23,...,%i,...,34), where y; = z; for 1 < z; < n, paired with a negative point p_
where p_ = (21,...,2i+1,...24) or p_ = (21,...,2i—1,...,zq) where we implicitly assume
that any point outside of {1,...,n}? is a negative point. We use +/'— pair to denote a

dimension i, +/— pair.
The following observation, while intuitively obvious, is useful.

Observation 1 A straight line between any two differently classified instances must cross at

least one side of the target concept.

We define the halfspace associated with a given +/— pair to be the unique, axis-aligned
halfspace H that contains the positive but not the negative point. So for a +/*— pair where
the positive point’s ith coordinate is ¢, if the negative point’s ith coordinate is ¢ 4+ 1 then
H is given by y; < ¢. Similarly, if the negative point’s ith coordinate is ¢ ~ 1 then H is

given by y; > ¢. We define the associated hyperplane to be the set of all points satisfying



¥ = ¢. Throughout Section 4 it is best to think about our algorithm finding the hyperplanes
corresponding to the halfspaces that define the target polyhedron. Then in Section 5 we
return to focusing on the halfspaces that define the target polyhedron.

4 An Initial Algorithm

In this section we present an algorithm that exactly identifies any concept from [J, Box¢ while
receiving at most sd counterexamples, and using O((4s)? 4 sdlog n) membership queries and
processing time.

For each of the d dimensions, we will maintain a set of halfspaces, defined by the sides of
the target polyhedron, that have been identified by the existence of +/~ pairs for the given
dimension. For 1 £ i < d, let p; be the number of hyperplanes that are associated with the
halfspaces defined by +/'— pairs. As we have already observed, p; < 2s. For 1 < j < pi,
suppose that the p; hyperplanes found are y; = z; where 1 < z; < n. Thus in dimension ¢ we
have decomposed {1,...,n}¢ into up to 2p; + 1 regions: p; corresponding to the hyperplanes
themselves, and p; + 1 corresponding to the “strips” obtained when {1,...,n}% is cut by each
of the p; hyperplanes.

For our hypothesis, we divide {1,...,n}? into

OL, (20 +1) < T, (4s + 1) = (45 + 1)*

regions, and then just classify all points in a given region as positive (or as negative). For
1 £ i £ d, our hypothesis maintains a balanced binary search tree T} for dimension ¢ where
each internal node of the tree corresponds to one of the hyperplanes (with z; used for the
key), and each leaf node corresponds to one of the regions defined by the hyperplanes. For
each leaf node v and dimensjon i we keep a pair (mini, maz’), where min (respectively,
maz}) holds the minimum (respectively, maximum) z; such that y; = z; is a point in the
region corresponding to leaf ». (For the internal nodes, the key itself serves the role of both
mini, and mazi.)

Let §; = {[min’, mazi] | min!, and maz} are the range for node v in the tree 7} and let
T = {T1,...,T4}. Observe that the hyperplanes stored in the internal nodes of 7 partition
{1,..., n}d into a set of regions Ry given by the cross product Ry = 51 X §3 X -+ X §4. For
T € R, corresponding to node v, we shall refer to the point (minl,..., mind) as the lower
corner of r and (mazl,...,maz?) as the upper corner of r. Thus upper and lower form two

opposing corners of region r.
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Figure 1: This shows the final set of regions corresponding to the target polyhedron that is
outlined in bold. The classification of each two-dimensional region is shown inside the region.
(The classifications of the one-dimensional and zero-dimensional regions are not shown but

are stored in the prediction matrix A.)

In addition to the trees T1,...,Ty, our hypothesis also maintains a prediction array 4
with |R7| entries where for r € Ry, A[r] is either O (indicating that for any point in r the
hypothesis will predict negative), or 1 (indicating that for any point in r the hypothesis
will predict positive) or contains a pointer to an element of a queue (to be explained in a
moment) that indicates that the classification of the points in region r is not well defined.
We use hg, 4 to denote the hypothesis defined by the regions in Ry with the classifications
given in A. Figure 1 shows the set of regions defined by a target concept once all hyperplanes
are discovered, and the classifications of all of the regions (as stored in A).

Given a hypothesis hp, 4 and a point z = (2y,...,24) we can compute h(z), the predic-
tion made by hypothesis & on point z, as follows. For 1 < ¢ < d we perform a search for z;
in tree T to find the node having z; in its range. Combining the ranges of the d nodes found
defines the region r € Rz that contains z. Finally A(z) = Alr].

