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Machine learning models have achieved impressive predictive performance in various ap-

plications such as image classification and object recognition. However, understanding

how machine learning models make decisions is essential when deploying those models in

critical areas such as clinical prediction and market analysis, where prediction accuracy is

not the only concern. For example, in the clinical prediction of ICU transfers, in addition

to accurate predictions, doctors need to know the contributing factors that triggered the

alert, which factors can be quickly altered to prevent the ICU transfer. While interpretable

machine learning has been extensively studied for years, challenges remain as among all the

advanced machine learning classifiers, few of them try to address both of those needs. In

this dissertation, we point out the imperative properties of interpretable machine learning,

especially for clinical decision support and explore three related directions. First, we propose

a post-analysis method to extract actionable knowledge from random forest and additive

tree models. Then, we equip the logistic regression model with nonlinear separability while

preserving its interpretability. Last but not least, we propose an interpretable factored

generalized additive model that allows feature interactions to further increase the prediction

accuracy. In the end, we propose a deep learning framework for 30-day mortality prediction,

that can handle heterogeneous data types.
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Chapter 1

Introduction

Machine learning (ML) is unprecedented popular nowadays as it has achieved significant

success in almost every area and widely deployed in real-world applications. In 2015, ML

model for the first time beat human benchmark at image recognition task using complex

deep learning techniques [63]. Despite their superior performance, we cannot fully trust them

as the decision-making process is often obscure to us. We don’t know why ML models make

such prediction, when the models will fail and how to take advantage of the well-learned

models for discovering new knowledge. The lack of interpretabality hinders us from deploying

them in domains that inaccurate result will cause unacceptable losses. An example is the

Waymo’s self-driving car that is capable of analyzing the surrounding environment and driving

accordingly with the help of ML models. Although self-driving more than 10 million miles,

those cars are still in the experimental stage because no one can guarantee the sophisticated

ML models won’t make any unforeseen mistake.

In this dissertation, we narrow our focus to supervised machine learning instead of unsu-

pervised learning and reinforcement learning. For ease of representation, we still refer to
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Figure 1.1: A black box ML model is learned from training data. When used for prediction,
the ML model only provide the final output.

our scope of models as ML models. ML models are commonly treated as black-box models

shown in Fig 1.1. When an ML model is trained based on a large amount of data, what the

model has learned is obscure to us. Given an input, the ML model will merely provide the

prediction result, without any additional explanation. Interpretable ML techniques try to

open this black box and understand its internal mechanism. Before we dive into the details,

we need to be clear about what is interpretability.

In the remaining of this chapter, we first introduce the concept of interpretability and

summarize the key properties that we’re interested in. Then we exhibit the taxonomy of

interpretable machine learning methods. We also analyze the advantages and disadvantages

of commonly used interpretable methods as well as ours and point out the motivation of this

dissertation.
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1.1 Definition of Interpretability

Interpretability can be defined as the degree to which an observer can understand the cause

of a decision [98]. A human can consistently predict the model’s output and explain its

behavior in human understandable terms if the model has the highest interpretability. With

that being said, the behavior of models with higher interpretability can be apprehended more

easily. Nonetheless, there is no mathematical definition of interpretability [100], in other

words how to measure the degree of interpretability is subjective. One might say that the

rule-based decision tree is interpretable while it becomes infeasible to interpret when the

depth is large. The authors [44, 90] also define interpretable in a high level and point out

several essential proprieties that an interpretable ML model should have. We still have a

long way to go in this direction.

The above-stated definition of interpretability is very vague. To make it concrete, we need

to know why do we need interpretability first. Below are some demanding features that

interpretable models can bring to us.

• Model defect identification: When deploying ML models to critical areas such as

self-driving and clinical decision support, model stability is a must. ML model should

consistently make reasonable predictions. However, images with only imperceptible

changes can mislead state-of-the-art deep neural networks [83]. Due to model opacity, the

flaw cannot be identified in advance. If the decision process works in an understandable

manner, model defect issue can be addressed accordingly.

• Model correctness validation: There was a famous story about detecting the

existence of camouflaged tanks using neural networks. The well trained model achieved

fairly high accuracy in both train and test set by just picking an irrelevant feature

3



(cloudy or not). This happens when biased data is used. If we can examine the feature

importance, data bias problem can be alleviated, ensuring a correct model.

• Model fairness evaluation: Model fairness refers to prediction integrity and avoiding

kinds of discrimination. Developing for more than four years, Amazon’s ML recruiting

engine was reported to dislike resumes that included the word "women’s". Amazon

ultimately disbanded the team because of incompleteness on fixing this problem [39].

With the help of interpretable ML methods, engineers can discover the contribution of

gender-related features and make the model neutral to particular terms.

• Model knowledge extraction: The ultimate goal of developing ML models is to

gain new knowledge. In the era of technology, a massive amount of data in the scale of

gigabyte or even terabyte are generated each second. Compressing this amount of data

into knowledge is impractical for human beings while the ML models can. Therefore,

extracting knowledge from ML models can be a surrogate method for people to learn

things from the massive data.

In order to achieve the first three goals, understanding the decision process such as feature

importance, feature interactions are essential. To realize the last goal, actionable knowledge

should be obtainable from the ML models. Thus, we focus on the following two aspects in

this proposal, 1) accountability (revealing the significance of each feature), 2) actionability

(identifying changes to input features that can turn the model output to the desired label).

Accountability can help us understand the decision process based on feature importance and

actionability can help us extract new knowledge from the model. In areas such as clinical

prediction and market analysis, these two properties are critically needed in addition to

high accuracy. For example, in clinical prediction of ICU transfers, in addition to accurate

4



prediction, doctors need to know the contributing factors that triggered the alert (account-

ability), which factors can be quickly altered to prevent the ICU transfer (actionability).

Unfortunately, most existing algorithms cannot balance these competing needs well.

Accountability Accountability has been studied for a long time. To reveal the feature

importance, two different kind of algorithms have been proposed. The first category relies

on analyzing the model directly. For example, the feature importance of logistic regression

and density-based logistic regression[25] is indicated by its corresponding weight parameters.

When growing trees, random forest can memorize the entropy gain for each feature and use

this as an indicator of feature importance. Instead of identifying single feature importance,

fast flux discriminant [27] first generates subsets of features and then use LR to identify

the importance of subsets. The second category post-processes the well trained model when

given an input instance. To check whether the prediction of deep neural networks is based

on the right region of an image, guided back propagation [128] was proposed. Provided

with an image and a well trained convolutional neural network (CNN), the authors run back

propagation on the image space and highlight pixels by their corresponding absolute value of

gradients as important features.

Actionability Actionable knowledge discovery has been studied mostly in the domain of

business and marketing. Research on this subject is still very limited in the data mining and

machine learning community. Some earlier works on actionable knowledge have focused on

the development of effective interestingness metrics. Hilderman et al. proposed an two-step

process for ranking the interestingness of discovered patterns [64]. Chi-square test is used in

the first step and objective measures of interestingness is used in the second step. Cao et al.

highlighted both technical interestingness and domain-specific expectations and proposed

a two-way framework to measure knowledge actionablility [18]. They developed a ranking

mechanism which balances the technical and business interests. Another line of work on

5



actionable knowledge discovery develops post-analysis techniques. Liu et al. tried to discover

actionable knowledge by pruning and summarizing the learnt rules, as well as matching

rules by similarity [91, 92]. Cao et al. proposed domain-driven data mining, a paradigm

shift from a research-centered discipline to a practical tool for actionable knowledge [19, 20].

Ubiquitous intelligence must be involved and meta-synthesized into the mining process. They

proposed several types of frameworks capable of handling different problems and applications.

Techniques have also been proposed to post-process decision trees to extract actionable

knowledge [70, 143]. For example, Yang et al. considers the problem of suggesting actions

that maximize the expected profit based a decision tree model [143]. Note that there is

no guarantee that the associations learned by machine learning models reflect the causal

relationships. Actionable knowledge extracted from the machine learning models can be used

to discover potential causal relationships. Domain experts or experiments are needed to verify

those findings.

Now we illustrate the accountability, actionability, and non-linearity of general machine

algorithms in table 1.1. Non-linearity is an important indicator of model capacity. As

we can see, the decision tree has accountability, actionability, and non-linearity. However,

rule-based decision tree algorithm is not stable enough to handle small change in the data

and has relatively low performance compared with random forest. Thus, our first goal is

to extract actionable knowledge from the random forest. Specifically, in Chapter 2, we

transform action extraction from the random forest as an optimization problem and use

optimization solver to solve it. K-nearest neighbors (KNN) doesn’t have accountablity as we

cannot measure how important each feature is. But we can understand its decision process by

checking its k nearest neighbors. However, the evaluation phase of KNN is time consuming

especially when the dataset is huge. Owing to the curse of dimensionality, KNN doesn’t

work well on high dimensional data. Support vector machine tries to find a hyper-plane

6



Table 1.1: The accountability, actionability and non-linearity of traditional machine learning
methods

Algorithm Accountability Actionability Non-linearity
Decision Tree 3 3 3

Random Forest 3 7 3

Support Vector Machine 7 7 3

K-Nearest Neighbors 7 3 3

Logistic Regression 3 3 7

Deep Neural Network 3 7 3

that maximizes the margin between the two classes. SVM itself can be interpreted easily

by analyzing the linear hyper-plane. Yet when kernel methods are applied to SVM, the

hyper-plane becomes nonlinear, making SVM less interpretable. Due to time limit, we don’t

study KNN and SVM in this dissertation. Logistic regression is one of the most widely used

models because of its simplicity and interpretability. While at the same time, those two

properties limit its classification accuracy. Deep neural networks (DNNs), instead, achieve

state-of-the-art performance in many domains. However, the nonlinearity and complexity of

DNNs make it less interpretable. To balance interpretability and classification performance,

we combine LR model with DNNs, preserving the interpretability of LR while incorporating

LR with non-linearity. Details can be found in chapter 3. Furthermore, we propose a factored

generalized additive model in chapter 4 that allows feature interaction between static feature

and time-varying features that are abundant in clinical dataset.

1.2 Taxonomy of Interpretable ML

Interpretable machine learning can be roughly divided into two categories, designing inter-

pretable models (incorporating interpretability directly into the structure of the model) and

post-hoc interpretation (devising interpretable methods).
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Interpretable model means the model itself can be analyzed easily. Examples are logistic

regression and decision tree model. Complex models can be interpretable through adding

additional constraints. In [146], the authors combine traditional CNN with Deconvolutional

Network [147] to visualize the input stimuli that excites individual feature maps at any layer

in the model. By penalizing on the difference between pattern template and convolutional

filters, [148] is able to visualize the semantically relevant region of the input image in an

unsupervised way. Instead of modifying on the ML models, interpretable mimic learning

distills knowledge from a complex teacher model to train the student model (i.e. simpler

interpretable model such as generalized linear model) [7]. Attention mechanism that allows

DNNs to focus on a subset of most discriminative features is also used to explain model

prediction for a specific input sample [4, 30, 43, 75, 123]. However, there is no free lunch.

Adding interpretable constraints or mimic learning hurts the model performance to some

extent as accuracy is no longer the only optimization criteria.

In contrast, post-hoc interpretation methods, also known as model-agnostic methods, detach

model interpretation from model training process. By doing so, interpretable methods can

deliver interpretability without any performance loss. [114] assumes linear monotonicity of

each feature and use generalized linear model to locally simulate the behavior of ML model.

In [80], influence function, a technique from robust statistics is used trace the most influential

data samples in the training set for a given prediction. In [3], the authors measure the feature

importance by calculating the corresponding gradient. Although post-hoc interpretation

methods do no harm to the model performance, the post-analysis approaches are not too

general and are often attached with strong assumptions, deteriorating their flexibility and

quality in achieving specific and accurate interpretation. Note that these two categories

are not conflicting with each other. Post-hoc interpretable methods can also be applied to

interpretable models to provide a different perspective of explanation.

8



Interpretable ML can also be divided into model level interpretability and instance level

interpretability. Model level interpretability indicates that ML models provide general

information about the decision mechanism by examining the model structure and parameters.

LR reveals the importance of each input feature by the corresponding weight parameter.

Instance level interpretability explains how a specific prediction is made given an input data

point. It helps people understand the decision process case by case. Saliency detection

method [1, 126, 128, 148] works in this way. Given an input image, the salience detection

method can point out the relevant region leading to the final prediction.

Thees two different categorization methods are independent. By apply Cartesian product

operation, we will have four different categories in total, instance level interpretable model

[115, 138, 141], instance level post-hoc method [126, 128, 148], model level interpretable

model [117, 137, 148] and model level post-hoc method [3, 104, 126]. Our optimal action

extraction method described in chapter 2 is instance level post-hoc method. Our DELR

model in chapter 3 is model level interpretable model and can be analyzed using instance

level post-hoc method. FGAM is an instance level interpretable model that can extracts

interpretability from generalized additive model in chapter 4.

1.3 Organization

In this dissertation, we propose three interpretable machine learning models, namely optimal

action extraction method for random forests and boosted trees in Chapter 2, deep embedding

logistic regression in Chapter 3 and factored generalized additive model in Chapter 4. We

also propose an interpretable multi-scale convolutional neural network that can deal with

time series that commonly appeared in clinical dataset in chapter 5 & 6. All our proposed
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methods are applied to the real-world clinical datasets. Finally, Chapter 7 discuss the major

findings and implications of our current study in interpretable machine learning area.
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Chapter 2

Optimal Action Extraction for Random

Forests and Boosted Trees

2.1 Background and Motivation

Additive tree models (ATMs) are ensemble models built on top of multiple decision/regression

trees. A large scope of widespread models can be viewed as special cases of ATMs, such

as random forest, adaboost with trees, and gradient boosting trees. In addition to their

superior classification/regression performance, ATM enjoys many appealing properties that

other machine learning models lack [49], including the support for multiclass classification,

nonlinear classification capability, and natural handling of missing values and data of mixed

type (categorical and numerical features). Often referred to as the best off-the-shelf classifiers

[49], ATMs have been widely deployed into many industrial products such as Kinect [125]

and face detection in camera [139], and are the must-try methods for lots of data mining

competitions such as web search ranking [99].
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Despite these advantages, ATMs often face a key hurdle in many practical applications: the

lack of actionability. Given an input instance and a desired output, the actionability of a

model is the ability to identify a set of changes to the input features that transforms the

model prediction of this input to the desired output. Automatic extraction of actionable

knowledge rather than resorting to domain experts is badly needed in many real-world

applications such as clinical applications. For example, there has been an emerging trend

of using machine learning models as the workhorse for the early warning systems to predict

sudden deterioration (e.g., septic shock, stroke, respiratory arrest) for hospitalized patients

based on their vital signs (such as blood pressure, heart rate, oxygen saturation and etc)

[9, 96] with interpretability in mind [25, 27]. A model with actionability can be readily

translated into intervening

We propose a novel approach to post-process any ATM classifier to extract an optimal

actionable plan that can change a given input to a desired output with a minimum cost [35].

In particular, we model the problem as an integer linear programming (ILP) problem which is

efficient to solve with state-of-the-art solvers such as CPLEX [32]. Any approximation method

for the ILP problem will get the same approximation ratio for our problem of extracting

actionable knowledge. This is akin to the spirit of other reduction methods in machine

learning [26, 151] which reduce a new problem to another well-established problem to exploit

its extensive research and development.

Contributions To the best of knowledge, our method is the first action extraction work on

ATMs. Our main contributions are:

(1) We formally define the problem of optimally action extraction (OAE) based on a general

formulation of ATMs that covers a broad spectrum of machine learning models.

(2) We prove the NP-hardness of the OAE problem on ATMs.
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(3) We propose a novel method that translates the OAE problem into a closed-form integer

linear programming (ILP) problem which can be efficiently solved by offthe-shelf ILP solvers.

(4) We empirically demonstrate the effectiveness of our method on various datasets with

excellent performance

2.2 Additive Tree Models

In this section, we first introduce a general formulation for additive tree models that our

approach can be applied. Our formulation is very general and encompasses several most

important and popular models for classification and regression, including random forests,

adaboost, and gradient boosting trees. As a result, the proposed action extraction method

has very wide applicability.

2.2.1 General model

An additive tree model (ATM) is an ensemble of T decision trees where T is the number

of trees. Let x = (x1, · · · , xD) ∈ D1 × · · ·DD be a D dimensional feature vector, where each

xi, i = 1, · · · , D, can be either categorical or numerical.

Each decision tree outputs a real value; let the output from tree t be ft(x). For both

classification and regression, the output F of the additive tree model is a weighted sum of all

the tree outputs as follows:

F (x) =
T∑
t=1

wtft(x), (2.1)

where wt ∈ R is the weight of tree t. The formulation in (2.1) is very general and include

some popular models as special cases. Next, we describe several additive tree models that

are widely used in real-world applications.
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2.2.2 Random forests

Random forest is arguably the most popular and powerful off-the-shelf classifier [16]. It can

cope with regression and multi-class classification on both categorical and numerical datasets

with superior accuracy. In essence, random forest is a bagging model [15] of trees where

each tree is trained independently on a group of randomly sampled instances with randomly

selected features.

Suppose we are given a dataset {x(i), y(i)}Ni=1 where N is the number of training instances,

x(i) and y(i) are feature vector and label of the i-th sample, respectively . The training of a

random forest is as follows:

For t = 1, · · · , T ,

1. Sample ntry instances from the dataset with replacement.

2. Train an unpruned decision or regression tree ft on the sampled instances with the

following modification: at each node, choose the best split amongmtry features randomly

selected rather than among all features.

Both ntry and mtry and predefined constants. The final random forest model is the average

of the outputs from all the trees, i.e. F (x) =
∑

t=1
1
T
ft(x). For ease of presentation, we only

consider binary classification for now. It is straightforward to extend our work to multi-class

classification.

We can see that the random forest is a special case of (2.1) with wt = 1
T
. To use random forests

for classification, ft(x) ∈ {0, 1} for all t = 1, · · · , T , and F (x) represents the probability of

the label being 1. From the perspective of bias and variance decomposition, each tree in the

random forest has low training bias but high variance since the tree is not pruned. The use
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of bagging over those independent low-bias trees greatly reduces the variance of the resulting

model, leading to superior generalization ability.

