Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-92-16

1992

An Implementation Model for Connection-Oriented Internet
Protocols

Charles D. Cranor and Gurudatta M. Parulkar

Recently a number of research groups have proposed connection-oriented access protocols
that can provide a variable grade of service with performance guarantees on top of diverse
networks. These connection-oriented internet protocols (COIPs) have different performance
trade-offs. The purpose of this paper is to create a COIP-Kernel which can be used as a toolkit to
implement any of the proposed COIPs. COIP-K features module interchanges and incremental
software support. The paper presents the COIP-K implementation and its performance
characterization.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cranor, Charles D. and Parulkar, Gurudatta M., "An Implementation Model for Connection-Oriented Internet
Protocols" Report Number: WUCS-92-16 (1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/527

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/527?utm_source=openscholarship.wustl.edu%2Fcse_research%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

AN IMPLEMENTATION MODEL
FOR CONNECTION-ORIENTED
INTERNET PROTOCOLS

Charles D. Cranor
chuck@maria.wustl.edu
+1 314 935 4203

Gurudatta M. Parulkar
guru@fiora.wustl.edu
+1 314 935 4621

wucs-92-16

May 5, 1992

Department of Computer Science
Campus Box 1045

Washington University

One Brookings Drive

St. Louis, MO 63130-4899

Abstract

Recently a number of research groups have proposed connection-oriented access protocols
that can provide a variable grade of service with performance pguarantees on top of diverse
networks. These conmnection-oriented internet protocols (co1ps) have different performance
trade-offs. The purpose of this paper is to create a corP-Kernel which can be used as
a toolkit to implement any of the proposed coips. CoiP-K features module interchange
and incremental software support. The paper presents the corpP-K implementation and its
performance characterization.

AN IMPLEMENTATION MODEL FOR
CONNECTION-ORIENTED INTERNET
PROTOCOLS

Charles D. Cranor
chuck@maria.wustl.edu
+1 314 935 4203

Gurudatta M. Parulkar
guru@flora.wustl.edu
+1 314 935 4621

1. Introduction

Recently, a number of research groups have proposed connection-oriented access protocols at the
network and internet layer. These protocols share four important characteristics, First, the path
that data packets take from source to destination is established in advance. Second, the resources
required for a connection are reserved in advance. Third, the connection’s resource reservation is
enforced throughout the life of the connection. Finally, when the connection’s transaction is finished,
the connection is broken and the allocated resources are freed.

In a high-speed communication environment, these connection-oriented access protocols have
some advantages over traditional connectionless service. First, the internet should be able to sup-
port a variety of applications which require transport of voice, video, and data. T'ypical target
applications include video distribution, computer imaging, distributed scientific computing and vi-
sualization, distributed file access, and multimedia conferencing. These applications generate traffic
with very different requirements in terms of expected throughput, delays, errors, and their ability to
dynamically adjust resource requirements. In order to support and efficiently handle the quality-of-
service requirements of such a varied set of applications over an internet, it is important to be able to
use the application’s traffic characteristics to make a decisions about routing and to male statistical
guarantees to the application. Indeed, if connectionless packet delivery protocels were used, it would
not be possible to male use of the application’s behavior to help give it any assurances, or even to
improve the efficiency or utilization of the networks. With the aid of connection-oriented access pro-
tocol’s resource reservations made on the basis of the application’s traffic patterns, it would become
possible to achieve both of these goals [14].

Second, most of the emerging high speed networks, such as aTM {7] and PLANET [2, 3], recognize
the needs of new applications, and provide connection-oriented access. Connection-oriented protocols
also simplify per-packet processing due to the state information stored along the path, and hence
make it more appropriate for high speed operation.

It is also important to note that the communication environment is and will continue to be an

internet of many heterogeneous networks. Clearly, future internets will include emerging high speed
networks as components, and applications will continue to treat the internet as the virtual network.

2 Cranor and Parulkar

Thus, it is important that the internet-level protocol be able to provide high bandwidth and
performance guarantees to applications. This has prompted a number of research groups, including
our group at Washington University in St. Louis, to propose connection-oriented internet protocols
(co1ps), which include mMoHIP [12], sT [8, 17], and rLow [18, 19]. The Internet Activities Board
(1aB) and Internet Engineering Task Force (IETF) also recognized the need for exploring connection-
oriented internetworking and initiated a co1P working group [9, 5].

1.1. Motivation

The proposed ¢0IPs have a number of similarities and differences. The members of the coIP working
group decided that it is important to pursue these protocols and compare and contrast the alternate
approaches for implementing them. However, implementation of these protocols completely inde-
pendently was considered unwise for the following reasons. First, as the proposed coIp protocols
have a number of common functions, independent implementations would lead to a lot of duplicate
work, For example, all the protocols have a connection state machine and a resource allocation and
enforcement function. Secondly, implementation of a protocol in the Unix kernel poses a number of
challenges: coding or logic errors can result in system crashes, kernel debugging support is limitéd,
kernel dynamic memory allocation mechanisms are complex, the protocol’s code must co-exist with
the rest of the kernel, and the existing kernel interface is not well documented.

In order to develop a more productive research environment, avoid duplication of work, and foster
collaboration, we proposed the corp-kernel (coip-x). Cotp-K forms the core of a CoIP protocol and
includes the minimum functionality necessary for a wide range of multicast connection-oriented
profocols. It also includes appropriate provisions to interface with other functional modules. Corp-
K, when combined with a set of functional modules, will create an instance of a CoIP such as MCHIP
or 5T. This process is shown in Figure 1.

unix kernel
MCHIP BBN ST

COIP-K
J

UNIX NETWORKING

Figure 1: ¢OIP-K structure

This approach to protocol development yields important benefits to the research effort. Many of
the functions that a coIP must provide can be supported by a number of alternative mechanisms.
"These mechanisms can be implemented in different experimental modules and integrated with co1p-
K to produce different instantiations of Coips. These instantiations represent different mechanisms
which can be compared under controlled experimental conditions. As a result, it will be possible to

Implementation Model for colps 3

describe under what conditions each of the alternate mechanisms behave well or poorly, and thus
define a coIP that is optimal for a given target environment.

Additionally, by providing a set of default functional modules, CO1P-K can provide an incremental
level of support to a protocol programmer. For example, a novice CoIP-K user could use mostly
default coip-k functional modules and get a simple test protocol up and running quickly. As the
novice COIP-K user got more advanced, he or she could swap out more and more defaunlt modules in
favor of of his or her own modules to make a more sophisticated protocol. By providing incremental
support, GOIP-K can simultaneously provide strong support for novice users and less, non-obtrusive
support for advanced users.

Cotp-x includes support to set up a connection, functions to forward data packets based on
connection identifiers, and functions to terminate the connection. Thus, COIP-K can run the basic
state machine necessary for a connection-oriented protocol, and its implementation in the Unix
kernel can provide the standard interface to its higher-level protocols. However, it is important to
note that COIP-K leaves a number of options open and delegates important decision making to other
functional modules. For example, coIP-K talks to the resource manager for resource availability and
allocation, but the actual resource allocation algorithm is part of the resource allocation module.

Coipr-x, by default, provides only a very basic connection management scheme. It assumes that
all endpoints of a connection are known at connect time, and that they can not be added or deleted
after a connection is established. Also, co1p-K’s default concept of conneciion establishment is not
very reliable (it depends on a two-way handshake and timers). To provide more elaborate connection
management, more complex protocol-specific functional modules must be provided.

This work is somewhat related to the work done at University of Arizona on the z-Kernel [15].
However, where as the z-Kernel is a general solution to protocol implementation (with emphasis on
protocol stacking and uniform interfaces), co1P-K focuses specifically on fitting Co1Ps in the existing
Unix kernel. In fact, the latest version of the #-Kernel no longer runs inside the Unix kernel. Instead
it uses raw sockets to access the network.

The topic of this paper is the challenge of realizing the coiP-K vision and demonstrating its
feasibility and viability. The goals of this paper can be realized by meeting a set of implementation
requirements as explained in the next section.

1.2. Corp-x Implementation Requirements

Co1p-x has five main implementation requirements which define the scope of this research. The
requirements are the following:

e Corp-x must be implemented in the Unix kernel. Protocols implemented outside the kernel
(in a user process) are inefficient due to context switching and the cost of multiplexing data
from one user process to another.

e Coip-K should allow implementation of various COIP protocols by module interchange. Colp-
K module interchange should also provide incremental software support by providing a set of
overrideable default modules. This allows COIP-K users to easily build protocols and to easily
compare and contrast the different tradeoffs associated with the protocols.

e Coipr-K should refrain (as much as possible) from modifying the user-level socket interface.
This will allow easy porting of applications from traditional protocols to coIp for testing.

e Coip-X should have efficient per-packet processing. Eventually, once the tradeoffs associated
with different coipPs are explored, the critical path of 2 ¢oIP protocol should be implemented
in hardware, Having simple and eflicient per-packet processing will facilitate this.

4 Cranor and Parulkar

e Since most coIP protocols support multipoint connections, COIP-K must support them too.

1.3. Paper Outline

Section 2 presents background information and necessary details of the 4.3 BSD Unix operating
system’s networking system. The details of the 4.3 BSD system are presented in [11].

Section 3 presents the details and design choices of the corP-K implementation in the context
of the background information of Section 2. The application programmer interface, various data
structures, and functions that constitute coiP-x in the protocol layer are presented. Section 3 also
presents the different coIP-K modules that serve as the toolbox for other CoIP protocols.

