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Scheduling Multiple Parallel Programs Online
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Research Advisor: I-Ting Angelina Lee

The prevalence of parallel processing has only increased in recent years. Today, most com-

puting machines available on the market shifted from using single processors to possessing

a multicore architecture. Naturally, there has been considerable work in developing par-

allel programming languages and frameworks which programmers can use to leverage the

computing power of these machines. These languages allow users to create programs with

internal parallelism. The next, and crucial, step is to ensure that the computing system can

efficiently execute these parallel jobs.

Executing a single parallel job efficiently is a very well-studied problem in parallel computing.

In the area of job scheduling, there is extensive work on scheduling multiple sequential jobs

to minimize important objectives. However, there is little work on scheduling multiple jobs

that have internal parallelism.

This dissertation focuses on designing theoretically efficient and practically good scheduling

algorithms for parallelizable jobs in the identical machines setting. Specifically, this research
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consider jobs in the Directed-Acyclic-Graph (DAG) model of parallelism and studies the

problem of scheduling multiple DAG jobs to optimize objectives such as average flow time,

maximum flow time, and throughput. The overarching goal of the research is to deeply

examine the problem of scheduling multiple parallel jobs and to take the first steps to-

wards creating a body of knowledge comparable to the extensive amount of existing work

on scheduling sequential jobs.
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Chapter 1

Introduction

One of the main goals in computer science is to efficiently perform computation. In recent

years, computing systems have become more and more parallel in nature due to physical

limitations and the need to reduce power consumption. Most computing devices, ranging

from cellphones to desktop computers to servers, now have multiple processors. This trend

will only continue into the future. Therefore, exploiting the parallelism of computing systems

will only grow in importance. To achieve this goal, many techniques have been developed

to allow programmers create internal parallelism in the tasks they seek to achieve. Libraries

and languages such as Cilk[13], Intel Thread-Building Blocks[28], and OpenMP[37] are a few

examples of these technologies. Programmers can use these technologies to create programs,

or jobs, that multiple processors can work on at the same time to complete at a faster rate.

The efficient execution of these programs is an important area of study in parallel computing.

In another setting, interactive services such as web search and online gaming are hosted

on clouds and servers. In this sort of situation, the service provider must handle requests,

or jobs, that arrive from clients over time. Latency is a metric that many clients pay

close attention to, therefore, service providers seek to minimize latency in order to satisfy

their customers. In order to reduce the amount of processing time necessary to complete
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client requests, these services often run on massive parallel machines with many processors.

Therefore it is important for the server to utilize all the resources available to it in order

to complete jobs efficiently. In this case, the server must know how to handle and execute

multiple parallelizable jobs which clients may submit. Knowing provably efficient algorithms

for this sort of job scheduling problem is of great benefit to the service providers.

The focus of this thesis is scheduling multiple parallelizable jobs in the Directed-Acyclic-

Graph (DAG) model online for many different objectives including maximum flow time,

average flow time, and throughput. These objectives and the model will be defined more

precisely in the following sections. Nevertheless, we cannot begin this work without acknowl-

edging the fact that scheduling jobs is a massive area in theoretical computer science and

that there is a large body of work on scheduling sequential jobs for all of these objectives.

The goal of the thesis is to achieve an understanding of scheduling parallel DAG jobs that

complement the immense amount of knowledge on scheduling sequential jobs (of which [39]

is a good survey, albeit slightly old).

1.1 Client-Server Scheduling Model

Scheduling is a problem which arises in many areas of computer science ranging from oper-

ating systems to distributed computing. Therefore it is unsurprising that it is a rich area of

study in theoretical computer science. The particular type of scheduling this thesis considers

is client-server scheduling. In this model, there are many clients which, over time, send jobs

to a server. The server must make decisions over the order in which the jobs are processed.

Nowadays, the server itself may be a very powerful system composed of many processors,
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designed with the intention to process jobs quickly. Client-server scheduling has received

much attention because it captures many common applications such as when a search en-

gine receives web search requests from users, or when a cloud computing platform receives

tasks to perform for clients. On a smaller scale, it is also similar to the type of problem an

operating system would face when the user tries to run many different programs.

In client-server scheduling, there is a set J of n jobs (from clients) which arrive over time at

a server. The server can complete a job by processing it, but a job may only be processed

after it arrives. In the offline version of this problem, the server knows all information about

all the jobs ahead of time. For instance, it knows the entire arrival sequence of the n jobs

and also knows how long each job must be processed in order to complete the job. This

version of the problem, though somewhat restrictive, is still suitable for many applications

such as allocating computing time on a large computing cluster when all the jobs submitted

are can be known. Alternatively, there is the online problem. Here, the server does not know

the arrival sequence of the jobs. It will only learn of a job’s existence when it arrives at the

server. This is more natural for applications such as web searches, where a server does not

have any idea about when users will submit a search. In this case, the server must schedule

jobs without knowing about possible future job arrivals. This thesis focuses on the online

scheduling problem. Therefore, most of the results and problems mentioned from this point

forward will be online scheduling problems.
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1.1.1 Objectives in Online Scheduling

Usually, the goal of scheduling to efficiently perform jobs. There are many different metrics

that have been considered in online scheduling literature. In this section we will describe

the ones that this thesis examines1:

• Flow Time: Response time or latency is one of the most widely used metric in online

scheduling. In online scheduling literature, this quantity is usually referred to as the

flow time whereas the other two terms are the more commonly understood terms used

in other areas. The flow time of a specific job is defined as the difference between

its completion time and arrival time. This is the exactly amount of time that the job

spends at the server before it is completed. Formally, for job Ji with arrival time ri and

completion time ci in the schedule, the flow time is defined as Fi = ri− ci. Depending

on the scheduling algorithm, the job may be completed at different times, resulting in

a different flow time for the job. Flow time is a quantity defined for each specific job,

leading to several objectives which can be defined for the set of all jobs overall.

– Average Flow Time: This is the average flow time over all the jobs. Minimizing

this quantity minimizes the average amount of time a job spends in the system.

