Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-45

1993

Supervised Competitive Learning

Thomas H. Fuller Jr. and Takayuki D. Kimura

Supervised Competitive Learning (SCL) assembles a set of learning modules into a supervised
learning system to address the stability-plasticity dilemma. Each learning module acts as a
similarity detector for a prototype, and includes prototype resetting (akin to that of the ART) to
respond to new prototypes. SCL has usually employed backpropagation networks as the
learning modules. It has been tested with two feature abstractors: about 30 energy-based
features, and a combination of energy-based and graphical features (about 60). Anout 75
subjects have been involved. In recent testing (15 college students), SCL recognized 99%
(energy features only) of test digits,... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Fuller, Thomas H. Jr. and Kimura, Takayuki D., "Supervised Competitive Learning" Report Number:
WUCS-93-45 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/540

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/540?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/540

Supervised Competitive Learning

Thomas H. Fuller Jr. and Takayuki D. Kimura

Complete Abstract:

Supervised Competitive Learning (SCL) assembles a set of learning modules into a supervised learning
system to address the stability-plasticity dilemma. Each learning module acts as a similarity detector for
a prototype, and includes prototype resetting (akin to that of the ART) to respond to new prototypes. SCL
has usually employed backpropagation networks as the learning modules. It has been tested with two
feature abstractors: about 30 energy-based features, and a combination of energy-based and graphical
features (about 60). Anout 75 subjects have been involved. In recent testing (15 college students), SCL
recognized 99% (energy features only) of test digits, 91% (energy) and 96.6% (energy/graphical) of test
letters, and 85% of test gestures (energy/graphical)/ SCL has also been tested with fuzzy sets as learning
modules for recognizing handwriting digits and handwritten gestures, recognizing 97% of test digits, and
91% of test gestures.

https://openscholarship.wustl.edu/cse_research/540?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/540?utm_source=openscholarship.wustl.edu%2Fcse_research%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages

Supervised Competitive Learning

Thomas II. Fuller, Jr. and Takayuki D. Kimura

WUCS-93-45

September 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis, Missouri 63130-4899

Reprinted from Journal of Intelligent Material Systems and Structures. This
work supported by the Kumon Machine Project.

Supervised Competitive Learning

Thomas H. Fuller, Jr. and Takayuki D. Kimura,

WUCS-93-45

Reprinted from
Journal of Intelligent Material Systems and Structures
{(pages xx-xx)

October 1993

Department of Computer Science
Washington University
Campus Box 1045
One Brookings Drive
St. Louis, MO 63130-4899

This work was supported by the Kumon Machine Project.

SCL— October 1993 — Fuller and Kimura — Page 1

Supervised Competitive Learning

Thomas H. Fuller, Jr.! and Takayuki D. Kimura
Department of Computer Science
Washington University in St. Louis

Journal of Intelligent Material Systems and Structures, October, 1993

ABSTRACT

Supervised Competitive Learning (SCL) assembles a set of learning modules into a supervised
learning system to address the stability-plasticity dilemma. Each learning module acts as a
similarity detector for a prototype, and includes prototype resetting (akin to that of ART) to
respond to new prototypes. SCL has usually employed backpropagation networks as the learning
modules. It has been tested with two feature abstractors: about 30 energy-based features, and a
combination of energy-based and graphical features (about 60). About 75 subjects have been
involved. In recent testing (15 college students), SCL recognized 99% (energy features only) of
test digits, 91% (energy) and 96.6% (energy/graphical) of test letters, and 85% of test gestures
(energy/graphical). SCL has also been tested with fuzzy sets as learning modules for recognizing
handwritten digits and handwritten gestures, recognizing 97% of test digits, and 91% of test

gestures.

1 Assistant Professor, Department of Mathematics and Computer Science, Principia College

SCL— October 1993 — Fuller and Kimura — Page 2

Table of Contents

1 Introduction
1.1 The Adaptable User Interface
1.2 Stability versus plasticity
1.3 Supervised Competitive Learning

2 Related work
2.1 The ART model of Carpenter and Grossberg
2.2 Other adaptive learning models
2.3 Off-line handwritten character recognition
2.4 On-line handwritten character recognition
2.5 Energy-based feature abstraction
2.6 Grid-based feature abstraction

3 The SCL model
3.1 Requirements and environment
3.2 SCL model and algorithm
3.3 Refinements to the model and algorithm
3.4 Contributions of SCL as compared with similar learning models
3.5 Energy-based feature abstraction in SCL
3.6 Grid-based feature abstraction in SCL
3.7 Additional considerations in feature computation
3.8 Network architecture

4 Experiments
4.1 Early recognition performance with backpropagation
4.2 Recognition performance with fuzzy logic
4.3 Training schedules, preprocessing and the complexity of individual prototype units
4.4 Current results
4.5 Recognition speed
4.6 Behavior of prototypes in gathering "kindred" exemplars
4,7 Confidence
4.8 SCL and gestures
4.9 Freeing the recognizer from "boxed" input

5 Conclusions

6 Future directions

7 Acknowledgement

8 References

List of Figures

1 SCL schematic

2 The numeral "5" in the feature grid

3 Digit recognizer with exemplars gathered by the prototypes
4 Subset of a letter recognizer with exemplars gathered by the prototypes

SCL— October 1993 — Fuller and Kimura — Page 3

1 Introduction
1.1 The Adaptable User Interface

For decades, computers have inched toward more "user-friendly" access. Still most people do
not find them friendly enough to apply to the many areas of potential benefit. This continues a
historical pattern. Increasing processor power wrought little change in the "friendliness" until the
paradigm of the user’s relation to the processes shifted. Such a shift occurred with the advent of
the mouse and the graphical user-interface introduced in the late 60’s and widely realized in the
late 80’s. Significantly, neither the mouse nor the GUI individually was sufficient to cause the
change -- both were necessary. This decade is bringing half of a new paradigm to the fore: the
pen-based user interface. What must accompany this change of medium (as was the mouse) to
radically transform the user interface? We feel that an Adaptable User Interface (AUI) should
emerge as the "rest" of the paradigm. An AUI models a plastic system that gains knowledge of
its user’s behaviors and applies this knowledge to interpret user inputs.

A critical barrier to pen-based systems of any kind looms over the many promises — the
recognition of handwritten input. It is a regular theme in the estimates of pen-computing in the
industry and popular press. (See for example Schwartz 1992). Pundits prophesy that once this
obstacle is removed, the pen just might revolutionize the use of computers. (Cf. Jerney 1993,
Wagoner 1993, Baran 1992.)

It would be most desirable for an AUI to not only recognize input, but to improve its recognition
of characters (letters, digits, gestures) from regular users. Supervised Competitive Learning
offers one method for allowing the computer to regularly improve on its recognition task.

1.2 Stability versus plasticity

When an adaptive learning system such as a backpropagation artificial neural net (ANN) is used
to encode input patterns from an evolving environment, it suffers the stability-plasticity dilemma
formulated by Grossberg [Grossberg 1986] for the competitive learning paradigm: How can a
learning system remain plastic in response to significant events and yet remain stable in response
to irrelevant or routine events? How can it maintain previous knowledge while continuing to
gain new?

Handwritten character recognition furnishes an example. Suppose a system has been
successfully trained to recognize the handwritlen character "7" by a person who writes "7"
consistently with two strokes (European style). Now, the same system is to be trained by
another person who writes "7" with one stroke. After adapting to the one-stroke "7," it may not
be able to recognize the two-stroke "7" as well as it used to. A similar problem arises when a
system learns alphabetic characters after "mastering” numeric characters.

1.3 Supervised Competitive Learning

SCL compounds a set of learning modules into a supervised learning system. Each prototype
learning module (prototype for short) acts as a similarity detector for one class of exemplar

SCL— October 1993 — Fuller and Kimura — Page 4

patterns considered sufficiently similar. SCL adopts a prototype resetting mechanism (akin to
that of ART) to create new prototypes. Any learning model can be used for component modules;
backpropagation nets and pattern classification models based on fuzzy logic are two natural

candidates.

In the remaining sections we review related work, describe the architecture of SCL (including the
abstraction of relevant features), report results of our experiments with the recognition of
handwriting and gestures (using backpropagation and fuzzy logic as similarity detectors), and
suggest future directions for research.

2. Related work

Many researchers have been active in various aspects of this field. This review groups relevant
research by its relation to our own (adaptive Iearning, feature abstraction, ete.).

