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ABSTRACT OF THE DISSERTATION

Period and Computational Elasticity for Adaptive Real-Time Systems
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Professor Christopher D. Gill, Chair

A wide range range of real-world applications (including multimedia players, ad-hoc com-

munication networks, online trading, radar tracking software, and other adaptive control

algorithms) need adaptive adjustment to their resource utilizations at run-time, while still

maintaining real-time guarantees. The elastic task model of soft real-time systems allows for

the run-time manipulation of tasks’ processor utilizations in order to maintain a system-wide

quality of service or accommodate needs of other tasks by assigning each task a period

within a specified range. As originally presented, only sequential tasks executing on a single

processor were considered. However, in the two decades since the elastic task model was first

introduced, multiprocessor systems have become increasingly prevalent. This dissertation

appropriately extends the elastic task model to include both multiprocessor scheduling of

sequential adaptive tasks and scheduling of adaptive tasks with internal parallelism. It also

introduces novel elastic concepts in which 1) tasks can vary their computational loads rather

than their periods and 2) the more realistic scenario in which tasks are allowed to adapt

among a discrete set of candidate processor utilizations rather than over a continuous range.

A runtime system for parallel elastic tasks is also presented and used to demonstrate the

benefit of discrete elastic scheduling by enabling adaptation in the application domain of

real-time hybrid simulation (RTHS).
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Chapter 1

Introduction

The focus of this dissertation lies at the intersection of multi-core real-time scheduling and

adaptive real-time scheduling. Specifically we extend the elastic task model of adaptive

real-time tasks from sequential tasks running on a single preemptive processor to include both

inter-task and intra-task parallelism running on preemptive multi-core systems. This chapter

more precisely details the problem statement, defines the dissertation’s specific research

contributions, and outlines the remainder of the dissertation.

1.1 Problem Statement and Context

Traditionally real-time systems have been static systems, largely designed and implemented

on special-purpose embedded hardware with limited computational power and memory

bandwidth, usually running on a single processor. For decades the modeling of these systems’

tasks has largely followed the Liu and Layland recurrent task model [37]. Under this model

tasks are abstracted to:
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• a pessimistic worst-case execution time (WCET) value which represents an upper-

bound on the time it takes to complete a single job of a task on the given processor

• a minimum inter-arrival time (or period) value which represents the least amount

of time between successive jobs of a task

• a relative deadline (which may be equal to the period) which indicates by how long

after the task is released it must finish execution.

Liu and Layland also introduced schedulability tests based on tasks’ processor utilization,

or the fraction of a processor a task needs in order to guarantee completion by its deadline.

If system-wide utilization is below a certain value (depending on the scheduling algorithm

used), such schedulability tests can guarantee that a task set will never miss a deadline so

long as no task overruns its WCET.

Because of the safety-critical nature of real-time application domains such as the avionic

and space industries, in which lives and millions of dollars of equipment potentially may

be lost due to deadline misses, excessive pessimism must be used when establishing WCET

values, often at the expense of over-provisioning for the average case. Even if a branch of

code will almost certainly never run under normal operating modes, the WCET value used to

determine schedulability must incorporate the possibility that it will. Task sets for these hard

real-time systems must be certified that they will never miss a deadline. This requires

meticulous engineering and extensive design at both hardware and software levels in addition

to extreme validation testing.

In contrast, soft real-time systems do not need to be certified to never miss a deadline

under any circumstance. Instead, they make a best effort attempt to provide predictable

real-time behavior under most conditions. Rather than the extensive testing and certification

required for hard real-time systems, soft real-time systems may use the highest observed
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running time (potentially with additional padding as a precaution) among several thousand

representative iterations as a WCET value. This allows soft real-time systems to potentially

have a less pessimistic view of a task set than hard real-time systems when performing

schedulability analysis.

However, the Liu and Layland task model may not always be the best task model for

soft real-time systems. In any scenario in which a task’s period or computational load (or

both) may vary over time, the highest possible system utilization must be accounted for

in schedulability analysis under the Liu and Layland model, which may further exacerbate

pessimism. Therefore, other task models have been introduced for these adaptive real-

time systems. Example applications include multimedia systems, control systems, ad-hoc

communication networks, online trading, and radar tracking systems, among others [1, 8, 13,

32, 39].

One such task model created for adaptive real-time systems is the elastic task model. The

model was first introduced by Buttazzo et al. [7] to allow sequential tasks running on a single

processor to adapt their periods in order for the system to remain schedulable in case a new

task must be admitted to the system or an adaptive task must run at a different rate. The

model uses an extended analogy to compare schedulability of tasks in a task set to a set

of springs laid end-to-end with a common force applied to them in order to compress their

combined flength to a specified maximum. The utilization of each task becomes the length

of its corresponding spring, and the desired system-wide utilization is the target maximum

combined length for the set of springs. Just as some springs are easier to compress than

others, and each spring has physical bounds on how far it can be compressed or expanded,

each task in the elastic scheduling model has an elasticity parameter to indicate how resistant

it is to changing its period, and bounds on which values can be selected as its period (and

therefore bounds on its utilization) [7].
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In recent decades multi-processor systems have become progressively more popular and readily

available. As individual processor speeds plateau, parallel and multi-core programming has

become a primary means to achieve increased throughput. Real-time systems have likewise

increasingly utilized multiple processors, thereby enabling the exploitation of both inter-task

and intra-task parallelism. For instance, intra-task parallelism has allowed for previously

unachievable combinations of high computational demands and fine-grained time-scales in

high-performance parallel real-time applications such as those in autonomous vehicles [31]

and real-time hybrid simulation systems [18, 20]. However, current parallel real-time systems

usually assign parallel tasks to fixed sets of processors and release them at statically determined

periodic rates [18, 19, 31]. Little work has been done with adaptive parallel real-time systems.

Therefore, it is fitting that the elastic task model should also be extended to consider

multiprocessors.

1.2 Contributions

The primary contributions of this dissertation are the parallel and multi-processor extensions

provided to the elastic model of real-time tasks first introduced by Buttazzo et al. in [7] and

the new modes of adaptation made available to adaptive real-time systems on multiprocessors

in doing so. Specifically, we make the following contributions:

1. We introduce internal task parallelism to the elastic task model via the federated

scheduling paradigm for parallel systems.

2. We further extend the elastic task model to include scheduling of sequential tasks on

multiple processors.

3. We extend the notion of task elasticity beyond period adaptation to include computa-

tional workload adaptation.
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4. We extend the notion of task elasticity to allow for a discrete set of candidate period

and computational workload combinations rather than continuous ranges of them.

5. We have developed a run time system for parallel real-time elastic tasks which is used

to implement the first adaptive virtual real-time hybrid simulation experiment.

1.3 Organization

The remainder of this dissertation is structured as follows. Chapter 2 provides context for

this work by providing relevant background information. We first discuss the original elastic

task model and prior works that have extended it. We then discuss the scheduling paradigms

used in this dissertation to extend elastic scheduling. We first discuss federated scheduling of

parallel real-time tasks. We then discuss both global and partitioned multi-core scheduling of

sequential real-time tasks.

Chapter 3 introduces the scheduling of parallel real-time elastic tasks under the federated

scheduling paradigm. We first introduce the parallel elastic task model. We then introduce

two period-selection and core-allocation algorithms to schedule these tasks under federated

scheduling. In our first proposed algorithm we attempt to remain true to the semantics of

the uniprocessor elastic task model as proposed by Buttazzo et al. by "stretching" each

task equally. However, this algorithm proves to potentially under-utilizize the system under

federated scheduling, so we introduce a second algorithm in which tasks are scheduled by

attempting to minimize an objective function weighted by their elastic coefficients. This

algorithm increases system resource utilization at the cost of some semantic preservation. We

then prove this algorithm to optimally solve the associated objective function. This work

was published in the Leibniz Transactions on Embedded Systems (LITES) journal in May

2019 [43].
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Chapter 4 examines the scheduling of sequential elastic tasks on multiple identical processors.

We first review the elastic task model and introduce an algorithm for task period-selection for

multi-core elastic scheduling that maintains the semantics of the one proposed by Buttazzo et

al.: all task periods are "stretched" equally from their minimum period as weighted by their

elastic coefficients. We then study the effects of scheduling tasks via a global vs partitioned

manner by generating thousands of task sets and simulating various partitioned and global

schedules for them. We make recommendations based upon our findings. This work is to

appear at the 27th International Conference on Real-Time Networks and Systems (RTNS) in

November 2019 [41].

Chapter 5 extends the notion of task elasticity to include computational elasticity in which a

task’s computational load can vary rather than its period. It also introduces a run time system

for parallel elastic tasks, which we use to demonstrate the functional equivalence between

period and computational elasticity. This work was published at the 26th International

Conference on Real-Time Networks and Systems (RTNS) in October 2018 [42].

Chapter 6 introduces discrete elastic scheduling. Under this concept, each task has a discrete

set of period and workload values rather than a continuous range of one or the other. We

discuss the benefits of discrete elastic scheduling which include enabling individual tasks

to simultaneously utilize both period and computational elasticity. We also demonstrates

discrete elasticity’s usefulness by enabling the first adaptive virtual real-time hybrid simulation

experiment on the parallel elastic runtime system introduced in Chapter 5. This work is in

the process of being submitted for publication. Chapter 7 concludes the dissertation.
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Chapter 2

Background

In this dissertation, we extend the definition and applicability of real-time elastic scheduling

to multi-core and parallel real-time systems. We start out in this chapter by providing some

background on the elastic task model, the federated paradigm of parallel real-time schedul-

ing, the global and partitioned paradigms of scheduling sequential tasks on multiprocessor

platforms. Doing so enables us to establish a baseline common among all elastic task model

extensions presented in subsequent chapters.

2.1 The Elastic Task Model

The elastic task model was first introduced by Buttazzo et al. [7] to allow sequential tasks

running on a single processor to adapt their periods (and therefore processor utilizations)

in order for the system to remain schedulable in case a new task must be admitted to the

system or a dynamic task must run at a faster rate.
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The approach is based on a sophisticated analogy between (1) uniprocessor tasks maintaining

a collective utilization no greater than a desired utilization Ud (e.g. for schedulability, Ud = 1.0

for preemptive EDF scheduling) and (2) a set of springs laid end-to-end being compressed by

a collective force until their combined length is at or below a desired maximum length. Just

as springs have different resistences to compression, and each spring has physical bounds on

how far it can be compressed or expanded, each task in the elastic scheduling model has an

elasticity parameter to indicate how resistant it is to changing its period, and bounds on

which values can be selected as its period (and therefore bounds on its utilization) [7].

The elastic task model itself is a generalization of Liu and Layland’s implicit-deadline sporadic

task model [37]. In a set Γ = τ1...τn of sporadic tasks, task τi =
〈
Ci, T

(max)
i , T

(min)
i , Ei

〉
where Ci represents the task’s constant worst-case execution time (WCET) and the closed

range [T
(min)
i , T

(max)
i ] spans all acceptable period values for a task, where a lower period (and

therefore higher utilization) is always preferred. The current/assigned period is denoted Ti.

A task’s elasticity coefficient Ei is a measure of how relatively easy or difficult it is to change

a task’s period, analogous to a spring’s stiffness as a measure of its resistance to changing its

length: a higher elasticity coefficient indicates a more elastic task, which is more willing to

adapt its period. Any task τi that should not vary its period (and therefore its utilization) at

all can set T (min)
i = T

(max)
i , and τi will act like an ordinary (i.e., not elastic) implicit-deadline

sporadic task with WCET Ci and period T (min)
i .

In the original elastic scheduling work [7] Buttazzo et al. presented an efficient (Θ(n2))

iterative algorithm (reproduced later in this dissertation as Algorithm 3 in Chapter 4) for

task period selection when the system needed to adapt, which (if possible) finds each task

τi an appropriate period Ti in a way compliant with spring semantics such that
∑

i Ui =

(Ci/Ti) ≤ Ud and T
(min)
i ≤ Ti ≤ T

(max)
i for all tasks τi. The algorithm increases each task’s

period Ti from T
(min)
i proportional to its elasticity coefficient Ei (to a maximum of T (max)

i ).

8



It ends either when tasks successfully have been assigned periods such that their combined

utilization is less than or equal to Ud, or when each task’s period has been stretched to T (max)
i

and their combined minimum utilization is still greater than Ud, in which case the task set is

declared unschedulable.

Chantem et al. [12, 13] later proved this algorithm to be equivalent to solving the following

optimization problem:

minimize
n∑
i=1

1

Ei
(U

(max)
i − Ui)2 (2.1)

such that:

U
(min)
i ≤ Ui ≤ U

(max)
i for all τi, and

and
n∑
i=1

Ui ≤ Ud.

where U (max)
i = Ci

T
(min)
i

represents the maximum possible utilization of a task obtained from

running at period Ti = T
(min)
i .

The original work involving elastic tasks [7] assumed implicit deadlines in which Di = Ti,

but theory involving the model has since been expanded to include: constrained deadlines in

which Di ≤ Ti [13], resource sharing [8], and unknown computational load [10]. Work in

Chapter 5 of this dissertation explores a similar (but orthogonal) direction to that in [10]

except that we assume a variable, yet known and controlled workload. This dissertation

leaves the parallel and multi-core versions of these extensions as future work. Building on

the work in this dissertation, recent work by Gill et al., has applied parallel elastic scheduling

to mixed-criticality systems [21].

9



2.2 Federated Scheduling and Parallel Real-Time Tasks

Model

Federated scheduling is a parallel real-time scheduling paradigm that was proposed by Li

et al. [36] for scheduling collections of recurrent parallel tasks upon multiprocessor platforms,

when one or more individual tasks may have a computational requirement that exceeds the

capacity of a single processor to entirely accommodate it. Under federated scheduling, such

tasks (i.e., those with computational requirement exceeding the capacity of a single processor)

are granted exclusive access to a subset of processors; the remaining tasks execute upon a

shared pool of processors.

In parallel real-time task systems, the computational requirement of a task τi (the gener-

alization of the WCET parameter for sequential tasks) is represented by the following two

parameters:

1. The work parameter Ci denotes the cumulative worst-case execution time of all the

parallel branches that are executed across all processors. Note that for deterministic

parallelizable code (e.g., as represented in the sporadic DAG tasks model [3]; see [9,

Chapter 21] for a textbook description) this is equal to the worst-case execution time

of the code on a single processor (ignoring communication overhead from synchronizing

processors).

2. The span parameter Li denotes the maximum cumulative worst-case execution time

of any sequence of precedence-constrained pieces of code. It represents a lower bound

on the duration of time the code would take to execute, regardless of the number of

processors available.

10



The span of a program is also called the critical-path length of the program, and any

end-to-end sequence of precedence-constrained pieces of code with cumulative worst-case

execution time equal to the span is a critical path through the program.

Algorithms are known for computing the work and span of a task represented as a DAG,

in time linear in the DAG representation. The relevance of these two parameters arises

from well-known results in scheduling theory concerning the multiprocessor scheduling of

precedence-constrained jobs (i.e., DAGs) to minimize makespan. This problem has long

been known to be NP-hard in the strong sense [50]; i.e., computationally highly intractable.

However, Graham’s list scheduling algorithm [23], which constructs a work-conserving schedule

by executing at each instant in time an available job, if any are present, upon any available

processor, performs fairly well in practice.

An upper bound on the makespan of a schedule generated by list scheduling is easily stated.

Given the work and span of the DAG being scheduled, it has been proved in [23] that the

makespan of the schedule for a given DAG upon m processors is guaranteed to be no larger

than
work− span

m
+ span (2.2)

Thus, a good upper bound on the makespan of the list-scheduling generated schedule for

a DAG may be stated in terms of only its work and span parameters. Equivalently, if the

DAG represents a real-time piece of code characterized by a relative deadline parameter D,

(
work−span

m
+ span) ≤ D is a sufficient test for determining whether the code will complete

by its deadline upon an m-processor platform.

A parallel task τi is considered to be a high-utilization task if its utilization Ui = Ci

Ti
> 1

and is considered a low-utilization task otherwise. Each high-utilization task τi receives mi

dedicated processors on which to run; for implicit-deadlines tasks, we need the resulting

11



makespan to be less than or equal to Di = Ti; i.e.

Ci − Li
mi

+ Li ≤ Ti

⇔ Ci − Li
mi

≤ Ti − Li

⇔ mi ≥
Ci − Li
Ti − Li

Under federated scheduling, since the number of processors assigned to each high-utilization

task is an integer, we therefore have

mi =

⌈
Ci − Li
Ti − Li

⌉
. (2.3)

Under the original federated scheduling model in [36], low-utilization tasks are treated as

sequential tasks and are scheduled using existing mechanisms such as global or partitioned

EDF scheduling.

2.3 Multi-core Scheduling of Sequential Tasks

Under the global paradigm of multiprocessor scheduling for recurrent tasks, individual tasks

are not restricted to executing upon specific processors. Instead, a newly-arrived job of a task

may begin execution upon any available processor and a preempted job may resume execution

at a later point in time upon any processor, not just the one on which it had been executing

prior to preemption. We examine multiple global scheduling algorithms in Section 4.4.

Under the partitioned paradigm of multiprocessor scheduling for recurrent tasks, each task is

assigned to a processor. Once the partitioning of tasks to processors has been accomplished,

each processor independently schedules its allotted tasks using whichever uni-processor
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scheduling algorithm is appropriate. The act of partitioning Liu & Layland task systems is

known to be equivalent to the bin-packing problem[27, 28], and hence NP-hard in the strong

sense. However, several polynomial-time heuristics have been proposed. We discuss them

further in Section 4.4.
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Chapter 3

Scheduling of Parallel Elastic Tasks

Today’s high-performance real-time applications (e.g. real-time hybrid simulation [18, 20])

must often execute upon multiprocessor platforms so as to be able to exploit internal paral-

lelism of these tasks across multiple processors to meet high computational demand. Therefore,

the original elastic task model, as well as algorithms that were developed by Buttazzo et

al. [7, 8] along with accompanying schedulability analysis and run-time scheduling techniques,

need to be appropriately extended in order to be useful for these kinds of high-performance

real-time applications. In this chapter, we consider multiprocessor scheduling under the

federated scheduling paradigm (in which each task whose computational demand exceeds the

capacity of a single processor is granted exclusive access to multiple processors); we propose a

parallel multiprocessor extension to the elastic task model, and provide appropriate algorithms

for federated schedulability analysis and federated scheduling of systems represented using

our proposed model.

The elastic task model was introduced in [7] with the specific aim of providing dynamic

flexibility during run-time. The central idea is that if the overall computational demand of
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a system exceeds the capacity of the implementation platform to accommodate it all, then

individual tasks’ computational demands are reduced and the available platform capacity is

allocated in a flexible manner to accommodate these reduced demands. Upon multiprocessor

platforms, there are several different interpretations possible, as to what an elastic manner

of distributing the processors may mean. Our proposed extension aligns with earlier work

in the sense that throughout this dissertation we are interpreting the elasticity coefficient

parameters according to the semantics assigned to them in the uniprocessor context. We

believe that this is a critical issue: the elasticity parameters characterize the relative flexibility

–the “hard-real-time”ness– of the tasks, and should bear common interpretation regardless of

whether implemented on uni- or multi-processors. We, therefore, believe that the preservation

of this interpretation is one of the major benefits of our extended models.

The remainder of this chapter is organized in the following manner. In Section 3.1 we formally

define the task model. In Section 3.2 we present a relatively simple and efficient algorithm for

scheduling parallel elastic tasks upon multiprocessor platforms, which preserves the semantics

that were intended for elastic tasks in the uniprocessor context. We also point out how this

simple approach may result in an unnecessary degree of platform resource under-utilization.

In Section 3.3 we propose an alternative approach that is able to make more efficient use of

the platform to provide a superior scheduling solution, at the cost of not being as faithful to

the semantics of elasticity as originally defined for the uniprocessor case. We conclude the

chapter in Section 3.4 with a brief summary, and place this work within a larger context of

ongoing research efforts towards achieving dynamic flexibility in multiprocessor scheduling of

parallelizable workloads.
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3.1 Parallel Elastic Task Model

Recall that each elastic task has a range of acceptable periods within the rage [T (min)
i , T

(max)
i ]

and an elasticity coefficient Ei. Because we are now using the federated scheduling paradigm,

each task additionally has work Ci and span Li parameters to represent its WCET. In

this chapter, we consider only the scheduling of exclusively high-utilization tasks (i.e., tasks

that require more than one processor to meet their deadlines). Scheduling of exclusively

low-utilization elastic tasks on multiple cores is the focus of Chapter 4. We therefore do not

need to consider them for the remainder of this chapter. We do note that it is possible for

some tasks to be either high-utilization or low-utilization depending on the selected period.