We define a region r € Rt to be valid if the upper and lower corner points of r have the
same classification. We define hypothesis 2p, 4 to be valid if each region in Rr is valid. A
key step of our algorithm is to build a valid hypothesis that incorporates all known halfspaces.

We first prove that given a set of hyperplanes (represented in the d binary trees) the learner



can efficiently construct a valid hypothesis. To help in the process of making a hypothesis
valid, we maintain a queue () of invalid regions. In addition, for each region r € @ we store a
bit g.lower (respectively, g.upper) giving the classification of the lower (respectively, upper)
corner of r. Observe that by the definition of an invalid region, exactly one of these bits will

be 1.

4.1 Building a Valid Hypothesis

In this section we provide a procedure that takes an invalid hypothesis hp, 4 and the queue
@ of invalid regions from Ry, and refines kg, 4 so that it is valid. In refining hr, 4 our
procedure uses membership queries to find new hyperplanes with which to modify the hy-
pothesis. Our procedure to build a valid hypothesis never removes any hyperplane from any
tree in 7, and only searches for a new hyperplane in such a way that we are certain that an
existing hyperplane will not be rediscovered in the process. We also maintain the invariant
that @ always contains exactly one entry for each invalid region of Rr.

Our procedure to build a valid hypothesis repeatedly does the following until Q is empty
(and thus the hypothesis is valid). Let r be the region at the front of the queue. Since r is not
a valid region its two opposing corners are known to have different classifications. As we saw
in Observation 1, there must be a side of the target concept between these two corners. Thus
we can use these two points to perform a binary search (where the comparisons are replaced
by membership queries) for a +/— pair contained within region r. We are guaranteed to
find a 4/~ pair for which both points in the pair are contained within r while using only
[log n] membership queries and O(logn) time. Furthermore, the hyperplane defined by this
+/— pair is guaranteed to be a hyperplane that has not yet been discovered (by the definition
of a region). For the remainder of this paper, we shall just speak of performing a binary search
between a positive and negative point to find a hyperplane.

We now describe the procedure ADD-HYPERPLANE that modifies our hypothesis to incor-
porate the new hyperplane found. Without loss of generality, we assume that the hyperplane
found by the binary search is y; = ¢. Let v be the leaf in T} with the range [min!, mazi)
such that mini, < ¢ < mazi. We begin by using the standard tree insertion procedures for a
balanced search tree to update tree 7; so that v becomes an internal node with a key of c,

it has left child vi.s; with the range [mini,c— 1], and it has right child v,4,4; with the range



[c+ 1, mazi]. Thus each region in
Rielete = S1 X +++ X S;—1 X {[min,, maz}]} x Sipq x -+ x G

is replaced by three regions, giving us the new regions

Roga = §1 X% 8- x {[mini,c~1],[c,¢],[c+ 1,maz]} X Sipq X -+ X Sa.

Since all regions in Rge1ete no longer exist, we remove any that are in ¢ by using the pointer
provided in A. For each region r € R,qq we make a membership query on the lower and/or
upper opposing corners if those queries have not already been made. If the classification of
these two corners are the same then the classification is entered in A, otherwise the region is
enqueued. Once the queue is empty, we know that we have a valid hypothesis and thus have

completed the process. The algorithm is shown in Figure 2.

4.2 Putting it Together

Our algorithm LEARN-BoXxEs1 works as follows. For ease of exposition we artificially extend
the instance space from {1,...,n}¢ to {0,1,...,n,n + 1}¢ where it is known a priori that
any example with a coordinate of 0 or » + 1 in any dimension is a negative example. (The
pseudocode does not explicitly make this check, but one could imagine replacing the calls to
MQ by a procedure that first checks for such cases.) Initially, Ry just contains the single
region corresponding to the entire instance space. Since all of the corners of this region are
negative, the initial hypothesis predicts 0 for all instances.

We then repeat the following process until a successful equivalence query is made. Let
z be the counterexample received from an equivalence query made with a valid hypothesis.
We now discuss how to use membership queries (in the form of a binary search) to find two
new hyperplanes defined by the target concept. Without loss of generality, we assume that
x is a positive counterexample. (Negative counterexamples are handled similarly.) Every
counterexample is within one of the regions, say region r, in 51 X --- x §y4. Since the hy-
pothesis was valid and « is a positive counterexample, we know that the upper and lower
corners of r are classified as negative. Thus we can use these corners of r (with z) as the
endpoints for binary searches to discover two new hyperplanes. The hypothesis is updated
using ADD-HYPERPLANE fo incorporate these two hyperplanes. Finally, we call MAXE-VALID-

HYPOTHESIS to further refine any invalid regions. Figure 3 gives the complete algorithm.