2.1 The ART model of Carpenter and Grossberg

Adaptive Resonance Theory (ART) was proposed by Carpenter and Grossberg [1988] as a
possible solution to the stability-plasticity dilemma in the competitive learning paradigm. It
consists of two sets of processing nodes: the attention subsystemn and the orienting subsystem.
The nodes in the attention subsystem compete with each other when activated by an input
pattern. The winning node represents the learned category of the input pattern and also carries
the prototype (attention) pattern associated with the category. The orienting subsystem
compares the prototype with the input, and if the two are significantly different, it resets
(disables) the winning node, which triggers a new round of competition; the reset response
assumes that the input pattern does not truly belong to a category represented by the current
winner. If all prototype patterns in the attention subsystem are sufficiently different from the
input, the input pattern itself becomes the prototype of a new node. The degree of similarity is
controlled by the vigilance parameter.

The ART model assumes no teaching input and performs unsupervised learning. It organizes
itself to group "similar" input patterns into the same category. Category proliferation is
controlled by the vigilance parameter. An ART system with low vigilance will permit grouping
of patterns that are only grossly similar, and a system with high vigilance will try to form
separate categories for patterns that have only minor differences. In the ART2/BP network,
Sorheim uses the ART2 [Carpenter and Grossberg 1987] model to build a supervised
backpropagation network in his attempt to resolve the stability-plasticity dilemma [Sorheim
1991]. A simple backpropagation net is connected to each output unit of the ART2 subsystem.
The competitive learning occurs in the ART2 subsystem, and no competition exists among the
backpropagation nets.

2.2 Other adaptive learning models
SCL is akin to Kohonen’s topology-preserving maps in general [Kohonen 1982], and Learning

Vector Quantization in particular [Kohonen 1988, 1990]. LVQ processors depend on their
neighbors to establish boundaries, and require more processing units (ten per category instead of

SCL— October 1993 — Fuller and Kimura — Page 5

the one to four prototypes typical of SCL). Also SCL prototypes are topologically independent;
a classification category may be represented by prototypes scattered widely (and disconnected)
over the feature space (cf. Section 4 below). In this respect our work is closer to that of Reilly et
al. [1982]. Their work recognized the value of multiple prototype formation as well as the
retention of training examples for each prototype, though employing different control
mechanisms. A potentially unlimited number of prototypes may be formed (a new one from any
new pattern in an unclaimed region of the feature space). Each such prototype completely
defines the associated response. SCL (as ART) combines "exemplar" patterns in the formation
of more general prototypes. This would be expected to significantly reduce the number of
prototypes necessary to categorize incoming patterns. Our experiments tend to confirm this.
Reilly et al. were able to recognize 98% of handwritten digits in a test group (isolated from the
pool of training digits).

Fukushima’s Neocognitron [1988] uses a hierarchy of progressively more abstract feature
detectors (e.g. eleven "cell planes” in a digit recognizer). Pixel data is entered at the "lowest"
level. At an intermediate level, such features as horizontal, vertical, and diagonal strokes are
detected (akin to the more recent work of Fontaine and Shastri, discussed in the next section, and
similar to the "grid" features of Grothe {1991] and Lin [1982], and used by SCL). The
classification categories themselves form the highest level.

2.3 Off-line handwritten character recognition

Due to the sponsorship and data standardization of the postal systems of the United States and
Great Britain, much attention has been given to off-line recognition of handwritten letters and
digits, often called optical character recognition (OCR). Despite nearly four decades of research,
results have remained modest. Some of the best results to date on USPS ZIP code digit images
are reported by Fontaine and Shastri [1992] using a system that converts the static representation
of a character into a time-varying signal. This greatly simplifies the dimensionality of the
problem, and led to impressive results: 96% recognition of test digits with no rejections. If 15%
of the digits are rejected, the recognition rate rises to 99%.

Stonham and Nellis [1992] experimented with handwritten addresses made available from the
British post. Their work involved "discriminators” compounded from Random Access Memories
[Aleksander and Norton 1990]. Their system uses a masking technique for balancing the pixels
between white and dark to accommodate the RAMs, and turns off certain discriminators if not
recently used. They report recognition of 93.95 of test letters and digits (a substantially more
difficult task than just digits) in context-free recognition, and higher results with the addition of
context-related data (Viterbi maps, etc.).

2.4 On-line handwritten character recognition

The advent of pen-based computing is accelerating the already roused interest in the recognition
of characters in real time. In a broad survey of the state of the art, Tappert et al. [1990] note that
the recognition task is simplified by having actual temporal data. (For example, it is much
simpler that the clever device of superimposed temporalizing by Fontaine and Shastri.) The on-
line recognizer observes the number, order, and speed of the individual strokes composing the

SCL— October 1993 — Fuller and Kimura — Page 6

input pattern. This may be a mixed blessing since characters that appear identical when complete
may be formed by very different processes. (For example, a nine may be formed from the
bottom to the top, or vice versa, or by separate strokes for the stem and the circle.) They also
note that an on-line recognizer can always request clarification of ambiguous data, and that users
tend to adapt (even unconsciously) to forms that are more palatable to the recognizer,

Much of the significant research in this area is regrettably obscured by the commercial potential
of pen-based computers. Gibbs [1993] gives vendor-provided data on several commercial
recognizers. With welcome candor, Go Corporation has published its work in handwriting
recognition within the PenPoint Operating System [Carr and Shafer 1991]. GO’s recognition
engine appears typical of commercially crafted recognizers (as opposed to research vehicles). It
includes hundreds of prototypes for its alphabet of interaction: 82 symbols (52 uppercase and
lowercase letters, 10 digits, and 20 punctuation marks) and 50 gestures. The system allows for
training sessions by a particular user in any of these symbols and gestures. These training
sessions are distinct, that is, not integrated into the normal recognition activity.

In the recognition of what Carr and Shafer describe as "neatly printed” characters (after some
training of the users), the PenPoint system recognizes on average of 94% of the 62 symbol set
that omits punctuation. (Although, there is rich provision for context support such as Viterbi
mappings, dictionary support, and constrained fields, the performance reported in this paper
focuses on the hardest task: context-free recognition.) Oddly, when the input is constrained to 10
digits, the recognition barely improves, to 92-95%. When constrained to 26 lowercase
characters, the recognition rate is 89-93%. Since these results were reported, Go has released an
improved version of the recognition engine. We are currently in the process of compiling our
own data on its performance.

The Penpoint recognition engine requires about 64 KB of code and about 128 KB of static data.
On a 16 MHz 80286-based system, it can perform about 3 recognitions per second. This is close
to the fastest sustainable writing speed with segmented characters. Other recognizers in the
Gibbs [1993] review claim speeds (on 16 MHz 80286-based systems) in the range of 4 to 20
recognitions per second. The highest recognition performance for the Western alphabet, 98%,
was claimed by Communication Intelligence Corporation. (In addition to Gibbs, see also
Wagoner 1993.)

These performance data set the stage for considering the usefulness of the techniques introduced
by the research vehicle, SCL. Before considering that, we turn to the issue of feature abstraction:
no recognizer can outperform the abstraction of features available to it.

2.5 Energy-based feature abstraction

The learning environment places a number of demands on the interface, and especially on the
choice of handwriting recognizers. The system must accommodate a potentially very large
market. More than a million children in 18 countries now take Kumon classes. (For more
information about Kumon and the Kumon Machine which will use SCL, see Fuller [1991]) Yet
the system must respond to the particularities of the individual user. This requires a recognizer
that is general and universal enough to permit any Kumon instructor, parent, or student to enter

SCL~ October 1993 — Fuller and Kimura — Page 7

initial data such as name, address, goals, etc. Yet as the learning sessions commence, it must
respond quickly and accurately to the input from a relatively small number of users -- typically
just a child or a few in one family. In school settings this might include a class sharing a system.

Much of the research about handwriting recognition (as noted above) has centered on off-line
recognition and consequently has rarely considered the dynamic features associated with the
actual creation of the characters. Our research suggests that some dynamic features of
handwriting, especially those described below, might be unexpectedly uniform across
international populations, and strongly stable in individuals through time, thus meeting both
elements of the above demands.

Our system samples the velocity and acceleration of the pen as it creates digits, letters, and
gestures on the two-dimensional digitizing tablet. (Although the writing instrument is more
properly a stylus than a pen, these systems are universally known as pen-based, and certainly not
stylus-based. Therefore we use "pen.") The germ of the notion of decoding handwriting with
energy-based features was in the method used by document examiners. A forged signature may
be detected by microscopically examining its sharp turns (such as the top of a "t" or the bottom
of a "v"). Atnormal writing speed, the centrifugal force of the pen throws off tiny droplets of
ink as the pen "rounds a bend." At the slower speed of most forgers, these droplets are absent or
much closer to the inked line. The forger is able to mimic the graphical (static) features of the
original, but not the dynamic. Conversely, the real signer may vary the pattern somewhat from
signature to signature, but as this work and that of others (e.g. Wagoner 1993) shows, the
velocity and acceleration features tend to remain constant.