We refer to these as tasks as hybrid-utilization. Formally hybrid-utilization tasks are tasks

such that T (min) ≤ Ci ≤ T (max). We leave period-selection for these tasks (and thereby

determining whether these tasks should be treated as high-utilization or low-utilization) as

future work. For the sake of completeness in this work we can artificially shorten these

tasks’ T (max) values to be equal to their Ci values and treat them as high-utilization tasks.

Let U (max)
i = Ci/T

(min)
i and U (min)

i = Ci/T
(max)
i denote the maximum (i.e., desired) and the

minimum acceptable utilization for τi.

That is, we will consider a system Γ = {τ1, τ2, . . . , τn} of n elastic parallel high-utilization

tasks that is to be scheduled under federated scheduling upon m processors. In the remainder

of this chapter we will often represent a task τi = (Ci, Li, U
(max)
i , U

(min)
i , Ei) by its work and

span parameters, its maximum and minimum utilizations,1 and its elasticity coefficient. We

will seek to compute mi, the number of processors that are to be devoted to the exclusive

use of task τi, for each τi such that
∑n

i=1 mi ≤ m.

1Note that representing the task by its maximum and minimum utilizations is equivalent to representing
it by its minimum and maximum periods, since given Ci, one set of parameters can be derived from the other
set.
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3.2 A first attempt at elastic scheduling of parallel tasks

It is fairly straightforward to show that the desired elasticity property on the tasks that were

defined in the original (uniprocessor) elastic tasks model [7] is that

∀ i, j,
(U (max)

i − Ui
Ei

)
=
(U (max)

j − Uj
Ej

)
(3.1)

That is, the elasticity coefficient Ei of task τi is a scaling factor on the amount by which it

may have its actual utilization reduced from the desired value of U (max)
i .

We use λ to denote the desired equilibrium value for all tasks demonstrated in Expression (3.1);

for all tasks λ =
(
(U

(max)
i − Ui)/Ei

)
. Expression (3.1) suggests that

Ui ← U
(max)
i − λEi

However, we also require Ui ≥ U
(min)
i ; hence for a given value of λ we choose

Ui(λ)← max
(
U

(max)
i − λEi, U (min)

i

)
(3.2)

Equation (3.2) suggests an algorithm for the federated scheduling of parallel task system

Γ = {τ1, . . . , τn} upon m processors. It is evident from inspection of Equation (3.2) that the

“best” schedule — the one that compresses tasks’ utilizations the least amount necessary in

order to achieve schedulability — is the one for which λ is the smallest. Now for a given

value of λ, Algorithm 1 can determine, in time linear in the number of tasks, whether the

task system can be scheduled upon the m available processors using federated scheduling.
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Algorithm 1 Elastic-1(Γ,m, λ)

. Γ is the task system and m the number of processors that are available

. λ is the compression factor permitted
m′ ← 0 . Number of processors needed
for (τi ∈ Γ) do

Ui = max
(
U

(max)
i − λEi, U (min)

i

)
. See Eqn 3.2

Ti = Ci/Ui
mi = d(Ci − Li)/(Ti − Li)e
m′ ← m′ +mi

end for
if (m′ > m) then . Not enough processors.

return unschedulable
else

return 〈m1,m2, . . . ,mn〉 . τi gets mi processors
end if

Note the value of λ can be bounded to the range of [0, φ] where λ = 0 represents all tasks

receiving their maximum utilizations and φ is the maximum value among all tasks of the

equation
(
U

(max)
i −U(min)

i

Ei

)
. λ = φ thus represents all tasks receiving their minimum utilization.

By bounding the potential values of λ, we can use binary search within this range and make

repeated calls to Algorithm 1 and thereby determine, to any desired degree of accuracy, the

smallest value of λ for which the system is schedulable.

3.2.1 Discussion

Semantics-preservation. Algorithm 1 for the federated scheduling of parallel elastic tasks

that we have presented above is semantics preserving in the following sense: the assignment

of actual period values to the tasks (the Ti’s) is done in accordance with Equation (3.2),

which is the same manner in which periods are assigned in uniprocessor scheduling of elastic

tasks. Hence the system developer who seeks to use our proposed elastic task model to

implement flexible parallel tasks upon multiprocessor platforms need not “learn” new (or

additional) semantics for the elasticity coefficient: this coefficient means exactly the same
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thing in the parallel multiprocessor case as it did in the system designer’s previous experiences

with sequential uniprocessor tasks (the value of this parameter for each task is a relative

measure of its degrees of tolerance to having its period increased and its computational

demand thereby reduced).

Run-time platform capacity under-utilization. Despite these advantages, however, one

can identify two sources of resource under-utilization by Algorithm 3.2.

• First, observe that the number of processors assigned to a task must be integral , and is

hence equal to the ceiling of an expression. If the expression (Ci −Li)/(Ti −Li), which

lies within the ceiling operator (d·e) when computing the number of processors assigned

to task τi, is not itself an integer, then one could further reduce the actual period

(the Ti value) that is assigned to the task τi and thereby assign τi more computational

capacity than is afforded by Algorithm 1. However, we do not permit this to happen

since the resulting assignment may no longer be semantics-preserving in the sense that

different tasks may see a reduction in allocated capacity that is not consistent with

their relative elasticity coefficients. This difference between d(Ci − Li)/(Ti − Li)e and

(Ci − Li)/(Ti − Li) is thus “wasted” capacity.

• Second, consider the case with two identical elastic tasks, and an odd number of

processors. Semantics-preservation dictates that both tasks be treated in the same

manner; however, doing so would correspond to assigning the same number of processors

to each task and therefore leaving one processor unused. More generally, Algorithm 1

may leave up to n− 1 processors unallocated to n identical tasks.

Thus, the simple semantics-preserving scheme presented in this section may under-utilize

platform resources. In Section 3.3 we discuss an alternative scheme that makes more efficient

use of platform capacity at the cost of additional complexity in the semantics of elasticity.
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3.3 More resource-efficient scheduling

The notion of semantics preservation with uniprocessor elastic task scheduling presented in

Section 3.2 is simple and intuitive, and very strong: the elasticity coefficient of a task directly

indicates the task’s tolerance to having its period parameter increased. However, as we saw,

remaining faithful to such a strong notion of semantic equivalence comes at the cost of some

computing capacity loss and cannot guarantee full utilization of a platform’s computing

capacity. We now consider a more generalized interpretation of the semantics of uniprocessor

elastic tasks. This interpretation was provided by Chantem et al. [13], who proved that

the algorithm of Buttazzo et al. [8] for scheduling sequential elastic tasks upon preemptive

uniprocessors is equivalent to solving the following constrained optimization problem:

minimize
n∑
i=1

1

Ei
(U

(max)
i − Ui)2 (3.3)

such that:

U
(min)
i ≤ Ui ≤ U

(max)
i for all τi, and

n∑
i=1

Ui ≤ Ud

where Ud is the desired system utilization. We believe that this is a somewhat less natural

interpretation of elasticity in task scheduling than the interpretation considered in Section 3.2:

it is perhaps unlikely that a typical system designer is thinking of the elasticity coefficients

(the Ei parameters) that they assign to the individual tasks, as coefficients to a quadratic

optimization problem. Nevertheless, we adopt this notion of elastic interpretation in this

section; for this interpretation, we are able to derive a federated scheduling algorithm that
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makes far more efficient use of platform computing capacity than was possible under the

earlier more intuitive interpretation considered in Section 3.2.

Note that sequential elastic task scheduling only considers CPU utilization when attempting

to schedule tasks on a single processor. Specifically, system-wide utilization
∑n

i=1 Ui must stay

below a desired utilization Ud at all times in order to maintain schedulability. As such, task

utilizations are decreased by (when possible) increasing individual task periods in proportion

to their fraction of system-wide elasticity until either (1) an acceptable schedule is found

such that
∑n

i=1 Ui ≤ Ud or (2) each task τi has period Ti = T
(max)
i with

∑n
i=1 Ui > Ud. If a

schedule cannot be found the task set is declared unschedulable.

In federated scheduling of high-utilization tasks, however, system schedulability is no longer

a function only of cumulative utilization but rather whether n tasks can be successfully

scheduled on m cores. We now give an algorithm for determining processor allocation and

schedulability of a task system that allocates the processors one at a time to the tasks:

Algorithm 2. Algorithm 2 starts out by determining, for each task τi, the minimum number of

processors mimin
needed to be meet its minimum acceptable computational load (i.e., having

Ti ← T
(max)
i ) in Line 2, and the number mimax needed to meet its desired computational load

(i.e., having Ti ← T
(min)
i ) in Line 3. Since the assigned period Ti satisfies T

(min)
i ≤ Ti ≤ T

(max)
i ,

the actual number of CPUs mi assigned to τi is also bounded by mimin
≤ mi ≤ mimax .

Because of the ceiling function in Equation (6.1), each range of values for Ti maps to a

given mi for each task. In this work we assume that it is beneficial for each task to run as

frequently as possible. As such, we assign task τi the minimum period Ti available on mi

allocated processors. We denote this period value as T(i,mi), which is derived directly from

Equation (6.1):

T(i,mi) =
Ci − Li
mi

+ Li (3.4)
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Algorithm 2 Task_compress_par(Γ,m)
1: for (τi ∈ Γ) do
2: mimin

= d(Ci − Li)/Timax − Li)e . Minimum number of processors
3: mimax = d(Ci − Li)/(Timin

− Li)e . Maximum number of processors
4: mi = mimin

5: while mi <= mimax do . Compute the shortest period for τi
6: . for each possible value of mi

7: T(i,mi) = (Ci − Li)/(mi) + Li . T(i,mi) = shortest with mi processors
8: mi = mi + 1
9: end while
10: mi = mimin

. Assign minimum number of processors
11: Ti = T(i,mi) . Assign corresponding shortest period
12: m = m−mimin

. m keeps count of processors remaining
13: end for
14: if (m < 0) then . There weren’t enough processors
15: return unschedulable
16: else if (m == 0) then
17: return processor allocation with mi values
18: end if
19:
20: The remainder of this pseudocode
21: allocates processors one at a time
22:
23: for (τi ∈ Γ) do
24: Determine δi, the potential
25: decrease to Problem 3.5 for each task
26: end for
27:
28: Make a max heap of all tasks, with the δi values as the key
29:
30: while m > 0 and heap not empty do . Assign remaining processors
31: τmost = heap.pop() . Task that would most benefit
32: mmost = mmost + 1 . Permanently assign processor
33: m = m− 1
34: Tmost = T(most,mmost)

35: if (m > 0 and mmost < mmostmax) then . Able to receive more processors?
36: Determine δmost, the potential
37: decrease to Problem 3.5 for task τmost
38: Reinsert τmost into heap
39: end if
40: end while
41: return the processor allocation with mi values
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All possible values of T(i,mi) for mimin
≤ mi ≤ mimax are computed first and stored in lookup

tables. This is accomplished during the while loop (Lines 5–9) in Algorithm 2.

Next (Lines 10–12), each task is assigned the minimum number of processors it needs, and

this number of processors is subtracted from m; hence at the end of the loop, m denotes the

number of processors remaining for additional assignment (above and beyond the minimum

needed per task). If m < 0 the system is unschedulable, while if m = 0 there is nothing more

to be done — the system is schedulable with each task receiving its minimum level of service.

These conditions are tested in Lines 14–18 of the pseudocode in Algorithm 2.

If m > 0, however, we will individually assign each of these remaining m processors to

whichever task would benefit “the most” from receiving it. This is determined in the following

manner. Similar to scheduling sequential tasks [13], our goal is to find task utilizations (and

therefore periods) that solve the optimization problem:

minimize
n∑
i=1

1

Ei
(U

(max)
i − Ui)2 (3.5)

such that:

U
(min)
i ≤ Ui ≤ U

(max)
i for all τi, and

n∑
i=1

mi ≤ m

In allocating each processor we calculate, for each task τi, a quantity δi which represents the

decrease in 1
Ei

(U
(max)
i − Ui)2 if the next processor were to be allocated to task τi — this is

done in Lines 23–26 of Algorithm 2. We then assign the processor to whichever task would see

the biggest decrease. (As a consequence, the objective function of optimization problem 3.5

would decrease the most.) To accomplish this efficiently, we
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• Place the tasks in a max heap indexed on the value of δi (Line 28); and

• while there are unallocated processors and the heap is not empty (checked in Line 30)

– assign the next processor to the task at the top of the heap (Lines 31–34) and, if

this task is eligible to receive more processors (checked in Line 35), recompute δi

for this task (Line 36) and reinsert into the heap (Line 38).

Run-time complexity. The first for-loop in the algorithm (Lines 1–13 in the pseudocode

listing in Algorithm 2) takes Θ(m ∗ n) time. The for-loop in Lines 23–26 and the making

of the max heap (Line 28) each take Θ(n) time. The running time of the remainder of the

algorithm (Lines 30–40) is dominated by the max-heap operations; the overall running time

is therefore Θ(n ∗m+m log n).

3.3.1 Proof of Optimality

In this section we prove in Theorem 1 that Algorithm 2 solves the optimization problem

given in Equation (3.5) optimally. The optimality of Algorithm 2 then follows from the result

of Chantem et al. [13] showing the equivalence of uniprocessor elastic scheduling of sequential

tasks with the optimization problem given in Equation (5.1).

The dependency amongst the three results in this section — Lemma 1, Lemma 2, and

Theorem 1 — is strictly linear: Lemma 1 is needed to prove Lemma 2, which is needed to

prove Theorem 1.

Lemma 1. The utilization Ui of elastic task τi strictly increases towards maximum utilization

as the number of processors mi assigned to it increases.
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Proof. Since Ui = Ci/Ti, (and Ci is constant), Ui increases as Ti decreases. By Equation (3.4),

Ti = ((Ci − Li)/mi) + Li. Ci and Li are constant for task τi. Therefore, Ti strictly

decreases as mi increases. Therefore, an increase of mi decreases Ti and increases Ui.

Lemma 2. In assigning processors one at a time (in the while loop of Lines 30–40 of

Algorithm 2), the consecutive assignment of the (k + 1)’st and (k + 2)’nd to the same task τi

with k currently assigned processors will result in diminishing returns of δi, the decrease in

1
Ei

(U
(max)
i −Ui)2 for τi. (i.e., the benefit of assigning a processor to a task is never as high as

the already-incurred benefit of assigning prior processors.)

Proof. This is readily observed by algebraic simplification.2 Let xk be the value of 1
Ei

(U
(max)
i −

Uik)2 where Uik is the task utilization with k processors. Let xk+1 be the value of 1
Ei

(U
(max)
i −

Uik+1
)2 with new utilization Uik+1

after assigning processor k + 1 to τi, and similarly let xk+2

be the value of 1
Ei

(U
(max)
i − Uik+2

)2 with new utilization Uik+2
after subsequently assigning

processor k + 2 to τi. From Lemma 1, we know that Uik < Uik+1
< Uik+2

.

Define the benefit of adding processor k + 1 to τi as δik+1
= xk − xk+1, and the later benefit

of assigning processor k + 2 as δik+2
= xk+1 − xk+2. To prove diminishing returns, we must

show that δik+1
> δik+2

.

Note that the math is equivalent, so we temporarily ignore the constant scalar 1
Ei
. Thus,

both

δik+1
= (U

(max)
i − Uik)2 − (U

(max)
i − Uik+1

)2 (3.6)

and

δik+2
= (U

(max)
i − Uik+1

)2 − (U
(max)
i − Uik+2

)2 (3.7)

2The algebra, while straightforward, is rather tedious and the reader may choose to just skim it at first
reading.
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are of the form

(x− z)2 − (x− y)2 (3.8)

where x > y > z. We can therefore say that z + α = y and y + β = x.

Re-stating Equation (3.8) in terms of z, α, and β, we obtain:

(z + α + β − z)2 − (z + α + β − z − α)2

which simplifies to

α2 + 2αβ. (3.9)

Therefore, to prove δik+1
> δik+2

, it is sufficient to show that

α2
k+1 + 2αk+1βk+1 > α2

k+2 + 2αk+2βk+2 (3.10)

where αk+1, βk+1, αk+2, and βk+2 are (Uik+1
−Uik), (U

(max)
i −Uik+1

), (Uik+2
−Uik+1

), (U
(max)
i −

Uik+1
), respectively. (These values come from the definitions of α and β and the substitutions

of x, y, and z in Equation (3.8) into their actual values from Equations 3.6 and 3.7.) Note

that as αk+1, βk+1, αk+2, and βk+2 are all positive numbers, Equation (3.10) will be satisfied

if we can individually prove αk+1 > αk+2 and βk+1 > βk+2, which we now proceed to do.

We first prove βk+1 > βk+2, where

βk+1 = (U
(max)
i − Uik+1

),

and

βk+2 = (U
(max)
i − Uik+2

).
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We know from above that Uik+2
> Uik+1

. Therefore

(U
(max)
i − Uik+1

) > (U
(max)
i − Uik+2

)

and βk+1 > βk+2.

We next prove αk+1 > αk+2. Note that

Ui =
Ci

Ti = Ci−Li

mi
+ Li

(3.11)

Consider Equation (3.11) which shows the complete derivation of a task’s utilization as a

function of the number of processors assigned to it. By definition, if αk+1

?
> αk+2, 3 then

Uik+1
− Uik

?
> Uik+2

− Uik+1
.

Substituting into Equation (3.11), this becomes

Ci
Ci−Li

k+1
+ Li

− Ci
Ci−Li

k
+ Li

?
>

Ci
Ci−Li

k+2
+ Li

− Ci
Ci−Li

k+1
+ Li

.

Factoring out a constant Ci and simplifying, we get

k + 1

Ci + kLi
− k

Ci + kLi − Li
?
>

k + 2

Ci + kLi + Li
− k + 1

Ci + kLi
.

Letting X = Ci + kLi (to enhance readability), this becomes

k + 1

X
− k

X − Li
?
>

k + 2

X + Li
− k + 1

X
.

3We use
?
> to indicate that the inequality is not yet proved.
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We can combine fractions and simplify this further to

−kLi +X − Li
X(X − Li)

?
>
−kLi +X − Li
X(X + Li)

.

Since −k ∗ Li +X − Li = −kLi + Ci + kLi − Li = Ci − Li > 0 for high-utilization tasks, we

can now factor out −k ∗ Li +X − Li from both sides and are left with asking whether

1

X(X − Li)
?
>

1

X(X + Li)
.

This is unequivocally true. Hence, we prove that αk+1 > αk+2. Therefore, Equation (3.10) is

satisfied and δik+1
> δik+2

. The Lemma follows.

Theorem 1. Algorithm 2 optimally minimizes the optimization problem given in Equa-

tion (3.5).

Proof. For Algorithm 2 to be non-optimal, there must be some point at which our greedy

algorithm and the optimal algorithm diverge. (Algorithm 2 begins optimally with the

only valid assignment of processors to tasks when considering only the minimum amount of

processors each task can have.) Note that each task’s contribution to the sum of Equation (3.5)

is independent of other tasks: the value of 1
Ei

(U
(max)
i −Ui)2 for a given task τi is independent

of how many processors have been assigned to other tasks. Thanks to this property, we

need only consider two tasks. Let us suppose, without loss of generality, that at the point

of divergence our greedy algorithm assigns the processor to τi, while the optimal algorithm

would assign the processor to τj.

Because the greedy algorithm assigns the processor to τi, we know that the added benefit

(amount decreased from the sum) is greater than if we had given the processor to τj. Hence

the current value of the objective function of optimization problem 3.5 the greedy algorithm
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is necessarily lower than that of the optimal algorithm upon assignment of the number of

processors assigned thus far. By the assumption regarding the non-optimality of our greedy

strategy, there must be some point in the future at which the optimal algorithm makes up

the difference since the optimal solution to a minimization problem must end with the lowest

value for the objective function.

