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ABSTRACT OF THE DISSERTATION

Automating Active Learning for Gaussian Processes

by

Luiz Gustavo Sant Anna Malkomes Muniz

Doctor of Philosophy in Computer Science

Washington University in St. Louis, August 2019

Research Advisor: Professor Roman Garnett

In many problems in science, technology, and engineering, unlabeled data is abundant but

acquiring labeled observations is expensive – it requires a human annotator, a costly laboratory

experiment, or a time-consuming computer simulation. Active learning is a machine learning

paradigm designed to minimize the cost of obtaining labeled data by carefully selecting which

new data should be gathered next. However, excessive machine learning expertise is often

required to effectively apply these techniques in their current form. In this dissertation, we

propose solutions that further automate active learning. Our core contributions are active

learning algorithms that are easy for non-experts to use but that deliver results competitive

with or better than human-expert solutions.

We begin introducing a novel active search algorithm that automatically and dynamically

balances exploration against exploitation—without relying on a parameter to control this

tradeoff. We also provide a theoretical investigation on the hardness of this problem, proving

that no polynomial-time policy can achieve a constant factor approximation ratio for the

expected utility of the optimal policy.
x



Next, we introduce a novel information-theoretic approach for active model selection. Our

method is based on maximizing the mutual information between the output variable and

the model class. This is the first active-model-selection approach that does not require

updating each model for every candidate point. As a result, we successfully developed an

automated audiometry test for rapid screening of noise-induced hearing loss, a widespread

and preventable disability, if diagnosed early.

We proceed by introducing a novel model selection algorithm for fixed-size datasets, called

Bayesian optimization for model selection (boms). Our proposed model search method is

based on Bayesian optimization in model space, where we reason about the model evidence

as a function to be maximized. boms is capable of finding a model that explains the dataset

well without any human assistance.

Finally, we extend boms to active learning, creating a fully automatic active learning

framework. We apply this framework to Bayesian optimization, creating a sample-efficient

automated system for black-box optimization. Crucially, we account for the uncertainty in

the choice of model; our method uses multiple and carefully-selected models to represent its

current belief about the latent objective function.

Our algorithms are completely general and can be extended to any class of probabilistic

models. In this dissertation, however, we mainly use the powerful class of Gaussian process

models to perform inference. Extensive experimental evidence is provided to demonstrate

that all proposed algorithms outperform previously developed solutions to these problems.
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Chapter 1

Introduction

Countless problems in science, technology, and engineering require decision-making. Scientists

design experiments to investigate various phenomena, engineers decide how to optimize an

industrial process, pharmaceutical researchers select new drugs for testing, etc. In these

problems, many factors impact the quality of a decision and reasoning about all possible factors,

interaction, and side-effects can be very difficult for individuals. As a further complication,

poor decision-making can be expensive, leading to the waste of physical resources and time.

One alternative is to use machine learning to improve or assist human decision-making. In

particular, we focus on a class of machine learning algorithms known as active learning [74]. In

active learning, we assume that unlabeled data is abundant, but labeling data is expensive—it

requires a human annotator, a costly laboratory experiment, or a time-consuming computer

simulation. Thus, the goal is to minimize the cost of obtaining labeled data by carefully

selecting which new data should be gathered next. Figure 1.1 shows an illustration of a

typical active learning pipeline. We begin with a small set of observed data D = {(xi, yi)}.

Then, we use the current data to train a machine learning model. The model is used first

to analyze a larger set of unlabeled data and then to recommend which next point x ∈ X

1



D

observed data

p(y | x,D)
machine learning model

X

unlabeled data

f(x)

oracle

train analyse recommend

incorporate newly observed data

Figure 1.1: An illustration of the active learning loop. It starts with a small set of data
D. Then, an appropriate machine learning model is trained and used for explaining all
current observations in D. The model is later used to analyze the remaining options in X
and recommend which next decision x ∈ X we should investigate next. We repeat the whole
process, adding the newly observed data to D.

should be submitted to the expensive labeling (or oracle) function. We repeat these steps

after including the new (potentially noisy) observation to our dataset.

Despite the success of (active) machine learning, current techniques still require a considerable

amount of problem-specific expertise, making it difficult to be used in different problems or

by non-expert users. Consider, for example, the critical problem of which machine learning

model we should use for a given dataset. Even in the machine-learning community, this

model-selection problem is considered a “black art” [13]. Typically, non-experts are limited to

selecting (often blindly) models from off-the-shelf solutions. In this dissertation, we investigate

solutions to automate both active and supervised machine learning. Our core contributions

are active learning algorithms that are easy for non-experts to use, but that deliver results

competitive with or better than human-expert solutions.

We begin with an investigation on active search, a learning paradigm for actively identifying

as many members of a given class as possible under a labeling budget. We provide a

theoretical hardness result for a particular mathematical formulation of active search, proving

that no polynomial-time policy can achieve a constant factor approximation ratio for the

expected utility of the optimal policy. After understanding the limitations of this problem,

2



we propose a novel computationally efficient active search strategy that approximates the

optimal policy. Our algorithm is nonmyopic, i.e., always considering the entire remaining

search budget. It automatically and dynamically balances exploration and exploitation

consistent with the remaining budget—without relying on a parameter to control this tradeoff.

Extensive experimental results demonstrate that our approach achieves an exceptional

empirical performance on several real-world tasks.

Then we introduce a novel information-theoretic approach for active model selection. In

this active-learning problem, we seek to gather new data to quickly identify which model —

from a predefined, finite list of models — best describes the observed data. Our method is

based on maximizing the mutual information between the output variable and the model

class. Crucially, we develop an analytical approximation of this criterion for Gaussian process

(gp) models with arbitrary observation likelihoods, enabling active structure learning for

gps. This is the first active-model-selection approach that does not require updating each

model for every candidate point. As a result, in the experiments presented here, our approach

expends seconds per iteration, whereas previous techniques would take hours to finish a

single iteration. We apply this framework to active structure discovery, an active model

selection problem for regression, and to rapid screening for noise-induced hearing loss (nihl),

a widespread and preventable disability, if diagnosed early.

We proceed in studying automated model selection—specifically, we propose a sophisticated

method for automatically searching for an appropriate model given an infinite (or very large)

space of potential choices. In contrast with active model selection, here we assume that we

have already collected all data we can afford, and the goal is to find the best model to account

for the gathered data. Our solution is based on Bayesian optimization in model space, where

we reason about model evidence as a function to be maximized. We explicitly reason about

3



the data distribution and how it induces similarity between the model choices in terms of

the explanations they can offer for observed data. In this light, we construct a novel kernel

between models to explain a given dataset. Our method is capable of finding a model that

explains the dataset well without any human assistance, often with fewer computations of

model evidence than previous approaches, a claim we demonstrate empirically.

Our last contribution is an automated framework for active learning that can efficiently search

for appropriate models in the data-acquisition regime. The key observation is that intelligent

sampling policies for active learning benefit from improvements to the data representation.

Searching for suitable models is thus critical to the success of active learning, especially when

obtaining data is expensive. We apply this general automated active learning pipeline to

Bayesian optimization, creating an automated Bayesian optimization method. Our approach

dynamically selects promising models for explaining the observed data using an ancillary

Bayesian optimization routine in the model space. Crucially, we account for the uncertainty

in the choice of model; our method is capable of using multiple models to represent its

current belief about the latent function and subsequently using this information for decision

making. We argue, and demonstrate empirically, that our approach automatically finds

suitable models, which ultimately results in more-efficient optimization.

1.1 Declaration of previous publications

All original work in this dissertation was the fruit of collaboration with other researchers, and

most contributions were previously published in jointly authored peer-reviewed publications.

The following outlines the original work presented here, with references to previous publications

and a description of my contribution to them.
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Chapter 2. Gaussian process and decision theory

This material is a review of fundamental concepts explored in the remaining of the dissertation.

Chapter 3. Active search

The work in this chapter has appeared in the following publication:

Jiang, S., Malkomes, G., Converse, G., Shofner, A., Moseley, B., Garnett, R. Efficient

nonmyopic active search. International Conference on Machine Learning (icml), 2017.

Garnett, Moseley, Jiang, and Malkomes conceived and extensively contributed to the the-

oretical analysis. Malkomes main contribution was to piece together the strategy that led

to the final hardness result. Malkomes also developed the demonstration of the nonmyopic

behavior of the policy. Jiang worked out all the technical details about pruning, implemented

the strategy, and carried out all experiments.

Chapter 4. Active Model Selection

The work in this chapter has appeared in the following publication:

Gardner, J., Malkomes, G., Garnett, R., Weinberger, K., Barbour, D., Cunningham, J.

Bayesian Active Model Selection with an Application to Automated Audiometry. Neural

Information Processing Systems (neurips), 2015

Garnett introduced the problem and conceived the idea of using mutual information to active

model selection. Malkomes worked out the details and developed the software implementation

for regression, and Gardner provided similar contributions to the classification setting.

Malkomes carried out the experiments for active structure discovery. Gardner conducted all

experiments related to audiometry tests.
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Chapter 5. Automated model selection

The work in this chapter has appeared in the following publication:

Malkomes, G., Schaff, C., Garnett, R. Bayesian optimization for automated model selection.

Neural Information Processing Systems (neurips), 2016

Malkomes and Garnett conceived the initial idea. Malkomes and Schaff worked out technical

details and equally contributed to software implementation. Initial experimentation and

results on predicting model evidence were conducted by Malkomes, and the experiments

on model search were mainly carried out by Schaff. Malkomes took the lead in writing the

manuscript. All authors provided critical feedback and contributed to the final version.

Chapter 6. Automated active learning

The work on this chapter has appeared in the following publication:

Malkomes, G. and Garnett, R. Automating Bayesian optimization with Bayesian optimiza-

tion. Neural Information Processing Systems (neurips), 2018

Malkomes conceived the idea and Garnett refined it with technical contributions. Manuscript,

software implementation, experimental designed and results were mainly developed by

Malkomes with valuable feedback from Garnett.
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Chapter 2

Gaussian process and decision theory

In this chapter, we briefly review the mathematical concepts that will be important for

understanding the key contributions of this dissertation. We begin by introducing the

Bayesian framework for model selection. Then, we review the important concepts related to

the main inference procedure used throughout this dissertation—Gaussian processes (gp).

We finish with a concise presentation of Bayesian decision theory.

2.1 Bayesian model comparison

Consider supervised learning problems defined on an input space X and an output space

Y. Suppose we are given a set of observations D = (X,y), where X represents the design

matrix of independent variables xi ∈ X and y the associated vector of dependent variables

yi = y(xi) ∈ Y. Given this training data, we wish to make predictions for a new input

location x∗ that we have not seen before. Ultimately, we want to use the finite training set to

construct a prediction distribution for all possible input values. Without making assumptions

7



about the data generation process, this is an ill-posed problem; all predictions agreeing with

the observed data would be equally likely [69].

Many methods have been proposed to solve supervised learning problems [69, 63, 61, 7, 30].

Here we appeal to the Bayesian approach. Suppose we have a collection of plausible models

{Mi}Mi=1 competing to account for the observed data. Each model captures a particular

set of assumptions about the data, which in turn may lead to different outcomes. Before

diving into the details of how we use these models to make prediction, we focus on the more

elemental question of how we compare different models. After all, we will eventually need to

know whether we trust our models’ predictions.

The answer we seek is simple: we use probabilistic inference. We begin with an initial belief

about the relative plausibility of the models, using probabilities to quantify uncertainty,

{p(Mi)}Mi=1. We also assume each modelMi provides its own belief about how data looks

like, if that model is true— p(D | Mi). When we observe a particular dataset D, we use

Bayes’ rule to update our beliefs about the plausibility of each model after observing the

actual dataset D [57]. Thus, the posterior probability of the models given the data is:

p(M | D) =
p(D | M)p(M)

p(D)
=

p(y | X,M)p(M)∑
i p(y | X,Mi)p(Mi)

, (2.1)

where p(M) represents the prior probability distribution over the models. The posterior

distribution above summarizes the uncertainty after observing the data; computational

challenges apart, this is a simple and elegant solution to model comparison.

In practice, computing p(D | M) may be quite difficult. Fix, for instance, a probabilistic

modelM. Interesting models have a set of unknown parameters (Θ) that can be adjusted to

better explain the data. Let θ be an element of this parameter space Θ. Our quantity of

8



interest is called model evidence:

p(D | M) = p(y | X,M) =

∫
p(y | X, θ,M)p(θ | M) dθ, (2.2)

and it represents the probability of having generating the observed data under the model,

marginalized over θ to account for all possible members of that model under a prior p(θ | M)

[56, 7]. The problem is: this is often an intractable integral! In the next section, we discuss

approximatons for computing this quantity for the class of Gaussian process models.

2.2 Guassian process models

Assume that our observations are generated via a latent function f : X → R with a known

observation model p(y | f), where fi = f(xi). A standard nonparametric Bayesian ap-

proach with such models is to place a Gaussian process (gp) prior distribution on f ,

p(f) = GP(f ;µ,K), where µ : X → R is a mean function and K : X 2 → R is a positive-

definite covariance function or kernel [69]. We condition on the observed data to form a

posterior distribution p(f | D), which is typically an updated Gaussian process (making

approximations if necessary). We make predictions at a new input x∗ via the predictive

distribution p(y∗ |x∗,D) =
∫
p(y∗ | f ∗,D)p(f ∗ |x∗,D) df ∗, where f ∗ = f(x∗).

The mean and kernel functions are parameterized by hyperparameters that we concatenate

into a vector θ. Different choices of these hyperparameters imply that the functions drawn

from the gp will have a particular frequency, amplitude, and other properties. Together, µ

and K define a model parametrized by the hyperparameters θ.
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Much attention is paid to learning these hyperparameters in a fixed model class, sometimes

under the unfortunate term “model selection.” Note, however, that the structural (not

hyperparameter) choices made in the mean function µ and covariance function K themselves

are typically done by selecting (often blindly!) from several off-the-shelf solutions (see, for

example, [12, 69]; though also see [13, 90]), and this choice has substantial bearing on the

resulting functions f we can model. In Chapter 5, we discuss model selection in more details;

for now, recall that we use model to refer to the structural, high-level modeling choice.

In what follows, we present three quantities that are not typically encountered in gp modeling

and inference: the hyperparameter posterior p(θ | D,M), the model evidence p(y | X,M),

and the predictive distribution p(y∗ | x∗,D,M), where we have marginalized over θ in

the latter two quantities. The most-common approaches to gp inference are maximum

likelihood–II (mle) or maximum a posteriori–II (map) estimation, where we maximize the

hyperparameter posterior [89, 69]:2

θ̂ = arg max
θ

log p(θ | D,M) = arg max
θ

log p(θ | M) + log(y | X, θ,M). (2.3)

Typically, predictive distributions and other desired quantities are then reported at the

mle/map hyperparameters, implicitly making the assumption that p(θ | D,M) ≈ δ(θ̂).

Although a computationally convenient choice, this does not account for uncertainty in the

hyperparameters, which can be nontrivial with small datasets [56]. Furthermore, accounting

correctly for model parameter uncertainty is crucial to model comparasion, where it naturally

introduces a model-complexity penalty. We discuss less-drastic approximations to these

quantities below.
2Using a noninformative prior p(θ | M) ∝ 1 in the case of maximum likelihood.

10



Approximating the model evidence and hyperparameter posterior

The model evidence p(y | X,M) and hyperparameter posterior distribution p(θ | D,M)

are in general intractable for gps, as there is no conjugate prior distribution p(θ | M)

available. Instead, we will use a Laplace approximation, where we make a second-order Taylor

expansion of log p(θ | D,M) around its mode θ̂ (2.3). The result is a multivariate Gaussian

approximation:

p(θ | D,M) ≈ N (θ; θ̂,Σ); Σ−1 = −∇2 log p(θ | D,M)
∣∣
θ=θ̂

. (2.4)

The Laplace approximation also results in an approximation to the model evidence:

log p(y | X,M) ≈ log p(y | X, θ̂,M) + log p(θ̂ | M)− 1
2

log det Σ−1 + d
2

log 2π, (2.5)

where d is the dimension of θ [67, 43]. The Laplace approximation to the model evidence

can be interpreted as rewarding explaining the data well while penalizing model complexity.

Note that the Bayesian information criterion (bic), commonly used for model selection, can

be seen as an approximation to the Laplace approximation [73, 63].

Approximating the predictive distribution

We next consider the predictive distribution:

p(y∗ | x∗,D,M) =

∫
p(y∗ | f ∗)

∫
p(f ∗ | x∗,D, θ,M)p(θ | D,M) dθ

︸ ︷︷ ︸
p(f∗|x∗,D,M)

df ∗. (2.6)
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The posterior p(f ∗ | x∗,D, θ,M) in (2.6) is typically a known Gaussian distribution, derived

analytically for Gaussian observation likelihoods or approximately using standard approximate

gp inference techniques [46, 60]. However, the integral over θ in (2.6) is intractible, even

with a Gaussian approximation to the hyperparameter posterior as in (2.4).