In October of 1991, the authors were discussing the CELP algorithm for compressing voice
(Codebook-Enhanced Linear Prediction). It derives its advantage to some degree from the
consistent use of musculature and vocal apparatus by human speakers. It occurred to us that this
might also be true of writers. For example, we write a "9" as successfully with our eyes closed
as with them open. The graphical feedback, while useful for positioning the digit, is unnecessary
for creating it. The signal is apparently encoded in what is popularly called "muscle memory" --
conceivably in the form of amount of energy to be dissipated in particular muscles to achieve the
task. The notion of such "ballistic" muscular action (i.e. unmediated by feedback) was first
proposed by Lashley in 1917, and applied to signature verification by von der Gon and Thuring
in 1965. Herbst and Liu [1982] used this model to construct a signature verifier. They observed

"Feedback control in response to error signals from the eyes or the hand requires on the order of
200 ms while the time it takes for the individual muscle forces used to generate the strokes is 30
to 100 ms. These rapid motions are characterized by the fact that their durations are
predetermined by the brain, and that the agonist and antagonist muscles for each degree of
freedom are alternately energized.”

It should be possible to recover this energy encoding via the velocity and acceleration of the pen
to a degree sufficient to determine the character or gesture being created. (Cf. Thomas [1972],
289-293]. Acceleration of the hand on the writing surface was used by Herbst and Lin [1982] in
their signature verification system (cf. Wagoner [1993]). They used quite sophisticated
hardware: x- and y- accelerometers, and resistance foil-strain gauge to capture "downward”
pressure as well; then the data was passed through a linear phase recursive digital filter.

SCL— October 1993 — Fuller and Kimura — Page 8

Tappert et al. [1990] indicate the difficulty of making useful comparisons given the wide
diversity of experimental environments (e.g., writer dependency, size of alphabet, hardware
capabilities). The best reported results for Western alphabets were in the range of 95% to 97%
with recognition requiring from .1 to 1.0 seconds per character. This is a bit better than the
results reported by GO with PenPoint. Recently some commercial providers have claimed as
high as 98% recognition [Gibbs 1993].

2.6 Grid-based feature abstraction

For all the advantages of energy-based features and their strong success in identifying digits, it

became clear that a stronger recognizer could be constructed from combinations of feature sets

than from any single feature set alone. To our dynamic features (velocity and acceleration), we
needed to add some static features. Many have been described in the literature.

Fukushima’s Neocognitron [1988] includes several layers of neural discriminators to detect
features such as the orientation of pattern subsets. These are progressively associated in more
abstraction in higher layers. Nellis and Stonham [1992] employ a very different learning engine
(random access memory units combined into associators), but indicate the power of clever static
feature abstraction. Their work also supports the effectiveness of varying prototypes and of
disabling infrequently-used classifiers. Recognizers may be combined hierarchically as well (cf.
Fontaine and Shastri [1992], Kohonen [1990]).

Ultimately we settled on a relatively unsophisticated system for considering static features. Rob
Grothe [1991] suggested a simple 3 by 3 grid overlaying the bounding rectangle of the
(smoothed) input pattern (cf. Fontaine and Shastri [1992]. Lin [1982] used a similar 2 by 2
grid.). Our grid-based features are described below.

3 The SCL model
3.1 Requirements and environment

SCL is intended to be a general input recognition system for pen computers used by Kumon
mathematics students. Currently about a million learners (75% elementary) employ Kumon as a
supplement to the mathematics taught in regular schools [Fuller, 1991]. Input patterns vary from
alphanumeric characters to geometric shapes such as circles and rectangles. Users vary from
young children to adults. Thus the system must be open-ended; its implementation demands
adaptive coding for a complex environment, embracing different character sets and different
handwriting styles. It must remain constantly in the learning (training) mode. When the system
mistakes the input pattern, the user may be asked to enter the correct response; the system will
then train itself until it recognizes the new pattern consistently. SCL should learn new characters
rapidly enough (perhaps though background processing) not to interfere with the stream of input
from the user. Finally, it is desirable for SCL to be able to recognize digits that are not written in
preprinted boxes; that is, it should be able to recognize multi-stroke digits in real time,
performing its own segmentation of the input strokes into digits.

SCL— October 1993 — Fuller and Kimura — Page 9

3.2 SCL mode] and algorithm

The schematic definition of SCL is shown in Figure 1. SCL receives the input pattern X and
outputs the category name C. If the system fails to produce the correct category name, then the
user gives the correct name to the system as the teaching value Y. The system learns the
association between X and Y so that it may respond correctly to a similar input X next time.

An SCL recognizer consists of a set of N (>0) prototype units (attention subsystem) and a

Selector (orienting subsystem). Each prototype unit, n; (1 £ 1< N), is responsible for identifying
all the input patterns that belong to a particular subcategory (prototype). When the input pattern
X is given, the output value, n{X), from the unit n; represents the certainty of X belonging to the

subcategory of the unit. Or equivalently, it represents the similarity between the input pattern
and the combined prototype pattern of that subcategory. We assume that the output of each
prototype unit is normalized to [-1.0,1.0];ie., -1.0 < n(X) £ 1.0.

C

I Selactor I

P S g Sy

H Y I, [Ty
Cl' SEARERNE x| 4 By

Prototype Units

Figure I SCL schematic

The Selector selects, as the winning unit, the unit whose output is larger than a threshold value
and the largest among those above the threshold. Then it produces the name of the category to
which the winning unit belongs as the output of the SCL system. If there is no winner, then the
input X is considered to be a member of a new subcategory, and a spare (unused) prototype unit
is assigned to represent it. If no spare unit is available, the unit winning least frequently,
presumably representing the least significant subcategory of input patterns, will be assigned to
represent the new subcategory.

If the winning unit is wrongly selected, the teaching value, Y, is used to train the prototype units
as follows: The units of the category Y that respond to X with low outputs will be trained to
increase their outputs for X up to og. Those units representing categories other than Y that
respond to X with high outputs will be trained to decrease their outputs down to 6;. We assume

that each unit is trainable to produce high output values for members of its subcategory and to
produce low output values for non-members.

SCL— October 1993 ~~ Fuller and Kimura — Page 10

Associated with each prototype unit, n;, the system maintains the following information: the
name of the category, Cj, to which the subcategory belongs, a set of exemplar input patterns, Bj,
that are selected by nj, and the frequency, f;, the number of times nj has won the competition.
Initially each unit has the null category name, A.

The algorithm for the Selector is given below:

Parameters: -10 <o, <p <oy <10

Initialization: Ci=A, £j=0, B; :=¢ (the empty set) for 1 <i<N.
Recognize: 1 Get an input pattern X and present it to the n;.

2 K={ilG#Aand n;(X)>p}.

3 IfK=¢ then Produce A; Goto 7.

4, Find j such that nj(X) =max{ ni(X)lie K}.

5. Produce G

6 If accepted then Goto 1.
Train: 7 Get the correct category name Y,

8 K:={ilC =Y and n{X) > p}.

9. If K=¢ then Goto 14.

10. Find j such that nj(X) =max{ ni{X)lie K}.
Add exemplar: 11. szszU {X}, fj:: fj+1.

12. Train n; with {(X,1)}10{(u,1) lu e Bj} until ni(X) > oy

13. For all i such that i € K and ny(X) 2 o,

train n; with {(X,~D}u{(u,1) lue B;} until n(X) <op; Goto 1.

Add prototype: 14. K:={ilC=A}.

15. If K= then Select j € K; Goto 17.

16. Find j such that f; =min{ f; |] <i< N}
Initialize unit: 17. fj:=0; B =¢; C;:=Y; Goto 11.

When the input pattern X js received, each unit predicts the certainty that X belongs to that unit’s
subcategory. The unit, ny, with the largest output value greater than the vigilance p, is selected
as the winner, and its category name C; is given as the output. If the output is correct (A never
being correct), no prototypes are changed. Otherwise, the system receives the correct category
name Y from the user. If there is no winner, but a unit remains with the empty name A, it
becomes the winner with Y as its category. If there are no more units with A, then the unit with

the smallest frequency count will become the winner after re-initializing its settings. The
winning unit updates its history set B, by concatenating X to it and increments its frequency

count f;. Then the winning unit is positively trained on all the patterns in B; until the output
value n;(X) becomes greater than the high confidence value, oy, for the input pattern X. Those
losing units n; whose category name is not Y and whose output value n;(X) is greater than o, get

SCL— October 1993 — Fuller and Kimura — Page 11

positively trained on all the patterns in B; as well as negatively trained on X until n;(X) becomes
less than the low confidence value ;. Losing units with category name Y are not trained.