However, we saw in Lemma 2 above that the benefits of assigning a new processor under

the greedy Algorithm 2 diminish. At each iteration, the greedy algorithm chooses to assign

the processor to the task with the greatest available benefit. Because tasks’ benefits are

considered independently and do not change regardless of the allocation of CPUs to other

tasks, after the greedy algorithm assigns the k’th processor to τi, no other task τj will have a

higher benefit of receiving the (k + 1)’st processor than it did when the greedy algorithm

elected to give the k’th processor to τi. Similarly, by Lemma 2 the diminishing returns of

assigning multiple processors to the same task guarantees that the benefit of assigning the

(k + 1)’st task to τi is also less than the benefit gotten by assigning the k’th processor to

τi. Therefore, if the optimal algorithm and the greedy algorithm diverge and the current

value of the objective function of optimization problem 3.5 for Algorithm 2 is better than the

optimal algorithm, it is impossible for the optimal algorithm to subsequently “catch up” and

do better than the greedy algorithm. Hence the current value of the objective function of

optimization problem 3.5 may never diverge between an optimal algorithm and our greedy

algorithm; the optimality of Algorithm 2 immediately follows.

This completes the proof of optimality of Algorithm 2 for the federated scheduling of parallel

elastic tasks.
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3.4 Summary

In the two decades since it was first introduced, the elastic task model [7] has proved a useful

abstraction for representing flexibility in the computational demands of recurrent workloads.

It was originally proposed for representing sequential tasks executing upon uniprocessor

platforms; as high-performance real-time computer applications are increasingly becoming

parallelizable (and need to have their parallelism exploited by being implemented upon

multiprocessor platforms in order to meet timing constraints), there is a need to extend the

applicability of the elastic task model to parallel tasks that execute upon multiprocessor

platforms.

In this chapter, we have proposed one such extension. The salient features of our model are:

• Multiprocessor scheduling under the federated paradigm, in which each task needing

more than one processor is assigned exclusive access to all processors upon which it

executes. Federated scheduling frameworks generally can be implemented in a more

efficient manner than global scheduling (e.g., with less run-time overhead) with only

limited loss of schedulability (as measured by speedup bounds of capacity augmentation

bounds) [34, 36].

• Representation of a parallel task’s workload using just the cumulative workload (its

“work” parameter) and its critical path length (its “span” parameter). Such representa-

tion allows for efficient schedulability analysis in the federated scheduling framework,

with a bounded loss of schedulability as compared to DAG representations (for which

schedulability analysis is strongly NP-hard.

• Retention of the elasticity coefficient parameter that was the main innovation introduced

in [7] to capture the flexibility in computational demands.
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We have proposed and studied two schemes for assigning processors to tasks in a system of

elastic parallel real-time tasks that are to be scheduled upon a given multiprocessor platform

under federated scheduling. One of these schemes is completely semantics-preserving with

respect to model semantics as introduced in the uniprocessor case [7]; the other allows for some

deviation from uniprocessor semantics and thereby is able to better use the computational

capabilities of the implementation platform.
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Chapter 4

Multiprocessor Scheduling of Sequential

Elastic Tasks

4.1 Introduction

Buttazzo et al. introduced the elastic task model as a way of modeling recurrent real-time

tasks, such as multimedia players or adaptive control systems, whose periods can change

depending on the stress on the system [7]. Each task must be assigned a period within its

acceptable range such that the overall task set utilization remains below a desired value. To

determine the appropriate period value to assign each task, every task also has an elastic

coefficient which acts as an indicator of the task’s resistance to increasing its period from the

minimum (and desired) period, analogous to a spring’s resistance to being compressed.

In Chapter 3 we extended the elastic task model to include scheduling of tasks with intra-task

parallelism on heterogeneous multi-core systems under the federated scheduling paradigm.

In this chapter we focus on the scheduling of sequential tasks on homogeneous multi-core
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systems. We present algorithms for scheduling systems of such tasks upon a homogeneous

multiprocessor platform under both the global and partitioned paradigms of multiprocessor

scheduling. We compare the effectiveness of different algorithms via an extensive series

of simulation experiments; based upon the outcomes of these simulations, we make some

recommendations regarding the choice of algorithms for the multiprocessor scheduling of

sequential elastic tasks.

The remainder of this chapter is structured as follows. Section 4.2 presents our task model.

Sections 4.3 and 4.4 discuss the global and partitioned scheduling of tasks respectively.

Section 4.5 details our experimental evaluation of the different schemes, and Section 4.6

summarizes this chapter’s contributions.

4.2 Task Model and Assumptions

Recall that in the model proposed by Buttazzo et al. [7], each elastic task τi is characterized

by a worst-case execution time (WCET) Ci, a minimum (and preferred) period T
(min)
i , a

maximum acceptable period T (max)
i , and an elasticity coefficient Ei. The elasticity coefficient

is a measure of a task’s resistance to changing its period. A higher elasticity coefficient

indicates a more elastic task. In this chapter we seek to schedule a set of n such independent

sequential elastic tasks Γ = τ1...τn on m homogeneous processors.

As stated in previous chapters, an elastic elastic task τi is characterized by the parameters

τi =
(
Ci, T

(max)
i , T

(min)
i , Ei

)
.
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All the scheduling approaches that we will consider in this chapter have utilization-based

schedulability conditions: only the utilization parameters of tasks appear in these schedula-

bility conditions. We therefore find it convenient to convert the period parameters of each

task (the T (min)
i and T (max)

i parameters) to corresponding utilization parameters U (max)
i and

U
(min)
i respectively:

U
(max)
i = Ci/T

(min)
i

U
(min)
i = Ci/T

(max)
i

In the remainder of this chapter, each task τi is therefore characterized by the parameters

τi =
(
U

(max)
i , U

(min)
i , Ei

)
.

Letting Ui denote the actual utilization “allocated” to τi, the desired elasticity property

defined by Buttazzo et al. (as also stated in the previous chapter) is equivalent to specifying

that the amounts by which tasks’ utilizations are reduced from their desired maximums be in

proportion to their Ei (“elasticity”) coefficients:

∀ i, j,
(U (max)

i − Ui
Ei

)
=
(U (max)

j − Uj
Ej

)
(4.1)

Letting λ denote the desired equilibrium value such that for all tasks λ =
(
(U

(max)
i −Ui)/Ei

)
,

Expression 4.1 suggests

Ui ← U
(max)
i − λEi
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However, we also require Ui ≥ U
(min)
i ; hence we choose

Ui(λ)← max
(
U

(max)
i − λEi, U (min)

i

)
(4.2)

Note that for a given value of λ, an elastic task τi = (U
(max)
i , U

(min)
i , Ei) is just a “regular”

Liu and Layland task with utilization Ui(λ) as given by Expression 4.2 above.

The problem considered. For each of the multiprocessor scheduling strategies we will

study in this chapter, the question we ask is: given an n-task system

Γ =
{
τi = (U

(max)
i , U

(min)
i , Ei)

}n
i=1

that is to be scheduled upon an m-processor platform, what is the smallest value of λ for

which the Liu and Layland task system comprising n tasks with utilizations U1(λ), U2(λ),

. . ., Un(λ) is successfully schedulable by that particular scheduling strategy?

4.3 Global Scheduling

Under the global paradigm of multiprocessor scheduling for recurrent tasks, individual tasks

are not restricted to executing upon specific processors. Instead, a newly-arrived job of a

task may begin execution upon any available processor and a preempted job may resume

execution at a later point in time upon any processor, not just the one it had been executing

upon prior to preemption. We consider three different global scheduling algorithms: fluid

(Section 4.3.1), Earliest Deadline First (Section 4.3.2), and an algorithm called PriD [22] that

can be thought of as a generalization of EDF (Section 4.3.3).
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4.3.1 Fluid Scheduling

The fluid scheduling paradigm of multiprocessor real-time scheduling permits that individual

tasks be assigned a fraction f , 0 ≤ f ≤ 1, of a processor at each instant in time (in

contrast to non-fluid schedules, in which each task may execute either upon zero processors

or upon a single processor at each instant). Fluid scheduling is a convenient abstraction that

considerably simplifies many multiprocessor real-time scheduling problems; techniques are

known (see, e.g, [4, 25, 33, 40]) for converting fluid schedules to non-fluid ones for many

problems and under a wide range of conditions and circumstances.

Fluid scheduling of Liu and Layland tasks – a review. Consider some Liu and Layland

task system Γ, and let Ui denote the utilization of τi ∈ Γ. It has been shown [25] that a

necessary and sufficient condition for Γ to be fluid-schedulable upon a multiprocessor platform

comprising m unit-speed processors is that

maxτi∈Γ{Ui} ≤ 1 (4.3)

and (∑
τi∈Γ

Ui

)
≤ m . (4.4)

Any task system satisfying Conditions 4.3 and 4.4 can be fluid-scheduled by simply assigning

each job of τi a fraction Ui of one of the m processors at each instant between its release time

and its deadline.

Extension to elastic tasks. In the original elastic scheduling paper [7], Buttazzo et al.

present an iterative algorithm called Task_Compress(Γ,Ud) for assigning a period to each

task in a system Γ of elastic tasks such that the total system utilization stays below a desired
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value Ud — this algorithm is reproduced in this chapter as Algorithm 3. It is evident that

Algorithm 3 Task_Compress(Γ,Ud)

1: U (max) =
∑n

i=1 Ci/T
(min)
i

2: U (min) =
∑n

i=1Ci/T
(max)
i

3: if Ud < U (min) then
4: return INFEASIBLE
5: end if
6: ok= 0
7: while ok == 0 do
8: Uf = Ev = 0
9: for each τi do
10: if Ei == 0 or Ti == T

(max)
i then

11: Uf = Uf + Ui
12: else
13: Ev = Ev + Ei
14: end if
15: end for
16: ok= 1
17: for each τi ∈ Γv do
18: if Ei > 0 and Ti < T

(max)
i then

19: Ui = U
(max)
i − (U (max) − Ud + Uf ) ∗ Ei/Ev

20: Ti = Ci/Ui
21: if Ti > T

(max)
i then

22: Ti = T
(max)
i

23: ok= 0
24: end if
25: end if
26: end for
27: end while
28: return FEASIBLE

Algorithm 3 is, in essence, determining the smallest value of λ for which

(
n∑
i=1

Ui(λ)

)
≤ Ud ,
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where the Ui(λ)’s are as defined according to Expression 4.2. Observe, too, that Algorithm

3 never increases the actual utilization assigned to any any task τi to beyond U (max)
i — this

follows from the observation that in Line 19, the value assigned to the actual utilization

—the parameter Ui— is obtained by subtracting a positive quantity from U
(max)
1 . Hence given

an elastic task system Γ of sequential tasks that is to be fluid-scheduled upon m unit-speed

processors, we can determine the effective utilizations of the individual tasks that satisfy

Conditions 4.3 and 4.4, and therefore bear witness to the fluid-schedulability of Γ, by simply

calling the procedure Task_Compress(Γ,Ud) of Algorithm 3 with Ud ← m. The instance

Γ can then be fluid-scheduled by assigning each job of each τi ∈ Γ a fraction of a processor

equal to this effective utilization at each instant between its release date and its deadline.

4.3.2 Global EDF

While the fluid scheduling model is a convenient abstraction for considering multiprocessor

scheduling, it is not in general directly implementable. As mentioned above, techniques are

known for converting fluid schedules to non-fluid ones under a variety of conditions; however,

most such conversions yield schedules with a large number of preemptions and inter-processor

migrations. In environments in which there is a considerable overhead associated with each

preemption and/or inter-processor migration, this approach of obtaining a fluid schedule and

then converting to a non-fluid one may incur unacceptably high overhead costs.

Review of results for Liu and Layland tasks. The global Earliest Deadline First

(EDF) scheduling algorithm has the property that the total number of preemptions and

inter-processor migrations in a schedule is bounded from above at the number of jobs in the

schedule. (This is easily seen by observing that a job may preempt an already-executing

one only upon its arrival, if it happens to have an earlier deadline; such preemption may

later lead to an inter-processor migration if the preempted job resumes upon a different
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processor.) Global EDF may therefore be a more appropriate algorithm to use in environments

characterized by significant preemption/migration overhead costs. Goossens et al. showed [22,

Theorem 5] that a system Γ of Liu & Layland tasks is scheduled by global EDF to meet all

deadlines upon m unit-speed processors if the following condition holds:

∑
τi∈Γ

Ui ≤ m− (m− 1)×max
τi∈Γ
{Ui} (4.5)

(This condition was also shown [22, Theorem 6] to be tight from a utilization-based perspective:

there are systems in which
(∑

τi∈Γ Ui
)
is greater than(m− (m− 1)×maxτi∈Γ {Ui}) by an

arbitrarily small amount, upon which global EDF misses deadlines.)

Extension to elastic tasks. Given a system Γ of elastic tasks

Γ =
{
τi = (U

(max)
i , U

(min)
i , Ei)

}n
i=1

that is to be scheduled upon an m-processor platform, our objective is to find the smallest

value of λ such that the Liu & Layland task system with the following utilizations

Ui ←
{

max
(
U

(max)
i − λEi, U (min)

i

)}n
i=1

(4.6)

is schedulable using global EDF. We have chosen to solve this problem by iterating through

the possible values of λ — see Algorithm 4. This algorithm steps through the range [0,Φ]

with a “granularity" ε (Line 1 of Algorithm 4), where Φ is the maximum value among all

tasks of the equation
(
U

(max)
i −U(min)

i

Ei

)
. The algorithm seeks the smallest value of λ or which

the Liu & Layland task system of Expression 4.6 above is global EDF-schedulable according

to Expression 4.5. Once this smallest value of λ is determined and returned by Algorithm 4,

we can convert the elastic task system to a regular Liu & Layland task system by computing
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the effective utilizations of the tasks according to Expression 4.2, and then use global EDF

to schedule the Liu & Layland task system so obtained.

Algorithm 4 Global EDF(Γ,m)
1: ε← 0.05× Φ . “Granularity” of the test...
2: for λ← 0 to Φ by ε do
3: S ← 0.0 . Total utilization of compressed tasks
4: M ← 0.0 . Max. utilization amongst compressed tasks
5: for i← 1 to |Γ| do
6: tmp← max

(
U

(max)
i − λEi, U (min)

i

)
7: S ← S+ tmp
8: M ← max(M, tmp)
9: end for
10: if (S ≤ m− (m− 1)×M) then
11: . By Eqn. 4.5, the compressed tasks are global-EDF schedulable,
12: return λ
13: end if
14: end for
15: return (global EDF fails)

4.3.3 Algorithm PriD

It was observed [2] that global EDF tends to under-perform when there is even a single task

with high utilization. This is easily explained by examining the utilization-based global-EDF

schedulability condition of Inequality 4.5: observe the presence of the

(
(m− 1)×max

τi∈Γ
{Ui}

)

term on the right-hand side. Since this term is subtracted from the total computing capacity

of the platform (i.e., m), the consequence is that a capacity of (m − 1) times the largest

individual utilization becomes unavailable due to the presence of this large-utilization task.
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Algorithm PriD (Γ,m)
The Liu & Layland task system Γ = {τ1, τ2, . . . τn} is to be scheduled on m processors
Assume the tasks are indexed according to utilization: Ui ≥ Ui+1 for all i, 1 ≤ i < n
for i = 1 to m do
if {τi+1, τi+2, . . . , τn} is global-EDF schedulable upon (m− i) processors
then
During run-time {τ1, τ2, . . . , τi}’s jobs will be assigned highest priority and {τi+1, τi+2, . . . , τn}’s jobs will be assigned EDF-priority
return success

return failure // Not schedulable by PriD

Figure 4.1: Algorithm PriD priority-assignment rule

This phenomenon can be looked upon a consequence of the well-known Dhall effect [15, 16]

which has been widely studied in multiprocessor real-time scheduling theory. Several results

have been obtained within the real-time scheduling theory community for dealing with such

utilization loss; below we first review some of these results and then seek to extend their

applicability to incorporate elasticity.

Review of results for Liu and Layland tasks. Recall that one major advantage of

EDF-generated schedules over those obtained by converting a fluid-based one is the reduced

number of preemptions and inter-processor migrations: the total number of preemptions and

migrations in an EDF-generated is no greater than the number of jobs that are scheduled.

It turns out that this property is in fact enjoyed by an entire class of algorithms: all those

in which each job is assigned a single fixed priority and at each instant during run-time

the highest-priority jobs that are eligible to execute are selected for execution. Algorithms

in this class are referred to as Fixed Job Priority (FJP) [11] scheduling algorithms. The

algorithm fpEDF was proposed [2] as an FJP algorithm that circumvents the utilization loss

caused by the Dhall effect. Under the fpEDF run-time scheduling algorithm, jobs of tasks

with utilization > 0.5 are statically assigned highest priority while priorities to jobs of the
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remaining tasks are assigned according to EDF. It has been shown [2, Theorem 4] that a

task system Γ is scheduled by fpEDF to meet all deadlines upon m unit-speed processors if

the following condition holds: ∑
τi∈Γ

Ui ≤
m+ 1

2
(4.7)

A pragmatic improvement to fpEDF, called Algorithm PriD (for “priority driven”) was

proposed by Goossens et al. [22] — this is the algorithm that we will be adapting below for

elastic tasks. Algorithm PriD is presented in pseudo-code form in Figure 4.1. Algorithm PriD,

like fpEDF, seeks to circumvent the Dhall effect by assigning greatest priority to jobs of

tasks with high utilization; however, while fpEDF designates all tasks with utilization > 0.5

to be “high-utilization” ones, Algorithm PriD determines which tasks are “high-utilization”

based on the characteristics of the task system under consideration. It is shown [22] that

Algorithm PriD strictly dominates fpEDF: all instances that are deemed schedulable by

fpEDF are also deemed schedulable by PriD while the converse of this statement is not true

– there are instances deemed schedulable by Algorithm PriD that will not pass the fpEDF

schedulability test of Expression 4.7.

Extension to elastic tasks. Our adaptation of Algorithm PriD to elastic tasks is similar

to our adaptation of global EDF: given an instance of elastic tasks

Γ =
{
τi = (U

(max)
i , U

(min)
i , Ei)

}n
i=1

to be scheduled upon m unit-speed processors, we iterate through possible values of λ between

0 and Φ, seeking the smallest value such that the Liu & Layland task system with utilizations

Ui ←
{

max(U
(max)
i − λEi, U (min)

i

}n
i=1
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is deemed schedulable by Algorithm PriD upon m unit-speed processors. (The pseudo-code

for this algorithm is very similar to the pseudo-code in Algorithm 4, and hence omitted.)

4.4 Partitioned Scheduling

The partitioned scheduling of Liu & Layland task systems is known to be equivalent to the

bin-packing problem[27, 28], and hence NP-hard in the strong sense. Several polynomial-time

heuristics have been proposed for solving this problem approximately: most of these heuristic

algorithms for partitioning have the following common structure. First, they specify an order

in which the tasks are to be considered. Then in considering each task (in the order chosen),

they specify the order in which to consider upon which processor to attempt to allocate the

task. A task is successfully allocated upon a processor if it is observed to “fit" upon the

processor; within the context of the partitioned EDF-scheduling, a task fits on a processor if

the task’s utilization does not exceed the processor capacity minus the sum of the utilizations

of all tasks previously allocated to the processor. The algorithm declares success if all tasks

are successfully allocated; otherwise, it declares failure.

Lopez et al. [38] have extensively compared several widely-used heuristic algorithms that fit

this overall structure. They define the concept of a Reasonable Allocation (RA) partitioning

algorithm: an RA algorithm is one that fails to allocate a task to a multiprocessor platform

only when the task does not fit into any processor upon the platform. All the heuristic

algorithms considered by Lopez et al. [38] are RA ones — indeed, there seems to be no reason

why a system designer would ever consider using a non-RA partitioning algorithm. Within

the RA algorithms, Lopez et al. [38] compared heuristics that

1. use three different ways for ordering the tasks to consider: arbitrary, in order of

increasing utilization, and in order of decreasing utilization; and
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2. also use three different heuristics for ordering the processors to consider: “first fit"

(assign a task to the first processor upon which it fits), “worst fit" (assign a task to the

processor with the maximum remaining capacity), and and “best fit" (assign a task to

the processor with the minimum remaining capacity that exceeds the task’s utilization).

Extension to elastic tasks. Any of the partitioning heuristics can be adapted for elastic

tasks in a manner that is very similar in structure to the manner in which global EDF and

PriD were adapted for elastic tasks. That is, given an instance of elastic tasks

Γ =
{
τi = (U

(max)
i , U

(min)
i , Ei)

}n
i=1

to be scheduled upon m unit-speed processors, we iterate through possible values of λ between

0 and Φ, seeking the smallest value such that the Liu & Layland task system with utilizations

Ui ←
{

max(U
(max)
i − λEi, U (min)

i

}n
i=1

is deemed schedulable by upon m unit-speed processors by the partitioning heuristic. (The

pseudo-code for doing so is again very similar to the pseudo-code in Algorithm 4, and hence

omitted.)