2.2.3 Boosted trees

Unlike a random forest that combines low-bias unpruned trees, the boosting method ensembles

multiple weak learners to make a strong final model [47]. For boosting, each weak learner is

typically a shallow tree with high bias and low variance.

The boosting method trains the additive model sequentially in a forward stage-wise manner.

Suppose Ft(·) is the resulting model up to stage t. The model of the next stage is

Ft+1(x)← Ft(x) + αtft(x),

where ft(·) is the weak learner obtained at stage t and αt is the weight of this weak learner.

The final model turns out to be a weighted sum of all trees:

F (x) =
T∑
t=1

αtft(x),

which is a special case of the general additive tree model in (2.1) with wt = αt.

There are two common ways to train the weak learners, leading to two different models:

adaboost and gradient boosting trees.

Adaboost When training a new weak learner, adaboost focuses more on instances that

previous weak learners cannot correctly classify [47]. At stage t, the weight αt and the tree
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model ft(·) are jointly optimized to minimize the loss function L of the resulting model Ft+1.

minimize
αt,ft

N∑
i=1

L(y(i), Ft(x(i)) + αtft(x(i))) (2.2)

where L is a loss function measuring the difference between the true label y(i) and the model

Ft+1(x(i)). In particular, when L is the exponential loss (L(a, b) = e−ab), there is a nice

closed-form solution for αt, and ft can be learned by training on the weighted instances.

Gradient boosting Gradient boosting is an even more general technique for boosting [48].

It counts each addition to the current model Ft(·) as a gradient update of (2.2) in the function

space of Ft(·), where αt is the learning rate and ft(·) is the negative gradient of minimizing

the loss function L. Specifically, ft(·) is trained so that

ft(x(i)) ≈ −∂L(y(i), Ft(x(i)))

∂Ft(x(i))

which is equivalent to training a regression tree on the original instances with new labels

defined by the negative gradient. The learning rate αt can be set as a small constant or

determined by a line search.

2.3 The Optimal Action Extraction Problem

In this section, we formally define the problem of optimally extracting actionable knowledge

from additive tree models defined in (2.1), which as we show above is very general and

encompasses random forests, adaboost, and gradient boosted trees as special cases.

Definition 1. The optimal action extraction (OAE) problem. Given a feature vector

xc and an additive tree model in (2.1) with output function F , the problem is to find a feature
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vector x such that F (x) reaches a target value and the change from xc to x incurs a minimum

cost as measured by a cost function `(xc, x). Formally, it is:

minimize
x

`(xc, x),

subject to F (x) ≥ z,

(2.3)

where z ∈ R is the target output. `(xc, x) is the cost function measuring the cost of changing

from xc to x. For example, `(xc, x) = ‖x− xc‖0 evaluates the number of features changed.

We now show that the OAE problem is in general a NP-hard problem. We prove it by

reducing from the DNF-MAXSAT problem defined below.

Definition 2. The DNF-MAXSAT problem is defined over a boolean formula in dis-

junctive normal form. Suppose a set of boolean variables {v1, v2, · · · , vD} where vi ∈ {0, 1},

and a set of T clauses where each clause φi, i = 1, · · · , T has the form φi = ∧jlij, where lij is

the jth literal in the ith clause and is either a positive or a negative expression of a variable.

If clause i is satisfied, we have φi = 1; otherwise φi = 0. The problem is to determine if

there exists an assignment of all the boolean variables such that there are at least m clauses

satisfied, i.e.
∑T

i φi ≥ m.

Theorem 1. The OAE problem in (2.3) is NP-hard.

Proof. It is well known that the DNF-MAXSAT problem is NP-hard [53]. We now reduce

the DNF-MAXSAT problems to the OAE problem in (2.3).

Given any DNF-MAXSAT problems with T clauses, we construct an additive tree model

(and in particular, a random forest) with D binary features and T binary trees where each

tree represents a clause. To construct tree i, we iterate through all literals in clause φi and

execute the following steps:
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Figure 2.1: An illustration of constructing the tree for clause v1 ∧ ¬v3 ∧ ¬v4.

1. Construct the root node and denote it as q. Let j ← 1.

2. Suppose lij is a literal involving boolean variable vk, then node q is a decision node for

feature k. If lij = vk, construct two children for node q where the right child is a leaf

node labeled as 0, and assign q’s left child to q. If lij = ¬vk, a similar operation will be

applied with the left child being a leaf node and right child assigned to q.

3. Let j ← j + 1. If j = ni + 1, make node q a leaf node with label 1; otherwise, go to

Step 2.

An example of constructing the tree for clause v1∧¬v3∧¬v4 is shown in Figure 2.1. Following

the above procedure, we construct a random forest for regression. In particular, each tree

only has one leaf node labeled as 1. The output of tree i is 1 if and only if all literals in clause

i are made true. Let all wt = 1
T
, the output of this constructed random forest is exactly

1
T

∑T
i=1 φi. Finally, the DNF-MAXSAT problem reduces to the OAE problem in (2.3) with

`(xc,x) = 0 and z = m/T .

Given that the OAE problem is NP-hard, we do not expect to have any efficient algorithm

for optimally solving it. Note that when there is only one decision tree, the OAE problem is

in fact easy. We can enumerate all the paths leading up to leaves with desired outputs and

choose one with the minimum cost. However, such enumeration does not work for ATMs since

the outputs from different trees are inter-connected due to the features they share. Changing

the value of a feature may impact the outputs of multiple trees and the final weighted-sum
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output. Next, we present our solution which formulates the OAE problem as an integer linear

programming problem and utilizes highly-optimized optimization solvers.

2.4 An Integer Linear Programming Approach

In this section, we describe our integer linear programming approach for solving the OAE

problem (2.3). Specifically, we convert the constraint F (x) ≥ z to a more approachable

format so that efficient off-the-shelf optimization solvers can be directly applied to it.

The formulation consists of four parts: 1) tree output formulation, 2) feature value formulation,

3) decision logic formulation, and 4) objective function. We will discuss each part separately

before putting them together.

2.4.1 Tree output

We note that (2.3) is not in closed form because ft(x) in (2.1), representing the output from

a tree, is not in a mathematical formula. To address this problem, suppose mt is the number

of leaf nodes in the tth tree.

Tree output variables. For each leaf node k = 1, · · · ,mt, we use a binary variable

φt,k ∈ {0, 1} to denote whether a given instance x reaches it.

Tree output constraints. Due to the property of the tree structure, each instance reaches

exactly one leaf node. Therefore, we have,

mt∑
k=1

φt,k = 1, for t = 1, · · · , T, (2.4)
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Figure 2.2: An illustration of random forest containing three features where the the third
feature is categorical and the other two are numerical. The leaf nodes with label 1 are the
target leaf nodes.

where T is the number of trees in the additive tree model. This way, ft(x) can be expressed

as:

ft(x) =
mt∑
k=1

ht,kφt,k. (2.5)

where ht,k ∈ R is the value of leaf node k in tree t.

Note that although (2.4) (2.5) and (2.1) form an optimization problem in (2.3), with φt,k

and x being the variables, it is incorrect as it does not consider the correlation between φt,k

among different trees. For example, Figure 2.2 shows a small random forest with two trees.

In this case, it is impossible to have both φ1,1 = 1 and φ2,3 = 1. If φ1,1 = 1, x3 should be

“male”. If φ2,3 = 1, x3 should be “female” instead, which is conflicting. Therefore, we need to

impose more constraints so that the solution respects the property of the additive tree model.

2.4.2 Feature value

Definition 3. (Feature partitions.) Given an additive tree model, each feature xi, i =

1, · · · , D, is split into a number of partitions.
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• If xi is categorical with n categories, then xi naturally has n partitions.

• If xi is numerical, we assume each tree node branches in the form of xi ≥ b where

b ∈ R is a splitting point. If there are n splitting points for xi in all the trees in the

additive tree model, the feature xi is naturally split into n+ 1 partitions.

In the following, let ni be the number of partitions for feature xi.

Feature value variables. Given an instance x, we use a binary variable vij ∈ {0, 1} to

denote whether xi is in the jth partition of dimension i. vi,j = 1 if and only if xi is in the jth

partition.

Feature value constraints. Since an instance could only reside in exactly one partition

for each feature, we know that vij satisfies the following property:

ni∑
j=1

vij = 1 (2.6)

Example 1. As shown in Figure 2.2, the feature x2 occurs twice in the non-leaf nodes of

the random forest. The split points are 1.5 and 2.3, respectively, leading to three partitions

for this feature, i.e. (−∞, 1.5], (1.5, 2.3] and (2.3,+∞). Given an instance x = (x1, · · · , xD),

if 1.5 < x2 ≤ 2.3 (say x2 = 1.9), then v2,2 = 1 and v2,1 = v2,3 = 0.

2.4.3 Decision logic

Now we need to link vi,j with φt,k. Given a leaf node k in tree t, suppose πt,k is the set of

all its ancestor nodes in the tree. For any node p ∈ πt,k, suppose p branches on feature i,

we define Sk,p to be the set containing all predicates vi,j satisfying that vij = 1 leads to the

branch towards leaf node k.
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Example 2. Continuing with Figure 2.2, the second leaf node of the first tree (marked

with φ1,2) has three ancestors, i.e. π1,2 = {x3, x2, x1}1. For node x2, the corresponding

S2,x2 = {v2,2, v2,3}, since both v2,2 = 1 (i.e. x2 ∈ (1.5, 2.3]) and v2,3 = 1 (i.e. x2 ∈ (2.3,+∞))

are in the branch where the second leaf node lies. Likewise, S2,x3 = {v3,1} where v3,1 = 1

stands for x3 = “male”.

Making use of the tree structure, we have the following properties:

• If φt,k = 1, meaning that the instance x lies in the leaf node k in tree t, then there is

always one of the predicates vij in Sk,p being 1 for any node p ∈ πt,k.

• If φt,k = 0, then there exists at least one node p such that all the predicates in Sk,p are

0. For example, to have φ1,2 = 1, either v2,2 or v2,3 should be 1. To have φ1,2 = 0, there

should be at least one node that does not branch towards the leaf node k.

Putting the above properties in a mathematical form, we have that

φt,k = 1⇐⇒
∑
v∈Sk,p

v = 1, ∀p ∈ πt,k

φt,k = 0⇐⇒
∑
v∈Sk,p

v = 0, ∃p ∈ πt,k
(2.7)

(2.7) is still not in a closed form and we need to further reduce it. To simplify (2.7), we first

prove the following results.

Lemma 1. Given that 0 ≤ ui ≤ 1, 1
U

∑U
i=1 ui = 1 implies ui = 1 for i = 1, · · · , U .

1With a slight abuse of notations, we now use xi to represent the node for simplicity of presentation,
because each feature only occurs once in the first tree of Figure 2.2.
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Theorem 2. If (2.6) holds, we have that

1

|πt,k|
∑
p∈πt,k

∑
v∈Sk,p

v ≤ 1 (2.8)

where |πt,k| is the cardinality of πt,k, i.e. the number of ancestor nodes of the leaf node k. In

addition, there is only one leaf node satisfying (2.8) with equality.

Proof. First, we prove (2.8) holds. Suppose that node p ∈ πt,k branches at feature r(p).

Combined with (2.6), we have that

∑
v∈Sk,p

v ≤
nr(p)∑
j=1

vr(p),j = 1, ∀p ∈ πt,k (2.9)

which leads to (2.8).

Next, we prove that only one leaf node satisfies (2.8) with equality. We prove this by

contradiction. Suppose there are two leaf nodes satisfying (2.8) with equality. Let node a

and b be these two leaf nodes. Hence, we have that

1

|πt,k|
∑
p∈πt,k

∑
v∈Sk,p

v = 1, for k = a, b.

According to (2.9) and Lemma 1, we have that
∑

v∈Sa,p
v = 1 and

∑
v∈Sb,p

v = 1 for any node

p in πa and πb.

Let node q be the lowest common ancestor of a and b and it branches at feature i, i.e.

r(a) = r(b) = i. We know that Sa,q ∩ Sb,q = ∅, since they belong to different branches of q.

Hence, we have:
ni∑
i=1

vi,j ≥
∑

v∈Sa,q∪Sb,q

v =
∑
v∈Sa,q

v +
∑
v∈Sb,q

v = 2, (2.10)
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which contradicts (2.6).

According to (2.8), we can simplify (2.7) into the following equivalent equation:

φt,k =

 1

|πt,k|
∑
p∈πt,k

∑
v∈Sk,p

v

 ,∀t, k (2.11)

Eq. (2.11) implies the following three properties:

1. From Theorem 2, we know that the term within the floor operation is equal to or less

than 1. Therefore, φt,k≤1, ∀t, k.

2. From Lemma 1, we also have that φt,k in (2.11) is 1 if and only if
∑

v∈Sk,p
v = 1, ∀p ∈ πt,k.

3. From Theorem 2, we have that there is only one leaf node k in tree t satisfying that

φt,k = 1.

The presence of the floor operator poses great difficulty to optimization. To address it, we

replace the equality constraint by an inequality constraint so that the floor operator can be

removed. This gives rise to the following decision logic constraints:

φt,k≤
1

|πt,k|
∑
p∈πt,k

∑
v∈Sk,p

v,∀t, k (2.12)

Next, we show that (2.12) is equivalent to (2.11) when the tree output constraints in (2.4)

and feature value constraints in (2.6) are all satisfied.

Theorem 3. When (2.4) and (2.6) hold, (2.12) is equivalent to (2.11).

Proof. It is easy to show that (2.11) implies (2.12) due to the property of the floor operator.

Now we show that (2.12) implies (2.11). There are two cases:
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a) If
1

|πt,k|
∑
p∈πt,k

∑
v∈Sk,p

v < 1,

from (2.12) we have that φt,k < 1. Since φt,k ∈ {0, 1}, we must have φt,k = 0.

b) If
1

|πt,k|
∑
p∈πt,k

∑
v∈Sk,p

v = 1,

according to Theorem 2, there is only one leaf node k′ in tree t that satisfies this property.

Since all φt,k ≤ 1 and only φt,k′ is possible to be 1, if φt,k′ = 0, we have
∑mt

k=1 φt,k = 0, which

contradicts (2.4). Therefore, φt,k′ = 1.

In both cases, (2.12) implies (2.11).

Based on the above analysis, we have shown that (2.12) correctly models the decision logic of

additive trees.

2.4.4 Objective function

Now we consider the objective function `(xc,x) in (2.3). The objective plays a key role for

users to specify their preferences over which kind of changes to make. For business operations,

for example, each change may involve certain investment or operational cost and we want to

achieve our goal with the minimum expense. For clinical prediction, the doctors may want

the algorithm to suggest as few vital signs as possible, in order to understand and identify

the key factor for intervention.

Let v be the vector containing all feature value variables vi,j . Since v represents the partition

each dimension of x should fall in, we see that all x’s that correspond to the same v have

the same outputs from the trees and the ATM. Therefore, we see that we can replace the
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cost function `(xc,x) in (2.3) by `(xc,v), which models the minimum cost of moving a given

sample xc to the partitions specified in v.

A typical cost function is defined over a cost matrix C(xc), in which Ci,j(xc) ∈ R is the cost

of moving the ith feature of xc to the partition vi,j. The objective function can be expressed

as follows.

`(xc,v) =
D∑
i=1

ni∑
j=1

vi,jCi,j(xc) (2.13)

which is a linear function of vi,j . In principle, Ci,j(xc) is user-defined, offering total flexibility

in modeling the cost of changes in practice. For example, if a feature i cannot be easily

changed (such as gender or age), we can assign Ci,j(xc) =∞ for all j 6= i.

For each numerical feature i, we can define a general form for Ci,j(xc). Let bi,j and ei,j be

the beginning and end values of partition vi,j, respectively. For example, if vi,j = (1, 5, 2.3],

bi,j = 1.5 and ei,j = 2.3. A general form of the cost matrix is as the following.

Ci,j(xc)=

 0, xci is in vi,j

min{(xci − bi,j)p, (xci − ei,j)p}, otherwise
(2.14)

where xci is the ith feature value of xc, and p ∈ R is a constant.

With the cost matrix in (2.14), our cost function in (2.13) is general enough to accommodate

most common needs in practice. In fact, the above cost function represents an `p norm. For

example, when p = 0, the cost matrix defines the `0 norm:

Ci,j(xc)=

 0, xci is in vi,j

1, otherwise
(2.15)
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which makes our OAE problem minimize the number of changed features, i.e. Hamming

distance. When p = 1, it defines an `1 norm and the OAE problem minimizes the Manhattan

distance. When p = 2, it defines an `2 norm and the OAE problem minimizes the Euclidean

distance.

2.4.5 Overall optimization formulation

Combining all the four parts above, we now can fully express the OAE problem in (2.3) in a

closed-form optimization problem by integrating the objective in (2.13) and constraints in

(2.1), (2.4), (2.5), (2.6), and (2.12). The overall problem is:

minimize
vi,j ,φt,k∈{0,1}

D∑
i=1

ni∑
j=1

vi,jCi,j(xc)

subject to:
T∑
t=1

wt

mt∑
k=1

ht,kφt,k ≥ z

ni∑
j=1

vij = 1, i = 1, · · · , D

φt,k≤
1

|πt,k|
∑
p∈πt,k

∑
v∈Sk,p

v, ∀t, k

mt∑
k=1

φt,k = 1, t = 1, · · · , T

(2.16)

Since all the objective and constraints are linear functions over the binary variables v and

φ, (2.16) is an integer linear programming (ILP) problem. ILPs have been extensively

studied and can be efficiently solved by powerful off-the-shelf solvers such as IBM ILOG

CPLEX. Note that CPLEX supports a distributed parallel algorithm that can naturally

leverage parallel and multi-core computers.
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Table 2.1: The number of instances (N), number of features (D), and number of classes (C)
of all testing datasets

Dataset N D C

heart 270 13 2
liver disorders 345 6 2
breast cancer 683 10 2
australian 690 14 2
ionosphere 351 34 2

a1a 1000 123 2
mushrooms 8124 112 2

dna 3386 180 3
glass 214 9 6
vowel 990 10 11

2.5 Experimental Results

In this section, we conduct extensive experiments on several benchmark datasets to evaluate

the proposed methods on the OAE problem. For ease of presentation, we refer to our method

as the ILP method.