Garnett et al. [24] introduced a mechanism for approximately marginalizing gp hyperparam-

eters (called the mgp), which we will adopt here due to its strong empirical performance.

The mgp assumes that we have a Gaussian approximation to the hyperparameter posterior,

p(θ | D,M) ≈ N (θ; θ̂,Σ).3 We define the posterior predictive mean and variance functions as

µ∗(θ) = E[f ∗ | x∗,D, θ,M]; ν∗(θ) = Var[f ∗ | x∗,D, θ,M].

The mgp works by making an expansion of the predictive distribution around the posterior

mean hyperparameters θ̂. The nature of this expansion is chosen so as to match various

derivatives of the true predictive distribution; see [24] for details. The posterior distribution

of f ∗ is approximated by

p(f ∗ | x∗,D,M) ≈ N
(
f ∗;µ∗(θ̂), σ2

mgp

)
, (2.7)

where

σ2
mgp = 4

3
ν∗(θ̂) +

[
∇µ∗(θ̂)

]>
Σ
[
∇µ∗(θ̂)

]
+ 1

3ν∗(θ̂)

[
∇ν∗(θ̂)

]>
Σ
[
∇ν∗(θ̂)

]
. (2.8)

The mgp thus inflates the predictive variance from the the posterior mean hyperparameters

θ̂ by a term that is commensurate with the uncertainty in θ, measured by the posterior

covariance Σ, and the dependence of the latent predictive mean and variance on θ, measured

by the gradients ∇µ∗ and ∇ν∗. With the Gaussian approximation in (6.12), the integral in
3This is arbitrary and need not be the Laplace approximation in (2.4), so this is a slight abuse of notation.
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(2.6) now reduces to integrating the observation likelihood against a univariate Gaussian.

This integral is often analytic [69] and at worse requires one-dimensional quadrature.

2.3 Decision theory

“Decision theory is trivial, apart from computational details”. MacKay [56] (p. 451)

In previous sections, we discussed probabilistic inference, which the goal is to assign probabil-

ities to a lternative hypothesis in light of observations. Here we turn to a brief discussion of

decision theory that, when combined with probabilistic inference, allows us to make optimal

decisions in situations involving uncertainty [7].

We begin with a set of potential actions a ∈ A that we could make, and a description of

the world given by possible states s ∈ S. Then, we construct a utility function U(s, a) that

quantifies the benefit of taking action a when the world is in state s4. Bayesian decision

theory dictates that we should choose the action maximizing the expected utility:

arg max
a∈A

∫
U(s, a)P (s | a) ds;

and that is it. This concise recipe for Bayesian decision theory give us tools to make optimal

decision. In practice, however, we will see that there are many computational challenges

associated with this simple, yet powerful framework. Next chapter, we apply Bayesian decision

theory to active search, providing insights on how this framework works in practical settings.
4Similarly, one could also consider a loss function that summarizes how much you lose by taking action a

if the state of world is s. In this case, the goal is to minimize the expected loss, instead of maximizing the
expected utility. We follow the optimistic view, presuming that our decisions will lead to gains, not losses
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Chapter 3

Active search

In Chapter 1, we introduced active learning as a general sequential decision making problem

for obtaining expensive observations. Much of the active learning literature, howerver, has

focused on learning machine learning models with fewer training examples. Here, we consider

our first special and atypical realization of active learning: the active search problem [23].

In active search, we seek to sequentially inspect data so as to discover members of a rare,

desired class. The labels are not known a priori but can be revealed by querying a costly

labeling oracle. Our goal is to design a policy to sequentially query points to find as many

valuable points as possible under a labeling budget. Several real-world problems can be

naturally posed in terms of active search; drug discovery, fraud detection, and product

recommendation are a few examples. The crux of success for active search is the fundamental

dilemma between exploration and exploitation; whether to search for new regions of valuable

points (exploration) or take advantage of the currently most-promising regions (exploitation).

Previous work developed policies for active search by appealing to Bayesian decision theory

[22, 23]. Garnett et al. [23] derived the optimal policy in this framework with a natural

utility function. Not surprisingly, realizing this policy in the general case requires exponential
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computation. To overcome this intractability, the authors of that work proposed using myopic

lookahead policies in practice, which compute the optimal policy only up to a limited number

of steps into the future. This defines a family of policies ranging in complexity from completely

greedy one-step lookahead to the optimal policy, which looks ahead to the depletion of the

entire budget. The authors demonstrated improved performance on active search over the

greedy policy even when looking just two steps into the future. The main limitation of these

strategies is that they completely ignore what can happen beyond the chosen horizon, which

for typical problems is necessarily limited to ` ≤ 3, even with aggressive pruning.

The contributions of this chapter are two-fold. First, we prove that no polynomial time

policy for active search can have nontrivial approximation ratio with respect to the optimal

policy in terms of expected utility. This extends the result by Garnett et al. [23] that myopic

approximations to the optimal policy cannot approximate the optimal policy. The proof of

this theorem is constructive, creating a family of explicitly difficult active search instances

and showing that no polynomial time algorithm can perform well compared to the optimal

(exponential cost) policy on these.

Second, we introduce a novel nonmyopic policy for active search that considers not only the

potential immediate contribution of each unlabeled point but also its potential impact on

the remaining points that could be chosen afterwards. Our policy automatically balances

exploitation against exploration consistent with the labeling budget without requiring any

parameters controlling this tradeoff. We also develop an effective strategy for pruning

unlabeled points by bounding their potential impact on the search problem. We empirically

show that our method can prune over 92% of the unlabeled points on average for a family of real

drug-discovery datasets, achieving massive speedups and keeping the policy computationally

tractable, even on large datasets. We compare our method with several baselines by conducting
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experiments on numerous real datasets spanning several domains including citation networks,

materials science, and drug discovery. Our results thoroughly demonstrate that our policy

typically significantly outperforms previously proposed active search approaches.

3.1 Problem formulation

Suppose we are given a finite domain of elements X , {xi}. We know that there is a

rare subset R ⊂ X , the members of which are considered valuable, but their identities are

unknown a priori. We will call the elements of R targets or positive items. Assume that there

is an oracle that can determine whether a specified element x ∈ X is a target, producing the

binary output y , 1{x ∈ R}. The oracle, however, is assumed to be expensive and may only

be queried t times. We seek to design a policy to sequentially query elements to maximize

the number of targets found.

We will express our preference over different sets of observations D ,
{

(xi, yi)
}
through a

simple utility:

u(D) ,
∑

yi∈D yi, (3.1)

which simply counts the number of targets in D. Then, the problem is to sequentially

construct a set of t observed points D with the goal of maximizing u(D). Throughout this

work, we use a subscript to specify a set of observed data after i ≤ t queries, defining

Di ,
{

(xj, yj)
}i
j=1

.
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3.2 Bayesian optimal policy

Following previous work, we consider the active search problem in the standard Bayesian

framework. Assume we have a probabilistic classification model that provides the posterior

probability of a point x belonging to R, given observed data D: Pr(y = 1 | x,D). Recall that

we are allowed to perform t labeling queries, and suppose we are at some iteration i for i ≤ t;

having already observed i− 1 examples, Di−1. We wish to submit the ith item to the oracle.

Bayesian decision theory (§2.3) compels us to select the item that if we evaluate next

maximizes the expected utility of the final observed dataset:

x∗i = arg max
xi∈X\Di−1

E
[
u(Dt) | xi,Di−1

]
. (3.2)

In other words, we choose a point x∗i maximizing the expected number of targets found

at termination. Unfortunately, as we shall see later, computing E
[
u(Dt) | xi,Di−1

]
is

computationally impractical.

To better understand the optimal policy, consider the case i = t, so we already have t− 1

observations Dt−1 and there is only one more query left. The expected utility is

E
[
u(Dt) | xt,Dt−1

]
=
∑

yt
u(Dt) Pr(yt | xt,Dt−1) = u(Dt−1) + Pr(yt = 1 | xt,Dt−1). (3.3)

Note u(Dt−1) is a constant, since Dt−1 was already observed. Thus, when there is one query

remaining, the optimal decision is to greedily choose the remaining point with maximum

probability of being a target.
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When two or more queries are left, the optimal policy is not as trivial. The challenge is that

after the first choice, the probability model changes, affecting all future decisions. Below, we

show the expected utility for i = t− 1.

E
[
u(Dt) | xt−1,Dt−2

]
= u(Dt−2) + Pr(yt−1 = 1 | xt−1,Dt−2) +

Eyt−1

[
max
xt

Pr(yt = 1 | xt,Dt−1)
]
. (3.4)

This expression has an intuitive interpretation. First, we have the reward for the data already

observed, u(Dt−2). The second term is the expected reward contribution from the point xt−1

under consideration, Pr(yt−1 = 1 | xt−1,Dt−2). Finally, the last term is the expected future

reward, which is the expected reward to be gathered on the next step; from our previous

analysis, we know that this will be maximized by a greedy selection (3.3). These latter two

terms can be interpreted as encouraging exploitation and exploration, respectively, with the

optimal second-to-last query.

In general, we can compute expected utility (3.2) at time i ≤ t recursively as [23]:

E
[
u(Dt) | xi,Di−1

]
= u(Di−1) + Pr(yi = 1 | xi,Di−1)

︸ ︷︷ ︸
exploitation, < 1

+

Eyi
[
maxx′ E

[
u(Dt \ Di) | x′,Di

]]

︸ ︷︷ ︸
exploration, <t−i

. (3.5)

It is easy to show that the time complexity for computing Eq. (3.5) is O
(
(2n)`

)
, where

` = t− i+ 1 is the lookahead and n is the total number of unlabeled points.

This exponential running time complexity makes the Bayeisan optimal policy infeasible to

compute, even for small-scale applications. A typical workaround is to pretend there are only
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a few steps left in the search problem at each iteration, and sequentially apply a myopic

policy (e.g., (3.3) or (3.4)). We will refer to these policies as the one-step and two-step myopic

policies, respectively, and more generally to the `-step myopic policy, with ` < t− i+ 1.

Since these myopic approaches cannot plan more than ` steps ahead, they can underestimate

the potential benefit of exploration. In particular, the potential magnitude of the exploration

term in (3.5) depends linearly on the budget, whereas in an `-step myopic policy, the

magnitude of the equivalent term can go no higher than a fixed upper bound of `. In fact,

Garnett et al. [23] showed via an explicit construction that the expected performance of

the `-step policy can be arbitrarily worse than any m-step policy with ` < m, exploiting

this inability to “see past” the horizon. When following this suggestion, we must thus trade

off the potential benefits of nonmyopia and the rapidly increasing computational burden of

lookahead when choosing a policy.

3.3 Hardness of approximation

We extend the above hardness result to show that no polynomial-time active search policy

can be an approximation algorithm with respect to the optimal policy, in terms of expected

utility. In particular, under the assumption that algorithms only have access to a unit cost

conditional marginal probability Pr(y = 1 | x,D) for any x and D, where |D| is less than the

budget,5 then:

Theorem 1. No polynomial-time policy for active search can have expected utility within a

constant factor of the optimal policy.
5The optimal policy operates under these restrictions.
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We prove this theorem in the appendix. The main idea is to construct a class of instances

where a small “secret” set of elements encodes the locations of a large “treasure” of targets.

The probability of revealing the treasure is vanishingly small without discovering the secret

set; however, it is extremely unlikely to observe any information about this secret set with

polynomial-time effort.

Despite the negative result of Theorem 1, we may still search for policies that are empirically

effective on real problems. In the next section, we propose a novel alternative approximation

to the optimal policy (3.2) that is nonmyopic, computationally efficient, and shows impressive

empirical performance.

3.4 Efficient nonmyopic active search

We have seen above how to myopically approximate the Bayesian optimal policy using an

`-step-lookahead approximate policy (3.5). Such an approximation, however, effectively

assumes that the search procedure will terminate after the next ` evaluations, which does not

reward exploratory behavior that improves performance beyond that horizon. We propose to

continue to exactly compute the expected utility to some fixed horizon, but to approximate

the remainder of the search differently. We will approximate the expected utility from any

remaining portion of the search by assuming that any remaining points, {xi+1, xi+2, . . . , xt}, in

our budget will be selected simultaneously in one big batch. One rationale is if we assume that

after observing Di, the labels of all remaining unlabeled points are conditionally independent,

then this approximation recovers the Bayesian optimal policy exactly. By exploiting linearity

of expectation, it is easy to work out the optimal policy for selecting such a simultaneous

batch observation: we simply select the points with the highest probability of being valuable.
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The resulting approximation is

max
x′

E
[
u(Dt\Di) | x′,Di

]
≈∑′t−i Pr(y = 1 | x,Di), (3.6)

where the summation-with-prime symbol
∑′

k indicates that we only sum the largest k values.

Our proposed policy selects points by maximizing the approximate final expected utility

using:

E
[
u(Dt) | xi,Di−1

]
≈ u(Di−1) + Pr(yi = 1 | xi,Di−1) +

Eyi
[∑′

t−i Pr
(
y = 1 | x,Di

)]

︸ ︷︷ ︸
exploration, <t−i

. (3.7)

We will call this policy efficient nonmyopic search. As in the optimal policy, we can interpret

(3.7) naturally as rewarding both exploitation and exploration, where the exploration benefit

is judged by a point’s capability to increase the top probabilities among currently unlabeled

points. We note further that in (3.7) the reward for exploration naturally decreases over time

as the budget is depleted, exactly as in the optimal policy. In particular, the very last point

xt is chosen greedily by maximizing probability, agreeing with the true optimal policy. The

second-to-last point is also guaranteed to match the optimal policy.

Note that we may also use the approximation in (3.6) as part of a finite-horizon lookahead

with ` > 1, producing a family of increasingly expensive but higher-fidelity approximations

to the optimal policy, all retaining the same budget consciousness. The approximation in

(3.7) is equivalent to a one-step maximization of (3.6). We will see in our experiments that

this is often enough to show massive gains in performance, and that even this policy shows
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clear awareness of the remaining budget throughout the search process, automatically and

dynamically trading off exploration and exploitation.

Nonmyopic Behavior

A fundamental difference between our score function (3.7) from others is the ability of

automatically balance exploration against exploitation. This behavior emerges because we

are able to (approximately) incorporating the impact of the remaining observations when

each candidate point is evaluated. To illustrate the nonmyopic behavior of our policy, we have

adapted the toy example presented by Garnett et al. [23]. Let I , [0, 1]2 be the unit square.

We repeated the following experiment 100 times. We selected 500 points iid uniformly at

random from I to form the input space X . We create an active search problem by defining

the set of targets R ⊆ X to be all points within Euclidean distance 1/4 from either the center

or any corner of I. We took the closest point to the center (always a target) as an initial

training set. We then applied ens and the two-step-lookahead (3.4) policies to sequentially

select 200 further points for labeling.

Figure 3.1 shows a kernel density estimate of the distribution of locations selected by both

methods during two time intervals. Figures 3.1(a–b) correspond to our method; Figures

3.1(c–d) to two-step lookahead. Figures 3.1(a, c) consider the distribution of the first 100

selected locations; Figures 3.1(b, d) consider the last 100. The qualitative difference between

these strategies is clear. The myopic policy focused on collecting all targets around the

center (Figure 3.1(c)), whereas our policy explores the boundaries of the center clump with

considerable intensity, as well as some of the corners (Figure 3.1(a)). As a result, our policy

is capable of finding some of targets in the corners, whereas two-step lookahead hardly ever

can (Figure 3.1(d)). We can also see that the highest probability mass in Figure 3.1(b) is
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(a) (b)

(c) (d)

Figure 3.1: Kernel density estimates of the distribution of points chosen by ens (top) and
2-step lookahead (bottom) during two different time intervals. The figures on the left show
the kernel density estimates for the first 100 locations; the figures on the right, the last 100
chosen locations.

the center, which shows that our policy typically saves many high-probability points until

the end. On average, the ens policy found about 40 more targets at termination than the

two-step-lookahead policy.

Implementation and time complexity

The complexity of our policy (3.7) is O
(
n
(
2(n+n log n)

))
= O(n2 log n), for n = |X |, because

we need to compute the approximate expected utility for all n points, evaluate an expectation

over its label, conditioning the model and sorting the posterior probabilities in the expectation.

However, for some classification models Pr(y = 1 | x,D), observing one point will only affect
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the probabilities on a small portion of the other points (e.g., in a k-nn model). We can exploit

such structure to reduce the complexity of our method by avoiding unnecessary computation.