We note that after partitioning tasks onto processors, it is highly unlikely that all processors

are fully utilized (i.e. the assigned utilizations of the partitioned tasks sum to 1.0). The

procedure Task_Compress(Γ,Ud) of Buttazzo et al. [7] (reproduced here as Algorithm 3)

can be applied to each processor with Ud ← 1.0 to perhaps increase system utilization while

still guaranteeing schedulability,
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4.5 Simulation Experiments

We have performed a simulation-based comparison of the various algorithms presented in

Sections 4.3 and 4.4 for the multiprocessor scheduling of sequential elastic tasks; we report on

the findings of this comparison below. We describe the setup for these simulation experiments

in Section 4.5.1 and present our findings in Section 4.5.2; based upon these findings, we draw

some high-level conclusions in Section 4.5.3.

4.5.1 Experimental Setup

We randomly generate sets of sequential elastic tasks and attempt to schedule them upon a

given number of processors m using the different scheduling algorithms – fluid, global EDF,

PriD, and partitioned – described in Sections 4.3 and 4.4 above. Specifically,

• We separately consider multiprocessor platforms containing m = 4, 8, and 16 identical

processors.

• For each of these values for m, we consider task sets with n = 2×m, 2.5×m, 3×m,

and n = 4×m tasks.

• For each selected combination of values of m and n, we generate task sets in which the

maximum utilizations of the tasks (i.e., their U (max)
i parameters) sum to 1.1×m, 1.5×m,

and 1.9×m.

Hence a total of 3× 4× 3 = 36 different combinations of values of m,n, and
(∑

i U
(max)
i

)
are considered. For each such combination, we generate 1000 task sets in the following

manner. We generate the individual U (max) values using the Randfixedsum algorithm [17] to

provide an unbiased distribution of maximum utilizations. The corresponding individual task
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minimum utilization values U (min)
i are uniformly generated over the range (0, U

(max)
i ). In the

case that a task set’s U (min)
i values sum to more than m (i.e., the task set is not schedulable

under fluid scheduling, or therefore, any other scheduling algorithm), we repeatedly generated

new U
(min)
i values for each task until their sum is sufficiently low. Tasks’ elastic coefficients

are chosen uniformly randomly over the range [1, 5]. For all algorithms a “granularity” of

ε = Φ
1,000

was used.

We attempt to schedule each task set generated as described above using the four algorithms

discussed in Sections 4.3 and 4.4: fluid, global EDF, PriD, and partitioned. For partitioned,

we first sort the tasks in order of decreasing utilization (their U (max)
i parameters), and attempt

to assign them to the available processors using the the “first-fit,” “worst-fit,” and “best-fit”

heuristics; We return the first λ value that deems the task set schedulable by any of these

heuristics.

4.5.2 Observations

In our experiments, we noted (i) the fraction of task-sets that were determined to be

schedulable by each of our four algorithms; and (ii) for those task-sets that were deemed

schedulable by all the algorithms, the minimum λ needed to achieve schedulability by each

algorithm. Our results are presented in graphical form in Figures 4.2–4.14. In these graphs

we show results of both the average minimum normalized λ value ( λ
Φ
–this gives a value on

the interval [0, 1] and is needed to compare λ values across task sets) needed to achieve

schedulability for a given scheduling algorithm, and the percentage of the 1,000 task sets that

each algorithm deemed scheduleable. To ensure a consistent comparison, we only compare

lambda values for task sets deemed schedulable by all scheduling algorithms.
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Figure 4.2: All scheduling algorithms considered
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Figure 4.2 shows both the λ values and percentage of schedulable task sets for all four

scheduling algorithms (fluid, global EDF, PriD, and partitioned) under our most lax system

conditions: m = 4 processors and n = 8 tasks. Note that global EDF scheduling requires

by far the highest lambda value, and that the percentage of task sets deemed schedulable

under global EDF falls off drastically as
(∑

i U
(max)
i

)
increases. This is a manifestation of

the Dhall effect, and our further experiments revealed that this only worsens as the number of

processors and tasks increase: for many of the other combinations of m, n, and
(∑

i U
(max)
i

)
that we later considered, global EDF fails to schedule even a single task set out of 1000.

Therefore, in order to have more task sets schedulable under “all” scheduling algorithms,

we remove global EDF from consideration and only compare fluid, PriD, and partitioned

scheduling in the remainder of the reported results.

Figures 4.3 – 4.8 show the average lambda among task sets that were deemed schedulable

under all algorithms while Figures 4.9 – 4.14 show the percentage of task sets schedulable

under each scheduling algorithm. We note that fluid scheduling is an idealized optimal

scheduling algorithm; not surprisingly, therefore, it schedules the largest percentage of task-

sets and returns the smallest λ value. This is seen consistently in Figures 4.8 – 4.14. We also

note that partitioned scheduling consistently dominates algorithm PriD in both λ value and

in percentage of schedulable task sets. This is consistent with prior observations [5] regarding

global versus partitioned multiprocessor scheduling; in essence, this is likely a reflection of

the fact that while global scheduling algorithms like PriD apply schedulability tests that are

utilization-based and incorporate considerable pessimism since they must consider “worst-

case" task-sets with the same utilization parameters, partitioned schedulability tests actually

attempt to perform a partition and hence do not necessarily pay the price in terms of such

analysis-based pessimism.
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Our experiments also reveal that it becomes more difficult to schedule tasks (in terms of

both λ value and schedulability percentage) for all the scheduling algorithms as
(∑

i U
(max)
i

)
increases. The same is true as the number of processors increases but the ratio of processors

to tasks remains the same. Indeed, no tasks were deemed schedulable under algorithm PriD

on m = 16 processors, regardless of the ratio of processors to tasks in the system. However, on

a constant number of processors, fluid and partitioned scheduling can return a lower λ value

with more tasks in the task set, and a higher percentage of task sets are deemed schedulable

under partitioned scheduling while PriD seems minimally affected. Fluid scheduling always

deems 100% of tasks to be schedulable. We believe this improvement is due to a reduction in

the Dhall effect: as more tasks are introduced into a system with a constant total utilization

the largest single task is more likely to decrease.

4.5.3 Some Conclusions

Based on our observations in the previous subsection and the graphs in Figures 4.8 – 4.14,

we recommend that in the absence of specific knowledge regarding task characteristics that

may advocate in favor of PriD, partitioned scheduling be used for the scheduling of sequential

elastic tasks on uniform multiprocessor systems, particularly in systems with a large number of

tasks. Among the realistic scheduling algorithms considered in this chapter, it 1) consistently

returns the lowest value of λ (and therefore compresses tasks the least) and 2) schedules the

highest percentage of task sets.
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Figure 4.3: Normalized Lambda Values
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Figure 4.4: Normalized Lambda Values

51



Figure 4.5: Normalized Lambda Values
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Figure 4.6: Normalized Lambda Values
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Figure 4.7: Normalized Lambda Values
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Figure 4.8: Normalized Lambda Values
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Figure 4.9: Percentage of Schedulable Task Sets
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Figure 4.10: Percentage of Schedulable Task Sets
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Figure 4.11: Percentage of Schedulable Task Sets
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Figure 4.12: Percentage of Schedulable Task Sets
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Figure 4.13: Percentage of Schedulable Task Sets
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Figure 4.14: Percentage of Schedulable Task Sets
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4.6 Summary

In this chapter we have introduced elastic scheduling for sequential tasks on multiprocessor

systems. We have introduced algorithms for scheduling such tasks under both global (in a

variety of manners) and partitioned scheduling paradigms. We ran an extensive simulation to

compare these methods and conclude that partitioned scheduling should be used if possible.
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Chapter 5

Computational Elasticity

In this chapter we further expand the elastic model to allow tasks to adapt their com-

putational workloads in place of adapting their periods. We refer to tasks that do so

as computationally-elastic tasks, and tasks that adapt their periods as period-elastic

tasks . In this chapter we use real-time scheduling of parallel elastic tasks (from Chapter 3)

to demonstrate computational elasticity, but the concept is equally applicable to sequential

elastic tasks, whether scheduled on a single processor as in earlier work, or on a multi-core

system as in Chapter 4 of this dissertation. This section also introduces a run time system

for elastic parallel real-time systems that is able to handle both computationally-elastic and

period-elastic tasks.

5.1 Introduction

In the original elastic task model for sequential tasks [7], schedulability of a task set is

determined by system utilization (i.e., the sum of each task’s computational workload divided

by its period). Buttazzo et al. manipulate a task’s period elasticity to change tasks’
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utilizations as needed to maintain system schedulability, while allowing code e.g., a control

algorithm, to perform better when run at a higher periodic rate, or a multi-media player to

offer a better picture when run at a higher frame rate.

However, a task can also change its utilization by adapting its computational load instead

of its period, i.e., manipulating its computational elasticity. Either an increase in a

task’s computational load or a proportional decrease in its period will result in the same

increase in its CPU utilization. Similarly, CPU utilization can be decreased by decreasing

a task’s computational load, or increasing its period. Although an increase or decrease in

computational load may not make sense for some tasks, other tasks (e.g., a simulation that

must iterate at a constant rate but whose accuracy depends on how much it can compute

during each iteration) can use this capability to adjust their quality of service.

Although exploiting computational elasticity is possible in sequential tasks, it is perhaps more

relevant for parallel tasks, where computational workload can be increased (while maintaining

a constant period) by providing additional CPUs for the task to utilize (which sequential-task

scheduling cannot do).

Towards a more comprehensive treatment of elasticity in parallel real-time tasks, this chapter

introduces and discusses the novel concept of computational elasticity in parallel real-time

systems. It also identifies and encapsulates an equivalence between period elasticity and

computational elasticity by adapting an algorithm from Chapter 3 (originally used to opti-

mally schedule only period-elastic tasks) to now optimally schedule both period-elastic and

computationally-elastic parallel real-time tasks.

In this chapter, we also introduce platform support for interchangeable adaptation of either

the period or the workload of each parallel real-time task, which allows some tasks to adjust

their periods and others to adjust their workloads. We have designed and implemented an
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efficient runtime system that, when tasks adaptively change their computational demands or

their periods, makes the necessary elastic scheduling changes to other tasks in the system to

ensure that all tasks in the task set remain schedulable. We also demonstrate the equivalence

of computational and period elasticity by scheduling two task sets in which all tasks are

identical, with the exception of one task in each task set: in one task set this designated task

modifies its period while in the other it modifies its computational load, within the same

minimum and maximum utilization. Results of our evaluation show that the system adapts

in the same way, and finds the same optimal schedule regardless of whether the designated

task adapts its period or its computational work load.

The rest of this chapter is structured as follows. Section 5.3 introduces the expanded parallel

elastic real-time task model and proves that the optimal scheduling algorithm introduced

in Chapter 3 for period adaptation only, is easily extended to work correctly whether tasks

change their computational workloads or their periodic rates. Section 5.4 presents the design

of our elastic parallel real-time runtime system and Section 5.5 evaluates its effectiveness.

Section 5.6 summarizes the chapter.

5.2 Background and Related Work

In this chapter we expand our earlier work on elastic parallel-real time scheduling to support

adaptive computational workloads. This section describes single-core elastic scheduling and

the federated scheduling paradigm, and gives an overview of our prior work with period-

elastic parallel real-time tasks.
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5.2.1 Elastic Scheduling

The elastic task model itself is a generalization of the sporadic task model. Each of n sporadic

tasks τi = (Ci, T
(min)
i , T

(max)
i , Ei) has a current minimum inter-arrival time (or period) Ti

and a constant workload represented by its worst-case execution time (WCET) Ci. Under

elastic scheduling each task’s period Ti can vary over the range of [T
(min)
i , T

(max)
i ] where T (min)

i

is the preferred period and T (max)
i is the slowest acceptable period. To ensure system-wide

schedulability, overall system utilization
∑n

i=0
Ci

Ti
must remain below a desired utilization

Ud (e.g., 1.0 for single-core preemptive EDF scheduling). Each task’s period is lengthened

from T
(min)
i (thereby reducing task utilization) proportionally to its current utilization and

elastic coefficient Ei. The elastic coefficient is again a measure of a task’s ability to change

its period, similar to a spring’s ability to be expanded or contracted. The higher the value of

Ei, the more elastic a task, and the more able it is to change its period.

In the original elastic scheduling work [7] Buttazzo et al. presented an efficient (Θ(n2))

iterative algorithm for task period selection when the system needed to adapt, which (if

possible) finds each task τi an appropriate period Ti such that
∑

i(Ci/Ti) ≤ Ud and T (min)
i ≤

Ti ≤ T
(max)
i for all tasks τi. (As stated above Ud is a threshold defined according to the

scheduling algorithm that is used; for single-core preemptive EDF scheduling Ud = 1.0.)

Chantem et al. [12, 13] proved that the iterative algorithm from [7] is exactly equivalent to

solving the following optimization:

minimize
n∑
i=1

1

Ei
(U

(max)
i − Ui)2 (5.1)

such that:

U
(min)
i ≤ Ui ≤ U

(max)
i for all τi, and
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n∑
i=1

Ui ≤ Ud

where U (max)
i = Ci

T
(min)
i

represents the maximum possible utilization of a task obtained from

running at period Ti = T
(min)
i .

The original work involving elastic tasks [7] assumed implicit deadlines in which Di = Ti,

but theory involving that model has since been expanded to include: constrained deadlines

in which Di ≤ Ti [13], resource sharing [8], and unknown computational load [10]. Our work

in this chapter explores a similar (but orthogonal) direction to that in [10] except that we

assume a variable, yet known and controlled workload.

5.2.2 Federated Scheduling

The federated scheduling paradigm is used to schedule sporadic parallel real-time tasks on

multiple processors. It was designed by Li et al. [36] to schedule tasks whose computational

demand is such that a single processor cannot possibly guarantee schedulability. As such,

a set of processors is assigned to be used exclusively by each parallel real-time task whose

computational requirements exceed the capacity of a single CPU.

Each task τi again has a minimum inter-arrival time (or period) Ti and (in this chapter) an

implicit deadline Di = Ti. The computational requirements of each task are represented as a

directed acyclic graph (DAG) in which each node is a block of sequential computation, and no

node can be performed until all of its predecessors have finished execution. Any two nodes

whose predecessors have all finished running can be executed in parallel. In place of the

WCET parameter used in sequential tasks (such as for Buttazzo’s elastic scheduling model),

federated scheduling represents the computational workload of a DAG task with total work

Ci, and critical path length (or span) Li. The work represents the sum of the workloads of
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each of node in the DAG task. In other words, it is the amount of time it would take the

DAG to run sequentially on a single processor. Similarly, the span is the highest-weighted

(by summation of computation time) chain of nodes in a DAG. Because the nodes making up

such a chain must be run sequentially, the span of a DAG represents the amount of time that

the task would need to run on a theoretically infinite number of processors.

In federated scheduling, tasks that require more than one processor (i.e., utilization Ui > 1.0)

are referred to as high utilization tasks. Similarly, tasks that can be scheduled feasibly on a

single processor (Ui ≤ 1.0) are low utilization tasks.

5.2.3 Parallel Real-time Elastic Scheduling

Our work in Chapter 3 has expanded Buttazzo’s elastic model to include parallel tasks

scheduled under federated scheduling. Each task τi is characterized by the parameters

τi = (Ci, Li, U
(max)
i , U

(min)
i , Ei) (5.2)

where U (max)
i = Ci/T

(min)
i and U

(min)
i = Ci/T

(max)
i are the maximum (i.e., desired) and

minimum acceptable utilization values, respectively. Note that using minimum and maximum

utilization values is functionally equivalent to characterizing the task by a maximum and

minimum period, but we use the utilization parameter as it is more directly applicable to

our scheduling algorithm. As before, Ci and Li are the work and span of a parallel task

represented by a DAG, and Ei is the elastic coefficient of a task, representing the ease with

which a task’s period can be changed, analogous to a spring’s resistance to being compressed.

Note that in the scheduling of sequential processes (including scheduling of traditional elastic

tasks), system-wide utilization (and by extension individual tasks’ utilization) is used directly

to determine whether a task set is schedulable. However, under federated scheduling, a task
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set is considered schedulable if and only if the m processors available to the system are

enough to assign each task its requisite number of dedicated processors, (largely) independent

of the utilization of individual tasks. It was proved in [23] that the makespan of the schedule

for a given DAG is guaranteed to be no larger than the difference between the work and span

divided by the number of processors available, plus the span:

Ci − Li
m

+ Li (5.3)

Therefore an upper bound on the makespan for a DAG may be stated in terms of only its

work and span parameters. Equivalently, if the DAG represents a real-time piece of code

characterized by a relative deadline parameter D, then (Ci−Li

m
+ Li) ≤ D is a sufficient test

for determining whether the code will complete by its deadline upon an m-processor platform.

Because we assume implicit deadlines with Di = Ti, we can show

Ci − Li
mi

+ Li ≤ Ti

⇔ Ci − Li
mi

≤ Ti − Li

⇔ mi ≥
Ci − Li
Ti − Li

Under federated scheduling, since the number of processors assigned each task is an integer,

we therefore have

mi =

⌈
Ci − Li
Ti − Li

⌉
(5.4)

Therefore a task set is schedulable under federated scheduling if and only if
∑n

i=1mi ≤ m.
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As such our work in Chapter 3 solves the parallel version of the optimization equation given

in Definition (5.1), namely:

minimize
n∑
i=1

1

Ei
(U

(max)
i − Ui)2 (5.5)

such that:

U
(min)
i ≤ Ui ≤ U

(max)
i for all τi and

n∑
i=1

mi ≤ m

In Chapter 3 we also presented a greedy algorithm that optimally solves Definition (5.5)

where the period may be varied. In this chapter we modify that algorithm to schedule tasks

with elastic computational loads or periods: Algorithm 5 in Section 5.3.

5.3 Computational Elasticity

This section further develops the concept of task elasticity, originally presented as sequential

real-time tasks’ ability to dynamically adapt their periods by Buttazzo et al. [7] and expanded

work Chapter 3 to allow similar period-only adaptation in parallel real-time tasks. We refer

to such tasks as period-elastic tasks. This section further extends those prior results to

allow for tasks to adapt their computational load instead of period. We refer to these as

computationally-elastic tasks.

In this section we demonstrate that both period-elastic and computationally-elastic tasks

can be encapsulated under elasticity of task utilization and thereby form an equivalence

relationship. Utilization-based scheduling algorithms used in prior work [7, 8, 12, 13] to
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schedule period-elastic tasks then can be modified in order to also schedule computationally-

elastic tasks.

5.3.1 Computationally-Elastic Task Model

Our computationally-elastic task model in this chapter is similar to the period-elastic task

model from Chapter 3 shown in Definition 5.2. However, because we now consider tasks in

which adaptation is driven by computational elasticity instead of period elasticity, we replace

the fixed computational load Ci with a fixed period Ti and again allow utilization to vary

between maximum (desired) and minimum values, which in turn implies a variable workload

Ci. This gives our new computationally elastic task model

τi = (Ti, Li, U
(max)
i , U

(min)
i , Ei) (5.6)

in which the minimum inter-arrival time (or period) Ti is fixed. We again assume an implicit

relative deadline Di = Ti, and each task is again represented by a directed acyclic graph

(DAG) with (fixed) critical path length (or span) Li and overall work Ci. However, instead of

a constant Ci, each task now has a range of acceptable work values [C
(min)
i , C

(max)
i ] similar

to the range of periods found in period-elastic tasks. This range of acceptable Ci values is

encapsulated in Definition (5.6) by the interval of acceptable task utilizations [U
(min)
i , U

(max)
i ]

where

U
(min)
i =

C
(min)
i

Ti

and

U
(max)
i =

C
(max)
i

Ti
.
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In computationally-elastic tasks, elastic coefficient Ei indicates a task’s ability to have its

computational load changed. A higher value of Ei indicates a task whose Ci value is more

easily changed.

The directly proportional relationship between the minimum and maximum computational

load (C(min)
i and C(max)

i ) and the minimum and maximum utilization (U (min)
i and U (max)

i ) of

computationally-elastic tasks provides the key insight for adapting existing period-elastic

scheduling techniques to also schedule computationally-elastic tasks. A similar (yet in-

verse) relationship exists between period and utilization of period-elastic tasks. Since both

computational-elasticity and period-elasticity can therefore be encapsulated as utilization, it

follows that either could be scheduled under a utilization-based scheduling algorithm. This

subsection explores the adaptation of existing utilization-based scheduling algorithms used

previously for scheduling exclusively period-elastic tasks to now schedule both period-elastic

and computationally-elastic tasks.