Section 4 discusses the feasibility and viability of corp-k. The specification and implementation
of the corp Test Protocol (CTP) is first presented (code traces of ¢TP can be found in [6]). This
demonstrates ¢oir-K’s usefulness in creating implementations of coIir protocols. Then, the concept
of module interchange, which is critical in realizing different COIPs using COIP-K, is presented. Next
co1P-K’s performance is presented to characterize the per-packet processing and to quantify the cost
of using the coIp-K concept. CoiP-K is shown to be efficient, having delay and throughput close to
that of UDP. Finally, a number of coIP-K demonstration programs are presented.

Finally, Section 6 summarizes the contributions made by this research and discusses directions
for future research.

2. Background

Networking in the BSD Unix kernel is divided into three software layers: the socket layer, the protocol
layer, and the network interface layer. These layers are shown in Figure 2.

The socket layer is the fop layer from the user’s point of view. This layer provides a generic,
uniform, protocol-independent interface to networking services for the applications programmer. At
the programming level, the socket layer appears to consist of a standard set of C functions which
handle all network interaction. These functions are really system calls which cause the system
to enter kernel mode and call down to the lower networking layers. The middle layer, called the
protocol layer, consists of a number of protocol suits or protocol domains. The protocol layer handles
all protocol-specific processing of network data and includes implementations of various protocols
such as TcP, 1P, and xns. The third and lowest layer in the BSD networking environment is the
network interface layer. The software in this layer consists of network device drivers which provide
an interface to the computer’s networking hardware.

Figure 2 shows how the three layers are organized with respect to the user and the network. In
the example at the bottom of the figure, the socket layer can choose between three domains (sets of
related protocols). Each protocol in a domain can route to different network interfaces. Thus, a user
can choose a protocol from one of the TCP/iP, XEROX NS, or DECNET domains. All the protocols
can co-exist on the same network.

One other important aspect of the 4.38sD Unix networking system is the dynamic memory
allocation system. This system is called the mbuf system (mbuf stands for memory buffer). The
details of the inner workings of the mbuf system can be found in [6, 11].

Implementation Model for coiPs 5

user
Socket Layer Generic user interface
Protocol Layer Protocol-specific functions
Network Interface lLayer Interface to hardware
network
Example:
Socket
Internet Xerox NS (XNS) DECNET
\ /
le0 enet le1 enet

Figure 2: 85D Unix network layering

3. Coip-x Implementation

This section describes the implementation of coip-K within the framework of the Unix networking
model. The application programmer interface for clients and servers is presented first. Then the
data structures and functions in the protocol layer are presented. Finally, the corp-K modules are
presented,

3.1. Application Programmer Interface

The coI1P-X application programmer interface uses the standard socket interface fo facilitate porting
of old applications and development of new applications. No changes to the standard socket layer
interface were necessary in our implementation of coip-K with the exception of the addition of a
few new well-known constants for the coip-K domain. Co1P-K uses the client-server model of the
standard socket layer for interprocess communication. We shall examine first the socket level data
structures that have changed with corp-x, and then the sequence of calls used by an example client
and server.

3.1.1. Data Structures. The application programmer of a COIP-K based protocol needs to be
familiar with a few new types of data structures. One such structure is the protocol-specific structure
which is used in setting performance requirements (e.g. peak bandwidth, average bandwidth, etc.)
for a connection. This stimcture is considered protocol specific, so it is not discussed here. The
other new structures common to all coir-x based protocols are the structures used to build a list
of addresses and port numbers for a host.

i} Cranor and Parulkar

v

All addressing information an application uses is stored in a sockaddr cin structure. A sockaddr.cin

is defined to have an address family and a list of cinmad structures. A cinmad structure contains
an 1P address, a port number, and an offset field (which is used internally). Figure 3 shows the
formats of both these structures, and how a socket address can be initialized for a point-to-point
connection. Note thal coIP-K assumes that 1P addressing will be used (thus the in_addr structure
in the cinmad structure). This allows COIP-K to ignore issues such as address resolution (ARP) by
allowing the normal 1P code to handle it. Removing coIP-K’s IP address assumption would require
non-trivial changes to coip-K’s core code.

struct cinmad {
struct in_addr mad;
u_short cin port;

u short coff;

b

struct sockaddr_cin {

u_short sa_ family; /* AF_COIP */
struct cinmad cin addr; /* PTP */
b

struct sockaddr cin c;

c.sa_family = AF COIP;
c.cin_addr.mad.s_addr = remote ip address;
c.cin_addr.cin_port = remote port;

c.coff = 0; /* internal use */

Figure 3: coiP-K socket address structure

For a multipoint connection, the setup of the sockaddr _cin is more complex since the size of
the socket address depends on the number of hosts in the multipoint connection. The format of the
sockaddr_cin structure does not change, but there can be a number of cinmad structures appended
to it. Given a variable number of hosts in a multipoint connection, it is best to dynamically allocate
space for the addresses using malloc{). Figure 4 shows an example of this. Note that the multiple
cinmad structures are treated as an array. Treating the multiple structures as an array simplifies
the programming involved in setting up multipoint connections.

3.1.2. Client Setup. The colp-x client starts by creating a co1P-x socket as shown in Figure
5. This creates a COIP-K protocol socket. Before this socket can be connected to a remote host, the
performance requirements for the connection must be specified. Since there is no standard socket
system call to do this, it is done with a setsockopt() system call (setsockopt is sort of the “catch
all” socket system call). Specification of performance requirements is considered to be a protocol-
specific issue, and each coOIP-K based protocol is expected to define its own structure to specify such
requirerments. Once the application has set up this structure it can call setsockopt().

After the performance requirements have been set, the application needs to set up a struct
sockaddr.cin with the address (or addresses) of the remote host(s), as described in the previous
subsection. This is followed by a call to the connect() function. If the connect() is successiul,

Implementation Model for coips ' 7

struct cinmad *cmd;
struct sockaddr cin *c¢;

¢ = {struct sockaddr cin *)
malloc(sizeof(*c) + ((n - 1) * sizeof (*cmd)});

cmd = &c->cin_addr;
c—>sa_family = AF_COIPR;

cmd [0) .mad.s_addr = remoteIP_ O0;
cemd[0].cin_port = remoteport_ O;
end [0] .coff = 0;

cmd[1] .mad.s_addr = remotelIP_ 1;

/* ete. to cmd[n-1] */

Figure 4: coip-k multipoint socket address structure
CLIENT SERVER
s = gocket {PF_COIP, SOCK_RAW, 0}} s = sacket (PF_COIP, SOCK_RAW, 0})

5 = setsockopt{s, level, CIN_SETPRED, s = setsockopt(s, level, CIN SETPREQ,
&preq, sizeof(preq))) &preq, sizeof (preg))}

err = connect{s, addr, addrlen) err = bind(s, addr, addrlen}
err = listen(s, 5}

s_new = accept (s, addr, addrlen)

~

err = read(s, buf, buflen}
err = write{s, buf, buflen}

close (s}

Figure 5: Sample COIP-K point-to-point client and server

the application is free to start I/O on the COIP-K socket using the standard read and write system
calls. When the client is done with the socket, it can use close() to terminate the connection. If
the connect() fails, it returns —1 and the socket can then be closed.

Some protocols provide mechanisms for performing control operations on a connection that has
already been established. Examples include addition and deletion of a host to an already established
multipoint connection. Co1P-K currently does not provide support for this kind of control opera-
tion, although it can be added to coip-Kk with the specification and implementation of appropriate
setsockept() and getsockopt() system calls and the addition of protocol-specific modules that
go under them.

3.1.3. Server Setup. A COIP-K server creates a socket in the same way as a client does (with
the socket{) system call). Like a client, the server also uses the setsockopt() call to set perfor-
mance requirements. However, while the client sets its performance requirements for the connection
with the setsockopt () call, the server uses the call to set the maximum performance it is willing to

8 Cranor and Parulkar

deliver to any client. If a client requests a performance level higher than what the server is willing
to provide, then the coIpP-K rejects the client’s connection request without any action by the sever.

The server has an option to use the bind() system call to bind itself to a local port number
and become a well-known service, The bind{) call takes a simple sockaddr.cin and looks at the
cin_port field.

The server then calls the 1isten{) function, just as in the case of Tcp/1P. It then calls the
accept() system call to accept connection requests. This call can return some information in the
addr field to help the server determine the source of the connection, although the exact format of
this information has not been specified.

3.1.4. Data Transfer and Connection Termiination. Once a connection is established an
application can perform read and write operations on the socket file descriptor in the standard way.
When all activity on a socket is finished, the application can call close on the socket file descriptor
to terminate the connection. Since, by default, coIP-X uses a simple closing scheme (when one side
closes, the connection is terminated), higher layer protocols may have to build a more reliable closing
scheme on top of coIp-K (or it could be built into coIP-K modules).

As coIP-K does no fragmentation, an application must send data in units that are less than the
network’s maximum transfer unit, unless there is network-level segmentation and reassembly. Also,
an application or a higher layer protocol must do its own error control.

