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ABSTRACT OF THE THESIS 

 

Computational Analysis of Functional Imaging in the Primary Auditory Cortex 

by 

Thomas Chen 

Master of Science in Computer Science 

Washington University in St. Louis, 2009 

Research Advisor:  Dennis Barbour 

 

Functional imaging can reveal detailed organizational structure in cerebral cortical areas, 

but neuronal response features and local neural interconnectivity can influence the 

resulting images, possibly limiting the inferences that can be drawn about neural 

function. Historically, discerning the fundamental principles of organizational structure in 

the auditory cortex of multiple species has been somewhat challenging with functional 

imaging as the studies have failed to reproduce results seen in electrophysiology. One 

difference might result from the way most functional imaging studies record the summed 

activity of multiple neurons. To test this effect, virtual mapping experiments were run in 

order to gauge the ability of functional imaging to accurately estimate underlying maps. 

The experiments suggest that spatial averaging improves the ability to estimate maps with 

low spatial frequencies or with large amounts of cortical variability, at the cost of 

decreasing the spatial resolution of the images. Despite the decrease in resolution, the 

results suggest that current functional imaging studies may be able to depict maps with 

high spatial frequencies better than electrophysiology can; therefore, the difficulties in 

recapitulating electrophysiology experiments with imaging may stem from underlying 

neural circuitry. One possible reason may be the relative distribution of response 

selectivity throughout the population of auditory cortex neurons. A small percent of 

neurons have a response type that exhibits a receptive field size that increases with higher 

stimulus intensities, but they are likely to contribute disproportionately to the activity 
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detected in functional images, especially if intense sounds are used for stimulation. To 

evaluate the potential influence of neuronal subpopulations upon functional images of the 

primary auditory cortex, a model array representing cortical neurons was probed with 

virtual imaging experiments under various assumptions about the local circuit 

organization. As expected, different neuronal subpopulations were activated 

preferentially under different stimulus conditions. In fact, stimulus protocols that can 

preferentially excite one subpopulation of neurons over the others have the potential to 

improve the effective resolution of functional auditory cortical images. These 

experimental results also make predictions about auditory cortex organization that can be 

tested with refined functional imaging experiments.  
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Chapter 1 Introduction 
Functional neuroimaging has become a powerful tool for evaluating the physiological 

characteristics of large neuronal populations at high spatial resolution. Functional maps 

of neocortical sensory areas in particular can often elucidate overall neuronal 

organization more clearly than even dense electrophysiological mapping studies. Modern 

functional brain imaging technologies include optical imaging of intrinsic signals (OIS) 

and functional magnetic resonance imaging of blood-oxygen-level-dependent signal 

(fMRI-BOLD), both of which exhibit high enough spatial resolution to reveal functional 

maps within individual cortical areas. Despite having high spatial resolution, however, 

both techniques still measure summed neuronal activity rather than the responses of 

individual neurons (Logothetis 2008; Logothetis et al. 2001). The neural activity summed 

within an individual imaged pixel/voxel is influenced by the correlated activity within the 

underlying neural circuitry. Presumably, the nature of this neural circuitry can directly 

influence functional imaging results. 

 

Auditory cortex has typically been challenging to study with functional imaging 

techniques, particularly for functional organization beyond acoustic frequency. Several 

factors may have contributed to these difficulties, including the physiological properties 

of auditory neurons themselves. Pure tone acoustic stimulation in early OIS studies of cat 

primary auditory cortex (A1) revealed stimulus-driven activity with nearly circular areas 

of activation that shifted across the cortical surface with changes in tone frequency 

(Harrison et al. 1998; Spitzer et al. 2001). Electrophysiological mapping studies, 

however, have demonstrated that isofrequency regions in cat A1 are long and band-like 

instead of circular (Cheung et al. 2001; Merzenich et al. 1973, 1975; Schreiner and 

Mendelson 1990). More recent OIS experiments have revealed band-like isofrequency 

structure and a clear tonotopic organization (Ojima et al. 2005), consistent with the 

findings from electrophysiology and implying that modern techniques can more closely 

recapitulate classical electrophysiological findings in A1. Recent FMRI-BOLD 

experiments in macaque monkey A1 have been able to define tonotopic frequency maps 
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(Petkov et al. 2006), as well as crude bandwidth maps (Kayser et al. 2007). OIS activity 

in A1 has been reported to increase monotonically with stimulus intensity (Harrison et al. 

1998; Ojima et al. 2005; Sheth et al. 2003; Sheth et al. 2004). Electrophysiology studies 

have shown that these responses are representative of a subpopulation of A1 neurons 

whose rate responses increase monotonically with increasing intensity (Pfingst and 

O'Connor 1981; Sadagopan and Wang 2008). Sophisticated imaging methods therefore 

appear to be able to discern some features of A1 that are also observed with 

electrophysiology. These methods have the potential to extend the understanding of A1 

functional organization beyond what is possible with electrode mappings that are sparse 

relative to functional imaging studies. The diversity of A1 receptive field structures and 

local interconnections may, however, fundamentally limit the inferences that can be 

drawn from such images. 

 

In this thesis, functional imaging was evaluated as a tool to investigate the primary 

auditory cortex, and possible limitations that cause the discrepancy between 

electrophysiology and functional imaging studies were identified. To do this, (1) the 

ability to accurately estimate A1 maps with electrophysiology and functional imaging 

was compared, and (2) possible limitations in functional imaging of A1 that result from 

the neural circuitry were identified. The first objective aims to examine fundamental 

limitations within the imaging due to technological limitations while the latter objective 

aims to examine the shortcomings of imaging due to the neural circuitry.  

 

Self-organizing feature maps (SOFMs) have been known to create plausible topographic 

structures for functional A1 and primary visual cortex maps based upon theoretical 

arguments (Obermayer et al. 1992; Watkins et al. 2009). For studying the limitations of 

imaging in mapping, maps were computationally sampled to determine how different 

mapping features affect the overall accuracy of the reconstructed map. Three different 

types of mapping characteristics were focused on: sampling density, sampling locations, 

and single- versus multi-unit mapping. 
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Examples of these maps were used to construct an array of modeled A1 neurons, which 

were then probed in virtual imaging experiments to determine how response 

nonlinearities peculiar to the auditory system may affect the results of functional imaging 

studies. In particular, some A1 neurons inherit from the cochlea a broadening of 

frequency sensitivity at increasing sound intensities. This broadening of frequency 

sensitivity is explored, and the relatively low stimulus selectivity that accompanies this 

property, may hinder the ability of imaging experiments to detect the underlying 

physiological activity in A1. Under many circumstances tested, these broadly tuned 

neurons dominated the imaged responses and led to results similar to those that have been 

observed physiologically with functional imaging. Different stimulus conditions affected 

the influence of the each neuronal response in the images, indicating that stimulus design 

can affect imaging results based upon the neuron population active at a particular time. 

Strategies to improve functional maps of A1 and extend current imaging results are 

evaluated. 
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Chapter 2 Experimental Methods 

2.1 Self-Organizing Feature Maps 

The self-organizing feature map (SOFM) is a dimensionality-reduction algorithm that 

projects n feature dimensions—in this case physiological features—onto the two 

anatomical dimensions of the cortical surface. The SOFM model is based on the wiring-

minimization principle where neurons that are connected are more likely to be located 

near each other, and the model assumes that neurons with similar characteristics are more 

likely to be connected with each other than neurons with less similar characteristics. 

Using this principle and assumption, the SOFM uses a competitive learning algorithm 

that incorporates Hebbian learning rates to generate spatial arrangements of neuronal 

properties well-matched to topographies observed in functional imaging studies of 

primary visual cortex (V1) (Farley et al. 2007; Obermayer and Blasdel 1993; Obermayer 

et al. 1992; Yu et al. 2005). The properties of SOFMs relevant to functional topographies 

in A1 are evaluated more thoroughly in (Watkins et al. 2009). In chapter 3, the SOFM 

models were used to create possible neuronal maps with varying degrees of spatial 

frequencies. In chapter 4, the SOFM inputs were adapted to create reasonable models of 

A1 topographies for neuronal characteristic frequency (CF), bandwidth and threshold. 

These features are sufficient to determine receptive field shapes and have been 

determined to be non-randomly distributed in A1 (Cheung et al. 2001; Philibert et al. 

2005; Recanzone et al. 1999; Schreiner and Mendelson 1990; Schreiner et al. 1992; 

Schreiner and Sutter 1992). Higher weightings of a feature lead to greater preservation of 

mapping uniformity and compactness of that feature. Higher weightings of a particular 

feature lead to greater preservation of mapping uniformity and compactness of that 

feature (Watkins et al. 2009). This report uses 3-feature SOFMs with a 10:2:1 weightings 

and 4-feature SOFMs with a 10:4:2:1 weighting. For the 10:4:2:1 weighting, a uniform 

distribution of feature 1 values is emphasized 2.5 times more in the SOFM algorithm than 

the feature 2, five times more than feature 3, and ten times more than feature 4.  
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2.2 Virtual Imaging Model 

2.2.1 SOFM Incorporation 

Cortical maps are modeled as an array with each value in the array representing the 

position and the neuronal properties of each unit in the map. These units are defined from 

the underlying SOFM. All arrays in this study are square with 150 × 150 units. A 4-

feature SOFM with a relative feature weighting of 10:4:2:1, which can be seen in Figure 

2.1, is selected for analyzing the estimation of cortical maps. These weightings were 

chosen to create a variety of order in the maps. In comparison to the other feature maps, 

the first feature map has relatively low spatial frequencies, and the fourth feature map 

exhibits high spatial frequency. In this thesis, spatial frequency refers to number of 

periods or cycles of the extreme values across the space of the map. The first feature map 

shows a half cycle, the second feature map shows three quarters of a cycle, and the third 

shows one and a half cycles. The fourth feature shows a numerous number of cycles.  

 

While neurons are organized within a cortical column, the properties of neurons isolated 

within a cortical column can vary (Atencio and Schreiner 2008; Phillips and Irvine 1981). 

To model this cortical variability, the SOFM represents the arithmetic mean of a spatial 

probability distribution instead of the actual values. The particular value of any given unit 

for any given map was drawn from this distribution. To quantify cortical variability, a 

multivariate Gaussian distribution with unique standard deviations for each feature 

(defined in this model as jitter, which is defined as a percentage of the total range of 

values for that feature) was used. Larger jitter simulates maps in cortical areas with larger 

variability in the columnar structure. A jitter of 0 represents a deterministic mapping with 

no variability in columnar structure. Cortical columns were created by layering the 

arrays. Each layer contained values that were jittered independently from the mean, but 

the locations of each unit and the underlying SOFM were the same between layers. 
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Figure 2.1. Four-feature SOFM. 

Self-organization feature map shows different levels of spatial frequency. In this model, 

four different neuronal features are mapped with a 10:4:2:1 weighting. Maps with higher 

weightings are more highly organized and uniform than maps with lower weightings. 