As in our prior work with parallel real-time period-elastic tasks Chapter 3, we schedule

high-utilization tasks using federated scheduling. Recall that under federated scheduling

any task in which Ui > 1.0 is considered a high-utilization task, and likewise any task

in which Ui ≤ 1.0 is a low-utilization task. In this chapter we assume that all tasks are

always only high-utilization or low-utilization: a task’s elastic nature and adaptive period or

computational load cannot carry it across the boundary from one category to the other.

5.3.2 Scheduling of Low-Utilization Computationally-Elastic Tasks

Because low-utilization tasks have utilizations less than 1.0, they can be scheduled like

sequential tasks. We now show that the algorithms presented by Buttazzo et al. [7, 8] can

be adapted to schedule low-utilization computationally-elastic tasks.
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The Task_Compress(Γ, Ud) algorithm presented in [7] converts period-elastic tasks in

task set Γ to their utilization-based abstraction. It then compresses each task’s utilization

proportionally to its elastic coefficient (to the extent that each task can be compressed) until

the summed utilization is at or below the desired system utilization Ud. Once the desired

system utilization has been achieved, the system is guaranteed to be scheduleable. Each

task’s compressed utilization becomes its assigned utilization, and the task is assigned to run

with the corresponding period Ti.

We showed in the previous subsection that computationally-elastic tasks can also be encapsu-

lated as having a minimum and maximum utilization. Therefore, any computationally-elastic

task can have its utilization compressed as is done in the Task_Compress algorithm dis-

cussed above. To successfully schedule computationally-elastic tasks, then, one must simply

run the Task_Compress algorithm and convert utilization to an appropriate work value Ci

instead of a period value Ti.

5.3.3 Scheduling of High-Utilization Computationally-Elastic Tasks

For high-utilization computationally-elastic tasks, recall that under federated scheduling

each task is assigned a set of dedicated processors. Definition (6.1) determines the number

of CPUs needed to schedule a high-utilization task under federated scheduling at a given

workload Ci and period Ti. Because we are scheduling computationally-elastic tasks, each

task with a constant period Ti but variable workload Ci, may therefore use anywhere from

m
(min)
i to m(max) tasks where

m(min) =
C

(min)
i − Li
Ti − Li

and

m(max) =
C

(max)
i − Li
Ti − Li

.
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This matters because under federated scheduling of high-utilization tasks, system utilization

does not directly determine whether a task set is scheduleable. Rather, a task set is schedulable

if and only if the system has enough processors to give each task enough dedicated processors

such that each individual task is schedulable.

In the remainder of this subsubsection we discuss adapting algorithm Task_Compress_Par(Γ, Ud)

from Chapter 3 to include the scheduling of high-utilization computationally-elastic tasks.

The resulting algorithm appears in this chapter as Algorithm 5.

Task_Compress_Par(Γ, Ud) is an optimal (see Chapter 3 for proof) and efficient (Θ(n ∗

m + m log n)) greedy algorithm that directly solves the optimization equation given in

Definition (5.5). The algorithm iteratively assigns a processor to the task that lowers∑n
i=1

1
Ei

(U
(max)
i − Ui)2 the most, with the ultimate goal of assigning processors to tasks

until all m processors in the system have been assigned, or all tasks have been given their

maximum number of processors while minimizing the above-stated objective.

Although each task has a minimum and maximum number of CPUs on which it can run,

m
(min)
i and m

(max)
i , we note that any system has a finite number of CPUs m on which to

schedule tasks, and all other tasks in the task set also have a minimum number of CPUs on

which they can run. Therefore, although a task may be theoretically able to run on up to

m
(max)
i CPUs, on any given platform it can be assigned at most m(max)

practicali
where

m
(max)
practicali

= m−
n∑
i=1

+m
(min)
i . (5.7)

Because our prior work in Chapter 3 focuses on exclusively period-elastic tasks, the re-

mainder of the discussion in this section will focus on computationally-elastic tasks with an
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Algorithm 5 Task_compress_par2(Γ,m)
1: for (τi ∈ Γ) do
2: m

(min)
i = d(C(min)

i − Li)/T (max)
i − Li)e . The minimum number of processors needed

by τi
3: m

(max)
i = d(C(max)

i − Li)/(T (min)
i − Li)e . The maximum number of processors

needed by τi
4: mi = m

(min)
i

5: while mi ≤ m
(max)
i do . Compute the desired value for τi on each number of

processors it could be assigned
6: if τi is period-elastic then
7: T(i,mi) = Ci−Li

mi
+ Li . T(i,mi) denotes the shortest (best) period for τi if τi is

given mi processors
8: else . τi is computationally-elastic
9: C(i,mi) = mi(Ti − Li) + Li . C(i,mi) denotes the most computation possible for
τi if τi is given mi processors

10: end if
11: mi = mi + 1
12: end while
13: mi = m

(min)
i . Assign τi the minimum number of processors it needs

14: if τi is period-elastic task then
15: Ti = T(i,mi) . Assign Ti the corresponding shortest period
16: else
17: Ci = C(i,mi) . Assign Ci the corresponding maximum workload
18: end if
19: m = m−m(min)

i . m keeps count of processors remaining after minimum needs are
satisfied

20: end for
21: if (m < 0) then . There weren’t enough processors.
22: return unschedulable
23: else if (m == 0) then
24: return the processor allocation as determined in the mi values
25: end if
26: . The remainder of this pseudocode allocates the remaining processors,

one at a time
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Algorithm 5 Task_compress_par2(Γ,m), (continued)
27: for (τi ∈ Γ) do . Allocate next processor to task that will decrease the optimization

objective function the most
28: xi = 1

Ei
(U

(max)
i − Ui)2

29: mi+ = 1 . Temporarily assign this processor to τi
30: if τi is period-elastic then
31: Ti = T(i,mi) . Determine corresponding period (previously computed in Line 7

above)
32: else
33: Ci = C(i,mi) . Determine corresponding computational load (previously) compute

in Line 9 above
34: end if
35: yi = 1

Ei
(U

(max)
i − Ui)2

36: zi = xi − yi . How much τi would decrease sum
37: mi− = 1 . Reclaim temporarily-assigned processor
38: if τi is period-elastic then
39: Ti = T(i,mi)

40: else
41: Ci = C(i,mi)

42: end if
43: end for
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Algorithm 5 Task_compress_par2(Γ,m), (continued)
44: Make a max heap of all tasks, with the zi values as the key
45: while m > 0 and heap not empty do . Each iteration, assign an additional processor
46: τmost = heap.pop() . This is the task that wold see the most benefit
47: mmost = mmost + 1 . Permanently assign processor.
48: m = m− 1
49: if τi is period-elastic then
50: Tmost = T(most,mmost)

51: else
52: Cmost = C(most,mmost)

53: end if
54: if (m > 0 and mmost < mmostmax) then . Able to receive any more processors?
55: xmost = 1

Emost
(U

(max)
most − Umost)2

56: mmost+ = 1 . Temporarily assign processor.
57: if τi is period-elastic then
58: Tmost = T(most,mmost)

59: else
60: Cmost = C(most,mmost)

61: end if
62: ymost = 1

Emost
(U

(max)
most − Umost)2

63: zmost = xmost − ymost
64: Reinsert τmost into heap
65: mmost− = 1 . Reclaim temporarily-assigned processor
66: if τi is period-elastic then
67: Tmost = T(most,mmost)

68: else
69: Cmost = C(most,mmost)

70: end if
71: end if
72: end while
73: return the processor allocation as determined in the mi values
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adaptive work parameter Ci. However, Algorithm 5 encapsulates both period elasticity and

computational elasticity in terms of task utilization.

The algorithm begins by determining m(min) and m(max) for each task (lines 2-3). We assume

that for computationally-elastic tasks (with a fixed period Ti) that Ti = T
(min)
i = T

(max)
i , and

likewise for period-elastic tasks (with a fixed computational workload Ci) that Ci = C
(min)
i =

C
(max)
i . This allows reuse of the same calculations regardless of the task’s elastic nature, as

the number of required CPUs increases proportionally with a task’s work and inversely with

its period.

The algorithm then determines the maximum workload (line 9) that each task can accommo-

date at each integer over the range [m(min),m(max)] and stores them in a lookup table. The

value

C(i,mi) = mi(Ti − Li) + Li

comes from solving Definition (6.1) for the value Ci.

mi =

⌈
Ci − Li
Ti − Li

⌉
⇒ Ci − Li

Ti − Li
≤ mi <

Ci − Li
Ti − Li

+ 1.

Solving both inequalities for Ci, we obtain the interval

mi(Ti − Li)− Ti + 2Li < Ci ≤ mi(Ti − Li) + Li.

Since we always want to perform as much computation as possible, we assign the maximum

of

C(i,mi) = mi(Ti − Li) + Li.
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We then assign each task its minimum number of CPUs (line 13) and corresponding compu-

tational load (line 17). If not all CPUs have been assigned to a task, the algorithm continues

(lines 27-43) by temporarily assigning an additional processor to each task that has fewer

than m
(max)
i CPUs currently assigned, to see how much each task will reduce the sum in

Definition (5.5).

In line 44 each task is inserted into a max heap that is indexed on how much each task

decreases the sum. We can consider tasks independently because the objective function

in Definition (5.5) considers only each task’s current utilization Ui = Ci/Ti and maximum

utilization U (max)
i = C

(max)
i /Ti, which are constant (Ti) or determined only by each task’s

number of currently assigned processors (Ci = mi(Ti − Li) + Li) and thus independent of

other tasks.

Lines 45-72 then repeatedly pop τmost, the task that most reduces the objective function

in Definition (5.5), from the max heap and permanently assigns it a processor. If the task

can still receive more processors, its next potential contribution to the objective function in

Definition (5.5) is calculated, and it is reinserted into the heap, until all m processors have

been assigned to a task and the algorithm returns. Note that Algorithm 5 decides how many

processors each task gets, not which processors, as we discuss in Section 5.4.

5.4 Concurrency Platform Support

This section presents the concurrency platform we have developed to run both period-elastic

and computationally-elastic high-utilization tasks. Each task in the system must be either

computationally-elastic or period-elastic, but this runtime system allows for the same task

set to contain both types of elastic tasks.
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We schedule tasks under federated scheduling using Algorithm 5 above. Because of the

adaptive nature of elastic tasks, this scheduling algorithm must be rerun any time a system-

wide adaptation occurs. Rather than taking away processing time from (and possibly affecting

the schedulability of) a task, we dedicate one processor core to running Algorithm 5 and

rescheduling the task set when a need arises. Section 5.4.1 discusses the scheduler in greater

detail.

The system was built in C/C++ atop Linux with OpenMP. It uses Linux shared memory

and POSIX RT Signals for inter-task communication and scheduling. Section 5.4.2 describes

the concurrency and synchronization techniques used.

5.4.1 Task Scheduler and Scheduling Mechanisms

Because elastic tasks must adapt on-line, off-line calculation of a static schedule, as is usually

done with non-elastic fixed-priority scheduling, only provides an initial schedule, and we must

also decide when and how to run an on-line scheduling algorithm.

We dedicate a processor (arbitrarily CPU 0) to running Algorithm 5 and make m (the

number of CPUs available to the task set for scheduling) one less than the number of physical

processors available in the system. The Task Scheduler process begins by running Algorithm 5

to find an initial processor allocation for each task. It then assigns consecutive processors to

each task in turn as determined by the results of Algorithm 5 (i.e., beginning by assigning

CPU 1 to Task τ1 and then assigning CPU 2 to Task τ1 if it needs more CPUs or otherwise

assigning it to Task τ2, etc.). Tasks then run on their assigned processors until a scheduling

change must occur. Meanwhile the Task Scheduler process repeatedly polls for whether it

needs to reschedule the tasks, and does so as necessary.
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We spawn m(max)
practicali

threads for each task as given by Definition (5.7). The first mi threads

(as determined by Algorithm 5) are designated active threads and are pinned to the mi CPUs

that are assigned to the task. The remaining m(max)
practicali

− mi threads are deemed passive

and are pinned to consecutive processors (beginning with the one immediately after the last

processor assigned an active thread) and then made to sleep.

When a new schedule must be found, the Task Scheduler first runs Algorithm 5 again to

determine how many processors each task must now be assigned. It then looks at which tasks

gained CPUs and which tasks lost CPUs when going from the old configuration to the new

and determines which processor will go to which new task. Preference is given to any task

with a passive thread already sleeping on a CPU currently occupied by an active thread of a

task that must lose a processor. If so, the active thread of the task losing a processor can

go to sleep; the passive thread of the task gaining a processor can wake up, and no thread

migration occurs.

However, it sometimes unavoidable that the task gaining a processor has no passive threads

sleeping on a CPU currently occupied by an active thread of a processor that is losing a

CPU. In this case, a passive thread from the task gaining a processor migrates to a processor

currently occupied by the task losing a processor. The corresponding formerly active thread

then goes to sleep and the thread that migrated becomes active on the CPU.

Figure 5.1a shows the initial state of an example task set in which Task 1 has three CPUs,

Task 2 has two CPUs, and Task 3 has 5 CPUs. At some point during execution, however, (as

shown in Figure 5.1c) Task 1 notifies the Task Scheduler that it must adapt, and the Task

Scheduler runs Algorithm 5 to determine how many CPUs each task should have after the

transition. It is determined that Task 1 should gain a CPU at the expense of Task 3, as is
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shown in Figure 5.1b. Running Algorithm 5 is Θ(n ∗m+m log n), and (re)assigning CPUs

to tasks is Θ(n2).

5.4.2 Concurrency and Synchronization

As with any parallel system, concurrency and synchronization are essential. This subsection

describes the mechanisms we use to prevent data races and deadlock when each task has not

only active threads but also potentially passive threads that are on CPUs currently assigned

to other tasks, and transitions in which sole active possession of a CPU is transferred from

one task to another.

Shared Memory

We use Linux shared memory to store all information about task scheduling, including each

task’s current period, computational workload, and processors with active or passive threads.

Each task’s data can only be modified by the task itself (e.g., if a task must now run at a

certain rate) and by the Task Scheduler, although tasks can read each other’s scheduling data

if they must. Furthermore, tasks can only write to their own region if the Task Scheduler is

currently polling for whether it needs to reschedule, while a re-schedule is occurring. (The

task modifying its own data is what ultimately triggers a reschedule in the Task Scheduler.)

This therefore ensures that a task and Task Scheduler never attempt to modify the same

memory location at the same time.

POSIX RT Signals

We use POSIX RT Signals for event notification between processes. Unlike standard POSIX

signals which are ignored if the task is in the signal handler, RT Signals queue, which
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(a) System before reschedule

(b) System during reschedule

(c) System after reschedule

Figure 5.1: Transition of CPUs
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guarantees the signal handler is entered each time the signal is received, and no reschedule or

adaptation is missed.

Whenever a task has finished modifying its own shared memory region a POSIX RT signal is

sent to the Task Scheduler to notify it that a reschedule should occur. Similarly, whenever

the Task Scheduler has finished creating the new schedule and assigning processors to tasks,

it sends a different POSIX RT signal to each task (in parallel) to notify each task that it

needs to read the shared memory region and potentially transition to a new set of CPUs.

Thread Barrier

As mentioned earlier, each task hasmi active threads at any given time, but alsom(max)
practicali

−mi

passive threads asleep on other processors. Because we are using OpenMP (OMP) for

parallelism, each thread, whether active or passive, must participate in each #pragma omp

parallel region and is immediately and automatically awoken by OpenMP at the beginning

of each iteration. We resolve this issue by implementing a modified version of the parallel

barrier introduced previously [35]. The first thing each OMP thread does during a parallel

region is reach this barrier. If the thread is designated as active by the task, then the task

may proceed past the barrier. However, if the thread is designated as passive, the thread

immediately goes back to sleep. The active threads then do the necessary parallel work, and

reach the barrier again at the end of the parallel region. The last active thread to reach the

barrier then wakes up any sleeping passive threads which race through the already completed

parallel work and to the barrier. Just as all threads must enter the parallel region, no thread

can leave the #pragma omp parallel region until all threads are ready to leave. Therefore,

both the barrier and waking up passive tasks are unavoidable. To minimize the amount

of time spent in the barrier, each passive thread is given a higher real-time priority than

each active thread so that a passive thread can immediately waken, pass through the barrier,
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and go back to sleep. The amount of time that each active thread can be interrupted is

determined by the number of passive threads sleeping on each task and their task periods.

An active thread will be interrupted at the beginning and end of each of the passive task’s

iterations. This is a very small overhead each time, however (10− 20µ sec).

5.4.3 Ensuring a Safe Transition

To ensure no task misses a deadline due to giving up a processor, transitions of CPUs must

occur between iterations of a task. At the end of each iteration, a task checks to see whether

rescheduling has occurred. If so, it attempts to transition to its new set of CPUs. If the

task loses CPUs, it marks all active threads on them as passive and makes those threads

sleep. This task can now begin its next iteration with fewer CPUs and its updated period

or computational workload, depending on the nature of that task’s elasticity. Tasks gaining

CPUs, however, cannot take possession of their new CPUs until the prior task has given it

up, since under federated scheduling entire CPUs are dedicated to a single task. Therefore,

if all of its gained CPUs are not ready, it keeps its prior set of CPUs and begins another

iteration under its prior workload or period. The amount of time it takes an individual

CPU to transition from its old owner to its new owner is therefore bounded by at most one

iteration of its previous owner’s period and one iteration of its new owner’s period (both

before the transition).

5.5 Evaluation

This section evaluates the run-time system discussed in Section 5.4. We begin by measuring

overheads to gauge the efficiency of our system. We also use Kernelshark to observe the
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adaptation, which shows it to be working as expected. We then also use this runtime system

to show the equivalence between period-elastic and computationally-elastic tasks.

All experiments used OpenMP parallel programs written in C/C++ and compiled with GCC

4.8.2. They were run on a 32-core machine with four Intel Xeon E5-4620 processors running

at a constant 2.20014 GHz with hyper-threading disabled. The RTOS is x86-64 Linux kernel

version 4.1.7 with the RT-PREEMPT patch.

Figure 5.2: Signal Overhead Distribution
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Figure 5.3: Transition Overhead Distribution
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5.5.1 Overheads and Efficiency

We begin by examining the overheads of scheduling, migration, and communication mecha-

nisms used in the runtime system.

We use POSIX RT signals to notify tasks of events. Figure 5.2 shows the distribution of the

measured latency to deliver a POSIX RT signal. This experiment involved two tasks, a signal

sender, and a signal receiver. The signal sender’s only job was to send signals to the signal

receiver. It notes the current time, sends a signal, sleeps for 250µsec and then sends another

signal. The signal receiver is constantly doing busy work but is repeatedly interrupted by the

signal handler. Inside the signal handler, the receiver notes the current time and returns to

its busy work. This is repeated 10,000 times. The values shown in Figure 5.2 are obtained by

subtracting the time recorded in the signal sender before sending the signal from the time

recorded in the signal handler by the signal receiver. We note a minimum reaction time of

11.23µsec and a maximum of 110.03µsec with over 1/3 falling in the range [18.0, 19.0)µsec.

Figure 5.3 shows a distribution of the overhead associated with changing a task’s real-time

priority and migrating it to another processor, as must be done in the worst-case when a

passive thread must change its priority and migrate to another CPU to run. This experiment

consisted of a task randomly selecting a real-time priority (from 1 to 98), randomly selecting

a processor (from 0 to 31) then taking note of the current time, changing its real-time priority,

migrating to its new processor, and taking note of the time again. This happened 10,000

times. The times are noted in Figure 5.3. The minimum observed time was 2.67µsec (it is

likely that the randomly selected CPU was the one on which the task was already running

and therefore no migration was necessary–note this also happens in our system when a task

obtaining a CPU already has a passive thread sleeping on the CPU it will be gaining), and

the maximum observed time was 76.77µsec.
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5.5.2 Adaptation of a Taskset

We randomly generated several task sets in a similar fashion to prior work [35, 47]. Each

task had a 50% chance of being computationally-elastic vs. period-elastic. Each task had a

maximum ratio of span to minimum period of pmax = 1
2(2+

√
2)
. The actual span to period

ratio is first generated as a percentage of pmax: 40%, 50%, 70%, or 100% with probability

0.4, 0.3, 0.2, or 0.1, respectively. Once this ratio has been determined, an actual span value

is computed by repeatedly generating segments of work from a log normal distribution

with mean of 5ms until the sum reaches the chosen percentage of one second. Each time

a segment’s length is chosen, it also generates a number of strands (how many times each

segment must be run) from a log normal distribution with a mean of 1 +
√
m/3. The sum of

the length of each strand times its number of segments becomes the work for period-elastic

tasks. For computationally-elastic tasks, two numbers of strands are generated for each

segment. The lower is added to the minimum work, and the higher is added to the maximum

work. For computationally-elastic tasks a period is generated uniformly between a minimum

of 50ms and a maximum of 1s. For period-elastic tasks two periods are generated and the

higher value becomes the maximum period and the lower value becomes the minimum period.

