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Abstract

This paper presents the analysis of an improved distributed checkpointing algorithm.
It shows that the message volume of Koo and Toueg’s distributed checkpointing
algorithm approaches 3f N for large checkpoint intervals where N is the number of
processes and processes randomly send messages to f other processes. Thus, the
average message volume is O(n?). We show how Koo and Toueg’s algorithm can
be modified so as to avoid this O(n?) overhead and derive an accurate estimate of
the message volume. The overhead is reduced by using dependency knowledge to
substantially reduce the average message volume.
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1 Introduction

The possibility of tackling very large, computationally intensive problems by coupling large
communities of distributed processors through a high-speed network is fast becoming a reality
[?]. The computing sites may consist of computational resources from several vendors, and
communication between sites may require message transmission over long distances (thou-
sands of miles) through several intermediate hops. Clearly, computing in this environment
is much more precarious and we can expect higher resource failure rates than in a standard
multiprocessor. Thus, a fundamental problem which must be addressed in this environment
is that of providing effective computational progress in the face of resource failures.

One approach to providing higher reliability is to have each site periodically checkpoint
(save its state) onto stable storage. When a failure occurs, each site can resume computing
after it restores its system state by reading the latest checkpoint from its checkpoint storage.
However, this simple view of program resumption can only work effectively if the checkpoint
is properly coordinated across the processor community.

The most serious problem with uncoordinated checkpointing is that many generations
of checkpoints may need to be stored in order to recover to a consistent system state. In the
worst case, the domino effect occurs, forcing the system to roll back to the very beginning
of program execution [?]. Figure 77 is a time diagram that illustrates this situation for two

processes p and ¢. In the time diagram, each process is represented by a horizontal time line,
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Figure 1: The Domino Effect

and each message from process p to process q is represented by an arrow from process p’s
time line to process q’s time line at the points when a message is sent and received. A small
vertical line that intersects a single time line indicates a checkpoint. When a failure occurs
at time point X, q rolls back to ¢s, a state of process q. But since checkpoint p; indicates
the reception of message ms, process p depends on process q, and p must roll back to ps.
This dependence ripples back to the initial checkpoints p; and ¢;. The problem is that there
is no checkpoint set {p;, ¢;} in Figure 77 which is independent of each other.

One approach to avoiding this situation, is to coordinate the checkpoints so as to main-
tain consistent checkpoints. These algorithms are based on the Chandy-Lamport algorithm
[?], and they guarantee that each process need not rollback further than to the latest check-
point [?, 7]. Most of the algorithms that use low amounts of storage use O(N?) messages as
the interval between checkpoints gets large. The Koo and Toueg algorithm (KT algorithm)
is such an algorithm. In an earlier paper, we proposed modifications to the KT algorithm
and used a simulation model to show that our algorithm significantly reduced the average
number of messages [?]. This paper extends that work by presenting analytic models of the
average message volume used in the KT algorithm and our algorithm. Our model of the KT
algorithm shows that as the checkpoint interval gets large, the average message volume is
equal to 3f N where &V is the number of processes and each process randomly sends messages
to f other processes.

This paper is organized as follows. Section 2 introduces definitions and discusses re-

lated work. Section 3 discusses policies for maintaining consistent checkpoint sets. Section



4 describes our algorithm. Section 5 discusses the analytic models and compares the aver-
age message volumes of the KT algorithm and our algorithm. Finally, Section 6 contains

conclusions and discusses future work.

2 Definitions and Related Work

We assume that there are N processors, each with one process. The processes communicate
with each other through virtually lossless, FIFO channels. Moreover, they exhibit fail-stop
behavior, i.e., no byzantine failures can occur in the system. Failures are short-lived so
that it makes sense to wait for failures to be repaired and to resume the computation from
the latest set of checkpoints. Each process periodically takes a checkpoint of its state in
coordination with other processes. The coordination guarantees that the latest checkpoints
are consistent so that recovery involves only restoring the state of each process from these
checkpoints.

A checkpoint set is a set of checkpoints, one per process. A single process checkpoint
forms a local state, and a checkpoint set forms a global state of the system. A checkpoint
set 1s sald to be consistent if the global state does not contain a situation in which process p
receives a message m from process q that has not yet been sent by q. In Figure ??, {ps, g2} is
inconsistent since mg has been received by p, but not sent by q. While {p1,¢:1} is consistent.