3.2. Corr-K in the Protocol Layer

Corr-K has been designed to work within the BSD Unix networking model. Coip-x lives in the
protocol layer of the sunNos/BsD kernel and has its own communications domain, as shown in Figure
6. Colr-K has its domain because it defines its own family of protocols that do no fall under any of
the other domains. In the protocol layer, coIP-K was designed to support multiple coIP protocols
concurrently, to efficiently handle per-packet processing, and to support multipoint connections.
Figure 6 shows that each COIP-K based protocol has its own protosw structure. This allows an
applications programmer to interface directly to COIP-K protocols in the same way as other available
protocols are interfaced. CoIP-K can be run without making changes to the system call interface of
the socket layer. The only socket layer changes are the addition of the definitions of a few well-known
constants (to identify coIp-Kx) in a system header file and an additional header file to define the
COIP-K addressing data structures. The network interface layer must also be changed to understand
the coIP-K ethernet type.

The ¢oOIP-K system can be divided into two main parts as shown in Figure 1. The first part is the
core COIP-K code which is commeon to all COIP-K protocols. The second part is the group of protocol-
specific modules which are plugged in on top of the core code to form an implementation of a corp
protocol. A coIP protocol built with coI1P-K should support connection-oriented* communications
with resource allocation, packet forwarding/gatewaying, and multipoint connections. The main
assumption that the co1P-k code makes is that 1P addresses will be used. Also, by default, coP-K
uses IP routing. This can be overridden if the need arises.

3.2.1. Data Structures - The coip-k PcB. The most important data structure of COIP-K is
the corp-K protocol control block (PcB) which is shown in Figure 7.

*Note that the “connection” is not a reliable connection. Instead, it is a cross between a reliable connection and a
datagram, thus it is sometimes called a “congram.”

Implementation Model for coips 9

Socket

/\

Internet Xerox NS (XNS) COIP-K

C— 0

[e0 enet le1 enet

e e m

MCHIP protocol internal
i .
protosw structure functions
COIP-K
- COIP test protocol internal
N protosw structure functions
DOMAIN
BBN ST protocol internal
T — .
protosw structure functions

Figure 6: The BSD Unix networking model and coip-g

The coIr-K POBs are stored in a circular linked list which can be traversed by starting with the
address of a dummy PCB cin.g and following the pnext pointer. The PCB structure is set up so
that the standard routines insque() and remgue() can be used to link and unlink pcBs from the
active list. Note that each end-point of a connection has its own PCB structure associated with it.

In coIP-K, a per-protocol control block is an mbuf which is used to store protocol-specific state
Information. Because the information in this mbuf is protocol specific, its structure is not defined
by coIP-K. The pointer to the per-protocol control block resides in the corr-x rcB. The per-
protocol contrel block must be allocated and released at the same time as the main PcB. Thus, a a
protocol-specific module will be called every time a coIP-K PCB is made or freed.

The coIp-K state variable indicates to the COIP-K the state of the corresponding connection (e.g.
CLOSED, OPEN, OPENING, etc.). Protocols which require additional state information can use
the per-protocol control block to store that information. The ID numbers in the COIP-K PCB are the
connection identifiers {ciDs) and the logical channel numbers (LoNs). The CID consists of a unique
eight byte number which distinguishes the connection from all other connections on the network.
The first four bytes are the 1P address of the host which originated the connection. This information
is called the osrc (originating source). The second four bytes are a unique ID number created by
the originator. The CID applies to every host and gateway in the connection. The LCNs on the other

10 Cranor and Parulkar
COIP-K. PCB COIP-X PCB
PCB pointers PCB pointers < etc.

Per-protocol PCB

Per-protocol PCB

COIP-K state

COIP-K state

CID (osrc+id)

CID (osrc+id)

of addresses

of addresses

of routes # of routes
Port #s Port #s
LCNs LCNs

addresses, routes

addresses, routes

timers

timers

Per-protocol PCB

Per-protocol PCB

Figure 7: coIp-K PCB Structure

hand are strictly hop-to-hop ID numbers. An LON is two bytes in length and indicates a data flow
in one direction. Thus, a full duplex connection requires two LCNs, one for inbound data and one
for outbound data.

Maultipoint Addressing and Routing. The format of addressing and routing information stored
in the corp-K PCB depends on whether the connection is a point-to-point or multipoint connection.
For point-to-point connections, all addressing and routing information is stored in the main corp-K
PCB. For a multipoint connection, addressing and routing information is stored in separate mbufs
as shown in Figure 8. This set up was chosen because it fits in easiest with the limitations of the
mbuf system. Currently, the addressing and routing mbufs limit the size of the data to 1024 bytes
each, but this restriction can be removed if larger data sizes are needed in the future. The structure
of these two mbufs is deseribed in the following paragraphs.

Addresses of a multipoint connection are stored in the mbuf cinmad-mbuf which consists of a
number of cinmad structures. Each structure contains an 1P address of one of the destinations and a
pointer to a route for reaching the remote host. The routing information peinted to by the cinmad
structure is stored in the routing mbuf and consists of cinmdst structures. It is possible for several
different addresses to point to the same cinmdst route. A cinmdst structure consists of:

o the input and ouiput LcNs for this route
e the number of addresses (references) which use this-route

e the cOIP-K state of this route

Implementation Model for coips : 11

address-mbuf
remote IP addresses
mbuf
pointer to route to take
coip-k pcb
addresses route-mbuf
routes ~—~____| LCN's, refs, route state
per-proto pch gw address, ifnet pointer

ppcbh-mbuf

protocol-specific info

Figure 8: Multipoint PCB structure

» the remote address (needed for ethernet destination if this route is not through a gateway)

s a rtentry structure that is used to access the network interface which is associated with this
route.

In testing coIP-K, the rtentry structure was obtained from the 1P routing system, however, coip-x
will not force protocols to use standard 1P routing. For example, a coIP-K protocol could have its
own separate and private routing table that maps 1P addresses to network interfaces. This table,
which is separate from 1P, would be accessed via corp-K modules.

3.2.2. Major Functions. Before considering the details of connection establishment, data
transfer, and connection termination, we shall first present an overview of the main functions in-
volved. Figure 9 shows how a COIP-K protocol fits in with the other layers. Note that the actual
COIP-K implementation consists of a large number of functions which (for the sake of clarity) are
not shown in Figure 9. The functions labeled “extract” and “mkpkt” are actually required protocol-
specific corP-K modules and are described in Section 3.3.1.

User Request Function. The user request function cin.usrreq is the socket layer’s interface
to coip-K. This function does many different tasks such as socket/PCB creation, the processing of
socket options, reads and writes, connection establishment for the client side, local-address binding,
and setting up a PCB to accept inbound connections:

The user request function is called from the socket layer. Among its arguments are type of
request being made and the socket associated with the request. The user request function first looks
up the PCB of this socket. If the socket has just been created, then it will have no PCB and the user
request function will create a new p¢B for it. The user request function then switches on the request
argument and processes it. Finally, it returns control to the socket layer.

A general outline (in pseudo-code) of the user request function is shown in Figure 3.2.2.

12 Cranor and Parulkar

socket (create)

read
write
___ socket layer
protocol layer
CIN_USRREQ
cinintr cmo_output
/ 3 \
extract mkpkt
connect
__ protocol layer
natwork interface

layer

NETWORK INTERFACE

ethernet bus

Figure 9: coIP-K protocol switch

Interrupt Function. The cinintr function, the network interface layer’s interface to coIp-K,
is called by the network interface layer when a colP-K packet is received. This function performs
tasks such as packet forwarding, data input (from the network), and the server side of connection
establishment.

The interrupt function is scheduled to be called by the network interface layer. It is basically
a loop in which a packet is removed from the input queue and processed until the input queue is
empty. A packet is processed by first determining its CoIP-K protocol and packet type. Then, the
LCN is extracted, and the PCB is looked up. Finally, the packet is processed as either a data, open,
resource, or control packet. The pseudo-code for the cinintr() function is shown in Figure 3.2.2,

Output Function. The packet output function, cme_output(), takes four arguments. The first
argument is the PCB pointer, which is used to get routing information and data from the pcB. The
second is the packet type, which determines what type of packet cmo_output() asks the coip-x
modules to make. The last two arguments are an indication of what interface the packet came in
on and what the LCN was. If both are 0, then the packet originated from the host, otherwise it

Implementation Model for coips 13

cin_usrreq(socket, request, mbuf, nam, rights) {
struct cinpcb #pch; /+ a COIP-K PCB #/
/% the request parameter is set to the request type */
pchb = pcb pointer from ‘‘socket’’; /* get pcb, if there is one */
if (request == PRU_ATTACH && pcb == NULL) /% no pchb? */
create new pch;
else
return an error code;
switch (request) { /* switch on request */
case PRU_SEND: /+ send data %/
do send stuff
break;
case PRU_CONNECT: /# connect */
do connect stuff
break;
etc...
default:
error condition
}
return control to socket layer;

¥
Figure 10: The cinusreq() function

was forwarded. The cmo_output function handles forwarding by sending data to every point on the
connection except the point the data came in on.

Connect Function. The connect function is illustrated in Figure 12. The function takes a list of
addresses and a PCB, and using the protocol-specific routing module and the LCN mapping module
it produces a PCB with all the routing and addressing information set up.