This objective corresponds to the average quality of service that the server pro-

vides to a job. Average flow time is the most well-explored objective in online

scheduling. Note that while minimizing this quantity ensures a good average qual-

ity of service, there are disadvantages to this objective such as fairness; the server

can provide good service to most jobs but terrible service to a few jobs while still

achieving a small average flow time. Also, minimizing the total flow time over all

1Note that the flow time objectives are minimization problems and the throughput objective is maxi-
mization
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the jobs is the same as minimizing the average flow time since they only differ by

a fixed constant n, the number of jobs. In literature, total flow time is often the

actual objective being minimized. Hence, formally, the objective function often

appears like this:

total flow time :=
∑
Ji∈J

Fi =
∑
Ji∈J

ci − ri

An alternative way to think about this objective is that each unfinished job con-

tributes 1 to the total flow time objective per instant of time. Thus, if the set of

unfinished jobs at any point in time in the schedule is denoted by the function

J(t), the total flow time objective can also be written this way:

total flow time =

∫ ∞
0

|J(t)|dt

– Maximum Flow Time: This is the largest flow time across all the jobs. In contrast

to average flow time, minimizing this objective minimizes the worst case service

any job receives. Under this objective, a server cannot get away with providing

terrible service to even a single job. This objective is useful for ensuring fair-

ness between every job, an important consideration in many types of scheduling

applications. Formally:

maximum flow time := max
Ji∈J

Fi = max
Ji∈J

ci − ri

– Weighted (Average or Maximum) Flow Time: In some cases, not all jobs have

equal priority to a server. In these instances, each job has a positive weight wi

associated with it where a higher weight represents higher priority. Each job’s
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flow time is then multiplied by this weight to obtain a weighted flow time for each

job. The weighted maximum flow time and weighted average flow time can be

defined naturally using the weight flow time for each job. Alternatively, one can

think of these as the weighted generalizations of the previous objectives.

• Throughput: Maximizing the throughput of a schedule is an objective which often

arises from the need to process a large number of jobs. In the throughput maximization

problem, each job which arrives to the server has an associated relative deadline Di.

This means that if the job is to be completed, the job must be completed withinDi units

of time after it has arrived. From the server’s perspective, one useful goal is to maximize

the number of jobs that are completed by their deadlines because doing so means that

the server is efficiently completing jobs. Jobs in the throughput maximization problem

actually each possess a profit pi that is awarded if it is completed by its deadline. The

objective is to create a schedule that maximizes the amount of profit. If all jobs had

the same profit, this is the same as maximizing the number of jobs completed by their

deadlines. However, the problem is more general when profits are allowed to differ.

1.2 Background on Online Scheduling

In online scheduling, the scheduling algorithm does not know of job arrivals ahead of time.

It must make decisions without knowledge of the future. There are inherent difficulties for

such algorithms due to this requirement. Therefore, most of the time the algorithm cannot

create the optimal schedule. The principal way to analyze these online algorithms is to use

competitive analysis, detailed in the following paragraph.
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For any input sequence I to an online algorithm there exists an optimal solution which

achieves a objective of OPT(I). Let an online algorithm A achieves an objective of A(I) on

the same instance. For a minimization problem, the algorithm A is said to be a c-competitive

algorithm if for any input sequence I, the objective it achieves is at least A(I) ≤ c ·OPT (I).

Likewise, for maximization the algorithm A must achieve A(I) ≥ 1
c
OPT (I) for any input

sequence I. The constant c is known as the competitive ratio.

Competitive analysis and the competitive ratio is worst-case analysis since there could be

input instances which result in a much worse ratio compared to others, but the definition

requires c to hold for all instances. The goal in designing online algorithms is to create

algorithms that have achieve good competitiveness. For many problems in online scheduling,

we would like to have O(1)-competitive algorithms - in this case c is a constant value.

1.2.1 Resource Augmentation

However, many online scheduling problems are very difficult and do not admit any O(1)-

competitive algorithms. For instance, there are some objectives for which there exist strong,

super constant lower bounds. Theoreticians have put forth the technique of resource aug-

mentation in order to better understand these objectives. Resource augmentation is a (now)

standard form of analysis where the algorithm is allowed more resources than the optimal

solution that it is compared to. For example, in online scheduling the algorithm is analyzed

to be run on either extra processors or faster processors compared to the optimal schedule.

The latter, called speed augmentation, is the most common form of resource augmentation

analysis for online scheduling. An algorithm with s speed will process jobs s times faster
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than the optimal schedule is allowed to process jobs2. In general, speed augmentation is

more powerful than allowing the equivalent amount of extra processors3.

In resource augmentation analysis, an algorithm A is said to be s-speed c-competitive if it

achieves a competitive ratio of c while using s times the speed that is given to the optimal

schedule in the analysis. The strongest possible theoretical result for some online scheduling

problems is a scalable algorithm, which is an algorithm that is (1+ε)-speed O(1)-competitive

for some constant ε ∈ (0, 1]. Of course, the O(1) in the competitive ratio actually hides some

function of ε, but in literature it is often written this way as O(1) instead of O(f(ε)) with

some function f , since ε is a constant.

Resource augmentation is useful for a few reasons:

• It allows system designers to feel secure in knowing the performance achieved by the

scheduler. For example, when a system is designed with a specific performance target

in mind. The system designer knows that the performance of the system is better than

the optimal performance that any schedule can achieve on a system with slightly less

speed.

• It allows theoreticians and practitioners to differentiate between algorithms. Without

resource augmentation, most algorithms are terrible at some online scheduling problems

since there are strong lower bounds; this does not allow us to predict which algorithms

would work well in practice. With resource augmentation, it is still the case that not

all scheduling algorithms will be scalable or achieve O(1)-competitiveness, but some

2Usually, OPT is given a speed of 1; the algorithm is given a speed of s.
3To see this, consider a job which can only be run on a single processor at a time. Here, having a single

processor that is twice as fast is beneficial, while having two processors with normal speed does not allow
the job to be completed any faster.
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will. Resource augmentation allows us to identify which algorithms would likely work

well in practice. Such predictive power is one of the main goals for algorithm analysis!

1.2.2 Scheduling Setting

J is the set of n input jobs which arrive over time to the server. Preemptions are allowed

in our problems, this means that the scheduler can pause a job and restart it at a later

time without any cost. Our problems are also online, thus, the algorithm does not know of

future job arrivals. Furthermore, an algorithm is non-clairvoyant if it also learns no other

information about a job once the job arrives, most importantly, it does not know the amount

of processing that a job requires. In contrast, a clairvoyant scheduler knows all information

about a job once it arrives. Non-clairvoyant scheduling is significantly more difficult for

many online problems. We will usually state whether an algorithm is non-clairvoyant when

it is described.