Suppose that after observing a point we only need to update the probabilities of at-most

m other points. We can avoid repeatedly sorting the probabilities of every unlabeled point

when computing the score of each candidate point. Once the current probabilities are

sorted (O(n log n)), we only need to update m probabilities and perform a sort algorithm

(O(m logm)); now we can merge both lists to get the top t − i posterior probabilities in

time O(t − i), where i is the index of current iteration. In summary, we can reduce the

computational complexity to O
(
n(log n+m logm+ t)

)
. This is about the same complexity

as two-step lookahead, which is O
(
n(log n+m)

)
using a similar implementation.

Pruning the search space

To further reduce the computational complexity, we can use a similar strategy as suggested

by Garnett et al. [23] to bound the score function (3.7) and prune points that cannot possibly

maximize our score. We consider the same two assumptions proposed by these authors. First,

observing a new negative point will not raise the probability of any other point being a

target. Second, we are able to bound the maximum probability of the unlabeled points after

conditioning on a given number of additional targets; that is, we assume there is a function

p∗(n,D) such that

p∗(n,D) ≥ max
x∈X\D

Pr(y = 1 | x,D ∪D′,∑y′∈D′y
′ ≤ n).

That is, the probability of any unlabeled point can become at most p∗(n,D) after further

conditioning on n or fewer additional target points.
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Consider an unlabeled point x at time i, and define π(x) = Pr(y = 1 | x,Di) for the remainder

of this discussion. The score (3.7), denoted f(x) here for simplicity, can be upper bounded by

f(x) ≤ π ·
(
1 + (t− i)p∗(1,Di)

)
+

(1− π) ·
(∑′

t−i Pr(y′ = 1 | x′,Di)
)
, U(π).

Note this upper bound is only a function of the current probability π. Let x+ be the point

with maximum probability. Then f(x+) is certainly a lower bound of maxx f(x). Hence,

those points satisfying U
(
π(x)

)
< f(x+) can be safely removed from consideration. Solving

this inequality, we have

π(x) <
f(x+)−∑′t−i Pr(y′ = 1 | x′,D)

1 + p∗(1,D)(t− i)−∑′t−i Pr(y′ = 1 | x′,D)
. (3.8)

Then, all points with current probability lower than the rhs of (3.8) can be removed from

consideration. We will show empirically that a large fraction of points can often be pruned

on massive datasets.

3.5 Related Work

Our method falls into the broader framework of active learning. The particular setting of

finding elements of a valuable class is rather unusual in active learning, which typically

considers the goal of training a high-fidelity model [47]. For an exhaustive introduction to

active learning, we refer the reader to Settles [74].
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The multi-armed bandit (mab) problem shares some similarities with active search, where

selecting an item can understood as “pulling an arm.” However, in active search the items

are correlated, and, critically, they can never be played twice. Despite the difference, we

note that our ens policy is somewhat similar to the knowledge gradient policy introduced

by Frazier et al. [15]. Active search can be seen as a special case of Bayesian optimization

[8, 78] with binary observations and cumulative reward. Several nonmyopic policies have

been proposed for Bayesian optimization in the regression setting (e.g., Ling et al. [49]), and

our method is spiritually similar to the recently propopsed glasses algorithm [27].

Vanchinathan et al. [85] proposed a method called GP-select to solve a class of problems

the authors call “adaptive valuable item discovery,” which generalizes active search to the

regression setting. gp-select employs a Gaussian process regression model in a manner

inspired by the Gaussian process upper confidence bound (gp-ucb) algorithm [80]. A

parameter must be specified to balance exploration and exploitation, whereas our method

automatically and dynamically trades off these quantities. The method is also critically tied to

Gaussian process regression as the underlying model, which is inappropriate for classification.

Our decision-theoretic approach does not make assumptions about the classification model.

Active search can also be seen as a special case of (partially observable) Markov decision

processes ((po)mdps), for which there are known hardness results. Sabbadin et al. [70], for

example, defined the class of so-called “purely epistemic” mdps (emdps), where the state

does not evolve over time. The authors showed that the optimal policy for these problems

cannot admit polynomial-time constant approximations. These hardness results, for the very

rich class of emdps are not trivially transferred to the more-specific active search problem.

Our proposed approximation is similar in nature to the active search policy proposed by

Wang et al. [87], which only considered the effect of raising probabilities after observing a
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positive label, and did not consider the budget. Rather, the proposed score always encourages

maximal exploration, in opposition to the optimal policy.

There has been some attention to active search in the graph setting where the input domain

X is the nodes of a graph [22, 87, 66, 54]. Our method does not restrict the input space.

Further, the classification models used in these settings are often difficult to scale to large

datasets, e.g., requiring the pseudoinverse of the graph Laplacian.

Finally, variations on the active search problem have also been considered. Ma et al. [53]

proposed the active area search problem, wherein a continuous function is sampled to discover

regions with large mean value, and Ma et al. [55] extended this idea to define the more-general

active pointillistic pattern search problem. These settings do not allow querying for labels

directly and offer no insight to the core active search problem.

3.6 Experimental results

We implemented our approximation to the Bayesian optimal policy with the matlab active

learning toolbox,6 and have compared the performance of our proposed ens policy with several

baselines. First we compare with the myopic one-step (greedy) and two-step approximations

to the Bayesian optimal policy, presented in (3.3–3.4). In [23, 25], there is thoroughly

comparasion between the one-step and two-step policies; the authors observed that the

less-myopic two-step algorithm usually performs better in terms of targets found, as one

would expect. In our experiments we will mainly focus on comparing our algorithm with the

myopic two-step approximate policy since it represents the state-of-the-art approach.
6https://github.com/rmgarnett/active_learning
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We also consider a simple baseline which we call random-greedy (rg). Here we randomly

select points to query (exploration) during the first half of the budget, and select the remainder

using greedy selection (exploitation). Although naïve, this policy adapts to the budget.

We further compare with the score function proposed by Wang et al. [87], which we refer to

as ims:

ims(x) = Pr(y = 1 | x,D)
(
1 + α im(x)

)
; (3.9)

where im(x) measures the “expected impact”, the sum of the raised probabilities x results

in if it is positive. Note that it is difficult to determine the tradeoff parameter α without

(expensive) cross validation. The empirical results in [87] indicate that α = 10−4 performs

well on average; we will fix this value in our experiments.

Finally, we have also considered the following ucb-style [3] score function: α(x,D) =

π + γ
√
π(1− π), where π = Pr(y = 1 | x,D) and γ is a tradeoff parameter. The ucb score

function is very popular and is the essence of the methods in [85, 80] developed for Gaussian

processes, including gp-select. We considered various γ values and our experiments show

that it is no better than two-step lookahead, so we ommit these results in this presentation.

The probability model Pr(y = 1 | x,D) we will adopt is the k-nearest-neighbor (k-nn)

classifier as described in Section 7 of [23]. This model, while being rather simple, shows

reasonable generalization error, is nonparameteric, and can be rapidly updated given new

training data, an important property in the active setting we consider here. We will also adopt

the probability bound (3.8) for this model described in that work. Note ims was proposed

together (but orthogonally) with a graph model for the probability, which is computationally

infeasible (O(n3)) for our datasets. So we also use k-nn model for ims.
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Table 3.1: CiteSeerx (left) and bmg (right) data: Average number of targets found by the
one- and two-step myopic policies and ens with different five budgets, varying from 100 to
900, at specific time steps. Best method performance at each time waypoint is in bold.

CiteSeerx data

query number

policy 100 300 500 700 900

rg 19.7 60.0 104 140 176

ims 26.3 86.3 147 214 281

one-step 25.5 80.5 141 209 273
two-step 24.9 89.8 155 220 287

ens–900 25.9 94.3 163 239 308
ens–700 28.0 105 188 259
ens–500 28.7 112 189
ens–300 26.4 105
ens–100 30.7

bmg data

query number

policy 100 300 500 700 900

rg 48.6 144 243 336 427

ims 93.6 276 451 629 799

one-step 90.8 273 450 633 798
two-step 91.0 273 452 632 802

ens–900 89.0 270 453 635 815
ens–700 91.3 276 460 645
ens–500 92.4 279 466
ens–300 92.8 279
ens–100 94.5
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Figure 3.2: The learning curve of our policy and other baselines on the CiteSeerx dataset.
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CiteSeerx Data

For our first real data experiment, we consider a subset of the CiteSeerx citation network,

first described in [23]. This dataset comprises 39 788 computer science papers published in

the top-50 most-popular computer science venues. We form an undirected citation network

from these papers. The target class is papers published in the neurips proceedings; there

are 2 190 such papers, 5.5% of the whole dataset. Note that distinguishing neurips papers

in the citation network is not an easy task, because many other highly related venues such as

icml, aaai, ijcai, etc. are also among the most-popular venues. A feature vector for each

paper is computed by performing graph principal component analysis [14] on the citation

network and retaining the first 20 principal components.

We select a single target (i.e., a neurips paper) uniformly at random to form an initial

training set. The budget is set to t = 500, and we use k = 50 in the k-nn model. These

parameters match the choices in [23]. We use each policy to sequentially select t papers for

labeling. The experiment was repeated 20 times, varying the initial seed target. Figure 3.2

shows the average number of targets found for each method as a function of the number of

queries. We first observe that the ranking of the performance is ens, two-step, ims, one-step,

and rg, and our policy outperforms the two-step policy in this task by a large margin. The

mean difference in number of targets found at termination vs. two-step is 34.6 (189 vs. 155),

an improvement on average of 22%. A two-sided paired t-test testing the hypothesis that the

average difference of targets found is zero returns a p-value of p < 10−4, and a 95% confidence

interval on the increase in number of targets found of [19.80, 49.30].

Another interesting observation is that during the initial ∼80 queries, ens actually performs

worse on average than all baseline policies except rg, after which it quickly outperforms
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them. This feature perfectly illustrates an automatic exploration–exploitation transition

made by our policy. As we are always cognizant of our budget, we spend the initial stage

thoroughly exploring the domain, without immediate reward. Once complete, we exploit

what we learned for the remainder of the budget. This tradeoff happens automatically and

without any need for an explicit two-stage approach or arbitrary tuning parameters.

Varying the Budget. A distinguishing feature of our method is that it always takes

the remaining budget into consideration when selecting a point, so we would expect dif-

ferent behavior with different budgets. We repeated the above experiment for budgets

t ∈ {100, 300, 500, 700, 900}, and report in Table 3.1 the average number of targets found

at these time points for each method. We have the following observations from the table.

First, ens performs better than all other baseline policies for every budget. Second, ens is

able to adapt to the specified budget. For example, when comparing performance after 100

queries, ens–100 has located many more targets than the ens methods with greater budgets,

which at that time are still strongly rewarding exploration. A similar pattern holds when

comparing other pairs of ens variations, with one minor exception.

Finding Bulk Metallic Glasses

Our next dataset considers an application from materials science: discovering novel alloys

forming bulk metallic glasses (bmgs). bmgs have numerous desirable properties, including

high toughness and good wear resistance compared to crystalline alloys. We compiled a

database of 118 678 known alloys from the materials literature (e.g., [41, 1]), an extension

of the dataset from [88]. Of these, 4 746 (∼4%) are known to exhibit glass-forming ability,

which we define to be targets. We conduct the same experiments described for the CiteSeerx

data above and show the results in Table 3.1. We can see the results again demonstrate
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Table 3.2: Number of active compounds found by various active search policies at termination
for each fingerprint, averaged over 120 active classes and 20 experiments. Also shown is
the difference of performance between ens and two-step lookahead and the results of the
corresponding paired t-test.

policy t-test results

fingerprint 100-nn rg one-step two-step ens difference p-value 95% ci

ecfp4 189 189 289 297 303 5.29 1.76× 10−3 2.01 8.56
gpidaph3 134 170 255 261 276 14.8 3.90× 10−13 11.2 18.4

our policy’s superior performance over all other methods, and its ability of adapting to the

remaining budget.

Virtual Drug Screening Data

We further conduct experiments on a massive database of chemoinformatic data. The basic

setting is to screen a large database of compounds searching for those that show binding

activity against some biological target. This is a basic component of drug-discovery pipelines.

The dataset comprises 120 activity classes of human biological importance selected from the

Binding db [50] database. For each activity class, there are a small number of compounds

with significant binding activity; the number of targets varies from 200 to 1 488 across the

activity classes. From these we define 120 different active search problems. There are also

100 000 presumed inactive compounds selected at random from the zinc database [81]; these

are used as a shared negative class for each of these problems. For each compound, we

consider two different feature representations, also known as chemoinformatic fingerprints,

called ecfp4 and gpidaph3. These fingerprints are binary vectors encoding the relevant
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chemical characteristics of the compounds; see [25] for more details.7 So in total we have 240

active search problems, each with more than 100 000 points, and with targets less than 1.5%.

As is standard in this setting, we compute fingerprint similarities via the Jaccard index [37],

which are used to define the weight matrix of the k-nn model from above, setting k = 100

for all the experiments. For active search policies, we again randomly select one positive

as the initial training set, and sequentially query t = 500 further points. We also report

the performance of a baseline where we randomly sample a stratified sample of size 5% of

the database (∼5 000 points, more than 10 times the budget of the active search policies).

From this sample, we train the same k-nn model, compute the active probability of the

remaining points, and query the 500 points with the highest posterior activity probability.

All experiments were repeated 20 times, varying the initial training point. Note we did not

test ims on these data due to computational expense. Our policy nominally has higher time

complexity, but our pruning strategy can reduce the computation significantly in practice, as

we show in Section 3.6.

Table 3.2 summarizes the results. First we notice that all active search policies perform much

better than the recall of a simple classification algorithm, even though they observe less than

one-tenth the data. Interestingly, even the naïve random-greedy (rg) policy performs much

better than this baseline, albeit much worse than other active search policies. The two-step

policy is again better than the greedy policy for both fingerprints, which is consistent with the

results reported in [25]. The ens policy performs significantly better than two-step lookahead;

a two-sided paired t-test overwhelmingly rejects the hypothesis that the performance at

termination is equal in both cases.
7We did not conduct experiments on the maccs fingerprint. It was inferior in the findings of Garnett

et al. [25]. A reviewer of [37] noted that it is no longer used, due to clear underperformance compared to,
e.g., ecfp4 and gpidaph3.
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Figure 3.3: The average difference in cumulative targets found between ens and the two-step
policy, averaged over 120 activity classes and 20 experiments on the ecfp4 fingerprint.

Figure 3.3 shows the mean difference in cumulative targets found between ens and the two-

step policy for the ecfp4 fingerprint. Again, we very clearly observe the automatic trade-off

between exploration and exploitation by our method. In the initial stage of the search, we

explore the space without much initial reward, but around query 200, our algorithm switches

automatically to exploitation, outperforming the myopic policy significantly at termination.

The mean difference curves for the other fingerprint is similar

Effect of Pruning

To investigate how pruning can improve the efficiency of computing the policy, we computed

the average number of pruned points across all 120× 20× 500 = 3 000 000 iterations of active

search, for each fingerprint. On average about 93% of the unlabeled points are pruned, as

detailed in Table 3.3, dramatically improving the computational efficiency by approximately
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Table 3.3: Average number of pruned points in each iteration for the three chemical datasets.

fingerprint # pruned # total pruned %

ecfp4 94 995 100 518 94.5%
gpidaph3 93 173 100 518 92.7 %

a corresponding linear factor. The time for each experiment was effectively reduced from on

the order of one day to that of one hour.

3.7 Conclusion

In this chapter we proved the theoretical hardness of active search and proposed an well-

motivated and empirically better-performing policy for solving this problem. In particular,

we proved that no polynomial-time algorithm can approximate the expected utility of the

optimal policy within a constant approximation ratio. We then proposed a novel method,

efficient nonmyopic search (ens), for the active search problem. Our method approximates

the Bayesian optimal policy by computing, conditioned on the location of the next point, how

many targets are expected at termination, if the remaining budget is spent simultaneously.

By taking the remaining budget into consideration in each step, we are able to automatically

balance exploration and exploitation. We also derived an effective pruning strategy that can

reduce the number of candidate points we must consider at each step, which can further

improve the efficiency dramatically in practice. We conducted a massive empirical evaluation

that clearly demonstrated superior overall performance on various domains, as well as our

automatic balance between exploration and exploitation.
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Chapter 4

Bayesian Active Model Selection

Personalized medicine has long been a critical application area for machine learning [42, 72, 5],

in which automated decision making and diagnosis are key components. Beyond improving

quality of life, machine learning in diagnostic settings is particularly important because

collecting additional medical data often incurs significant financial burden, time cost, and

patient discomfort. In machine learning one often considers this problem to be one of active

feature selection: acquiring each new feature (e.g., a blood test) incurs some cost, but will,

with hope, better inform diagnosis, treatment, and prognosis. By careful analysis, we may

optimize this trade off.