Each task’s elasticity value was randomly generated over the interval (0.0, 1.0]. If at any

time a task does not have a minimum of at least 2 CPUs and a maximum of at least 3 CPUs,

the task is discarded and another task is generated.

We generated hundreds of task sets, and Algorithm 5 found a suitable schedule for each. For

each task set we randomly selected one task that would set its period or workload (depending

on the elastic nature of the task) to a randomly selected value between its minimum and

maximum. All other tasks would adapt and reschedule accordingly. No deadlines were ever
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missed, indicating that the transition system described in Section 5.4 indeed provides a safe

and efficient reassignment of CPUs from one task to another.

Kernelshark was used to verify that tasks were behaving as they were supposed to, and after

a mode change each CPU each transfer happened exactly as described in the previous section:

the task giving up a CPU did so at the end of an iteration, and the task receiving the CPU

would begin using it at the beginning of the following iteration. Furthermore, we saw regular

periodic behavior at exactly the period expected of each task.

5.5.3 Functional Equivalence of Period–Elastic and

Computationally–Elastic Tasks

To assess equivalence of period-elastic and computationally-elastic tasks we performed the

following experiments: First, two identical task sets were generated with the exception of one

task in each task set. In one task set the designated task is period-elastic, and in the other task

set it is computationally-elastic. These two tasks are functionally equivalent in that they have

the same elasticity and minimum and maximum utilization. All other tasks were generated

as described in the previous subsection. We adapted the period-elastic task to run at the

constant period of the computationally-elastic task. Likewise the computationally-elastic task

adapted to run the constant workload of the period-elastic task. As expected the remaining

tasks in each task set adapted in the same way, regardless of the designated task’s elastic

nature.

We show the results of four such experiments below. The period and work values before and

after adaptation are shown in the charts above. For task set 1 we also plot each task in terms

of its current work and period both before and after a reschedule. In the graph on the left

the computationally-elastic task (triangle) and period-elastic task (square) are at different
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Work (ms) Period (ms) Work (ms) Period (ms)
Task 1 2428.63 354.63 2428.63 321.71

Task 2 4283.11 914.57 3000.00 914.57

Task 3 3665.64 328.50 3665.64 328.50

Task 4 3302.41 879.40 3302.41 879.40

Table 5.1: Experiment 1 Taskset 1
Work (ms) Period (ms) Work (ms) Period (ms)

Task 1 2428.63 354.63 2428.63 321.71

Task 2 3000.00 637.53 3000.00 914.57

Task 3 3665.64 328.50 3665.64 328.50

Task 4 3302.41 879.40 3302.41 879.40

Table 5.2: Experiment 1 Taskset 2
Work (ms) Period (ms) Work (ms) Period (ms)

Task 1 2347.18 499.56 2347.18 499.56

Task 2 3975.46 643.08 4304.06 643.08

Task 3 2966.58 404.81 2000.00 404.81

Task 4 4215.17 557.39 4215.17 474.26

Table 5.3: Experiment 2 Taskset 1
Work (ms) Period (ms) Work (ms) Period (ms)

Task 1 2347.18 499.56 2347.18 499.56

Task 2 3975.46 643.08 4304.06 643.08

Task 3 2000.00 276.45 2000.00 404.81

Task 4 4215.17 557.39 4215.17 474.26

Table 5.4: Experiment 2 Taskset 2
Work (ms) Period (ms) Work (ms) Period (ms)

Task 1 5964.79 673.92 5964.79 673.92

Task 2 2895.20 354.18 2895.20 385.55

Task 3 4935.78 619.04 5000.00 619.04

Table 5.5: Experiment 3 Taskset 1
Work (ms) Period (ms) Work (ms) Period (ms)

Task 1 5964.79 673.92 5964.79 673.92

Task 2 2895.20 354.18 2895.20 385.55

Task 3 5000.00 675.65 5000.00 619.04

Table 5.6: Experiment 3 Taskset 2

locations before the transition, but in the graph on the right, they have adapted to the star

location.
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Work (ms) Period (ms) Work (ms) Period (ms)
Task 1 2509.48 330.80 1750.00 330.80
Task 2 4525.07 501.44 4525.07 439.54
Task 3 3668.63 386.00 3668.63 386.00

Table 5.7: Experiment 4 Taskset 1
Work (ms) Period (ms) Work (ms) Period (ms)

Task 1 1750.00 241.11 1750.00 330.80
Task 2 4525.07 501.44 4525.07 439.54
Task 3 3668.63 386.00 3668.63 386.00

Table 5.8: Experiment 4 Taskset 2

Experiment 1 Before Reschedule Experiment 1 After Reschedule

Experiment 2 Before Reschedule Experiment 2 After Reschedule
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Experiment 3 Before Reschedule Experiment 3 After Reschedule

Experiment 4 Before Reschedule Experiment 4 After Reschedule
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5.6 Summary

This chapter has extended the state of the art in elastic scheduling by introducing the concept

of computational elasticity. We show that computational elasticity is functionally equivalent

to period elasticity, as both can be encapsulated as utilization elasticity. We then modify

existing scheduling algorithms for period-elastic tasks to include computationally-elastic tasks.

We validated the equivalence of period and computational elasticity using a runtime system

we built for elastic parallel real-time systems.
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Chapter 6

Discrete Elastic Scheduling

This chapter introduces a new discrete model of elastic tasks in which each task potentially has

multiple discrete potential "modes of operation," each with a corresponding period and worst-

case execution time (WCET). The discrete nature of these tasks allows for tasks to exploit

both computational and period elasticity simultaneously, which is yet unachievable4 under

the continuous elastic model. Although this task model is compatible with both parallel and

sequential tasks, we again focus on the parallel case using the federated scheduling paradigm.

We then adapt the runtime system presented in the previous chapter to schedule discrete

elastic tasks rather than continuous ones and use it to run the first ever adaptive virtual

real-time simulation experiment, which we also discuss in detail.
4A key assumption of the continuous elastic task model is that each task’s processor utilization can

vary between a minimum and maximum value. When only one of period or WCET is allowed to adapt,
this corresponds to one-to-one mapping of utilization to period (or WCET). If both are allowed to change
simultaneous, there are infinitely many valid period and WCET values for a given utilization.

95



6.1 Introduction

The elastic task model , first introduced by Buttazzo et al. [7], allows for online modification

of task periods to maintain schedulability of adaptive period-elastic tasks without the

pessimism required for a static schedule accommodating the worst-case behavior of the most

utilization-intensive mode of operation. That model was later extended to include both

tasks with internal parallelism and tasks that instead can adapt their computational loads

(computational elasticity). [42, 43]

We provide a new elastic task model in this chapter that further expands the state of the

art by introducing discrete elastic scheduling in which each task’s assigned utilization

is obtained from a finite set of candidate tuples, each of which has an associated period

and workload. From one mode of operation to the next, a task may change its period, its

computational workload, or both . The discrete elastic model more accurately describes tasks

that have distinct modes of operation, such as a robot with multiple available planning

algorithms with varying degrees of computational demand, or a control application that

may get better results from running at a higher frequency but needs to maintain harmonic

rates with respect to other tasks in the system. Unlike the continuous elastic model, the

discrete model allows adaptation of both computational demand and period together, at once

(combined elasticity).

We use the real-world application domain of real-time hybrid simulation (RTHS), used

by earthquake engineers to understand structural behavior with high fidelity at realistic

time-scales [18, 20, 44], as a motivating example for discrete elastic scheduling. In RTHS a

well-understood portion of a structure is simulated while a portion to be tested or validated

is physically built. The combined structure is then connected via sensors and actuators and

subjected to external stimuli (such as earthquake ground motions) at fine-grained time scales
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in order to examine how the relevant portions behave. Different portions of the structure can

be simulated at different rates to yield resources to portions of special interest (e.g., those

near the physical specimen). However, to date, resources have been statically assigned in

RTHS experiments: each substructure runs at a fixed rate with a fixed set of computational

resources, and changes to the system can only be made between successive runs. We exploit

discrete elastic scheduling to conduct the first ever (virtual) real-time hybrid simulation

experiment in which resource adaptation enables adaptive switching between controllers with

different computational demands. In this experiment, the control algorithm that determines

the response to the system’s behavior is able to execute in multiple modes of operation, i.e.,

using a non-linear Kalman filter vs. a more computationally-expensive particle filter. Other

tasks in the system (which must run at rates harmonic with that of the control algorithm)

are similarly able to adapt their periods, computational loads, or both, accordingly.

This chapter is structured as follows. Section 6.2 provides relevant background informa-

tion. Section 6.3 presents the discrete elastic scheduling system model, including a

discussion of the implications of combined elasticity, which allows for tasks to adapt both

computational workload and period. In Section 6.3 we also prove the scheduling of parallel

tasks using this model under the federated scheduling paradigm to be (weakly) NP-hard

via a reduction from the Knapsack Problem. We then present a pseudo-polynomial time

dynamic-programming algorithm (obtained by reducing our scheduling problem to an instance

of the Multiple Choice Knapsack Problem) that can efficiently create an optimal schedule

for such tasks. Section 6.4 describes our adaptive virtual RTHS experiment. Section 6.5

evaluates the level of pessimism when using discrete elastic scheduling vs. idealized (but often

practically unsuitable) continuous elastic scheduling. Section 6.6 summarizes the chapter and

describes future directions for extending this work.
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Although this chapter focuses on the discrete elastic scheduling of parallel real-time tasks

under federated scheduling, we point out that many of the concepts introduced here are also

applicable to sequential tasks as is discussed in Footnote 5 in Section 6.3; hence, our proposed

model should be considered an extension of the elastic task models for sequential and parallel

workloads.

6.2 Background

In this chapter we present the novel concept of discrete elastic scheduling, focusing on discretely

elastic parallel real-time tasks under the federated scheduling paradigm. This section provides

background information about the example application domain that motivates our approach

and is used to evaluate it: real-time hybrid simulation (RTHS).

6.2.1 Elastic Scheduling

As was discussed extensively in earlier chapters of this dissertation, in the continuous parallel

period-elastic task model, each task is formally represented as τi =
〈
Ci, Li, T

(max)
i , T

(min)
i , Ei

〉
where Ci represents the task’s constant worst-case execution time (WCET) on a single

processor, Li is the WCET on an infinite number of processors, and the closed range

[T
(min)
i , T

(max)
i ] spans all acceptable period values for a task, where a lower period (and

therefore higher utilization) is always preferred. The current period is denoted Ti. A task’s

elasticity coefficient Ei is a measure of how relatively easy or difficult it is to change a task’s

period.

The federated scheduling paradigm was first introduced by Li et al. [36] to schedule

sporadic parallel tasks represented as directed acyclic graphs (DAGs), each with a

utilization Ui ≥ 1 that demands more than a single processor. These high-utilization
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tasks are each given exclusive use of mi processors according to the equation

mi =

⌈
Ci − Li
Ti − Li

⌉
(6.1)

while low-utilization tasks are scheduled sequentially.

This dissertation extended the elastic task model to include parallel real-time DAG tasks

under federated scheduling. To keep parallel elastic scheduling as semantically equivalent to

Buttazzo’s original model as possible, we presented an optimal scheduling algorithm that

directly solves a minimization problem similar to that given in Equation 5.1:

minimize
n∑
i=1

1

Ei
(U

(max)
i − Ui)2 (6.2)

such that:

U
(min)
i ≤ Ui ≤ U

(max)
i for all τi

and
n∑
i=1

mi ≤ m

Each task is initially given its minimum number of processors, and the remaining CPUs are

allocated in a manner that minimizes the sum in Equation 6.2.

Noting that task utilization is dependent on both computational load and period, this allows

for tasks to have a range of acceptable utilizations [U (min)
i ,U (max)

i ] that can be either a

range of acceptable periods [T
(min)
i , T

(max)
i ] as in Buttazzo’s model or a range of acceptable

computational loads [C
(min)
i , C

(max)
i ]. Tasks that adapt their periods are called period-elastic

tasks, while tasks that adapt their workloads are computationally-elastic tasks. This

chapter further extends that elastic task model, (1) allowing for the more realistic scenario of

discrete candidate utilization values instead of continuous ranges; and in doing so also (2)
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allowing for combined-elastic tasks to adapt both their periods and computational loads

at once.

6.2.2 Motivating Application Domain

Although the adaptive capabilities and discrete workloads enabled by discrete elastic schedul-

ing are relevant to a variety of real-time applications, we focus here on real-time hybrid

simulation (RTHS), which is used by structural engineers to study the dynamic behavior of

a structural specimen under loading that potentially results in unknown and highly nonlinear

behavior. Traditionally, a new structural concept or a new vibration mitigation device was

validated in one of two ways: a physical structure was built and subjected to tests, or a

numerical model was tested via computer simulations. However, building physical structures,

even if not at full scale, and subjecting them to full physical tests, though robust, can be

prohibitively expensive in terms of money and time. On the other hand, running computer

simulations such as finite element models is less expensive but may not fully capture nuances

of a physical structure: for instance, accurate numerical models may not exist for some types

of damage that a physical structure could sustain.

Hybrid simulation combines the strengths of purely physical and purely numerical ap-

proaches. A portion of a structure is physically built to be studied, while the remainder is

simulated numerically. The complete structure (composed of both physical and simulated

components) is then dynamically subjected to external loads (such as earthquake ground

motions) during experimentation, resulting in a feedback control system with numerical

models that must be executed on-line. The physical components are driven by actuators, and

their displacement, velocity, and acceleration are measured by sensors and input back into

the computational subsystem. The resulting computation in turn determines the forces the

actuators should apply to the physical substructure in the next time step.
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Hybrid simulation is often done at rates that are too slow to evaluate the dynamic performance

of rate-dependent structural systems. This can be remedied by running the system at fine-

grained time scales with real-time requirements, as a real-time hybrid simulation (RTHS) [18,

20]. A widely-used platform for RTHS is MathWorks’s Speedgoat/XPC Target that runs in

coordination with real-time Simulink. However, such a system is neither parallel nor adaptive,

which limits the kinds of experiments that it can run.

The potential for extensive damage to equipment, test specimens, or even people as a result of

unintended actuation in the case of an unstable control algorithm necessitates that before full

RTHS experimentation can be done safely, as much validation of the proper system setup as

possible must be performed. One such validation that always precedes a RTHS is a virtual

RTHS in which the physical component of RTHS is replaced by a simulation, often on an

entirely different machine and using the same interface as the physical component. Although

the simulated “physical component” in virtual RTHS cannot fully capture the dynamics of

the actual physical specimen under examination in full RTHS (indeed the partially unknown

dynamics of the physical specimen may be the very reason for running the RTHS experiment),

a virtual RTHS can effectively validate control algorithms and numerical models that will be

used in RTHS experiments. As such, in this chapter we present an adaptive virtual RTHS

using discrete elastic scheduling in Section 6.4) as a crucial first step towards adaptive RTHS.

Multi-time-stepping (MTS) decomposes an RTHS into subsystems (with individual tasks)

and runs each task at its own harmonic periodic rate, where for any two subsystems, the

periodic rate of one has a time-step ratio of x times that of the other. Data is exchanged

at each iteration of the slower of the tasks to ensure subsystems have a consistent view

of the overall system. Multi-time-stepping allows for more precise control over individual

subsystems’ periods (e.g., one subsystem runs relatively quickly in order to read a vital

physical sensor more frequently or another subsystem runs more slowly in order to process
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more simulation data in each period) than if the entire system were running at a single

periodic rate. However, multi-time-stepping alone does not allow for fine-grained control over

tasks’ computational loads. Nor does it allow for run-time re-allocation of resources (e.g.,

which would allow for a subsystem’s runtime behavior to change with its workload) [6].

The Cybermech platform was developed by Ferry et al. [18] to run parallel RTHS experiments

via federated scheduling. Although Cybermech supports multi-time-stepping, each subsystem

only runs at a fixed periodic rate [6], and thus is only applicable to systems whose control

model is linear. Similarly, recent work [46] has formulated algorithms and heuristics for

the non-preemptive multi-processor scheduling of RTHS systems (with multi-time stepping)

based on Functional Mocked-up Interface (FMI) diagrams using integer linear programs. This

system aso uses static resources.

In contrast, the discrete elastic scheduling approach introduced in this chapter allows for

dynamic re-allocation of individual subsystems’ periodic rates and/or computational resources

to accommodate linear and potentially non-linear behavior which can occur with new,

experimental energy-damping devices. We demonstrate such adaptive resource management

capabilities and use them to enable adaptive switching between controllers with differing

computational demands for the first time in a virtual RTHS as is described in Section 6.4.

6.3 Discrete Elastic Scheduling

In this section we present the discrete elastic task model for parallel real-time systems. We

then discuss implications of the combined-elastic adaptations enabled by this model. We also

prove that scheduling of discrete elastic tasks under federated scheduling is NP-Hard in the

weak sense, and provide a pseudo-polynomial time algorithm for scheduling such tasks. 5

5In this chapter we focus on scheduling high-utilization tasks (Ui ≥ 1) via federated scheduling, although
low-utilization tasks (Ui < 1) can be scheduled sequentially on a uniprocessor in a fashion similar to that
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6.3.1 Task Model

Similar to the continuous elastic task model, in the discrete elastic task model, each task τi

has elasticity coefficient Ei and the assigned utilization Ui of each task can range between

U
(min)
i and U

(max)
i . However, in the discrete model, rather than allowing any utilization

within the continuous range [U (min)
i , U (max)

i ], each parallel task τi has exactly ki discrete

modes of operation. Each mode of operation j(1 ≤ j ≤ ki) for each task has a specific period

(and implicit deadline) T (j)
i , work C(j)

i , and span L(j)
i . The candidate utilizations for the task

come from the period and work in each of these modes of operation U (j)
i = C

(j)
i /T

(j)
i , and

U
(min)
i and U (max)

i are the lowest and highest such utilizations, respectively. In period-elastic

tasks, all modes have the same work and span values (i.e., ∀x, y; 1 ≤ x ≤ ki, 1 ≤ y ≤

ki;C
x
i = Cy

i , L
x
i = Lyi ). Similarly, all modes of operation in computationally-elastic tasks

have the same period (i.e., ∀x, y; 1 ≤ x ≤ ki, 1 ≤ y ≤ ki;T
x
i = T yi ). We use Equation 6.1

to determine m(j)
i , the number of processors required to schedule τi in mode j. 6

We seek to schedule n tasks on m processors by selecting a mode of operation j for each task

τi (1 ≤ j ≤ ki) while minimizing Equation 6.2. A pseudo-polynomial time algorithm for this

is presented in Section 6.3.4.

described in this section by focusing on keeping their aggregate system utilization of each selected tuple
below a desired utilization Ud rather than counting the number of processors that have been allocated. We
further restrict the task model to assume that no tasks can transition from low-utilization to high-utilization
(or vice-versa) when elastically re-scheduling. I.e., for each task τi (U (min)

i ≥ 1 and U
(max)
i ≥ 1) or

(U (min)
i < 1 and U (max)

i < 1). The scheduling of tasks whose utilization range spans both high and low
values is a more difficult problem that we leave for future work.

6We assume each task receives at least 1 dedicated CPU under federated scheduling.
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Uniqueness

On its face the discrete elastic task model presented in this chapter is similar to one used by

Kuo and Mok [32] to model adaptive real-time tasks decades ago. However, there are several

key differences.

Both models have a set of adaptive tasks with candidate modes of operation. However,

whereas our model allows for arbitrary Ci and Ti combinations between modes of operation,

the model presented by Kuo and Mok scales task periods and workloads under a constant

utilization. For instance, τi = (Ci, Ti) may have candidate modes (2, 4), (2.5, 5), (3, 6) in [32]

where all modes necessarily have a utilization of 0.5. This is allowed in the discrete elastic

model presented here. However, a fourth candidate mode of (2, 5) with utilization 0.4, which

is also perfectly acceptable in our model, is not allowed in theirs.