2.5.1 Baseline methods

For comparison, we consider the following baseline methods for solving the OAE problem.

These baseline methods are reasonable and in some cases highly competitive. None of them can

guarantee optimality as our ILP method does. We do not report results on some exhaustive

search methods that can guarantee optimality since they are prohibitively expensive and can

only solve tiny cases.

1. Iterative testing. This method iterates through all training instances available,

denoted as x(i), and compute the prediction F (x(i)) as well as the cost `(xc,x(i). The

final solution has the minimum cost among all instances with the desired output, as
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follows:

min
i
`(xc,x(i)), s.t. : F (x(i)) ≥ z

2. Greedy algorithm. Starting from xc, this method greedily changes the feature that

maximizes F (x). Mathematically, it starts from x0 = xc, and solves the following

problem in the ith iteration:

max
xi

F (xi)− F (xi−1), s.t. : ‖xi − xi−1‖0 = 1. (2.17)

To solve (2.17) and find xi, the greedy algorithm first pick a feature, denoted as d, and

fixes all other features of xi−1. Then it iterates through all partitions of feature d and

finds one that maximizes the marginal utility F (xi)− F (xi−1). Namely, each iteration

changes one feature to a value that maximizes the gain. The greedy algorithms keeps

iterating until F (x) ≥ z is met or there is no more features to change. The goal of this

method is simply finding a feasible solution without considering the cost.

3. Cost-aware greedy algorithm. This method is similar to the greedy algorithm

except that it takes the cost into account by changing the utility to a cost-aware utility.

In particular, (2.17) is changed to the following and the rest of the greedy process

remains the same:

max
x

F (xi)− F (xi−1)
`(xi,xi−1)

, s.t. ‖xi − xi−1‖0 = 1 (2.18)

From (2.18), we can see that with this method a feature change with a high cost `(xc,x)

is less likely to be chosen.
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2.5.2 Experimental setup

We test all the methods on nine benchmark datasets from the UCI repository2 and the

LibSVM website3. The information of datasets are listed in Table 2.1. For compactness, we

only show the experimental results on random forest for classification since we found the

basic trend is consistent among all ATMs. We split each dataset into training and testing sets.

The random forest is built on the training set. Implementation-wise, we adopt the R package

implemented by Liaw et al., which is the current state-of-the-art random forest package [87].

For the OAE problem, we choose a weighted Euclidean distance as the loss function,

`(xc,x) =
D∑
i=1

βi(x
c
i − xi)2 (2.19)

where βi is the cost weight on feature i. For each dataset, we randomly generate ten sets of

feature cost βi in the range between 1 and 100. For each set of cost, we sample ten testing

instances at random and solve the OAE problem with desired outputs being the other classes.

In summary, for each dataset, for each method, we solve the OAE problem under 100(C − 1)

number of different settings where C is the number of unique labels in a dataset. The reported

results are the average of all tested settings. All experiments are run on a desktop computer

with 2.5GHz CPU and 16G memory.

2.5.3 Comprehensive results

Table 2.2 shows a comprehensive comparison in terms of the running time and the solution

quality measured by the cost `(xc,x). The reported results are the average performance of
2https://archive.ics.uci.edu/ml/datasets.html
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Dataset Iterative testing Greedy Cost-aware Greedy ILP method
Time(sec) Cost Time(sec) Cost Time(sec) Cost Time(sec) Cost

a1a 0.12 116.46 3.38 39.48 4.75 32.74 7.35 9.24
liver disorders 0.00 11.64 2.21 8.21 2.57 4.02 31.22 1.10
australian 0.00 41.76 2.99 12.30 3.13 6.51 108.31 3.42

breast cancer 0.00 74.19 0.16 41.69 0.22 45.57 31.80 18.35
dna 0.08 1112.22 4.23 34.45 5.00 34.47 9.84 24.10
glass 0.00 16.40 1.38 21.63 1.36 11.82 57.67 1.18
heart 0.00 53.30 1.12 32.52 1.10 22.67 5.71 2.51

ionosphere 0.01 195.67 15.01 53.53 21.20 40.87 48.89 6.98
mushrooms 0.27 199.68 0.91 55.51 1.26 68.69 3.49 32.53

vowel 0.02 34.44 7.65 22.55 7.57 10.86 68.72 1.24

Table 2.2: Solution time and action costs of various methods. All results are averaged over
100(C-1) runs. Optimal costs are marked in bold. See text for details of experimental setup.

different settings as stated before. We omit the settings where either the greedy algorithm or

cost-aware greedy algorithm fails to find a feasible solution, since it results in an infinite loss.

From Table 2.2, we make the following observations: 1) Our ILP method always attains the

minimum cost and largely outperforms all other methods in terms of quality, which is under

our expectation since the ILP method is guaranteed to find the optimal solution. As a result,

the ILP method also takes more time than all other methods. 2) The cost-aware greedy

algorithm outperforms the greedy algorithm in most cases in terms of solution quality. This

is because the greedy algorithm does not take costs into consideration when searching for a

feasible solution. In terms of running time, these two methods are comparable. 3) Though

the iterative testing algorithm is the most efficient among all tested methods, it has the worst

performance in terms of the solution quality.

We show a scatter plot of the performance of all methods under all settings in Figure 2.3. The

x-axis stands for relative cost, which is the ratio of the cost obtained by each method over the

optimal cost (found by the ILP method). We can see that all results by the ILP method lies

in the spike whose relative cost is 1. For these baseline methods, although they are in general

faster, their solution quality can be extremely (up to 103 times) poor, making their solution
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Figure 2.3: Results of running time and relative costs of all the methods under different
settings.

not useful. As we have discussed before, in many cases, extracting the optimal actions is a

means for individualized feature selection. Non-optimal methods with poor quality are not

useful in this case.

2.6 Discussion and Conclusion

We proposed an integer linear programming (ILP) formulation to model the OAE problem and

proved its correctness to support actionability for additive tree models (ATMs). Extensive

32



experimental results showed that the proposed method is optimal, efficient, and reliable. It

significantly outperforms other baseline methods in terms of the solution quality.

Solving the OAE problem not only provides an action plan, but also helps identify individu-

alized feature importance for each instance. Most feature selection algorithms are based on a

given training dataset and classifier, but are not customized for an individual instance. In

contrast, the output from OAE can be viewed as a result of individualized feature selection,

as it identifies the few features that can most efficiently change the prediction output of a

particular instance. Such individualized feature selection may find many applications, such

as personalized health care and targeted marketing.
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Chapter 3

Deep Embedding Logistic Regression

3.1 Background and Motivation

LR is widely used, especially on high-dimensional cases, due to its simplicity and efficiency.

Moreover, LR offers accountability and actionability. Weights in LR can measure feature

importance and tell how we can alter certain features with a minimum cost to achieve a

desired output. However, being a linear classifier, LR has limited separation ability and

generally low accuracy. In addition, categorical features are not naturally supported by

LR. DNNs keep breaking records in applications such as image classification [66], speech

recognition [21] and objection detection [113]. However, the prediction results of DNNs are

known to be very hard to interpret due to the extreme nonlinearity and complexity of the

model [2]. The lack of interpretability greatly restricts their prevalence in fields such as clinical

predictions [22] and business intelligence [23] where explanation, insights, and actionability

are much needed. In clinical applications, interpretability helps doctors analyze the status of

patients and take actions to intervene. Thus, prediction accuracy is often sacrificed by using
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more traditional but more interpretable algorithms such as logistic regression and decision

trees.

Thus, we proposed an end-to-end logistic regression model, deep embedding logistic regression

(DELR), which incorporates LR with deep learning based feature embedding [37]. By taking

the advantage of DNNs’ superior expressing power, each feature is first transformed into non-

linear representation before being fed into a LR layer. DELR has high efficiency by leveraging

GPU computing. Nonlinear feature transformation equips DELR with nonlinear separation

ability. Using deep embedding, we can also naturally handle and quantify categorical features,

which is not supported by LR. Last but not least, accountability and actionability are offered

by the LR layer.

Contributions In summary, our contributions are as follows.

1) We propose DELR, a classifier that offers scalability, nonlinearity, support for mixed data

types and most importantly, excellent interpretability.

2) We analyze and demonstrate the model accountability and actionability of DELR through

case studies.

3) We empirically validate the accuracy performance of DELR as compared with existing

interpretable methods including LR, DT, DLR and gradient boosting decision stumps (GBDS).

Commonly used non-interpretable models such as SVM-rbf, random forest (RF) are also

tested for reference.

4) We visualize the quantification of categorical feature embedding and further verify the

interpretability of DELR.

5) We apply DELR on a real-world clinical dataset and show how interpretability can help

doctors make decisions.
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3.2 Related Work

DELR is designed to preserve the interpretability with minimum sacrifice on the prediction

performance. For DELR, we can not only show the feature importance using weight parameter,

but also visualize the trending of each feature as it changes.

Among all classifiers, DELR resembles to gradient boosted decision stumps (GBDS) [62]

most in terms of individual feature transformation. Different from gradient boosted decision

trees (DBDT) [24], GBDS is an ensemble of one level decision trees. For each decision

stump, only a single feature is used for classification. After training the GBDS, we can group

decision stumps with same features together and draw plots similar to Fig. 3.3. However, the

coordinate plot of DELR is much smoother than GBDS, leading to better generalizability.

We will compare the model performance in the experimental section.

Compared with accountability, extracting knowledge from machine learning model is an even

harder task. Rule based algorithms can be post-analyzed through pruning and summarization

[93, 94]. In [144], the authors use a greedy algorithm to provide actions that can maximize

the expected profit from the decision tree. Despite their actionability, decision trees cannot

achieve high accuracy. Reference [35] further proposed an integer linear programming (ILP)

algorithm to extract optimal actionable knowledge from random forests. However, ILP is a

NP-Complete problem, restricting its usage in large scale datasets. For deep neural networks,

meaningfully actionable knowledge is hard to extracted due to model complexity [55]. DELR

inherits all the advantages of LR, especially efficiency, accountability, and actionability,

making it capable of extracting knowledge from various kinds of datasets.
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3.3 Preliminaries

In this section, we introduce the notations and briefly review the limitations of LR and its

extensions.

Suppose we are given a dataset D = {xi, yi}Ni=1 with N instances, where xi and yi are

D dimensional feature vector and label of instance i, respectively. Each feature vector

is the concatenation of two types of feature vectors, numerical feature vector xRi ∈ RD1

and categorical feature vector xCi = ([xCi ]1, [x
C
i ]2, ..., [x

C
i ]D2). Each element in xRi is a real

number and each element in xCi is an ordinal number. DELR can handle both binary and

multi-class classification. For ease of presentation, we consider binary classification where

yi ∈ C = {0, 1}. Dk contains all the data samples with label k. Multi-class classification can

be easily supported by replacing LR with softmax regression classifier.

A common way for many classifiers to handle categorical features is one-hot encoding, which

converts a categorical feature to a numerical vector. However, one-hot encoding is known to

be prohibitively expensive when the cardinality is high.

LR models the conditional probability of y given an instance x using a sigmoid function:

p(y = 1|x) = σ(wTx) =
1

1 + exp(−wTx)
(3.1)

where w is weight parameters to be learned, making the decision boundary a hyperplane.

The confidence score is controlled by the weighted sum of input features. LR assumes that

there is a monotonic relationship between p(y = 1|x) and xd, while in practice often does not

exist. DLR was proposed to fix this problem by embedding each feature xd into a nonlinear
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representation:

Φ(x) = (φ1(x), ..., φD(x)).

By assuming all the attributes of x are conditionally independent given the label y, each

attribute was represented using logit transformation:

φd(x) = ln
p(y = 1|xd)
p(y = 0|xd)

. (3.2)

3.4 Deep Embedding Logistic Regression

In this section, we propose a deep embedding logistic regression (DELR) framework, in which,

no prior assumption for data distribution is needed. Instead of using kernel based estimator,

we use deep neural networks for dimension-wise feature embedding. The overall architecture

of DELR is depicted in Fig. 3.1. DELR contains three different blocks: numerical feature

embedding block, categorical feature embedding block and logistic/softmax regression block.

3.4.1 Numerical Feature Embedding Block

For the numerical part, each feature is not necessarily in a monotonic relationship with

class probability. To address this problem, we apply a multi-layer perceptron (MLP) for the

numerical feature embedding as MLP has the ability to learn complex feature representation

automatically. In order to reduce the total number of parameters to be learned, we design a

deep and narrow MLP as shown in Fig. 3.1. Although the feature embedding block has 6

layers, each of which contains only 4 hidden neurons. Thus, the total number of parameters

is only 80. Compared with classical MLP that has millions of parameters, our model greatly

reduced the learning time in updating each parameters, being able to handle very high
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Figure 3.1: Overall architecture of DELR

dimensional dataset. Rectified linear unit A(x) = max(x, 0) is used as activation function

between two adjacent layers. Batch normalization [68] is also applied before every activation

function. The input and output dimension of numerical feature embedding block are one.

After the conversion, we have

fd(x) = A(bnhd +W nh
d A(· · ·A(b1d +W 1

d xd))) (3.3)

where nh is a user defined number of hidden layers.

3.4.2 Categorical Feature Embedding Block

Suppose the categorical part xC has D2 features, xC = (xC1 , ..., x
C
D2

). The dth categorical

feature has Kd categories, xCd ∈ {1, 2, ..., Kd}.
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The first component of the categorical feature embedding block is a lookup table that contains

a numerical embedding for each category as shown in Fig. 3.1. The number of embeddings of

each feature is equal to the number of categories of the corresponding categorical feature. At

its core, each lookup table is a matrix Ud ∈ Rk×Kd where each column vector represents a k

dimensional embedding for a corresponding category. k > 0 is a user defined integer. For

example, in Fig. 3.1, we have k = 4. Each categorical feature would retrieve its corresponding

embedding in the lookup table as its new feature representation.

Mathematically, we let udi be the ith column vector in lookup table Ud. After embedding

retrieve, we have the new feature representation ed(xC) = udi .

This new representation is then fed into a new numerical feature embedding block to get the

univariate output,

gd(x) = fD1+d(u
d
i ) (3.4)

3.4.3 Classification

After obtaining the embedding for both numerical and categorical features, DELR concatenate

them together to form a new representation, Φ(x), for the original input x. Note that each

feature in the new representation can be traced to its corresponding raw attribute. Now we

have

Φ(x) = (f1(x), ...fD1(x), g1(x), ..., gD2(x)) (3.5)

We let φi(x) to denote the ith element of Φ(x).

LR is then used to estimate the probability that a given input is positive. We can extend our

model to support multi-class classification by replacing LR with softmax regression.

40



Following the same training procedure as softmax regression, we minimize the cross entropy

between true label distributions and prediction distribution. The embedding of each single

dimension is learned jointly through stochastic back-propagation. To reduce the effect of over

fitting, `2 normalization is applied when training the model.

3.5 Discussions

In this section, we discuss the nonlinearity, interpretability, i.e. accountability and actionability

of our proposed DELR model through a toy dataset shown in Fig. 3.2. We use red pluses

and white circles to denote the positive and negative instances, respectively.

Nonlinearity. This dataset is not linearly separable as we cannot draw a single line that

can perfectly split those two categories. LR obviously fails here. We train a DELR model

using this toy dataset, and draw the probability output in this 2-D space. As we can see from

Fig. 3.2, the decision boundary is a smooth circle, containing all the red pluses. The power

of nonlinear separability granted by DELR yields a very reasonable separation curve on this

2-D space.

Accountability. Accountability refers to model’s ability to reveal the significance of each

feature in making the final prediction for some instance. In DELR, each attribute xi is

first transformed into φi(x) through numerical feature mapping layer. Final prediction is

determined by the sign the following equation,

w1φ1(x) + w2φ2(x) + b (3.6)

where b is the bias term. For this toy dataset, we find b = 0 after training. To discover

the contribution of each input feature to the final prediction, we plot the value of w1φ1(x)
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Figure 3.2: Probability output of DELR on a toy example. The green dot represent an
instance with the input value of {1.2, 0.8}. The red arrows are extracted actions to flip the
label of greed dot.

and w2φ2(x) with the change of x1 and x2 in Fig. 3.3. These two figures clearly illustrate

the correlation between the feature value and its corresponding contribution, which is not

monotonic as in LR. We call them coordinate plots in the rest of this chapter.

Now suppose we are given a data point (x1, x2) = (1.2, 0.8), which is plotted as a green dot

in Fig. 3.2. The model predicts it as negative. We can get the contributions of the two

dimensions from Fig. 3.3, which are −0.21 and −8.4. At this point, both features are making

negative contributions to the final prediction. Note that such accountability is not offered

in neural networks. This is because features are intricately interwoven in the hidden layers

of neural networks, making it hard to account for each feature’s contribution to the final

outcome.
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Figure 3.3: The contribution of each input attribute for the final prediction. Left: The
correlation between x1 and the first component of Equation 3.6. Right: The correlation
between x2 and the second component of Equation 3.6.

Actionability. Actionability is a much desired property in areas such as clinical prediction

and market analysis. Classifiers need to not only identify critical features that lead to the

prediction, but also make recommendations on how to change these features in order to clear

the threats or achieve goals.

A practical constraint we should consider is that we can only change a limited number of

input features. For example, in clinical predictions, it may be impractical to change all

features of a patient simultaneously. Instead, we aim to make small changes to one or a few

features, such as temperature, blood pressure or pulse, which are enough to revert the label.

In LR, each feature is independent, and has a constant slope in its contribution curve due to

LR’s linearity. Thus, we can make small changes on a few features with the largest absolute

weights (slopes). In DELR, we can also look at the slope of each feature in the contribution

curves as in Fig. 3.3. However, the slope is no longer a constant everywhere. Thus, we

propose an iterative algorithm which selects features to change one by one. For an instance

x that we want to revert its label, our iterative action extraction algorithm first selects

the feature d with the maximum slope
∣∣dφd(x)

dxd

∣∣ and updates it by a small step. Then, the
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algorithm again selects the feature with the largest slope, but at the updated point. The

process is iterated until reaching a budget. The selected features are returned for making

changes.