The server will be composed of m processors, or machines. These two terms are used

interchangeably. This thesis considers the identical machines setting where all m processors

are the same. In the resource augmentation analysis, the algorithm is allowed to have s

speed for all the processors.

As mentioned previously, the main difference in this thesis compared to previous work is

that we focus on scheduling parallelizable jobs. In the next section we will define the model

for these parallel jobs which will be used throughout this thesis.
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1.2.3 Parallel Jobs

In this thesis we focus on programs created through dynamic multithreading. This sort of

parallelism is commonly found in many parallel libraries and languages such as Cilk[13],

Intel Thread-Building Blocks[28], and OpenMP[37]. Dynamic multithreading is popular as

the programmer only needs to express algorithmic parallelism without the need to deal with

specifically binding computations to processors. The library or language itself handles the

actual execution of the program and it is important for it to schedule the program efficiently.

A dynamic multithreaded job Ji can be represented as a Directed-Acyclic-Graph (DAG) Gi.

Nodes of the DAG will represent tasks and edges will correspond to dependencies. The job

will be complete once all of its tasks have been completed. The time when the all nodes of

the DAG are completed is the completion time of the job (ci).

A node (task) is a series of instructions for the processor. Each node v in Gi has an associated

processing time pv; the instructions in node v must be processed sequentially on a processor

for pv time to be completed. The edges in the DAG represent dependencies; a node in Gi

cannot be executed until all of its predecessors in Gi have been executed. We say that a

node is ready if all of its predecessors have been processed. Multiple ready nodes for the

same job can be processed at the same time, hence, parallel processing is possible. Each

processor can only work on one node at a time.

Figure 1.1 depicts a DAG job with 7 nodes with some nodes that have different processing

times.
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Figure 1.1: A parallel job modeled as a directed-acyclic-graph. The processing time of each
node is located at the center of each node. The critical path length, the longest path through
this DAG, is 9. The total work, sum of all the processing times, is 16

It is assumed that the scheduler does not know the DAG of each job in advance; the DAG

structure unfolds dynamically as the job executes. Realistically, the scheduler only knows of

the current ready nodes of the job.

Usually it is unnecessary to involve the exact DAG structures of the jobs in the analysis

of the scheduling algorithms. Instead, for each job Ji there are two important parameters

frequently used throughout the analysis:

• total work Wi. (T1 in literature). This is the sum of the processing times of all the

nodes. On a single processor, completing the job will take this amount of time.

• critical path length Pi. (T∞ in literature). This defined as the total processing time

along the longest path through the DAG. Note that even given infinite processors, this

is the amount of time it takes to complete this job. In literature this is occasionally

referred to as the span of a job.

In practice, measuring the exact DAG structure of a parallel program is very difficult; mea-

suring the total work or the critical path is possible through profiling.
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A DAG, with all of its nodes and edges, represents a single program. Efficiently scheduling a

single DAG job is a well studied problem both theoretically and in practice. In this thesis, our

task is to schedule multiple DAG jobs in order to optimize the objective functions described

in the section 1.1.1. We seek to leverage both classic scheduling theory and the DAG model

of parallelism in order to develop provably good and practical algorithms for these tasks.

In this thesis we will describe schedulers which may use several different levels of knowledge

about the parallel program itself. The most complete level of information one can have about

a DAG job is to know the entire DAG structure of the job. A scheduler which has this level of

knowledge will be known as clairvoyant. A lesser level of knowledge would be if the scheduler

is allowed to know the quantities Wi and Pi, which are the total work and critical path, in

addition to the current ready nodes it may process. Though these extra quantities are not as

powerful as the entire DAG structure, they still provide some crucial information about the

job. We refer to schedulers which access this level of information as semi-non-clairvoyant.

If the scheduler is only allowed to know which current ready nodes may be processed, we

will refer to it as non-clairvoyant since it only has a very basic level of knowledge about the

job. One might ponder whether it is technically possible for a scheduler to also not know

which current ready nodes may be processed. However, this would similar to not allowing

a machine to know which instructions it can process next in order to continue running a

program. For most practical purposes, such a low level of information is too restrictive. We

might refer to this level as complete-non-clairvoyant but we do not consider schedulers with

this level of information in the thesis.
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1.3 Overview

Chapter 1.3 contains a detailed table of notation which will be used throughout the thesis. Of

course, each individual result may have additional notation described in their own chapter. It

is followed by a summary of related work and a summary of my contributions on scheduling

parallel jobs in chapter 2. After this summary, each chapter which follows will contain details

of each result mentioned in chapter 2. With chapter 3 focusing on minimizing the average

flow time, chapter 4 focusing on the maximum flow time, chapter 6 on the throughput, and

chapter 5 on more practical algorithms for average flow time. Then, I offer some concluding

remarks in the final chapter of the thesis.
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Table of Notation

General

OPT OPT The optimal solution or optimal objective
m The number of processors

Jobs in General

n Number of jobs
J Set of jobs
Ji i-th job
ri Arrival time of job Ji
ci Completion time of job Ji
wi Weight of job Ji
Di Relative deadline of job Ji
di Deadline of job Ji
pi Profit of job Ji

Directed-Acyclic-Graph (DAG) Jobs

Gi Directed-Acyclic-Graph of Job Ji
v A node in a DAG
pv Processing time of node v
Wi Total work of job Ji
Pi Critical path length of job Ji
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Scheduling Algorithm Names

SRPT Shortest-Remaining-Processing-Time
FIFO First-in-first-out (Chapter 4)
LAPS Latest-Arrival-Processor-sharing (Chapter 3)
BWF Biggest Weight First (Chapter 4)

SWF (SJF) Smallest Work First (Shortest Job First) (Chapter 3
RR Round-Robin

DREP Distributed Random Equi-Partition (Chapter 5)
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Chapter 2

Overview and Related Work

This chapter will provide an overview of the various results in this dissertation. First we

provide some context by describing similar work on related areas. The thesis focuses on

scheduling multiple parallelizable jobs to optimize several different objectives; there are two

natural problems that align closely against this focus. Firstly, the problem of scheduling

a single parallelizable job on multiple processors. This is well-studied for the DAG model

of parallelism and here are various known algorithms such as greedy scheduling and work

stealing [24, 13, 14, 1]. Secondly, scheduling sequential jobs to optimize objectives such as

flow time is also an extensively studied problem both for a single processor and for multiple

processors [4, 8, 7]. It is important to have some understanding of both of these problems

before describing the principal results of this thesis.