3.3 Refinements to the model and algorithm

Extensive experimentation led to a number of refinements in the training regimen. In early
experiments, SCL tended to be overly sensitive to small differences in the patterns, resulting in
nearly as many prototypes as exemplars. This could partly be compensated by low values of p,
but was further strengthened by dividing the training into phases with different rules. The initial
training (while gathering exemplars) was limited (usually into 1000 or 2000 backpropagations)
for each new prototype. Exactly half of this new training was for the newest prototype; the rest
was for prototypes that either responded too weakly to their own patterns (<Gyy) or too strongly to

other patterns (>Gy). After the available patterns have all been presented, some number of these
patterns (fewer than half) have been assimilated into the exemplar sets, B;. The prototypes then
undergo training without competing for new exemplars.

This method helped, but the performance reached a plateau caused by unfortunate collection of
exemplars. Since the system starts "from scratch” with no prototypes, the first prototype for a
category is quite indiscriminate. As it settles down, the added wisdom of more mature weights
may cause the first few exemplars to become embarrassing oddities compared to its current
profile. For an actual example, one digit prototype, ng, gathered eights made with two circles
("snowrnan eights"), but since it was the only eight collector around, it eventually gathered other
eights made by starting at the central intersection ("inside-out eights"). By this point in the
training, another prototype, n;, had started gathering the snowman eights which were no longer

within p similarity of the original n, prototype. Obviously, it would be desirable to have ng give
up its snowman eights to n;. This desirable result is achieved by permitting one, two, or three
"shuffles” during the training. A shuffie frees all exemplars (B;:= ¢ for 1 <i £N). Prototypes
retain weight values to compete in a new round of exemplar-gathering. Those which gather no
exemplars are removed. The others generally gather a much better coordinated set of exemplars,
leading to better classification performance.

3.4 Contributions of SCL as compared with similar learning models

The distinctive aspect of Supervised Competitive Learning is precisely its "competitiveness.” As
with all competitive systems, the prototype modules compete to recognize the input pattern.

SCL modules also compete to gain a collection of exemplars, and they compete for training time.
Modules with more exemplars (larger IBjl) receive proportionately more training backpropaga-
tions (until reaching the oy and o criteria). The system is self-initializing. It builds classes
from the stream of incoming patterns, and does not depend on "exemplary” exemplars to perform
robustly, as do many pattern recognizers, such as the Neocognitron. The model of Reilly et al.
assigns precisely one exemplar/prototype per "neuron" and then trains it by appropriately extend-
ing or contracting its range of influence (its "turf"). SCL’s training regimen rewards prototypes
which successfully draw more exemplars, presumably encouraging the generalization that
emerges from the natural "averaging" of the backpropagation through the shared weights.

SCL— October 1993 — Fuller and Kimura — Page 12

Next we briefly examine the derivation of features used as input to SCL. This is divided into the
energy-based and grid-based features.

3.5 Energy-based feature abstraction in SCL

We adopt the convention introduced in PenPoint [GO Corporation 1991] of defining incoming
patterns (digits, letters, or gestures) as "scribbles." A scribble S is composed of one or more
strokes Ks, which in turn are each composed of one or more points.

S E(KIKQ...Kk)

where each K, = (P, Ps, - - PSp)
S

where k is the number of strokes in S, and p; is the number of points in stroke K.

The intent is to represent the average velocity and acceleration in the x and y directions for each
of the sampling intervals of the scribble. The algorithm assumes that the point sampling period
of the input digitizer is constant over time. Actually, it stays close to 5 ms, but varies slightly.
This doesn’t materially affect the algorithm’s success since variances are averaged out over
many samples.

The points of all strokes of the scribble are gathered into unified arrays

X =(Xp11Xp12 - XP1p1 XP21 - XPkp;)
Y = (¥p11 YP12 - YPIp1 YP21 - YPkp;)

and p; is the total number of points in all strokes. The differences between successive points are
loaded into velocity arrays Vy and V. The differences between successive velocities are
stored in acceleration arrays Ay and Ay. The number of velocity sampling intervals Vsamp 18
fixed for a given network, but networks were built for several values of Viamp from4to 9. A
typical value is 6. Vsamp determines the boundary points by, of the sampling intervals. For each

velocity interval, we calculate the average velocity, and set the corresponding velocity feature
equal to this average divided by the maximum velocity for the entire scribble.

Vmax = max(VXj) 0<j<p
bm
Vxave, = (2 V) 7 (Vmax * (b - b))
&m j
J=by

SCL— October 1993 — Fuller and Kimura — Page [3

Only this final operation uses real values; the prior calculations may be handled as short integers.
Similar normalized velocities are calculated for the y velocity vector, Vy, and for the x and y

acceleration vectors, Ay and Ay. These normalized ratios serve as real-valued inputs to the SCL
recognizer. See Fuller [1992] for a fuller explanation of the use of energy-based features.

3.6 Grid-based feature abstraction in SCL

Although the use of energy-based features gives quite respectable recognition performance in
many settings, it was not found satisfactory for recognizing letters. The diversity of handwritten
letters greatly surpasses that of numerals, as the following examples from our data illustrate. In
the following paragraph, the 4-digit numbers refer to the tag numbers by which we cross
reference the writers and sequence of writing. The lower case letters in parentheses indicate the
intended character.

Character 2128 @ (which is actually a ’c’) could be mistaken for '’ or ’e.’ Compare it with

this "e’ 5147, €. In this pair, h l‘f11238 (n), the first, strongly resembles 3179 *h.” Consider
the following word:

5505

These are the letters 5168 (g) 5108 (a) 5170 (g)1289 (s), that is, the word "gags." The following

U\ 4308 (u) resembles ’n.” This ﬁ 5103 (a) resembles a 'q.” Finally, this 6280 (r) would
pass for a ’v’ much more easily than an ’r.’

Not surprisingly, human recognition of context-free handwritten characters peaks at 97 to 98%.
We humans compensate by using context information to supply reasonable guesses. We needn’t
belabor this point. Ask any school teacher or pharmacist!

Velocity and acceleration are first and second order features of input patterns. In view of the
difficulties illustrated above, it was decided to present some "zeroth order" graphical features to
SCL. Several were tried including grid-based orientation features and angular position, velocity,
and acceleration. After numerous experiments, we settled on a simple grid-based scheme
suggested by Grothe [1991].

For each input scribble, the bounding rectangle is divided into thirds in each direction, creating
nine zones (numbered O to 8 horizontally from the top left as seen in Figure 2). For each consec-
utive pair of points in each stroke (but not crossing stroke boundaries), we calculate the zone into
which the majority of the segment falls. Within each zone are four orientations enumerated 0 to
3: horizontal, right diagonal, vertical, left diagonal. We determine the arctangent of the segment
(making the y difference positive to limit the angle to the first two quadrants). Then we add the
length of the segment to the selected orientation of this zone as follows:

horizontal: 0 <=arctan B < /8 OR 7n/8 <=arctan B <=1t
right diagonal: /8 <= arctan 3 < 3n/8

vertical: 31/8 <= arctan 3 < 57/8

left diagonal: 5r/8 < arctan 3 < 77/8

SCL— October 1993 — Fuller and Kimora — Page 14

These comparisons are done with pre-calculated constant ratios rather than by calls to the
arctangent function in the interest of efficiency. When this has been completed for all point
pairs, the values are normalized by dividing each of the 36 length sums by the total length of all
36 values.

£y
W (102,65) 115,83}

(1p7.51)
{104,60)

{183.36)

) 1 2

103,51}

49

{10247}

3 4 5

. 40)
(102,41 (1p7.40) {11930
((:02,37}
21,37}

(123,35)S

{

6 7 8
{+21.27)
dﬂ.?‘) 321 (313.21} j (117,23) .
* e e = Figure 2 The numeral ''5" in the feature grid

3.7 Additional considerations in feature computation

In actual practice, several refinements proved necessary. Since the on-line system is vulnerable
to the whims of the user, some safeguards are required. Input is limited to 1000 points per stroke
and 10 strokes per scribble; data beyond these are discarded. Furthermore, the feature
computation would be very unwieldy for 10,000 points since SCL must recognize characters in
real time. We ran tests using larger quantities of sampled points, but recognition was not
improved by using any more than 60 sample points. If the incoming scribble has more than 60
points, the preprocessor performs a stroke-wise reduction to 60 points (for the entire scribble) by
selecting points at constant intervals throughout the strokes.