An easy way to visually identify consistency and inconsistency is to use a time diagram
like I'igure ??. A recovery line is a line in the diagram which intersects each time line exactly
once at a checkpoint [?]. The region to the right of the recovery line represents the future,
and the region to the left of the recovery line represents the past relative to the recovery
line. A recovery line is consistent if no message crosses from right to left; that is, no message
is transmitted from the future to the past. Messages that cross a recovery line from left to
right are cross-cut messages and can be handled by the underlying message system. Upon a
failure, all cross-cut messages are treated as “lost” messages [?].

All distributed checkpointing schemes resume computation from ra consistent recovery

line but take different approaches to finding a consistent one. These differences arise from



different assumptions about:
1. the computation model,

2. the frequency of failures, and

3. the degree of process interaction between checkpoint intervals.

For example, database applications use a transaction-oriented computation model. This
simplifies the solution to some degree. Much work has been done on checkpointing and
rollback-recovery in transaction based systems [7, ?, ?]. Scientific computations running on
a distributed set of processors use a computation model that can contain higher degrees
of process interaction which imposes stringent requirements on the checkpointing protocol.
Such environments require fast checkpointing and recovery to maintain good computational
progress.

Checkpointing schemes fall into two broad categories: synchronous and asynchronous.
In the asynchronous approach, processes take checkpoints independent of each other and log
messages (either incoming or outgoing) [?, 7, ?]. After a failure, processes affected by the
failure must exchange dependency information to locate a consistent recovery line including
the messages that must be replaﬁred. The message logging scheme is used to prevent the
occurrence of the domino effect.

In the synchronous approach the processes coordinate among themselves while saving
their respective states to produce a globally consistent set of checkpoints [?, 7,7, 7, 7]. Aftera
failure, processes simply rollback to the latest set of checkpoints since those form a consistent
recovery line. Some of these algorithms have also been concerned with checkpointing a
minimum number of processes to maintain consistency [?, 7.

Both asynchronous and synchronous algorithms have their relative advantages and dis-
advantages. Asynchronous schemes are, in effect, application transparent (i.e., no coordina-
tion between checkpoint algorithm and application) [?]. The basic assumption is that failures
will be rare, and therefore, the total checkpoint time will be low and the expensive recovery
process will be used infrequently. This simplifies the checkpointing process and keeps the

checkpointing overhead low, but at the expense of complicating the recovery process and



consuming larger amounts of disk storage. But the high recovery time makes such schemes
unsuitable for scientific computations.

In contrast, synchronous algorithms are relatively complex and expensive since they
.require coordination between processes to determine the recovery line. Storage is minimal
since each process keeps at most two checkpoints. The recovery algorithm is straightforward
in the sense that it only involves rolling back to the latest checkpoint. Inherent in the
algorithm is the assumption that processes can fail at any time, and thus a consistent state
must reside on stable storage at all times. Our algorithm is a modification of a synchronous
algorithm. But unlike most of these algorithms, it attempts to substantially reduce the

average message volume.

3 Policies

This. section examines the policies that must be enforced to maintain consistent recovery
lines. They appear in various forms in the existing synchronous checkpoint algorithms. Four
questions are posed and answered:

1. Which processes must be included in a new checkpoint set; i.e., take checkpoints?

2. W}%?en can a process that is participating in a new checkpoint continue normal process-
ing’

3. If the checkpoint candidates are known, is the order of the checkpoints important?

4. How should failures during the checkpoint process be handled?

The policies below are stated assuming that p and q are processes.

Policy #1 (checkpoint set): If p receives a message m from q and then takes a checkpoint,
q must take a checkpoint if ¢ sent m after its latest checkpoint.

This policy insures that the recovery line running through the two checkpoints will be
consistent. In Figure ??, the checkpoint set {p2, ¢1} is inconsistent. But policy #1 forces g
to take checkpoint ¢;. Process p depends on process ¢ in the interval {p;,p:}. A graph of
the depends on relation is a dependency graph in which an arc <p,q> in the graph indicates

p depends on gq. Either one can be used to form a consistent recovery line. The direct
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Figure 2: Policy #1

dependents of process p are processes that have sent at least one message to p since the
latest checkpoint. They constitute the members of p’s dependency set.
Policy #2 (resumption of nermal processing): If p takes a checkpoint, p can not send
application messages to any process q that is a dependent (direct or indirect) unless g has
talken a checkpoint since the last sending of q’s message to p or any of p’s dependents (direct
or indirect).