We begin by giving a quick summary of scheduling techniques for a single DAG job, then an

overview of online scheduling results. Finally we describe our contributions to the problem

of scheduling multiple parallelizable jobs.
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2.1 Work Stealing

In most parallel programming libraries, the programmer only specifies the algorithmic par-

allelism in the program. This determines the DAG structure of the program. The parallel

library usually provides a runtime system to execute these DAG jobs efficiently. When

running a single DAG job, at any moment in time there are ready nodes which should be

processed. At a high level, there are two main strategies for the runtime system: centralized

scheduling and work-stealing scheduling [13, 14].

In centralized scheduling, the runtime system keeps a centralized datastructure with all the

current ready nodes. The datastructure is shared by all processors and contains exactly

which ready nodes must be processed. The benefit of a centralized scheduler is that it is a

greedy scheduler where no processor will idle if there exists ready nodes to be processed. In

practice, however, this scheduler often has high overhead because access to the centralized

datastructure itself must be strictly controlled. These synchronization overheads can lead to

poor performance.

In randomized work-stealing [14], there is no centralized datastructure used to keep all the

current ready nodes. Instead, each of the m processors has an associated local double-ended

queue (deque). When a processor enables new ready nodes, it pushes the node to the bottom

of its deque. When the processor completes its current node, it takes the first ready node

from the bottom of its deque. If there are no nodes in its deque to process, the processor

will attempt to steal a node from a random processor’s deque instead. When performing a

steal, the thief will always pop the ready node at the top of the victim’s deque. If the victim

does not have any work in its deque, the steal attempt fails. The benefit of this scheduler

is that it is often efficient in practice. There is no centralized queue which must be strictly
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controlled. The only source of contention is when a thief must steal from the deque of a

victim. Since the thief peeks at the top of the deque while the victim usually only peeks

at the bottom, there is little synchronization necessary most of the time. However, due

to being a randomized scheduler, work-stealing does not strictly have the greedy property.

Even when there are many ready nodes available there may still be processors making steal

attempts which fail due to the random choice of the victim. Though, it is possible to prove

probabilistic bounds on the performance of the randomized work-stealing scheduler.

The key idea to understand here is that we know of algorithms to schedule a single DAG

job and furthermore, we know that randomized work-stealing is a practical scheduler for a

single DAG job that have been implemented in programming languages[13].

2.2 Online Scheduling

There exists an extensive amount of work on scheduling sequential jobs. [39] is a useful survey

of results in this area. The thesis will focus on the objectives of average flow time, maximum

flow time, and throughput, as described in section 1.1.1. Therefore, we will highlight results

concerning those objectives. The most important distinction to note is that almost all of the

work described in this section will deal with sequential jobs - these jobs do not experience

any benefit from being processed by multiple processors at the same time.

Minimizing the average flow time is the most popular objective in online scheduling. In

the case of sequential jobs on m identical processors, it is known that any algorithm is

Ω(min{logP, log n/m})-competitive where P is the ratio of the largest to smallest processing
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time of the jobs [34]. This competitive ratio is in fact achieved by the algorithm Shortest-

Remaining-Processing-Time (SRPT). This is a case where there is a strong lower bound on

the possible performance of any scheduling algorithm. Due to these strong lower bounds, pre-

vious work has considered an analysis using the resource augmentation technique described

in section 1.2.1 which was first introduced by Kalyanasundaram in [30]. With resource aug-

mentation, several algorithms are known to be scalable, meaning that they use (1 + ε)-speed

to achieve O(f(ε))-competitiveness for average flow time [18]. Here ε > 0 and f is a function

which depends only on ε. Several algorithms are scalable for this problem including SRPT

and Shortest-Job-First (SJF) [45, 40, 11, 15]. In summary, we know which algorithms work

well for average flow time in the sequential jobs setting.

Minimizing the maximum flow time is another important objective. For sequential jobs on

m identical processors, the algorithm First-In-First-Out (FIFO) achieves a competitiveness

ratio of (3/2 − 1
m

) [4, 12]. This is a very strong result which does not require resource

augmentation. Weighted maximum flow is a very similar objective where different jobs are

given different weights. Minimizing the weighted maximum flow time is much more difficult

as it can be shown that any algorithm is Ω(W .4)-competitive where W is the ratio of the

maximum weight to minimum weight. This is true even when jobs are both sequential and

unit sized [19].

The throughput maximization problem is another difficult online scheduling problem. Even

for a single processor, there exists a deterministic algorithm which is O(δ)-competitive,

where δ is the ratio of the maximum to minimum density of a job [9, 10, 33, 46]. Here the

density of job Ji is pi
Wi

(the ratio of its profit to its work). Also, this is the best possible

result for any deterministic online algorithm even if all jobs have unit profit. In the case

where the algorithm can be randomized, Θ(min{log δ, log ∆}) is the optimal competitive
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ratio [29, 32]. Here ∆ is the ratio of the maximum to minimum job processing time. With

resource augmentation, there is an (1 + ε)-speed O(1
ε
)-competitive algorithm for any fixed

ε > 0 [30].

Scheduling parallelizable jobs is not an entirely new problem. However, much of thee previous

work focuses on the arbitrary speed-up curves model of parallelism. This is a model of

parallelism very different from the DAG model. In the speed-up curves model, each job Ji

is associated with a sequence of phases. Note that this is a linear path of phases, unlike a

DAG. The j-th of job Ji is denoted by a tuple (Wi,j,Γi,j(m
′)). The value Wi,j is the total

work of the j-th phase of job Ji. Each phase may only be worked on when all the work

on the previous phase has been completed. The value Γi,j(m
′) is a speed-up function that

specifies the processing rate of the phase when given 1 ≤ m′ ≤ m processors. It is usually

assumed that Γi,j(m
′) is a nondecreasing sublinear function. The speed-up function for each

phase serves to model the parallelism in the jobs. The linear sequence of phases models how

the parallelism of a job may change as it is being processed. The arbitrary speed-up curve

model was first introduced by [20].