It was also found helpful to exponentially smooth out anomalies in the digitized input. This is
similar to weighting the past several points in decreasing degree, but requires the retention of
only the last (smoothed) point. This technique is widely used by statisticians to smooth data in
quest of significant trends. For an example, see pages 163-5 of Fuller [1987].

Finally, the selection of the velocity and acceleration intervals will not necessarily coincide with
stroke boundaries. This is potentially useful in making the "virtual" stroke between the end of
one stroke and the beginning of the next susceptible to the usual measures of velocity and
acceleration. As shown below, this assumption yielded fine results. However, the happenstance

SCL— October 1993 — Fuller and Kimura — Page 15

nature of the "fall" of the break (e.g., in a two-stroke "4") introduces an unnecessary oddity in the
input feature vector. In later work, we adjusted the sampling interval to "stretch” to the nearest
stroke boundary, and abandoned all data related to the "virtual" strokes between the collected
("actual") strokes. This resulted in both improved performance of the recognizers and reduced
complexity (fewer hidden units) in the prototype units.

3.8 Network architecture

Network architecture began with simple considerations of primitive backpropagation neural nets
[Rumelhart and McClelland 1986] with extensions to include connections directly from input to
output [Kimura 1990].

Each unit is an acyclic backpropagation net consisting of 3 layers; typically, 27 input units, 2
hidden units, and 1 output unit. The input layer is fully connected to both the hidden layer and
the output layer. The hidden layer is fully connected to the output layer. There are no lateral
connections, that is, no connections within the same layer. We used the activation and error
functions of Kalman and Kwasny [1991, 1992], namely,

a=AX)=(1-eX/({+eX (activation function)
e =Z(c2/(NE)=2(c2/(1-2ad (error function)

¢ is the difference between the training value (1.0 if correct, -1.0 if incorrect) and the actual
activation value of the prototype unit (which ranges from -1.0 to 1.0). The learning rate and the
momentum value (1 and o in the tables below) were typically fixed to 0.0005 to 0.001 and 0.4 to
0.9, respectively. Momentum tends to let the networks escape from local minima. (Cf. [Becker
and le Cun 1988], [Fahlman 1988], and [Shynk and Roy 1988].)

4 Experiments
4.1 Early recognition performance with backpropagation

The first task for SCL was to recognize handwritten digits, O - 9, collected on a pen-based
Lombard computer from GO Corporation. The data is captured by the x and y movement of the
pen on a digitizing tablet. For example, the raw data for the five scribble shown in Figure 2
above is sampled by the tablet as:

108 5 2
15 103,56 103,51 102,47 102,41 102,37 107,40 116,40 119,39

121,37 123,35 121,27 117,23 113,21 107,21 102,21
4 104,60 107,61 109,63 115,63

This scribble has the identification tag 108, value 5, and consists of 2 strokes. The first stroke
consists of 15 points and the second 4 points. The velocity is divided into 7 intervals and the
acceleration is divided into 6 intervals in these early tests. The average X and Y components of
velocity and acceleration for each section are divided by the maximum values to generate 26
floating point features, and the stroke count is used as the 27th feature.

SCL— October 1993 — Fuller and Kimura — Page 16

SCL was limited to 40 prototype units (N = 40). These early experiments used only energy-
based features to recognize handwritten digits (600 test digits after "Trials" backpropagations on
800 training digits) collected from 20 subjects on the Lombard computer. A trial is one
backpropagation for one prototype unit. In the first experiment below, for example, since 19
prototypes in total were generated, each unit was trained an average of 22,000 times. After the
training iterations, the system was tested by 600 digit patterns obtaining 92.7% recognition. The
column "Time" is training time on a NeXTstation (25 MHz MC68040-based; rated at 15 MIPS).

SCL Parameters Hidden Prototypes Time
n oy p Oy units created Trials (min) Recognition
(GO-collected digits -- Energy only)
.0005 0.5 -0.10 -0.5 4 19 211,761 <20 92.7%
.0005 0.5 -0.10¢ -0.5 4 26 2,791,989 <250 94.8%

(GO-collected digits -- Energy/Graphical)
.0010 0.3 0.05 -0.5 4 35 648,287 32 97.5%

Table 1 Early SCL Results

Several later experiments used a combination of 57 to 63 real-valued features (stroke count, 20 to
26 energy-based features, and 36 grid-based features). These experiments with our actual pen-
based prototype (Kumon Machine, or KM) used 1600 digits (1280 train, 320 test) and 4160
letters (3328 train, 832 test). Improvements to the preprocessing of feature extraction and the
reduction to two hidden units significantly sped up learning convergence. The 63 features,
training set, and testing set are identical to those used for SCL fuzzy logic-based digit training
reported in Table 3 below, permitting comparison of SCL under the two types of learning
modules,

SCL Parameters Hidden Prototypes Time

n oy p Gp units created Trials (min) Recognition
(KM-collected digits -- Energy only)
.0010 0.9 0.10 -0.5 2 39 712,466 9 98.4%
(KM-collected digits -- 63 Energy/Graphical features)
.0010 0.8 0.10 -0.5 2 29 65,921 2 97.5%
.0010 0.5 ©0.05 -0.5 2 35 906,315 19 99.7%
(KM-collected letters -- Energy only)
.0010 0.9 0.10 -0.5 2 144 3,383,493 <200 91.1%
(KM-collected letters -- Energy/Graphical)
.0010 0.9 -0.10 -0.5 2 139 2,079,554 139 95.2%
.0010 0.9 -0.05 -0.5 2 143 3,271,052 181 95.7%

Table 2 Improved SCL Results

SCL— October 1993 — Fuller and Kimura — Page 17

4.2 Recognition performance with fuzzy logic

In another paper [Wang, Kimura, and Fuller 1992], we reported the results of using prototype
classifiers based on fuzzy logic. Each such prototype unit responded with a number between zero
and one indicating the degree of membership in the set defined by the exemplars associated with
that unit. Each new exemplar requires only a recalculation of the weights akin to a rolling
average. This greatly reduces the CPU load. Such fuzzy logic has no counterpart to the negative
training that was found necessary to prevent "greedy" prototype detectors from seizing
neighboring turf. For this reason, the test results were not quite as high as those for
backpropagation. The results are reported below as Table 3. Similar tests with a gesture set
resulted in 91% recognition. See Wang [1992] for a fuller description of SCL with fuzzy logic.

Parameters Confidence Numberof Training Recognition Rate
o E F z Valuep Prototypes Time (Min.) Train(800) Test(600)

-1 13 1 1 0.8 88 4 96.62% 95.67%
-1 1 1 1 0.85 88 4 96.88% 96.83%
-1 1 1 1 0.9 157 11 99.50% 97.17%

Table 3 SCL Results using fuzzy logic prototype units

4.3 Training schedules, preprocessing and the complexity of individual prototype units

In our earliest experiments with SCL, the individual recognizers embedded significant
complexity in the form of 4 to 8 hidden units. In experiments with recurrent neural networks
after the model of Servan-Schreiber, Cleeremans, and McClelland [1988], we found that we
could maintain comparable performance with simpler prototype units. In fact, by concentrating
the temporal data within a pool of shared hidden units, the individual prototype units could be
reduced to no hidden wunits, or linear classifiers.

This is emblematic of a trend found throughout this investigation. As preprocessing and
scheduling of training have become more sophisticated, the complexity of the prototype
recognizers has been sharply reduced. The reduced complexity fully compensates the additional
time required for preprocessing and testing for inclusion in the training schedule. The overall
training and recognition times have fallen significantly.

No single element can account for the improvements, but several milestones deserve mention.
As described above, the earliest versions of the energy-based features were blind to the mapping
of the segmentation imposed by the sampling process and the natural segmentation of the con-
stituent strokes of the character. Since many characters have only a single stroke, this practice
was less than disastrous (and simplified the preprocessing). Later, SCL adjusted the sampling
segments to coincide with stroke boundaries, and simultaneously to disregard the implicit accele-
ration associated with the movement from the end of one stroke to the beginning of another.
(This movement may be considered a "virtual" stroke.) This added to the preprocessing burden,

SCL— October 1993 — Fuller and Kimura - Page 18

but improved training and recognition performance.