These maps were used as the base maps for the entire study.  
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2.2.2 Map Estimation 

To determine experimental and analytical practices useful for elucidating map structure, 

the SOFMs are created at the full 150 × 150 resolution and are then probed at lower 

sampling densities. These map estimations are created with either an averaged or an 

unaveraged procedure. The unaveraged estimations used sparse samples of actual unit 

values for a map. This condition was intended to simulate a sparse, single-unit sampling 

experiment. The averaged estimations are the computed mean feature values in a region 

around each of the sparsely sampled sites. This condition was intended to simulate a 

multiunit, local field potential, electrocorticographic or functional imaging experiment 

where the average activity of a local group of neurons is recorded in each measurement.  

 

Sampling locations in the unaveraged experiments are spaced either uniformly across the 

array or randomly sampled without replacement from the jittered maps. For the averaged 

estimations, sampling locations are all uniformly spaced across the array. The number of 

units or pixels/voxels that were used to estimate the map is represented by the linear 

sampling density. The linear sampling density is the square root of the total number of 

total units or pixels/voxels used in the estimation. For example, if 25 units (or a 5 × 5 unit 

map) are used to estimate the SOFM, then the linear sampling density would be five.  

 

To simulate the contribution of different cortical layers to the recording in the averaged 

layers, ten independent instantiations of jittered SOFM maps were superimposed upon 

each other before averaging. For example, if a pixel/voxel corresponded to a 2 × 2 unit 

square on a map, that pixel/voxel would be assigned the arithmetic mean of 40 different 

units. Once a sparse map was assembled, it was resampled back to 150 × 150 units using 

zeroth-order (nearest-neighbor) or first-order (linear) interpolation. The overall process 

with the linear interpolation is summarized in Figure 2.2. For the estimated maps that 

were resampled with linear interpolations, units outside the border created from the 

extracted points are not extrapolated or used for later analysis.  
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Figure 2.2. Resampled Map. 

A unjittered map of feature 4 is estimated with an averaged uniform sampling and a 

linear sampling density of 20 units. The extracted values (center) shows the map before it 

was resampled back to 150 × 150 units using linear interpolation to form the estimated 

map (right). Points shown in white were not interpolated as they were outside the 

boundary of the sampled locations.  
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Estimated maps are created with a variety of linear sampling densities and jitters with 

twenty-four different linear sampling densities, ranging from 2 to 25 points, and seven 

different jitter percentages, ranging from 0% jitter to 30% jitter. For each combination of 

linear sampling density and jitter, the estimations are repeated a hundred times, and the 

coefficient of determination (R2) is calculated in each set.  

 

2.2.3 Map Fit Quantification 

The accuracy of the fits for the estimated maps is quantified using the coefficient of 

determination (R2). In this metric, the coefficient of determination measures how the 

estimated maps fit the underlying SOFM maps in relation to the mean of the SOFM map 

and is derived from the ratio between the sum of square error and the total sum of 

squares: 

 
( )

( )∑
∑

−

−
−=

i
i

i
ii

yy

fy
R 2

2

2 1 ,  (2.1) 

where y represents the SOFM values prior to jittering,  f represents the interpolated 

values, and i represents the set of interpolated values and their associated non-jittered 

SOFM values. A R2 value of one represents perfect fit with no error while a R2 value of 

zero represents a fit that has an equal amount of error as a map with the mean value of the 

SOFM. While R2 values typically range from zero to one, R2 values can be negative 

when the maps are undersampled. The behavior of a negative R2 value does not reflect 

whether the fit of the map is improving or worsening. Figure 2.3 shows the R2 values of a 

10 Hz sine wave sampled at different densities. As the sampling rate decreases, the R2 

values drop, and after the sampling rate drops below the Nyquist frequency, the R2 values 

drop into negative values and starts to fluctuate. The lower bound of the R2 values 

depends on the sampling method used. For maps created with the averaged sampling, the 

lower bound is at or near zero because averaged maps with low sampling densities would 

have similar values to the mean of the underlying SOFM. For the maps created with 

unaveraged estimates, the R2 values do not have a lower bound. 
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Figure 2.3. Sampling rates affect on R2 values. 

The R2 values were found for a 10 Hz sine wave that sampled at a various sampling rates. 

The extracted sine waves were resampled back to 1 kHz using linear interpolation before 

the R2 values were calculated. Top: A 12.5 Hz sampling rate of the 10 Hz sine wave 

produces a R2 value of -0.727 while a 25 Hz sampling rate produces a R2 value of 0.729. 

Bottom: After the sampling drops below the Nyquist rate (marked with a dotted black 

line), the sine wave is undersampled. Negative R2 values are an indicator that the sine 

wave is undersampled. 
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To examine the effect of cortical variability, sampling density, and sampling methods on 

the ability to estimate the underlying map, the mean and the variance of the R2 are 

calculated for each distribution set. To determine if any method produced significantly 

more accurate interpretations of the underlying SOFM, a Wilcoxon rank-sum text is used. 

To determine if any method produced a more precise estimation, the variance of the R2 

values is tested with a two-sampled F-test.  

2.3 Virtual Imaging Model 

2.3.1 Frequency Response Area Modeling 

Neuronal responses to tone stimuli can be characterized into three major categories that 

likely represent points along a continuum of frequency selectivity: Type V, Type I, and 

Type O neurons (Ramachandran et al. 1999; Sadagopan and Wang 2008). Type V and 

Type I responses are monotonic functions of intensity, meaning their firing rates increase 

or saturate in response to increasing sound intensity. Type O responses are nonmonotonic 

functions of intensity and are therefore tuned to a specific sound intensity. Type V 

responses exhibit wideband receptive fields with increasing bandwidth as stimulus 

intensity increases, while the Type O and Type I responses exhibit relatively narrowband 

receptive fields with nearly constant bandwidth constant across their full dynamic range. 

Type O receptive fields in A1 have been seen with a variety of circular and oval shapes 

(Sadagopan and Wang 2008). 

 

While spectral responses in A1 as a function of intensity can reveal a great deal of variety 

(Sutter 2000; Sutter and Schreiner 1991), the model initially focused on the stereotypical 

responses observed around the major frequency input for any given neuron. Frequency 

response areas (FRAs) of the three canonical response types described above represent 

receptive field characteristics as a function of frequency and intensity and were modeled 

in the current study as combinations of Gaussian functions. Cross-sections of FRAs at 

fixed intensities demonstrate neuronal tuning properties and are referred to as frequency 

responses curves (FRCs). These curves were created with a Gaussian density function for 
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all FRA types, and the increasing bandwidth of the Type V responses were modeled by 

increasing the standard deviation of the Gaussian as the stimulus intensity increased: 

 

 ( )
22 2/)(

2
1 ffFeFFRC σμ

πσ
−−= ,  (2.2) 

 

where µf is the mean frequency of the FRC, σf is the standard deviation, F represents 

frequency, and FRC represents the frequency response curve. For Type I and Type O 

responses, σf is a constant while for Type V responses, σf (I) increases proportionally with 

intensity. 

 

Intensity response curves (IRCs) were created with a Gaussian density function for Type 

O responses and a cumulative Gaussian distribution function for Type V and Type I 

responses: 
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where µi represents the mean intensity of the IRC, σi represents the standard deviation, I 

represents the stimulus intensity and IRC represents the intensity response curve for 

either Type O responses or Type V / I responses. The complementary error function is 

given by 

 

 ( ) dtexerfc
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t∫
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−=
22

π
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For Type I and Type O responses, the outer product of the appropriate IRC and FRC was 

computed to obtain a template FRA. For Type V responses a unique FRC was computed 

at each intensity and scaled by the appropriate value of the IRC. The resulting FRA was 

normalized to take on rate values between 0 and 100 in order to normalize the overall 

receptive field activity for each unit regardless of its response subtype. The FRA 
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parameters for any given unit in the model array (characteristic frequency or CF, 

threshold, frequency bandwidth, and dynamic range) were set to desired values by scaling 

and shifting the FRCs and IRCs appropriately. The frequency was scaled to define the 

frequency bandwidth and shifted to set the CF to its desired value: 

 

 0
0

2 b
b

F

cfF ⋅= ,  (2.5) 

 

where F and F0 denote new and initial frequencies, respectively, fc represents the 

characteristic frequency, and b and b0 refer to the new and initial bandwidths. The 

intensity was shifted and scaled differently between the monotonic and the nonmonotonic 

responses. For the monotonic responses, the intensity was scaled to define the responsive 

range of the rate-intensity response, then shifted to set the threshold and saturation point 

to the desired values: 
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where I and I0 represent the new and the initial intensities, respectively, s and s0 represent 

the new and initial intensity maxima, and t and t0 represents the new and initial intensity 

thresholds. The responsive range of a unit was considered to extend between its threshold 

and intensity maximum (i.e., best intensity). For Type I and Type V responses, the 

response at the point of saturation (threshold + dynamic range at the CF) was then 

obtained and was set to the maximum response: 

 

 ( )
( ) 1.0

1.0
1.09.0 0 +

−
−

=
SR
RR ,  (2.7) 

 

where R and R0 represent the new and initial response rates, respectively, and Rs is the 

response at the point of saturation. Any responses greater than 100 where set to 100 after 

scaling. 
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For Type O responses, the intensity was scaled to set the dynamic range appropriately 

and shifted to set the threshold and peak intensity: 

 

 at
a
atII ++−=

0
00 2
)( ,  (2.8) 

 

where I and I0 represent the new and the initial intensities, respectively, t represents 

threshold, and a represents the dynamic range. For the model, the maximum modeled 

intensity for Type V and Type I responses was set to 100 dB. The threshold was defined 

as the sound intensity that produces 10% of the maximum firing rate at the CF. The 

bandwidth was calculated at 10 dB above the threshold by finding the frequency range in 

octaves between upper and lower frequencies that elicit 10% of the maximum firing rate. 

 

In the model, the dynamic range was defined as the range between threshold and best 

intensity of the response for Type O responses and the range between threshold and 

saturation for Type V and Type I responses. For Type V and Type I responses, the 

dynamic range was normally distributed with a mean of 30 dB and a standard deviation 

of 20 dB, and for Type O responses, the dynamic range was normally distributed with a 

mean of 20 dB and a standard deviation of 10 dB. If the actual dynamic range for a 

particular unit was randomly set to a value below 10 dB, that dynamic range was 

redefined as 10 dB. If the sum of the threshold and the dynamic range was greater than 

the maximum modeled intensity, the dynamic range was set to the difference of the 

maximum modeled intensity and the threshold. These dynamic ranges matched single-

unit awake marmoset recordings where the dynamic ranges had a mean of 29.9 and 17.3 

for monotonic and nonmonotonic neurons, respectively (Watkins and Barbour 2008). 

These numbers were slightly higher than the average 80% dynamic ranges (i.e., 10% of 

maximum firing to 90% of maximum firing) for these monkeys (Watkins and Barbour 

2008) and somewhat higher than the average 80% dynamic ranges for barbiturate 

anesthetized cats, where mean dynamic ranges fell between 12 and 19 dB (Phillips and 
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Hall 1986; Schreiner et al. 1992). Overall, the total range of dynamic ranges in the model 

matches the total range of values that has been reported physiologically. 