There are many differences between the speed-up curves model and the DAG model which

we will focus on. It is still an interesting question whether the two models are equivalent,

but one model cannot be trivially used to simulate the other. For example, in the arbitrary

speed-up curves model, the current speed-up function only depends on the phase of the job,

which in turn only depends on the total amount of work already done on the job. In the DAG

model the current parallelism not only depends on the work done on the job but also the

exact nodes which have been done since there are precedence constraints between individual

strands of work. This presents more difficulty for the scheduler since the DAG structure

is unknown to the algorithm. It is unclear how to simulate these sort of DAG jobs in the
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arbitrary speed-up curves model. Similarly, jobs in the speed-up curves model also do not

translate to the DAG model easily. Consider that the DAG model, the parallelism of a job

scales linearly up to the number of current ready nodes. However, in the speed-up curves

model, the speed-up functions are allowed to be any concave sublinear function. These

arbitrary concave functions are not easily simulated by DAGs. Due to these differences, it

is not clear whether algorithms in one model would work well for the same problem in the

other model.

In the speed-up curves model, there are several known results for the flow time objectives

in particular. For minimizing the average flow time, an algorithm called Latest-Arrival-

Processor-Sharing (LAPS) is known [22]. This algorithm is scalable for average flow time.

The analysis of LAPS is also notable for its introduction of a technique known as amor-

tized local competitiveness, which has since become a very important technique in online

scheduling. LAPS and this analysis technique have been very influential in scheduling theory

[17, 6, 26, 21, 25, 16, 23].

For the problem of minimizing the maximum flow time in the arbitrary speed-up curves

model, the only positive result is a (1 + ε)-speed O(log n)-competitive algorithm for the un-

weighted case [38]. This result is complemented by a lower bound showing that no algorithm

can be s-speed o(log n)-competitive for any constant resource augmentation s > 0. Note that

this result is quite surprising. Firstly, in the sequential jobs case, the simple FIFO algorithm

achieves constant competitiveness without any resource augmentation. Secondly, maximum

flow time is typically viewed as an easier objective to optimize compared to average flow

time. Yet in the speed-up curves setting, average flow time admits a scalable algorithm,

LAPS, yet maximum flow time does not admit any scalable algorithms.
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Note that all of these results for parallelizable jobs on flow time are in the speed-up curves

model. The speed-up curves model is theoretically elegant to analyze. However, the DAG

model is well suited for programs written using parallel programming languages. It is well

connected to practice and it is important to understand scheduling in this model as well.

2.3 Results

In chapter 3 we study the problem of minimizing the average flow time of a set of DAG jobs.

Our work is the first theoretical work to provide an algorithm in this model of parallelism

for the average flow time objective. There are two principal results described within the

chapter.

1. LAPS is a (1 + ε)-speed O( 1
e3

)-competitive algorithm for minimizing the average flow

time. This is a scalable algorithm that is non-clairvoyant. There is some similarity

between this result and the corresponding result in the speed-up curves model, which

is the other well known model of parallelism.

2. Smallest-Work-First (SWF) is a (2+ε)-speed O( 1
ε4

)-competitive algorithm for minimiz-

ing the average flow time. Unlike LAPS, this can be seen as a simple greedy algorithm

since it always simply executes the job with the smallest original work. Interestingly,

no simple greedy algorithm works for average flow in the speed-up curves model.

3. Round-Robin is a (2+ ε)-speed O(1)-competitive algorithm for minimizing the average

flow time. This is not a principal result of our work on average flow time since it can

be seen as a corollary of the first result about LAPS. Round-Robin is a very similar

algorithm for which a similar style of analysis will yield the result.
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These first results open the way for further work on other important objectives in the DAG

model. Note, however, that the algorithms described in this chapter are chiefly theoretical

algorithms. There is substantial difficulty in implementing algorithms such as LAPS in

practice. Overcoming these practical difficulties is a theme which will permeate throughout

the rest of the work described in the thesis.

In chapter 4 we study the problem of minimizing the maximum flow time of a set of DAG

jobs. This is another objective which has not been studied in the DAG model of parallelism

and we give an algorithm with a good theoretical guarantee for the problem. We also study

the problem of weighted maximum flow time and give a strong theoretical result.

1. FIFO is a (1 + ε)-speed O(1
ε
)-competitive algorithm for minimizing the maximum flow

time of a set of DAG jobs.

2. Biggest-Weight-Fist (BWF) is a (1 + ε)-speed O( 1
ε2

)-competitive algorithm for mini-

mizing the weighted maximum flow time of a set of DAG jobs.

Note that both of these results are quite interesting theoretically when compared to results

in the speed-up curves model of parallelism, where there is a lower bond stating that there

is no algorithm with constant speed augmentation which can be o(log n)-competitive. Here

we have a scalable algorithm in the DAG model.

In the same chapter 4 we also examine more practical schedulers for maximum flow time.

Though FIFO is a good algorithm in theory, there are aspects of FIFO which makes it

inefficient to implement. We will elaborate on these difficulties within the chapter. To
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develop practical algorithms for maximum flow time we will draw inspiration from the work-

stealing scheduler which was described in section 2.1. This allows use to arrive at several

useful results.

• Admit-first work-stealing is a scalable scheduling algorithm for reasonable jobs. Specif-

ically, admit-first with (1 + ε)-speed has maximum flow time O( 1
ε2

max{OPT, ln(n)})

over n jobs for any fixed ε > 0 with high probability. Note that if any job has span

Ω(lg n) or work Ω(m lg n), then OPT ≥ lnn. Therefore admit-first is scalable with

(1 + ε)-speed O( 1
ε2

)-competitive with high probability.

• There is a lower bound on the competitive ratio of work-stealing which is Ω(lg n).

Specifically, if all jobs are tiny with work o(lg n), then work stealing cannot be scalable

due to the randomization involved. This effectively means that our result for admit-first

work-stealing is tight.

These results are notable because they involve scheduling algorithms designed to be similar

to those used in practice. In particular, it is possible to test these algorithms in practice and

compared the performance to the theoretically best algorithms (such as FIFO) which can

only be simulated. We perform and discuss these experiments in the chapter.