The slope can be calculated through backpropagation from the second to last layer, or using

the finite element method, both of which are computationally efficient. We use the same cost

for changing each feature by a unit. The cost can also be non-uniform as we can use step

sizes inversely proportional to the costs.

Let’s again use the green dot in Fig. 3.2 for demonstration. Now that we know the label of

this instance is negative, we want to make some changes on the input features to revert its

label. Suppose we have a budget B = 2 and step size 0.25. At first, the slope of x1 is larger,

as seen from Fig. 3.3. Thus, the point moves left for 0.25. At the next point, the slope of x2

becomes larger than that of x1. Thus, the point moves down for 0.25 and reaches the positive

region. In comparison, if we stick to one feature and do not iteratively update the slope

calculation, it will cost more to reach the positive region either moving down or moving left.

3.6 Experiments

We conduct extensive experiments to evaluate DELR on several benchmark datasets. We first

test the performance of DELR on UCI datasets4, which contain both numerical feature datasets

and mixed-type feature datasets. Then we exhibit the convenience and interpretability on

classifying a large-scale dataset with a huge amount of categories. All tested datasets are

publicly available. For each dataset, we run 5 fold cross validation and report the average

performance and standard derivation. We further hold out 1/3 from the training set as the

validation set. All algorithms are trained on the training set, choosing hyper-parameters
4https://archive.ics.uci.edu/ml/datasets.html
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Table 3.1: Performance of various methods on various UCI datasets. Note that LR, DT,
DLR and DELR have accountability. LR, DT, DLR, GBDT and DELR have actionability.
"N/A" indicates memory overflow.

Dataset breast_cancer splice musk mushroom mnist38 nursery adult census-income
N 683 1,000 6,598 8,124 11,982 12,960 30,162 299,285
P 9 60 166 22 784 8 14 41
Data-type Numerical Categorical Numerical Mixed Numerical Categorical Mixed Mixed
LR 89.70±5.33 81.50±3.05 95.13±0.61 100±0.00 96.87±0.36 91.93±0.85 84.01±0.20 94.97±0.07
DT 90.70±1.27 87.80±1.94 96.49±0.66 100±0.00 96.10±0.26 98.61±0.14 79.56±0.41 93.06±0.07
DLR 96.42±1.61 92.40±2.68 95.20±0.74 100±0.00 N/A N/A N/A N/A
GBDS 92.99±1.89 92.20±1.36 95.60±0.41 99.95±0.41 96.12±0.24 92.32±0.39 84.20±0.34 95.00±0.03
DELR 97.57±1.16 93.00±0.55 97.57±1.16 100.00±0.00 96.05±0.38 92.83±0.38 84.57±0.28 95.43±0.14
SVM-rbf 93.27±1.95 91.80±1.72 95.08±5.99 100±0.00 97.83±1.23 98.01±0.33 83.12±0.46 94.26±0.14
RF 94.27±1.62 94.50±2.11 97.39±0.25 100±0.00 98.73±0.25 99.06±0.21 83.82±0.21 95.25±0.09

based on the validation set and evaluated on the test set in each fold. Hyper-parameters are

selected for all algorithms with Bayesian optimization [127] implemented in the spearmint5

package.

3.6.1 Evaluation on UCI datasets

We evaluate the performance of DELR on several UCI benchmark datasets as shown in Table

3.1. We show the dataset statistics on the left part of the table and the test accuracy on the

right part. Here, N, P and Data-Type represents the number of instances, the number of

features and data type in each datasets, respectively. We try to include datasets of different

scales, covering small sized dataset such as "breast-cancer" to large scale datasets such

as "census-income". Among all these datasets, "adult", "mushroom" and "census-income"

contain both categorical feature and numerical features. "splice" and "nursery" only contain

categorical features while the rest datasets only have numerical features.

From Table 3.1, we can make the following observations. First, LR, the linear classifier

performs the worst for the most of the time. Second, DELR performs the best among all

classifiers on six out of eight datasets, demonstrating its superior nonlinear separability. For
5https://github.com/JasperSnoek/spearmint
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Table 3.2: Summary of the triptype dataset

Feature Name #Categories
VisitNumer 95,674
Weekday 7
UPC 97,715
ScanCount 39
adultDepartment Description 69
Fineline Number 5,196

Table 3.3: Test accuracy on the triptype dataset

Dataset SFT DT DELR
Triptype 71.41% 61.86% 72.59%

dataset nursery, DT outperform the rest interpretable models by a large margin, indicating

the highly complex distribution of this dataset. Rule based algorithms handle extreme cases

better in this case. DLR come across memory overflow on four largest datasets and DELR

outperform DLR on all datasets, demonstrating the superior of deep feature embedding

compared with kernel density estimator. In addition, DELR is time efficient. The running

time on the smallest dataset is less than one minute and it takes about 3 hours to train the

largest dataset. As we are using stochastic gradient descent, training time is proportional to

the number of instances.

We further perform action extraction on adult datasets, determining whether a person makes

over 50K a year. Given a negative instance, the algorithm suggests the person to switch his

work class to Self-emp-inc or achieve doctoral education level. Further, if we set the cost

of changing categorical features to a large number, then the algorithm suggests increasing

working hour, which is quite reasonable.
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3.6.2 Evaluation on the Walmart dataset

We evaluate DELR on triptype6, a large real-world market analysis related dataset with

many categories to demonstrate the distinctive advantages. This dataset is a transactional

dataset of items purchased at Walmart. The goal of the task is to predict the type of

each customer trip, which would help Warlmart’s decision making in business and improve

customers’ shopping experiences. There are 38 trip types in total including a small daily

dinner trip, a weekly large grocery trip, and so on. This dataset contains 647,054 instances,

each of which contains 6 categorical features7 .

The difficulty of mining this dataset lies in the huge amount of categories as shown in Table

3.2. There are in total 198,700 distinct categories, leading to a 198,700-dimensional feature

vector if one-hot encoding is used. Few classifiers can handle this dataset directly.

We only show the results of softmax regression (SFT), DT and DELR as RF, SVM-rbf and

DLR cannot achieve any meaningful results within one day on this dataset even with state-

of-the-art packages. For DELR, we adopt the same architecture as the previous experiment.

We intentionally use the raw feature without any feature engineering. We show the test

performance of each method on Table 3.3. We can see that DELR again outperforms all the

other classifiers.

Another advantage of DELR is that it can learn meaningful feature embedding and quantify

categorical features. We interpret the category correlation through visualizing the output of

the nonlinear feature embedding block. We set the embedding dimensionality to 2 and train

DELR from scratch till it converges. Next, we plot the categories using their embeddings as
6https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
7Note that only the training set is available online, we randomly select 70% as the training set and the

rest as the test set.
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1. Furniture
2. Home Management
3. Bedding
4. Bath and shower
5. Cook and dine
6. Celebration
7. Fabrics
8. Paint
9. Household goods

1. Dairy
2. Meat
3. Seafood
4. Service Deli
5. Liquor, wine
6. Comm bread
7. Pre packed Deli
8. Frozen food

1. Swimwear
2. shapewear
3. Accessories
4. Boys’ wear
5. Ladies’ wear
6. Sleepwear
7. Girls’ wear
8. Men’s wear
9. Ladies’ socks
10. Maternity

Figure 3.4: The embedding for the "Department Description" feature. Each point in this
figure represents a unique category. We show three representative clusters.

coordinates. As "Department Description" is the only feature whose semantic meaning of

each category is released, we only present the visualization of this feature, which contains

69 categories as shown by blue circles in Figure 3.4. Due to space limit, we are not allowed

to show all the category names in the figure. We can observe that similar categories are

located closely while dissimilar categories are far away from each other. We can find many

surprisingly meaningful clusters. In Fig. 3.4, the red cycle covers clothes related features,

such as "ladies’ wear", "mens’ wear", etc. There are also some clusters relating to food, home

decoration, horticulture, and so on. These results indicate that DELR learns meaningful

embeddings, which helps knowledge extraction and further augments interpretability.
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Table 3.4: Experimental results on 30-day mortality prediction. DELR outperform all the
baseline methods.

Method AUROC AUPRC Specificity Sensitivity
DT 0.6513 0.0598 0.95 0.3398
LR 0.8455 0.0749 0.95 0.4175
GBDS 0.8658 0.0911 0.95 0.4439
SVM 0.8609 0.0823 0.95 0.4417
RF 0.8536 0.0750 0.95 0.4175
DELR 0.8725 0.0981 0.95 0.4515

3.7 Evaluation on real world clinical dataset

In this section, we apply DELR onto a real-world clinical dataset, performing 30-day postop-

erative mortality prediction. This work is done in partnership with Barnes-Jewish Hospital

(BJH), one of the largest hospitals in the United States. Our data includes all preoperative,

intraoperative and postoperative data combined with other inpatient and outpatient EMR

data. More than 110,000 surgeries’ data is collected between 2012 and 2016, each of which

contains 44 preoperative EMR features and 49 vital signs. Thirty-day postoperative mortality

is used as the output label. After data screening, we randomly split the dataset into training

set (70,000 patients), validation set (10,000 patients), and testing set (19,791 patients), at

the ratio of roughly 7:1:2.

Preoperative data are static data collected from patients before the operations. 15 numerical

features and 32 categorical features are includes in the Pre-op data. Intraoperative data are

in the form of multi-variate time series of patients’ vital signs and general signals monitored

throughout patients’ operations, in which, 10 vital signs are selected. We calculate its mean

and standard deviation.

Our target outcome is 30-day mortality, which has a positive-negative ratio of approximately

1:100. We have tried two different methods to deal with this imbalance. The first method is
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Figure 3.5: Receiver Operating Characteristic (ROC) of the model performance on the test
set.
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Figure 3.6: Precision-Recall curve of the model performance on test set.

to use class weights inversely proportional to their proportion to multiply the loss of positive

training examples 100 times larger than that of negative training examples. The second

method is to upsample positive training examples by 100 times each. We tested all baseline

methods and DELR and all of them perform better using the second upsampling method.

All the following experiments use upsampling method.

We evaluate all the forecasting models using well-accepted criteria including: Area Under the

curve of Receiver Operating Characteristic (AUROC), sensitivity and specificity.
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Figure 3.7: We select four features that is not in linear relationship between the input value
and 30-day mortality rate.

Figure 3.8: We select four features that remains linear after feature embedding. This indicates
that DELR regularizes very well, not memorizing the input data through learning complex
decision rules.

In addition, as our data is extremely imbalanced, Receiver Operating Characteristic (ROC)

can be sometimes deceptive on evaluating the model performance [14, 40]. Therefore, we also

show the Precision-Recall curve of each model and adopt Area Under Precision-Recall Curve

(AUPRC), which measures the average precision as an additional evaluation criterion. All the

models are tuned based on the AUPRC performance on the validation set and then report

the model performances evaluated on the testing set.

Another key metric we evaluate and compare is the sensitivity at 95% specificity since it is

important to maintain a high specificity (i.e., low false alarm rate) for meaningful clinical

decision support.
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3.7.1 Baseline Methods

We compare DELR with the most widely used classifiers, decision tree (DT), logistic regression

(LR), support vector machine (SVM) and random forest (RF) and gradient boosted stumps

(GDBS). Categorical features are represented as one-hot encoding vectors for baseline methods.

3.7.2 Experimental Results

Table 3.4 shows the model performances. We observe that DELR consistently outperforms

both interpretable models and non-interpretable models in terms of AUROC and AUPRC.

The reason DELR can beat SVM and RF is that this clinical dataset is very easy to overfit.

Our model regularizes very well in this scenario. We will discuss more about it in the next

paragraph. Sensitivity at 95% specificity level is included in the performance chart as well.

Even under this high specificity, DELR achieves 0.4515 sensitivity, which is much higher

than rest models. We also plot out all the ROC curves in Figure 3.5. DELR achieves the

highest AUROC of 0.8725. As our dataset is extremely imbalance, the Precision-Recall curve

shown in Figure 3.6 contains more meaningful information. The positive-negative ratio is

approximately 1:100, indicating that random guess can get only 0.01 AUPRC. DELR achieves

an AUPRC of 0.0981, which is nearly ten times better than random guess and more than

30% gain compared with the LR model.

Next, we check the interpretability of DELR on this clinical dataset. As we’ve talked in the

discussions section, coordinate plot of each feature can be drawn to visualize its relationship

with 30-day mortality. We plot out eight features, shown in Fig. 3.7 and Fig. 3.8. The x-axis

is the feature value and y-axis is the feature contribution to the final prediction. Positive

value enhance the probability of 30-day mortality. Among these eight plots, the first four

plots in Fig. 3.7 show nonlinear relationship between the input feature and final contribution
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to the prediction. Classifiers such as logistic regression cannot handle this situation. In

addition, the nonlinear transformations are also in line with our expectation. We also discover

some features remain linear after transformation as shown in Fig. 3.8. Take SpO2 as an

example, the higher the value of SpO2, the less likely the patient will die within 30 days.

We’ve checked SVM-rbf and RF, no such linear relationship is found. Without mapping all

features to complex nonlinear representation, DELR can generalize better. We will further

analyze DELR on this clinical dataset with domain experts in the future based on coordinate

plots and extract reliable suggestions from this model.

3.8 Conclusions

Complex models such as DNNs have strong learning ability and high accuracy. However,

in many tasks such as marketing and clinical prediction, LR is still a preferred choice as it

provides good interpretability and scales well. In this chapter, we propose a novel DELR

model, inheriting those nice properties of LR while overcoming its drawbacks of linearity and

inability to handle categorical features. DELR incorporates dimension-wise nonlinear feature

embedding using deep neural networks and feeds the embeddings into LR for classification.

Extensive analysis and experimental results demonstrate that DELR is a compact yet powerful

model, achieving both high accuracy and excellent interpretability.
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Chapter 4

Factored Generalized Additive Model

4.1 Motivation and Introduction

Patients undergoing surgery and anesthesia experience external stresses that place them at

risk for numerous complications, including acute kidney injury and acute respiratory failure.

One of the roles of the anesthesia clinician is to regulate the patient’s physiology to minimize

these risks. Logistic regression-based models for predicting postoperative acute kidney injury

[29, 74, 105] and acute respiratory failure[6, 59, 69] have been developed by multiple groups.

Linear models offer a high degree of transparency regarding which features drive the output,

but they are inherently limited in their flexibility, which limits their predictive accuracy.

Various machine learning (ML) models have been proposed to solve these clinical prediction

tasks with greater accuracy. Classifiers for acute kidney injury have been described in

postoperative [136] and non-surgical hospitalized patients[72, 81]. Although these ML models

outperform logistic regression, they are not frequently used in clinical practice in part due to

their lack of interpretability.
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An interpretable model must provide predictions that are both accountable and actionable.

An accountable model provides information about which features are contributing to the

output prediction. This information can include feature importance and feature interactions.

An actionable model provides guidance regarding how to modify the input features so that

the post-intervention features will lead to the desired output.

Interpreting ML models is an extremely active field [17, 58, 124]. Incorporating interpretability

constraints directly into the structure of the model and using post-hoc interpretation methods

are two of the main directions[101]. Most existing work focuses on accountability. Che et

al [22] transfer the DNN’s knowledge to gradient boosting trees (GBT) using knowledge

distillation and interpret feature importance through measures of variable importance designed

for GBT. Another work [109] visualizes the region of interest through class activation maps.

Ge et al.[54] feed features extracted from recurrent neural networks into a logistic regression

model for prediction, where importance of the transformed features can be directly read off.

Neural networks with attention-like mechanisms are also popular to visualize the features

which contribute the most to a classifier for a particular case [124]. A smaller number of

techniques address the actionability requirement. An early work [35] proposed an integer

linear programming method to extract actionable knowledge from a random forest. Gardner

et al. proposed a label changing method by searching semantically meaningful changes to

an image under its manifold space[52]. As far as we know, little work has been done on

addressing accountability and actionability at the same time in the clinical area.

An extension to generalized linear models, generalized additive models (GAMs), can address

accountability and actionability simultaneously. Examples includes LR, density based logistic

regression [25] (DLR), generalized additive neural networks [108] (GANN), and deep embed-

ding logistic regression [37] (DELR). LR assumes a fixed (up to a parameter) monotonic

relationship between each feature and the outcome probability, limiting its flexibility and
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predictive performance. GAMs loosen these assumptions by inferring a transformation of the

inputs with the full flexibility of non-parametric or parametric methods. For example, DLR

transforms each feature through a kernel estimator, and our DELR performs feature-wise

nonlinear transformation using neural networks. GANN, which used a single hidden layer, can

be treated as a special case of DELR, which used multi-layer DNNs. Despite the increased

flexibility, with suitable constraints we can extract accountability and actionability from

GAMs. Given an input example, GAMs allow us to calculate the contribution of each

feature to that example’s predicted value. Feature contribution curves can be drawn to

provide actionable directions on the optimal change and magnitude of improvement for each

numeric feature. However, only when all the features are conditionally independent (given

the label) can GAMs model the true distribution of data[85]. Feature interactions are not

allowed in GAMs, restricting their performance in dealing with complex datasets. In addition,

GAMs have the undesirable property of treating static and time-varying features equally.

For example, demographic characteristics such as age, gender, and height are not possible

to change. On the other hand, it is possible to deliver interventions that modify a patient’s

vital signs during surgery.

To address these problems, we propose a variation of GAMs that splits features into time-

varying (or targeted) features and static features. F-GAM fits a context-based scaling for

each time-varying factor based on the static factors, substantially increasing its flexibility

compared to models which require the effect of a feature to be the same for all examples,

but retains the ability to derive personalized feature-effect curves [36]. F-GAM retains the

full flexibility of a DNN for the effect of static features and DNN-based flexibility for the

transformation of time-varying factors. We implement F-GAM as an end-to-end trained

model with minimal hyper-parameters. In extreme cases where there are no static features

available, F-GAM reduces to DELR. If there are no time-varying features, F-GAM becomes a
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DNN. We empirically validate the accuracy performance of F-GAM with existing ML models,

including other GAMs and demonstrate the interpretability of F-GAM through a case study

on predicting acute kidney injury.