10



ADD-HYPERPLANE(hR, 4,Q,%,¢)

Let v be the leaf of T;: for which mini, < ¢ < mazi
Using a standard balanced tree insertion procedure, update T; so that
v is an internal node with key ¢
v has a left child with range [mini,c— 1]
v has a right child with range [c + 1, maz?]
Let Ryelete = 51 X +++ X S5=1 X {[mini, mazi]} x Sy X -+ x 54
Let Rogg = 51 X -+ X Si_1 x {[mini, ¢~ 1],[c,¢], [c+ 1, mazi]} x Sigy % +++ X 84

For each © € Ryelete
Let r—, r< and r5 be the regions in Rg4q for which (roUrcUrs) =7
IfAlrj=b(forb=0o0rb=1)
Let Alr=] = A[r<] = A[rs]=b
Else (so A[r] is a pointer fo element ¢ of Q)
Generate a new queue node for r—, r¢ and 7
Set the corresponding entries of A to point to these new nodes
Copy g.lower and g.upper in the appropriate queue entries for r< and r

Remove g from @

For each ' € R,q4

Make a membership query to determine g.lower and g.upper if not already known
If A[r'] points to ¢ (versus being 0 or 1)
If g.lower = g.upper then let A[r'] = g.lower
Else (r is invalid)
(Q.ENQUEUE(q)

Figure 2: Our subroutine to update hgr,. 4 to incorporate the newly discovered hyperplane
¥i = ¢. The new hyperplane is added to tree T;. Then all regions in Ry that are split are

removed from ¢. Finally this procedure initializes the new entries of Ry in the prediction

matrix A.
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LeArN-BoxEsl:

Let Q — @
Forl1<i<d

Initialize T; to be a single leaf covering the range 0 ton + 1
For r be the single region of Ry, let Alr] =0

While Equiv(hpr, 4) # “yes”
Let = be the counterexample where z is in region r of hr, 4
Let z) and z; be the lower and upper opposing corners of r
For 1 <£<2
Perform binary search between z and z; to find hyperplane y; — ¢
ADD-HYPERPLANE(AR, 4,@,%,¢)
hr, 4 —MAKE-vaLID-HyPOTHESIS(hR 4,Q)

Return hp., 4

MAKE-VALID-HYPOTHESIS(hR, 4, Q)

While Q # 0
q — (J.DEQUEUE
Perform binary search between ¢.lower and g.upper
to find the hyperplane y; = ¢
ADD-HYPERPLANE(hR, 4,@Q,1,¢)

Figure 3: Algorithm for learning unions of d-dimensional axis-parallel boxes.

12




4.3 Analysis

We now analyze the time and query complexity of LEARN-BoxEs1. As part of this analysis

we use the following lemma.

Lemma 1 Every counterezample can be used to discover (at least) two distinct new hyper-

planes of the target concept.

Proof Sketch: Let f be the target concept, let = (%1,...,24) be the counterexample and
r € Ry be the region containing 2. Since hg, 4 is a valid hypothesis, we know that the upper
and lower corners of r are classified opposite z and all points in 7 are classified opposite z
by the hypothesis. Since a positive point and a negative point must be separated by some
hyperplane of the target polyhedron, searches between z and each of upper and lower will
find some +/— pair. These will be distinct since the two searches move away from each other

in all dimensions. 0

We now prove that our first algorithm has the stated complexity.

Theorem 1 Given any target concept f € |J, BOXZ, LEARN-BOXES] achieves ezact identifi-
cation of f making at most sd + 1 equivalence queries, and using

O((4s)* + sdlogn) time and membership queries.

Proof Sketch: The correctness of LEARN-BOXES] is trivial. Since the algorithm only
returns a hypothesis hr, 4 for which Equiv(hgr, 4) returns “yes”, the algorithm is correct
upon returning a hypothesis.