 

Simulated firing rates were obtained from the model by delivering pure tones or complex 

sounds to the modeled FRAs. For pure tones, the firing rate was obtained directly from 

the point on the FRA that corresponds to the frequency and intensity of the stimulus. 

 

2.3.2 Primary Auditory Cortex Modeling 

A1 was modeled by three fully overlapping arrays representing the three different 

canonical FRA classes. An 3-feature SOFM was used to define the position and the FRA 

properties (i.e., CF, bandwidth and threshold) of each unit in each array. The arrays were 

square with 150 × 150 units. The particular SOFM selected for the primary auditory 

cortex model had relative feature weightings of 10:2:1 for CF, bandwidth, and threshold, 

respectively because these weightings created maps that demonstrate similarity to those 

seen in sparse electrophysiological recordings in A1 of anesthetized cats (Schreiner and 

Mendelson 1990; Schreiner et al. 1992; Schreiner and Sutter 1992). Frequency is mapped 

smoothly in the resulting SOFM with the tonotopic axis running along the diagonals of 

the underlying grid. CFs ranged from 500 Hz to 32 kHz unless otherwise noted and were 

originally distributed uniformly on a logarithmic scale. Bandwidths ranged from 0.1 to 

0.5 octaves with a median of 0.3 octaves, and thresholds ranged from 0 to 75 dB with a 

median of 35.8, which are values consistent with those observed in awake marmoset A1 

(Sadagopan and Wang 2008). The functional maps used for this study can be see in 

Figure 2.4.  

 

Units in the arrays were assigned FRAs using two different methods for different 

experiments: the combined method and the jittered method. Both methods yielded 

multiple array layers indexed by the same grid coordinates. Each layer contained a single 

type of FRA with an SOFM defining the locations and characteristics of the units. 

Stimulus response for each layer was normalized to the maximum firing rate of its 

corresponding type. Each layer was then weighted to adjust for differing relative numbers 
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Figure 2.4. Self-organization of primary auditory cortex functional properties. 

In the model, three relevant neuronal receptive field features are mapped: center 

frequency, bandwidth, and threshold. Candidate maps for each of these features are 

presented in the top row. Each map reflects the same physical array of artificial cortical 

neurons. Three different sites in the array are labeled A, B and C, reflecting three 

different values for each of the three features. Below, each of these feature values is 

applied to the three major types of receptive fields observed in auditory cortex. Even at 

the same frequency, bandwidth and threshold, Type V neurons have larger receptive 

fields than Type I neurons, which in turn have larger receptive fields than Type O 

neurons. 
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of units belonging to each of the response types. Activity of all of the layers at the same 

index point (pixel) in response to a given stimulus were summed together to create an 

overall response. The combined method included three layers each with different FRA 

response classes and with no randomization of CF, bandwidth, and threshold maps. 

 

The jittered method used nine total unit layers with three different layers for each of the 

three different FRA type. The CF, bandwidth and threshold maps were randomized to 

create pixel-by-pixel misalignment between each layer in terms of functional properties. 

This procedure was intended to simulate the variability in neuronal FRA characteristics 

observed within individual cortical columns. Jitter was quantified at a single array 

location for each feature as a percentage of the total feature range. Each of the three 

mapped features (CF, bandwidth, and threshold) at each point in the SOFM grid was 

remapped from the values indicated in the map to a random value within [ )(2
1 rjm ⋅− , 

)(2
1 rjm ⋅+ ], where m is the mapped feature value,  j is the percentage of jitter and r is 

the feature range. For frequency and bandwidth the jitter was calculated in terms of 

octaves. For threshold the jitter was calculated in terms of dB. If any response feature 

was jittered outside the absolute lower or upper limits of the relevant defined values, then 

that feature was assigned the limit value. For both combined and jittered responses, the 

sum of all the response rates at each pixel was assigned to that pixel in the resulting 

population map. The summed responses across all pixels of the array were then 

normalized to a maximum spiking rate of 100 spikes/s. 

 

To examine the response characteristics of the model, five logarithmically spaced pure 

tones were delivered (1, 2, 4, 8, and 16 kHz) separately and the resulting areas of 

activation in the model array were examined. Areas of activation were identified by 

visualizing all pixels with response rates above criterion values of 10% or 50% of the 

maximum rate. The average firing rate of the array was obtained by calculating the 

arithmetic mean of all the pixels. To examine the overlapping areas of activation, the 

mapped bandwidth and threshold values for the regions with overlapping areas of 

activation at the 10% response criterion were compared to the bandwidth and threshold 
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values for the activated regions without overlapping activation. Statistical comparisons 

between the bandwidths and the thresholds in the overlapping and the non-overlapping 

areas of activation were made using a student’s t-test. 

 

2.3.3 Functional Map Extraction 

Functional maps with CF in the range [31.25 Hz, 8000 Hz] were extracted using pure 

tones. To extract frequency, twenty-one pure tones ranging from 15.625 Hz to 16 kHz 

were delivered  at 80 dB and half-octave frequency intervals to combined arrays with 

either 33:33:33 or 10:10:80 relative weightings of Type V: Type I: Type O. For each 

point on the array, a Gaussian was fitted to the FRC resulting from the tone delivery. The 

mean of the Gaussian was designated as that point’s CF. Bandwidth and threshold maps 

were extracted using 2121 pure tones at tenth-octave frequency intervals ranging from 

15.625 Hz to 16 kHz and at 5 dB intensity intervals ranging from 0 to 100 dB. To extract 

the threshold maps for each indexed point, the maximum response for each stimulus 

intensity was obtained to create a rate-intensity response curve. This curve was then 

linearly interpolated and 10% of the maximum response was set as the threshold. Using 

the extracted threshold maps, the bandwidth at each point in the array was estimated at 10 

dB above the threshold previously estimated for that point. The bandwidth was calculated 

by finding the frequency distance in octaves between the lower and upper frequencies 

that activated the unit at 10% of the maximum firing rate. The values were then capped 

with lower and upper limits of 0.1 and 0.5 octaves. 

 

To quantify the accuracy of the extracted maps, the error between the SOFM maps and 

the extracted maps was calculated. For frequency, the error at each pixel was calculated 

by taking the difference in octaves between the mapped and the extracted frequency. For 

bandwidth and threshold, the pixel error was calculated by taking the difference between 

the mapped and the extracted values. The mean error was then obtained by averaging the 

error for each pixel over the entire array.  
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2.3.4 Complex Stimuli 

Two vowels from one speaker, /æ/ and /ε/, were extracted from a single utterance of the 

TIMIT database (Linguistic Data Consortium, University of Pennsylvania). These vowels 

were delivered at 25 dB and 75 dB to model arrays of all three types of FRA responses, 

as well as a combined array with equal proportions of the three response types. The 

Fourier transforms of the vowels were computed and the resulting spectra modeled as a 

sum of sinusoids of various frequencies. The response of each array unit was computed 

by summing the individual responses of each of the constituent tones from the unit’s 

FRA. The responses were then normalized such that the maximum response of each FRA 

type equaled 100 spikes/s. The absolute difference between two responses at the same 

stimulus intensity and of the same FRA type was calculated pixel-by-pixel. Average 

responses and average differences were obtained by calculating the arithmetic mean of 

either the array responses themselves or the pixel-by-pixel difference of two array 

responses, respectively.
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Chapter 3 Virtual Mapping 

3.1 Results 

3.1.1 Linear Sampling Density of Estimation 

The estimations of the four-feature map (depicted in Figure 2.1) are created using a total 

of 67,200 different map instantiations at 24 different sampling densities, 7 different jitter 

values, and 4 different features with 100 different instantiations for both averaged and 

unaveraged samplings. To compare the accuracy of maps with different linear sampling 

densities, the estimated maps were resampled back to 150 × 150 pixels with either 

nearest-neighbor or linear interpolation. As the sampling density increases, the true 

structure of the map becomes more apparent and the R2 increases. Figure 3.1 shows with 

a series of estimated maps with unaveraged sampling and increasing sampling densities. 

These estimated maps demonstrate the improvement with the R2 values reflects the visual 

improvement. Since the estimated values are only interpolated and not extrapolated, the 

units outside the sampled points are not estimated in the resampling process, so smaller 

sampling densities have a larger unestimated border. These unestimated borders are not 

included in the coefficient of determination calculations.  

 

Estimated maps for feature 1 which has a low spatial frequency exhibit a low amount of 

error at even relatively low sampling densities. As the spatial frequency of the maps 

increases, a higher sampling density is required to determine the general structure of the 

map. For feature 4, for example, a linear sampling density of at least 10 was needed to 

produce maps with an mean R2 of 0.3 while for feature 1, a map with a much lower 

spatial frequency, a linear sampling density of 2 produced a R2 greater than 0.9 (Figure 

3.2).  
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Figure 3.1. Examples of mapping estimations with different sampling densities. 

Unaveraged estimates were made with unjittered maps to examine the effect of different 

sampling densities. As the sampling density increased, the R2 values increased. The 

estimated maps (four right panels) were derived from the 3rd feature map (left panel). 



23 

 

 

0 10 20
−2

−1

0

1

Sampling Density

M
ea

n 
of

 R
2

Feature 1

 

 

0 10 20
−2

−1

0

1

Sampling Density

Feature 2

0 10 20
−2

−1

0

1

Sampling Density

Feature 3

0 10 20
−2

−1

0

1

Sampling Density

Feature 4

0 10 20
0

5

10
x 10−3

Sampling Density

S
TD

 o
f R

2

0 10 20
0

0.05

0.1

Sampling Density
0 10 20

0

0.05

0.1

Sampling Density
0 10 20

0

0.05

0.1

Sampling Density

Averaged
Unaveraged

 
Figure 3.2. Comparison between averaged and unaveraged estimations. 

Averaged and unaveraged estimations with uniform samplings were compared. The mean 

R2 value of 100 runs for each case was calculated (top row) and the standard deviations of 

the R2 values are shown in the bottom row. 
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At low sampling densities for feature 4, the R2 values for the estimated maps with 

unaveraged uniform sampling displayed nonmonotonic behavior and decreased as the 

sampling density increased. The values of the regions with decreasing R2 were all  

negative, suggesting that the estimated maps were undersampled. This nonmonotonic 

behavior of R2 values can also be seen in Figure 2.3 when the sine wave was sampled 

below the Nyquist rate. For both Figure 2.3 and feature 4 after the spatial sampling 

density passed a threshold resolution, the R2 started to increase as the spatial sampling 

density became high enough to begin to identify the structures in the map. 