However, many settings do not involve feature selection, but rather involve querying a sample

space to discriminate between different candidate models that compete to account for the

observed data. A particular, clarifying example that motivates this work is noise-induced

hearing loss (nihl), a prevalent disorder affecting 26 million working-age adults in the United

States alone [77] and affecting over half of workers in particular occupations such as mining

and construction. Most tragically, nihl is preventable with simple, low-cost solutions (e.g.,

earplugs), if diagnosed early.
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To be tested for nihl, patients must complete a time-consuming audiometric exam that

presents a series of tones at various frequencies and intensities; at each tone the patient

indicates whether he/she hears the tone [9, 36, 11]. From the responses, the clinician infers

the patient’s audible threshold on a set of discrete frequencies (the audiogram); this process

requires the delivery of up to hundreds of tones. Audiologists scan the audiogram for a

hearing deficit with a characteristic notch shape—a narrow band that can be anywhere

in the frequency domain that is indicative of nihl. Unfortunately, at early stages of the

disorder, notches can be small enough that they are undetectable in a standard audiogram,

leaving many cases undiagnosed until the condition has become severe. Increasing audiogram

resolution would require higher sample counts (more presented tones) and thus only lengthen

an already burdensome procedure. We present here a better approach.

The nihl diagnostic challenge is not one of feature selection (choosing the next test to run

and classifying the result), but rather of model selection: is this patient’s hearing better

described by a normal hearing model, or a notched nihl model? We propose a novel active

model selection algorithm to make the nihl diagnosis in as few tones as possible, which

directly reflects the time and personnel resources required to make accurate diagnoses in large

populations. This is a model-selection problem in the truest sense: a diagnosis corresponds to

selecting between two or more sets of indexed probability distributions (models), rather than

the more-common misnomer of choosing an index from within a model (i.e., hyperparameter

optimization). In the nihl case this distinction is critical. We are choosing between two

models, the set of possible nihl hearing functions and the set of normal hearing functions.

This approach suggests a very different and more direct algorithm than first learning the

most likely nihl function and then accepting or rejecting it as different from normal, the

standard approach.
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In this chapter, we make the following contributions: first, we design a completely general

active-model-selection method based on maximizing the mutual information between the

response to a tone and the posterior on the model class. Critically, we develop an analytical

approximation of this criterion for Gaussian process (gp) models with arbitrary observation

likelihoods, enabling active structure learning for gps. Second, we extend the work of Gardner

et al. [17] (which uses active learning to speed up audiogram inference) to the broader question

of identifying which model—normal or nihl—best fits a given patient. Finally, we develop

a novel gp prior mean that parameterizes notched hearing loss for nihl patients. To our

knowledge, this is the first work with an active model-selection approach that does not

require updating each model for every candidate point, allowing audiometric diagnosis of

nihl to be performed in a real application. Finally, using patient data from a clinical trial,

we show empirically that our method typically automatically detects simulated noise-induced

hearing loss with fewer than 15 query tones. This is vastly fewer than the number required

to infer a conventional audiogram or even an actively learned audiogram [17], highlighting

the importance of both the active-learning approach and our focus on model selection.

4.1 Active Bayesian model selection

Suppose that we have a mechanism for actively selecting new data—choosing x∗ ∈ X and

observing y∗ = y(x∗)—to add to our dataset D = (X,y), in order to better distinguish the

candidate models {Mi}. After making this observation, we will form an augmented dataset

D′ = D ∪
{

(x∗, y∗)
}
, from which we can recompute a new model posterior p(M | D′).
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An approach motivated by information theory is to select the location maximizing the mutual

information between the observation value y∗ and the unknown model:

I(y∗;M | x∗,D) = H[M | D]− Ey∗
[
H[M | D′]

]
(4.1)

= H[y∗ | x∗,D]− EM
[
H[y∗ | x∗,D,M]

]
, (4.2)

where H indicates (differential) entropy. Whereas Equation (4.1) is computationally prob-

lematic (involving costly model retraining), the equivalent expression (4.2) is typically more

tractable, has been applied fruitfully in various active-learning settings [32, 24, 17, 31, 33], and

requires only computing the differential entropy of the model-marginal predictive distribution:

p(y∗ | x∗,D) =
M∑

i=1

p(y∗ | x∗,D,Mi)p(Mi | D) (4.3)

and the model-conditional predictive distributions
{
p(y∗ | x∗,D,Mi)

}
with all models trained

with the currently available data. In contrast to (4.1), this does not involve any retraining

cost. Although computing the entropy in (4.3) might be problematic, we note that this is a

one-dimensional integral that can easily be resolved with quadrature. Our proposed approach,

which we call Bayesian active model selection (bams) is then to compute, for each candidate

location x∗, the mutual information between y∗ and the unknown model, and query where

this is maximized:

arg max
x∗

I(y∗;M | x∗,D). (4.4)

In the next section, we describe in details how to implement our approach using Gaussian

processes. It is worthy to mention that the framework is general enough to capture any

probabilistic model, and, to the best of our knowledge, it is the first method which does not

required re-training before probing the next x∗.
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4.2 Related work

Although active learning and model selection have been widely investigated, active model

selection has received comparatively less attention. Ali et al. [2] proposed an active learning

model selection method that requires leave-two-out cross validation when evaluating each

candidate x∗, requiring O
(
B2M |X∗|

)
model updates per iteration, where B is the total

budget. Kulick et al. [44] also considered an information-theoretic approach to active model

selection, suggesting maximizing the expected cross entropy between the current model

posterior p(M | D) and the updated distribution p(M | D′). This approach also requires

extensive model retraining, with O
(
M |X∗|

)
model updates per iteration, to estimate this

expectation for each candidate. These approaches become prohibitively expensive for real-time

applications with large number of candidates. In our audiometric experiments, for example,

we consider 10 000 candidate points, expending 1–2 seconds per iteration, whereas these

mentioned techniques would take several hours to selected the next point to query.

After the development of this work, it has been brought to our attention the work of Cavagnaro

et al. [10], which is closely related ours. In that paper, the authors have also proposed to

use mutual information to model discrimination, which, in essence, is the same active model

selection problem discussed here. The main difference is how we compute mutual information.

In [10], the authors compute the more-costly expression (4.1), which requires model retraining.

Our approach avoids sampling y∗ by using (4.2), which does not scale with O
(
|X∗|

)
.

Bayesian active model selection is close in spirit to the classical parlor game “Twenty Questions”.

One player chooses an instance from a general category, e.g. famous people, and the other

players try to guess the particular instance by asking questions. There are many variations

of this problem, and some of them were formalized and investigated [35, 19, 20, 52]. In
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particular, the following papers have proposed information-theoretical approaches that are

related to our approach, but different in the problem setting: [26, 71, 38, 84].

4.3 Active model selection for Gaussian processes

In the previous section, we proposed a general framework for performing sequential active

Bayesian model selection, without making any assumptions about the forms of the models

{Mi}. Here we will discuss specific details of our proposal when these models represent

alternative structures for Gaussian process priors on a latent function.

To connect to our active learning formulation, let {Mi} be a set of Gaussian process models

for the latent function f . Each model comprises a mean function µi, covariance function Ki,

and associated hyperparameters θi. Our goal is to automatically and actively distinguish

the gp models through intelligent sampling bams (4.2). Below we give explicit formulas for

computing the required entropies for common likelihoods: regression with Gaussian noise

and probit regression.

Regression with Gaussian noise

For regression problems with zero-mean homoskedastic Gaussian noise with variance σ2
n, we

have

p(y | f) = N (y; f, σ2
n).

We may integrate this against a Gaussian distribution on the latent value f (such as that

resulting from the mgp approximation (6.12)) to find the predictive distribution. Suppose
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p(f | x,D) = N (f ;µ, σ2). Then

p(y | x,D) = N (y;µ, σ2 + σ2
n).

The model-conditional predictive distributions
{
p(y∗ | X∗,D,Mi)

}
are thus Gaussian under

the mgp approximation:

p(y∗ | x∗,D,Mi) = N
(
y∗;µ∗i ,

(
ν∗mgp)i + σ2

n

)
.

The differential entropy of a one-dimensional Gaussian is

H
[
N (y;µ, σ2)

]
= 1

2
log(2πeσ2);

with these results and an approximation to the model posterior, we may compute the

second term in (4.2). The marginal predictive distribution p(y∗ | x∗,D) is now a mixture

of Gaussians weighted by the approximate model posterior. The differential entropy of a

mixture of Gaussians does not have a closed form, so for the first term in (4.2), we must

resort to (one-dimensional) quadrature.

Note that we may also treat the noise variance σ2
n as a model-dependent hyperparameter and

use the mgp to approximately marginalize it as well, which changes the above only slightly.

An extension to heteroskedastic noise is also trivial.
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Probit regression

For binary classification problems with a probit likelihood, we have

Pr(y = 1 | f) = Φ(f),

where Φ is the univariate standard normal cdf. We may integrate this against a Gaussian

distribution on the latent value f to find the predictive distribution. Suppose p(f | x,D) =

N (f ;µ, σ2). Then

Pr(y = 1 | x,D) =

∫
Φ(f)N (f ;µ, σ2) df = Φ

(
µ√

1 + σ2

)
.

The model-conditional predictive distributions
{
p(y∗ | X∗,D,Mi)

}
are thus Bernoulli distri-

butions under the mgp approximation:

p(y∗ | x∗,D,Mi) = B
(

Φ

(
µ∗i√

1 + (ν∗mgp)i

))
.

The differential entropy of a Bernoulli distribution with success probability p is given by the

Bernoulli entropy function h:

H
[
B(p)

]
= h(p) = −p log p− (1− p) log(1− p);

with these results and an approximation to the model posterior, we may compute the second

term in (4.2). The marginal predictive distribution p(y∗ | x∗,D) is now a mixture of Bernoullis

weighted by the approximate model posterior. Bernoulli distributions are closed under taking

mixtures, and therefore in this case we may compute both terms in (4.2) without resorting

to quadrature.
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dataset expert model cks model

Airline passengers LIN+(PER×RQ) SE×(LIN+LIN×(PER+RQ))
Mauna Loa atmospheric CO2 SE+(PER×SE)+RQ+SE LIN×SE+SE×(PER+RQ)

Table 4.1: Kernels used as experts suggestion and selected by the method of [13] for each
time series. The kernel that best explains the data using all points is shown in bold. The
expert kernel for the airline data was our guess after plotting the data, whereas for Mauna
Loa is the one presented in [69].

Implementation

We may now efficiently compute an approximation to the bams criterion for active gp model

selection. Given currently observed data D, for each of our candidate modelsMi, we first

find the Laplace approximation to the hyperparameter posterior (2.4) and model evidence

(5.1). Given the approximations to the model evidence, we may compute an approximation

to the model posterior (6.4). Suppose we have a set of candidate points X∗ from which we

may select our next point. For each of our models, we compute the mgp approximation

(6.12) to the latent posteriors
{
p(f∗ | X∗,D,Mi)

}
, from which we use standard techniques

to compute the predictive distributions
{
p(y∗ | X∗,D,Mi)

}
. Finally, with the ability to

compute the differential entropies of these model-conditional predictive distributions, as well

as the marginal predictive distribution (4.3), we may compute the mutual information of

each candidate in parallel.

4.4 Active structure discovery demonstration

We evaluated the proposed method using the time series shown in Table 1, also used by

Duvenaud et al. [13]. For each dataset, we considered 18 models: four base kernels (squared

exponential (se), periodic (per), linear (lin), and rational quadratic (rq)), 12 kernels
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Figure 4.1: Posterior probability of best model as function of iteration number.

obtained by combining these basis kernels with sum and products, an expert model designing

by a human (see Table 1) and the kernel found by the compositional kernel search (cks) [13]

method. Using all points, we computed the model posterior to determine which model best

describes the data, shown in Table 1 (bold).

Then, we randomly selected two points and applied several techniques to choose a total of 50

points: bams, random sampling, uncertainty sampling, and query by committee (qbc)8 [75].

We repeated this experiment 30 times, using different initial random seeds for each. Figure 2

shows the average posterior probability of the best model as function of iteration number,

along with the standard error. The results show that bams outperforms all the baselines,

more quickly finding the best model.
8We adapted qbc using the entropy of the model-marginal predictive distribution (4.3) as the disagreement

criterion. Furthermore, to consider every committee member’s (i.e. each model’s) predictions equally
important, we compute this quantity assuming a uniform model posterior.
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4.5 Audiometric threshold testing

Standard audiometric tests [9, 36, 11] are calibrated such that the average human subject has

a 50% chance of hearing a tone at any frequency; this empirical unit of intensity is defined

as 0 dBHL. Humans give binary reports (whether or not a tone was heard) in response to

stimuli, and these observations are inherently noisy. Typical audiometric tests present tones

in a predefined order on a grid, in increments of 5–10 dBHL at each of six octaves. Recently,

Gardner et al. [17] demonstrated that Bayesian active learning of a patient’s audiometric

function significantly improves the state-of-the-art in terms of accuracy and number of stimuli

required.

However, learning a patient’s entire audiometric function may not always be necessary.

Audiometric testing is frequently performed on otherwise young and healthy patients to

detect noise-induced hearing loss (nihl). Noise-induced hearing loss occurs when an otherwise

healthy individual is habitually subjected to high-intensity sound [59]. This can result in

sharp, notch-shaped hearing loss in a narrow (sometimes less than one octave) frequency

range. Early detection of nihl is critical to desirable long-term clinical outcomes, so large-

scale screenings of susceptible populations (for example, factory workers), is commonplace

[64]. Noise-induced hearing loss is difficult to diagnose with standard audiometry, because

a frequency–intensity grid must be very fine to ensure that a notch is detected. The full

audiometric test of Gardner et al. [17] may also be inefficient if the only goal of testing is to

determine whether a notch is present, as would be the case for large-scale screening.

We cast the detection of noise-induced hearing loss as an active model selection problem.

We will describe two Gaussian process models of audiometric functions: a baseline model

of normal human hearing, and a model reflecting nihl. We then use the bams framework
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introduced above to, as rapidly as possible for a given patient, determine which model best

describes his or her hearing.

Normal-patient model

To model a healthy patient’s audiometric function, we use the model described in [17]. The gp

prior proposed in that work combines a constant prior mean µhealthy = c (modeling a frequency-

independent natural threshold) with a kernel taken to be the sum of two components: a

linear covariance in intensity and a squared-exponential covariance in frequency. Let [i, φ]

represent a tone stimulus, with i representing its intensity and φ its frequency. We define:

K
(
[i, φ], [i′, φ′]

)
= αii′ + β exp

(
− 1

2`2
|φ− φ′|2

)
, (4.5)

where α, β > 0 weight each component and ` > 0 is a length scale of frequency-dependent

random deviations from a constant hearing threshold. This kernel encodes two fundamental

properties of human audiologic response. First, hearing is monotonic in intensity. The linear

contribution αii′ ensures that the posterior probability of detecting a fixed frequency will be

monotonically increasing after conditioning on a few tones. Second, human hearing ability is

locally smooth in frequency, because nearby locations in the cochlea are mechanically coupled.

The combination of µhealthy with K specifies our healthy modelMhealthy, with parameters

θhealthy = [c, α, β, `]>.
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Noise-induced hearing loss model

We extend the model above to create a second gp model reflecting a localized, notch-shaped

hearing deficit characteristic of nihl. We create a novel, flexible prior mean function for this

purpose, the parameters of which specify the exact nature of the hearing loss. Our proposed

notch mean is:

µnihl(i, φ) = c− dN ′(φ; ν, w2), (4.6)

where N ′(φ; ν, w) denotes the unnormalized normal probability density function with mean

ν and standard deviation w, which we scale by a depth parameter d > 0 to reflect the

prominence of the hearing loss. This contribution results in a localized subtractive notch

feature with tunable center, width, and height. We retain a constant offset c to revert to

the normal-hearing model outside the vicinity of the localized hearing deficit. Note that we

completely model the effect of nihl on patient responses with this mean notch function;

the kernel K above remains appropriate. The combination of µnihl with K specifies our

nihl modelMnihl with, in addition to the parameters of our healthy model, the additional

parameters θnihl = [ν, w, d]>.

4.6 Diagnosing noise-induced hearing loss

To test bams on our nihl detection task, we evaluate our algorithm using audiometric

data, comparing to several baselines. From the results of a small-scale clinical trial, we have

examples of high-fidelity audiometric functions inferred for several human patients using the

method of Gardner et al. [17]. We may use these to simulate audiometric examinations of

healthy patients using different methods to select tone presentations. We simulate patients
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with nihl by adjusting ground truth inferred from nine healthy patients with in-model

samples from our notch mean prior. Recall that high-resolution audiogram data is extremely

scarce.