Furthermore [32] seeks to assign periods in such as way as to maximize harmonic chains

and therefore maximize schedulability on a uniprocessor. The period-assignment problem

asks whether there is a period assignment such that the maximum harmonic base is at

least a certain value. This problem is proven to be strongly NP complete (i.e. no pseudo-

polynomial time algorithm exists unless P=NP). The problem considered in this chapter is

fundamentally different. This model does not (necessarily) care about harmonic chains and

uses a pseudo-polynomial time dynamic programming algorithm for period selection.

6.3.2 Discussion

The continuous elastic task model allows for tasks to adapt their periods or their workloads

to any value over a continuous range depending on the needs of the system. This is useful for

many kinds of tasks. Consider, for instance, an “anytime algorithm” [14] that can return a
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valid answer at any instant with the quality of the answer improving as the algorithm is allowed

to run longer. Such an algorithm can be modeled as a task with an elastic computational

requirement that may vary over a continuous range. However, not all algorithms are anytime

algorithms: for some tasks, meaningful results are only returned if the algorithm is allowed

to execute for certain specific durations. In a similar vein, periodic tasks that form part

of a control loop may need to execute at frequencies (and hence period values) that are

consistent with the remainder of the control loop (e.g., harmonic with respect to the base

system frequency), and cannot operate with arbitrary periods.

Therefore, the continuous elastic task model is not appropriate for some important kinds

of tasks. This becomes more apparent when one considers that on actual hardware, task

execution times are essentially discrete. Processors treat time not as a continuous interval but

as a discretized count of cycles. Therefore on a general-purpose CPU, no job can actually run

for an arbitrary amount of time, but instead executes for an integer number of CPU cycles.

Under the discrete elastic task model, each task τi has ki unique modes of operation, each of

which has an associated period and workload. Varying only a single dimension (i.e., changing

only the period or workload as in the continuous model) may allow for more appropriate

management of the selected attribute than the continuous elastic model. For instance, the

discrete elastic task model allows for the guaranteed selection of harmonic periods among

period-elastic tasks.

Perhaps an even greater benefit of the discrete elastic model is its ability to allow exploitation

of both period elasticity and computational elasticity. This combined elasticity increases

the range of potential modes of operation for a given task. Figures 6.1 − 6.4 demonstrate

the diversity of adaptations enabled by combined elasticity. Each of the four images shows

the same task exploiting different types of elasticity. The y-axis is the task’s computational
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Figure 6.1: Continuous Computationally-Elastic Task

Figure 6.2: Continuous Period-Elastic Task
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Figure 6.3: Discrete Combined-Elastic Task

Figure 6.4: Discrete Workloads and Harmonic Rates
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load (C), and the x-axis is its frequency (1/T ). Any point within the allowed region therefore

represents a potential work and period assignment for the task. Constant values U (min) and

U (max) are represented by dashed and dotted curves, respectively, so any valid assignment of

C and T must therefore fall between these two curves.

Figures 6.1 and 6.2 show the potential period and workload values of a computationally-elastic

task and a period-elastic task, respectively, under the continuous elastic task model. Although

there are an infinite number of acceptable period (or workload) values that keep the utilization

between U (min) and U (max), the range of adaptation for a single task is relatively narrow.

Contrast this with Figure 6.3, which demonstrates the potential period and workload values

of combined-elastic tasks enabled by the discrete elastic task model. Although there are

finitely many of modes of operation, adaptation is allowed in both computational and period

dimensions, allowing for a much broader adaptation space. Any point in the entire region

between the minimum and maximum utilization curves may be a candidate mode of operation.

Thirty such (randomly-chosen) points are plotted in Figure 6.3.

Which (and how many) candidate points are available is then a configurable application-

specific concern. Anytime tasks that can perform arbitrary amounts of work for arbitrary

time periods have an arbitrary number of possible period and workload candidates which can

be selected from anywhere between the minimum and maximum utilization curves (subject

to inherent discretization of work by the processor, etc.). System designers then can select as

many or as few potential modes of operation as appropriate.

In other cases, application constraints such as the need to run at harmonic rates or a fixed set

of computational completion points may restrict or even determine actual modes of operation.

Furthermore, in some applications, like real-time hybrid simulation (RTHS) for example,

adaptation of both period and computational workload may be useful since many of its
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sub-structures can adapt in either or both dimensions. Depending on the computational

resources available to it, an RTHS task may simulate a substructure in more or less detail

(thereby having different computational loads). It may similarly run its simulation at a faster

or slower harmonic rate (as constrained by inter-task data dependencies and by the rate of

the RTHS control feedback loop). Figure 6.4 shows a sample RTHS task with four potential

harmonic periods and four potential workloads. Note that as Figure 6.4 illustrates, not all

workloads can be run at all harmonic periods since the utilization may exceed the maximum

utilization curve as the workload increases and the period decreases.

Finally, we note that some loss of utilization may be incurred by discretization. For instance,

if the same period-elastic task were scheduled under both the continuous and discrete elastic

models, the continuous model may assign a task a feasible period that is between two discrete

candidate periods. To maintain schedulability, the task may need to be assigned the longer of

the two periods under the discrete model, thereby resulting in a lower utilization than under

the continuous model. However, we note that the smaller the gap between candidate periods

in the discrete model, the smaller the loss of such system utilization due to discretization

is. Anytime tasks can exploit this small loss of utilization by selecting many potential

modes of operation that are close together in both dimensions, to approximate continuous

elasticity while gaining the benefit of combined elasticity, at a (potentially acceptable) cost

of a longer-running scheduling algorithm (see Section 6.3.4). We discuss and study potential

utilization loss due to discretization further, in Section 6.5.

6.3.3 Proof of NP-Hardness

We now prove that the federated scheduling of parallel discrete elastic tasks is NP-hard, via a

reduction of an instance of the Knapsack Problem [29] to an instance of the Discrete Elastic

Scheduling Problem.
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Theorem 1. Discrete Elastic Scheduling is NP-hard.

Proof: Reduce knapsack to Discrete Elastic Scheduling.

An instance of knapsack is specified as follows:7

Iknapsack =
〈{

(si, vi
}n
i=1
, S, V

〉

where the objective is to fill a knapsack of capacity S with items chosen from a set of n items,

and item i (i = 1...n) has weight si and value vi, such that the weight of the selected items

sum to no more than the knapsack’s capacity S and their combined value is maximized, with

a total of at least the target value V .

Given such a specification, we construct an instance of the Elastic Scheduling problem with

n tasks, each of which has 2 modes of operation, to be scheduled on (n + S) processors.

All n tasks have the same period in all modes of operation, denoted x (i.e., all tasks are

computationally-elastic–we note that though all tasks in this construction are computationally-

elastic, the same algorithm also schedules period-elastic and combined-elastic tasks). We first

construct each task’s first mode of operation as follows: Assign C(1)
i = L

(1)
i = x for all i. As

a consequence these are all sequential zero-slack modes of operation, and m(1)
i = 1 (for all i).

For each i, define the second mode of operation as C(2)
i = x · (1 + si) and L(2)

i = 0. These are

“embarrassingly parallel” modes of operation. Note that we consequently have m(2)
i = (1 + si).

Let elastic coefficient Ei = s2
i /vi.

Note that choosing the second mode of the i’th task requires an additional si processors

(since the first mode requires 1 processor). Let Γ1 and Γ2, respectively, denote the tasks

for which the first mode and second mode, respectively, are selected. Recall that in Elastic
7All parameters are assumed to be rational numbers.
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Scheduling, we seek to minimize
∑

i
1
Ei

(
U

(max)
i − Ui

)2

. Therefore:

∑
i

1

Ei

(
U

(max)
i − Ui

)2

≡
∑
i

1

Ei

(C(2)
i

x
− Ui

)2

≡
∑
i

1

Ei

(x · (1 + si)

x
− Ui

)2

≡
∑
i∈Γ1

1

Ei

(
(1 + si)− Ui

)2

+
∑
i∈Γ2

1

Ei

(
(1 + si)− Ui

)2

≡
∑
i∈Γ1

1

Ei

(
(1 + si)− 1

)2

+
∑
i∈Γ2

1

Ei

(
(1 + si)− (1 + si)

)2

≡
∑
i∈Γ1

s2
i

Ei

≡
∑
i∈Γ1

vi

We thereby conclude that a solution to the Discrete Elastic Scheduling Problem in which the

function in Equation 6.2 takes on a value at most

(∑
i

vi

)
− V

exists if and only if Iknapsack ∈ knapsack.

6.3.4 Pseudo-Polynomial Time Scheduling Algorithm

Multiple-Choice Knapsack [48] is similar to Knapsack, but rather than selecting items

from a single set, there are multiple mutually-exclusive sets, and exactly one item must be

chosen from each set in such a way as to maximize profit and ensure a total weight below the
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Algorithm 6 Multiple Choice Knapsack Elastic Scheduling (MCKES)
1: MCKES[0][l]←∞
2: MCKES[d][0]←∞
3: for d← 1...m do
4: for l← 1...n do
5: MIN ←∞
6: for j ← 1...kl do
7: if d−m(j)

l ≥ 0 then
8: if l == 1 and

1
El

(U
(max)
l − U (j)

l )2 < MIN then

9: MIN ← 1
El

(U
(max)
l − U (j)

l )2

10: else if MCKES[d−m(j)
l ][l − 1]+

1
El

(U
(max)
l − U (j)

l )2 < MIN then

11: MIN ←MCKES[d−m(j)
l ][l − 1]+

1
El

(U
(max)
l − U (j)

l )2

12: end if
13: end if
14: end for
15: MCKES[d][l] min(MIN ,MCKES[d− 1][l])
16: end for
17: end for
18: return MCKES[m][n]
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knapsack’s capacity. We now provide a pseudo-polynomial time algorithm for Discrete Elastic

Scheduling by reducing an instance of it to an instance of Multiple-Choice Knapsack.

A pseudo-polynomial time algorithm. We define the following reduction from Discrete

Elastic Scheduling to Multiple-Choice Knapsack: each of the n tasks with ki modes

of operation becomes one of n mutually exclusive sets with ki distinct items. Each task

in Discrete Elastic Scheduling needs a mode to be selected, and each set from Multiple-

Choice Knapsack needs one item to be selected. Task τi operating in mode j becomes an

item in the corresponding set with profit 1
Ei

(
U

(max)
i − U j

i

)2

and weight m(j)
i . The knapsack

has capacity m. By giving each item weight m(j)
i , we ensure that if they fit in a knapsack

of capacity m, then the corresponding tasks in the selected modes are schedulable on m

processors. Although traditional Multiple-Choice Knapsack seeks to maximize the value

of selected items, we instead attempt to minimize the value in Equation 6.2, which is exactly

the profit assigned to each item. We thus use a min() function in place of a max() function

that would otherwise be used, which has no bearing on the correctness or complexity of the

algorithm.

We note that by successfully selecting one item from each mutually-exclusive set for the

knapsack while keeping their combined weight within the knapsack’s capacity m, we also

select a mode of operation for each task on at most m processors. We therefore have a valid

parameterization of the Discrete Elastic Scheduling instance.

A pseudo-polynomial dynamic programming algorithm presented in [30] finds an optimal

solution to Multiple-Choice Knapsack by considering the maximum value achievable

when considering the first l mutually exclusive sets and reduced knapsack capacity d, in our

case, 1 ≤ l ≤ n and 1 ≤ d ≤ m. We reproduce a slightly modified version of this algorithm
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in Algorithm 6: rather than finding the maximum “value” of items in a knapsack, we seek to

minimize
∑n

i=1
1
Ei

(U
(max)
i − Ui)2.

In Algorithm 6 we build a two-dimensional table MCKES where MCKES[d][l] gives the

optimal solution after considering the first l tasks on d processors. We begin by assigning a

score of infinity (since we are minimizing) to both the impossible case of scheduling l tasks

on 0 processors (Line 1) and the trivial case of scheduling 0 task on d processors (Line 2).

The for loop beginning on Line 3 considers scheduling tasks on d CPUs. The inner for loop

beginning on Line 4 similarly considers the first l tasks on the d processors available. While

iterating we assign each task a mode of operation, with the goal of minimizing the objective

function in Equation 6.2. Hence we assign the MIN score of each task an initial score of

infinity (Line 5) and consider each mode j of operation in turn (Lines 6-14). Line 7 makes

sure there are enough unallocated processors to select mode j. If not, we disregard mode j.

Otherwise, we consider whether selecting mode j decreases the current minimum (Line 10).

If so, the new minimum value is stored (Line 11). In the special case that l == 1 (this is the

first task scheduled), the MIN score simply becomes 1
El

(U
(max)
l − U (j)

l )2 (Lines 8-9). After

considering all potential modes of operation, we assign MCKES[d][l] the minimum of MIN

and MCKES[d− 1][l] (Line 15). The final optimal value is found at MCKES[m][n]. One can

keep track of which mode is selected at each iteration for task τl, and the set of modes that

give the value in MCKES[m][n] are then assigned to the their respective tasks.

Runtime complexity. Algorithm 6 has worst-case running time Θ(m×N), where N =∑n
i=1 ki, as there are m CPUs to allocate (for loop beginning on Line 3) and N modes of

operation selected for each value of m (for loops beginning on Line 4 and on Line 6).

A note about sequential tasks. As alluded to in Footnote 5 in Section 6.3, Algorithm 6

can be applied to the scheduling of sequential elastic tasks on a uniprocessor by: (1) assigning
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each item associated with a candidate mode of operation, a weight equal to the corresponding

utilization; and (2) assigning the knapsack a capacity equal to the desired system utilization

Ud.

6.4 Adaptive Virtual Real-Time Hybrid Simulation Ex-

periment

To evaluate our discrete elastic scheduling approach and to validate its usefulness in a

real-world application, in this section we present a virtual RTHS experiment that (1) has

tasks with various discrete work and period values in different modes of operation, (2) can

exploit our discrete elastic scheduling approach at run-time to improve experiment accuracy

by switching adaptively between modes of operation, and (3) can handle constraints like

harmonic rates and discrete workloads effectively. To our knowledge, this is the first time even

a virtual RTHS that can adapt its period and/or computational load has been conducted.

This simple experiment is meant as a proof of concept that discrete elastic scheduling and

the adaptations thereby enabled are beneficial to real-world applications (namely RTHS).

Therefore, we start with a less complicated setup than would be involved with validating a

new structural component. This virtual RTHS is a tracking problem, meaning we send a

displacement signal to a moving non-linear spring (henceforth referred to as the plant), and

we attempt to make the plant follow the displacement given in the input signal as closely as

possible.

The details of our experiment are shown in Figure 6.5. The input into the system is a

recording of the displacement of a physical specimen that has been excited by forces taken

from the El Centro earthquake. This is sent to an inverse compensator, which enhances
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Figure 6.5: Virtual RTHS Details

tracking performance by reducing/smoothing small residual time delays introduced by the

control algorithm. The controller itself uses a modified robust integrated actuator control

(RIAC) strategy [44], which uses H-infinity optimization [24] to provide a trade-off between

performance and robustness. The H-infinity controller uses the smoothed desired displacement

passed to it from the inverse compensator and an estimate of the plant’s current location to

determine a command displacement to send to the plant. This estimate is the output of either

a Kalman filter or a particle filter (depending on which mode of operation the task is in),

both of which provide an estimate of the plant’s current displacement based on noisy data

(the last known measured displacement of the plant and the last commanded displacement).

Each of these is calculated once per iteration and both inform the behavior of the system

in the next iteration. It is assumed that when the desired displacement exceeds a certain

threshold (i.e., when the plant is too far from its origin), the plant’s behavior becomes more

difficult to predict. Therefore, the more computationally-expensive particle filter is used then,

while the Kalman filter is used otherwise.

All of the above components except the plant (which is simulated on an xPC target machine8)

are run within a single task on Linux with the RT-PREEMPT patch. The relative simplicity

of this experiment means that multiple tasks are not needed to accomplish the main goal of

this virtual RTHS experiment. To gauge our approach more fully however, for scenarios where
8MathWorks’s Speedgoat/XPC Target runs in coordination with real-time Simulink. It is a widely-used

platform for a variety of cyber-physical systems, including RTHS.
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there may be different substructures of a building to simulate (at potentially different rates or

detail levels) within a realistic structural validation, we generate additional synthetic discrete

elastic tasks to run alongside the vRTHS task, as there would be in a more complex virtual

RTHS. These tasks adapt with respect to the virtual RTHS task whenever it changes from

using the Kalman filter to the particle filter (or vice versa). Similar to a structural validation

RTHS experimentation with multi-time stepping, we constrain each synthetic task to run at

a rate that is harmonic with the 2048Hz rate needed by the virtual RTHS. Some of these new

tasks are period-elastic, some are computationally elastic, and some are combined-elastic.

To perform this experiment, we extended the parallel (continuous) elastic concurrency platform

from [42], which is available as open-source [45]. The underlying system calls, concurrency

mechanisms, and synchronization techniques remain unchanged, but we replaced the original

scheduling algorithm with Algorithm 6. All tasks were run on a 16 core machine with

two Intel E5-2687W processors running at a constant 3092.616 MHz with Hyperthreading

disabled. The RTOS used was x86-64 Linux with the RT-PREEMPT patch, and all programs

were written in C++ and compiled with GNU G++ 5.2.0.

Figures 6.6 and 6.7 show the results of our adaptive virtual RTHS experiment. The solid line

shows the curve of the desired plant displacement, while the dotted line shows the estimated

displacement output from the particle filter or the Kalman filter. The horizontal lines mark

the mode-change criterion. For any desired displacement between the lines, the estimator

uses the Kalman filter. The system switches modes and uses the particle filter when the

plant’s desired displacement is too far from its origin, i.e., outside the lines.

Looking at Figure 6.6, the two curves appear nearly indistinguishable. However, when we

zoom in on the peaks in Figure 6.7, the difference becomes visible.
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Figure 6.6: vRTHS Desired vs. Predicted Displacement

Figure 6.7: A Closer Look at Desired vs. Predicted Displacement
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Figure 6.8: System Overview during Kalman Filter Execution

Figure 6.9: System Overview during Particle Filter Execution
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As mentioned before, we ran synthetic tasks with the virtual RTHS task that adapted with its

mode change, similar to how more elaborate RTHS experiments would do. Figures 6.8 and

6.9 show the workload and period of each task in the system during operation of the Kalman

filter and particle filter, respectively. Note that the virtual RTHS task and Synthetic Task 3

adapt their workloads; Synthetic Task 1 adapts its period, and Synthetic Task 2 adapts both

its period and workload. Also note that there are only 3 period values used–2048Hz≈ 488µ

sec, 1024Hz≈ 977µ sec, and 512Hz≈ 1952µ sec. This is because the estimator must run at

a constant 2048Hz and substructure tasks in more complicated RTHS experiments must

run at harmonic rates with respect to the main feedback control loop. A normalized root

mean squared error (nRMSE) of approximately 0.5% is considered acceptable in the RTHS

community. The nRMSE between the estimated and desired displacement shown in Figure

6.6 is 0.267%. Therefore, the virtual RTHS not only successfully transitions modes, but it

also performs well.

6.5 Effects of Taskset Discretization

In this section we look at the effect that discretization of tasks’ periods and workloads has on

schedulability of example task sets through loss of system-wide processor utilization from the

continuous version. We begin by randomly generating 10, 000 continuous parallel elastic tasks

in the manner described in [42]. Each task is either period-elastic or computationally-elastic,

and we schedule these continuous tasks according to the optimal algorithm provided in [42,

43], noting the overall system utilization and objective function value. We then create four

discretized task sets from each continuous one by assigning a discretization delta of 0.05, 0.1,

0.2, and 0.5, to each task, meaning we discretize each task in such a way that in the new

task sets, there is a candidate utilization every 5%, 10%, 20%, and 50% of the way between

U (min) and U (max), plus the endpoints. For example, a period-elastic task with an T (min) = 0
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and T (max) = 100 would be discretized to have candidate period values of 0, 20, 40, 60, 80,

and 100 for ∆ = 0.2, and it would have candidate period values of 0, 10, 20, 30, 40, 50, 60,

70, 80, 90, and 100 for for ∆ = 0.1, etc. We then schedule each of these 40, 000 generated

discrete elastic tasks using Algorithm 6, again noting the system utilization and objective

function value.