In the spirit of discovering algorithms which can work in practice, we note that the first

algorithms given for average flow time in the DAG model were LAPS and SJF. Neither of

these algorithms could be easily implemented. In chapter 5 we specifically try to design an

algorithm for average flow time that once again incorporates practical ideas from random-

ized work-stealing. Specifically, we describe a randomized scheduler that tries to limit the

preemption overheads which LAPS would induce.
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• Distributed Random Equi-Partition (DREP) using work-stealing is a (4 + ε)-speed

O(1
ε
)-competitive algorithm for average flow time.

This algorithm has worse theoretical performance than the best algorithms for the problem;

LAPS only needs (1 + ε)-speed to be ( 1
ε3

)-competitive. However, because DREP is designed

with practice in mind, we are able to implement the algorithm for empirical testing. We

discuss the strong experimental results that DREP yields when compared to the better

theoretical algorithms. It has performance similar to simulations of LAPS and SJF which

do not include the scheduling overhead of those algorithms.

Up to this point we will have examined the main flow time objectives in the DAG model.

We have given essentially the best theoretical results possible for these flow time objectives

and also gave several practical algorithms for the same problems. Though admittedly there

are definitely a few other objectives which remain open such as the Lk-norms of flow time.

In chapter 6, we shift our focus and examine the throughput problem. This problem is very

different from the flow time objective problems. Every DAG job has an associated deadline

di. Jobs also have a profit pi, which is the profit the scheduler receives when the job is

completed by their deadline. The goal of the scheduler is to complete jobs and maximize the

profit of the schedule. For this problem with DAG jobs we are able to show both a lower

bound and a matching upper bound.

• Any semi-nonclairvoyant scheduler requires at least (2− 1/m) speed augmentation to

be competitive for maximizing throughput.

• There is a (2 + ε)-speed O( 1
ε6

)-competitive algorithm for maximizing throughput.
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We also give results for a generalization of this problem known as the general profit prob-

lem. Unfortunately that problem is difficult to define here without introducing an excessive

amount of notation so it will be explained in detail in chapter 6. The results in the chapter

essentially give the complete picture on the throughput and general profit problems.
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Chapter 3

Average Flow Time

3.1 Introduction

In this chapter we considering minimizing the average flow time in the DAG scheduling

model. The most natural algorithm to consider for average flow time in the DAG model is

LAPS, since this algorithm is known to work well in the speed-up curve model. However,

LAPS is a generalization of Round Robin and [43] showed that in the hybrid model of

parallelism, where jobs consist of a DAG and every node has it own speed-up curve, Robin

Robin style algorithms must have a competitive ratio that depends on log κ even if they

are given any O(1) speed augmentation. We show that LAPS is a scalable algorithm in the

DAG model of parallelism. Hence, the hybrid model in [43] is strictly harder than the DAG

model.

Theorem 1. LAPS is (1 + ε)-speed O( 1
ε3

)-competitive for minimizing the average flow time

in the DAG model.

The result about LAPS also implies the following bound for Round Robin.
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Corollary 3.1.1. Round Robin is (2 + ε)-speed O(1)-competitive for any fixed ε > 0 for

minimizing the average flow time in the DAG model.

LAPS is a non-clairvoyant algorithm in the sense that it schedules jobs without knowing

the processing time of jobs or nodes until they have been completed. Theoretically, LAPS

is a natural algorithm to consider. On the other hand, LAPS is a challenging algorithm

to implement. In particular, the LAPS algorithm requires a set of jobs to receive equal

processing time, which is hard to achieve in practice with low overheads. LAPS has another

disadvantage that it is parameterized. The algorithm effectively splits the processors evenly

amongst the ε fraction of the latest arriving jobs. This ε is the same constant used in the

resource augmentation. In practice, it is unclear how to set ε. Theoretically, this type of

algorithm is known as existentially scalable. That is, for each possible speed (1 + ε) there

exists a constant to input to the algorithm which makes it O(1)-competitive for any fixed

ε > 0. In the speed-up curve model it is an intriguing open question whether an algorithm

exists which is universally scalable. That is, an algorithm which is O(1)-competitive given

any speed (1 + ε) where the algorithm does not use knowledge of ε.

In practice, the most widely used algorithms are simple greedy algorithms. They are easy

to implement. However, no greedy algorithms are known to perform well in the speed-up

curves model; simple adaptations of SJF and SRPT perform poorly.

We will also consider a natural adaptation of SJF to the DAG model and show the following

theorem.

Theorem 2. SJF is (2+ ε)-speed O( 1
ε4

)-competitive for average flow time in the DAG model

for any ε > 0.
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To prove the theorem, we will extend the technique of fractional flow time to the DAG model.

It is not obvious how to convert an algorithm that is competitive for fractional flow to one

that is competitive for total flow time. This is the most challenging part of the analysis;

this is where we must use the 2 speed. Note that SJF is the first greedy algorithm shown to

perform well for parallelizable jobs in the online setting.

We will begin by first provide some additional notation and observations necessary for this

chapter. We will also briefly summarize the technique of potential function analysis which

will be used in the analysis these algorithms. Then we will describe the result with the LAPS

algorithms followed by that of the SJF algorithm.

3.2 Preliminaries

In this problem, there are n jobs that arrive over time that are to be scheduled on m identical

processors. Each job i has an arrival time ri and is represented as a Directed-Acyclic-Graph

(DAG). A node in the DAG is ready to execute, if all its predecessors have completed. We

assume the scheduler knows the ready nodes for a job at a point in time, but does not know

the DAG structure of the jobs. Any set of ready nodes can be processed at once, but each

processor can only execute a single node at a time. A DAG job can be represented with two

important parameters. The total work Wi is the sum of the processing time of the nodes in

job Ji’s DAG. The critical path length Ci is the length of the longest path in job Ji’s DAG,

where the length of the path is the sum of the processing time of nodes on the path. We

first state two straightforward observations regarding work and critical-path length.

Observation 1. If a job i has all of its n ready nodes being executed by a schedule with speed

s on m processors, where n ≤ m, then the remaining critical-path length of i decreases at a
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rate of s. In other words, during each time step where not all m processors are executing jobs,

all ready nodes of all unfinished jobs are being executed; hence, the remaining critical-path

length of each unfinished job decreases by s.

Observation 2. Any job i takes at least max{Wi

m
, Ci} time to complete in any schedule with

unit speed, including OPT.