We now analyze the query and time complexity of LEARN-BOXES1. Recall that since
there are only s boxes in the target concept, there are at most 2sd hyperplanes in the final
hypothesis. Furthermore, since no hyperplane is ever rediscovered and every binary search
(which uses O(log n) membership queries) discovers a hyperplane, we know that O(sdlogn)
membership queries are used during all of the binary searches made by the algorithm. Also,
since there are at most (4s + 1)% regions in the final hypothesis, the number of membership
queries used for querying the upper and lower opposing corners is at most 2 - (4s + 1)? =
O((4s)?). Since these are the only two places in which membership queries are performed,
the total number of membership queries made by our algorithm is O((4s)? + sdlogn).

From Lemma 1 we know that each counterexample enables LEARN-BOXES] to find at

least two new distinct hyperplanes of the target concept. Thus since there are at most 2sd
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hyperplanes comprising the s boxes, at most sd counterexamples can be received and thus
at most sd + 1 equivalence queries will be made.

The time needed to evaluate ip,, 4(x) for an unlabeled example z is O(dlogs) since the
key operation is performing d searches in balanced search trees of depth O(logs). Thus, it is

easily seen that the time complexity of this algorithm is O((4s)? + sdlog n). O

We note that, if desired, the use of membership queries in our algorithm can be reduced
to only their use within the binary searches. Instead of querying opposing corners of new
regions created, we can instead use the classification of the single corner known or otherwise
a default of negative for the classification of the region. Then the counterexamples from the
equivalence queries can be used to obtain a positive and negative point in a region that can
be used for the binary search. This method dramatically increases the number of equivalence

queries used.

4.4 Using a Hypothesis Class of Unions of Boxes

We now describe how a valid hypothesis can be converted to the union of O(sdlogs) boxes
from BoxY. Since all equivalence queries are made with valid hypotheses, such a conversion
enables our algorithm to learn the union of s boxes from BOXZ using as a hypothesis class
the union of O(sdlog s) boxes from BOXY.

Recall that a valid hypothesis h essentially encodes the set of positive regions. Thus our
goal is to find the union of as few boxes as possible that “cover” all of the positive regions.
We now describe how to formulate this problem as a set covering problem for which we can
then use the standard greedy set covering heuristic [8] to perform the conversion. The set
X of objects to cover will simply contain all positive regions in h. Thus |X| < (45 + 1)%
Then the set F of subsets of X will be made as follows. Consider the set B of boxes where
each box in B is formed by picking a minimum and maximum coordinate in each dimension,
from the hyperplanes represented in k for that dimension. For any b € B, if b contains
any negative region, then throw it out. Otherwise, place in F the set of regions contained
within 4. Thus |F| < (25)?¢ since there are at most 2s values in each dimension that can
form the two sides of the box. Furthermore, F contains a subset of size s that covers all
items in X. Finally, we can apply the greedy set covering heuristic to find a set of at most
s(In|X|+ 1) = s(dIn(4s + 1) + 1) = O(sdlog s) boxes that cover all positive regions. The

time to perform the conversion is O((2s)?4). Thus, since at most sd + 1 equivalence queries
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are made, the total time spent in converting the internal hypotheses into hypotheses that are

unions of boxes is at most O(sd - (2s)%?).

5 An Improved Algorithm

Observe that by extending the hyperplane defined by a +/— pair across the entire domain,
the algorithm LEARN-BOXES]1 may unnecessarily split a valid region into a large number of
smaller regions all of which make the same prediction. The algorithm we present here is
motivated by the goal of reducing this unnecessary splitting by only splitting the region in
which the counterexample is contained.

Before presenting our improved algorithm, we briefly examine how one might measure
the complexity of a concept from |J, BoxZ. Observe that the number of boxes s used to
form the target concept is not a good measure of the complexity of the target concept. For
example, consider the two examples shown Figure 4. While both targets are composed of 6
boxes, the first is clearly more complex than the second. Thus the complexity of an algorithm
should depend on some quantity other than just the number of boxes and dimensions of the
target polyhedron. We now introduce such a new complexity measure, o, to better capture
the complexity of the target concept. We define a segment of the target polyhedron f as a
maximum portion of one of the sides of f that lies either entirely inside or'entirely outside of
each of the other halfspaces defining the polyhedron. For example the target concept shown
in Figure 1 has 20 segments. For a concept f € |J, Box%, we let ¢ denote the number of
segments in the polyhedron corresponding to f. Observe that s < ¢ < (2s)?, where the first
inequality is based on the assumption that none of the boxes are contained within the union
of the other s — 1 boxes.