This policy guards against the situation where p sends an application message to g and
q receives the message m before it takes a checkpoint, leading to an inconsistent recovery
line. In a sense, this is just a restatement of policy #1 since from q’s perspective, p is
in its dependency set and therelore p must take a checkpoint after sending m. But in its
application, it implies that as soon as a process begins a new set of checkpoints, the processes
participating in the checkpoints should not send out messages to members of the checkpoint
set until all members have completed their checkpoints. If this policy were not followed,
then policy #1 could result in a ping ponging effect in which a checkpoint could force the
process sending a message after taking a checkpoint to immediately take another checkpoint.
Another implication of policy #2 is that the checkpoint algorithm should use a two-phase
protocol in which the first phase is used to take tentative checkpoints and the second phase
comiits (accepts) or undoes the checkpoints. Once the checkpoints have been committed
or undone, application message sending can resume.
Policy #3 (checkpoint order): If p and q are in a checkpoint set, the order in which

they take their checkpoints is unimportant for consistency so long as the other policies are



followed.

Policies #1 and #2 guarantee that the recovery line will be consistent. However, it is
natural to perform the checkpoints as the dependency graph is formed. Furthermore, if we
perform the checkpoints while the dependency graph is formed, processes at the leaves of
the dependency graph can commit their checkpoints immediately [7].

Policy #4 (failures during checkpointing): A new checkpoint sef can not be committed
until all of the processes in the checkpoint set have taken their checkpoints.

If a failure occurs before the processes have finished checkpointing, the partial new
recovery line when combined with the existing recovery line will form an inconsistent recovery

line.

4 Two Distributed Checkpoint Algorithms

Both the KT algorithm and our algorithm use a two-phase-commit protocol that incorporates
the policies described in the preceding section. A process called the initiator (or coordinator)
initlates the formation of a new recovery line. The essential elements of the KT algorithm
for each process p except the initiator are:

1. Phase |

(a) Upon receipt of a request to take a tentative checkpoint (TCP), if a TCP hasn’t
belen tak%n, take a TCP, determine the direct dependents, and request that they
take a TCP.

(b) Wait for a reply from the direct dependents indicating checkpoint success or failure
of the processes upon which process p depends (directly or indirectly).

(c) Reply to the TCP requestor with a “willing to checkpoint” message if a TCP has
been done and the dependents have sent “willing to checkpoint” reply messages.

2. Phase 11

(a) Wait for a commit or undo request from a parent process and carry out the
request. ‘

Step l.a determines those elements <p,x> of the depends on relation such that process

X is a direct dependent of process p. Eventually, a process executing the first step in phase

I will either have no dependents or will request a dependent process to take a TCP that



has already taken a TCP. In the latter case, the process will not take another TCP, but will
immediately return a “willing to checkpoint” to the requestor. The algorithm degenerates
to O(N?) messages for large checkpoint intervals when there is high connectivity between
processes because many processes will get TCP requests from multiple processes.

Our algorithm tries to avoid high message volumes by eliminating the multiple TCP
requests that a process can receive in the KT algorithm in phase I and replaces the com-
mit/undo notification messages with a mullicast in phase II. During the creation of the
depends on relation in phase I, partial knowledge of the depends on relation is piggy backed
on top of each TCP (tentative checkpoint) message. For example, since the initiator ¢ knows
that it will send TCP requests to its dependents, it piggy backs this list of dependents on
top of the TCP request that is sent to each of its dependents. The initiator’s dependents
now know the identity of some of the processes that will be taking TCPs. If a dependent
has dependents that are on this list, it need not send a TCP request to those dependents.

In phase II, the commit/undo requests are sent to the checkpoint participants using
multicast instead of following the structure of the dependency graph. This avoids the ineffi-
ciencies that can result from pathological dependency graphs (e.g., ring).

The checkpoint algorithms for the initiator ¢ and for all other processes p are shown
in Figure 7?. The notation <x,y,z> represents a message with the three components z, y,
and z. The symbols D, Rg?’), and Sgp) denote quantities that are defined below. Their
appearance in the algorithm can be thought of as a macro call to the definitions below.