Connection Management. CoIP-K, by default, provides only a very basic connection manage-
ment scheme. It assumes that all endpoints of a connection are known at connect time, and that
they can not be added or deleted after a connection is established. Also, coip-k’s default concept
of connection establishment is not absolutely reliable or efficient. It depends on a simple two-way
handshake and timers to detect errors. Another limitation of default coip-K behavior is that corp-
K uses a simple linear search to find a PCB given a packet. In order to support a large number of
connections a more sophisticated hashing search would have to be used. To provide more elaborate
connection management, more complex protocol specific functional modules must be provided.

3.38. Coir-K Modules

There are two types of coIP-K modules: required and optional. Required modules are ones that are
totally protocol specific and must be provided by the protocol implementer. Optional modules are
modules that may or may not be provided by the protocol implementer. If they are not provided,
COIP-K provides a reasonable default module from its module toclbox. This set up is shown in
Fignre 13. By providing default, toolhox modules, aoTP-K provides an incremental level of support

14 Cranor and Parulkar

cinintr(} {
struct mbuf *packet; /* a packet */
struct coip_proto *cmo; /* coip-k module set pointer */
struct cinpeb *pch;
top:
mbuf = the first packet on the COIP-K queue;
if (mbuf == NULL) return; /* finished cinintr */
cmo == NULL;
for each COIP-K module set
if {packet type function claims packet) {
cro = current module set;
break;
}
if (emo == NULL) {
free packet buffer; /* drop packet */
goto top;
¥
extract LCN from packet;
peb = result of PCB lockup module;
it (packet is data packet) {
process packet, forward packet;
goto top;
}
if (packet is open packet) {
process packet with connection establishment code;
goto top;
¥
if (packet is control packet) {
pass packet to control input module;
} else if (packet is resource packet) {
pass packet to resource allocation module;
}
forward packet if needed;
goto top;

Figure 11: The cinintr function

for protocol programmers. Novice kernel programmers can use mostly toolbox modules and get
something running quickly, and as they become more advanced they can swap out toolbox modules
for more advanced modules of their own. The required and optional modules that make up a COIP-I
protocol are called a corp-k module set. The next two subsections list the corP-x modules that
make up a coir-K module set.

3.3.1. Required Modules.

Extract module: coir-X does not know a packet’s format because it is a protocol-specific detail.
Therefore, when CoIP-K must remove vital bits of information from a packet, it uses the extract

Implementation Model for coips 15

list of addresses
in PCB —= connect function (—— setup PCB

to be setup
Y
protocol-specific LCN mapping
routing module function

Figure 12: Connect function

COIP Modules Toolbox Modules

COIP-K Core Code

Figure 13: corr-x module plug in

module. This interface is similar to the information-hiding techniques used in object oriented
programming.

Make packet module: As with the extract module, coiP-K does not know a packet’s format.
Thus, the make packet module is required in order to form a packet from data.

Packet type moduler The packet type module determines if a packet is associated with a module
set. If the packet is recognized by a set of modules, then the packet type module will return
the packet’s type. If the packet is not recognized, then the packet type module returns an error
code. This module is first called in the COIP interrupt function to determine which module set
to use when deciding a packet’s fate.

PcB lookup module: When a packet is received, the GOIP-K protocol is determined (by using the
packet type module). Then the PcB lookup module is used to determine which P8 the packet
is associated with.

16 Cranor and Parulkar

3.3.2. Optional Modules (Toolbox Modules).

Attach module: If this module exists, it is called at PCB creation time to initialize any protocol-
specific data structures such as the per-protocol-pcB.

Connect module: An application can request that a socket be connected to a hst of hosts with
the connect () system call. After receiving a sockaddr_cin coIP-K calls the connect module
with the sockaddr cin structure. If present, the connect module is expected to setup routes
to all the addresses in the structure. If no connect module is present, coIr-K will use its own
internal connect function with standard 1P routing.

Control input module: When packets arrive on a coIr-K connection they are either data, re-
source, or control packets. The control input module, called from the cinintr() function,
takes a control packet and processes it. The default control input module from the
s¢ coip module toolbox understands acknowledgments to open and close packets. For more
complex protocols, the default module can easily be replaced.

Data input module: When a data packet is received by C0IP-K in c¢inintz() it can do one of
two things. It can either pass the data directly to the socket layer, or it can pass it to the
data input module for further processing (e.g. error detection or a higher level protocol). The
default is to not provide a data input module so that the data is passed directly to the socket.

Detach module: If this module exists, it is called right before coipP-K frees a COIP-K PCB so that
any protocol-specific resources allocated by a protocol (typically in the attach module) can be
freed first.

Disconnect module: When a coIP-X connection terminates it must free up any system resources
that it has allocated (e.g. routes, buffers). The disconnect module handles this task.

Fast timer module: This function is called every 200 ms if present. It provides a way for a coiP-K
protocol to do fast timeonts.

Init module: Many protocols need to set up data structures and timers when the system is first
booted. The init module provides a way for the protocols to do this. Unlike the timer modules,
the init function is located in the standard protosw structure.

Localized module; The localized module determines if the address of the current machine is in a
list of addresses. It is useful for determining if a packet is intended for the local machine or
not.

Output module: The output module is responsible for outputting data to the nelwork interface
layer. The standard output module was described previously in Section 3.2.2.

PcB setup module: This function is related to the connect function, except it is called when an
OPEN packet is received instead of when a connect() system call is used. If it is not present,
the corp-K default function (with 1P routing) is called.

Performance packet input module: This function is called by the interrupt routine to handle
" performance packets from a resource server or remote host. It is stmilar to the control input
function, except it expects packets relating to resource allocation. If the function is not present,
resource packets are dropped. (It should be noted that resource packets are really a type of
control packet, but colp-K separates the two packets into different classes to make the resource
allocation function more modular.)

Reject module: The reject module is used to send an error message to a peer COIP-K system.
Currently error conditions are not well defined, so this function is not used much.

Implementation Model for comps ‘ T

Set performance requirement module: This function is called from setsockopt() to set the
performance requirements of a connection. If it is not present then performance requirements
for the protocol are turned off.

Slow timer module: This function is called every 500 ms. This provides a way for coiP-K proto-
cols to do slow timeouts. Slow timeouts must be used to timeout the connect() system call.
If a slow timer module is not provided, the default one will perform this task.

4. Corr-K Feasibility and Viability

This section presents the feasibility and viability of co1p-K, which has been designed to meet four
main objectives:

e Coi1r-K should facilitate the implementation of different corps.

o Corp-x should allow CcoIPs to be easily constructed by interchanging modules. The original
model specified that a set of modules could be compiled into the kernel with CoIP-x to form
a single coIp protocol. As coIP-K was developed, the scope of this model was revised and
enhanced to include multiple module sets and incremental support.

s Co1P-K should provide support for multipoint communication.

e Corr-K should provide efficient per-packet processing (either as a gateway or as an endpoint).

The purpose of this section is to demonstrate how these ohjectives have been successfully achieved,
and in some cases surpassed. The outline of the section follows.

Section 4.1 presents a specification of a simple cOIP protocol, the corp Test Protocol (cTP), and
shows how its implementation was realized using coip-K. This exercise has served two purposes.
First it has helped demonstrate co1P-K’s usefulness in creating implementations of a corp protocol.
Second, it has helped us thoroughly debug and test corp-K. It is important to note that this simple
COIP protocol represents a subset of Washington University’s MCHIP protocol,

Section 4.2 presents important aspects of the CoIP-K organization which facilitate module inter-
change and incremental support. Incremental support ailows novice COIP-K programmers to start
off relying on coiP-K to do most of the hard work. Then, as novice COIP-K programmers become
more advanced, they can use incremental support to rely less on CO1P-K code and more on their
own code. Easy and efficient module interchange is critical in realizing coips using colp-x and in
comparing alternate solutions of coiP modules. We show by example that the corpP-K organization
does indeed make the module interchange easy.

Section 4.3 presents performance results of cOIP-K obtained through a series of experiments. The
purpose of these experiments is to characterize the per-packet processing effectiveness of coIp-k and
to also quantify the cost of the coir-K concept. The cost of COIP-XX is defined as the additional
overhead of packet processing using COIP-K as compared to direct protocol implementation. This is
quantified in terms of the number of additional function calls and protocol-independent tasks needed
to do per-packet processing.

Section 4.4 presents a number of demonstration applications created on corp-K. These dernon-
strations serve three objectives. First, they test and verify several capabilities (point-to-point,
multipoint, gatewaying, etc.) of CoIP-K. Second, they show that applications using the standard
socket interface can be ported fo work on COIP-K with minimal effort. Finally, these applications
show that coIP-K can be used to create useful applications.

18 Cranor and Parulkar

4.1. Co1r-K Test Protocol

The colp-K Test Protocol (¢TP), a cOIP protocol implemented using coip-K, has been used to test
coip-K. The cTP protocol has been intentionally kept simple because our emphasis is on coIP-K.
We expect CTP to serve as a template for implementation of other corp protocols using COIP-K.

One main difference between ¢TP and MCHIP is that MCHIP allows resource reservations to pro-
vide performance guarantees. Although coIr-K has been designed to support resource allocation
and enforcement modules, we did not implement this in ¢TP. We believe resource allocation and
enforcement are protocol specific, and thus should be part of coiP modules and not part of corp-x
itself.

4.1.1. CtP Packet Formats. This section presents the CTP packet formats. All cTP packets
start with a standard oTP header. This header consists of a one byte version number, one byie of
padding, and a two byte packet type.