The hypothesis class we use in this algorithm is a decision tree over the halfspaces defining
the target polyhedron. Namely, each hypothesis T is a rooted binary tree where each internal
node is labeled with a halfspace and whose leaves are labeled from {0,1}. We evaluate T
recursively by starting at the root and evaluating the left subtree if the root’s halfspace
does not contain the point, and right subtree otherwise. When a leaf is reached its label is
output. Observe that each node of T' corresponds to a sub-region of the domain, with the
root corresponding to the entire domain. The halfspace H associated with each internal node
divides its region r into two sub-regions, with the left child being the sub-region given by
H N, and the right child being the sub-region given by H N r. The leaves correspond to a
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(a) ®

Figure 4: These concepts illustrate why number of boxes is an inadequate measure of com-
plexity. {(a)is more complex than (b) because of the large number of intersections of the sides

of the boxes.

set of nonoverlapping boxes that cover the entire region where the label for a given region is
given by the label for the corresponding leaf. Observation 2 shows that the height of the final
decision tree will be at most 2sd. Thus the hypothesis can be evaluated in time polynomial

in both s and d.

Observation 2 The height of the final decision tree constructed by LEARN-BOXES2 is at most
2sd since each of the at most 2sd halfspaces defining the target polyhedron can appear at most

once on any path from the root to any leaf.

We now describe our new algorithm. We initialize T to be a single 0 leaf node. (As in
the previous section we use the instance space {0,1,...,n,n+ 1}%.) When a counterexample
is received, we first search in T to find the leaf v containing it. Let r be the sub-region
corresponding to v. Then as in LEARN-BOXES] we use a binary search to find a +/— pair
contained in r that defines a halfspace H. We replace v with an internal node labeled with H,
having left child vz, corresponding to the region given by HNr and right child vg corresponding
to the region given by H Nr. At this point we call a procedure that recursively visits all newly
created leaves in a depth-first manner and checks if the corresponding region is a valid region.
If the region r’ associated with leaf v’ is valid then the classification field is filled, otherwise
we use a binary search to obtain a halfspace H' for ' and replace v’ by an internal node
labeled with H'. We generate two new leaves: v}, corresponding to the region H' N+ and vh
corresponding to the region H' N »'. Then a recursive call is made to validate (if necessary)
each of these new regions. The algorithm is shown in Figure 5. One possible final hypothesis
that could be constructed by this algorithm, for the target polyhedron shown in Figure 1, is
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shown in Figure 6. Figure 7 shows the decomposition of {1,...,n}? that corresponds to the

decision tree shown in Figure 6.

6 Analysis

We now give two separate techniques for analyzing this algorithm. The first method of
analysis gives that this algorithm uses queries and time polynomial in o and logn (and thus
polynomial in s and logn for d constant). The second method of analysis shows that our

algorithm uses queries and time polynomial in d and log n for s any constant.

Theorem 2 Given any target concept f € |, BOXZ, the algorithm LEARN-BOXES2 achieves
ezact identification of f making at most (0/2 + 1) equivalence queries, and using O{clogn)

time and membership queries.

Proof: Observe that each segment of the target polyhedron will cause at most one region
to be split. Thus the number of leaves in the decision tree created will be at most o + 1.

By Lemma 1 we get that two segments are found from the counterexample to each equiv-
alence query (here the second halfspace is implicitly found by the call to SPLIT-REGION).
Thus at most £ 4 1 equivalence queries will be made.

Furthermore, since there are at most 2 membership queries made to query the upper
and lower corners of each leaf, and log n membership queries used in the binary searches
for the o halfspaces, it follows that the number of membership queries made is at most
20 + o[lgn] = O(clogn).

Observe that the depth of T is at most 2sd since any of the 2sd hyperplanes defined by
the s boxes in the target concept will appear at most once on any path from a root to the
leaf. Thus the time to locate the region to split is O(sd) and it immediately follows that the

time complexity is O(ologn). o

Corollary 3 The algorithm LEARN-BOXES2 achieves ezxact identification for any f € |J, Box2
using time and queries polynomial in 3 and logn for d constant.
Proof: This follows immediately from Theorem 2 and the observation that ¢ < (28)¢. O

Finally, observe that just as we described in Section 4.4 our final hypothesis can be
converted to the union of O(sdlogs) boxes from Box%. Recall that the time to perform the

conversion is O((2s)??) and thus this will be efficient only if d is constant.
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LEARN-BOXES2:

Initialize T to be the single 0-leaf

While Equiv(T) # “yes”
Let z be the counterexample
Search in T to find the leaf v corresponding to region containing z
T «spLIT-REGION(T, v, x)

Return T

SPLIT-REGION(T, v, 2):

Perform binary search between z and corner of region r corresponding to v
Let H be the hyperplane found
Let vz, and vgr correspond to the new regions created
Make v an internal node labeled with H and having left child vz, and right child vg
Let rz, be the region H N r corresponding to vy,
Let rg be the region H N r corresponding to vy
For each ' € {rp, 7R}
Let v’ be the leaf corresponding to region '
Perform a membership query on the upper and lower opposing corners of 7/
If both corners have classification b € {0,1} let v’ be a b-leaf of T°
Let v'.prediction «— v.prediction
Else
SPLIT-REGION(hT, upper, lower)

Figure 5: Alternate algorithm for learning unions of d-dimensional axis-parallel boxes.
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Figure 6: This shows the final decision tree that could be constructed by LEARN-BOXES2 for

the target polyhedron shown in Figure 1.

We now use a different method of analysis to show that LEARN-BOXES2 uses time and
queries polynomial in d and log n for s constant.

We begin by examining the number of regions created by this algorithm. Each region is
represented by a single leaf in the hypothesis decision tree. Thus, we can find the number
of regions by finding the number of leaves in our hypothesis. We now derive a recurrence
relation for the number of leaves in the final decision tree. Let f € |J, BoxZ be the target
concept and 7" be the final decision tree output by our algorithm. For each internal node T'
there is an associated region of {1,...,n}%. For any node r in T, let k, denote the height of
the subtree of T' rooted at r and let s, be the minimum number of boxes needed to cover the
region of {1,...,n}? associated with . So for the region r corresponding to the root of T' we
have that s, < s and k, < 2sd since, by Observation 2, the height of T is at most 2sd.

Let L(s,h) denote the maximum number of leaves in a decision tree rooted at a node 7
with s, = s and h, = h. Then we have that L(s,h) = L(s,h — 1) + L(s — 1,k — 1) where
for all s > 0, L(s,0) = 1 and for all h > 1, T(0,A) = 1. To see this, observe that when
we find, while building the hypothesis, a hyperplane that splits a node, the two subproblems
that correspond to the left and right children both must have at most h — 1 hyperplanes left
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Figure 7: This shows the decomposition of {1,...,n}¥ corresponding to the decision tree

shown in Figure 6.

to find since in the worst case, all other hyperplanes are split by this one and thus appear on
both sides. Finally, since the hyperplane just found must be the side of one of the s boxes,
that box will not appear in one of the recursive calls. (In the worst case all other boxes will
be split).

Notice that there are no leaves in the decision tree on levels 0 to s — 1. On each level
from s to h there are leaves caused by the base case s = 0 of the recurrence. The number of

>(12))

j=s

these leaves at level j is given by

since the number of nodes, in the recursion tree, with s = 0 at level j is equal to the number
of nodes with s = 1 at level j — 1. There are also leaf nodes caused by the other base case of

the recurence, k = 0. Note that this is the last level of the tree. The number of leaves here

=0

since this gives the number of nodes for each non-zero value of s (the s = 0 nodes on this

is given by

level were already counted in the previous expression). Thus, the total number of leaves is:

x67)+50) - £.(5)+%0)
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- 2 (h) 0

Recall that h < 2sd. In the following Lemma we show that (2sd)? is an upper bound on the

summation in Equation 1.

Lemma 2 The number of leaves in the hypothesis decision tree constructed by LEARN-BOXES?2
18 bounded above by (2sd)® for s> 1 and is 2d+ 1 for s = 1.

Proof: Let n = sd and k£ = s for s > 1. Then the expression we have derived for the
number of leaves is ¥.5_, (25"). It is easily shown by induction on & that 35, (3") < (2n)*
for n > k£ > 1 and thus the result follows for s > 1. Finally, for ¢ = 1 the number of leaves
in the hypothesis is 2d + 1. =]
We are now ready to prove the running time of our algorithm using this method of analysis.

For ease of exposition we assume s > 1 in the remainder of this paper.

Theorem 4 Given any target concept f € |J, BOX%, the algorithrn LEARN-BOXES2 achieves
ezact ideniification of f making at most (2sd)® equivalence queries, making O((2sd)® - logn)

membership queries, and using O((2sd)**! -logn) time.