4.2 Background and Notation

4.2.1 Notation

Operating room data contains both preoperative data such as demographic information

and intraoperative data such as vital signs and medications administered. Given a patient

i, pre-op data xSi ∈ RD1 collected before the surgery are treated as static feature vectors

while intra-op data represented as xTVi ∈ RD2 can be modified in real time. Together,

we use xi = [xSi ,x
TV
i ] ∈ RD to denote input features and yi ∈ {0, 1} to represent the

binary outcomes. Our examples are binary classification, but the extension to multi-class

classification is straightforward with a final softmax transformation and appropriate loss

function.

4.2.2 Generalized Additive Models

A generalized additive model (GAM) is an ensemble of D univariate functions, where D is

the number of features. We use xj and y to denote the jth dimension of input x and class

label, respectively. The output of each univariate function, denoted as ft(xj) is a real number.

We can write the GAM structure as

g(E(y)) = β0 + f1(x1) + f2(x2) + · · ·+ fD(xD), (4.1)
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where the function g is the link function, bounding the range of right hand side value of

Eq.4.1, and E(y) is the expected value of the label conditional on x. Constraints on fk such as

smoothness or degrees of freedom regularize the estimation problem to decrease out-of-sample

loss. With a little abuse of notations, we use F (x) to denote E(y|x) throughout this chapter

for ease of presentation. By inversing the link function, the GAM has the form,

F (x) = g−1[β0 + f1(x1) + f2(x2) + · · ·+ fD(xD)], (4.2)

where the model output is controlled by the sum of each univariate function. GAM assumes

all the features of input xi are making contributions independently. Interpreting a GAM

is straightforward as the marginal impact of a specific feature does not rely on the rest of

features; we are able to know the importance of a feature by plotting its corresponding

univariate function or calculating its variance over the sample. Actionable changes can be

made based the shape of each fk(xk).

Logistic regression is a special case of GAM by choosing logit function g(x) = ln x
1−x as the

link function and setting fk(xk) to be wkxk yielding

F (x) = σ(w0 + w1x1 + w2x2 + · · ·+ wDxD), (4.3)

where the sigmoid function σ(x) = 1
1+exp(−x) is the inverse form of the logit function. LR

assumes a monotonic relationship between the final output F (x) and input features due

to the linear function fk. However, this condition doesn’t hold in many cases, such as the

relationship between ICU transfer rate and age[25].
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Figure 4.1: Overall architecture of F-GAM. Each circle denotes a scalar. Upper left part
is feature mapping module. Every time-varying feature is fed to its own deep and narrow
neural network (DNNN) separately. Weight learning module, which is shown in upper right
part takes static features as input and calculates feature weights. Note that bias learning
module is not plotted in this figure for simplicity.

4.3 Methods - Model Algorithm

In this section, we propose a factored generalized additive model (F-GAM) framework in

which interactions between time-varying features and static features are allowed. The overall

model has the form

F (x) = σ

[
D2∑
t=1

wt(x
S)ft(x

TV
t ) + w0(x

S)

]
(4.4)

In F-GAM, wt is no longer a constant weight parameter, but the output of a DNN that

accepts the static feature vector as input and estimates the weight of tth time-varying feature

for each case. The feature-wise nonlinear transformation functions ft, t = 1, 2, ...D2 are

jointly estimated. w0 is a bias / intercept term that also depends only on the static features.

In our operative examples, w0 represents the estimate of risk before any intra-operative data

becomes available as long as the input features have been appropriately centered.
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F-GAM can be decomposed into four different modules: time-varying feature mapping module,

feature weights learning module, bias term learning module and logistic/softmax regression

module. We display the F-GAM architecture in Figure 4.1.

4.3.1 Time-varying feature mapping module

In traditional GAMs, the ability of the univariate function fk to approximate the unknown

transformation plays a crucial role in model performance. We choose to use deep and nar-

row neural networks (DNNN)[37] for the nonlinear feature embedding. Being a universal

approximator, a DNNN is able learn complex patterns automatically. The general tools for

regularizing neural networks are immediately available to control overfitting without the

difficult-to-understand smoothness or degree-of-freedom constraints of other GAM transfor-

mations. Each time-varying feature is fed into a DNNN with distinct parameters; however,

several hyperparameters (depth, width, dropout, training stopping time) are shared across

t to avoid having to search over a large hyperparameter space. The shared architectural

parameters also tend to prevent over-fitting of just a few features (data not shown). A

learnable look-up table (categorical embedding) is attached before a DNNN for categorical

features. In our examples, all time-varying features are quantitative or ordinal rather than

categorical.

4.3.2 Feature weights learning module

Rather than applying fixed weights for the input features, we use nonlinear functions wt to

adjust the feature weight dynamically. The nonlinear function should have the following

two properties. First, the nonlinear function should not increase the number of parameters

dramatically. Second, the nonlinear function should be able to handle both numerical features

and categorical ones. Thus, we choose to use deep neural networks as the nonlinear functions.
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Rather than assigning each wt a standalone DNN as we did for ft, all the weight-learning

functions are estimated with a common DNN except the last layer. With this multi-task

setup, we are able to exploit the shared structure of the data to reduce the effective number

of parameters. Joint predictions of wt also allow the module to dynamically choose between

potentially correlated xMt to emphasize, meaning that wt represents both the relevance and

precision of ft in the given context. For the second property, we use categorical embedding.

When there are no static features, wt is a constant per time-varying feature and F-GAM

reduces to DELR. That is to say, DELR is a special case of our model.

4.3.3 Bias term learning module

In order to increase expressiveness of the final model, we add a bias term based on the static

features. Again, we use a DNN to model the bias term. This DNN is appended to the

penultimate layer of the feature weights module to reduce redundancy. When there are no

time-varying features, only the bias term controls the final output. In this case, F-GAM

simplifies to a deep neural network.

4.3.4 Logistic/softmax regression module

With all the transformed features and weights ready, we apply the dot product operation to

the time-varying feature mapping and the learned weights. After adding the bias term w0, a

sigmoid function σ is used to model the positive rate given input data.

Our F-GAM is trained end-to-end by minimizing the cross entropy loss between true label dis-

tribution and prediction distribution. We also apply weight decay and an early stopping strat-

egy to avoid over-fitting. The code is available at https://github.com/nostringattached/FGAM.
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4.4 Methods - Experiments

4.4.1 Data Sources

Models were trained and validated using a dataset obtained from a single academic medical

center (Barnes Jewish Hospital, St. Louis, Missouri). All adult patients who received surgery

with anesthesia between June 2012 and August 2016 were eligible for inclusion. Due to the

limited incidence of acute respiratory failure among patients who were not admitted to the

intensive care unit (ICU) after surgery, prediction of this complication was limited to patients

admitted to the ICU after surgery.

Acute kidney injury and acute respiratory failure were the two complications that were used

as targets in the experimental models. Per Kidney Disease: Improving Global Outcomes

(KDIGO) criteria, acute kidney injury was defined as an increase in the serum creatinine

value by >0.3 mg/dL or >50% within 48 hours, compared to the preoperative value[73].

Acute kidney injury was undefined if the patient was receiving dialysis before surgery. The

preoperative creatinine was the most recent value available before surgery, but no more

than 30 days before surgery. Acute respiratory failure was defined as mechanical ventilation

for >48 hours after surgery or reintubation within 48 hours. Acute respiratory failure was

undefined if the patient was receiving mechanical ventilation before surgery, if the patient

had a second surgery within 48 hours, or if the patient died within 48 hours.

Baseline demographic characteristics, comorbid health conditions, and preoperative labora-

tory values were retrieved from the electronic medical record. The total doses of commonly

used medications (including intravenous fluids, blood pressure-raising and -lowering agents,

sedatives, pain medications, and nephrotoxic antibiotics) were also retrieved. The full list of
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features included in the analysis is shown in Table 4.1.

Table 4.1: Features included in the model.

Demographic
Characteristics

Age, Height, Weight, Ideal body weight, Body mass index, Sex,
Race, CharlsonComorbidity Index, Functional capacity,
American Society of Anesthesiologistsphysical status,
Surgery type

Comorbid
Conditions

Hypertension, Coronary artery disease,
Prior myocardial infarction, Congestive heart failure,
Diastolic function, Left ventricular ejection fraction, Aorticstenosis,
Atrial fibrillation, Pacemaker, Prior stroke, Peripheral artery disease,
Deepvenous thrombosis, Pulmonary embolism, Diabetes mellitus,
Outpatient insulin use,Chronic kidney disease, Ongoing dialysis,
Pulmonary hypertension, Chronic obstructivepulmonary disease,
Asthma, Obstructive sleep apnea, Cirrhosis, Cancer,
Gastro-esophageal reflux, Anemia, Coombs positive, Dementia,
Ever-smoker

Preop Vital Signs Systolic blood pressure, Diastolic blood pressure,
Pulse oximeter, Heart rate

Preop Labs
Albumin, Alanine phosphatase, Creatinine, Glucose, Hematocrit,
Partialthromboplastin time, Potassium, Sodium, Urea Nitrogen,
White blood cells

Intraoperative
Time Series

Mean arterial pressure, Systolic blood pressure,
Diastolic blood pressure, Heart rate,Pulse oximeter, Temperature,
Respiratory rate, Tidal volume, Peak inspiratory pressure,
Positive end-expiratory pressure, Fraction inspired oxygen,
End-tidal carbon dioxide,End-tidal anesthetic concentration

Intraoperative
Meds and Fluids

Albumin, Amiodarone,
Crystalloid (lactated ringers + normal saline), Dobutamine,
Ephedrine, Epinephrine, Fentanyl, Furosemide, Gentamicin,
Hydromorphone, Midazolam, Nicardipine, Norepinephrine,
Packed red blood cells,Phenylephrine, Propofol, Remifentanil,
Vancomcyin, Vasopressin, Other blood products

For intraoperative time series features, summary measures were derived. For each feature, the

mean, standard deviation, maximum, and minimum over the entire surgery were calculated.
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The maximum pulse oximeter reading was omitted due to ceiling effects, while minimum

peak inspiratory pressure and minimum tidal volume were omitted due to expected lack

of clinical significance. In addition, the fraction of surgery with extreme values of certain

parameters were also calculated, using multiple cutoff values. These included duration of low

mean arterial pressure (<55, <60, or <65 mmHg), high heart rate (>100, >110, or >120

beats per min), low heart rate (<60, <55, or <50 beats per min), low temperature (<36 or

<35.5 °C), low pulse oximeter (<90 or <85%), high exhaled carbon dioxide (>50 mmHg), low

exhaled carbon dioxide (<30 mmHg), high peak inspiratory pressure (>30 mmHg), and high

tidal volume (>10 mL per kg). Lung compliance was also calculated as final tidal volume

divided by final peak inspiratory pressure.

4.4.2 Experimental Technique

For each of the two target outcomes, F-GAM was compared to four baseline models (decision

tree [DT], random forest [RF], support vector machine [SVM], and deep neural network

[DNN]) and to three GAMs (logistic regression [LR], gradient boosting decision stumps

[62][GBDS] and deep embedding logistic regression [DELR]). Note that density based logistic

regression (DLR) was not included as it did not finish training in 24 hours. Each model was

trained using a 70% random sample of the dataset. 10% of the dataset was selected as a

validation set for hyper-parameter tuning and performance was tested on the remaining 20%

of the dataset. Model performance was quantified using area under the receiver operating

characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). We

calculate two-sided 95% confidence intervals for each measure using the statistical analysis

method given by Hanley and McNeil [61].
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4.5 Results

Table 4.2: AUROC score, AUPRC score and their corresponding 95% confidence interval
(CI) of different methods. DT = decision tree. RF = random forest. SVM = support vector
machine, DNN = deep neural network. LR = logistic regression, GBDS = gradient boosting
decision stumps, DELR = deep embedding logistic regression, F-GAM = factored generalized
additive model.

Model
Acute Kidney Injury Acute Respiratory Failure

AUROC
95% CI

AUPRC
95% CI

AUROC
95% CI

AUPRC
95% CI

Baselines

DT 0.580
[0.563, 0.597]

0.137
[0.130, 0.145]

0.535
[0.474, 0.595]

0.043
[0.033, 0.053]

RF 0.820
[0.806, 0.835]

0.253
[0.243, 0.266]

0.718
[0.658, 0.777]

0.085
[0.068, 0.102]

SVM 0.794
[0.779, 0.809]

0.215
[0.205, 0.226]

0.698
[0.638, 0.758]

0.094
[0.076, 0.113]

DNN 0.787
[0.772, 0.802]

0.216
[0.206, 0.227]

0.698
[0.638, 0,758]

0.084
[0.072, 0.109]

GAMs

LR 0.794
[0.783, 0.813]

0.221
[0.212, 0.233]

0.650
[0.052, 0.712]

0.073
[0.058, 0.088]

GBDS 0.803
[0.788, 0.818]

0.253
[0.242, 0.265]

0.713
[0.654, 0.773]

0.084
[0.070, 0.105]

DELR 0.800
[0.786, 0.815]

0.235
[0.225, 0.247]

0.708
[0.648, 0.768]

0.083
[0.066, 0.099]

Our Method F-GAM 0.824
[0.813, 0.842]

0.264
[0.258, 0.282]

0.718
[0.659, 0.777]

0.106
[0.091, 0.134]

The dataset included 111,890 patients. Of these patients, 5,018 were excluded from the

acute kidney injury model because they were receiving dialysis before surgery or because no

postoperative creatinine value was available. Of the remaining 106,872 patients, 6,472 (6.1%)

experienced acute kidney injury. Of the original 111,890 patients, 89,688 were excluded from

the acute respiratory failure model because they were not admitted to the intensive care unit,

while 6,578 were excluded due to preoperative mechanical ventilation or one of the other
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exclusion criteria. Of the remaining 15,624 patients, 489 (3.1%) experienced acute respiratory

failure.

Performance of the models is shown in Table 4.2, while the receiver-operating characteristic

and precision-recall curves are shown in Figure 4.2. For both outcomes, F-GAM provided

the highest AUROC and the highest AUPRC. DT and RF are excluded from Figure 4.2 for

readability purposes.
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Figure 4.2: ROC curve and precision recall curve (PRC) of different models predicting acute
kidney injury and acute respiratory failure. LR = logistic regression, SVM = support vector
machine, GBDS = gradient boosting decision stumps, DNN = deep neural network, DELR
= deep embedding logistic regression, F-GAM = factored generalized additive model.
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Figure 3 demonstrates how the contribution wt(xS)ft(x
TV
t ) to the predicted risk of acute

kidney injury changes at different values xTVt of four representative time-varying features

in two randomly selected patients. Each panel assumes that all other time-varying features

remain constant. Points that are higher on the vertical axis represent a larger contribution

to the predicted probability.

Figure 4.3: Contribution of each feature to the predicted probability of acute kidney injury
as a function of feature value. Each panel assumes that all other dynamic features are held
constant. The blue curve shows the feature contributions in a 57-year-old healthy female
(who ultimately did not have AKI), while the orange curve shows the feature contributions
in a 49-year-old female with hypertension, chronic kidney disease, and cirrhosis of the liver
(who did have AKI).
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4.6 Conclusion

In this chapter, we have described a novel Factored Generalized Additive Model (F-GAM) and

demonstrated its use in predicting postoperative acute kidney injury and acute respiratory

failure in a historical cohort of patients receiving surgery with anesthesia. F-GAM allows for

interactions between static and time-varying input features while retaining the qualities of

accountability and actionability. Our model outperformed baseline models and other GAMs

in predicting both of the complications tested, and the graphical displays of risk indicated

associations that have face validity to an anesthesia clinician. Next steps include application

of this technique to other outcomes and prospective deployment of these models for prediction

of complications.
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Chapter 5

Multi-Scale Convolutional Neural

Networks for Time Series Classification

5.1 Introduction

Our daily lives constantly produce time series data, such as stock prices, weather readings,

biological observations, health monitoring data, etc. In the era of big data, there are increasing

needs to extract knowledge from time series data, among which a main task is time series

classification (TSC), the problem of predicting class labels for time series. It has been a

long standing problem with a large scope of real-world applications. For example, there

has been active research on clinical prediction, the task of predicting whether a patient

might be in danger of certain deterioration based on the patient’s clinical time series such

as ECG signals. A real-time deterioration warning system powered by TSC has achieved

unprecedented performance compared with traditional clinical approaches and been applied

in major hospitals [96].
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Most existing TSC approaches fall into two categories [140]: distance-based methods and

feature-based methods.

For distance-based methods, the key part is to measure the similarity between any given two

time series. Based on the similarity metrics, the classification can be done using algorithms

such as k-nearest neighbors (kNN) or support vector machines (SVM) with similarity-based

kernels. The most notable similarity measurement is dynamic time warping (DTW) which

aligns two time series with dynamic warping to get the best fit. It could be easily done

through dynamic programming.

For feature-based methods, each time series is characterized with a feature vector and any

feature-based classifier (e.g. SVM or logistic regression) can be applied to generate the

classification results. There have been many hand-crafted feature extraction schemes across

different applications. For example, in a clinical prediction application, each time series

is divided into several consecutive windows and features are extracted from each window.

The final feature vector is a concatenation of feature vectors from all windows [96]. The

features include simple statistics such as mean and variance, as well as complex features from

detrended fluctuation analysis and spectral analysis. Another approach extracts features

based on shapelets which can be regarded as a signature subsequence of the time series.

Typically, potential candidate shapelets are generated in advance and they can be used in

different ways. For example, they can be considered as a dictionary and each shapelet is

regarded as a word. The time series is then described by a bag-of-word model. A more recent

study [89] constructs the feature vector such that the value of each feature is the minimum

distance between anywhere in the time series and the corresponding shapelet. A drawback

of the shapelet method is that it requires extensive search for the discriminative shapelets

from a large space. To bypass the need of trying out lots of shapelet candidates, Grabocka et
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al. [56] propose to jointly learn a number of shapelets of the same size along with the classifier.

However, their method only offers linear separation ability.

In recent years, convolutional neural networks (CNNs) have led to impressive results in object

recognition [82], face verification [121], and audio classification [84].

A key reason for the success of CNNs is its ability to automatically learn complex feature

representations using its convolutional layers. With the great recent success of deep learning

and the presence of so many various handcrafted features in TSC, it is natural to ask a

question: is it possible to automatically learn the feature representation from time series?