We first took a thorough pure-tone audiometric test of each of nine patients from our trial

with normal hearing using 100 samples selected using the algorithm in [17] on the domain

X = [250, 8000]Hz× [−10, 80] dBHL,9 typical ranges for audiometric testing [36]. We inferred

the audiometric function over the entire domain from the measured responses, using the

healthy-patient gp model Mhealthy with parameters learned via mle–ii inference. The

observation model was p(y = 1 | f) = Φ(f), where Φ is the standard normal cdf, and

approximate gp inference was performed via a Laplace approximation. We then used the

approximate gp posterior p(f | D, θ̂,Mhealthy) for this patient as ground-truth for simulating

a healthy patient’s responses. The posterior probability of tone detection learned from one

patient is shown in the background of Figure 6.1(a). We simulated a healthy patient’s

response to a given query tone x∗ = [i∗, φ∗] by sampling a conditionally independent Bernoulli

random variable with parameter p(y∗ = 1 | x∗,D, θ̂,Mhealthy).

We simulated a patient with nihl by then drawing notch parameters (the parameters of

(4.6)) from an expert-informed prior, adding the corresponding notch to the learned healthy

ground-truth latent mean, recomputing the detection probabilities, and proceeding as above.

Example nihl ground-truth detection probabilities generated in this manner are depicted in

the background of Figure 6.1(b).
9Inference was done in log-frequency domain.
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Experimental results

To test our active model-selection approach to diagnosing nihl, we simulated a series of

audiometric tests, selecting tones using three alternatives: bams, the algorithm of [17], and

random sampling.10 Each algorithm shared a candidate set of 10 000 quasi-random tones X∗

generated using a scrambled Halton set so as to densely cover the two-dimensional search

space. We simulated nine healthy patients and a total of 27 patients exhibiting a range of

nihl presentations, using independent draws from our notch mean prior in the latter case.

For each audiometric test simulation, we initialized with five random tones, then allowed

each algorithm to actively select a maximum of 25 additional tones, a very small fraction of

the hundreds typically used in a regular audiometric test. We repeated this procedure for

each of our nine healthy patients using the normal-patient ground-truth model. We further

simulated, for each patient, three separate presentations of nihl as described above. We plot

the posterior probability of the correct model after each iteration in Figure 4.3.

In all runs with both ground-truth models, bams was able to rapidly achieve greater than

99% confidence in the correct model without expending the entire budget. Although all

methods correctly inferred high healthy posterior probability for the healthy patient, bams

wass more confident. For the nihl patients, neither baseline inferred the correct model,

whereas bams rarely required more than 15 actively chosen samples to confidently make

the correct diagnosis. Note that, when bams was used on nihl patients, there was often an

initial period during which the healthy model was favored, followed by a rapid shift towards

the correct model. This is because our method penalizes the increased complexity of the

notch model until sufficient evidence for a notch is acquired.
10We also compared with uncertainty sampling and query by committee (qbc); the performance was

comparable to random sampling and is omitted for clarity.
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Figure 6.1 shows the samples selected by bams for typical healthy and nihl patients. The

fundamental strategy employed by bams in this application is logical: it samples in a row

of relatively high-intensity tones. The intuition for this design is that failure to recognize a

normally heard, high-intensity sound is strong evidence of a notch deficit. Once the notch has

been found (Figure 6.1(b)), bams continues to sample within the notch to confirm its existence

and rule out the possibility of the miss (tone not heard) being due to the stochasticity of the

process. Once satisfied, the bams approach then samples on the periphery of the notch to

further solidify its belief.

The bams algorithm sequentially makes observations where the healthy and nihl model

disagree the most, typically in the top-center of the map notch location. The exact intensity

at which bams samples is determined by the prior over the notch-depth parameter d. When

we changed the notch depth prior to support shallower or deeper notches (data not shown),

bams sampled at lower or higher intensities, respectively, to continue to maximize model

disagreement. Similarly, the spacing between samples is controlled by the prior over the

notch-width parameter w.

Finally, it is worth emphasizing the stark difference between the sampling pattern of bams

and the audiometric tests of [17]; see Figure 6.1. Indeed, when the goal is learning the

patient’s audiometric function, the audiometric testing algorithm proposed in that work

typically has a very good estimate after 20 samples. However, when using bams, the primary

goal is to detect or rule out nihl. As a result, the samples selected by bams reveal little

about the nuances of the patient’s audiometric function, while being highly informative about

the correct model to explain the data. This is precisely the tradeoff one seeks in a large-scale

diagnostic setting, highlighting the critical importance of focusing on the model-selection

problem directly.
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(a) Normal hearing model ground truth.
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(b) Notch model ground truth.

Figure 4.2: Samples selected by bams (red) and the method of Gardner et al. [17] (white)
when run on (a) the normal-hearing ground truth, and (b), the nihl model ground truth.
Contours denote probability of detection at 10% intervals. Circles indicate presentations that
were heard by the simulated patient; exes indicate presentations that were not heard by the
simulated patient.
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Figure 4.3: Posterior probability of the correct model as a function of iteration number.

4.7 Conclusion

We introduced a novel information-theoretic approach for active model selection, Bayesian

active model selection, and successfully applied it to rapid screening for noise-induced hearing

loss. Our method for active model selection does not require model retraining to evaluate

candidate points, making it more feasible than previous approaches. Further, we provided an

effective and efficient analytic approximation to our criterion that can be used for automatically

learning the model class of Gaussian processes with arbitrary observation likelihoods, a rich

and commonly used class of potential models.
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Chapter 5

Automated model selection

Over the past decades, enormous human effort has been devoted to machine learning;

preprocessing data, model selection, and hyperparameter optimization are some examples of

critical and often expert-dependent tasks. The complexity of these tasks has in some cases

relegated them to the realm of “dark art.” In kernel methods in particular, the selection of

an appropriate kernel to explain a given dataset is critical to success in terms of the fidelity

of predictions, but the vast space of potential kernels renders the problem nontrivial. We

consider the problem of automatically finding an appropriate probabilistic model to explain a

given dataset. Although our proposed algorithm is general, we will focus on the case where

a model can be completely specified by a kernel, as is the case for example for centered

Gaussian processes (gps).

Recent work has begun to tackle the kernel-selection problem in a systematic way. Duvenaud

et al. [13] and Grosse et al. [28] described generative grammars for enumerating a countably

infinite space of arbitrarily complex kernels via exploiting the closure of kernels under additive

and multiplicative composition. We adopt this kernel grammar in this work as well. Given

a dataset, Duvenaud et al. [13] proposed searching this infinite space of models using a

greedy search mechanism. Beginning at the root of the grammar, we traverse the tree
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greedily attempting to maximize the (approximate) evidence for the data given by a gp

model incorporating the kernel.

Here, we develop a more sophisticated mechanism for searching through this space. The

greedy search described above only considers a given dataset by querying a model’s evidence.

Our search performs a metalearning procedure, which, conditional on a dataset, establishes

similarities among the models in terms of the space of explanations they can offer for the

data. With this viewpoint, we construct a novel kernel between models (a “kernel kernel”).

We then approach the model-search problem via Bayesian optimization, treating the model

evidence as an expensive black-box function to be optimized as a function of the kernel. The

dependence of our kernel between models on the distribution of the data is critical; depending

on a given dataset, the kernels generated by a compositional grammar could be especially

rich or deceptively so.

We develop an automatic framework for exploring a set of potential models, seeking the

model that best explains a given dataset. Although we focus on Gaussian process models

defined by a grammar, our method could be easily extended to any probabilistic model with

a parametric or structured model space. Our search appears to perform competitively with

other baselines across a variety of datasets, including the greedy method from [13], especially

in terms of the number of models for which we must compute the (expensive) evidence, which

typically scales cubically for kernel methods.
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5.1 Bayesian optimization for model search

Suppose we face a classical supervised learning problem defined on an input space X and

output space Y . We are given a set of training observations D = (X,y), where X represents

the design matrix of explanatory variables xi ∈ X , and yi ∈ Y is the respective value or label

to be predicted. Ultimately, we want to use D to predict the value y∗ associated with an

unseen point x∗. Given a probabilistic modelM, we may accomplish this via formation of

the predictive distribution.

Suppose, however, that we are given a collection of probabilistic models M that could

have plausibly generated the data. Ideally, finding the source of D would let us solve our

prediction task with the highest fidelity. LetM∈M be a probabilistic model, and let ΘM

be the corresponding parameter space. These models are typically parametric families of

distributions, each of which encodes a structural assumption about the data, for example,

that the data can be described by a linear, quadratic, or periodic trend. Further, the member

distributions (Mθ ∈M, θ ∈ ΘM) ofM differ from each other by a particular value of some

properties—represented by the hyperprameters θ—related to the data such as amplitude,

characteristic length scales, etc.

We wish to select one model from this collection of models M to explain D. From a Bayesian

perspective, the principle approach for solving this problem is Bayesian model selection.11

The critical value is model evidence, the probability of generating the observed data given a

modelM:

p(y | X,M) =

∫

ΘM

p(y | X, θ,M) p(θ | M) dθ. (5.1)

11“Model selection” is unfortunately sometimes also used in gp literature for the process of hyperparameter
learning (selecting someMθ ∈M), rather than selecting a model classM, the focus of our work.
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The evidence (also called marginal likelihood) integrates over θ to account for all possible

explanations of the data offered by the model, under a prior p(θ | M) associated with that

model.

Our goal is to automatically explore a space of models M to select a model12 M∗ ∈M that

explains a given dataset D as well as possible, according to the model evidence. The essence

of our method, which we call Bayesian optimization for automated model selection (boms),

is viewing the evidence as a function g : M → R to be optimized. We note two important

aspects of g. First, for large datasets and/or complex models, g is an expensive function, for

example growing cubically with |D| for gp models. Further, gradient information about g is

impossible to compute due to the discrete nature of M. We can, however, query a model’s

evidence as a black-box function. For these reasons, we propose to optimize evidence over M

using Bayesian optimization, a technique well-suited for optimizing expensive, gradient-free,

black-box objectives [76, 62, 8, 78, 21].

In this framework, we seek an optimal model

M∗ = arg max
M∈M

g(M;D), (5.2)

where g(M;D) is the (log) model evidence: g(M;D) = log p(y | X,M). We begin by placing

a Gaussian process (gp) prior on g, p(g) = GP(g;µg, Kg), where µg : M → R is a mean

function and Kg : M2 → R is a covariance function appropriately defined over the model

space M. This is a nontrivial task due to the discrete and potentially complex nature of M.

We will suggest useful choices for µg and Kg when M is a space of Gaussian process models
12We could also select a set of models but, for simplicity, we assume that there is one model that best

explains that data with overwhelming probability, which would imply that there is not benefit in considering
more than one model, e.g., via Bayesian model averaging.
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below. Now, given observations of the evidence of a selected set of models,

Dg =
{(
Mi, g(Mi;D)

)}
, (5.3)

we may compute the posterior distribution on g conditioned on Dg, which will be an updated

Gaussian process [89, 69]. Bayesian optimization uses this probabilistic belief about g to

induce an inexpensive acquisition function to select which model we should select to evaluate

next. Here we use the classical expected improvement (ei) [76, 40] acquisition function,

or a slight variation described below, because it naturally considers the trade off between

exploration and exploitation. The exact choice of acquisition function, however, is not critical

to our proposal. In each round of our model search, we will evaluate the acquisition function

in the optimal model evidence for a number of candidate models C(Dg) = {Mi}, and compute

the evidence of the candidate where this is maximized:

M′ = arg max
M∈C

αei(M;Dg).

We then incorporate the chosen modelM′ and the observed model evidence g(M′;D) into our

model evidence training set Dg, update the posterior on g, select a new set of candidates, and

continue. We repeat this iterative procedure until a budget is expended, typically measured

in terms of the number of models considered.

We have observed that expected improvement works well especially for small and/or low-

dimensional problems. When the dataset is large and/or high-dimensional, training costs

can be considerable and variable, especially for complex models. To give better anytime

performance on such datasets, we use expected improvement per second, where we divide the

expected improvement by an estimate of the time required to compute the evidence. In our
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experiments, this estimation was performed by fitting a linear regression model to the log

time to compute g(M;D) as a function of the number of hyperparameters (the dimension of

ΘM) that we train on the models available in Dg.

The acquisition function allows us to quickly determine which models are more promising

than others, given the evidence we have observed so far. Since M is an infinite set of models,

we cannot consider every model in every round. Instead, we will define a heuristic to evaluate

the acquisition function at a smaller set of active candidate models below.

5.2 Bayesian optimization for gp kernel search

We introduced above a general framework for searching over a space of probabilistic models M

to explain a dataset D without making further assumptions about the nature of the models.

In the following, we will provide specific suggestions in the case that all members of M are

Gaussian process priors on a latent function.

We assume that our observations y were generated according to an unknown function

f : X → R via a fixed probabilistic observation mechanism p(y | f), where fi = f(xi).

In our experiments, we will consider regression with additive Gaussian observation noise,

but this is not integral to our approach. We further assume a gp prior distribution on

f , p(f) = GP(f ;µf , Kf), where µf : X → R is a mean function and Kf : X 2 → R is a

positive-definite covariance function or kernel. For simplicity, we will assume that the prior on

f is centered, µf (x) = 0, which lets us fully define the prior on f by the kernel function Kf .

We assume that the kernel function is parameterized by hyperparameters that we concatenate

into a vector θ.
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In this restricted context, a modelM is completely determined by the choice of kernel function

and an associated hyperparameter prior p(θ | M). Below we briefly review a previously

suggested method for constructing an infinite space of potential kernels to model the latent

function f , and thus an infinite family of models M.

Space of compositional gp kernels

We adopt the same space of kernels defined by Duvenaud et al. [13], which we briefly

summarize here. We refer the reader to the original paper for more details. Given a set of

simple, so-called base kernels, such as the common squared exponential (se), periodic (per),

linear (lin), and rational quadratic (rq) kernels, we create new and potentially complex

kernels by summation and multiplication of these base units. The entire kernel space can be

describe by the following grammar rules:

1. Any subexpression S can be replaced with S + B, where B is a base kernel.

2. Any subexpression S can be replaced with S × B, where B is a base kernel.

3. Any base kernel B may be replaced with another base kernel B′.

Hyperparameter priors

The base kernels we will use are well understood, as are their hyperparameters, which have

simple interpretations that can be thematically grouped together. We take advantage of

the Bayesian framework to encode prior knowledge over hyperparameters, i.e., p(θ | M).

Conveniently, these priors can also potentially mitigate numerical problems during the training
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of the gps. Here we derive a consistent method to construct such priors for arbitrary kernels

and datasets in regression problems.

We first standardize the dataset, i.e., we subtract the mean and divide by the standard

deviation of both the predictive features {xi} and the outputs y. This gives each dataset a

consistent scale. Now we can reason about what real-world datasets usually look like in this

scale. For example, we do not typically expect to see datasets spanning 10 000 length scales.

Here we encode what we judge to be reasonable priors for groups of thematically related

hyperparameters for most datasets. These include three types of hyperparameters common

to virtually any problem: length scales ` (including, for example, the period parameter of a

periodic covariance), signal variance σ, and observation noise σn. We also consider separately

three other parameters specific to particular covariances we use here: the α parameter of the

rational quadratic covariance [69, (4.19)], the “length scale” of the periodic covariance `p [69,

` in (4.31)], and the offset σ0 in the linear covariance. We define the following:

p(log `) = N (0.1, 0.72) p(log σ) = N (0.4, 0.72) p(log σn) = N (0.1, 12)

p(logα) = N (0.05, 0.72) p(log `p) = N (2, 0.72) p(σ0) = N (0, 22)

Given these, each model was given an independent prior over each of its hyperparameters,

using the appropriate selection from the above for each.

Creating a “kernel kernel”

In §5.2, we focused on modeling a latent function f with a gp, creating an infinite space of

models M to explain f (along with associated hyperparameter priors), and approximating

the log model evidence function g(M;D). The evidence function g is the objective function
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we are trying to optimize via Bayesian optimization. We described in §5.1 how this search

progresses in the general case, described in terms of an arbitrary Gaussian process prior on g.

Here we will provide specific suggestions for the modeling of g in the case that the model

family M comprises Gaussian process priors on a latent function f , as discussed here and

considered in our experiments.

Our prior belief about g is given by a gp prior p(g) = GP(g;µg, Kg), which is fully specified

by the mean µg and covariance functions Kg. We define the former as a simple constant

mean function µg(M) = θµ, where θµ is a hyperparameter to be learned through a regular

gp training procedure given a set of observations. The latter we will construct as follows.

The basic idea in our construction is that is that we will consider the distribution of the

observation locations in our dataset D, X (the design matrix of the underlying problem). We

note that selecting a model class M induces a prior distribution over the latent function

values at X, p(f | X,M):

p(f | X,M) =

∫
p(f | X,M, θ) p(θ | M) dθ.

This prior distribution is an infinite mixture of multivariate Gaussian prior distributions,

each conditioned on specific hyperparameters θ. We consider these prior distributions as

different explanations of the latent function f , restricted to the observed locations, offered by

the modelM. We will compare two models in M according to how different the explanations

they offer for f are, a priori.