Proof: Observe that the number of counterexamples received by LEARN-BOXES?2 is at most
the number of infernal nodes in our final decision tree. Thus the number of equivalence
queries made by LEARN-BOXES2 is at most the number of leaves in the final decision tree.
Equation 1 shows that L(s,h) = 3.7, (?) and Lemma 2 proves a bound for the number
of leaves of T' of at most 3°7_, (3% < (2sd)*. Thus it immediately follows that at most
(2sd)* equivalence queries are made. Since at most [lg n] membership queries are used by
the binary search procedure when splitting a node, it follows that the number of membership
queries made by LEARN-BoxEs2 is O((2sd)® - logn). Finally, since it takes O(sd) time
to find the node corresponding to the region containing the counterexample and at most
O(logn) time for each binary search, it follows that the time complexity of LEARN-BOXES2
is O((2sd)**! -logn). m]
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Thus LEARN-BOXES2 achieves exact identification for any f € |J, Box? using time and
queries polynomial in d and logn for s constant. We note that for s > 6 we can remove
a factor of 2° in the complexity by using the tighter upperbound that 3o (3% < (sd)’.
Finally, it is easily seen that if this algorithm is run in parallel with (2sd)® processors then

the number of parallel steps needed is at most 2sd.

7 Concluding Remarks

In this paper we presented the first known algorithm to exactly learn the union of s boxes
from {1,...,7}¢ that runs in time polynomial in s and log n for any constant d. Furthermore,
we can show that (J, Box? is learnable with time and queries polynomial in s and logn for
d any constant even when the hypotheses used for all equivalence queries are a union of
O(sdlog s) boxes from BoxZ.

Next we introduced a new complexity measure, ¢, which is the number of segments in
the target polyhedron, that better captures the complexity of a union of boxes than simply
the number of boxes and dimensions. We have given an improvement to our initial algorithm
that runs in time polynomial in logn and o. Furthermore, this same algorithm can be shown
to use time and queries polynomial in d and log n for s constant thus generalizing the exact
learnability of DNF formulas with a constant number of terms. Combining these two results
for our second algorithm we get the result that we have a single algorithm for learning the
union of s boxes from {1,...,7}¢ that is efficient for either s or d constant.

A number of important open questions, that we have not answered, concern the necessity
of membership queries to exactly learn the class |J, Box2 in both the situation in which the
hypotheses (used for the equivalence queries) can be any polynomially evaluatable program 3,
and the situation in which the hypotheses must come from {J, Box2 (or at least a union of a
“small” number of boxes from Box2) . To illustrate such a distinction, consider the class of k-
term DNF formulas where k is constant. (This is the special case of {J, BOX% where n = 2 and
s is constant.) Pitt and Valiant [17] have shown that the class of k-term DNF formulas are not

exactly learnable in polynomial time without membership queries when all hypothesis must

8For the case of d constant the recent result of Chen and Homer shows that membership queries are not

needed when the need not be from the class.
*For general d and constant s it is not known if membership queries are needed even if the hypothesis class

is not restricted.
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be k-term DNF formulas. In fact, they prove the even stronger result that for ¥ > 4 the class
of k-term DNF formulas are not exactly learnable in polynomial time without membership
queries even when all hypothesis come from the class of (2k — 3)-term DNF formulas. On
the other hand, if we just require that the hypotheses are polynomially evaluatable, then
it is well known that this class is efficiently learnable without using membership queries by
just using the class of £-CNF formulas as the hypothesis class. It seems likely to us that a
similar behavior will be seen when studying the issue of the necessity of membership queries
for learning |J, Box2 for either s or d constant.

Another interesting direction is to explore other complexity measures, besides o, that
better capture the complexity of the target polyhedron. In particular, we feel that the
number of sides of the target polyhedron is a good measure of the complexity of this class.
For example the target concept shown in Figure 1 has 14 sides.

Finally, it would be interesting to see if [J, Box% can be efficiently learned in time poly-
nomial in s and logn for d = O(logs) or in time polynomial in d and logn for s = O(logd)
(i.e. a generalization of the Blum and Rudich [3] result that O(log n)-term DNF formulas are
exactly learnable). Of course, since |J, BOX? generalizes the class of DNF formulas, it seems

very unlikely that one could develop an algorithm that is polynomial in s, logn, and d.
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