CtP Open Packet Format. The “open” packet format is shown in Figure 14. The open packet

.
+

version

source port

originator (osrc)

connection ID (CID)

LCN number of destinations

destination #1 address

destination #1 port destination #1 code

repeat destination fields until done

TFigure 14: Open packet

starts with the standard four-byte cTP header, with the packet type set to OPEN. The next field in
the packet is the 1P address and coIP port number of the source host!. (Port numbers are needed
to distinguish between COIP-K connections between the same machines.) After the COIP souree port
number there are two bytes of padding. The packet then has two fields which together produce

tNote that a host can act as a gateway and/or an endpoint in a COIP-K connection.

Implementation Model for coirs i 19

a unique eight-byte identification number for the connection. The exact structure of this field is
not of major importance as long as the eight bytes are unique across the network. In cTP, we
decided to have the first four bytes contain a portion of the 1P address of the host which originated
the connection (called the originator or 05RC), and the second four bytes contain a unique number
generated by that host (called the connection ID or ¢Ip). The next field is the LN, or logical
channel number. The LeN is a two-byte number which is used between two adjacent hosts on a coip
connection to indicate which session the packet belongs to. After the connection is established, only
the LCN is used to identify the connection. The next field indicates the number of hosts associated
with this connection. The rest of the open packet consists of information on each of the hosts in the
connection as shown in Figure 14. By including this information in the open packet, each endpoint
in the connection can get a list of all the other endpoints on the connection.

For each host in the connection, a three-field structure is appended to the open packet. The first
field is the IP address of the destination host. The second field is the coip port number to connect
to on that host. The third field is a “code” which indicates the disposition of that destination on
the connection. There are three possible values for the code and they are:

e COF_IGKORE (Oxfiff) — ignore address
¢ COF_PARENT (Oxfife) — address is parent in connection tree

® 0 (zero}) — normal address

The host or gateway that receives the open packet uses the code to determine if it needs to connect
to a destination or if that destination is already connected at some other end of the connection. If
the value of a destination’s code is COF _PARENT, the destination is the parent of the current host in
the connection tree. I the value of a destination’s code is COF.XIGNORE, the destination is already
on the connection (from some other end) and the host which has received the open packet does not
need to take any action to connect to that destination host. Finally, if the value of a destination’s
code is 0, either the destination is on the host which has received the open packet, or the host which
received the open packet is to act as a gateway to that destination. Figure 15 shows an example of
values of the code for a multipoint connection between hosts A, B, ¢, D and 0.

Note that the three-field destination structure mirrors the coIP-K cinmad structure.

CTp ACK Open Packet. Tigure 16 shows the format of the “ack open” packet. This packet
has the usual four-byte header, with the packet type set to “ack open.” This is followed by the LoN
which will be used by the remote host when sending data packefs. It then has both the LcN that
the host who sent the open packet used, and the ¢ib. These allow the host to double check the
references before the connection is marked as open.

Ctr Data Packet. The format for a data packet is rather simple and is shown in Figure 17. In
this example the packet type is set to “data.” The only other information in the header are the LeN
and data length fields.

CtTp Close and Error Packets. Finally, the last ¢TP packet format to be presented is the close
and reject format. The close packet is actually a special case of the reject packet (i.e. they both have
the same format). The reject packet exists so that an error message facility similar to the Internet
Control Message Protocol [4] (1cMP) can be built in ¢TP. This facility has not been developed yet,
and thus is not described here. The close packet is pictured in Figure 18. In addition to the standard
CTP header, the close packet contains the 0src, ciD, and LON of the connection. The format also
includes space for an error code, however TP does not make use of this space at this time.

20 Cranor and Parulkar

originator O

'1

endpoint A
O=parent; A,B,C,D=zero

endpoint D
A=parent; B,C,O=ignore

D =zero

endpoint B endpoint C
A=parent; C,D,O=ignore A=parent; B,D,O=ignore
B = zero C = zero

Figure 15: Example of the use of the code field in an open packet

4.1.2, Ctp Connection Lifeline. This section gives a general overview of the life of 2 cTP/Co1P-
K connection.

Ctp Connection Establishment, Connection establishment in ¢TP is shown in Figure 19. The
COIP-K states are shown on the sides of the vertical time lines, and the packets are shown in between
the lines. This connection could be a point-to-peint connection, or it could be one branch of a
multipoint connection.

When the client process sends the server an open packet, the server replies with an ack open
packet opening the connection.

CTP Data Transfer. Once the connection is established, data can be transferred until a close
packet is sent. This is shown in Figure 20. The packets are all in the cTP data format.

Ctp Shutdown. Shutdown is also shown in Figure 20. When one side sends a close packet, the
connection is considered closed. Since this type of connection closing is not reliable, a higher level
protocol should be used to make sure that all end points in the connection are ready to close before
closing the COIP-K connection.

Implementation Model for coips 21

version packet type

new fcn len from open packet

originator

connection 1D (CID)

Figure 16: ACK open packet

i i i
! ; !

R
o R
version %%)%%’** | packet type
R e
LCN fength
data

Figure 17: Data packet

4.1.3. CoIir-K Modules Required for cTP. Because CTP is a simple CoTP protocol, it required
only four modules to implement. Only required modules are provided with cTP. For optional
modnles, ¢TP uses the default modules from the coIp-K module toolbox.

Ctp Extract and Make Packet Modules. The extract and make packet functions provide
COIP-K with access to the TP packet format. The extract funciion takes a ¢TP packet and extracts
various data fields from i, The make packet function takes data and creates a ¢TP packet from it.
The exact ¢TP packet format is described in Section 4.1.1.

PcB Lookup Module. This ¢TP function takes any packet and looks for a PCB associated with
it. In ¢Tr this means doing extracts based on the packet type and then either looking through the
COIP-K PCBs or doing an LCN lookup.

Packet Type Module. This module takes as input a coIP-K packet and determines if the packet
is & CTP packet, and if so, what type of packet it is. If the packet is not a ¢TP packet, the packet
type module returns 0 which indicates the packet belongs to some other ¢oIP protocol.

4.2. Co1r-K Module Interchange

4.2.1. Module Introduction. CoIP-K has been created to easily design, implement, and test
COIP protocols, as was shown in Figure 1. Co1P-X is based on the idea that different coIP protocols

22 Cranor and Parulkar

version packet type

originator

connection |D {CID)

LCN error code

Figure 18: Close pﬁcket
client state client server server state

[state = closed] [state = listen]
|

state = ralloc
(_state = ralloc]
[state = rdyTOQOJ open packet

[=

ack open

S
 state = open] [state = open |

time fime

Figure 19: Connection establishment

share many of the same basic functions. For example, all colP protocols, by definition, provide
some sort of connection-oriented service using a simple connection state machine. To ease the
COIP protocol implementation process, COIP-K implements these common functions, which consist
of connection set up, data transfer, and connection termination. CoiP-K then allows the more
protocol-specific functions of a protocol to be plugged in as modules. Thus, the implementation of
a COIP protocol with cOIP-K consists of two parts: the protocol-specific functions and the common
colIP-K code. The protocol-specific functions of a COIP protocol are called a cOTP-K module set.

An important objective of the co1r-K package is that it allow multiple instances of coip protocols
to be installed in the kernel under it at the same time (this makes the comparison of different
protocols easier). To achieve this objective, COIP-K uses the operating systern’s protosw structure
in conjunction with the module set idea.

A corr-K module set is defined by the coip_proto structure. This structure consists of a list
of pointers to the various functions that implement the modules. Each function is its own COIP-K
module. In fact, the coip_proto structure is very much like the system-wide protosw and domain
structures, which allow multiple protocol families to use the same hardware interface without inter-
fering with each other.

All that has to be done to create a COIP-K module set is to make a copy of the structure that
defines it and set the pointers appropriately, with all the coiP-K modules that are associated with

Implementation Model for corps 23

client state client server server state
 state = open | state = open)
~__ data
data
data
L __close . -
[state - closed] [state - closed]
time time

Figure 20: Data transfer and connection closing

the coip protocol implemented. The structure can be filled with two different types of modules:
required modules and optional modules.

Required co1P-K modules are ones that contain the details of the coIP protocol to be implemented
and are usually provided from a source external to the coiP-K package. On the other hand, optional
COIP-K modules can come from sources outside the ¢OIP-K package, or they can come from a set of
¢oIP toolbox modules which come with coiP-K. The toolbox modules provide reasonable default
modules, and they can be easily replaced by different modules, just by changing a single pointer in
the module set data structure. Figure 21 shows how protocol modules plug into coip-k for cTp.

By providing the coIP-K toolbox modules and allowing them to be interchanged easily with other
modules, coipr-K provides a very useful feature: incremental protocol development support. When
protocol developers start with corp-x they can have coir-K do most of the work by using many
toolbox modules. As the developer becomes more advanced with corp-k and kernel programming
they can swap out toolbox modules and replace them with modules of their own. Eventually they
may in fact swap out most of coIr-Kk and replace it with their own code. The advantage of this is
that coIP-K provides as much (or as little) support as the protocol developer needs.

One of the most important ideas behind coip-K is the idea of plugging module sets into COIP-K
to easily get different coip protocols. This process is shown in Figure 22. Modules can usually be
shared between any number of Go1P-k module sets. This saves space and provides a powerful tool
for experimentation.