The greatest improvement came through the shuffling of exemplars described above. This led to
a more "mature” selection of exemplars (i.e. exemplars which are all closer to the final weight
space of the trained prototype units). Experiments involving various schedules of exemplar
competition and training (including one, two and three shuffles with appropriate training between
them) show no significant differences. Although "shuffling" and subsequent retraining adds to
the "overhead" of the training task, it has led to simplified prototype units (the prototype units
reported below are linear) and more rapid weight convergence.

4.4 Current results

The following table summarizes results incorporating the above-described improvements. We
also report a more broadly-based performance statistic: the five-fold cross validation after Weiss
and Kulikowski [1991]. For a file of either digits or letters, we divide the file into fifths, then run
five training sessions where one fifth is held in reserve for testing and the other four fifths are
used for training. This number is shown in Table 4 as the average of the five sessions.

SCL Parameters Hidden Prototypes Time
n oy p Cp, units created Trials (min) Recognition

(KM-collected digits -- Energy only)
.0010 0.7 0.00 -0.5 g 31 1,178,887 4 100.0%
Average for all five sessions: 99.0%

(KM-collected digits -- 63 Energy/Graphical features)

.0010 0.7 -¢.15 -0.5 0 28 118,768 <1 99.0%
.0010 ¢.7 -0.15 -0.5 0 29 755,302 5 100.0%
Average for all five sessions: 99.5%

(KM-collected letters -- Energy/Graphical)

.0010 0.7 -0.05 -0.5 0 113 452,454 4 90.0%
.0010 0.7 0.00 -0.5 0 121 7,635,982 71 97.8%
Average for all five sessions: 96.6%

Table 4 Current SCL Results

4.5 Recognition speed

Each recognition requires a forward propagation through all the prototypes in the search for the
maximal activation. Thus, the recognition time is approximately O(p+n) where p is the time for
preprocessing and n is the number of prototype units. With 122 prototypes, lowercase alphabetic
recognition on a 25 MHz MC68040-based NeXTstation takes about 15 ms of which about 2 ms
are required for preprocessing. This corresponds to about 65 characters per second. A numeric
recognizer (with a third the number of prototypes) requires the same 2 ms for preprocessing and
about 4 ms for the forward propagations, or 6 ms total.

SCL— Qctober 1993 — Fuller and Kimura — Page 19

4.6 Behavior of prototypes in gathering exemplars

Figures 3 and 4 illustrate SCL’s performance in gathering exemplars that are "similar” in the
combined energy-based and grid feature space. Figure 3 shows all 27 prototype units of a digit
recognizer. Note that Prototype 13 garnered one-stroke fives and left the two-stroke fives to
Prototypes 12 and 14. Among the eights, Prototype 21 gathered the "usual eights, Prototype 22
gathered the eights made by starting at the center and forming the stroke in an upward
counterclockwise direction, and Prototype 23 gathered eights formed by starting at the center and
upward in a clockwise direction. Prototype 24 gathered "curly" nines. Prototype 25 gathered
"usual” nines, and Prototype 26 garnered two-stroke nines.

Following are several examples of training set members selected by prototype units as being
“similar" among the letters used for training. Note that with a trivial exception (one letter), only
two prototypes were enough to categorize all examples of the letter ’r.

4.7 Confidence

An independent measure of confidence in a recognition helps to predict refection rates if
particular levels of performance are mandatory. If a recognizer responded "perfectly” to an
input, the appropriate prototype unit would show the highest possible activation for the sigmoidal
function, 1.0. Other units would respond with the lowest activation, -1.0. We define the
confidence of a recognition as the difference between the highest activation for a category and
highest activation for any second category divided by this limit of 2.0. In other words, the
confidence of a recognition r is

Cr=(?\.i-7hj)/2 A2 A 2 Ay allk: Ge# Ciand k 1]

where A, is the activation output by nj, the ith prototype unit

SCL exhibits a high correlation between confidence and correctness. Recent results with digits
(the average of the five-fold cross validation is 99.5%) limit the relevance of this measure, but it
is valuable in the recognition of letters and gestures. The following table illustrates the
correlation between confidence and correctness. In this particular test, SCL identified 97.4% of
the test set (lowercase letters) correctly. That is, it correctly identified 760 of the 780 test letters.
In 13 of the 20 cases of misclassification, the second highest guess is correct. For 373 of the 780
recognitions (47.8% of the test set), the confidence was above 0.45; for this group — nearly half
of the test set — the recognizer was 100% correct. For 596 of the 780 recognitions (76.4% of the
test set), the confidence was above 0.25; the recognizer was 99.5% correct for these. For 735 of
the 780 (94.2%), the confidence was above 0.10 and the recognition rate was 98.5%.

Figure 3. Digit recognizer with exernplars gathered by the prototypes (Next page).

Figure 4. Subset of a letter recognizer with exemplars gathered by the prototypes (Second page
Jfollowing)

SCL— October 1993 — Fuller and Kimura - Page 20

Prototype 0 Ascli value 48 (D), Frequency 18, 8 lralners:

Slele0lel0ald

Prototype 2 Ascii value 48 (0}, Frequency §8, 28 trainers;

OOOOOO0BCO0OGOO00

Prolotype 4 Ascli value 49 (1), Frequency 265, 40 trainers:

Lt eerii e

Protolype & Ascii value S0{2), Frequency 272, 40 lrainers;

22272222222 22222220

Prototype 8 Ascii value 51(3), Frequency 277, 40 frainers:

5338533%3353555%5%33

Proletype 10 Ascli valug 52 (4), Frequency 150, 40 frainess:

Gl e Yl bty e oo Pt ey

Protolype 12 Ascii value 53 (5}, Frequency 174, 40 Irainers;

LS 555 55 55 Xy

Prototype 14 Ascii value 53 (5), Frequency 50, 21 trainers:

55555555555 rIS5e90ss

Prototype 16 Ascli value 54 (), Frequency 128, 40 irainars:

6EbbblblbC6b666664¢

Protolype i3 Ascli value 55(7), Frequency 172, 40 lrainers:

Yt el avl e ity

Prototype 20 Asciivalue 55(7), Frequency 28, 12 tralners:

TN

Protolype 22 Ascil value 58 (8), Frequency 54, 24 trainers:

EEEREELEsE 55068868

Prololype 24 Ascli value 67 (9), Frequency 119, 40 lrainers:

7727797 77792229999

Prolotype 26 Ascli value §7 (9), Frequency 18, 8 tralners:

TITTTTRY

Profolype 1 Ascil value 48 (0), Freguency 261, 40 traingrs;

CCO00CIOOODDOOOOON

Prololype 3 Ascii value 45 (0), Frequency 1, 2 lrainers;

o0

Protolype § Ascil valve 49 1), Frequency 28, 13 trainers:

VAPARAL TR

Protolype 7 Ascii value 50(2), Frequency 13, & Irainers:

222202

Prololype 9 Ascii value 51(3), Frequency 11, 6 iraingrs;

93333

Protatype 11 Ascii value 52 (4), Frequency 139, 40 trainers:

FabUl-7¢ 4444949 944

Prototype 13 Ascli value 83 (), Frequency 72, 32 trainers:

CEE555555558 54654555

Prolotype 15 Ascii value 54 (6), Frequency 123, 40 triners:

b6bbbbbbbelbbbbbbil

Prolelype 17 Ascii valug 54 (), Frequency 36, 16 trainers:

oo CGEGrmnesbsraGs &

Prototype 12 Ascii value 55(7), Freguency 93, 40 frainers:

PAIRPPPAFACT AP T 7

Protolype 21 Ascii value 58 (8), Frequency 195, 40 trainers:

BEBREESERSTREECEEEL

Prolotype 23 Ascii value 56(8), Fraquency 34, 14 frainers:

ESKXFEEEEELSFEEX

Profolype 25 Ascli value 57 (3), Frequency 41, 40 tralners:

494894999799 7TT7 9

Figure 3. Digit recognizer with exemplars gathered by the prototypes

SCL— October 1993 — Fuller and Kimura — Page 21

Protolype 0 Ascil value 97 (a), Frequency 1483, 32 tralners:

2 A0 AR o ooacadloa

Protalyns 3 Ascll valug 97 (a), Frequency 130, 8 ainers:

2 PFTE G

Prafotype ¥ Ascli value 97 (@), Frequency 245, & trainers;

ddAadadA

Prototype ag Ascli value 107 (), Frequency 3649, 0 trainers:

KKEKEKK K £E

Pratotype 58 Ascil valize 107 (K), Frequency 276, 3 fraingrs:

% bt

Profotype 53 Ascil value 107 (K), Frequency 387, 13 Irainers:

koo de o b KKIRKKK

Proloiype €7 Ascii value 112 (p), Frequency 953, 40 lrainers;

FEPPRCPPYPPPPPPPEP

Protolype 70 Ascli value 1 52{p), Frequency 278, & trainers:

PIPRP PP

Protolype 73 Astli value t13{g}, Frequsncy 2032, 46 Irainers:

{91012, 772%%8%%

Frotetype 76 Ascii value 113 (), Frequency 248, 9 trainers:

Frrer v Ry

Protolype 77 Ascii value 114 {r), Frequency 2515, 40 trainers;

Prototype 1 Ascii value 97 (2), Frequency 1028, 40 trainers:

oot dadlR0R e ace AGH

Prolotype 5 Astiivatue 97 {a), Frequency 263, 6 rainers;

R9Q094

Protetype 49 Ascil value 107 (), Frequency 308, 35 trainers:

Jebe ke ke ke le lalals e lela

Prototype B1 Ascli value 107 (K), Frequency 528, 40 tralners;

Lkt el b L k&t

Pratotype 68 Ascii value 112 (p), Frequency 1619, 37 trainers:

CrePPPPPRRRPRPPPTP

Profolype 71 Ascll value 112 (p), Frequency 985, 10 trainers:

PerIEPEPEE

13 (q), Frequency 992, 40 frainers:

10845959927

Prolotype 74 Ascii valu

94393

Prototypa 79 Ascii value £14 (1), Frequency 228, 7 fratnars:

e N e e S e G R A eV Y

Figure 4. Subset of a letter recognizer with exemplars gathered by the prototypes

SCL— October 1993 — Fuller and Kimura — Page 22

Confidence right of totai ratio cumulative cumulative

factor (in this range) % of test set performance
1.00: 0 of 0 0.0% +=> 0.0% 0 of 0 0.0%
0.95: 4 of 4 100.0% +=> 0.5% 4 of 4 100.0%
0.90: 2 of 2 100.0% +=> 0.8% 6 of 6 100.0%

0.85: 18 of 18 100.0% +=> 3.1% 24 of 24 100.0%
0.80: 17 of 17 100.0% +=> 5.3% 41 of 41 100.0%
0.75: 20 of 20 100.0% +=> 7.8% 61 of 61 100.0%
0.70: 30 of 30 100.0% +=> 11.7% 91 of 91 100.0%
0.65: 3% of 39 100.0% +=> 16.7% 130 of 130 100.0%
0.60: 63 of 63 100.0% +=> 24.7% 183 of 193 100.0%
0.55: 56 of 56 100.0% +=> 31.9% 249 of 249 100.0%
0.50: 54 of 54 100.0% +=> 38.8% 303 of 303 100.0%

0.45; 70 of 70 100.0% +=> 47.8% 373 of 373 100.0%

0.40: 54 of 56 96.4% +=> 55.0% 427 of 429 99.5%
0.35: 66 of 66 100.0% +=> £3.5% 493 of 495 99.6%
0.30: 51 of 51 100.0% +=> 70.0% 544 of 546 95%.6%

0.25: 49 of 50 98.0% +=> T6.4% 593 of 596 89.5%

0.20: 47 of 50 94.0% +=> 82.8% 640 of 646 99.1%
0.15: 34 of 35 97.1% +=> B87.3% 674 of 681 99.0%

0.10: 50 of 54 92.6% +=> 94.2% 724 of 735 98.5%
0.05: 36 of 45 B80.0% +=> 100.0% 760 of 780 97.4%

Table 5 Confidence versus Recognition Performance

The high correlation between confidence and success could be used to establish a threshold of
acceptance in the recognition process. If the confidence falls below say 0.10, it may be
appropriate to show a question mark and ask for re-entry. In the above case, this would result in
a 5.8% rejection rate, and 98.5% accuracy on those accepted. Given SCL’s success with the
second guess, it would be easy to show both the first and second guesses in such cases (perhaps
each half size, one above the other), and accept the letter tapped by the user.

The current recognition speed has assuaged earlier concerns about keeping up with the writer in
recognition, altough real-time training remains a concern. (Letter recognition requires about 15
ms on the NeXTstation with a 25 MHz MC68040, and about 120 ms on a 80386 without FPU.)
If it does prove necessary to speed up recognition, the trustworthiness of the confidence factor
allows a hierarchy of "short-cut" recognizers to return a value if the confidence is high enough,
and otherwise to work through a secondary recognizer on questionable cases.

SCL— October 1993 — Fuller and Kimura — Page 23

4.8 SCL and gestures

Taysi [1992] used an early version of SCL to build a gesture-based graphical editor for a
simplified prototype of the visual programming language, Hyperflow [Kimura 1992]. His
program, Box and Arrow Editor (BAE) used 34 gestures for all aspects of the editor (opening
and saving files, editing, aligning, asking for help, superimposing a grid on the editing space,
etc.). He collected 5460 gestures from adults and children, using 3120 to train SCL and the
remaining 2340 to test it. SCL showed 85% accuracy on the test data after training (forming
from 80 to 147 prototypes).

As Taysi notes, the system’s recognition performance fell into two clear categories. For several
very closely related gestures (especially the "line," "dashed line," and "thick line" gestures which
were very close in appearance), SCL was unsuccessful in consistently disambiguating the
patterns (60 - 70% or worse recognition rate). For more complex gestures, SCL was able to
achieve nearly 100% recognition. His work also shows the challenges associated with gathering
consistent gesture data from children (including some under eight years old).

4.9 Freeing the recognizer from "boxed" input

Currently SCL recognizes input drawn within a box for each character. It would be especially
desirable in math worksheets to eliminate this requirement. (The number of boxes may be
construed as a hint about the number of digits in the answer.) One approach to unboxed
recognition is to recognize a digit based only on its first stroke, and further, to recognize which
strokes are the first of two strokes, and which are full digits. To test this possibility, SCL was
allowed to train only on the first stroke of each scribble and was required to build different
categories for one-stroke and two-stroke digits. This would enable it to learn from just the first
stroke which digit is intended and whether or not another stroke will follow as part of this di git.
(When this occurs, the following stroke is merely discarded). SCL was able to recognize both
the digit value and the number of strokes for 94% of the test scribbles. This affords one quick
path to an unboxed recognizer of modest performance. More experimentation in this area would
likely yield improvements to this performance, since these results came from earlier versions of
SCL achieving only 98% recognition with boxed input.

5 Conclusions

The experiments (99.6% for digits and 96.6% for letters, and comparable results for a subset of
the gestures) illustrate the success of SCL in negotiating the stability/plasticity dilemma. SCL
adapts to new environments without losing the recognition capability obtained in the old
environment. While cautiously acknowledging its specialized task domain (recognizing
members of a small alphabet each written within a box), we feel that SCL demonstrates
recognition performance that approaches that of humans in both speed and success. The SCL
architecture gathers similar exemplars for training. The correlation of confidence to success
permits the assignment of an accuracy threshold (say 99.5%). The design also shows some
promise as a recognizer of unsegmented digits, which will be especially helpful for worksheets in
mathematics.

SCL— October 1993 — Fuller and Kimura — Page 24

The mixed results with gestures (many drawn by children) point to two areas demanding further
investigation and improvement. It is not clear how SCL scales up to recognition tasks involving
more categories (e.g. gestures, or upper and lower-case letters with punctuation). Since SCL's
principal application involves use by children, further testing is required with younger writers.
Finally, SCL training times have decreased, but it is not yet clear that it can meet the constraint
of constant, real-time learning in a manner transparent to the user.

6 Future directions

Currently SCL builds various prototypes which differ by the weights applied to the input feature
vector. We are exploring prototype collections which differ by the input vectors as well. For
example, one prototype unit might consider energy-based features and another will consider grid
features. We expect to further pursue the promise of unboxed input for digit recognition.

We also expect to expand SCL to build recognizers which differ by network architecture. One
recognizer may include no hidden units, another five hidden units, and a third six layers of five
hidden units used recurrently. In fact SCL has already been tested with simple recurrent nets
modelled after Servan-Schreiber et al. [1988]. These diverse collections of recognizers will
require careful arbitration to select the final vote on each pattern. We are currently investigating
the Weighted Majority Algorithm of Littlestone and Warmuth [1991] for this purpose.