The Hellinger distance is a probability metric that we adopt as a basic measure of similarity

between two distributions. Although this quantity is defined between arbitrary probability

distributions (and thus could be used with non-gp model spaces), we focus on the multivariate
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normal case. Suppose that M,M′ ∈ M are two models that we wish to compare, in the

context of explaining a fixed dataset D. For now, suppose that we have conditioned each of

these models on arbitrary hyperparameters (that is, we select a particular prior for f from

each of these two families), givingMθ andM′
θ′ , with θ ∈ ΘM and θ′ ∈ ΘM′ . Now, we define

the two distributions

P = p(f | X,M, θ) = N (f ;µP ,ΣP ) Q = p(f | X,M′, θ′) = N (f ;µQ,ΣQ).

The squared Hellinger distance between P and Q is

d2
h(P,Q) = 1− |ΣP |1/4|ΣQ|1/4∣∣ΣP +ΣQ

2

∣∣1/2 exp

{
−1

8
(µP − µQ)>

(
ΣP + ΣQ

2

)−1

(µP − µQ)

}
. (5.4)

The Hellinger distance will be small when P and Q are highly overlapping, and thusMθ and

M′
θ′ provide similar explanations for this dataset. The distance will be larger, conversely,

when Mθ and M′
θ′ provide divergent explanations. Critically, we note that this distance

depends on the dataset under consideration in addition to the gp priors.

Observe that the distance above is not sufficient to compare the similarity of two models

M,M′ due to the fixing of hyperparameters above. To properly account for the different

hyperparameters of different models, and the priors associated with them, we define the

expected squared Hellinger distance of two modelsM,M′ ∈M as

d̄2
h(M,M′;X) = E

[
d2
h(Mθ,M′

θ′)
]

=

∫∫
d2
h(Mθ,M′

θ′ ;X) p(θ | M) p(θ′ | M′) dθ dθ′, (5.5)
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Figure 5.1: A demonstration of our model kernelKg (5.6) based on expected Hellinger distance
of induced latent priors. Left: four simple model classes on a 1d domain, showing samples
from the prior p(f | M) ∝ p(f | θ,M) p(θ | M). Right: our Hellinger squared exponential
covariance evaluated for the grid domains on the left. Increasing intensity indicates stronger
covariance. The sets {se,rq} and {se,per, se+per} show strong mutual correlation.

where the distance is understood to be evaluated between the priors provided on f induced

at X. Finally, we construct the Hellinger squared exponential covariance between models as

Kg(M,M′; θg,X) = σ2 exp

(
−1

2

d̄2
h(M,M′;X)

`2

)
, (5.6)

where θg = (σ, `) specifies output and length scale hyperparameters in this kernel/evidence

space. This covariance is illustrated in Figure 5.1 for a few simple kernels on a fictitious

domain.

We make two notes before continuing. The first observation is that computing (5.4) scales

cubically with |X|, so it might appear that we might as well compute the evidence instead.

This is misleading for two reasons. First, the (approximate) computation of a given model’s

evidence via either a Laplace approximation or the bic requires optimizing its hyperparameters.

Especially for complex models this can require hundreds-to-thousands of computations that

each require cubic time. Further, as a result of our investigations, we have concluded that

in practice we may approximate (5.4) and (5.5) by considering only a small subset of the
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observation locations X and that this usually sufficient to capture the similarity between

models in terms of explaining a given dataset. In our experiments, we choose 20 points

uniformly at random from those available in each dataset, fixed once for the entire procedure

and for all kernels under consideration in the search. We then used these points to compute

distances (5.4–5.6), significantly reducing the overall time to compute Kg.

Second, we note that the expectation in (5.5) is intractable. We approximate the expectation

via quasi-Monte Carlo, using a low-discrepancy sequence (a Sobol sequence) of the appropriate

dimension, and inverse transform sampling, to give consistent, representative samples from

the hyperparameter space of each model.

Active set of candidate models

Another challenging of exploring an infinite set of models is how we advance the search. Each

round, we only compute the acquisition function on a set of candidate models C. Here we

discuss our policy for creating and maintaining this set. From the kernel grammar (§5.2),

we can define a model graph where two models are connected if we can apply one rule to

produce the other. We seek to traverse this graph, balancing exploration (diversity) against

exploitation (models likely to have higher evidence). We begin each round with a set of

already chosen candidates C. To encourage exploitation, we add to C all neighbors of the best

model seen thus far. To encourage exploration, we perform random walks to create diverse

models, which we also add to C. We start each random walk from the empty kernel and

repeatedly apply a random number of grammatical transformations. The number of such

steps is sampled from a geometric distribution with termination probability 1
3
. We find that

15 random walks works well. To constrain the number of candidates, we discard the models

with the lowest ei values at the end of each round, keeping |C| no larger than 600.
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5.3 Experimental results

Here we evaluate our proposed algorithm. We split our evaluation into two parts: first, we

show that our gp model for predicting a model’s evidence is suitable; we then demonstrate

that our model search method quickly finds a good model for a range of regression datasets.

The datasets we consider are publicly available13 and were used in previous related work

[13, 4]. airline, mauna loa, methane, and solar are 1d time series, and concrete

and housing have, respectively, 8 and 13 dimensions. To facilitate comparison of evidence

across datasets, we report log evidence divided by dataset size, redefining

g(M;D) = log(p(y | X,M))/|D|. (5.7)

We use the aforementioned base kernels {se,rq, lin,per} when the dataset is one-dimensional.

For multi-dimensional datasets, we consider the set {sei}∪{rqi}, where the subscript indicates

that the kernel is applied only to the ith dimension.

Predicting a model’s evidence

We first demonstrate that our proposed regression model in model space (i.e., the gp on

g : M→ R) is sound. We set up a simple prediction task where we predict model evidence

on a set of models given training data. We construct a dataset Dg (5.3) of 1 000 models as

follows. We initialize a set M with the set of base kernels, which varies for each dataset (see

above). Then, we select one model uniformly at random from M and add its neighbors in the

model grammar to M. We repeat this procedure until |M| = 1 000 and computed g(M;D)

for the entire set generated. We train several baselines on a subset of Dg and test their ability
13https://archive.ics.uci.edu/ml/datasets.html
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Table 5.1: Root mean square error for model-evidence regression experiment.

Dataset Train % Mean k-NN (sp) k-NN (d̄h) gp (d̄h)

concrete

20 0.109 (0.000) 0.200 (0.020) 0.233 (0.008) 0.107 (0.001)
40 0.107 (0.000) 0.260 (0.025) 0.221 (0.007) 0.102 (0.001)
60 0.107 (0.000) 0.266 (0.007) 0.215 (0.005) 0.097 (0.001)
80 0.106 (0.000) 0.339 (0.015) 0.200 (0.003) 0.093 (0.002)

housing

20 0.210 (0.001) 0.226 (0.002) 0.347 (0.004) 0.175 (0.002)
40 0.207 (0.001) 0.235 (0.004) 0.348 (0.004) 0.140 (0.002)
60 0.206 (0.000) 0.235 (0.004) 0.348 (0.004) 0.123 (0.002)
80 0.206 (0.000) 0.257 (0.004) 0.344 (0.004) 0.114 (0.002)

mauna loa

20 0.543 (0.002) 0.736 (0.051) 0.685 (0.010) 0.513 (0.003)
40 0.537 (0.001) 0.878 (0.062) 0.667 (0.005) 0.499 (0.003)
60 0.535 (0.001) 1.051 (0.058) 0.686 (0.010) 0.487 (0.004)
80 0.534 (0.001) 1.207 (0.048) 0.707 (0.005) 0.474 (0.004)

to predict the evidence of the remaining models, as measured by the root mean squared error

(rmse). To achieve reliable results we repeat this experiment ten times. We considered a

subset of the datasets (including both high-dimensional problems), because training 1 000

models demands considerable time. We compare with several alternatives:

1. Mean prediction. Predicts the mean evidence on the training models.

2. k-nearest neighbors. We perform k-nn regression with two distances: shortest-path

distance in the directed model graph described in §5.2 (sp), and the expected squared

Hellinger distance (5.5). Inverse distance was used as weights.

We select k for both k-nn algorithms through cross-validation, trying all values of k from 1

to 10. We show the average rmse along with standard error in Table 5.1. The gp with our

Hellinger distance model covariance universally achieves the lowest error. Both k-nn methods

are outperformed by the simple mean prediction. We note that in these experiments, many

models perform similarly in terms of evidence (usually, this is because many models are “bad”
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in the same way, e.g., explaining the dataset away entirely as independent noise). We note,

however, that the gp model is able to exploit correlations in deviations from the mean, for

example in “good pockets” of model space, to achieve better performance. We also note that

both the k-nn and gp models have decreasing error with the number of training models,

suggesting our novel model distance is also useful in itself.
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Figure 5.2: A plot of the best model evidence found (normalized by |D|, (5.7)) as a function
of the number of models evaluated, g(M∗;D), for six of the datasets considered (identical
vertical axis labels omitted for greater horizontal resolution).

Model search

We also evaluate our method’s ability to quickly find a suitable model to explain a given dataset.

We compare our approach with the greedy compositional kernel search (cks) of [13]. Both

algorithms used the same kernel grammar (§5.2), hyperparameter priors (§5.2), and model
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evidence approximation (§2.2, (5.1)). We used l-bfgs to optimize model hyperparameters,

using multiple restarts to avoid bad local maxima; each restart begins from a sample from

p(θ | M).

For boms, we always began our search evaluating se first. The active set of models C (§5.2)

was initialized with all models that are at most two edges distant from the base kernels. To

avoid unnecessary re-training over g, we optimized the hyperparameters of µg and Kg every

10 iterations. This also allows us to perform rank-one updates for fast inference during the

intervening iterations.

Results are depicted in Figure 5.2 for a budget of 50 evaluations of the model evidence. In

four of the six datasets we substantially outperform cks. Note the vertical axis is in the log

domain. The overhead for computing the kernel Kg and performing the inference about g was

approximately 10% of the total running time. On mauna loa our method is competitive

since we find a model with similar quality, but earlier. The results for methane, on the

other hand, indicate that our search initially focused on a suboptimal region of the graph,

but we eventually do catch up.

5.4 Conclusion

We introduced a novel automated search for an appropriate kernel to explain a given dataset.

Our mechanism explores a space of infinite candidate kernels and quickly and effectively

selects a promising model. Focusing on the case where the models represent structural

assumptions in gps, we introduced a novel “kernel kernel” to capture the similarity in prior

explanations that two models ascribe to a given dataset. We have empirically demonstrated
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that our choice of modeling the evidence (or marginal likelihood) with a gp in model space is

capable of predicting the evidence value of unseen models with enough fidelity to effectively

explore model space via Bayesian optimization.
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Chapter 6

Automated Active learning

In the previous chapter, we developed an automated model search mechanism for fixed-size

datasets. Here, we want to extend this approach to active learning. Model selection is

particularly difficult in active learning problems, as only a small amount of training data may

be available. It is difficult to choose a model to describe the data that one has not seen yet;

unless a human expert can provide assistance. In the following, we develop an automated

framework for active learning. We focus on automating active optimization but these ideas

can be easily extended to any active learning setting.

6.1 Automated Bayesian optimization

Global optimization of expensive, potentially gradient-free functions has long been a critical

component of many complex problems in science and engineering. As an example, imagine

that we want to tune the hyperparameters of a deep neural network in a self-driving car. That

is, we want to maximize the generalization performance of the machine learning algorithm,

but the functional form of the objective function f is unknown and even a single function
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evaluation is costly —it might take hours (or even days!) to train the network. These features

render the optimization particularly difficult.

Bayesian optimization has nonetheless shown remarkable success on optimizing expensive

gradient-free functions [40, 6, 78]. Bayesian optimization works by maintaining a proba-

bilistic belief about the objective function and designing a so-called acquisition function

that intelligently indicates the most-promising locations to evaluate f next. Although the

design of acquisition functions has been the subject of a great deal of research, how to

appropriately model f has received comparatively less attention [8, 78], despite being a

decisive factor for performance. In fact, this was considered the most important problem in

Bayesian optimization by Močkus [62], in a seminal work in the field:

“The development of some system of a priori distributions suitable for different
classes of the function f is probably the most important problem in the application
of [the] Bayesian approach to ... global optimization” (Močkus 1974, p. 404).

We develop a search mechanism for appropriate surrogate models (prior distributions) to

the objective function f . Our model-search procedure operates via Bayesian optimization

in model space. Our method does not prematurely commit to a single model; instead, it

uses several models to form a belief about the objective function and plan where the next

evaluation should be. Our adaptive model averaging approach accounts for model uncertainty,

which more realistically copes with the limited information available in practical Bayesian

optimization applications. In Figure 1, we show two instances of Bayesian optimization

where our goal is to maximize the red objective function f . Both instances use expected

improvement as acquisition function. The difference between is the belief about f : using a

single model (left) or combining several models using our automated Bayesian optimization
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observations D true function predictive mean 95% credible interval

expected improvement
next observation location

Figure 6.1: Importance of model selection in Bayesian optimization. Top left: one model
represents the belief about the objective. Top right: a mixture of models selected by our
approach represents the belief about f . Bottom: the acquisition function value (expected
improvement) computed using the respective beliefs about the objective. abo places the
next observation at the optimum.
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(abo) approach (right). A single model does not capture the nuances of the true function.

In contrast, abo captures the linear increasing trend of the true function and produces a

credible interval which successfully captures the function’s behavior. Consequently, abo finds

the optimum in the next iteration.

Finally, we demonstrate empirically that our approach is consistently competitive with or

outperforms other strong baselines across several domains: benchmark functions for global

optimization functions, hyperparameter tuning of machine learning algorithms, reinforcement

learning for robotics, and determining cosmological parameters of a physical model of the

Universe.

Related Work

Our approach is inspired by some recent developments in the field of automated model

selection [58, 13, 28]. Here, we take these ideas one step further and consider automated

model selection when actively acquiring new data.

Gardner et al. [16], Kulick et al. [44] also tackled the problem of model selection in an active

learning context but with a different goal. Given a fixed set of candidate models, the authors

proposed a method for gathering data to quickly identify which model best explains the data.

Here our ultimate goal is to perform global optimization (6.1) when we can dynamically

change our set of models. In future work, it would be interesting to examine whether it may

be possible to combine our ideas with their proposed method to actively learn in model space.

More recently, Gardner et al. [18] developed an automated model search for Bayesian

optimization similar to our method. Their approach, however, uses a mcmc strategy for

sampling new promising models, whereas we adapt the Bayesian optimization search of
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proposed by Malkomes et al. [58]. We will discuss further differences between our approach

and their mcmc method in the next section.

6.2 Bayesian optimization with multiple models

Suppose we want to optimize an expensive, perhaps black-box function f : X → R on some

compact set X ⊆ X . We may query f at any point x and observe a possibly noisy value

y = f(x) + ε. Our ultimate goal is to find the global optimum:

xopt = arg min
x∈X

f(x) (6.1)

through a sequence of evaluations of the objective function f . This problem becomes

particularly challenging when we may only make a limited number of function evaluations,

representing a real-world budget B limiting the total cost of evaluating f . Throughout

this text, we denote by D a set of gathered observations D = (X,y), where X is a matrix

aggregating the input variables xi ∈ X, and y is the respective vector of observed values

yi = f(xi) + ε.

Modeling the objective function. Assume we are given a prior distribution over the

objective function p(f) and, after observing new information, we have means of updating our

belief about f using Bayes’ rule:

p(f | D) =
p(D | f)p(f)

p(D)
. (6.2)

The posterior distribution above is then used for decision making, i.e., selecting the x we

should query next. When dealing with a single model, the posterior distribution (6.2) suffices.
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Here, however, we want to make our model of f more flexible, accounting for potential

misspecification. Suppose we are given a collection of probabilistic models {Mi} that offer

plausible explanations for the data. Each model M is a set of probability distributions

indexed by a parameter θ from the corresponding model’s parameter space ΘM. With

multiple models, we need a means of aggregating their beliefs. We take a fully Bayesian

approach and we use the model evidence (or marginal likelihood), the probability of generating

the observed data given a modelM,

p(y | X,M) =

∫
p(y | X, θ,M) p(θ | M) dθ, (6.3)

as the key quantity for measuring the fit of each model to the data. The evidence integrates

over the parameters θ to compute the probability of the model generating the observed data

under a hyperprior distribution p(θ | M). Given (6.3), one can easily compute the model

posterior,

p(M | D) =
p(y | X,M)p(M)

p(y | X)
=

p(y | X,M)p(M)∑
i p(y | X,Mi)p(Mi)

, (6.4)

where p(M) represents a prior probability distribution over the models. The model posterior

gives us a principled way of combining the beliefs of all models. Our model of f can now be

summarized with the following model-marginalized posterior distribution:

p(f | D) =
∑

i

p(Mi | D)

∫
p(f | D, θ,Mi)p(θ | D,Mi) dθ

︸ ︷︷ ︸
p(f |D,Mi)

. (6.5)

Note that (6.5) takes into consideration all plausible models {Mi} and the integral p(f |

D,Mi) accounts for the uncertainty in each model’s hyperparameters θ ∈ ΘMi
. Unfortunately,

the latter is often intractable and we will discuss means of approximating it in Section 6.4.
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Next, we describe how to use the model-marginalized posterior to intelligently optimize the

objective function.