A programumer using COIP-K can choose which ¢o1P-K module set he or she wants to use at socket
creation time. Recall that the socket{) system call has three arguments: the protocol domain, the
socket type, and the protocol. The third argument {the protocol) in the socket call is used to
distinguish between co1p-K module sets. If the third argument is 0, the default coip-K module set

is chosen.

By providing such an easy-to-use interface at the system call level, cOIP-K has made the testing
and use of COIP protocols relativity easy and will hopefully minimize the number of kernel rebuilds
and reboots required for testing.

Also, since COIP-K lays out the basic structure néeded to make a COIP protocol (as compared to
starting with just the basic protosw structure) it makes implementing a COIP protocol easier. This

24 . Cranor and Parulkar

Toolbox Modules

ATACH DETACH

CONTROL INFUT PCB SETUP

CTP Modules

DISCONNECT SET PERFORMANCE
MAKE PACKET PACKET TYPE DATA INPUT PERFORMANCE INFUT
EXTRACT REJECT INIT SLOW/FAST TIMERS
PCB LOOKUP LOCALIZED CONNECT
/
USER REQUEST INTERRUPT
QUTPUT INIT

TIMER CONTROLS LCN MAPPER

COIP-K Core Code

Figure 21: coir-K plug-in modules

is achieved by coir-K by dividing the tasks needed for implementing a COIP profocol up into smaller
easy-to-write modules and providing example modules to guide a programmer.

4.2.2. Module Set Demonstration. In order to demonstrate the power of coiP-K in facil-
itating module interchange, a new Coir protocol based on ¢TP has been created. A few modules
have been changed to modify the way multipoint connections are handled by this protocol.

There are two ways to do multipoint connections: many-to-many and one-to-many. CTP im-
plements multipoint connections in the many-to-many fashion. This means that any data written
by an endpoint on a oTP multipoint connection will be received by all the other endpoints on the
connection. Thus, the multipoint connection in this case is similar to a broadcast channel.

On the other hand, in a one-to-many multipoint connection, the connection is considered a tree,
with the endpoint which established the connection at the root. When the root of the tree writes
on a one-to-many multipeint connection, all the other endpoints get the message. However, when
a non-root endpoint writes on the connection, only the root receives the message {although the
message may pass through several gateways on the way to the root). The one-to-many multipoint
connection is illustrated in Figure 23.

To demonstrate the coirP-K module concept, the many-to-many CTP COIP-K module set was

Implementation Model for coiprs 25

module sets modules

o]

—_— Aty
__________—————‘"’

nd

=

(“mkpkty(}y; — | !

("outputl(); ———
{"datain){); ~—

(*extrac)(); \

Metc..."/

{*mkpkt)();
(routput)(; /
(*datain)(}; '

{(*extract)();

retc..*/

Figure 22: Plugging modules into coIP-K

modified to create cTP2. CTP2 is the same as ¢TP for point-to-point connections, but it is one-to-
many for multipoint connection.

The process of creating new CoIP-K protocols is very simple. The easiest way to do it is to clone
an existing coIP-K module set and then modify it to create the new protocel. To clone a co1P-K
protocol, all that has to be done is to edit the file cin.proto.c. The file contains a list of protosw
structures and coip-proto structures. Except for the protocol number (which must be reassigned),
the protosw structure can be copied. The timer functions in the protosw structure should be set
to NULL (except in the ¢TP protocol}.

Then the coip.proto structure can be copied. Once the protosw and coip.proto structures
are copied and the system has been recompiled and rebooted, there will be two copies of the same
protocol installed. Af this point alternate modules can be substituted info the new module set
to modify the cloned protocol. Applications need only specify the correct protocol number in the
socket () system call to access the correct protocol.

For ¢TP2, the CTP module set was copied. It was then noted that the main differences between
¢TP and ¢TP2 were in packet forwarding and the time that data is passed from the protocol to
the socket layer. The packet forwarding scheme of ¢TP2 is shown in Figure 23. The root endpoint
should never forward a received packet, and a non-root endpoint should only forward a packet up
the connection tree. Data should be passed up to the root endpoint at all times in cTP2. On the
other hand, the non-root nodes should only receive data from the root node.

26 Cranor and Parulkar

client (root)

=

——

endpoint

———

endpoint

e ———

endpoint endpoint

Figure 23: One-to-many multipoint connection

To handle the packet forwarding requirements of ¢TP2, the output module had to be modified.
C1r used the co1P-K toolbox module cmo_output for its output module. cTP2 took a copy of the
cmooutput module and renamed it to ct2_output and modified it to forward packets as per the
requirements of ¢cTP2. Then the output module pointer in the coip.proto module set for cTP2 data
structure was modified to point to the new function.

When the ¢TP protocol receives a data packet it passes the data to the socket layer, if possible,
by not providing a data input module. However, for cTP2 this is not acceptable. So, a data input
module was added to the ¢TP2 module set.

By making these two changes to the ¢TP module set, it was possible to create ¢TP2 in short
order. To test ¢TP2, a simple multipoint demonstration program was recompiled to use cTP2, and
it worked as expected.

To implement ¢TP2 from scratch would take a fair amount of time without corp-g. To implement
CTP2 given an implementation of ¢TP would not take as long as doing it from scratch, but it still
would take a fair amount of time. However, with the modular nature of coIP-K, implementing cTP2
took about an hour.

~

Implementation Model for coips 27

4.2.3. Adding Modules to coiP-K. Adding new features to ¢OIP-X can be achieved by adding
new modules to the coip_proto module set data structure. This is relativity easy to do. By adding
a new pointer to a function to the end of the structure a new module can be added without having
to modify existing protocol module sets which do not use the new module. When calling the new
module, one should first check to see if its pointer is null or not. If it is null, then the module does
not exist for that protocol. Otherwise, it can be called in the usual way.

For example, if one wanted to add support for adding an endpoint to a connection fo COIP-X,
the first thing to do would be to add a new module to perform that function to the coip_proto
structure. Then the user request function would have to be modified to catch the “add an endpoint”
request (either as a setsockopt() or an overloaded connect() call) and have it call the new module,
as described above.

4.3. Corr-x Performance

To verify that coip-& works properly and to quantify the performance of coIpP-K, a study of cTP’s
performance has been undertaken.

4.3.1. The Cost of corp-K. While the coIP-K module system is useful, as shown by the ¢TP2
dernonstration, its flexibility can not be achieved at zero cost. To determine the cost of using coIP-K
to implement a COIP protocol, it is useful to compare it to the cost of implementing a coiP protocol
directly (without using colp-x). In comparing theé two implementation methods, two important
costs of cOIP-K become apparent.

The first component of the cost of using coIP-K has to do with the added overhead of calling
a CoIP-K module. For example, in the performance-critical data path of corr-K (in the interrupt
function), modules are called in six places. First coip-K must trace through the lisi of module sets
(calling the packet type module) until a module set claims the incoming packet. The cost of this
depends on how many coIP-K protocols are installed. Then coIiP-K must call the protocol control
block lookup module to find the PCB associated with the packet. Then the data extraction module
is called twice to get the data length and data from the packet. Next, the output module is called to
forward the packet along the path of the connection. Finally, the output module can call the make
packet module to create a packet. This process is shown in Figure 24.

cipintr()
* ! Y v
(cto_pcblookup)() {ctp_extract)() (cmo_localized)() (emo_output){)
AND
(ctp._ptype)() Gateway case: {cto_mkpkt)()

Figure 24: coI1p-K critical path

In a direct implementation of a protocol, function calls can be accessed direcily. However, in
COIP-K these calls go through the coip._protoe data structure. This adds certain indirection as shown
in Table 1. The table shows the cost of a function call in terms of number of instructions on a Sun
Sparcl. The first row shows that it takes one instruction to call a function directly. CoIP-K makes
module calls as in the last two rows. If the pointer to the coIp module set is known in advance,
then the cost is 4, as per the middle row. However, if the module set is not known, then it can be

28 Cranor and FParulkar

Table 1: Overhead of ¢oIP-K module calls in Sparc machine instructions

| Function Call Type | Number of Instructions]

feall() 1
(*ptrl->iptr)() 4
(*ptrl->pir2->fptr)() 5

determined from the CcoiP-xX PCB at the cost of another indirection, with a cost of 5, as shown in
the last row of the table.

The other cost associated with using co1p-x has to do with accessing data in a packet. Colp-x
directs all access to a packet’s internal structure through the extract and make packet modules. If a
protocol is implemented directly, the data can be accessed directly without the need for a function
call. So, the added overhead here is one function call.

Anocther aspect of the cost of COIP-K is the code size and memory used by it. If a coIr-k module
set contains I functions and there are N module sets active on a machine, it is possible for corr-x
to have N = F' functions installed in the kernel. However, this does not take into account the fact
that co1P-K modules can be reused. For example, if two protocols are exactly the same except for
one module, the only extra cost is the memory needed for the modules, and the extra memory used
by the cin.proto structure.

With today’s machines, the overhead introduced by coiP-K is not substantial. For example, the
cin intr interrupt function has about 600 Sparc instructions in it, and only five module calls in it.
Each module call costs four instructions, which is three more instructions than a normal function
call. We believe that the benefits out-weigh the cost. If performance becomes an issue, one could
casily modify a coIP implementation by deleting the indirections at the cost of coIp-K flexibility.

4.3.2. Corp-x Throughput. Protocol throughput was studied using a client and a server
program. The server program simply accepts a connection and reads data until the connection is
closed (the data is discarded). The client program takes two parameters: the total number of bytes
to transfer and the number of bytes in one write() system call (i.e. the “write size”). Afier the
client program transfers the number of bytes specified to the server, it reports the throughput in
Mbps.