However, there have not been many research efforts in the area of time series to embrace deep

learning approaches. In this work, we advocate a novel neural network architecture, Multi-

Scale Convolutional Neural Network (MCNN), a convolutional neural network specifically

designed for classifying time series [34].

A distinctive feature of MCNN is that its first layer contains multiple branches that perform

various transformations of the time series, including those in the frequency and time domains,

extracting features of different types and time scales. Subsequently, convolutional layers apply

dot products between the transformed waves and 1-D learnable filters, which is a general way

to automatically recognize various types of features from the input. As a single convolutional

layer can detect local patterns similar to shapelets, stacking multiple convolutional layers

can construct more complex patterns. As a result, MCNN is a powerful general-purpose

framework for TSC. Different than traditional TSC methods, MCNN is an end-to-end model

without requiring any handcrafted features. We conduct comprehensive experiments and

compare with many existing TSC models. Strong empirical results show that MCNN elevates

the state-of-the-art of TSC. It gives superior overall performance, surpassing most existing

models by a large margin, especially when enough training data is present.
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5.2 Related Work

TSC has been studied for long time. A plethora of time series classification algorithms

have been proposed. Most traditional TSC methods fall into two categories: distance based

methods that use kNN classifiers on top of distance measures between time series, and feature

based classifiers that extract or search for deterministic features in the time or frequency

domain and then apply traditional classification algorithms. In recent years, some ensemble

methods that collect many TSC classifiers together have also been studied. A full review of

these methods is out of the scope here but we will do a comprehensive empirical comparison

with leading TSC methods in the next section. Below, we review some works that are most

related to MCNN.

In recent years, there have been active research on deep neural networks [5, 11, 65] that can

combine hierarchical feature extraction and classification together. Extensive comparison has

shown that convolution operations in CNN have better capability on extracting meaningful

features than ad-hoc feature selection [97]. However, applications of CNN to TSC have not

been studied until recently.

A multi-channel CNN has been proposed to deal with multivariate time series [149]. Features

are extracted by putting each time series into different CNNs. After that, they concatenate

those features together and put them into a new CNN framework. Large multivariate datasets

are needed in order to train this deep architecture. While for our method, we focus on

univariate time series and introduce two more branches that can extract multi-scale and

multi-frequency information and further increase the prediction accuracy. [38] feeds CNN

with variables post-processed using an input variable selection (IVS) algorithm. The key

difference compared with MCNN is that they aim at reducing the input size with different

IVS algorithms. In contrast, we are exploring more raw information for CNN to discover.
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In addition to classification, CNN is also used for time series metric learning. In [150],

Zheng et al. proposed a model called convolutional nonlinear neighbourhood components

analysis that preforms CNN based metric learning and uses 1-NN as the classifier in the

embedding space.

Shapelets attract lots of attention because people can detect shapes that are crucial to

TSC, providing insights and interpretability. However, searching shapelets from all the time

series segmentations is time consuming and some stoping methods are proposed to accelerate

this procedure. In [56], Grabocka et al. proposed a model that can learn global shapelets

automatically instead of searching. As discussed in Section 3.2, MCNN is general enough to

be able to learn shapelets.

CNN can achieve scale invariance to some extent by using the pooling operation. Thus, it is

beneficial to introduce a multi-scale branch to extract short term as well as long term features.

In image recognition, CNNs keep feature maps in each stage and feed those feature maps

altogether to the final fully connected layer [86] . By doing this, both short term and higher

level features are preserved. For our model, we down sample the raw data into different time

scales which provides low level features of different scales and higher level features at the

same time.

5.3 Multi-Scale Convolutional Neural Network (MCNN)

for TSC

In this section, we formally define the aforementioned time series classification (TSC) problem.

Then we describe our MCNN framework for solving TSC problems.
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5.3.1 Notations and Problem Definition

A time series is a sequence of real-valued data points with timestamps. In this work, we focus

on time series with identical interval length. We denote a time series as T = {t1, t2, ..., tn},

where ti is the value at time stamp i and there are n timestamps for each time series.

We denote a labelled time series dataset as D = {(Ti, yi)}Ni=1 which contains N time series

and their associated labels. For each i = 1, · · · , N , Ti represents the ith time series and

its label is yi. For ease of presentation, we consider classification problems where yi is a

categorical value in C = {1, · · · , C} where C ∈ Z+ is the number of labels. However, our

framework can be easily extended to real-valued regression tasks. The TSC problem is to

build a predictive model to predict a class label y ∈ C given an input time series T . Unlike

some previous works, we do not require all training and testing time series to have the same

number of timestamps in our framework.

5.3.2 MCNN framework

Time series classification is a long standing problem that has been studied for decades.

However, it remains a very challenging problem despite great advancement in data mining

and machine learning. There are some key factors contributing to its difficulty. First, different

time series may require feature representations at different time scales. For example, it is

found that certain long-range (over a few hours involving hundreds of time stamps) patterns

in body temperature time series have predictive values in forecasting sepsis [45]. Existing

TSC features can rarely adapt to the right scales. Second, in real-world time series data,

discriminative patterns in the time series is often distorted by high-frequency perturbations

and random noises. Automatic smoothing and de-noising procedures are needed to make the

overall trend of the time series more clear.
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To address these problems for TSC, we propose a multi-scale convolutional neural network

(MCNN) framework in which the input is the time series to be predicted and the output is

its label. The overall architecture of MCNN is depicted in Figure 5.1.

The MCNN framework has three sequential stages: transformation, local convolution, and

full convolution.

1) The transformation stage applies various transformations on the input time series. We

currently include identity mapping, down-sampling transformations in the time domain, and

spectral transformations in the frequency domain. Each part is called a branch, as it is a

branch input to the convolutional neural network.

2) In the local convolution stage, we use several convolutional layers to extract the features

for each branch. In this stage, the convolutions for different branches are independent from

each other. All the outputs will pass through a max pooling procedure with multiple sizes.

3) In the full convolution stage, we concatenate all extracted features and apply several

more convolutional layers (each followed by max pooling), fully connected layers, and a

softmax layer to generate the final output. This is an entirely end-to-end system and all

parameters are trained jointly through back propagation.

5.3.3 Transformation stage

Multi-scale branch. A robust TSC model should be able to capture temporal patterns

at different time scales. Long-term features reflect overall trends and short-term features

indicate subtle changes in local regions, both of which can be potentially crucial to the

prediction quality for certain tasks.
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Figure 5.1: Overall architecture of MCNN.

In the multi-scale branch of MCNN, we use down-sampling to generate sketches of a time

series at different time scales. Suppose we have a time series T = {t1, t2, ..., tn} and the

down-sampling rate is k, then we will only keep every kth data points in the new time series:

T k = {t1+k∗i}, i = 0, 1, ..., bn− 1

k
c. (5.1)

Using this method, we generate multiple new input time series with different down sampling

rates, e.g. k = 2, 3, · · · .

Multi-frequency branch. In real-world applications, high-frequency perturbations and

random noises widely exist in the time series data due to many reasons, which poses another

challenge to achieving high prediction accuracy. It is often hard to extract useful information

on raw time series data with the presence of these noises. In MCNN, we adopt low frequency

filters with multiple degrees of smoothness to address this problem.
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A low frequency filter can reduce the variance of time series. In particular, we employ moving

average to achieve this goal. Given an input time series, we generate multiple new time series

with varying degrees of smoothness using moving average with different window sizes. This

way, newly generated time series represent general low frequency information, which make

the trend of time series more clear. Suppose the original time series is T = {t1, t2, ..., tn}, the

moving average works by converting this original time series into a new time series

T ` =
xi + xi+1 + ...+ xi+`−1

`
, (5.2)

where ` is the window size and i = 0, 1, ...n− `+ 1. With different `, MCNN generates

multiple time series of different frequencies, all of which will be fed into the local convolutional

layer for this branch. Different from the multi-scale branch, each time series in the multi-

frequency branch has the same length, which allows us to assemble them into multiple

channels for the following convolutional layer.

5.3.4 Local convolution stage

Local convolution. After down sampling, we obtain multiple time series with different

lengths from a single input time series. We apply independent 1-D local convolutions on each

of these newly generated time series. In particular, the filter size of local convolution will be

the same across all these time series. Note that, with a same filter size, shorter time series

would get larger local receptive field in the original time series. This way, each output from

the local convolution stage captures a different scale of the original time series. An advantage

of this method is that, by down sampling the time series instead of increasing the filter size,

we can greatly reduce the number of parameters in the local convolutional layer.
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Max pooling with multiple sizes. Max pooling, a form of non-linear down-sampling, is

also performed between successive convolutional layers in MCNN. This can reduce feature

maps’ size as well as the amount of following layers’ parameters to avoid overfitting and

improve computation efficiency. More importantly, the max pooling operation introduces

invariance to spatial shifting, making MCNN more robust.

Instead of using small pooling sizes like 2 or 5, in MCNN we introduce a variable called

the pooling factor, p, which is the length after max pooling. Suppose the output time series

after convolution has a length of n, then both our pooling size and stride in max pooling

are n
p
. The pooling size is fairly large since p is often chosen from {2, 3, 5}. By doing this,

we can have more filters and enforce each filter to learn only a local feature, since in the

backpropogation phase, filters will be updated based on those few activated convolution

parts.

5.3.5 Full convolution stage

After extracting feature maps from multiple branches, we concatenate all these features and

feed them into other convolutional layers as well as a fully connected layer followed by a

softmax transformation. Following [133] , we adopt the technique of deep concatenation to

concatenate all the feature maps vertically.

The output of MCNN will be the predicted distribution of each possible label for the input

time series. To train the neural network, MCNN uses the cross-entropy loss defined as:

max
W,b

N∑
i=1

log o(i)yi , (5.3)
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where o(i)yi is the ythi output of instance i through the neural network, which is the probability of

its true label. The parameters W and bias b in MCNN are those in local and full convolutional

layers, as well as those in the fully connected layers, all of which are learned jointly through

back propagation.

5.3.6 Data augmentation

One advantage for our framework is the ability to deal with large scale datasets. When

dealing with smaller datasets, convolutional nets tend to overfit. Currently, most publicly

available TSC datasets have limited sizes. To overcome this problem, we propose a data

augmentation technique on the original datasets in order to avoid overfitting and improve the

generalization ability. For massive datasets with abundant training data, data augmentation

may not be needed.

We propose window slicing for the data augmentation. For a time series T = {t1, · · · , tn}, a

slice is a snippet of the original time series, defined as Si:j = {ti, ti+1, ..., tj}, 1 ≤ i ≤ j ≤ n.

Suppose a given time series T is of length n, and the length of the slice is s, our slicing

operation will generate a set of n-s+1 sliced time series:

Slicing(T, s) = {S1:s, S2:s+1, · · · , Sn−s+1:n}, (5.4)

where all the time series in Slicing(T, s) have the same label as their original time series T

does.

We apply window slicing on all time series in a given training dataset. When doing training,

all the training slices are considered independent training instances. We also do window

slicing when predicting the label of a testing time series. We first use the trained MCNN

to predict the label of each of its slices, and then use a majority vote among all these slices
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to make the final prediction. Another advantage of slicing is that the time series are not

required to have equal length since we can always cut all the time series into the same length

using window slicing.

5.4 Discussion

In this section, we discuss several properties of the MCNN framework and its relations to

some other important works.

5.4.1 Interpretability of convolution filters

Convolution has been a well-established method for handling sequential signals [95]. We

advocate that it is also a good fit for capturing characteristics in time series. Suppose f is a

filter of length m and T is a time series. Let T · f be the result of 1-dimensional discrete

convolution. The ith element of the result is given by

(T · f)[i] =
m∑
j=1

fm+1−j · ti+j−1

Depending on the filter, the convolution is capable of extracting many insightful information

from the original time series. For example, if f = [1,−1], the result of the convolution would

be the gradient between any two neighboring points. However, is MCNN able to learn such

kind of filters? The answer is yes. To show this, we train MCNN on a real-world dataset

Gun_Point with a filter whose size is 15 (m = 15). For illustration, we pick one of the filters

learned by MCNN as well as 3 time series from the dataset.

We show the shape of this selected filter and these 3 time series on the left of Figure 5.2, and

the shape after convolution with the filter. Here, the two blue curves belong to one class and
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Figure 5.2: Three time Series on Gun_Point dataset before and after performing the
convolution operation. The two blue curves belong to one class and the red curve belongs to
a different class.

the red curve belongs to a different class. The learned filter (shown in the left figure) may

look random at the first glance. However, a closer examination shows that it makes sense.

First, we can observe from the left figure that each time series has a upward part and a

downward part no matter which label it has. After convolution with the filter, all three new

signals form a valley at the location of the upward part and a peak at the location of the

downward part. Second, since in MCNN we use max pooling right after convolution, the

learned filter correctly finds that the downward part is more important, as max pooling only

picks the maximum value from each convolved signal. As a result, the convolution and max

pooling correctly differentiate the blue curves and red curve, since the maximum values of the

two blue curves after convolution is greater than that of the red curve. By this visualization,

MCNN also offers certain degree of interpretability as it tells us the characteristic found by

MCNN. Third, these three time series have similar overall shapes but different time scales, as

the “plateau" on the top have different lengths. It is very challenging for other methods such

as DTW or shapelet to classify them. However, a single filter learned by MCNN coupled

with max pooling can classify them well.
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To further demonstrate the power of convolution filters for TSC, we compute the max pooling

result of all times series in the train set convolving with the filter shown in Figure 5.2, and

show all of them in Figure 5.3. Here, each point corresponds to a time series in the dataset.

The blue and red points correspond to two different classes, respectively. The x-axis is the

max-pooling value of each point, and y-axis is the class label. We can see from Figure 5.3

that, if we set the classification threshold at around 0.25, one single convolution filter can

already achieve very high accuracy to classify the dataset.

5.4.2 Relation to learning shapelets

A major class of TSC methods are based on shapelet analysis which assumes that time series

are featured by some common subsequences. Shapelet can either be extracted from existing

time series, or learned from the data. A recent study [56] proposes a learning time series

shapelet (LTS) method which achieves unprecedented performance improvement over simple

extraction. In the LTS method, each time series can be represented by a feature vector
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in which each feature is the similarity between the time series and a shapelet. A logistic

regression is applied on this new representation of time series to get the final prediction. Both

the shapelets and parameters in the logistic regression model are jointly learned.

There is a strong relevance between the LTS method and MCNN, as both learn the parameters

of the shapelets or filters jointly with a classifier. In fact, LTS can be viewed as a special case

of MCNN. To make this more clear, let us first consider a simpler architecture, a special case

of MCNN, where there is only one identity branch, and the input time series is processed

by a 1-D convolutional layer followed by a softmax layer. The 1-D convolutional filter in

the model can be regarded as a shapelet. The second layer (after convolution) is the new

representation of the input time series. In this case, each neuron in the second layer is a

inner product between the filter (or shapelet) and the corresponding window of the input

time series. From this, we can see that MCNN model adopts inner product as the similarity

measurement while LTS employs the Euclidean distance.

To further show the relationship between inner product in convolution and Euclidean distance,

we can actually express the Euclidean distance in the form of convolution. Let T 	 f be the

Euclidean distances between a time series T = {t1, · · · , tn} and a filter f = {f1, · · · , fm}, its

ith element is:
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(T 	 f)[i] =
m∑
j=1

(
ti+j−1 − fm+1−j

)2

=
m∑
j=1

t2i+j−1 +
m∑
j=1

f 2
m+1−j

− 2
m∑
j=1

ti+j−1fm+1−j

=
m∑
j=1

t2i+j−1 +
m∑
j=1

f 2
j − 2(T · f)[i] (5.5)

From Eq. (5.5), the Euclidean distance is nothing but the combination of convolution T · f

(after flipping the sign of f) and the `2 norms of f and a part of T . The first term in Eq. (5.5)

is a constant for each time series, and therefore can be regarded as a bias which MCNN

has incorporated in the model. We can thus see that learning shapelets is a special case of

learning convolution filters when the filters are restricted to have the same `2 norm. Moreover,

if we consider the full MCNN framework, its multi-scale and multi-frequency branches make

it even more general to handle different time scales and noises.

Eq. (5.5) also gives us a hint on how to use convolution neural networks to implement

Euclidean distances. By doing this, the Euclidean distance of between the time series and

the shapelets can be efficiently computed leveraging deep learning packages and the speedups

from their GPU implementation.

5.5 Experimental Results

In this section, we conduct extensive experiments on various benchmark datasets to evaluate

MCNN and compare it against many leading TSC methods. We have made an effort to

include the most recent works.
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5.5.1 Experimental setup

We first describe the setup for our experiments.

Baseline methods. For comprehensive evaluation, we evaluate two classical baseline

methods: 1-NN with Euclidean distance (ED) [46] and 1-NN DTW [13]. We also select

11 existing methods with state-of-the-art results published within the recent three years,

including: DTW with a warping window constraint set through cross validation (DTW

CV) [110], Fast Shapelet (FS) [111] , SAX with vector space model (SV) [122], Bag-of-SFA-

Symbols (BOSS) [119], Shotgun Classifier (SC) [120], time series based on a bag-of-features

(TSBF) [10], Elastic Ensemble (PROP) [88], 1-NN Bag-Of-SFA-Symbols in Vector Space

(BOSSVS) [118], Learn Shapelets Model(LTS) [56], and the Shapelet Ensemble (SE) model [8].

We also test standard convolutional neural network with the same number of parameters as

in MCNN to show the benefit of using the proposed multi-scale transformations and local

convolution. For reference, we also list the results of flat-COTE (COTE), an ensemble

model proposed by Bagnall et al. [8], which uses the weighted votes over 35 different classifiers.

MCNN is orthogonal to flat-COTE and can be incorporated as a constituent classifier.

Datasets. We evaluate all methods thoroughly on the UCR time series classification

archive [28], which consists of 46 datasets selected from various real-world domains. We omit

Car and Plane because a large portion of baseline methods do not provide related results.