Let N be the number of processes, and let q be an arbitrary process. Each message has
a numeric label. Each process q maintains two sets of message labels: Rff’), ke {1.N} and
S ke {1.N). R is the last message label that process q received from process k. R
is incremented each time q receives a message from k. S,(f} is the last message label that
process q sent to process k. .S'J,(CQ) is incremented each time q sends a message to k. Rﬁf) and
S ;(f) are reset to 0 after q takes a tentative checkpoint.

D®) is the dependency set of process p. It is the set of processes that have sent at least

one message to p since the last checkpoint; that is,



DP) = {q|RP > 0} (4.1)

(lines i1-i2) After the initiator takes a tentative checkpoint, it sends messages to each
process p in its dependency set requesting it to take a tentative checkpoint, and telling
it the initiator’s dependents and the number of messages that it received from process p.
(line i3) It then waits for a reply from each dependent p that it is willing to checkpoint
(w®) = true) and a set W indicating the set of processes which p knows have taken a
. tentative checkpoint. The initiator computes w(, its willingness to commit to the checkpoint.
(line i5) By definition it is willing to commit if all of its dependents are willing to checkpoint.
(lines 16-19) It then broadcasts the decision to the processes in the set W®. W contains
the set of all processes that took a tentative checkpoint.

"The other processes respond to tentative checkpoint (TCP) requests. Each process p
that is asked to checkpoint will get a TCP request indicating K #P)* (the set, of processes that
the requesting process pp (parent process) knows should be getting TCP requests) and Rgp?’) ,
the number of messages that pp received from p. If a process has already taken a tentative
checkpoint but has not committed it, the message counters will be 0 resulting in process p
replying that it is willing to commit. Otherwise, process p will reset its message counters
and take a tentative checkpoint. (line p5) After the tentative checkpoint, it computes T,
the subset of its dependency set that it thinks has not taken a tentative checkpoint. If pp
is process p’s parent, and K{PP)* is the set of processes that process pp knows will receive
TCP requests, process p does not need to send another TCP request to the processes in
K@), (lines p7-p14) Whether T® is empty or not, process p computes W®, the set of
processes that have taken a tentative checkpoint, and replies to process pp with this set and
its decision on its willingness to cornmit the checl-cpoint.

(lines p15-p18) In phase II, each process p that replied with a willingness to commit
the tentative checkpoint receives the decision and either commits or undoes the tentative

checkpoint.



At the initiator i:

il Take a tentative checkpoint (TCP);

i2  send <request TCP,D® U {i},RI(f)> to p € DO,
i3 wait for reply < w®, W® > from all p € DW;
14 let W& = Upent W(p);

5 let W' = true if w® = true for all pE D(i);

i6  if w® = true then

17 Broadcast <commit> to all p € W,
18 else
19 Broadcast <undo> to all p € W(i);

At each other process p:

Upon receipt of message <request TCP,K (pp)*,R;(fP)> from process pp:
pl  w® = true;

p2 if S® > RPP +£ 0 then

p3 let Rgp)zSgp)=0, 1<¢<N;

pd Take a tentative checkpoint;

p5 let T = D) — f(ep)*.

p6 let K®)* = [ (er)xy Do)

pT7 if T £ ¢ then

p8 send <request TCP, K®)* R to all ¢ € T
p9 wait for reply < w@, W® > from all ¢ € T®);
PO let W = (Uyerm W) U {p}

pll else

p12 W) = {p};

pl3 let w® = true if W@ = true for all ¢ € T®;
pld send < w® W) > to pp;

Upon receipt of message <commit> or <undo>:
pl5  if commit then

plé Commit TCP;

pl7 else

pl8 Undo TCP;

Figure 3: Checkpoint Algorithm
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5 Average Message Volume Models

This section compares the performance of the two algorithms described earlier. Appendix
I develops an analytic model of the average message volume associated with the two algo-
rithms. This section presents the assumptions upon which these models are based. Then
it describes the model of the KT algorithm and shows that for large checkpoint intervals,
the average message volume is equal to 3fN where N is the number of processes and f
is the potential fanout of each process. Finally, it treats the model of our algorithm in a
similar fashion. Although there is no closed form expression for the limiting average message
volume, the model shows a substantial reduction in the message volume.