The throughput performance measures were made by transferring 80MB of random data through
the loopback network interface!. From the results of this experiment it was discovered that the
theoretical bandwidth limit of the ethernet can be exceeded by UDP, colp-K, and Tcrd. This
indicates that performance measured over the ethernet will be limited by the ethernet hardware,
not the protocol processing. Thus, when measuring protocol performance it makes sense to use
the loopback network so that the limitations of the underlying network hardware do not shade the
performance of the networking software.

Once the client and server programs were tested with TCPp, it was easy to port them to cTP and
upP. Then, the same experiment was run for the three protocols on a Sparcl. The throughput
results are shown in Figure 25. At a high write size, UDP performs the best, followed closely by
COIP-K. TCP does not perform nearly as well due fo its overhead. However, at low write sizes, TcP

tThe loopback network interface allows a host to make a connection to itself without going over any physical

network.
§Note that the workstation GPU is not deing anything but sending and receiving data.

Implementation Model for COIPs 29

seems to outperform both UDP and ¢TP. It should be noted that comparing ¢TP to TCP directly is
not appropriate because TCP is a transport protocol and provides flow and error control, whereas
CTP is an internet protocol and does not provide any flow and error control. However, the relative
performance suggests indirectly that coip performs well.

The reason TCP performed better at low write sizes is because TCP aggregates data, while UDP
and coIp do not. This was discovered by checking the read size on the server side of the connection.

Once it was discovered how TCP was behaving, a detailed study of the TCcP documents uncovered
the TCP_NODELAY socket option which prevents TCP from queueing up data. The results of turning
on this option are shown in Figure 25.

10.0 : T . .
---- UDP :
— COIP-K
8.0 -
& TCP
=3
o]
E 60} i
5
&
=g 4.0 -
o
£
20 .
0.0 : : : L :
0.0 500.0 1000.0 1500.0

write size (bytes)
Tjgure 25: Throughput with TCP.NODELAY option added in

It should be noted that UDP’s performance over the loopback network is sometimes improved in
the kernel by having it by-pass the 1P and network interface layers and inputing it’s data directly into
udp-input. The data presented for UDP in this section has this optimization turned off to prevent
upP from having an unfair advantage over coiP-K.

Given that cTP performs as well as UDP, a simple and efficient implementation of a protocol by
a vendor, we conclude that coIp-x has been implemented efficiently.

4.3.3, Coir-K Delay Performance. To examine Coi1P-K’s delay characteristics, probes were
inserted into cOIP-K, UDP, and TCP code [13]. These probes make a timestamp at the beginning
and end of the processing of a packet. Thus, by using the probes, it is possible to find out how
mruch processing time is spent in the protocol layer of the kernel. The plots of the processing delays
of coip-K, TcP, and UBP for both client and server are shown in figures 26 and 27 respectively.
The plots were generated by measuring the processing time of 200 packets, each of which contained
1024 bytes of user-data. Table 2 shows the minimum, maximum, and average delay for the different
protocol plots.

%1If the average read size is roughly equal to the average write size, then it is safe to assume that the size of the
data in the packets is equal to the write size.

30

Cranor and Parulkar

Table 2: Minimum, maximum, and average protocol delays in msecs.

Protocol Mimimum Maximum Average
client | server || client | server || client | server
TGP 0.383 | 0.209 [} 9.641 | 1.284)| 1.796 | 0.251
uDpp 0.082 | 0.064 { 1.565 | 0.113]| 0.148 { 0.073
COIP-K 0.071 | 0.043 |[1.161 | 0.079 } 0.115 | 0.048

By taking the average time spent in COIP-K processing from the table, it is possible to calculate
the maximum throughput corp-K could generate on a Sparcl if it only had to do protocol layer
processing. It was found that oTP spent 48 psecs receiving data and 115 psees sending data {with
a packet size of 1024 bytes). By taking the inverse of the larger of these two times, one gets the
number of packets that can be processed in one second giving a theoretical maximum throughput of
71.235 Mbps. All this data suggests that the per-packet processing of co1P-K has been implemented

efficiently.

0.010 . T - . : T
SRR TCP Delay .
0.008 Ft ~ - UDP Delay _
——-— COIP Delay
—— K §
& 0.006 | .
@ * bl
L n
1
) 5 l y
1] oy ! i
$ 0004 i i b i
o ' '||: I H [e L ;.‘ ENRIET
I P S R R N -.ﬂ-:!;-
I A S TR LA FE PR T O .1 :: il -;..';:-{ o b
0.002 -rlz'::‘"':."',":.lsl:"::l:t,,:}l,',wl,ll.l',“l::l,ﬂ':uf“' u:,{x.l.nu,ln[lni o n 4 ,.:'\ ,Ifi::lj‘.u::l"‘a lu:sltl:ﬂ
R R S R l,'»‘i.' *;:h:‘,:‘.:t iy ‘:'a":':',;;u'ﬂn W :!‘ BHIH
BT =f'rf":"'a P ‘m' H i ’,’ -i‘:;tr
0.000 1 Sy A 3 mt_ A* hY Aty t\
0.0 50.0 100.0 150.0 200.0

packet number

Figure 26: Client delay plot

4.3.4. Coir-X’s Effect on Queue Length. Queueing occurs in two main places in the kernel.
For outbound traffic, the network device interface quene stores packets until the ethernet hardware
is ready to send a packet. For inbound traffic, the receiver’s socket buffer is used to store data until
the receiver reads the data. The probes used to measure delay were designed to be used on traffic
over the ethernet. 1t was found that on a Sun Sparcl, both UDP and colr-K were able to overflow
the outhound network interface quene. This indicates that COIP-K can operate faster than ethernet

speeds.

On the loopback network it was found that coIP-K overflows the receive socket queue, which
means that the CoiP-K was generating data faster than the receiving process could read it.

Implementation Model for coirs 31

0.0015 : : : : . ,
—————— TGP Delay ,
-~~~ UDP Delay |
—— COIP Delay ;
= 0.0010 | P
& ;
D b
@, b
Z 4
Q tow
T 0.0005 |- .
N N e e W X ma P o = Y e R e e A o e o e o]
0.0000 - ' - ! : ; :
0.0 50.0 100.0 150.0 200.0

packet number

Figure 27: Server delay plot

4.4. Corr-K Testing and Demonstrations

The five test programs run using CTP are presented in the next subsections. The same test pro-
grams can exercise different parts of the coiP-K code depending on what hosts are members of the
connection. Figure 28 shows the three malin testing configurations: loopback, over a local network,
and through a gateway. All applications have been fested in these configurations.

4.4.1, File Transfer Test. The first set of cOIP-K fest programs coIpr-K implement a go-back-
n sliding window protocol in user code on top of ¢TP. The test programs use the sliding window
protocol to transfer a file from the client to the server over a cTP poinf-to-point connection. The
programs test the point to point code and show that COIP-K/CTP can have a transport protocol
built on top of them to perform a useful task (in this case, a file transfer). The set up for this
demonstration is shown in Figure 28. This test generates a lot of cotP events in a short period of

time.

4.4.2. File Transfer Through “gateway”. This test is similar to the previous test, except
instead of the client establishing a connection directly with the server, it establishes the connection
through a third server (called xserv). The xsexv program runs as a user process and acts as a user
level “gateway” between the client and the server. Depending on what mode xsexrv is run in, it can
act as a reliable gateway, or it can drop or reorder packets with certain probability which is specified

by the user. This test is shown in Figure 30.

The xserv host accepts a COIP connection from the client and establishes another CoIP connection
to the server. Once the connection is established, the client process will generate data as fast as
possible. The xserv process must accept this data and forward it to the server with variable
reliability as specified by the user. The transport protocol will recover from the errors introduced by
xserv. A successful run of this test shows that coIP-K can handle a Jarge number of data requests
properly and that it also can handle multiple CTP connections at once. This test is the most complex
test of the point-to-point tests. The bulk of the complexity is at the host which runs the xserv

32 Cranor and Parulkar

host

N

loopback configuration

host host

ethernet

network configuration

host gateway host

I RN |

ethernet 1 ethernet 2

gateway configuration

Figure 28: colp-K testing configurations

program. It has to deal with multiple cOIP connections and a large number of coIP packets per
second.

4.4.3. Telnet Demonstration. The final coiP point-to-point demonstration programs were
a port of the 4.3 BsD Unix telnet/telnetd programs. This allows a cOIP-K program to be used for
remote login, While this test is not as complex as the previous one, it works and has run for several
hours without a connection breakdown. Tt took about ten'minutes to modify telnet to run with cTp.
This test shows that existing applications such as telnet can be ported to a corP protocol without
any difficulty.

4.4.4. Multipoint Chat Program. Another demonstration of COIP-K multipoint connections
was the colp multipoint chat program. In this program a multipoint connection is established
between three processes. The program then divides the screen into two parts: an input region and
a display region, as shown in Figure 31. Anything a user types is displayed in the input region until
the user hits reburn. Then the typing is transmitted over a CTP connection to the display part of all
the other machines.

This sort of program is the simplest case of a multiparticipant collaboration. Thus, it shows that
such applications can be done on top of corr-K.