All the datasets in the archive are publicly available8. Following the suggestions in [106], we

z-normalize the following datasets during preprocessing: Beef, Coffee, Fish, OSULeaf and

OliveOil.
8http://www.cs.ucr.edu/~eamonn/time_series_data/
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Figure 5.4: Scatter plot of test accuracies of standard CNN against MCNN on all 44 UCR
datasets. MCNN is better in all but 3 datasets.

All the experiments use the default training and testing set splits provided by UCR, and

the results are rounded to three decimal places. For authoritative comparison, we adopt the

experimental results collected by Bagnall et al. [8] and Schafer [118] for the baseline methods.

Configuring MCNN. For MCNN, we conduct the experiments on all the datasets with the

same network architecture as in Figure 1. Since most of the datasets in the UCR archive are

not large enough, we first use window slicing to increasing the size of the training size. For

window slicing, we set the length of slices to be 0.9n where n is the original length of the

time series. We set the number of filters to be 256 for the convolutional layers and include

256 neurons in the fully connected layer.

We use mini-batch stochastic gradient with momentum to update parameters in MCNN.

We adopt the grid search for hyper-parameter tuning based on cross validation. The hyper

parameters MCNN include the filter size, pooling factor, and batch size.

In particular, the search space for the filter size is {0.05, 0.1, 0.2}, which denotes the ratio

of the filter length to the original time series length; the search space for the pooling factor

is {2, 3, 5}, which denotes the number of outputs of max-pooling. Early stopping is applied

for preventing overfitting. Specifically, we use the error on the validation set to determine
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the best model. When the validation error does not get reduced for a number of epochs, the

training terminates.

MCNN is implemented based on theano [12] and run on NVIDIA GTX TITAN graphics

cards with 2688 cores and 6 GB global memory. For full replicability of the experiments, we

will release our code and make it available in public9.

CNN vs. MCNN. Before comparing against other TSC classifiers, we first compare MCNN

with standard CNN. We test a CNN that has the same architecture and number of parameters

as our MCNN but does not have the multi-scale transformation and local convolutions. Figure

5.4 shows the scatter plot of the test accuracies of CNN and MCNN on the 44 datasets. We

can see that MCNN achieves better results on 41 out of 44 datasets. A binomial test confirms

that MCNN is significantly better than CNN at the 1% level.

5.5.2 Comprehensive evaluation

For each dataset, we rank all the 15 classifiers. MCNN is very competitive, achieving

the highest accuracy on 10 datasets. MCNN has a mean rank of 3.95, lower than all the

state-of-the-art methods except for COTE, which is an ensemble of 35 classifiers.

To further analyze the performance, we make pairwise comparison for each algorithm against

MCNN. Binomial test (BT) and the Wilcoxon signed rank test (WSR) are used to measure

the significance of difference. Corresponding p-values are listed in table 5.1, indicating that

MCNN is significantly better than all the other methods except for BOSS and COTE at

the 1% level (p < 0.01). Moreover, it shows that the differences between COTE, BOSS, and

MCNN are not significant.
9Source codes of the programs developed by our lab are published at http://www.cse.wustl.edu/~ychen/

psd.htm.
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Table 5.1: Pairwise comparison with MCNN. p(BT) and p(WSR) are the p-values of binomial
test and Wilcoxon signed rank test, respectively.

Model #better #tie #worse p(BT) p(WSR)
DTW 5 2 37 9.43× 10−7 4.24× 10−7

ED 1 1 42 2.15× 10−10 1.54× 10−8

DTWCV 7 1 36 8.96× 10−9 3.24× 10−6

FS 1 0 43 5.12× 10−12 1.11× 10−8

SV 4 3 35 3.35× 10−7 2.48× 10−6

SC 5 2 37 4.43× 10−7 1.60× 10−5

TSBF 13 1 30 1.73× 10−2 1.60× 10−3

TSF 4 1 39 3.10× 10−8 5.08× 10−7

BOSSVS 8 5 31 2.94× 10−4 6.77× 10−5

SE 7 1 36 8.96× 10−6 8.90× 10−5

PROP 11 5 28 9.50× 10−3 1.20× 10−2

LTS 10 4 30 2.20× 10−3 1.60× 10−2

BOSS 16 4 24 2.68× 10−1 7.38× 10−2

COTE 22 2 20 8.78× 10−1 5.95× 10−1

Figure 5.5 shows the critical difference diagram, as proposed in [42]. The values shown on the

figure are the average rank of each classifier. Bold lines indicate groups of classifiers which

are not significantly different. The critical difference (CD) length is shown on the graph.

Figure 5.5 is evaluated on MCNN, all baseline methods and COTE. MCNN is among the

most accurate classifiers and its performance is very close to COTE. It is quite remarkable

that MCNN, a single algorithm, obtains the same state-of-the-art performance as an ensemble

model consisting of 35 different classifiers. Note that MCNN is orthogonal to flat-COTE as

MCNN can also be included as a predictor in flat-COTE to further improve the performance.

There are obvious margins between MCNN and other baseline classifiers.

We now group these classifiers into three categories and provide mode detailed analysis.

Distance based classifiers. These classifiers use nearest neighbor algorithms based on

distance measures between time series. The simplest distance measure is the Euclidean

distance (ED). Dynamic time warping (DTW) is proposed to extract the global similarity
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5.63 Learning Shapelets (LTS)

6 PROP
7.43 TSBF
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Figure 5.5: Critical Difference Diagram [42] over the mean ranks of MCNN, 13 baseline
methods and the COTE ensemble. The critical difference is 3.01. COTE is the best classifier
which ensembles 35 classifiers. MCNN performs equally well compared with COTE.
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Figure 5.6: Comparison of MCNN against three groups of classifiers in terms of accumulated
ranks.

while addressing the phase shift problem. DTW with 1-NN classifier has been hard to beat

for a long time and now become a benchmark method. DTW with warping set through

cross-validation (DTWCV) is also a traditional bench mark. k-NN classifiers also uses

transformed features. Fast shapelet (FS) search shapelet on a lower transformed space.

Bag-of-SFA-Symbols (BOSS) [119] proposes a distance based on histograms of symbolic

Fourier approximation words. The BOSSVS model combines the BOSS model with the

vector space model to reduce the time complexity. They are all combine with 1-NN for final

prediction.
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By grouping distance based classifiers together, we can compare their average performance

with MCNN. In order to illustrate the overall performance of different algorithms, we

plot accumulated rank on all the tested datasets in Figure 5.6. We order all the datasets

alphabetically by their name and show the accumulated rank. For example, if a method is

always ranked #1, its accumulated rank is N for the N th dataset. From Figure 5.6, we see

that MCNN has the lowest accumulated rank, outperforming all the distance based classifiers.

Feature based classifiers. For feature based classifiers, we selected SAX-VSM, TSF,

TSBF, LTS. Symbolic aggregate approximation (SAX) has become a classical method to

discretize time series based on piecewise mean value., SAX-VSM achieved state-of-the-art

classification accuracy on UCR dataset by combining vector space Model (VSM) with SAX.

Time series forest (TSF) divide time series into different intervals and calculate the mean,

standard deviation and slop as interval features. Instead of using traditional entropy gain,

TSF proposed a new split criteria by adding an addition term measuring the nearest distance

between interval features and split threashold to the entropy and achieved better results than

traditional random forests. The bag-of-features framework (TSBF) also extracts interval

features with different scales. The features from each interval form an instance, and each time

series forms a bag. Random forest is used to build a supervised codebook and classify time

series. Finally, learning time series shapelets (LTS) provides not only competitive results, but

also the ability to learn shapelets directly. Classification is made based on logistic regression.

The middle plot of figure 5.6 compares the performance of MCNN against some on feature

based classifiers, including SV, TSBF, TSF, and LTS. It is clearly that MCNN is substantially
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better than these feature based classifiers, as its accumulated rank is consistently the lowest

by a large margin.

Ensemble based classifiers There is a growing trend in ensembling different classifiers

together to achieve higher accuracy. The Elastic Ensemble (PROP) combined 11 distinct

classifiers based on elastic distance measures through a weighted ensemble scheme. This was

the first classifier that significantly outperformed DTW at that time. Shapelet ensemble

(SE) combines shapelet transformations with a heterogeneous ensemble method. The weight

of each classifier is assigned based on the cross validation accuracy. The flat collective

of transform-based ensembles (flat-COTE) is an ensemble of 35 different classifiers based

on features from time and frequency domains and has achieved state-of-the-art accuracy

performance. Despite its high testing accuracy, ensemble methods suffer high complexity

during the training process as well as testing. From the third plot in figure 5.6, we can

observe that MCNN is very close to COTE and much better than SE and PROP. Critical

difference analysis in Figure 5.5 also confirms that there is no significant difference between

COTE and MCNN. It is in fact quite remarkable that a single algorithm in MCNN can match

the performance of the COTE ensemble. The performance of MCNN is likely to improve

further if it is trained with larger datasets, since convolutional neural networks are known to

be able to absorb huge training data and make improvements.

5.6 Conclusions

We have presented MCNN, a convolutional neural network tailored for time series classification.

MCNN unifies feature extraction and classification, and jointly learns the parameters through

back propagation. It leverages the strength of CNN to automatically learn good feature

representations in both time and frequency domains. In particular, MCNN contains multiple
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branches that perform various transformations of the time series, which extract features of

different frequency and time scales, addressing the limitation of many previous works that

they only extract features at a single time scale. We have also discussed the insights that

learning convolution filters in MCNN generalizes shapelet learning, which in part explains

the excellent performance of MCNN.

We have conducted comprehensive experiments and compared with leading time series classi-

fication models. We have demonstrated that MCNN achieves state-of-the-art performance

and outperforms many existing models by a large margin, especially when enough training

data is present.

More importantly, an advantage of CNNs is that they can absorb massive amount of data to

learn good feature representations. Currently, all the TSC datasets we have access to are not

very large, ranging from a training size of around 50 to a few thousands. In the next chapter,

we will combine MCNN and DNN together on a real-world clinical dataset.
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Chapter 6

A Deep Learning Model for Predicting

30-Day Postoperative Mortality

6.1 Introduction

Most patients undergo elective surgery to cure a condition or improve quality of life; however,

0.5-3% of elective surgery patients do not survive until hospital discharge based on a survey

over ten thousands patients [31]. How to reduce the rate of adverse outcomes therefore

becomes a pressing public health problem.

Some of this mortality may be preventable through early identification of risk factors and

better communication regarding risk mitigation. However, there are a number of reasons that

anesthesiology teams fail to make accurate risk assessment in diagnosis and treatment. One

major obstacle to optimal treatment for surgical patients in the operating rooms (OR) is

information overload, beyond the capacity of practicing clinicians with the tools currently at

disposal. To be more specific, clinicians are unable to accurately assess a patient’s risk based
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on pre-op data and rapidly evolving responses to general surgery and anesthesia. Furthermore,

anesthesiologists are increasingly managing multiple surgical patients concurrently, and are

expected to integrate numerous interacting patient characteristics with dynamic changes in a

complex array of physiological parameters (e.g., electroencephalography waveforms, blood

pressure, heart rate, temperature, fluid balance, metabolic homeostasis) in order to make

informed patient-centered management decisions for each patient. Anesthesiologists, like all

medical practitioners, have limitations in their cognitive and decision making abilities [41, 130,

131] . There is a limited amount of data that physicians can process per unit of time and the

mismatch between human decision making ability and excess information is a source of medical

errors [107]. In the realm of anesthesiology, the OR environment is a source of numerous

stimuli that can at times overwhelm a single clinician. Less experienced practitioners are likely

to have the most difficulty and require the most assistance in these circumstances. Cognitive

biases commonly lead to medical mishaps, and cognitive errors specific to anesthesiology

practice have been identified [132]. Further information overload through intrusive alarms

or overwhelming IT-based decision support is likely to be unappreciated and even counter-

productive. Given the known limits of human cognitive abilities and the high likelihood

of cognitive biases in anesthesiology, there is therefore a pressing need for empowering and

unobtrusive perioperative system that support critical decision-making without inundating

the clinician with unfiltered and often irrelevant information.

Traditional data mining algorithms such as statistical models and logistic regression (LR) are

used to analyze the relationship between the mortality and patient characteristics and factors,

containing both non-modifiable and modifiable features. Non-modifiable factors include

medical conditions (e.g., kidney disease, coronary artery disease), age, functional status,

history of intraoperative awareness and duration and invasiveness of surgery. Other risk

factors such as low intraoperative blood pressures and anesthetic concentrations are modifiable.
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However, traditional data mining algorithms are far from satisfactory as they fall into the

following shortcomings. 1). The performance of those models is not good enough for practical

deployment in real world, limited by their model complexity. Take LR as an example, it is a

linear parametric model, restricting its usage to linear separable datasets. However, there is

no such guarantee on clinical datasets. 2). They cannot handle heterogeneous datasets well.

Clinical datasets contains multi-type features and are usually collected from multi-sources.

Statistical features such as age, gender and height are collected by nursers. Numerous time

series (TS) are being collected automatically by modern intraoperative monitoring system

from ORs every minute. Only first order statistics such as mean value and second order

statistics such as standard deviation are used as model features.

With the success of deep learning in computer vision, Convolution Neural Network (CNN) on

clinical data was mainly applied on clinical imaging, such as predicting the onset of Alzheimer’s

disease using the analysis of brain magnetic resonance imaging scans. Compared with clinical

imaging, deep neural networks (DNNs) on large scale heterogeneous clinical datasets are not

well studied. In this chapter, we proposed an interpretable machine learning framework that

combines MCNN with deep neural network for 30-day mortality prediction [50].

6.2 Related Work

A number of forecasting algorithms exist that use medical data for outcomes prediction.

These algorithms either rely on medical knowledge or general machine learning techniques.

A number of scoring systems that already exist use medical knowledge for various medical

conditions. For example, the effectiveness of Several Community-Acquire Pneumonia (SCAP)

and Pneumonia Severity Index (PSI) in predicting outcomes in patients with pneumonia

is evaluated in [142]. Similarly, outcomes in patients with renal failures may be predicted
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using the Acute Physiology Score (12 physiologic variables), Chronic Health Score (organ

dysfunction) [77], APACHE (Acute Physiology, Age, Chronic Health Evaluation) score [76],

and APACHE-III Score [78]. However, these algorithms are best for specialized hospital

units for specific visits, especially for Intensive Care Unit(ICU). In contrast, the detection

of clinical deterioration on general hospital units requires more general algorithms. For

example, the Modified Early Warning Score (MEWS) [79] uses systolic blood pressure, pulse

rate, temperature, respiratory rate, age and BMI to predict clinical deterioration. These

physiological and demographic parameters may be collected at bedside, making MEWS

suitable for a general hospital. These scoring systems have been widely used in hospital

for even decades, so in practice it is imperative that the choice of the severity score scale,

index, or model accurately match the event, setting or application, as mis-application of such

systems can result in avoidable wastage of time, increase in cost incorrect extrapolations and

may contribute to mismanagement and death [112]. Despite the existence of various kinds of

scoring system, no score is specifically designed for usage in the operation rooms.

An alternative to algorithms that rely on medical knowledge is adapting statistical technique

or standard machine learning techniques. This approach has two important advantages over

traditional rule-based scoring algorithms. First, it allows us to consider a large number of

parameters during prediction of patients’ outcomes. Second, since they do not use a small set

of rules to predict outcomes, it is possible to improve accuracy. Machine learning techniques

such as decision trees [135], neural networks [67], and logistic regression [57] [60] have been

used to identify clinical deterioration. In [145], integrate heterogeneous data (neuron-images,

demographic, and genetic measures) is used for Alzheimer’s disease (AD) prediction based

on a kernel method. A support vector machine (SVM) classifier with radial basis kernels

and an ensemble of templates are used to localize the tumor position in [33]. Also, in [67], a

hyper-graph based learning algorithm is proposed to integrate micro array gene expressions
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and protein-protein interactions for cancer outcome prediction and bio-marker identification.

In recent years, with coming of big data in medical area [102], a lot of new algorithms have

been developed taking advantage of the larger available data. [116] proposed an ensembling

approach that combines multiple algorithms into a single algorithm and returns a prediction

function with the best cross-validated mean squared error. In [134], the proposed local big

data–driven, machine learning approach using random forest methods outperformed existing

clinical decision rules and traditional analytic techniques for predicting in-hospital mortality

of ED patients with sepsis.

There are a few distinguishing features of our approach comparing to previous work. Most

previous work uses a snapshot method that takes all the features at a given time as input

to a model, discarding the temporal evolving of data. There are some existing time-series

classification method [51] [71] [149]. However, these methods assume a regular, constant gap

between data records (e.g. one record every second) and are hard to handle large dataset.

Our medical data, on the contrary, contains irregular gaps due to factors such as the workload

of nurses. Existing work cannot handle such high-dimensional data with irregular, multi-scale

gaps across different features. Yet another challenge is class imbalance: the data is severely

skewed as there are much more normal patients than those with deterioration. To overcome

those difficulty, we propose a deep learning method that allows us to incorporate both

temporal data and static data at the same time, while handling the imbalance issue as well.

6.3 Data Descriptoin

This work is done in partnership with Barnes-Jewish Hospital (BJH). Our data is pulled

from Washington University School of Medicine Institute of Quality Improvement, Research

and Informatics (INQUIRI) perioperative databases including all preoperative, intraoperative
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and postoperative data combined with other inpatient and outpatient EMR data. More

than 110,000 surgeries’ data is collected between 2012 and 2016, each of which contains 44

preoperative EMR features and 49 vital signs, represented as multi-variate TS. Thirty-day

postoperative mortality is used as the output label. All data was initially recorded for clinical

purposes.

Specifically, preoperative EMR data contains discrete data elements derived from a com-

prehensive history and physical examination. The information collected includes detailed

comorbidity data, composite risk indices (American Society of Anesthesiologists’ Physical

Status and Charlson Comorbidity Index), home medications, laboratory results, special

investigations, and targeted screening for quality of life, functional impairment, cognitive

decline, history of falls, chronic pain and obstructive sleep apnea. The intraoperative medical

record streams physiological data elements (e.g., anesthetic concentration, blood pressure,

heart rate, temperature, oxygen saturation, exhaled carbon dioxide, ventilator parameters)

continuously at 1-minute intervals, and collects data on fluids, drugs, blood transfusions and

specific adverse events.