The results from the analytic models were compared to those from a simulator [?]. In
all cases, the results were within 5% of those from the simulator. Details of the validation

can be found in [?].

5.1 Assumptions

We assume that the system has NV processors, each containing one process. Each process p
generates a message pattern that is uniformly distributed over a set of processes F, called
the potential fanout set of process p. The potential fanout of process p is fp, the cardinality
of F,. For simplicity, we assume that all processes have the same potential fanout f. The set
of potential fanout sets defines a potential communication pattern between the processes.

At the end of a checkpoint interval, a process will have sent messages to a set of processes
called its actual fanout set with cardinality equal to the actual fanout. For small checkpoint
intervals, the actual fanout set will probably be a small subset of the potential fanout set.
But as the checkpoint interval is increased, the actual fanout set will eventually be equal to
the potential fanout set. The potential fanouts of all of the processes in combination with
the size of the checkpoint interval controls the connectivity of the dependency graph.

The checkpoint coordinator is chosen randomly from the N processes. The time between
checkpoint initiation is a fixed time interval 7. The mean number of messages generated by

each process in a checkpoint interval is m = T/, the ratio of the checkpoint interval T and

11



the mean intermessage time t.

5.2 A Model of the KT Algorithm

Figure 77 shows the average message volumes for the KT algorithm for N = 16 processes,
potential fanouts of f =4, 8, 12, and 15, and mean number of messages sent by each process
in a checkpoint interval varied from m =1 to 100. The graph was constructed from the

average message volume My (m, f), derived in Appendix I and described below.

I T e —

g

8

M, total #messages for checkpointing
£y
2

0 20 40 60 80 100
m, checkpoint interval / mean inter-message time

Figure 4: Message Volumes — KT Algorithm

Figure 77 clearly shows a sharp rise in the average message volume Myr(m, f) as the
checkpoint interval lengthens. Appendix I shows that a simple approximation for Mg (m, f)
is given by:

Mgz (m, f) = 3dN (5.2)

where m is the average number of messages generated by each process, f is the potential

fanout of each process, and d is the mean size of each dependency set:
d=f(l—(1—1/f)") (5.3)

For a large number of messages, -d will be equal to f, the potential fanout of each process,

and the average message volume becomes:
Jim Myer(m, f) =3fN (5.4)

12



Note that when the potential fanout is f = N — 1, the limiting average message volume is

proportional to N? as expected.

5.3 A Model of Our Algorithm

Large message volumes occur in the KT algorithm because of processes receiving multiple
“request TCP” messages. Our algorithm, on the other hand, attempts to avoid this situation
by sending information to processes informing them of other processes that will be or have
already been asked to take a tentative checkpoint. If the coordinator has a large dependency
set, it can tell the processes in its dependency set which processes will be asked to take a
tentative checkpoint. These processes can be excluded from consideration by the processes
in the coordinator’s dependency set when they determine which of their dependents need a
“request TCP” message. These exclusions continue down the dependency graph.

Figure 77 shows the average message volumes for both algorithms for N = 16 processes,
potential fanouts of f =4, 8, 12, and 15, and mean number of messages sent by each process
in a checkpoint interval varied from m =1 to 100. The data was generated from the average
message volume expression M(m, f) derived in Appendix I and described below.

The behavior of the average message volume seems appropriate for fanouts that are 8
or less since the message volume curves should look like scaled down versions of those for
the KT algorithm. That is, the sending of partial knowledge about dependencies should
reduce the number of redundant TCP requests. But as the fanout increases past 8, the
total message volume actually begins to decrease as the number of messages generated by
each process increases. This occurs because for a sufficiently large fanout the savings from
a reduction in redundant TCP requests is greater than the increase in messages due to a
larger fanout.