Implementation Model for coirs 33

Client Server
FILE FILE
TRANSFER TRANSFER
TRANSPORT TRANSPORT
PROTOCOL PROTQOCOL
(go-back-n) {go-back-n)
COIP TEST COIP TEST
COIP-K COIP-K
NETWORK NETWORK
NETWORK(S)

Figure 29: File transfer program
file file
transfer transfer
go-back-n xserv go-back-n
franspori | _gateway transport
ctp/coip-k ctp/coip-k ctp/coip-k
network network network
l | |
ETHERNET

Figure 30: File transfer program, through a third party

4.4.5. Multipoint Script Demonstration. The final test program for coip-K is the mul-
tipoint seript program. The “script” program is a program under Unix which logs a session to a
file. The multipoint script program logs a session to a corP multipoint connection so that multiple
people can watch someone’s session. This process is shown in Figure 32.

This sort of application is useful for multiparticipant collaboration. It could also be useful for
distributing useful information, such as network status, to hosts throughout a network.

5. Conclusions and Future Research

Over the past few years, a number of research groups have proposed connection-oriented internet
p M) P prop
protocols (COIPs) to provide variable grades of service with performance guarantees over an internet

34 Cranor and Parulkar

display window

input window

Figure 31: Multipoint chat program screen layout

watch @ multipoint E‘E"j watch

3

[:..'-'-___":j shell

AL Bl

Figure 32: Multipoint script program

of heterogeneous networks. Two major advantages of connection-oriented protocols include the
ability to do statistical reservations for each connection and simplified per-packet processing. The
proposed COIPs have a number of similarities and differences. The research groups believe that
it is important to pursue these protocols and compare and contrast alternate approaches to these
protocols. However, implementation of these protocols completely independently was considered
unwise for two reasons. First, as the proposed ¢o1P protocols have a number of common functions,
independent implementations would lead to a lot of duplicate work. Secondly, implementation of a
protocol in the Unix kernel poses a number of challenges.

In order to develop a more productive research environment, aveid duplication of work, and foster
collaboration, we proposed the corp-kernel (corp-k). Colp-K forms the core of a COIP protocol and
includes the minimum functionality necessary for a wide range of multicast connection-oriented
protocols. It also includes appropriate provisions to interface other functional modules. Coip-x,
when combined with a set of functional modules, will create an instance of a coIP such as MCHIP or
ST,

This approach to protocol development yields important benefits to the research effort. Many of
the functions that a colr must provide can be supported by a number of alternative mechanisms.
These mechanisms can be implemented in experimental modules and integrated with cor-x to
produce alternate instantiations of corps. These instantiations represent different mechanisms which
can be compared under controlled experimental conditions. As a result, it will be possible to describe
under what conditions each of the mechanisms behaves well or poorly, and thus define a co1r that
is optimal for a given target environment.

This paper deals with the chalienge of realizing the co1P-K vision and demonstrates its feasibility
and viability. There were five main implementation requirements set for coiP-K before it was
designed. Qur implementation of coiP-K has met all these requirements as outlined in the following

paragraphs.

Implementation Model for coirs 38

First of all, corp-x has been successfully implemented in the Unix kernel within the framework
of the Unix networking model.

Secondly, coip-x allows implementation of various ¢coIp protocols by module interchange, and
it supports incremental software support for coIP-K programmers. This allows easy development
and evaluation of the tradeoffs associated with different corrs. To demonstrate the flexibility of
the module interchange concept, we used the colp Test Protocol (cTP), which treats multipoing
conmections as a broadcast channel among endpeints and allows. many-to-many communication.
Using module interchange, a new instance of cTP (called cTP2) was created with modified multipoint
behavior to allow one-to-many instead of many-to-many communication.

Our implementation of coIP-K has retained most of the user-level socket interface. This al-
lows existing applications to be ported to colp-x without any difficulty. To demonstrate this, we
successfully ported standard 4.3 BsD telnet to work on top of cTP.

The corp-K code has efficient per-packet processing. We found that corp-k’s throughput and
delay performance are comparable to UDP, and are much better than those of T¢P. Also, we found
that ©oIP-K could easily overwhelm the ethernet hardware interface on Sun Sparc stations. Based
on the processing latency of COIP-X on a Sparcl, the theoretical maximum data rate of coIp-x can
be as high as 86.2 Mbps. :

Finally, co1p-K supports multipoint connections. This is useful for a variety of applications,
including multiparticipant collaboration applications. We developed two basic multiparticipant col-
laboration applications to demonstrate this.

5.1. Future Research

The research work in this paper can be extended in several ways. At the highest level, ¢TP could be
enhanced until it becomes a full implementation of McHIP. This would 1nvolve creating appropriate
resource allocation and enforcement modules for corr-K.

Another possible extension to coIP-K is to allow for more extensive connection management
options such as the addition and deletion of an endpoint from a connection. This functionality is
important for a number of multipoint applications.

In the future, COIP-K could be modified to support more than one addressing scheme. The
current assumption of IP addressing was used mainly to avoid address resolution on the ethernet.

Cor1r-k could also be extended by porting it to the NeXT platform. Then it could be interfaced
to the NeXT ATM interface which has been developed at Washington University.

Another possible extension to the co1P-X research is to develop application-oriented light weight
transport protocols (ALTPs) {16]. These ALTPs could run on top of a COIP-K based protocol and be
used to support real applications.

Finally, module sets for other coIP protocols such as sT and FLOW could be developed for coip-x.
This would allow interesting comparisons of the different coiPs under a variety of scenarios.

36 Cranor and Parulkar

References

(1] American National Standards Institute Inc., ANSI X3.139-1987 Fiber Distributed Data Interface
(FDDI), Token Ring Media Access Conirol (MAC).

[2] Cidon, 1., Gopal, 1., Kaplan M., and Kutten, S., “Distributed Control for PARIS,” Proceedings
of the 9ih Annual ACM Symposium on Principles of Distributed Computing, pp. 145-160, 1990.

[3] Cidon, 1., Gopal, L., and Guérin, R., “Bandwidth Management and Congestion Control for
PARIS,” IEEE Communications Magazine, vol 29, no 10, pp. 54-63, October 1991.

(4] Comer, Douglas, Internetworking with TCP/IP, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1991.

[6] Corporation for National Rescarch Initiatives, “Connection IP (cip) Report,” Proceedings of the
Twentieth Internet Engineering Task Force, pp. 109-114, March 1991.

[6] Cranor, C., An Implementation Model for Connection- Oriented Internet Protocols, M.S. thesis,
Department of Computer Science, Sever Institute of Technology, Washington University, St.
Louis, Missouri, May 1992.

[7] Dhas, Chris, Konangi, Vijay, and Sreetharan, M., “Broadband Switching Architectures, Proto-
cols, Design, and Analysis,” TEEE Compuier Society Press, Los Alamitos, California, 1991.

[8] Forgie, J., “ST - A Proposed Internet Stream Protocol,” 1gn 119, MIT Lincoln Laboratory, 7
September 1979,

[9] Gross, P., “Connection IP (cip) Report,” Proceedings of the Internet Engineering Task Force,
Ann Arbor, Michigan, October 1988.

[10] Kapoor, S., Design and Analysis of a T'wo Port ATM-FDDI Gateway, M.S. thesis, Department
of Electrical Engineering, Sever Institute of Technology, Washington University, St. Louis, Mis-
souri, December 1991.

[11] Lefller, Samuel J., McKusick, Marshall K., Karels, Michael J., and Quarterman, John S., The
Design and Implementation of the 4.3 BSD Uniz Operating Sysiem, Addison-Wesley Publishing
Company, Inc., Redding, Massachusetts, 1989.

[12] Mazraani, Tony Y., and Parulkar, G., “Specification of a Multipoint Congram-Qriented High
Performance Internet Protocol,” INFOCOM’00, IEFE Computer Seciety, Washington D.C.,
June 1990.

[13] Papadopoulos, Christos, Remoate Visualization on a Campus Network, M.S. thesis, Department
of Computer Science, Sever Institute of Technology, Washington University, St. Louis, Missouri,
Spring 1992,

[14] Parulkar, Gurudatta M., “The Next (Generation of Internetworking,” ACM SIGCOMM Com-
puter Communcations Review, vol 20, no 1, pp. 18-43, Jan. 1990.

[15] Peterson, L., et al., “The z-Kernel: A Platform for Accessing Internet Resources,” IEEE Com-
puter, vol 23, no 5, pp. 23-33, May 1990.

[16] Sterbenz, James P. and Parulkar, “Axon: Application- Oriented Lightweight Transport Pro-
tocol Designm,” Tenth International Conference on Computer Communication, Iccc, Narosa
Publishing House, New Delhi, India, Mov. 1990, pp. 379-387.

Implementation Model for coips 37

[17] Topolcic, C., “Experimental Internet Stream Protocol: Version 2 (ST-II),” rrc-1190, October
1990.

[18] Zhang, Lixia, A New Architecture for Packet Switching Network Protocols, Ph.D. thesis, De-
partment of Electrical Engineering and Computer Science, MIT, July 1989.

[19] Zhang, Lixia, “Virtual Clock: A New Traffic Control Algorithm for Packet Switching Networks,”
ACM Transactions on Computer Systems, vol 9, no 2, pp. 101-124, May 1991.

	An Implementation Model for Connection-Oriented Internet Protocols
	Recommended Citation

	tmp.1453823647.pdf.H0tUg