3.2.1 Additional notation

We will use A to specify the algorithm being considered unless otherwise noted and use

WA
i (t) to denote the remaining processing time of all the nodes in job Ji’s DAG at time t in

A’s schedule. Similarly let CA
i (t) be the remaining length of the longest path in Ji’s DAG

where each node contributes its remaining processing time in job A’s schedule at time t. Let

A(t) denote the set of jobs which are released and not yet completed in A’s schedule at time

t.

For the quantities that were just describted, we will replace A with O to denote the same

quantity in some optimal solution. Also note that
∫∞
t=0
|A(t)| is exactly the total flow time,

which is the objective we consider. Finally, let W i(t) = min{Wi − WO
i (t),WA

i (t)}. We

overload notation and let OPT refer to both the optimal solution’s schedule and its final

objective.
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3.2.2 Potential Function Analysis:

In this chapter we will utilize the potential function framework, also known as amortized

analysis. In this technique, one defines a potential function Φ(t) which depends on the state

of the algorithm being considered and the optimal solution at time t.

Let Ga(t) denote the current cost of the algorithm at time t. This is the total waiting time of

all the arrived jobs up to time t if the objective is total flow time. Similarly let Go(t) denote

the current cost of the optimal solution up to time t. The quantity dGa(t)
dt

is the change in

the algorithm’s objective at time t and this is equal to the number of unsatisfied jobs in

the algorithm’s schedule at time t, that is, dGa(t)
dt

= |A(t)|. Showing the following conditions

about the potential function is sufficient for proving that the algorithm is competitive.

Boundary condition: Φ is zero before any job is released and Φ is non-negative after all

jobs are finished.

Completion condition: Summing over all job completions by the optimal solution and

the algorithm, Φ does not increase by more than β ·OPT for some β ≥ 0.

Arrival condition: Summing over all job arrivals, Φ does not increase by more than α ·

OPT for some α ≥ 0.

Running condition: At any time t when no job arrives or is completed,

dGa(t)

dt
+

dΦ(t)

dt
≤ c · dGo(t)

dt
(3.1)

Notice that integrating these conditions over time one results in Ga − Φ(0) + Φ(∞) ≤

(α + β + c) · OPT by the boundary, arrival and completion conditions. This shows the

algorithm is (α + β + c)-competitive.
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3.3 LAPS in the DAG Model

In this section, we analyze the LAPS (Latest-Arrival-Processor-Sharing) scheduling algo-

rithm for the DAG model. LAPS is a generalization of round robin. Round robin splits the

processing power evenly among all jobs. In contrast, LAPS splits the processing power evenly

among the ε fraction of the jobs which arrived the latest. Note that LAPS is parametrized

by the constant ε; this is the same constant used for the resource augmentation.

We will use A(t) to denote the set of unsatisfied jobs in LAPS’s queue at time t. Let ε be a

fixed constant which will be used in the algorithm and let 0 < ε < 1
10

. We then define A′(t)

to be the set of ε|A(t)| jobs from A(t) which arrived the latest. Specifically, the last arriving

jobs by count.

The algorithm of LAPS is the following: Each DAG job in A′(t) receives m
|A′(t)| processors.

Each DAG job in A′(t) then assigns an arbitrary set of m
|A′(t)| ready nodes on the processors

it receives. If the job does not have m
|A′(t)| ready nodes, it schedules as many tasks as possible

and idles the remaining alloted processors. This algorithm is summarized in algorithm 1.

Algorithm 1 The LAPS algorithm

1: Examine the current alive jobs A(t)
2: Find the set A′(t) of latest ε|A(t)| jobs
3: Schedule jobs in A′(t) equally

For the analysis we assume that the LAPS is given 1 + 10ε resource augmentation. As

mentioned in Section 3.2, WA
i (t) and CA

i (t) denote the aggregate remaining work and critical

path length, respectively, of job Ji at time t in the LAPS’s schedule. WO
i (t) is the aggregate

remaining work of job Ji in the optimal schedule at time t. Now we can compare LAPS to

the optimal schedule.
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To do this, we define a variable Zi(t) := max{WA(t) − WO(t), 0} for each job Ji. The

variable Zi(t) is the total amount of work job Ji has fallen behind in the LAPS’s schedule

as compared to the optimal schedule at time t. At a high level, this is how far the algorithm

is lagging behind the optimal schedule for Ji. Finally, we define ranki(t) =
∑

j∈A(t),rj≤ri 1 of

job i to be the number of jobs in A(t) that arrived before job Ji, including itself. Without

loss of generality, we assume each job arrives at a distinct time.

Now we will define our potential function.

Φ(t) =
10

ε

∑
i∈A(t)

(
1

m
ranki(t)Zi(t) +

100

ε2
CA
i (t)

)

The following proposition follows directly from the definition of the potential function since

there are no jobs in A(t) at time 0 and at time ∞.

Proposition 3.3.1. Φ(0) = Φ(∞) = 0.

We will first show that the increase in the potential function is bounded by OPT over the

arrival and completion of all jobs.

Lemma 3.3.2. The potential function never increases due to job completion by the LAPS

or the optimal schedule.

Proof. When the optimal schedule completes a job Ji, there is no change in the potential

the amount the algorithm is lagging behind on job Ji does not change, nor are there terms

removed from the summation as the summation only concerns LAPS’s unfinished jobs.
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When LAPS completes a job Ji at time t, a term is removed from the summation. Notice at

this point both Zi(t) = 0 and CA
i (t) = 0, since the algorithm has completely processed the

job. Therefore, the removal of this term has no effect on the potential.

The other change to the potential caused by the completion of a job is that rankj(t) decreases

by 1 for all jobs Jj ∈ A(t) where rj > ri. However, Zj(t) is always positive by definition,

decreasing the rank can only decrease potential.

Lemma 3.3.3. The potential function increases by at most O( 1
ε3

)OPT over the arrival of

the jobs.

Proof. When job Ji arrives at time t, it does not affect the rank of any other job since it

is the latest arriving job. Furthermore, by definition Zi(t) is 0 when job i arrives, since

both neither LAPS nor OPT have worked on Ji yet. Finally, the value of CA
i (t) = Ci.