 

3.1.2 Averaged vs. Unaveraged Estimations 

To examine the differences between mapping studies using single unit recordings and 

studies that result from averaging the activity of many neurons, estimated maps were 

sampled using two different methods. The first method samples the underlying maps by 

choosing single points that were uniformly spaced. The second method sampled the 

underlying maps by averaging all the points within a voxel. To compare the two sampling 

methods, the R2 values were calculated for both methods, and the values suggest that the 

averaged sampling produces more accurate estimations for maps that were sampled at 

low sampling densities, maps with low spatial frequencies or for maps with high jitter 

(Figure 3.3). The unaveraged sampling produced more accurate maps with high spatial 

frequency maps or maps with low amounts of jitter. However, for maps with high spatial 

frequencies, such as the map for feature 4, the averaged estimations provided better 

estimations at low sampling densities. 

 

The unaveraged estimations, in general, produces better estimations for maps with higher 

spatial frequencies because averaging acts as a low pass filter. The low pass filtering 

smooths out maps created by the jitter. At low sampling densities, the averaged maps 

closely reflect the mean of the map. This averaging prevents the R2 from falling 

significantly below 0 because R2 values of 0 represent when the sum of squared error is 

equal to the mean value of the SOFM. The unaveraged maps, however, can fall well 

below zero as seen in the R2 values for the feature 4.  
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Figure 3.3. Statistical comparison between unaveraged and averaged estimations.  

The Wilcoxon rank-sum test shows in which cases the averaged estimation or unaveraged 

estimation provided better estimates of the underlying map. The blue shades represent 

cases where the unaveraged estimates produced higher R2 values, and the red shades 

represent cases where the averaged estimates produced higher R2 values than the 

unaveraged estimates. Z scores of 2.58 or greater and Z scores of -2.58 or less represent 

significant differences (p < 0.01) in the median.  
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The averaged estimations has a significantly smaller varience in R2 values than the R2 

values of the unaveraged estimations (p = 8.00 × 10-70 ± 1.53 × 10-12 [sd.], two sample F- 

test)  (Figure 3.2 bottom panels). Out of 672 runs, 625 had significantly lower variances 

in the R2 values for the averaged estimations, 30 had significantly lower variances in R2 

values for the unaveraged estimations, and 17 had insignificant differences in R2 values 

between the two types of estimations. For all cases with jitter, the averaged estimations 

produced significantly lower variances in R2 values than the unaveraged estimations. Due 

to jitter, the maps estimated using the averaged procedures did not vary as much as the 

maps extracted using the unaveraged procedures. The averaging during the extraction 

provides a better estimate of the mean, thereby increasing the precision of the estimation. 

   

3.1.3 Extractions with Random Sampling 

The effects of random sampling on the ability to estimate maps were examined in Figure 

3.4. In most cases, uniform sampling yielded a significant improvement over random 

sampling (p = 7.67 × 10-13 ± 1.53× 10-12 [s.d.], Wilcoxon rank-sum test). Out of 672 sets, 

627 had significantly higher R2 for uniform sampling, 35 had significantly higher R2 for 

random sampling, and 10 had no significant difference in R2 values (p < 0.01, Wilcoxon 

rank-sum test). The uniformly sampled map had a significantly lower variance in their R2 

values than the random sampling (p = 2.06 × 10-4 ± 4.12 × 10-4 [s.d.]) with 664/672 

incidents showing significantly lower variance with uniform sampling  and 8/672 

incidents showing insignificant differences (p < 0.01, two-sampled F-test). Because the 

local sampling density can increase and decrease in certain areas of the map, the random 

sampling may provide better map estimation when the sampling density is low. However, 

as the sampling density increases, this effect is diminished. The maximum R2 value does 

not seem to be affected by sampling randomly, as the R2 converge at high extraction 

densities. 
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Figure 3.4. Comparison between uniform and random sampling. 

The R2 values of unaveraged estimations of uniform and random sampling were 

compared. The top row shows the mean of 100 R2 values for each feature map for 

different linear sampling densities and different amounts of jitter. The bottom row shows 

the standard deviation of R2 values.   
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3.1.4 Interpolation 

Estimated maps created using zeroth-order and first-order interpolation were compared. 

For the plot in Figure 3.5, the estimates derived from linear interpolation produced higher  

R2 values than estimates derived from zeroth-order interpolation. The improvement from 

the linear interpolation can be seen visually in Figure 2.2, where the mapped features are  

easier to identify in the resampled map (first-order interpolation) than the extracted 

values (zeroth-order interpolation). If the sampling density is high enough, a first-order 

interpolation will improve the quality of the map because a nonrandom map feature 

would have some continuity across the map. The continuity combined with adequate 

sampling density allows the first-order interpolation to improve the quality of the map 

when compared to the zeroth order. 

 

3.2 Discussion 

By taking a number of samples within an area of interest, mapping studies show the areas 

of the brain that are responsible for processing a certain task. This sampling is 

accomplished through either recording the activity from a single neuron or recording the 

summation or averaged activity over a number of neurons.  The locations and the values 

of these samples are then combined together to create a map of how the area processed 

the task. This study seeks to simulate the process of mapping under optimal conditions to 

examine the effects of sampling density, averaging, sampling locations, and cortical 

variability on mapping. The model assumes perfect sampling, in that the single units 

represent a single neuron and that averaged units represent the averaged response over an 

area. 

 

3.2.1 Sampling Density 

To examine the sampling density needed to accurately estimate the underlying map, the 

sampling density is increased under various conditions. The calculated R2 value compares  
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Figure 3.5. Comparisons between estimations using zeroth and linear interpolations. 

Averaged estimates of an unjittered feature 3 using zeroth-order (top row) and first-order 

interpolation (bottom row) for resampling are shown. For the first-order interpolated 

maps, the white pixels denotes locations outside the convex boundary which were not 

interpolated. The black lines represents boundaries where between the nearest-neighbor 

for the zeroth-order interpolation (top row), but are only used for comparison in the first-

order interpolated plots (bottom row)  
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the estimated map to the underlying map and quantifies the quality of the estimation. The 

results show that the spatial frequency of the underlying map is the biggest factor in 

determining the necessary sampling density. The averaging of units, sampling locations, 

and cortical variability are minor contributors in comparison to sampling density. Maps 

with higher spatial frequencies require higher sampling densities to create accurate 

estimations of the underlying map. The increased sampling density is needed to capture 

the change within the map and if the required sampling density is not meet, the estimated 

map is undersampled. Evidence of undersampling can be seen in Figure 2.3. For a 2-

dimensional sine wave, an undersampled sampling rate is considered to be any rate below 

the Nyquist rate where at least two samples are needed for every period. After the 

sampling rate drops below the Nyquist rate, the R2 values drop below zero where the 

values start to fluctuate. This behavior with the R2 values is also seen in the virtual 

mapping model. For feature 4 in Figure 3.2, the R2 values for the unaveraged samples 

initially behave nonmonotonically because the estimated map is undersampled as 

indicated by the negative R2 values. After the sampling density is increased, the R2 values 

increase monotonically. 

 

3.2.2 Averaging 

To model single-unit studies and studies that summed or averaged activity, single points 

or averages points are sampled within a pixel/voxel. The results suggest that single unit 

studies produce more accurate estimated maps for underlying maps with high spatial 

frequencies, while studies that average activity perform better for estimated maps with 

low spatial frequencies or with cortical variability. Averaging units together acts as a 

low-pass filter which lowers the effect of cortical variability but reduces the ability to 

resolve sharp changes across the map. This limitation may be reduced if the sampling 

density is increased. At high sampling densities, this effect is diminished because the 

smoothing occurs over a smaller area.  
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3.2.3 Sampling Locations 

For electrophysiology studies, the location of the sampled units for mapping plays an 

important part in estimating maps. The results shows that sampling in a uniform manner 

improves the accuracy and precision in estimating maps. It is theoretically possible for 

random sampling to create more accurate maps if the sampling density is highest where 

the spatial frequency is the highest. However, for an unknown map, controlled sampling 

according to spatial frequency is not possible, so uniform sampling ultimately improves 

the accuracy. While electrophysiology studies have sampled uniformly with the use of a 

grid (Recanzone et al. 2000), most electrophysiology studies do not use grids to ensure 

uniform sampling. Even with the use of grids, uniform sampling may not be possible due 

to blood vessels, the geometry of the brain, and other potential factors. Functional 

imaging studies typically sample uniformly because the pixels/voxels are evenly spaced. 

However for certain imaging modalities such has optical imaging, the geometry of the 

brain may prevent recording over the entire region of interest. 

 

3.2.4 Cortical Variability 

Neurons within a cortical column have been known to have varying characteristics 

(Atencio and Schreiner 2008; Phillips and Irvine 1981). These varying characteristics 

were modeled as cortical variation in this study. The results suggested that studies which 

average activity may perform better than single-unit estimations when cortical variability 

is present. Surprisingly, when compared to the effect of spatial frequency in the 

estimating map, the amount of cortical variability has a negligible effect on the R2 values. 

This effect is most likely reduced in the model because the values obtained in this model 

were from a Gaussian distribution. Averaging the values between layers of arrays negates 

the randomness created by the jitter. When samples are not averaged, the effect of the 

jitter is overshadowed by the undersampling at low sampling densities or is limited due to 

high sampling densities. Therefore, while averaging neurons within a cortical column 

may reduce the effect of cortical variability within a column, the averaging does not 

reduce the sampling density needed to resolve maps 
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3.2.4 Display of Estimated Maps 

A popular method to visual maps with randomly sampled points is with a zeroth order 

interpolation, which forms plots known as Voronoi tessellation plot (Figure 3.5) (Cheung 

et al. 2001; Godey et al. 2005; Read et al. 2001). Voronoi plots allow the reader to 

identify both the sampling density and the mapped feature values at the same time. The 

linear interpolation allows the maps to be smoothed out, but the points outside the convex 

boundary of the sampled points are lost. The linear interpolation produces a more 

accurate estimation of the underlying map. In addition, linear interpolations improve the 

ability to visibly discern maps because the maps allow the eyes to identify extreme values 

more easily.  

 

3.2.6 Relation to Previous Studies 

The sampling density required for estimating a map is based on the spatial frequency of 

the map. As seen in Figure 3.2, maps with low spatial frequencies, such as feature 1, can 

produce relatively accurate maps at even the lowest sampling densities. However, maps 

with high spatial frequencies (such as feature 4) require a linear sampling density of well 

over 15 points to produce estimations with R2 higher than 0.7. Electrophysiology studies 

in the primary auditory cortex sometimes sample at or near these densities. 

Electrophysiology studies for individual animals have been sample maps using 179 

(Cheung et al. 2001), 289 (Bonham et al. 2004), and 352 penetrations (Philibert et al. 

2005). However, the averaged number of penetrations per experimental animal for the 

studies is much lower running around 80 to 100 penetrations (linear sampling density of 9 

to 10 [see Section 2.2 for conversion]). Thus, these studies may be able to resolve maps 

with low spatial frequencies but may have difficultly resolving maps with high spatial 

frequencies. Imaging studies use linear sampling densities in excess of 80 points (Ojima 

et al. 2005; Petkov et al. 2006); however, imaging studies still have difficulty in 

reproducing maps obtained from electrophysiology. Since the resolution of the imaging 

studies greatly exceeds the sampling density needed to accurately resolve maps, the 

problems with functional imaging recapitulating electrophysiology studies in the auditory 

cortex most likely stem from limitations outside of the properties test in the chapter. One 
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possible limitation is that neurovascular coupling degrades functional imaging resolution. 