Selecting where to evaluate next. Given our belief about f , we want to use this

information to select which point x we want to evaluate next. This is typically done by

maximizing an acquisition function α : X → R. Instead of solving (6.1) directly, we optimize

the proxy (and simpler) problem

x∗ = arg max
x∈X

α(x;D). (6.6)

We use expected improvement (ei) [62] as our acquisition function. Suppose that f ′ is the

minimal value observed so far.14 ei selects the point x that, in expectation, improves upon

f ′ the most:

αei(x ;D,M) = Ey
[
max(f ′ − y, 0) | x,D,M

]
. (6.7)

Note that if p(y | x,D,M) is a Gaussian distribution (or can be approximated as one), the

expected improvement can be computed in closed form. Usually, acquisition functions are

evaluated for a given model choiceM. As before, we want to incorporate multiple models in

this framework. For ei, we can easily take into account all models as follows:

αei(x ;D) = Ey,M
[
max(f ′ − y, 0) | x,D

]
= EM

[
αei(x ;D,M)

]
. (6.8)

We could also derive similar results for other acquisition functions such as probability of

improvement [45] and gp upper confidence bound (gp-ucb) [79].
14We make a simplifying assumption that the noise level is small, thus f ′ ≈ mini µf |D(xi) and y(x) ≈ f(x).

77



6.3 Automated model selection for fixed-size datasets

Before introducing our automated method for Bayesian optimization, we review some key

concepts from the previous chapter.

Space of models. First we need a space of gp models that is general enough to explain

virtually any dataset. We adopt the generative kernel grammar of [13] due to its ability to

create arbitrarily complex models. We start with a set of so-called base (one-dimensional)

kernels, such as the common squared exponential (se) and rational quadratic (rq) kernels.

Then, we create new and potentially more complex kernels by summation and multiplication,

over individual dimensions, of the base kernels. This let us create kernels over multidimensional

inputs. As a result, we have a space of kernels that allows one to search for appropriate

structures (different kernel choices) as well as relevant features (subsets of the input). Now,

we need an efficient method for searching models from this given space.

Bayesian optimization for model search. Suppose we are given a space of probabilistic

models M such as the above-cited generative kernel grammar. As mentioned before, the key

quantity for model comparison in a Bayesian framework is the model evidence (6.3). Previous

work has shown that we can search for promising modelsM∈M by viewing the evidence

as a function g : M→ R to be optimized. Our method consists of a Bayesian optimization

approach to model selection (boms), in which we try to find the optimal model

Mopt = arg max
M∈M

g(M;D), (6.9)

where g(M;D) is the (log) model evidence: g(M;D) = log p(y | X,M). Two key aspects to

remember are: the unusual gp prior, p(g) = GP(g;µg, Kg), where the mean and covariance
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functions are appropriately defined over the model space M; and the heuristic for traversing

M by maintaining a set of candidate models C. The precise mechanism for traversing the

space of models is not particular relevant for this exposition, but the fact that C is changing

as we search for better models is.

6.4 Automating Bayesian optimization with Bayesian op-

timization

Here, we present our automated Bayesian optimization (abo) algorithm. abo is a two-level

Bayesian optimization procedure. The “outer level” solves the standard Bayesian optimization

problem, where we want to search for the optimum of the objective function f . Inside the

Bayesian optimization loop, we use a second “inner” Bayesian optimization, where the goal is

to search for appropriate models {Mi} to the objetive function f . The inner optimization

seeks models maximizing the model evidence as in boms (Section 3). The motivation is

to refine the set of models {Mi} before choosing where we want to query the (expensive)

objective function f next. Given a set of models, we can use the methodology presented in

Section 2 to perform Bayesian optimization with multiple models.

In the next subsection, we will describe the inner Bayesian optimization method which we

refer to as active boms (aboms). Before going to the second Bayesian optimization level,

we summarize abo in Algorithm 1. First, we initialize our set of promising models {Mi}

with random models chosen from the grammar of kernel, same used in [13]. To select these

models, we perform random walks from the the empty kernel and repeatedly apply a random

number of grammatical operations. The number of operations is sampled from a geometric
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Algorithm 1 Automated Bayesian Optimization
Input: function f , budget B, initial data D
{Mi} ← Initial set of promising models
repeat
{Mi} ← update models ({Mi},D)
{Mi} ← aboms({Mi},D)
p(M | D)← compute model posterior
discard irrelevant models p(Mi | D) < 10−4

x∗ ← arg maxx∈X αei(x ;D).
y∗ ← f(x∗) + ε
D ← D ∪ {(x∗, y∗)}

until budget B is depleted

distribution with termination probability of 1
3
. Then, at each iteration: we update all models

with current data, computing the corresponding model evidence of each model; use aboms

(the inner model-search optimization) to include more promising candidate models in {Mi};

exclude all models that are unlikely to explain the current data, those with p(M | D) < 10−4;

sample the function at location x∗ using (6.8) and all models {Mi}; finally, we evaluate

y∗ = f(x∗) + ε and include this new observation in our dataset.

Active Bayesian optimization for model search

The critical component of abo is the inner optimization procedure that searches for suit-

able models to the objective function: the active Bayesian optimization for model search

(aboms). Notice that the main challenge is that aboms is nested in a Bayesian optimization

loop, meaning that both data and models will change as we perform more outer Bayesian

optimization iterations.

Suppose we already gathered some observations D of the objective function f . Additionally,

we use the previously proposed boms (Section 3) as the inner model search procedure.

80



Inside boms, we tried different models, gathering observations of the (log) model evidence,

g(M;D) = log p(y | X,M). We denote by Dg = {Mj, g(Mj;D)} the observations of the

inner Bayesian optimization. After one loop of the outer Bayesian optimization, we obtain

new data D′ = D∪{(x∗, y∗)}. Now, the model evidence of all previously evaluated models Dg
changes since g(Mj,D) 6= g(Mj,D′) for all j. As a result, we would have to retrain all models

in Dg to correctly compare them. Recall that there are good models in Dg for explaining the

objective function f . These models will be passed to the outer Bayesian optimization, where

they will be updated—ultimately, we want to provide outstanding suggestions x∗ for where

to query f next, thus they need to be retrained. A large portion of the tested models in Dg,

however, are not appropriated for modeling f ; in fact, they can be totally ignored by the

outer optimization. Yet these “bad” models can help guide the search toward more-promising

regions of model space. How to retain information from previously evaluated models without

resorting to exhaustive retraining?

Our answer is to modify boms in two ways. First, we place a gp on the normalized model

evidence, g(M;D) = log p(y | X,M) / |D|, which let us compare models across iterations.

Second, we assume that each evidence evaluation is corrupted by noise, the variance of which

depends on the number of data points used to compute it: the more data we use, the more

accurate our estimate, and the lower the noise. More specifically, we use the same gp prior of

discussed in the previous chapter, p(g) = GP(g;µg, Kg), where µg : M→ R is just a constant

mean function and Kg : M2 → R is the “kernel kernel” defined as a squared exponential kernel

that uses the (averaged) Hellinger distance between the inputs as oppose to the standard

`2 norm. Our observation model, however, assumes that the observations of the normalized

model evidence are corrupted by heterogenous noise:

yg(M;Dn) =
g(M;Dn)

n
+ ε
( 1

n

)
. (6.10)
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To choose the amount of noise, we observed that, using the chain rule, the marginal likelihood

can be written as

log p(y | X,M) =
∑

i

log p
(
yi | xi,

{
(xj, yj) | j < i

}
,M

)
, (6.11)

which is the sum of the marginal predictive log likelihoods for the points in the D. When we

divide log p(y | X,M) by |D| = n, we can interpret the result as an estimate of the average

predictive log marginal likelihood.15 Therefore, if

log p(y | X,M)/n ≈ E
[

log p(y∗ | x∗,D,M) | M
]
,

then the variance of this estimate with n measurements is

Var
[

log p
(
yi | xi,

{
(xj, yj) | j < i

}
,M

)]
/n.

which shrinks like σ2
g/n for a small constant σg (e.g., 0.5). For large n it goes to 0. This

mechanism gracefully allows us to condition on the history of all previously proposed models

during the search. By modeling earlier evidence computations as noisier, we avoid recomputing

the model evidence of previous models every round, but we still make the search for good

models better informed.

Implementation

In practice, several distributions presented above are often intractable for gps. Now, we

discuss how to efficiently approximate these quantities. First, instead of using just a delta
15Note that the training data is not independent since we are choosing the locations x, and we are not

assuming that n→∞
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approximation to the hyperparameter posterior p(θ | D,M), e.g. mle/map, we use a

Laplace approximation, i.e., we make a second-order Taylor expansion around its mode:

θ̂ = arg maxθ log p(θ | D,M). This results in a multivariate Gaussian approximation:

p(θ | D,M) ≈ N (θ; θ̂,Σ) where Σ−1 = −∇2 log p(θ | D,M)
∣∣
θ=θ̂

.

Conveniently, the Laplace approximation also give us a means of approximating the model

evidence:

log p(y | X,M) ≈ log p(y | X, θ̂,M) + log p(θ̂ | M)− 1
2

log det Σ−1 + d
2

log 2π,

where d is the dimension of θ. The above approximation can be interpreted as rewarding

explaining the data well while penalizing model complexity [63, 67].

Next consider the posterior distribution p(f | D,M), which is an integral over the model’s

hyperparameters. This distribution is intractable, even with our Gaussian approximation

to the hyperparameter posterior p(θ | D,M) ≈ N (θ; θ̂,Σ). We use a general approximation

technique originally proposed by [65] (Section 4) in the context of Bayesian quadrature. This

approach assumes that the posterior mean of p(f ∗ | x∗,D, θ,M) is affine in θ around θ̂ and

the gp covariance is constant. Let

µ∗(θ) = E[f ∗ | x∗,D, θ,M] and ν∗(θ) = Var[f ∗ | x∗,D, θ,M]

be the posterior predictive mean and variance of f ∗. The result of this approximation is that

the posterior distribution of f ∗ is approximated by

p(f ∗ | x∗,D,M) ≈ N
(
f ∗;µ∗(θ̂), σ2

affine

)
, where σ2

affine =
[
∇µ∗(θ̂)

]>
Σ
[
∇µ∗(θ̂)

]
.
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This approach was shown to be a good alternative for propagating the uncertainty in the

hyperparameters [65]. Finally, given the Gaussian approximations above (6.12), we use

standard techniques to analytically approximate the predictive distribution:

p(y∗ | x∗,D,M) =

∫
p(y∗ | f ∗) p(f ∗ | x∗,D,M) df ∗.

Our code and data will be available online: https://github.com/gustavomalkomes/abo.

6.5 Empirical Results

We validate our approach against several optimization alternatives and across several domains.

Our first baseline is a random strategy that selects twice as many locations as the other

methods. We refer to this strategy as random 2× [48]. We also consider a competitive

Bayesian optimization implementation which uses a single non-isotropic squared exponential

kernel (se), expected improvement as the acquisition function and all the approximations

described in Section 6.4. Then, we considered two more baselines that represent the uncertainty

about the unknown function through a combination of multiple models. One baseline uses

the same collection of predefined models throughout its execution; we refer to this approach

as the bag of models (bom). The other is an adaptation of the method proposed in [18],

here referred as mcmc, which, similar to boms, is allowed to dynamically select more models

every iteration. Instead of using the additive class of models proposed in the original work,

we adapted their Metropolis–Hastings algorithm to the more-general compositional grammar

proposed by Duvenaud et al. [13], which is also used by our method. This choice lets us

compare which adaptive strategy performs better in practice. Specifically, given an initial
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Figure 6.2: Averaged minimum observed function value and standard error of all methods for
several objective functions. For better visualization, we omit the first 10 function evaluations
since they are usually much higher than the final observations.
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modelM, the mcmc proposal distribution randomly selects a neighboring modelM′ from

the grammar. Then we compute the acceptance probability as in [18].

All multiple models strategies (bom, mcmc and boms) start with the same selection of models

(See Section 6.4) and they aim to maximize the model-marginalized expected improvement

(6.8). Both adaptive algorithms (boms and mcmc) are allowed to perform five model

evidence computations before each function evaluation; boms queries five new models and

mcmc performs five new proposals. In our experiments, we limited the number of models

to 50, always keeping those with the higher model evidence. Model choice and acquisition

functions apart, we kept all configurations the same. All methods used l-bfgs to optimize

each model’s hyperparameters. To avoid bad local minima, we perform two restarts, each

begining from a sample of p(θ | M). All the approximations described in Section 6.4 were

also used. We maximized the acquisition functions by densely sampling 1000d2 points from

a d-dimensional low-discrepancy Sobol sequence, and starting MATLAB fmincon (a local

optimizer) from the sampled point with highest value. Each experiment, was repeated 20

times with five random initial examples, which were the same for all Bayesian optimization

methods. random 2× results were averaged across 1000 repetitions.

Benchmark functions for global optimization.

Our first set of experiments are test functions commonly used as benchmarks for optimization

[82]. We adopted a similar setup as previous works [27] but included more test functions.

The goal is to find the global minimum of each test function given a limited number of

function evaluations. We provide more information about the chosen functions in the

supplementary material. The maximum number of function evaluations was limited to 10

times the dimensionality of the function domain being optimized.
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Table 6.1: Results for the average gap performance across 20 repetitions for different test
functions and methods. random 2× (r 2×) results are averaged across 1000 experiments.
Numbers that are not significantly different from the highest average gap for each function
are bolded (one-sided paired Wilcoxon signed rank test, 5% significance level).

function d r 2× se bom mcmc abo

Ackley 2d 2 0.422 0.717 0.984 0.988 0.980
Beale 2 0.725 0.541 0.644 0.596 0.688
Branin 2 0.743 1.000 0.950 0.996 0.998
Eggholder 2 0.461 0.516 0.529 0.546 0.579
Six-Hump Camel 2 0.673 0.723 0.988 0.992 0.998
Drop-Wave 2 0.458 0.496 0.421 0.447 0.481
Griewank 2d 2 0.669 0.924 0.954 0.941 0.964

synthetic Rastrigin 2 0.538 0.410 0.832 0.827 0.850
objectives Rosenbrock 2 0.787 1.000 0.999 0.993 0.999

Shubert 2 0.337 0.384 0.374 0.332 0.481
Hartmann 3 0.682 1.000 0.970 0.999 1.000
Levy 3 0.669 0.774 0.913 0.942 0.971
Rastrigin 4d 4 0.414 0.261 0.823 0.715 0.821
Ackley 5d 5 0.299 0.736 0.409 0.886 0.809
Griewank 5d 5 0.605 0.971 0.756 0.974 0.968

mean gap 0.566 0.697 0.770 0.812 0.839
median gap 0.605 0.723 0.832 0.941 0.964

svm 3 0.903 0.912 0.840 0.938 0.956
lda 3 0.939 0.950 0.925 0.950 0.950
Logistic regression 4 0.928 0.774 0.899 0.936 0.994
Robot pushing 3d 3 0.815 0.927 0.878 0.967 0.935

real-world Robot pushing 4d 4 0.824 0.748 0.619 0.668 0.715
objectives Neural network Boston 4 0.491 0.594 0.703 0.640 0.757

Neural network cancer 4 0.845 0.645 0.682 0.773 0.749
Cosmological constants 9 0.739 0.848 0.859 0.984 0.999

mean gap 0.810 0.800 0.801 0.857 0.882
median gap 0.834 0.811 0.850 0.937 0.943
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Figure 6.3: Average gap across the eight real-world objective functions vs. fraction of total
number of function evaluations. Here, we display the performance of random search (r 1×)
for reference.

We report the gap measure [34], defined as f(xfirst)−f(xbest)
f(xfirst)−f(xopt)

, where f(xfirst) is the minimum

function value among the first initial random points, f(xbest) is the best value found by the

method, and f(xopt) is the optimum.

Table 6.1 (top) shows the results for different functions and methods. For each test function,

we perform a one-sided Wilcoxon signed rank test at the 5% significance level with each

method and the one that had the highest average performance. All results that are not

significantly different than the highest are marked in bold. First, note that random 2×

performs poorly in these synthetic constructed “hard” functions. Then, observe that the

overall performance of all multi-model methods is higher than the single gp baseline, with

boms leading these algorithms with respect to the mean and median gap performance overall.