Figures 6.10 through 6.13 show representative results. Figure 6.13 shows the average

(and standard deviation of the) system utilization for each level of discretization. Without

exception, each discretized task set had a higher (worse) objective function value from

Equation 6.2 than the continuous task set from which it was derived. Typically, the objective

function value increased with the discretization delta, too, as in the examples shown in Figure

6.10 and Figure 6.12. The single exception in 10,000 task sets is depicted in Figure 6.12. In

this case the optimal solution for the task set obtained from ∆ = 0.1 occurs when each task

selects the utilization value obtained from the 50th percentile. This is exactly the subset of

candidate utilizations used to obtain the task set derived from ∆ = 0.5 and so also gives the

optimal solution for that task set (a subset of the former). However, none of those selected

periods are in the task set derived from ∆ = 0.2 (a different subset of the former). Therefore,

the objective function’s value when ∆ = 0.2 is necessarily higher. This trend of a (typically)

worsening objective function value with an increase of discretization is thus expected. We

note that objective function values cannot be compared directly between task sets as they

are dependent on tasks’ elastic coefficients and maximum utilizations.

For the majority of task sets, system utilization also decreased as a task set became more

discretized, as in Figure 6.10. However, because we make scheduling decisions based on the

objective function (weighted task utilization) rather than on system utilization, there are

cases when making an inferior objective function decision increases task set utilization: this
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Figure 6.10: Taskset 1 Utilization and Objective Value

Figure 6.11: Taskset 2 Utilization and Objective Value

122



Figure 6.12: Taskset 3 Utilization and Objective Value

Figure 6.13: Average Utilization (10K Tasksets)
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occurred in approximately 18% of task sets (consider Figure 6.12 where ∆ = 0.1 gives a

higher system utilization than even the continuous version of the task set).
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6.6 Summary

In this chapter, we have presented a new elastic task model with discrete sets of possible

utilizations for each task. This model allows each task to modify its workload and/or its

period when changing modes of operation, instead of adapting in only one of those dimensions.

This in turn allows a wider range of parallel real-time tasks to exploit elastic scheduling

techniques, and also offers a greater diversity of potential adaptations of each task, over a

larger region of potential periods and workloads. It is also better aligned with task execution

times on realistic hardware.

We have shown how this model can support new real-time hybrid simulations with discretely

computationally-elastic, period-elastic, and combined-elastic parallel real-time tasks under

the federated scheduling paradigm, via a pseudo-polynomial time scheduling algorithm. We

used this scheduling algorithm to implement, for the first time, adaptive resource management

to enable adaptive switching between controllers with different computational demands in a

virtual real-time hybrid simulation (vRTHS), and examined the effects of scheduling tasks

having discretized vs. continuous candidate utilizations in terms of both system utilization

and objective function value.

The results presented in this chapter motivate further expansion of this research as future

work. Of particular interest is to extend both discrete and continuous elastic scheduling

models, and the parallel real-time concurrency platforms that support them, to allow tasks

to adapt between low-utilization (Ui < 1) and high-utilization (Ui ≥ 1) modes of operation.
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Chapter 7

Conclusion

As real-time systems increasingly utilize both inter-task parallelism and intra-task parallelism,

increasingly complex systems may arise. This in turn implies an increased need for adaptive

systems that can be modeled as elastic tasks. In this dissertation we have presented several

extensions to the elastic task model in order to successfully represent and schedule these

tasks on multi-core systems.

Specifically, we expanded the elastic task model from previously only considering sequential

tasks on a single processor to now considering both sequential and parallel tasks on multicore

systems. We also expanded the concept of task elasticity to not only allow tasks to change

their periods (period elasticity), but also to allow some tasks to change their computational

loads (computational elasticity), instead. We also allow for sets of tuples with discrete

(potentially unique) period and workload combinations rather than merely continuous ranges

of acceptable periods (or workloads). This discrete model is perhaps representative of a larger

set of real-world adaptive tasks than a continuous model. It allows for combined elasticity in
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which tasks can simultaneously adapt their periods and workloads. It also does not force

tasks to accept potentially restrictive arbitrary periods or workloads over a range.

In this dissertation we also developed a runtime system for parallel real-time elastic tasks.

We then used the system to demonstrate functional equivalence (in terms of scheduling)

of continuous period-elastic and computationally-elastic tasks. We also used it to run the

first ever adaptive virtual real-time hybrid simulation experiment via the discrete elastic

task model. This experiment in turn demonstrated the feasibility of the discrete elastic task

model.

7.1 Future Directions

As adaptive real-time systems continue to utilize multiple cores, the work in this dissertation

will hopefully lay a foundation for different forms of adaptation. Some preliminary work has

already been done by Gill et al. to bring the elastic task model to multi-core mixed-criticality

systems [21]. Bringing the algorithms discussed in this dissertation into the operating system

kernel or hardware could further increase the types of applications to which this work is

relevant by introducing speedups of potentially orders of magnitude. Using other objective

functions may be of particular interest in real-time cloud computing where computational

demands may vary rapidly and economic factors must be considered.

Elastic scheduling using other parallel scheduling algorithms such as global EDF may be worth

exploring. Of particular interest are improvements on federated scheduling, semi-federated

scheduling [26] (in which a DAG’s structure must be fully known) and reservation-based

federated scheduling [49] (which does not require the DAG’s structure).
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A mechanism that allows for hybrid-elastic tasks to transition during runtime from low-

utilization to high-utilization (or vice versa) is still needed. It is also worth exploring whether

it is possible to achieve combined utilization with the continuous elastic task model, as are

ways to allow task sets consisting of both continuous elastic tasks and discrete elastic tasks,

and potentially, to decide among alternative selections of periods and workloads that have

equivalent utilizations.

128



References

[1] P. Antsaklis and J. Baillieul. “Guest Editorial Special Issue on Networked Control
Systems.” In: IEEE Transactions on Automatic Control 49.9 (Sept. 2004), pp. 1421–
1423. doi: 10.1109/TAC.2004.835210.

[2] Sanjoy Baruah. “Optimal utilization bounds for the fixed-priority scheduling of periodic
task systems on identical multiprocessors.” In: IEEE Transactions on Computers 53.6
(2004).

[3] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leem Stougie, and
Andreas Wiese. “A generalized parallel task model for recurrent real-time processes.”
In: Proceedings of the IEEE Real-Time Systems Symposium. RTSS 2012. San Juan,
Puerto Rico, 2012, pp. 63–72.

[4] Sanjoy Baruah, Neil Cohen, Greg Plaxton, and Don Varvel. “Proportionate progress: A
Notion of Fairness in Resource Allocation.” In: Algorithmica 15.6 (June 1996), pp. 600–
625.

[5] A. Bastoni, B. Brandenburg, and J. Anderson. “An Empirical Comparison of Global,
Partitioned, and Clustered Multiprocessor Real-Time Schedulers.” In: Proceedings of
the Real-Time Systems Symposium. San Diego, CA: IEEE Computer Society Press,
2010, pp. 14–24.

[6] Gregory B Bunting. “Parallel Real-Time Hybrid Simulation of structures using multi-
scale models.” PhD thesis. Purdue University, 2016.

[7] Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. “Elastic Task Model for Adaptive
Rate Control.” In: IEEE Real-Time Systems Symposium (RTSS). 1998.

[8] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. “Elastic
Scheduling for Flexible Workload Management.” In: IEEE Trans. Comput. 51.3 (Mar.
2002), pp. 289–302. doi: 10.1109/12.990127.

[9] Giorgio Buttazzo, Enrico Bini, and Darren Buttle. “Rate-Adaptive Tasks: Model,
Analysis, and Design Issuess.” In: Proceedings of DATE 2014: Design, Automation and
Test in Europe. Mar. 2014.

129

https://doi.org/10.1109/TAC.2004.835210
https://doi.org/10.1109/12.990127


[10] M. Caccamo, G. Buttazzo, and Lui Sha. “Elastic feedback control.” In: Proceedings 12th
Euromicro Conference on Real-Time Systems. Euromicro RTS 2000. 2000, pp. 121–128.
doi: 10.1109/EMRTS.2000.853999.

[11] John Carpenter, Shelby Funk, Phil Holman, Anand Srinivasan, Jim Anderson, and
Sanjoy Baruah. “A Categorization of Real-time Multiprocessor Scheduling Problems
and Algorithms.” In: Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Ed. by Joseph Y.-T Leung. CRC, 2003.

[12] T. Chantem, X. S. Hu, and M. D. Lemmon. “Generalized Elastic Scheduling.” In: 2006
27th IEEE International Real-Time Systems Symposium (RTSS’06). 2006, pp. 236–245.

[13] T. Chantem, X. Hu, and M. Lemmon. “Generalized Elastic Scheduling for Real-Time
Tasks.” In: IEEE Transactions on Computers 58.4 (Apr. 2009), pp. 480–495. doi:
10.1109/TC.2008.175.

[14] Thomas Dean and Mark Boddy. “An Analysis of Time-dependent Planning.” In: Pro-
ceedings of the Seventh AAAI National Conference on Artificial Intelligence. AAAI’88.
Saint Paul, Minnesota: AAAI Press, 1988, pp. 49–54.

[15] S. K. Dhall and C. L. Liu. “On a Real-Time Scheduling Problem.” In: Operations
Research 26 (1978), pp. 127–140.

[16] Sudarshan Dhall. “Scheduling Periodic Time-Critical Jobs on Single Processor and
Multiprocessor Systems.” PhD thesis. Department of Computer Science, The University
of Illinois at Urbana-Champaign, 1977.

[17] P Emberson, R Stafford, and R.I. Davis. “Techniques For The Synthesis Of Multipro-
cessor Tasksets.” In: WATERS’10 (Jan. 2010).

[18] D. Ferry, G. Bunting, A. Maqhareh, A. Prakash, S. Dyke, K. Aqrawal, C. Gill, and C.
Lu. “Real-time system support for hybrid structural simulation.” In: 2014 International
Conference on Embedded Software (EMSOFT). Oct. 2014, pp. 1–10. doi: 10.1145/
2656045.2656067.

[19] David Ferry, Jing Li, Mahesh Mahadevan, Kunal Agrawal, Christopher Gill, and
Chenyang Lu. “A Real-time Scheduling Service for Parallel Tasks.” In: Proceedings of
the 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS). RTAS ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 261–272.
doi: 10.1109/RTAS.2013.6531098.

[20] David Ferry, Amin Maghareh, Gregory Bunting, Arun Prakash, Kunal Agrawal, Chris
Gill, Chenyang Lu, and Shirley Dyke. “On the performance of a highly parallelizable
concurrency platform for real-time hybrid simulation.” In: The Sixth World Conference
on Structural Control and Monitoring. 2014.

[21] C. Gill, J. Orr, and S. Harris. “Supporting Graceful Degradation through Elasticity
in Mixed-Criticality Federated Scheduling.” In: Proceedings of the 6th International
Workshop on Mixed Criticality Systems (WMC). Dec. 2018.

130

https://doi.org/10.1109/EMRTS.2000.853999
https://doi.org/10.1109/TC.2008.175
https://doi.org/10.1145/2656045.2656067
https://doi.org/10.1145/2656045.2656067
https://doi.org/10.1109/RTAS.2013.6531098


[22] Joel Goossens, Shelby Funk, and Sanjoy Baruah. “Priority-driven Scheduling of Periodic
Task Systems On Multiprocessors.” In: Real Time Systems 25.2–3 (2003), pp. 187–205.

[23] R. Graham. “Bounds on multiprocessor timing anomalies.” In: SIAM Journal on Applied
Mathematics 17 (1969), pp. 416–429.

[24] J. William Helton. “Orbit structure of the Mobius transformation semigroup action on
H-infinity (broadband matching).” In: Adv. Math. Suppl. Stud. 1978, pp. 129–198.

[25] W. Horn. “Some simple scheduling algorithms.” In: Naval Research Logistics Quarterly
21 (1974), pp. 177–185.

[26] X. Jiang, N. Guan, X. Long, and W. Yi. “Semi-Federated Scheduling of Parallel Real-
Time Tasks on Multiprocessors.” In: 2017 IEEE Real-Time Systems Symposium (RTSS).
Dec. 2017, pp. 80–91. doi: 10.1109/RTSS.2017.00015.

[27] D. S. Johnson. “Near-optimal Bin Packing Algorithms.” PhD thesis. Department of
Mathematics, Massachusetts Institute of Technology, 1973.

[28] David Johnson. “Fast algorithms for bin packing.” In: Journal of Computer and Systems
Science 8.3 (1974), pp. 272–314.

[29] R. Karp. “Reducibility Among Combinatorial Problems.” In: Complexity of Computer
Computations. Ed. by R. Miller and J. Thatcher. New York: Plenum Press, 1972,
pp. 85–103.

[30] Hans Kellerer, Ulrich Pferschy, and David Pisinger. “The Multiple-Choice Knapsack
Problem.” In: Knapsack Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 317–347. doi: 10.1007/978-3-540-24777-7{\_}11.

[31] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. “Parallel scheduling for cyber-
physical systems: analysis and case study on a self-driving car.” In: 2013 ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS). Apr. 2013, pp. 31–40.

[32] Tei-Wei Kuo and Aloysius K. Mok. “Load Adjustment in Adaptive Real-Time Systems.”
In: Proceedings of the IEEE Real-Time Systems Symposium. 1991, pp. 160–171.

[33] Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, A. Easwaran, Insik Shin, and Insup
Lee. “MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on Multiprocessors.”
In: Real-Time Systems Symposium (RTSS), 2014 IEEE. Dec. 2014, pp. 41–52.

[34] J. Li, K. Agrawal, C. Lu, and C. Gill. “Outstanding Paper Award: Analysis of Global
EDF for Parallel Tasks.” In: 2013 25th Euromicro Conference on Real-Time Systems.
July 2013, pp. 3–13. doi: 10.1109/ECRTS.2013.12.

[35] Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill, and Chenyang Lu.
“Mixed-Criticality Federated Scheduling for Parallel Real-Time Tasks.” In: Proceedings
of the 22nd IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). Apr. 2016.

131

https://doi.org/10.1109/RTSS.2017.00015
https://doi.org/10.1007/978-3-540-24777-7{\_}11
https://doi.org/10.1109/ECRTS.2013.12


[36] Jing Li, Abusayeed Saifullah, Kunal Agrawal, Christopher Gill, and Chenyang Lu.
“Analysis Of Federated And Global Scheduling For Parallel Real-Time Tasks.” In:
Proceedings of the 2012 26th Euromicro Conference on Real-Time Systems. ECRTS ’14.
Madrid (Spain): IEEE Computer Society Press, 2014.

[37] C. Liu and J. Layland. “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment.” In: Journal of the ACM 20.1 (1973), pp. 46–61.

[38] J. M. Lopez, J. L. Diaz, and D. F. Garcia. “Utilization Bounds for EDF Scheduling on
Real-Time Multiprocessor Systems.” In: Real-Time Systems: The International Journal
of Time-Critical Computing 28.1 (2004), pp. 39–68.

[39] Chenyang Lu, John Stankovic, Tarek Abdelzaher, G. Tao, Sang Son, and M. Marley.
“Performance Specifications and Metrics for Adaptive Real-Time Systems.” In: Pro-
ceedings of the Real-Time Systems Symposium. Orlando, FL: IEEE Computer Society
Press, Nov. 2000, pp. 13–23.

[40] R McNaughton. “Scheduling with Deadlines and Loss Functions.” In: Management
Science 6 (1959), pp. 1–12.

[41] J. Orr and S. Baruah. “Multiprocessor Scheduling of Elastic Task.” In: Proceedings of
the 27th International Conference on Real-Time Networks and Systems, RTNS 2019.
ACM Press, 2019.

[42] J. Orr, C. Gill, K. Agrawal, S. Baruah, C. Cianfarani, P. Ang, and C. Wong. “Elasticity
of workloads and periods of parallel real-time tasks.” In: Proceedings of the 26th
International Conference on Real-Time Networks and Systems, RTNS 2018. ACM
Press, 2018.

[43] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah. “Elastic scheduling for parallel
real-time systems.” In: Leibniz Transactions on Embedded Systems 6.1 (2019), 5:01–
5:14.

[44] Ge Ou, Ali Irmak Ozdagli, Shirley J. Dyke, and Bin Wu. “Robust integrated actuator
control: experimental verification and real-time hybrid-simulation implementation.” In:
Earthquake Engineering & Structural Dynamics 44.3 (), pp. 441–460. doi: 10.1002/eqe.
2479. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.2479.

[45] Real-Time Scheduling of Parallel Tasks: Theory and Practice.

[46] Salah Eddine Saidi. “Automatic Parallelization and Scheduling Approches for Co-
simulation of Numerical Models on Multi-core Processors.” Theses. Université Sorbonne,
Apr. 2018.

[47] A Saifullah, K. Agrawal, Chenyang Lu, and C. Gill. “Multi-core Real-Time Scheduling
for Generalized Parallel Task Models.” In: Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd. Nov. 2011, pp. 217–226.

[48] P Sinha and A. A. Zoltners. “The Multiple Choice Knapsack Problem.” In: Operations
Research 27 (1979), pp. 503–515.

132

https://doi.org/10.1002/eqe.2479
https://doi.org/10.1002/eqe.2479
https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.2479


[49] N. Ueter, G. von der Brüggen, J. Chen, J. Li, and K. Agrawal. “Reservation-Based
Federated Scheduling for Parallel Real-Time Tasks.” In: 2018 IEEE Real-Time Systems
Symposium (RTSS). Dec. 2018, pp. 482–494. doi: 10.1109/RTSS.2018.00061.

[50] J. Ullman. “NP-complete scheduling problems.” In: Journal of Computer and System
Sciences 10.3 (1975), pp. 384–393.

133

https://doi.org/10.1109/RTSS.2018.00061

	Period and Computational Elasticity for Adaptive Real-Time Systems
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 Problem Statement and Context
	1.2 Contributions
	1.3 Organization

	Chapter 2: Background
	2.1 The Elastic Task Model
	2.2 Federated Scheduling and Parallel Real-Time Tasks Model
	2.3 Multi-core Scheduling of Sequential Tasks

	Chapter 3: Scheduling of Parallel Elastic Tasks
	3.1 Parallel Elastic Task Model
	3.2 A first attempt at elastic scheduling of parallel tasks
	3.2.1 Discussion

	3.3 More resource-efficient scheduling
	3.3.1 Proof of Optimality

	3.4 Summary

	Chapter 4: Multiprocessor Scheduling of Sequential Elastic Tasks
	4.1 Introduction
	4.2 Task Model and Assumptions
	4.3 Global Scheduling
	4.3.1 Fluid Scheduling
	4.3.2 Global EDF 
	4.3.3 Algorithm PriD

	4.4 Partitioned Scheduling
	4.5 Simulation Experiments
	4.5.1 Experimental Setup
	4.5.2 Observations
	4.5.3 Some Conclusions

	4.6 Summary

	Chapter 5: Computational Elasticity
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Elastic Scheduling
	5.2.2 Federated Scheduling
	5.2.3 Parallel Real-time Elastic Scheduling

	5.3 Computational Elasticity
	5.3.1 Computationally-Elastic Task Model
	5.3.2 Scheduling of Low-Utilization Computationally-Elastic Tasks
	5.3.3 Scheduling of High-Utilization Computationally-Elastic Tasks

	5.4 Concurrency Platform Support
	5.4.1 Task Scheduler and Scheduling Mechanisms
	5.4.2 Concurrency and Synchronization
	5.4.3 Ensuring a Safe Transition

	5.5 Evaluation
	5.5.1 Overheads and Efficiency
	5.5.2 Adaptation of a Taskset
	5.5.3 Functional Equivalence of Period–Elastic and Computationally–Elastic Tasks

	5.6 Summary

	Chapter 6: Discrete Elastic Scheduling
	6.1 Introduction
	6.2 Background
	6.2.1 Elastic Scheduling
	6.2.2 Motivating Application Domain

	6.3 Discrete Elastic Scheduling
	6.3.1 Task Model
	6.3.2 Discussion
	6.3.3 Proof of NP-Hardness
	6.3.4 Pseudo-Polynomial Time Scheduling Algorithm

	6.4 Adaptive Virtual Real-Time Hybrid Simulation Experiment
	6.5 Effects of Taskset Discretization
	6.6 Summary

	Chapter 7: Conclusion
	7.1 Future Directions

	References