Functional imaging modalities like optical imaging of intrinsic signals and fMRI-BOLD 

average signals by measuring the hemoglobin concentrations (Logothetis et al. 2001; 

Ojima et al. 2005). By measuring hemoglobin concentrations, these functional imaging 

studies measure both the subthreshold and suprathreshold activity is measured while 

single-unit electrophysiology studies predominately measure firing rates or 

suprathreshold activity. Another possible fundamental limitation may lie within the 

neural circuitry of auditory cortex. Chapter 4 examines possible limitations that may be 

created from auditory cortex neural circuitry. 
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Chapter 4 Virtual Imaging of the Primary 

Auditory Cortex 

4.1 Results 

4.1.1 Model Array 

The spectral receptive fields of auditory neurons in response to pure tones come in three 

canonical forms (Ramachandran et al. 1999; Sadagopan and Wang 2008). Type V 

neurons respond best at a single frequency, but their response bandwidth (i.e., receptive 

field size) widens in response to increasing intensity. These responses are reflective of the 

spectral properties in auditory nerve fibers (Kiang et al. 1965; Palmer and Evans 1980; 

Sachs and Abbas 1974). Type I neurons respond best at a single frequency and maintain a 

consistent bandwidth as intensity increases. Type O neurons respond best at a single 

frequency and have constant bandwidth as intensity increases, but they stop responding 

or are inhibited at the highest intensities. Because Type I and Type O neurons do not 

exist in the auditory nerve, they must be created by central auditory circuits, at least some 

of which are located within A1 (Tan et al. 2007; Wehr and Zador 2003). 

 

Figure 4.1A shows a spike raster plot of one awake marmoset monkey auditory cortical 

neuron’s response to increasing intensity of a tone at its characteristic frequency or CF 

(4.2 kHz). The shaded area represents the tone duration, and each dot represents a single 

action potential spike. Stimulus intensity increases from bottom to top. Note that tone-

stimulated spiking during the tone interval is evident only over a particular intensity 

range. Following tone offset, however, an additional spiking pattern is evident at a 

different latency and over a different intensity range. This offset spiking rate increases  
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Figure 4.1. Single unit spiking activity reveals 3 response types. 

Pure tones varied in frequency and amplitude elicit the three canonical receptive field 

categories in marmoset primary auditory cortex. A. Spike raster plot of one neuron’s 

response to a tone delivered at 4.2 kHz and varied in amplitude. This plot reveals 

different spiking during the tone delivery period (shaded region) and afterwards—a 

relatively rare feature that appears to reflect the input contribution of both inhibition and 

excitation in this neuron. Inhibition that occurs during the stimulus interval appears to 

rebound following stimulus offset, resulting in spiking of the output neuron after the 

stimulus is removed. B. Spikes occurring during the stimulus interval reflect the output of 

the neuron (excitation plus inhibition). C. Spikes occurring during and following the 

stimulus interval reflect the excitatory input to the neuron because the inhibition 

decreases spiking during the stimulus interval and increases spiking afterward, thereby 

canceling out when these two intervals are analyzed together. D. Spikes occurring after 

the stimulus interval reflect inhibition alone. Intervals of analysis are depicted 

schematically below the raster plot in A. 
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proportionally with the degree of inhibition observed during the tone interval (evidenced 

by the decreasing spike rate during the tone delivery at higher intensities, including 

complete suppression of all spiking at the highest intensities). In this neuron, inhibition 

during the stimulus interval is measurable directly by a rebound excitation following 

stimulus removal, a phenomenon referred to as anode-break excitation (Hodgkin and 

Huxley 1990). The anode break is most prominent for high stimulus intensities when 

spiking rate during the stimulus is lower than the spontaneous spiking rate. Spiking below 

spontaneous rates implies local inhibition within A1 because A1 does not receive 

inhibitory projections from other areas. 

 

Figure 4.1B shows the receptive field or frequency response area (FRA) measured during 

the tone interval for tones varied in frequency and intensity. This response class is Type 

O, also commonly referred to as “nonmonotonic” because the spike rate at CF is a 

nonmonotonic function of intensity. This response can be thought of as the output of this 

cell, which is formed from the balance of excitatory and inhibitory input. The excitatory 

input can be calculated by measuring the spiking rate over both the stimulus and the post-

stimulus interval because the inhibitory rate measured during the tone interval is canceled 

by the rate measured during the rebound excitation. The FRA of this excitatory input 

appears much like a Type I response, as shown in Figure 4.1C. Finally, if rates are 

calculated using only the spikes following stimulus offset, the contribution of the 

inhibitory input alone can be evaluated. As seen in Figure 4.1D, the inhibitory input into 

this neuron has a Type V FRA. 

 

This example A1 neuron indicates indirectly that specialized responses such as Type O 

FRAs can be created by inputs tuned to the same CF but different bandwidths and 

thresholds. Systematic physiological studies yield findings consistent with the circuits 

inferred from this example (Caspary et al. 1994; Kaur et al. 2004; Tan et al. 2007; Wang 

et al. 2002; Wehr and Zador 2003). Type V, I and O neurons within A1 therefore appear 

to combine in very precise circuits to produce specialized sensory coding elements, the 

specific functions of which are not yet fully understood. The impact of these findings for 

functional maps is more apparent, however. The existence of specialized circuits repeated 
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across the cortical surface implies the need for precise spatial arrangements of neurons in 

order to achieve efficient feature space representations and interconnections (Chklovskii 

and Koulakov 2004; Koulakov and Chklovskii 2001; Kozloski et al. 2001; Watkins and 

Barbour 2008). For this reason, virtual functional images of A1 were investigated with 

plausible maps of frequency, bandwidth and threshold. These neuronal measures reflect 

the parameters needed to describe FRAs and are non-randomly distributed in A1 

(Bonham et al. 2004; Cheung et al. 2001; Merzenich et al. 1975; Philibert et al. 2005; 

Schreiner and Mendelson 1990; Schreiner and Sutter 1992). Outside of frequency, 

however, the fundamental principles governing physiological feature organization within 

A1 have been more challenging to discern with electrophysiology. A neuronal array 

representing spatially organized A1 neurons was modeled to determine how effective 

functional imaging may be in extracting auditory maps of multiple features. 

 

The maps of frequency, bandwidth, and threshold that were used in the virtual imaging 

experiments can be seen in the top row of Figure 2.4. Each point in the array (also 

referred to as a pixel or a unit) represents a single frequency, bandwidth, and threshold 

combination used to determine the properties of the three relevant types of receptive 

fields, depicted as FRAs. Examples indicated by A, B, and C in Figure 2.4 depict nine 

units divided into classes by column, but with identical features in each row. Differences 

in FRA shapes across each row derive solely from the nature of the receptive fields 

themselves while the differences down each column derive solely from different 

parameter values. 

 

This model system was used to explore a common experimental observation from 

imaging studies of A1: extensive activation of large areas of cortex by pure tones. A pure 

tone represents the stimulus that activates the smallest proportion of sensory epithelium 

in the cochlea. Equivalent stimuli in the visual and somatosensory systems would be a 

point of light or a pinprick, respectively. As seen in Figure 4.2, OIS experiments reveal 

that a single pure tone can activate a sizable portion of A1 (Harel et al. 2000; Harrison et 

al. 1998; Ojima et al. 2005; Spitzer et al. 2001), which contrasts with imaging results 

from other sensory modalities (Das and Gilbert 1995; Grinvald et al. 1994). Even tones  
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Figure 4.2. Sample intrinsic optical imaging experiment from cat A1. 

In this experiment pure tones were delivered sequentially to the animal at a sound 

intensity of 60 dB and over a total frequency range of about 2.5 octaves. The areas with 

statistically significant change in absorbance with respect to baseline shown in color. 

Tones separated even by an octave of frequency can activate overlapping regions. 

Collectively, these four simple stimuli activated nearly all of primary auditory cortex. 

Adapted from (Ojima et al. 2005) by permission of Oxford University Press. 
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spaced an octave apart still elicit overlapping areas of A1 activation. Collectively, the 

four tones depicted in this figure activate most of A1. The model was evaluated to see if 

this extensive spread of activation could be attributed to the underlying physiology of A1. 

4.1.2 Neuronal Subpopulation Responses 

Virtual imaging experiments were initially conducted using the computational arrays for 

each neuronal subtype separately, as shown in Figure 4.3. Five 80 dB tones spaced one 

octave apart in frequency were delivered consecutively to each of three arrays consisting 

entirely of Type V, I or O units. The response criterion for attributing a driven response 

to a particular unit was set at either 10% or 50% of maximum firing (top row or bottom 

row, respectively). All array elements responding at rates greater than the appropriate 

criterion are color coded according to the frequency of the tone delivered. 

 

Differences between the response types are rather striking. Type V responses (leftmost 

panels) showed the greatest overall activity and extensive overlap in some activated areas 

for tones of different frequencies. Units in areas of overlapping activity showed 

significantly greater bandwidths and lower thresholds than those in nonoverlapping areas 

(p < 0.001, student’s t test). These areas corresponded to the upper left and lower right of 

the Type V array. The combination of high bandwidth and low threshold creates a large 

FRA for monotonic responses, allowing for a greater variety of stimuli to activate these 

units than would activate units with a low bandwidth or a high threshold or both. Type O 

responses (rightmost panels) showed a very different response profile with much smaller, 

nonoverlapping, punctate areas of activation. A single pure tone at 4 kHz and 80 dB, for 

example, activated 24% of the Type V array elements above the 10% response criterion 

but activated only 3.0% of the Type O array elements. Type I responses showed trends 

between those of Type V and Type O units with no activation overlap for the tones 

spaced one octave apart (middle panels). Raising the response criterion (e.g., from 10% 

to 50%) is a manipulation an experimenter could perform in order to attempt to localize 

frequency responses more accurately, which these virtual imaging experiments 

demonstrate would yield a visible improvement in frequency map determination. Type V  
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Figure 4.3. Virtual imaging of different response types.  

Virtual imaging experiments reveal distinct patterns of primary auditory cortical activity 

for each of the three main receptive field categories. Five pure tones delivered to an array 

of Type V neurons at 80 dB and spaced one octave apart in frequency collectively 

activate a large proportion of the underlying area, including substantial overlapping 

activity (left column). This pattern is evident both when the neuronal response criterion 

for inclusion is set at 10% of the maximum response for each pixel (top row) or 50% 

(bottom row). Similar patterns are seen for Type I neurons, although with less overlap 

and overall activation at map areas of higher bandwidth (middle column). In contrast, 

smaller isolated patches of cortex are activated by pure tones for Type O neurons (right 

column). 
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responses to octave-spaced tones are likely to overlap at regions of high bandwidth, 

however, even at relatively high response criteria.  