The high correlation between confidence and success suggests experiments with a hierarchy of
progressively more complex recognizers. The confidence could be used to assess the success of
a suggested recognition early in the processing, that is, higher in the tree of recognizers. If the
confidence exceeds a given threshold, the category name is returned. Otherwise the recognition
descends the tree (possibly using specialized discriminatory features to resolve the ambiguity).
This could also exploit another yet-unused feature of SCL: its success with second or third
guesses. Overall, this suite of capabilities could lead to a robust Adaptable User Interface
capable of learning the idiosyncrasies of each user.

We will continue to study SCL in recognition tasks where on-line constant learning by the
system is performed. We will continue to test SCL in broader areas of alphanumeric and gesture
recognition. So far SCL has been limited to tests involving about 75 subjects. We plan to
investigate SCL with on-line training of unrecognized characters generated by a wider circle of
writers (especially more children). Broader gesture-based applications will require more
sophisticated gesture sets. We expect that users of pen computers will constantly enlarge and
modify the gesture vocabulary. SCL’s adaptability leads to natural and desirable collaboration
between the user and the system. This may be the seed of Adaptable User Interfaces (AUISs) in
future pen-based computers.

7 Acknowledgement

The Kumon Machine Project is jointly funded by the Kumon Institute of Education and Osaka
Gas Information Systems. Their continuing support made this research possible and is gratefully
acknowledged.

SCL~ October 1993 — Fuller and Kimura — Page 25

8 References
Aleksander, 1. and H. Morton (1990). An introduction to neural computing. Chapman and Hall.
Baran, N. (1992). The Outlook for Pen Computing. Byte. September, 1992. 159-164.

Becker, S. and Y. le Cun (1988). Improving the convergence of back-propagation learning
with second order methods in Touretzky, D. G. Hinton and T. Sejnowski (eds.) Proceedings
of the 1988 Connectionist Models Summer School (CMU, June 17-26, 1988). San Mateo,
California: Morgan Kaufmann Publishers. 29-37.

Carpenter, G. A. and Grossberg, S. (1987). ART2: Self-Organizing of Stable Category
Recognition Codes for Analog Input Patterns. Applied Optics, 4919-4930,

Carpenter, G. A. and Grossberg, S. (1988). The ART of Adaptive Pattern Recognition by a
Self-Organizing Neural Network, Computer 21:3, 77-88.

Cair, R. and D. Shafer (1991). The Power of PenPoint. Reading, Massachusetts: Addison-
Wesley Publishing Company, Inc.

Fahlman, S. E. (1988). Faster learning variations on backpropagation: An empirical study. in
(eds.) Touretzsky, D., G. Hinton, and T. Sejnowski. Proceedings of the 1988 Connectionist
Models Summer School (CMU, June 17-26, 1988). San Mateo, California: Morgan
Kaufmann, 1988. 38-51.

Fukushima, K. (1988). Neocognitron: A Hierarchical Neural Network Capable of Visual
Pattern Recognition. Neural Networks, Vol 1., 119-130.

Fuller, T (1987). Microcomputers in Production and Inventory Management. Homewood,
Illinois: Dow Jones-Irwin,

Fuller, T. (1991). The Kumon Approach to Learning Mathematics: An Educator’s
Perspective. Technical Report WUCS 91-49. Washington University in St. Louis.

Fuller, T. (1992). Energy-related Feature Abstraction for Handwritten Digit Recognition.
Proceedings of the Fourth Midwest Artificial Intelligence and Cognitive Science Conference,
May 1992, 71-76.

Gibbs, M. (1993). Handwriting Recognition: A Comprehensive Comparison. Pen,
March/April 1993, 31-35.

GO Corporation (1991). PenPoint API Reference. Foster City, California; GO Corporation.

Grossberg, S. (1986). Competitive Learning: From Interactive Activation to Adaptive
Resonance. Cognitive Science 11, 23-63.

SCL— October 1993 -— Fuller and Kimura — Page 26

Grothe, R. (1991). Private communication with the authors, October, 1991.

Herbst, N. M. and C. N. Liu (1982). Automatic Signature Verification, in Suen, C. Y. and R.
De Mori (eds.) Computer Analysis and Perception, Volume 1: Visual Signals. Boca Raton,
Florida: CRC Press, Inc. 83-105.

Jemney, J. (1993). The (General) Magical Mystery Tour. WPDO News, Worldwide
PenPoint Developers Organization, Vol. 2, No. 2 (March, 1993).

Kalman, B. L. and Kwasny, S. C. (1991). A Superior Error Function for Training Neural
Nets. Proceedings of the International Joint Conference on Neural Networks, Seattle,
Washington, 1991, Vol. 2, 49-52.

Kalman, B. L. and Kwasny, S. C. (1992). Why Tanh: Choosing a Sigmoidal Function.
Proceedings of International Joint Conference on Neural Networks, Baltimore, MD, June
1992.

Kimura, T.D. (1990). An Algebraic Proof for Backpropagation in Acyclic Neural Networks.
Proceedings of International Joint Conference on Neural Networks 1990, San Diego, CA,
June 1990, 554-557.

Kimura, T. D. (1992). Hyperflow: A Visual Programming Language for Pen Computers.
Proceedings of the 1992 IEEE Workshop on Visual Languages, September 15-18, 1992,
Seattle, Washington. 125-132.

Kohonen, Teuvo (1982). Self-Organized Formation of Topologically Correct Maps.
Biological Cybernetics, Vol 43, 59-69.

Kohonen, Teuvo (1988). An Introduction to Neural Computing. Neural Networks, Vol.1, 3-
16.

Kohonen, Teuvo (1990). The Self-Organizing Map. Proceedings of the IEEE, 78:9, 1464-
1478.

Lin, W. C. (1982). Computer Processing of Hand-Drawn Sketches and Diagrams. in Suen,
C. Y. and R. De Mori (eds.) Computer Analysis and Perception, Volume 1: Visual Signals.
Boca Raton, Florida: CRC Press, Inc. 107-149.

Nellis, J. and T. J. Stonham (1992). A fully integrated hand- printed character recognition
system using artificial neural networks. Second IEE Conference of Artificial Neural
Networks, Bournemouth, U.K., IEE Publication No. 349, 219-224,

Reilly, D. L., L. N. Cooper, and C. Elbaum (1982). A Neural Model for Category Learning.
Biological Cybernetics Vol. 45, 35-41.

Schwartz, John (1992). The Revolution That Wasn’t. Newsweek: October 19, 1992, 51.

SCL— October 1993 — Fuller and Kimura — Page 27

Servan-Schreiber, David, Axel Cleeremans, and James L. McClelland (1988). Encoding
Sequential Structure in Simple Recurrent Networks. Carnegie Mellon University, November,

1988.

Shynk, I. J. and S. Roy (1988). The LMS Algorithm with Momentum Updating. IEEE
Symposium on Circuits and Systems, Espoo, Finland. New York: IEEE. 2651-2654.

Sorheim, E. (1991). ART2/BP Architecture for Adaptive Estimation of Dynamic Processes.
Advances in Neural Information Processing Systems, Vol. 3 ed. by D. Touretzky, 169-75.

Tappert, Charles C., Ching Y. Suen and Toru Wakahara. "The State of the Art in On-Line
Handwriting Recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 12, No. 8 (August, 1990), 787-808.

Taysi, B. M. (1992). Gesture System for a Graph Editor. Master’s Thesis, Washington
University in St. Louis, August, 1992.

Thomas, Jr. G. B (1972). Calculus and Analytic Geometry. Reading, Massachusetts:
Addison-Wesley Publishing Co., Inc. {Cf. Thomas 1972, 289-293 for energy integration
calulation. }

Wagoner, J. (1993). Second Annual Reader’s Choice Award Winners. Pen, March/April
1993, 11-21.

Wang, C. (1992). A Fuzzy Approach to Handwritten Digit Recognition for Pen-based
Computers. Master’s Thesis, Washington University in St. Louis, December, 1992.

Wang, C., T. Kimura, and T. Fuller (1992). Supervised Competitive Learning, Part II: SCL
with Fuzzy Logic, in Dagli, C, et al. (ed.) Intelligent Engineering through Artificial Neural
Networks, Volume 2. New York: ASME Press. 351-6.

Weiss, S. M. and C. A. Kulikowski (1991). Computer Systems That Learn. Morgan
Kaufmann Publishers, Inc.

SCL— October 1993 — Fuller and Kimura — Page 28

	Supervised Competitive Learning
	Recommended Citation
	Supervised Competitive Learning

	tmp.1453823647.pdf.Q3o86