For example, Figure 77 indicates that when the fanout is 15 (direct connectivity of the
coordinator to all processes), the message volume begins to decrease when the number of
messages generated by each process is around 15 or 20 messages. This is when the coordinator

becomes connected to almost all other processes and most processes will eliminate the sending

13



of redundant “request TCP” messages to its dependents. As the number of messages between
checkpoints continues to increase, the limiting message volume approaches approximately
45. But this message volume corresponds to the coordinator sending/receiving 3 messages

to/from each of the other 15 processes.

sm ‘ : i ; . T 2 T
—— Koo & Toueg’s algo.
[— our algo.
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M, total # messages for checkpointing
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=% _
200 f=4 ]
-------------- (28 o IR e
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Figure 5: Comparison of Message Volumes

Appendix I shows that the message volume in our algorithm is approximately given by:

ko3
M(m, ) =23 [Tw) + N (5.5)
i=14i=1
where £ is the smallest integer such that v}, = 0, and ), is the average number of processes
at a distance £ from the coordinator that will receive TCP requests:

k-1 17i
I _ =1 Hi:l s
up, = d (1 N1 ) (5.6)

where u; is the number of unique processes at a distance & from the coordinator and is
given in the appendix by (??). The processes are unique in that they have not appeared
in a dependency set that is within a distance & of the coordinator. The second term in
equation ?7? is approximately the number of muiticast messages in phase II. The first term
accounts for the two types of messages (“request TCP” and “willing to checkpoint”) in phase
I. Unfortunately, there is no simple expression for the limiting value of the average message

volume.
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6 Conclusions and Future Research

We have developed analytic models of the average message volume for our algorithm and
Koo and Toueg’s. The models have been verified elsewhere by comparing their results
with a simulation model. The analytic model of the KT algorithm shows that for large
checkpoint intervals, the average message volume is equal to 3fN and therefore exhibits
N? behavior for large fanouts and large checkpoint intervals. Although a similar limiting
result for our algorithm was not available in closed form, data using the model indicates
that the average message volume can be reduced substantially by sending partial knowledge
about the dependency information to dependents. The savings are obtained by avoiding the
sending of most multiple tentative checkpoint requests to the same process. However, this
message count savings is at the cost of some increased cost in message lengths because of
the need for sending partial dependency information to the processes.

We are now studying the effect of these modifications on other performance measures.
For example, we are interested in the effect of the computational progress of the application.
A small number of messages that can not be transmitted with some degree of parallelism
can be as bad a large volume of messages that can be transmitted in a parallel fashion. Also,

we are examining alternative algorithms.
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7 Appendix (Derivation of Analytic Models)

We would like to develop an expression for the mean number of overhead messages M(m, f).
M(m, f) is a function of two parameters: m, the mean number of messages per process
between checkpoints, and f, the potential fanout of each process. A single mean M (mn, f)is
an average computed over many checkpoint intervals of length m and many communication
patterns in which processes have potential fanouts of f.

Fundamental to the understanding of the performance of both algorithms is the direct
dependency graph. Recall that D® is the dependency set of process p and is the set of
processes that have sent at least one message to p. If P is the set of all processes, then
Rp = {< =,y > |z € P,y € D®} is the depends on relation such that < z,y > indicates
that process y has sent at least one message to @. The graph of Rp is the dependency graph
Gp in which < 2,y >€ Rp implies that < @,y > is a directed arc in Gp. In general, Gp is
a graph with cycles.

The KT Algorithm

In the KT algorithm, the coordinator sends a “request TCP” message to each of the
processes in its dependency set.. Each of these processes, in turn, sends a. “request TCP”
message to each of their dependents. This recursively continues until a request reaches
either a process with an empty dependency set or a process that has already taken a TCP.
In a successful checkpoint, each participant replies to the TCP request with a “willing to
checkpoint” message and receives a “commit” message.

In order to derive the average message volume used in the KT algorithm, we imagine
randomly picking a coordinator process and then following all dependencies in a breadth-first
manner through the dependency graph. We count each arc traversal and try a different path
when we encounter a process that has been previously visited. This procedure corresponds
to a sequential generation of the “request TCP” messages in the KT algorithm.

Before deriving an expression for this counting procedure, we derive the average actual
fanout fi. of each process; that is, the number of processes that receives at least one message

from an arbitrary process. From symmetry, fu., is identical for all processes. Since each
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process randomly sends messages with probability 1/f to each process in its fanout set, each

process has sent messages to fu., processes after m messages:

fa.'ug = f(l - (1 - 1/f)m) (77)

(1—=(1=1/f)™) is the probability that at least one of the m messages was sent to a particular
process. Since we assumed message targets were drawn independently and uniformly from
[ possibilities, the expression for fu,, follows.