 

The experiments shown so far were conducted with arrays containing only one type of 

response FRA. Neurons with different FRAs are generally commingled in A1, however, 

some combinations of different unit types must be evaluated to understand the expected 

behavior of the entire cortical area. These commingled arrays did not explicitly take 

inhibition into account, but imaging methodologies based upon correlates of neuronal 

activity such as blood oxygenation should reveal activity regardless whether the neurons 

are excitatory or inhibitory. Figure 4.4 shows five different relative proportions of the 

three FRA subtypes within each pixel of the corresponding array. In this case, each pixel 

can be thought of as a simple average of its constitutive units. If 100 units contributed to 

each pixel of the 50:25:25 array, for example, then 50 of them would be Type V, 25 

would be Type I, and 25 would be Type O. The stimuli and analysis are the same as in 

Figure 4.3 with response criteria applied to the mean response for each pixel. At the 10% 

response criterion (top row), Type V responses tended to dominate the appearance of the 

population responses when they represented as little as 20% of the total. Their influence 

can still be seen even when they represent only 10% of the total (upper right), although it 

diminished dramatically at higher response criteria, as can be seen with the 50% criterion 

(bottom row). Both Type V and Type I responses lost all influence on the activated area 

at the 50% criterion when their individual proportions dropped below 25% (bottom right 

two panels). In those cases only Type O responses can be discerned, and they are 

relatively robust. This phenomenon occurs because Type O FRAs contribute the most to 

pixel averages in those situations, and once the response criterion is set below the 

contribution of Type O FRAs and above the contributions of Type V/I FRAs, the latter 

disappear from the resulting image. Depending upon the relative proportion of the 

receptive field subpopulations within A1, therefore, different response criteria are likely 

to alter the gross appearance of areas activated by tones. In fact, under the conditions 

used to create the model array, the response criterion at which tone activation areas 

fracture into multiple noncontiguous regions exactly matches the relative proportion of  
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Figure 4.4. Virtual imaging with a variety of weightings between response types.  

When the overall neuronal population contains a mixture of receptive field types, the 

resulting functional maps depend upon the relative activity of the subpopulations. 

Relative proportion of Type V/I responses decrease from left to right, while relative 

proportion of Type O responses increases. At the lower detection criterion of 10% (top 

row), Type V responses tend to dominate the maps even when they represent a minority 

of responses. At the higher detection criterion of 50% (bottom row), the contribution of 

Type V/I responses to the overall functional map diminishes as their relative proportions 

diminish. 
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Type O FRAs. A similar observation in real functional imaging experiments may provide 

an estimate of the actual Type O prevalence in vivo. 

 

Given the unique receptive field dependences of Type V and Type O responses upon 

stimulus intensity, one might expect areas of activation to be functions of tone intensity. 

Figure 4.5 shows activated array areas at 10% response criterion for a pure tone at 4 kHz 

with intensity stepped from 20 dB through 100 dB in 10 dB steps. As shown in Figure 

4.5A, activated areas for Type V responses generally increased both along isofrequency 

contours (upper left to lower right) and iso-bandwidth contours (lower left to upper right) 

as a function of increasing tone intensity. Activated areas for Type I responses, on the 

other hand, increased only along isofrequency contours until a narrow, contiguous band 

became active (Figure 4.5B). Type O responses were different still: activated areas 

migrated along isofrequency contours from a low-threshold region toward a high-

threshold region (Figure 4.5C). While collective Type V and Type I array response areas 

increased at higher tone intensities, array response areas remained constant for Type O 

responses. Upon combining the three response classes in equal proportions into a single 

array, the activation patterns can be seen to mirror Type V responses closely (Figure 

4.5D). This same trend is apparent at other relative unit proportions (data not shown). 

Smaller population activation areas, as well as more accurate frequency estimation, can 

therefore be expected in A1 at lower tone intensities. 

 

Neurons isolated at different depths within a cortical column of A1 are known to vary 

somewhat in their response characteristics (Atencio and Schreiner 2008; Phillips and 

Irvine 1981). In other words, individual neurons within a column may have features that 

deviate from the relevant feature map. This map variability may contribute to challenges 

in discerning functional A1 maps, both electrophysiologically and through functional 

imaging. To assess the effects of columnar variation upon functional imaging 

experiments, a population array was modified to map features randomly instead of using 

deterministic values as was done for the previous experiments. In the modified array, the 

maps refer to mean frequency, bandwidth and threshold at any given point. The three 

FRA response type subpopulations were combined in equal proportions. Each 
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subpopulation was further divided into three additional groupings reflecting unique 

instantiations of the relevant random variables. If, for example, 100 units contributed to 

the response of each pixel, then (in round numbers) 33 neurons would belong to each of 

the three responses types, and every 11 neurons would have feature values drawn from 

different instantiations of the relevant uniform distributions. These arrays were referred to 

as jittered arrays. 

 

To examine the effects of variations within a cortical column on functional imaging 

results, tones were delivered at 4 kHz and 80 dB to a jittered array comprising equal 

proportions of the three neuronal response classes (i.e., 33:33:33). The resulting 

responses are shown in Figure 4.6. The no-jitter case (Figure 4.6A) reflects no 

randomization, thereby matching the configuration of all the previous arrays. Contour 

lines representing deciles of maximum firing rate can be seen, and the overall structure is 

noticeably influenced by Type V neurons. As jitter is increased to 10%, the response 

contours are disrupted, but little overall change in the activated area is evident to the 

naked eye (Figure 4.6B) with one exception: jitter appears to have the greatest impact 

upon regions of the map with the lowest bandwidths and the highest thresholds. This 

trend continues at 20% jitter (Figure 4.6C) and beyond (data not shown) and implies that 

even low-resolution functional imaging results may be relatively robust in the absence of 

a strict cortical columnar structure of functional similarity, at least at map regions of 

higher thresholds. To put this finding into perspective, an electrode penetrating a cortical 

column with 20% jitter at a 4000 Hz point in the jittered map would be equally likely to 

encounter any frequency in the range of 2639 Hz to 6063 Hz. Even with a clear map of 

parameter means, such jitter could make discerning the structure with sparse electrode 

penetrations quite challenging, while the natural neuronal averaging inherent to imaging 

could enable a fairly clear depiction of the underlying map. 
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Figure 4.5. Areas of activation with varying stimulus amplitude  

Stimulus amplitude predominantly affects the maps of Type V responses. A. As the 

amplitude of a pure tone at 4 kHz increases, Type V subpopulation responses increase in 

area parallel to the frequency axis. B. Type I response areas increase orthogonally to the 

frequency axis. C. Type O response areas do not increase. D. Population responses 

comprising equal proportions of the three subtypes demonstrate increasing activation area 

parallel to the frequency axis as tone amplitude increases because of the Type V 

contribution. For all large plots, each pixel is assigned the gray value of the lowest 

intensity to which its underlying array element responded. Insets show array responses to 

a tone at one intensity with grayscale values corresponding to response rate. 
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Figure 4.6. Virtual imaging experiment with different amounts of cortical variability. 

Variability in map fidelity predominantly affects regions of low receptive field 

bandwidth. A pure tone at 4 kHz and 80 dB was delivered to an array with equal 

proportions of the three neuronal subtypes. The value of each of the three mapped 

stimulus features was mapped to each element of the array (i.e., pixel) as uniformly 

distributed random variables whose means were the feature values for the exact map. 

Variability in the random maps is presented as a percentage of the mean (i.e., jitter). The 

exact map is shown on the left (A) and standard deviations of the random variables 

increase toward the right to 10% jitter (B) and 20% jitter (C). Deciles of rate response are 

depicted in grayscale. The map areas most clearly affected by randomized mappings 

corresponds to the narrowest receptive fields and, secondarily, the highest thresholds. 
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4.1.3 Functional Map Extraction 

The feasibility of extracting the original feature maps of frequency, bandwidth and 

threshold from the virtual imaging results using only pure tone stimuli was examined 

next. For these models, a frequency range of 31.25 Hz to 8 kHz was used. Figure 4.7 

shows maps extracted using relatively simple procedures (see Chapter 2.3.3). CF maps 

were extracted fairly accurately using only 21 tones (Figure 4.7A). A small portion of the 

map in the center of the array (<0.4% of the total map) did not produce any response 

because the CFs of the units located in these regions fell between the tone frequencies 

presented, and the bandwidths of these units were very narrow. With a larger number of 

tone stimuli, these unresponsive areas disappeared (data not shown). Ignoring these areas 

for the case of 21 tones, the estimated CF was on average 0.058 octaves away from the 

mapped CF values for arrays with equal proportions of FRA types and 0.072 for arrays 

with 10:10:80 proportions of Type V:Type I:Type O responses (data not shown). Both 

threshold maps and bandwidth maps were extracted using a large number of pure tones. 

Mapping both features required tones to be spread out over a variety of sound intensities 

and frequencies instead of just frequency as in mapping out CF. For threshold, a large 

number of tones must be spaced out in frequency to predict an accurate rate-intensity 

curve at the CF. If 2121 pure tones are used, threshold maps were also extracted very 

accurately (Figure 4.7C). The mean difference between the extracted and the mapped 

thresholds was 0.84 dB for the arrays with equal proportions of FRA types and 0.69 dB 

for 10:10:80 arrays. Bandwidth was not easily predicted, however (Figure 4.7B). In order 

to resolve the bandwidth map, the tones must be spaced in frequency no farther apart than 

least the lowest neuronal bandwidth. Furthermore, the intervals of tone amplitudes must 

be small enough to allow for accurate prediction of the bandwidth at the desired intensity 

(in this study, always measured at 10 dB above threshold). With pure tones presented at 

tenth-octave intervals of frequency and 5 dB intervals of amplitude, the mean difference 

between the extracted and actual bandwidths was 0.054 octaves for arrays with evenly 

distributed proportions of FRA types and 0.052 octaves for arrays with 10:10:80 arrays. 

These errors represent 18% of the range of mapped bandwidths (0.1 to 0.5 octaves), 

which is considerably higher than the errors for the other two features. While this degree  
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Figure 4.7. Extracted feature maps. 

Feature maps can be extracted using sequentially delivered pure tones. A. Twenty-one 

pure tones were delivered at half-octave intervals at 80 dB, and the fitted frequency 

eliciting the greatest response at a given pixel was assigned to that pixel as its 

characteristic frequency (CF). CF extraction using pure tones produced an accurate 

estimation of CF, except for small regions in the center of the map where receptive field 

bandwidth was narrower than the frequency spacing. B. Bandwidth maps were extracted 

using many pure tones at tenth-octave frequency intervals and 5 dB amplitude intervals. 

Using the extracted threshold maps, the bandwidth was measured at 10 dB above the 

estimated threshold. Relatively large errors were generated with this technique. C. 

Threshold maps also extracted using the same stimuli produced relatively accurate map 

estimates. Each pixel in the extracted threshold map was assigned the lowest stimulus 

intensity that elicited a spiking rate above the response criterion. 
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of error does not allow for a fine bandwidth map to be discerned even for large numbers 

of stimuli, the gross organization of the map can be identified, especially the highest- and 

lowest-bandwidth regions. Smaller numbers of stimuli may also be just as effective at 

providing crude estimates of “high-bandwidth” and “low-bandwidth” regions. 