In fact, abo’s performance is comparable to the best method for 11 out of 15 functions.

Real-world optimization functions. To further investigate the importance of model

search, we consider a second set of functions used in recent publications. Our goal was
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to select a diverse and challenging set of functions which might better demonstrate the

performance of these algorithms in a real application. More information about these functions

is given in the supplementary material.

We show the gap measure for the second set of experiments in Table 6.1 (bottom) and perform

the same statistical test as before. For computing the gap measure in these experiments,

when the true global minimum is unknown, we used the minimum observed value across all

experiments as a proxy for the optimal value. In Figure 6.3 we show the average gap measure

across all eight test functions as a function of the total number of functions evaluations

allowed. In Figure 6.2, we show the averaged minimum observed function value and standard

error of all methods for 6 out of the 8 functions (see supplementary material for the other

two functions).

With more practical objective functions, the importance of model search becomes more clear.

abo either outperforms the other methods (4 out of the 8 datasets) or achieves the lowest

objective function. Figure 6.3 also shows that abo quickly advances on the search for the

global minimum—on average, the gap measure is higher than 0.8 after at half of the budget.

Interestingly, random 2× also performs well for 2 out of these 8 datasets, those are the

problems in which all methods have a similar performance, suggesting that these functions

are easier to optimize than the others.

Naturally, training more models and performing an extra search to dynamically select models

require more computation than running a standard single Bayesian optimization. In our

implementation, not optimized for speed, the median wall clock across all test functions for

updating and searching the five new models was 65 and 41 seconds, respectively, for mcmc

and abo. Note that the model update is what dominates this procedure for both methods,

with mcmc tending to select more complex models than abo. In practice, one could perform
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this step in parallel with the expensive objective function evaluation, requiring no additional

overhead besides the cost of optimizing the model-marginal acquisition function, which can

also be adjusted by the user.

6.6 Conclusion

We introduced a novel automated Bayesian optimization approach that uses multiple models

to represent its belief about an objective function and subsequently decide where to query

next. Our method automatically and efficiently searches for better models as more data is

gathered. Empirical results show that the proposed algorithm often outperforms the baselines

for several different objective functions across multiple applications. We hope that this work

can represent a step towards a fully automated system for Bayesian optimization that can be

used by a nonexpert on arbitrary objectives.
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Chapter 7

Discussion and Future Directions

In this dissertation, we developed four novel active learning algorithms offering automated

solutions for real-world problems in science, medicine, and engineering. Our algorithms

were shown to achieve superior empirical performance than previously proposed approaches.

Additionally, they are easy to use and do not require extensive machine-learning expertise to

be used in applications.

In our first contribution, we investigated active search—an active learning paradigm that,

among other applications, can be used to facilitate drug discovery. We gave a theoretical

hardness result for active search and proposed a novel sample-efficient, computational-tractable

policy for this problem. In more details, we proved that no polynomial-time algorithm can

approximate the expected utility of the optimal policy within a constant approximation ratio.

We then proposed a novel method, known as efficient nonmyopic search (ens), for active

search. Our method approximates the Bayesian optimal policy by computing, conditioned

on the location of the next candidate point, how many additional targets are expected at

termination if the remaining budget is spent simultaneously. By always considering the

remaining budget, and approximately accounting for the impact of our current choice in

future observations, our approach displays a marvelous trade-off between exploration and
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exploitation. We also derived an effective pruning strategy that can significantly improve

ens’ efficiency in practical applications. We conducted an extensive set of experiments

that demonstrated the superior overall performance of our approach on various domains.

More recently, we have extended ens to batch active learning, where multiple points are

selected simultaneously [39]. We have demonstrated that active search is, in general, a hard

problem. However, one exciting future direction is to understand, under what conditions

(e.g., assumptions about the structure of problem instances) we can find efficient algorithms

with theoretical guarantees. We could also investigate different strategies for using our

approximation to the Bayesian optimal policy, for example, combining ens with an A∗

algorithm could result in a more efficient policy.

Our second contribution was to introduce a novel information-theoretic approach for active

model selection, named Bayesian active model selection. Specifically, our approach is based

on the mutual information between the output variable and the model class. Different from

previous approaches, our method does not require extensive model retraining when evaluating

each prospective next location, resulting in an efficient active model selection policy. Further,

we provided an effective and efficient analytic approximation to our policy that can be used

for automatically learning the model class of Gaussian processes with arbitrary observation

likelihoods. Then, we successfully apply this technique to active structure discovery and to

rapid screening for noise-induced hearing loss, showing that our approach is sample-efficient.

Bayesian active model selection is a general framework that can be extended to many exciting

applications. Vision tests and other psychometric tests could be automated under the same

principles, allowing fast screening of large populations with relatively low-cost. Another

promising direction is to investigate non-myopic policies for this problem, as well as strategies

for querying multiple points.
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Our third contribution was to introduce a novel search mechanism for model selection. Here

we creatively framed model selection as an active optimization problem on the model space.

We then adapted standard Bayesian optimization principles to solve this non-Euclidean

black-box optimization problem. Our methodology is general and is suitable for any class

or probabilistic models. In this work, however, we focused on the rich and common used

class of Gaussian process models. We proposed a novel covariance function that captures

the similarity between models. Empirically, we have demonstrated that modeling the model

evidence (or marginal likelihood) with a gp in model space is capable of predicting the quality

of unobserved models with enough fidelity to effectively explore model space via Bayesian

optimization. Finally, we compared our approach with a previously proposed state-of-the-art

technique and observed that our approach is sample-efficient. In a high level, we have

shown that adapting Bayesian optimization to other non-Euclidean input spaces is promising.

Several other domains could be investigated. The space of architectures for neural networks,

for example, would be a natural next step.

Our last contribution is a novel automated active learning framework. In particular, we

apply this approach to Bayesian optimization, creating an automated Bayesian optimization.

Our algorithm dynamically builds a collection of models to explain the latent objective

function. As more observation are gathered, our approach refines the collection of models

using Bayesian optimization in the model space—similarly to our previous contribution. To

efficiently perform model search in the active learning regime, we assume that each model

evidence was corrupted by noise, the variance of which depends on the number of data points

used to compute it. Our active model search procedure is completely general and could

be applied to any active learning algorithm. Finally, empirical results show that the our

method outperforms the baselines for several objective functions across multiple applications.

In a future work, we could demonstrate the effectiveness of our automated active learning
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to regression and classification tasks. Another interesting direction is to explore strategies

for coupling our two-level Bayesian optimization loops. Instead of virtually running two

independent Bayesian optimization algorithms, we could make the inner (model selection)

Bayesian optimization search for relevant models for the outer task; as opposed to searching

for all models that are relevant for explaining the current data well, as we have proposed.

This would make the algorithm less general and more complicated (at least naively it would

require extensive retraining!) but it could result in a more sample-efficient solution.
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Appendix A

Hardness of active search

We present the proof of Theorem 1. We assume that active search policies have access to the

correct marginal probabilities f(x;D) = Pr(y = 1 | x,D), for any given point x and labeled

data D, which may include “ficticious” observations. Further, the computational cost will be

analyzed as the number of calls to f , i.e., f(x;D) has unit cost. Note that the optimal policy

operates in such a computational model, with exponentially many calls (in terms of |X |) to

the marginal probability function f .

Our proof technique consists of constructing an explicit active search instance where a small

“secret” set of points S encodes the location of a larger “hidden” group of positive points. A

particular feasibly exponential-cost policy identifies this small set first, and then obtains a

large reward by collecting the revealed targets. We will show that an algorithm with limited

computational power (i.e., polynomial in n = |X |) will not be able to identify the set S. As a

consequence, its performance will be arbitrarily worse than an optimal solution as the size of

the instance increases.

The crux of the proof is to construct a class of instances H that we present next. Figure

A.1 shows a schematic representation of an example instance I ∈ H. The instances in H
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Figure A.1: An instance of active search where any efficient algorithm can be arbitrarily
worse than an optimal policy.

differ from each other by a permutation of the labels. An instance has n = |X | = 22m points,

where m is a parameter of the instance. The search budget is defined to be B = m2. The

points in each instance can be categorized as follows.

“Clumps.” These points are partitioned into 2m groups, which we will call “clumps,” each of

size B. All points in a clump share the same label. Additionally, exactly one of the clumps

comprises all positive points; the remaining points are all negative. The clump containing

the positive points is chosen uniformly at random; therefore, the prior marginal probability

for any point xc in this category is f(xc; ∅) = pc = 2−m. We denote the clump of all positive

points C∗, where ∗ can be regarded as a m-bit integral index 1 ≤ ∗ ≤ 2m. Figure A.1(b)

illustrates these points.

“Isolated points.” The remaining points share the property that observing any single one

of them does not change the marginal probabilities of any other point. These points are

illustrated in Figures A.1(a) (black dots) and A.1(c). The marginal probabilities for any point
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xb in this category is defined to be f(xb; ∅) = pb = 1− c
√

1/2, where we define c =
√
m/2 for

convenience. These points can be further classified into two categories:

• A “secret set,” denoted by S; see Figure A.1(a) (black dots). These points encode which

of the clumps C∗ contains the positive points, using a scheme we describe below. For

ease of exposition, we partition the set S into m subsets S1, . . . , Sm, each of size dc,

where we define d =
√
m. Thus |S| = mdc = m2/2 = B/2; the size of this secret set is

exactly half the budget.

The key of this construction is that each subset Si encodes one bit bi of information

about which clump C∗ contains the positive points, using a simple encoding scheme:

the binary representation of the positive clump C∗’s index is ∗ = b1b2 . . . bm. Each bit

is encoded with a two-step mechanism. First, each Si is partitioned into d groups of c

points, each group encoding a “meta” bit of information bij, 1 ≤ i ≤ m, 1 ≤ j ≤ d, by a

logical or. These meta-bits, not in the problem instance, are illustrated by the white

dots in A.1(a). Finally, the meta-bits associated with Si encode the bit bi via a logical

xor,16 bi = bi1 ⊕ · · · ⊕ bid.

• Independent points. The remaining 22m − 2mB −mdc points are totally independent

from the others; revealing them conveys no information for any other point. We denote

this set of points by R.

Observation 1. At least d points from Si need to be observed in order to infer one bit bi of

information about the positive clump.

A virtual bit bi is computed by the xor operation of the d associated meta-bits bi =

bi1 ⊕ · · · ⊕ bid. Notice that each bij has same marginal probability of being positive, i.e.,
16Sum of the bits modulo 2.

105



∀i, j,Pr(bij = 1) = (1−pb)c = 1/2. We also have ∀i,Pr(bi = 1) = 1/2. It is necessary to observe

all d meta-bits bij from the same group Si to infer the bit bi, since observing a fraction of

the inputs of an xor does not change the marginal belief about its outcome. So observing

d− 1 or fewer points from S conveys no information about the positive clump. Equivalently,

∀x,Pr(y = 1 | x,D) = Pr(y = 1 | x) if |D ∩ S| ≤ d− 1.

Observation 2. Observing any number of clump points does not change the marginal

probability of any point in the secret set S.

We need to make sure that no external information can help to identify the secret set S.

Notice that the knowledge of bi does not change the marginal probability of any bij; hence,

no point x in S will have a different probability after observing bi. This means that observing

points outside S does not help distinguish S from the remaining isolated points R.

Now we formally restate Theorem 1 and provide its proof. The theorem implies that a

polynomial time algorithm cannot achieve a constant approximation ratio.
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Theorem 2. Any (possibly randomized) policy for active search that performs o
(
n
√

1
2

logn
)

inference calls f(x,D), with |D| ≤ B, has approximation ratio with respect to the expected

utility of the optimal policy of O
(

1√
logn

)
where |X | = n is the number of points, and B is

the budget.17

Proof. Consider a random instance I ∈ H and fix a policy A. Let α be the total number of

inference calls performed by A throughout its execution. At the ith inference call Pr(y = 1 |

x,Di), A might use an arbitrary training set Di of size at most B. We will show that A has

a very small probability of collecting a large reward on I.

Before analyzing the algorithm A, we present a lower bound on the performance of an optimal

policy. Consider the following policy with unlimited computational power: In the first

iteration, compute the marginal probability of an arbitrary fixed clump point, conditioning

on observing every possible subset of the isolated points of size d with labels all equal to 1.

This set of O(nd) = O(n
√

1
2

logn) inference calls will reveal the location of the secret set S:

exactly those points will modify the probabilities of the fixed clump point. Now the policy

spends the first half of its budget querying the points in S (recall |S| = B/2). These outcomes

reveal the hidden clump of positives C∗. The policy now spends the second half of the budget

querying (collecting) these positive points. The expected performance of this strategy is

B/2 + pb B/2 > B/2. Certainly this is a lower bound on the optimal performance; hence

opt >
B

2
. (A.1)

17Note we used the little-o notation for the number of inference calls, and the big-O notation of the
approximation ratio.
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Now consider the algorithm A at the ith inference. By Observations 1 and 2, A cannot

differentiate between the points in S and those in R unless |Di ∩ S| ≥ d. Suppose that before

the ith inference, the algorithm has no information about S. Then the chance of A choosing

a Di such that |Di∩S| ≥ d is no better than that of a random selection from n′ points, where

n′ = n− 2mB is the number of isolated points. We can upper bound the probability of A

choosing a dataset Di such that |Di ∩ S| ≥ d, by counting how many subsets would contain

at least d points from S, among all subsets of the n′ points of size at most B:

Pr
(
|Di ∩ S| ≥ d

)
≤
(
B/2
d

)(
n′−d
B−d
)

(
n′

B

) . (A.2)

We only consider the isolated points because an algorithm A that only queries the isolated

points has a higher probability of hitting the secret set. Also note that technically the

denomenator in (A.2) should be
(
n′

B

)
− i + 1 since one would not choose the same subsets

Dj, j < i as those before the ith inference. But asymptotically i ≤ α (assuming α = O(2n)

for now) is of much lower order than
(
n′

B

)
, therefore

(
n′

B

)
− α + 1 = Θ

((
n′

B

))
. Denote ph as

the probability of algorithm A ever “hiting” the secret set after α inferences; then ph can be

union-bounded:

ph ≤
α
(
B/2
d

)(
n′−d
B−d
)

(
n′

B

)

<
α
(
B
2

)d
Bd

(n′)d

=
α

(
2n′

B2

)d

108



Note B = m2 = 1
4

log2 n and n′ = n− 2mB = n−√n1
4

log2 n = Θ(n), so

(
2n′

B2

)d
= Θ

((
2n

B2

)d)

= Θ



(

n
1
32

log4 n

)√ 1
2

logn



= Θ
(
n
√

1
2

logn
)
.

We have now derived

ph <
α

Θ(n
√

1
2

logn)
.

So for any α = O
(
n
√

1
2

logn−ε), where ε is a positive constant, we have

ph < O
(

1

nε

)
. (A.3)

If A ever hits the secret set S, for simplicity, we will assume that it achieves maximal

performance B. If A never finds the secret set, we can further consider the following two

cases. If the algorithm queries points x ∈ R, no marginal probabilities are changed; if a

point x ∈ Cj is queried, for any clump j, only the marginal probabilities of the clumps are

changed. The expected performance in these two cases can be upper bounded by pretending

that the algorithm had a larger budget of size 2B; in which half the budget (i.e., B) is spent

on querying points in R, and the other half on querying the clump points. The expected

number of targets found after B queries on R is

Bpb = B(1− c
√

1/2) = B
(

1− 2
− 2√

m

)
. (A.4)
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The expected number of targets found after B queries on the clump points is

B

2m
+

(
1− 1

2m

)(
B − 1

2m − 1
+

(
1− 1

2m − 1

)
(· · · )

)

=
B(B + 1)

2m+1
. (A.5)

Combining (A.4) and (A.5), we get that the expected performance in the case when A never

hits S can be upper bounded by

B(B + 1)

2m+1
+B

(
1− 2

− 2√
m
)
.

The overall expected performance of A can be upper bounded by

EA < Bph +
B(B + 1)

2m+1
+B

(
1− 2

− 2√
m
)
,

where we have used the trivial upper bound 1 > (1− ph). Finally, combining with the lower

bound of opt in (A.1), the approximation ratio can be upper bounded by

EA
opt

<
Bph + B(B+1)

2m+1 +B
(
1− 2

− 2√
m
)

B/2

= 2ph +
B + 1

2m
+ 2
(
1− 2

− 2√
m
)

= O
(

1

nε
+

log2 n

4
√
n

+ 2
(

1− 2
− 2

√
2√

logn

))

= O
(

1√
log n

)
.

for any α = O
(
n
√

1
2

logn−ε) = o
(
n
√

1
2

logn
)
. Note that it is easy to verify that 2

(
1−2

− 2
√
2√

logn
)

=

Θ
(

1√
logn

)
with L’Hôpital’s rule.
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