But d, the mean size of each dependency set, is equal to the expression for f,,, since
from symmetry, d for each process must be identical, and every arc in the dependency graph

represents the transmission of at least one message in the opposite direction. So,
d=f1-(1-1/)") (7.8)

As expected, d varies from 0 to f as m varies from 0 to co.

Suppose we randomly pick process r to be the coordinator. Process r has dependents
that are members of a dependency set that is a distance 1 from the coordinator. These
processes, 1n turn, have dependency sets that are a distance 2 from the coordinator and so
forth. By definition, the dependents of r are unique and different than r. But the dependency
sets at distance k, k>1, have processes that can appear in dependency sets that are a distance
k or less from the coordinator. The processes in a dependency set that are at a distance k
from the coordinator are said to also be at distance k from the coordinator. Since processes
can be in many dependency sets, they can be at many distances from the coordinator.

Let u; be the number of unique processes in a dependency set that is a distance k from
the coordinator; that is, up out of the d processes are not in any dependency set that is
within a distance k of the coordinator. The remaining d — uy, processes will have been visited
by our dependency graph traversal algorithm and are those processes that will have already

received a “request TCP” message. vy, satisfies the following balance equation:

k=117i o k=1 — 1wy, .
ukzd(l— izt Il i+ (i l)u'”)) (7.9)

N-—-1
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The fraction is the probability that a process is in a dependency set within distance k of the
coordinator and therefore has already received a “request TCP” message. The denominator
of the fraction is N — 1 because the members of the dependency set can be any of the N
processes except the one process upon which the set is defined. The numerator of the fraction
is the number of unique processes that appear in the dependency sets within distance % of
the coordinator. The summation in the numerator is the number of unique processes within
distance £ — 1 of the coordinator. The remaining term in the numerator is the number of
unique processes at exactly distance k from the coordinator, but excluding the dependency
set of interest. Since each dependency set has on average d processes, the relationship follows.

We can solve (77) for ug. In order to account for the fact that u, must eventually

vanish, the expression for u; becomes:

. 1— ;":% ngl ui/(N —1) |
up = Mo (d1+u1(ﬂf;11 ui—l)/(le)’O (7.10)

Note that vy = d as required, and u,, decreases with increasing distance k from the coordi-
nator.

We now have all of the expressions necessary to write down an expression for the
average message volume. In the KT algorithm, a process will send on average d “request
TCP” messages, one per dependent. Each of these dependents will reply with a "willing to
checkpoint” message. In phase II, a process will end by sending d “commit/undo” messages,
one per dependent. That is, there are 3d messages transmitted between a process and its
dependents. Since the number of unique processes in the dependency graph is 1—|—E;921 T, w
where k is the smallest integer such that u; is non-zero, the average message volume in the
KT algorithm is given by:

kg
Mgr(m, f) = 3d(1 + Z Hui) (7.11)
j=1i=l

But the parenthesized term for moderate to large values of m will be approximately

equal to N. So, a simple approximation to (?7) is
Mgr(m, f) = 3dN (7.12)
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Our Algorithm
In our algorithm, a process that is at a distance % from the coordinator will send less
“request TCP” messages to its dependents than a process that is closer to the coordinator
because it will receive accumulated knowledge about which processes will receive a “request
TCP” message. Also, “commit/undo” messages are multicasted instead of passed along arcs
of the dependency graph.
Let uj, be the average number of processes at a distance & from the coordinator that
will receive TCP requests. Then, the average message volume in our algorithm will be:
E 3 kJ
M(m, ) =23 [T + (3 T w) (1.13)
j=1i=1 j=1i=1
The first term accounts for the two types of messages in phase I, and the second term accounts
for the multicast. As noted in the KT model, the second term can be approximated by N
for most values of m, yielding:
kg
M(m, f)=20_"J]u)+ N (7.14)
j=1i=1
where an expression for v} is derived below.
uj, is greater than or equal to up because uj reflects only partial knowledge of which
processes are within distance & — 1 of the coordinator and no knowledge of which processes
are at distance k of the coordinator. As an approximation, if we assume that a process at
distance k has full knowlege of which processes are within a.distance k—1 of the coordinator,

E -"I 1—1 Uq
I =4d = 7.1
Uy, (1 N1 (7.15)

The summation is the number of unique processes within distance k& ~ 1 of the coordinator.
The fraction is the probability that one of the dependents of a process will be one of these

unique processes. Since each process has d dependents, (?7) follows.
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