 

4.1.4 Responses to Complex Stimuli 

Distributed neuronal activity can be represented sufficiently well with functional imaging 

to classify sensory stimuli based solely upon the functional images (Kay et al. 2008). To 

examine the robustness of complex stimulus representation in the model arrays, complex 

spectra were delivered for the vowels /æ/ as in “bad” and /ε/ as in “bed” to arrays of 

individual neuronal subtypes as well as an array of equal proportions of the three FRA 

response subtypes (Figure 4.8). Frequency ranges of these arrays spanned 31.25 Hz to 8 

kHz, and to test the robustness across intensity in particular, the vowels were delivered at 

both 25 dB and 75 dB. Similarly to the pure-tone responses, Type V and Type I responses 

increased their overall activation areas as sound intensity increased while Type O 

responses simply shifted their activation areas across the array. The mean firing rate of all 

the Type O responses was independent of the sound intensity of the stimulus (25 spikes/s 

for both /æ/ and /ε/ at both intensities), while for the Type I and Type V responses the 

mean firing rate depended upon the sound intensity (e.g., for stimulus /æ/, mean firing 

rates for Type V responses of 4 and 60 spikes/s at 25 and 75 dB, respectively, and for 

Type I responses of 11 and 72 spikes/s at 25 and 75 dB, respectively). The combined 

responses for all neuronal types appeared to be dominated by Type O and Type I 

responses at low sound intensities (bottom left two panels). At high intensities, however, 

the combined responses appeared to be dominated by the saturated Type V responses 

(bottom right two panels), although the highest spiking rates at individual pixels were 

attributable to Type O responses. 

 

Notably in Figure 4.8, differences in sound intensity of a particular vowel appeared to 

elicit greater distinctions in overall array activity than did two different vowels at the 

same sound intensity. This characteristic was apparent for all three response classes, as 
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well as the population response. To visualize these differences in array activity, a 

differential image was created between the two vowels at 25 dB and 75 dB for 

populations of each response class, as well as the combined population. Remarkably, 

differential images for arrays of Type V and Type I responses showed virtually no 

distinction between these vowels at low intensities, although obvious distinctions were 

apparent at high intensities (Figure 4.9, top two rows). Type O responses, on the other 

hand, 
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Figure 4.8. Virtual imaging of complex stimuli. 

Complex stimuli such as vowels show fundamental response differences between Type 

V/I and Type O responses. Type V and I arrays showed responses that increased with 

vowel intensity until nearly the entire map was saturated with high responses. The area of 

activation in Type O arrays, on the other hand, was independent of the stimulus intensity, 

although the location of the activation migrated with changes to stimulus intensity. Type 

O responses can be seen to contribute substantially to the combined arrays at lower 

intensities, but at higher intensities Type V responses dominate. Vowel spectra are shown 

in the insets.  
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showed a similar magnitude of map differences between the two intensities, though 

largely nonoverlapping populations of neurons appeared to be responsible for this 

difference (Figure 4.9, third row). Because the magnitudes of the differences are greatest 

in the Type O case, the differential image created with the equal-proportions array most 

closely matched the type O responses (Figure 4.9, bottom row). Perhaps just as 

remarkably, Type V units, despite their extensive overall responses, influenced the 

combined population differential response very little at any intensity. This result comes 

about because the Type V units respond to more stimuli than the other response classes 

do (i.e., they are less selective), so differential images tend to cause more cancellation for 

Type V than for the other FRA classes. Differential functional images of A1 in response 

to complex spectra may therefore preferentially reveal Type O activation. 
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Figure 4.9. Differential maps of activity from complex stimuli. 

Differential array activities for vowels at the same stimulus intensity. Type V/I responses 

indicate little difference between the two vowel activation patterns at low intensities and 

greater difference at higher intensities. The difference in activation areas for Type O 

responses appears to be fairly constant at both intensities, although the location of the 

active neurons shifts across the array. Because the magnitude of the rate differences is 

greatest in the Type O population, the combined response differences resemble the Type 

O response differences closely. 
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4.2 Discussion 

Functional imaging studies allow the response properties of large portions of the brain to 

be analyzed in parallel. These results are achieved by examining combined behavior of 

many neurons located near one another performing similar functions. Limitations in these 

studies, however, may stem from technological considerations, such as poor 

spatiotemporal resolution, or from neuronal characteristics, such as lack of a topographic 

feature map. Functional imaging has traditionally been less successful at inferring novel 

neuronal behavior in the auditory system than in other sensory modalities. Some of the 

known and postulated functional map properties of primary auditory cortex (A1) were 

examined to determine which imaging limitations can be attributed to the 

neurophysiology and how these limitations might be overcome using modified image 

acquisition techniques. 

 

The creation and refinement of Type O responses locally within primary auditory cortex 

(A1) by neurons with similar characteristic frequencies but different bandwidths and 

thresholds (Tan et al. 2007; Wehr and Zador 2003) implies that the mapping of these 

three neuronal features may be important for constructing local microcircuits in A1 that 

give rise to these responses. The results from a recent A1 optical imaging study that in 

turn matched classical electrophysiological findings (Ojima et al. 2005) were replicated 

by constructing theoretical maps of these three features. In that study large portions of A1 

were activated with relatively few pure tone stimuli such that overlapping areas of 

activation were smallest in the center of A1 and greatest dorsally and ventrally. The 

virtual imaging experiments showed that the overlapping regions of activation observed 

in the model arrays when stimulated by octave-spaced tones were associated with high-

bandwidth and low-threshold map regions. Electrophysiological bandwidth mapping 

studies in cat A1 indicate that high-bandwidth neurons are located towards the dorsal and 

ventral areas of A1 (Bonham et al. 2004; Schreiner and Sutter 1992). Threshold mapping 

studies have not yielded consistent maps as threshold seems to be mapped differently 

between animals (Schreiner et al. 1992). Because the computational feature maps were 
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selected based upon their gross similarities to the organization of those found in 

physiological mapping studies, at least in terms of frequency and bandwidth (Watkins 

and Barbour 2008), the model array reproduced the dumbbell shapes and overlapping 

activations seen in images from the Ojima studies. 

 

As pure-tone stimuli of higher intensity are presented to the model arrays, the three 

response classes exhibit different behaviors that translate into different functional 

mappings. Type V arrays are the only ones that exhibit expansion along the tonotopic 

axis as a function of intensity, which would tend to lower effective frequency resolution 

of any imaging technique at higher intensities. When the three response types are 

combined into a single array, Type V responses dominate the resulting functional maps at 

most relative proportions of the three response types. The influence of Type V responses 

can be dramatically reduced by adopting a higher response criterion, however. This effect 

is achieved because the Type I and Type O elements responding at the highest rates are 

more compactly organized than the Type V responses.  

 

The percentage of Type O, intensity-tuned, or “nonmonotonic” neurons isolated in 

electrophysiological studies of A1 has been reported to be as little as 8% in anesthized cat 

(Sutter and Schreiner 1995) to as high as 78% in one study of macaque monkeys (Pfingst 

and O'Connor 1981), and many values in between. The true relative proportion of Type O 

neurons detectable in A1 is likely to be dependent upon species, anesthetic state, neuronal 

sampling methodology, stimulus selection and possibly other factors. Physiological data 

from awake marmoset monkeys indicate nonmonotonic proportions in excess of 50% in 

A1 (Watkins and Barbour 2008). Given uncertainties regarding the true proportion of 

Type O neurons across different preparations, however, I elected to evaluate model arrays 

with various relative proportions of the three response types. It may be possible that 

simple analytic methods applied to functional images derived from tone stimulation of 

A1 will enable a more accurate estimate of the true proportion of nonmonotonic neurons. 

One such technique suggested by the virtual imaging results would be to increase the 

response criterion until responses to pure tones fracture into multiple disconnected 

islands along the isofrequency axis. The response criterion as a percentage of maximum 
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response should approximately equal the relative proportion of Type O neurons under 

such conditions (c.f., Figure 4.4). 

 

While the properties of neurons within a cortical column are similar to one another, they 

are not identical and can in some cases exhibit considerable variability, even when a 

topographic map is known to exist (Abeles and Goldstein 1970; Atencio and Schreiner 

2008; Imig and Adrian 1977; Phillips and Irvine 1981). A rather surprising finding is that 

even with considerable jitter in all three mapped features, the gross structure of A1 

activation by a single tone remains relatively constant. Indeed, if the spatial resolution of 

an imaging modality is lower than the resolution of the array (or, presumably, the 

columnar spacing in cortex), even extensive feature jitter may not alter functional images 

substantially. The one likely exception to this observation is in regions of narrow 

bandwidth (i.e., small receptive field size). Activity in those regions appeared to dilute 

along the tonotopic axis and diminish in prominence as jitter increased. Thus, even if 

considerable variability exists in the functional map(s) around some “ideal” map, well-

designed imaging experiments may be able to discern the ideal map structure more 

clearly than electrophysiological experiments, which could be misleading should the 

number of neurons sampled be too low in the face of map variability. Such a situation 

may have contributed to early observations from single-unit mapping studies that 

stimulus frequency is not mapped in A1 (Abeles and Goldstein 1970). 

 

4.2.1 Functional Map Extractions 

Pure-tone stimulus protocols were used effectively to extract estimated frequency and 

threshold maps from the model array that closely matched the actual feature 

topographies. Tone-based protocols elicited the most error for these two features in map 

regions of lowest bandwidth. Bandwidth itself proved to be an extremely challenging 

feature to extract with a reasonable number of tone stimuli. Mapping bandwidth requires 

high-resolution frequency sampling in order to resolve adequately the activity of low-

bandwidth neurons, as well as high-resolution threshold mapping in order to attribute the 

estimated bandwidth to the proper intensity (e.g., 10 dB above threshold). Since the 
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bandwidth of Type V responses is a function of stimulus intensity, errors in estimated 

threshold maps will greatly increase the error in bandwidth estimation for these units in 

particular. Furthermore, even with a large number of stimuli (over 2000 pure tones for the 

estimated map in Figure 4.7B), the extracted maps of bandwidth were crude. While they 

revealed the overall shape and the organization of the actual map, the estimated maps had 

a relatively high degree of error compared with the frequency and threshold maps. 

Attempts to map bandwidth in A1 based upon functional imaging experiments have 

generally attempted simply to identify “high-” and “low-” bandwidth regions (Kayser et 

al. 2007). In the simulations, identifying high-bandwidth regions was relatively 

straightforward based upon overlapping areas of activation from tones of different 

frequencies. Low-bandwidth regions can then be identified as pixels that do not 

demonstrate overlap at a particular tone frequency spacing and intensity. Any method of 

mapping a distinction between “high-” and “low-” bandwidth regions likely represents a 

reasonable approach for determining the general structure of the A1 bandwidth map. 