6.4 Data Preprocessing

In this section, we introduce the data representation and preprocessing methods that we

apply to the dataset.

Our dataset can be represented as D = {(xi, ti), yi}Ni=1 with N instances, where xi and yi

are Df dimensional pre-op feature vector and the label of patient i, respectively. ti is in-op

multi-variate time series with the dimension of Nt×Dt, where Nt is the number of vital signs

we use and Dt is the length of each time series. Next, we perform data preprocessing on

pre-op data and in-op data separately.
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Table 6.1: Pre-op features

Feature Type Feature Name

Numerical

height, weight, ideal body weight, body mass
index, Charlson comorbidity index, functional
capacity, left ventricular ejection fraction (LVEF),
valvular disease, platelet, diastolic blood
pressure, systolic blood pressure, American
Society of Anesthesiologists (ASA) status

Categorical

sex, race, ASA emergency, hypertension,
coronary artery, myocardial infarction,
congestive heart failure, congestive heart
failure diastolic function, atrial fibrillation,
pacemaker, stroke, peripheral artery, deep
vein thrombosis, pulmonary embolism,
diabetes, outpatient Insulin, chronic kidney,
dialysis history, pulmonary hypertension,
chronic obstructive pulmonary, asthma, sleep
apnea, cirrhosis, cancer history,
gastroesophageal reflux, anemia, Coombs
test, dementia, smoking, ulcer, anesthesia
type, surgery type

6.4.1 Pre-op data preprocessing

Preoperative data are static data collected from patients before the operations. 12 numerical

features and 32 categorical features are includes in the Pre-op data. Table 6.1 lists all the

features. Pre-op data contains both numerical and categorical features. We preprocess the

numerical features and categorical features in different ways.

Numerical feature preprocessing

We first preprocess the numerical features by removing the outliers. The raw numerical data

typically contain many reading and input errors because information are recorded by nurses

and there are inevitably errors introduced by manual operations. We list the acceptable
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Table 6.2: Acceptable ranges of numerical features

Feature Minimum Maximum
height(cm) 120 225
weight(kg) 30 300

ideal body weight 45 105
body mass index 14 70
Charlson index 0 15

functional capacity 6 9
LVEF 31 38

valvular disease 61 65
platelet 0 750
diastolic 30 120
systolic 50 250

ASA status 1 5

ranges of every numerical feature in Table 6.2 based on the domain knowledge of the medical

experts in our team. Then we perform a sanity check of the data and label the abnormal

values that are outliers as missing value.

Second, not all patients have values for all signs in a real clinical data, and many types of

clinical features involved in lab tests are not routinely performed on all patients. We use the

medium value of a feature over the entire historical dataset to fill the missing values for most

of the numerical features. For the feature “functional capacity”, we use median instead as

medical experts recommend.

Finally, we normalize the numerical features to scale the range of every feature in [0,1]. Such

normalization is helpful for the forecasting algorithms.

Categorical feature preprocessing

We maintain a dictionary of all valid categories in all features. To eliminate the outliers as

the first step, all values that do not exist in the dictionary are labeled as missing values.

100



Different from numerical data preprocessing, the missing categorical values are regarded as

a new category, instead of being replaced. Our method can deal with categorical feature

represented by ordinal number. For traditional algorithms, we apply One-hot encoding to

transfer the categorical features to a sparse vector with one corresponding element being one

and all others being zero, which usually dramatically increasing the number of dimensions.

The encoded categorical data then can be combined with numerical features, and fed into

the forecasting algorithms.

6.4.2 In-op data preprocessing

Intraoperative data are in the form of multi-variate time series of patients’ vital signs and

general signals monitored throughout patients’ operations. Due to the inconsistent recording

frequency of different time series and the large variance of their scales, we developed a

sequence of useful techniques for preprocessing in-op data.

Data storing and querying

Because of the large number of patients and the huge length of time series of our data, it is

too memory and time consuming to store all data in one file and load the entire file during

training. Thus, we need to develop alternative ways for data storing and only query the data

according to needs.

We chose to use the MySQL database for storing and querying data. The format of each row

is “PatientID, ParameterID, ParameterName, Time, Value”. An example row is as follows:

PatientID ParameterID ParameterName Time Value
338665 23 BJ N Heart Rate 2012-06-04 12:44:00 57
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Note that each patient typically has thousands of rows describing the values of different

variates at different timestamps. When we want to get a patient’s in-op time series of some

particular variates within some time range, we can thus query through MySQL by specifying

“PatientID”, “ParameterID”, and “Time”. Such a database solution enables querying data

on the fly during training instead of loading all the data into memory, which is particularly

suitable for storing large-scale time series dataset.

Time series interpolation

We use multi-channel convolutional neural network (CNN) and long short-term memory

network (LSTM) to learn from multi-variate time series, where every channel corresponds to

one variate. Analogous to image CNNs, we need to ensure that every channel of time series

has the same length. However, different variates have different recording frequencies, which

makes it necessary to do interpolation within some channels of time series. For example,

the Heart Rate data are recorded every minute, while the Diastolic Blood Pressure data are

recorded about every three to ten minutes – a 60-minute multi-variate time series containing

both Heart Rate and Diastolic Blood Pressure will require interpolating Diastolic Blood

Pressure so that it also has a length 60.

Considering the data volume, we use a simple linear interpolation (time-aware) for those time

series with insufficient lengths. Because the minimum granularity is 1 minute for all variates,

we interpolate those time series with insufficient lengths so that they all have granularity of 1

minute. If some time series have no records during the query time span, we fill zeros to the

missing entries.
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Multi-resolution standardization

Due to the large variances between the scales of different time series signals, proper standard-

ization or normalization is required. We propose a multi-resolution standardization technique

to standardize both the values within each time series of one patient, and the mean/std

statistics of each time series across different patients.

Firstly, for each queried single-variate time series of a patient, we calculate its mean and

standard deviation (std). Then within this time series, we standardize the values by x =

x−mean
std

and return the new time series. This step is for making different single-variate time

series all rescaled to 0 mean and 1 std, such that our model is not dominated by particular

variates with large numerical scales and thus focusing on learning the shapes and variations.

However, we should not delete the mean and std statistics just calculated, since they indicate

the general magnitude of the scale and variance of this particular variate of the patient. For

example, two patients may have the same standardized Heart Rate time series, although

patient A has a mean Heart Rate of 50 and patient B has a mean Heart Rate of 100.

Simply deleting these statistics will lose important knowledge. To keep such information, we

concatenate the mean and std statistics of a patient’s different time series to this patient’s

pre-op data, in order to describe the patient’s inherent bias w.r.t. these variates.

Since all other pre-op features have been normalized to between 0 and 1, we need to

roughly keep these time series statistics to have the same scale too. Therefore, we additionally

standardize each statistic by subtracting its mean and std (calculated across different patients).

For example, assume the Heart Rate mean statistic for patient A is 80, and the mean and std

of all patients’ Heart Rate mean statistics are 60 and 10, respectively, then the standardized

Heart Rate mean for patient A will be 80−60
10

= 2.
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We call our method multi-resolution standardization, since we not only standardize the values

within time series, but also standardize the high-level statistics of the time series across

different patients.

6.4.3 Upsampling for imbalanced outcome

Finally, we discuss how we addressed the class imbalance problem. Our target outcome is

30-day mortality, which has a positive-negative ratio of approximately 1:100. We have tried

two different methods to deal with this imbalance. The first method is to use class weights

inversely proportional to their proportion to multiply the loss of positive training examples

100 times larger than that of negative training examples. The second method is to upsample

positive training examples by 100 times each. We will report results of both two methods

and discuss their advantages/disadvantages in the experiment section.

6.5 Method

In this work, we propose a multi-path deep neural network (MPCNN) framework, that can

handle heterogeneous dataset directly. The overall architecture of MPCNN is depicted in

Figure 6.1. MPCNN has three different paths: numerical feature mapping path, categorical

feature embedding path and time series feature mapping path.

6.5.1 Numerical Feature Mapping Path

For the numerical part, each feature is doing an identity mapping to the next layer. No

feature transformation is need before the concatenation of feature embeddings as deep neural

networks can naturally handle this type of data.
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Figure 6.1: Overall architecture of MPCNN

6.5.2 Categorical Feature Embedding Path

The categorical feature embedding path is a lookup table that contains a numerical embedding

for each category as shown in Figure 6.1. The number of embeddings of each feature is

equal to the number of categories of the corresponding categorical feature. At its core, each

lookup table is a matrix where each column vector represents a k dimensional embedding

for a corresponding category. k > 0 is a user defined integer. For example, in Figure 6.1,

we have k = 4. Each categorical feature would retrieve its corresponding embedding in the

lookup table as its new feature representation.

6.5.3 Time Series Feature Mapping Path

Time Series (TS) has been studied for decades as the Time Series Classification (TSC)

problem. TSC is a very challenging task as there are two key factors contributing to its

difficulty. First, different time series may require feature representations at different time

scales. For example, it is found that certain long-range (over a few hours involving hundreds
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of time stamps) patterns in body temperature time series have predictive values in forecasting

sepsis. Existing TSC features can rarely adapt to the right scales. Second, in real-world time

series data, discriminative patterns in the time series can not be aligned to the same starting

point.

Deep learning methods can automatically learn discriminative features from multi-variate

time series. For the time series feature mapping path, we use two deep learning models that

can exploit time series in different manner, 1) 1-dimension multi-variate convolution neural

network (CNN). 2) Long Short-Term Memory (LSTM) network. These two models has the

shift invariance and scale invariance to some extant and performs quite well in practice.

CNN 1-dimension multi-variate convolution neural network can extract information based

on the shape of TS. Extensive experiments demonstrate the effectiveness of 1-D CNN on

extracting discriminative features [34]. In this paper, we use a CNN with three convolutional

blocks where each block consists a convolution layer (Conv), a batch normalization layer (BN)

[68] and a nonlinear activation layer. Rectified linear unit (ReLU) [103] is used as activation

function. The size of filters for each block are 2× 128, 2× 128, 2× 64 where the first number

refers kernel size and the second number refers to the number of output channels. The output

of CNN are feed into concatenation layer.

LSTM Recurrent neural networks, specifically Long Short-Term Memory (LSTM) networks

are designed to handle long-term sequential dependencies. As we use multi-variate time

series, real-valued input vectors of vital signs from different sensors are feed into LSTM every

minute. LSTM cell can memorize the previous state and make predictions together with

current input value. In this paper, we adopt a 3-layer LSTM network to discover temporal

sequence dependence. LSTM takes all the vital signs at each time frame as input to the
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model and generate the patient’s current health status sequentially. We concatenate all these

outputs vertically and feed them into next layer.

6.5.4 Feature Concatenation and Classification

After extracting features from multiple data paths, we use deep concatenation technique [133]

to concatenate all these features vertically. Then we feed those features into multiple fully

connected layers (FC), each of which followed by a ReLU layer. Dropout [129] is also used

after the first FC block to prevent overfitting. We feed the output of FC-3 to a softmax layer

for prediction.

The output of MPCNN will be the predicted distribution of each possible outcomes for the

input data. To train this deep neural network, MPCNN minimize the cross-entropy loss

between the true outcome distribution and the prediction distribution.

6.5.5 Experimental Result

The target outcome (30-day mortality) had a positive-to-negative ratio of approximately

1:100. We tried two different methods to deal with this imbalance. The first method was

to use class weights inversely proportional to their proportion, such that positive examples

carried a weight 100 times greater than negative examples. The second method was to

upsample positive training examples by 100 times. The upsampling method led to higher

area under the precision-recall curve in the validation cohort as shown in Table 6.3, so this

method was used in all analyses.

For intraoperative time series, data from a randomly selected epoch from each surgery were

retrieved from the database. Epoch durations of 45 and 60 minutes were tested. The

60-minute epochs led to higher area under the receiver operating characteristic curve and
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Table 6.3: Performance of the two methods for handling data imbalance in the multi-path
convolutional neural network model (with long short-term memory handling of time series
data). AUROC = Area under receiver-operating characteristic curve. AUPRC = Area under
precision-recall curve.

Method AUROC AUPRC
Upsampling MPCNN 0.867 0.097
Cost-sensitive MPCNN 0.790 0.033

Table 6.4: Performance of multi-path convolutional neural network model (with long short-
term memory handling of time series data) with time series of varying length. AUROC =
Area under receiver-operating characteristic curve. AUPRC = Area under precision-recall
curve.

TS Length AUROC AUPRC
0-min 0.824 0.078
45-min 0.855 0.085
60-min 0.867 0.097

precision-recall curve in the validation cohort as shown in Table 6.4, so this epoch length was

used for all analyses. Simple linear interpolation was used to impute less-frequently measured

time series to every minute. If a time series had no records during the query time span, then

the patient mean value was used to fill in the missing entries. For intraoperative medications,

the cumulative dose until the end of the epoch was used, normalized by the time since the

beginning of surgery.

Then we plot out all the ROC curves in the left panel of Figure 6.2. MPCNN-LSTM achieves

the highest AUROC of 0.867. Both of MPCNN-CNN and MPCNN-LSTM outperform all

the baseline methods. As our dataset is extremely imbalance, the Precision-Recall curve

shown in the right panel of Figure 6.2 contains more meaningful information. The positive-

negative ratio is approximately 1:100, indicating that random guess can get only 0.01 AUPRC.

MPCNN-LSTM achieves an AUPRC of 0.095, which is eight times better than random

guess and nearly 12% gain compared with the LR model. Both of MPCNN-CNN and

MPCNN-LSTM beat the baselines methods by a significantly large margin. Together with
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Figure 6.2: Performance characteristic curves for the multi-path convolutional neural network
using convolution neural network (MPCNN-CNN), multi-path convolutional neural network
using long short-term memory (MPCNN-LSTM), deep neural network (DNN), support
vector machine (SVM), and logistic regression (LR). Panel A shows the receiver operating
characteristic curves for each model. Panel B shows the precision-recall curves for each model

ROC and Precision-Recall curve, we can describe the property of forecasting models more

accurately. One of the key results was that the addition of the time series feature mapping

pathway improved the predictive ability of the model compared to models using only the mean

and standard deviation of each intraoperative vital sign. This likely occurred because the

MPCNN was able to identify patterns in vital signs, such as sudden drops in blood pressure

or fluctuations in pulse oximeter readings. These patterns may identify acute intraoperative

events, such as major blood loss or pulmonary congestion, that have important effects on

postoperative outcomes.

When testing the MPCNN, we further visualize the case-wise feature importance using the

backpropagation-based method. Given an input sample, this method calculates the gradient

of each neuron with respect to the input space using backpropagation. Because the magnitude

of the gradient reflects the degree to which input features affect the class score, it can be

regarded as an indicator of feature importance. Figure 6.3 shows the importance of each

mean arterial pressure value in the 60-minute epoch of a randomly selected patient.
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Table 6.5: 30-day mortality prediction on ACTFAST dataset

Model AUROC(95% CI) AUPRC(95% CI)
LR 0.837 (0.803 to 0.871) 0.085 (0.074 to 0.096)
SVM 0.836 (0.802 to 0.870) 0.072 (0.062 to 0.081)
DNN 0.825 (0.790 to 0.856) 0.078 (0.068 to 0.088)
MPCNN-LSTM 0.867 (0.835 to 0.899) 0.095 (0.085 to 0.109)
MPCNN-CNN 0.855 (0.822 to 0.887) 0.089 (0.077 to 0.100)

Figure 6.3: Importance of each mean blood pressure value in the 60-minute epoch of a
randomly selected patient..

6.6 Conclusion

In this chapter, we have reported the development of a multi-path convolutional neural

network model that outperforms support vector machine and logistic regression models in the

prediction of postoperative thirty-day mortality. This model can be used intraoperatively to

identify patients whose baseline characteristics and recent vital sign trends suggest an elevated

risk for death. These patients may benefit from intraoperative interventions or additional

resource allocation. Future investigations can explore whether prospective real-time use of

this forecasting algorithm leads to accurate predictions, whether this model can generalize to

other institutions, and whether incorporation of this model into a larger patient-monitoring

programme leads to improved patient outcomes
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Chapter 7

Conclusions

In this modern world, our daily lives are surround with machine learning models. We use

our face to unlock cell phones. We use our voice assistant to wake up smart speakers. We

use our movement to interact with kinect sensors. None of these could be done without

machine learning models. However, there is an increasing need for interpretation when

applying ML models to critical areas such as clinical decision support and market analysis.

In this dissertation, we identify two demanding proprieties for model interpretability, i.e.

accountability and actionability. We also present three interpretable machine learning

methods.

Optimal action extraction algorithms is an instance level post-hoc methods that can extract

actionable knowledge from additive tree models. In particular, we prove the NP-hardness

of the optimal action extraction problem for ATMs and transform this problem into an

integer linear programming formulation which can be efficiently solved by existing packages.

We also empirically demonstrate the effectiveness of the proposed framework by conducting

comprehensive experiments on challenging real-world datasets. However, the proposed method
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involves solving an ILP problem. Its efficiency highly depends on the dimensionality of the

dataset since the number of binary variables increases as the dimensionality gets higher.

Therefore, our method is not suitable for datasets with very high dimensions such as text

and images. Early stoping can be introduced when optimality is not necessary.

Deep Embedding Logistic Regression is a model level interpretable model that preserves

model interpretability while equipping LR with non-linear separability. In DELR, each feature

embedding is learned through a deep and narrow neural network and LR is attached to decide

feature importance. A compact and yet powerful model, DELR offers great interpretability:

it can tell the importance of each input feature, yield meaningful embedding of categorical

features, and extract actionable changes, making it attractive for tasks such as market analysis

and clinical prediction.

Factored general additive model is a model level interpretable model that allows feature

interactions between static features and time-varying features. General additve model

including DELR assign the same weight to the same feature no matter what the input data is,

restricting their model performance in dealing with complex datasets. This assumption doesn’t

hold when dealing with clinical data. FGAM allows preoperative patient characteristics to

modify their relationships between intraoperative features and their outcomes.

Last but not least, we propose an interpretable deep learning framework for 30-day mortality

prediction. This model can handle heterogeneous data containing both static features and

time series. We will develop a real-time early warning system using all proposed methods in

this dissertation.
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