 

While Type V responses may diminish imaging resolution in general, they paradoxically 

appear to improve the extraction of frequency maps. Their large bandwidth in response to 

high sound intensity helps decrease the number of stimuli needed to resolve the 

frequency map for the entire A1. Because only the maximum firing rate of the fitted 

frequency response curve was used to assign a frequency to a given pixel, the saturation 

from the Type V units did not affect the ability to extract the CF. The increased receptive 

field size allowed the neuron to respond to a larger number of stimuli to provide more 

points on the FRC to create a better curve fit. This finding may be attributable to the 

knowledge of the FRC shapes in advance and may not be applicable under physiological 

conditions when Type V FRCs are not perfect Gaussians. While estimated map accuracy 

was consistent across all the relative proportions of response types that were tested, the 

absolute firing rates for the equal-proportion arrays were much higher than for the 

10:10:80 Type V: Type I: Type O arrays. The physiological accuracy of estimated maps 

may vary from what was predicted, therefore, depending upon the noisiness of the neuron 

activity and the actual response type proportions. 
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4.2.2 Responses to Complex Stimuli 

Vowel spectra are composed of many spectral components dispersed in frequency. Such 

stimuli could be expected to activate a relatively large portion of A1, and this was also 

true in the model array, particularly at higher intensities. Different vowel spectra 

delivered at the same intensity to arrays of Type V and Type I responses elicited very 

similar activation patterns. Patterns of activity in response to the same vowel spectrum 

delivered at different intensities, on the other hand, demonstrated substantially greater 

variability. Most of this variability across intensity can be attributed to the threshold map 

and indicates that neither Type V nor Type I neurons represent a intensity-invariant code 

for complex spectra. 

 

Type O responses also exhibit considerably more similarity between activity patterns in 

response to different spectra than to the same spectrum at different intensities. Unlike 

with Type V and Type I responses, however, different populations of Type O units are 

active at different intensities. The resulting activation patterns shift across the threshold 

axis, which is roughly perpendicular to the tonotopic axis in the model. Creation of a 

intensity-invariant representation of complex sounds with Type O neurons also seems 

unlikely based upon these findings. A special contribution of Type O responses does 

become apparent in the differential response maps, however. At low intensities, most of 

the Type V/I units responding to one vowel respond to another at the same intensity. The 

consequence of this lack of selectivity can be seen the activation difference maps, which 

show little differential activity for these response types between two vowels at low 

intensity. The difference maps for Type O neurons are prominent across intensities, 

however, and the combined population maps are therefore dominated by Type O 

responses at the lowest intensities. This finding provides further evidence that Type O 

neurons may be the most useful sound encoders at lower intensities (Watkins and 

Barbour 2008). Actual functional imaging experiments of A1 during complex stimulus 

delivery may be able to shed additional light on this hypothesis. 
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4.2.3 Experimental Techniques Predicted to Improve Imaging Resolution 

The simulations indicate that any stimulation paradigm preferentially emphasizing Type 

O neurons is likely to improve the resolution of functional images in A1. First, raising the 

response criterion for attributing pixels to a given frequency under pure-tone stimulation 

is one technique that preferentially emphasizes Type O neurons. Second, because the 

total number of Type O responses elicited as a function of stimulus intensity is relatively 

constant for the total number of Type V/I responses increases with stimulus intensity. 

Thus, delivering stimuli at lower intensities raises the relative proportion of Type O 

responses. Finally, the temporal response properties of Type O neurons appear to differ 

from Type V/I neurons (Watkins and Barbour 2008). Exploiting differential adaptation 

may allow the creation of stimuli designed in temporal blocks that preferentially activate 

Type O neurons at a particular point in time. 

 

4.2.4 Limitations in Virtual Imaging 

Several caveats exist regarding the physiological applicability of the virtual imaging 

model used for this study. First, the feature maps used here were based upon theory rather 

than specific findings within A1, although under appropriate constraints the theoretical 

maps match known topographies of A1 (Watkins et al. 2009). While the theoretical maps 

assume independence of different features mapped within A1, these features may not be 

mapped completely independently of one another (Cheung et al. 2001; Philibert et al. 

2005), which may influence functional images. Furthermore, thresholds are not evenly 

distributed when the auditory system is adapted to silence and tend to be concentrated 

toward lower values throughout the auditory system (Watkins and Barbour 2008). 

Absolute thresholds are also dependent upon frequency because of the filtering effects of 

the outer and middle ears, leading to higher neuronal thresholds at lower and higher 

frequencies. These phenomena could affect the activated areas of the simulated functional 

images. However, the trends that were observed are robust under many conditions that 

were tested, and they are unlikely to be disrupted by minor variations in the underlying 

feature distributions. In any case, the main goal of this work has been to devise 

hypotheses about A1 organization that are testable with real imaging experiments. Such 
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experiments would provide more convincing tests of these hypotheses than additional 

model manipulation. 

 

Although not explicitly taken into account in the computational models, real neurons 

have responses shaped by inhibition as well as excitation (Ojima and Murakami 2002; 

Tan et al. 2007; Wang et al. 2002; Wehr and Zador 2003), and inhibition has the potential 

to alter responses to complex stimuli in particular. One likely role of this inhibition is to 

create selective neuronal responses. Most of the virtual imaging experiments described 

here exploited the delivery of pure tones. The three types of FRAs described reflect 

canonical compact A1 receptive field behavior in response to pure tones. Neuronal 

responses to wideband stimuli exhibit more variety than is apparent with the three FRAs 

presented here. The responses most typically display increased selectivity, which is most 

likely created through inhibitory mechanisms. When activity from selective and 

nonselective neurons is averaged together, the resulting activity most closely resembles 

the nonselective neurons. This phenomenon was exhibited for combinations of Type V 

(nonselective) and Type O (selective) neurons in Figure 4.4. Furthermore, imaged 

activity likely reflects as much sub-threshold activity as supra-threshold (or more). Given 

that Type O neurons are created and refined by local circuits within A1, Type V, I and O 

neurons are likely to be intermixed physically in A1, leading to the relatively 

nonselective response behavior that were explicitly modeled. 

 

Finally, the procedures described here represent idealized imaging experiments. Neuronal 

noise, imaging noise, motion artifacts, etc., were not introduced into the virtual images of 

this study. It is possible, though unlikely, that noise sources commonly encountered 

during functional imaging experiments may systematically bias the resulting images. If 

that were the case, then real functional images may not recapitulate features of the 

idealized experiments because of this noise. Instead of modeling noise, it was chosen to 

focus upon inferences that could be drawn regarding neuronal circuitry from clean 

images. The degree to which actual functional A1 images correspond with the predicted 

findings, given the inevitability of noise in the measurements, is best evaluated directly in 

physiological experiments. It is likely that the results of such experiments will allow 
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refinements of the virtual imaging protocol to extend the neural network hypotheses 

presented here. 
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Chapter 5 Conclusion 

5.1 Summary of Experimental Results 

This thesis has reported novel results in the evaluation of functional imaging as a 

mapping tool for the primary auditory cortex. Chapter 3 used virtual mapping to describe 

how functional imaging studies have the necessary sampling density to accurately resolve 

maps with high spatial frequencies. At the same sampling densities, single-unit studies 

can more accurately estimate the underlying maps than multi-unit studies, which average 

the responses of multiple units together. Even though functional imaging studies such as 

optical imaging of intrinsic signals and functional-MRI of blood oxygen level-dependent 

contrast sample their responses by averaging neural responses, these functional imaging 

studies have sufficiently high resolution to accurately estimate the maps.  

 

Chapter 4 introduces a virtual imaging model that simulates the neural circuitry found in 

A1. This model is created from the three simplest response types seen in A1: Type O 

(nonmonotonic), Type I (narrowband monotonic), and Type V (wideband monotonic) 

responses. The model suggests that the Type V responses may diminish imaging 

resolution because their large receptive fields obscure the other two types of responses. 

While Type O responses may account for up to 78% of the neurons in the auditory cortex 

(Schreiner et al. 1992), a relatively small percentage of Type V responses can obscure the 

Type O responses. However, the Type V responses may actually improve the ability of 

functional imaging modalities to map the auditory cortex because their large receptive 

fields reduce the number of stimuli that are needed to activate and map A1. While the 

Type V responses may obscure the other response types, it may be possible to reduce the 

saturation by raising the response criterion, by reducing the intensity of the stimulus, and 

by using the difference in temporal adaptation to selectively activate Type O responses.  
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5.2 Functional Imaging as a Neurophysiology Tool  

Most functional imaging studies average the activity of a number of neurons. This 

averaging has both advantages and disadvantages. In mapping studies, averaging may 

resist varability within the cortical columns. However, this averaging reduces the overall 

accuracy of the maps compared to single unit mapping performed at the same resolutions. 

The sampling density of functional imaging is typically much higher than the sampling 

density of electrophysiology experiments. This increased sampling density helps 

compensate in resolution lost from the averaging and should allow for functional imaging 

to accurately map A1.  

 

The second advantage of mapping A1 with functional imaging is that the large receptive 

fields of Type V responses may increase the accuracy of the maps. The large receptive 

fields allow the brain to be mapped with fewer responses, at the expense of saturating out 

the responses from less selective encoders. The obscured responses of the Type O and 

Type I neurons, however, should not affect the ability to map A1. The organization of 

physiological properties in cortical columns reduces the need to record all the responses 

within a column if the average response reflects the distribution of neurons within a 

column.  

 

5.3 Shortcomings of Functional Imaging  

With the exception of multi-photon imaging with calcium indicators, functional imaging 

lacks the ability to record at single cell resolution and the ability to uniquely detect supra-

threshold activity. Because of this, most functional imaging experiments may not be able 

to measure response from a large number of neurons in A1. Such neurons include Type O 

neurons, which can account for up to 70% of the isolated neurons in A1. Type O 

responses are created within the central nervous system since they are not observed 

within the auditory nerve fibers. Without the use of multiphoton imaging with calcium 

indicators to isolate the Type O responses from the saturation produced from Type V 

responses, functional imaging studies may have trouble replicating many 

electrophysiology studies, unless other novel techniques are developed. 
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5.4 Possible Future Studies 

The next step is to test the techniques suggested in this thesis to overcome the limitations 

of functional imaging. These techniques may improve resolution by selectively activating 

Type O responses. The first method is to increase the response criterion of the image. 

Increasing the response criterion may require both the Type V and the Type O responses 

to fire together in order to reach the increased response criterion. The next method is to 

present stimulus at low sound intensities. Imaging studies typically use loud stimuli (>60 

dB SPL) in order to improve the signal to noise ratio. In doing so, they preferentially 

activate Type V responses since Type O responses are inhibited at high sound intensities, 

and Type V responses have their highest firing rates at loud sound intensities. Another 

method is to use temporal adaptation to selectively activate Type O responses. In 

comparison to Type V and Type I responses, Type O responses slowly adapt to sound 

intensity. Thus, playing a loud sound before a quieter stimulus may cause the Type V and 

I responses to raise their thresholds, allowing the Type O responses to be selectively 

activated by the quieter stimulus.  
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