The increase in the potential will be 1000
ε3
Ci. By summing over the arrival of all jobs, the

total increase over all jobs is 1000
ε3

∑
i∈[n] Ci. However, we know that each job i must wait

at least Ci time units to be satisfied in OPT by Observation 2, so this quantity is at most

O( 1
ε3

)OPT.

The remaining lemmas bound the change in the potential due to the processing of jobs by

OPT and LAPS. We will consider the change in the potential due to the OPT and LAPS

separately. Then we combine both changes and bound the aggregate change to be at most

−10|A(t)|+O( 1
ε2

)|O(t)|.

Lemma 3.3.4. At any time t, the potential function increases by at most 10
ε
|A(t)| due to

the processing of jobs by OPT.
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Proof. The variables CA
i (t) do not change due to OPT. The change in the potential due to

the optimal schedule will be due to the change in Zi(t) for some jobs Ji.

Let job i′ be the job in A(t) which arrived the latest. In the worst case, the optimal

schedule uses all m processors to process job i′ to increase Zi(t) at a rate of m. This is the

worst case because the rank of job i′ is the largest. Thus, processing this job changes the

potential the most. The total increase in potential is then 10
ε

1
m

ranki′(t)m = 10
ε

ranki′(t).

Knowing that ranki′(t) = |A(t)|, we can say that the change in the potential can be at most

10
ε

ranki′(t) = 10
ε
|A(t)|.

Now we calculate the effect of LAPS processing the jobs.

Lemma 3.3.5. At any time t, the potential function changes by at most (more negative

than) −10
ε

(1 + ε)|A(t)|+O( 1
ε2

)|O(t)| due the processing of jobs by LAPS.

Proof. First note that we are trying to show that LAPS causes a sufficiently negative change

in the potential to offset the processing of OPT. Therefore, we want to show that the change

is at most some negative amount. Though it can be more negative than this amount.

Consider the set A′(t) of jobs LAPS processes at time t. We break the analysis into two

cases. In either case we show that the total change in the potential is at most −10
ε

(1 +

ε)|A(t)|+O( 1
ε2

)|O(t)|.

Case 1: At least ε
10
|A′(t)| jobs in A′(t) have less than m

|A′(t)| ready nodes at time t. Let Ac(t)

be this set of jobs.

Since each of these jobs has less than m
|A′(t)| ready tasks at time t, LAPS schedules all available

tasks for these jobs. Hence, LAPS decreases CA
i (t) at a rate of 1 + 10ε for each job i ∈ Ac(t)
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since LAPS has 1 + 10ε resource augmentation. We denote the change in the potential for

this case as C1. Looking at the change in the CA
i (t) we have that:

C1 = −1000

ε3
(1 + 10ε)|Ac(t)|

Note that |Ac(t)| ≥ ε
10
|A′(t)| because of we are in this case. So we have

C1 = −1000

ε3
(1 + 10ε)|Ac(t)| ≤ −

100

ε2
(1 + 10ε)|A′(t)|

Finally, because |A′(t)| = ε|A(t)| by definition, we have

C1 ≤ −
100

ε
(1 + 10ε)|A(t)| ≤ −10

ε
(1 + ε)|A(t)|+O(

1

ε2
)|O(t)|

This completes the first case of the proof.

Case 2: At least (1− ε
10

)|A′(t)| jobs in A′(t) have at least m
|A′(t)| nodes ready at time t.

Let Aw(t) be this set of jobs. Note that |Aw(t)| ≥ (1− ε
10

)|A′(t)|.

In this case, we ignore the decrease in the C variables (which we used for the previous case)

and instead focus on the change in the Z variables due to LAPS’s processing. We further

ignore the decrease in the Zi(t) for jobs in Aw(t) ∩ O(t). This is due to it being difficult to
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accurately account for OPT’s processing of those jobs. Hence we will only consider the jobs

that the optimal schedule cannot process since it has already completed them.

For every job i in Aw(t) \O(t), Zi(t) decreases at a rate of (1 + 10ε) m
|A′(t)| . This is because:

1. Each of these jobs is given m
|A′(t)| processors due to LAPS

2. LAPS has (1 + 10ε) resource augmentation

3. OPT already completed job i by time t if job i is in Aw(t) \ O(t), therefore it cannot

affect Zi(t).

We denote the total change in the potential due to LAPS in this case as C2.

C2 = −10

ε

∑
i∈Aw(t)\O(t)

1

m
ranki(t)

(1 + 10ε)m

|A′(t)|

= −10(1 + 10ε)

ε

∑
i∈Aw(t)\O(t)

ranki(t)
1

|A′(t)|

≤ −10(1 + 10ε)

ε

∑
i∈Aw(t)\O(t)

(1− ε)|A(t)| 1

|A′(t)|

The last step above is due to ranki(t) ≥ (1− ε)|A(t)| for i ∈ A′(t) because of the scheduling

policy of LAPS. Also, by definition |A′(t)| = ε|A(t)|, thus we can further simplify the above

expression to the following ones below.
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C2 ≤ −
10(1 + 10ε)

ε2

∑
i∈Aw(t)\O(t)

(1− ε)

≤ −10(1 + 10ε)

ε2

 ∑
i∈Aw(t)

(1− ε)−
∑
i∈O(t)

1



Note that these sums only depend on the number of jobs in Aw(t). We also know that

|Aw(t)| ≥ (1 − ε
10

)|A′(t)| by the case’s definition. And by replacing |A′(t)| with ε|A(t)|, we

can further simplify to the following ones below.

C2 ≤ −
10(1 + 10ε)

ε2

(1− ε

10
)
∑
i∈A′(t)

(1− ε)−
∑
i∈O(t)

1


≤ −10(1 + 10ε)

ε

(1− ε

10
)
∑
i∈A(t)

(1− ε)− 1

ε

∑
i∈O(t)

1



Finally, because ε < 1/10, we can derive the following expressions.

C2 ≤ −
10

ε
(1 + 10ε)(1− ε

10
)
∑
i∈A(t)

(1− ε) +O(
1

ε2
)|O(t)|

≤ −10

ε
(1 + ε)|A(t)|+O(

1

ε2
)|O(t)|

This completes the second case of the lemma.
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Thus, in either case the total change in the potential is at most −10
ε

(1+ε)|A(t)|+O( 1
ε2

)|O(t)|.

Lemma 3.3.6. Fix any time t. The total change in the potential is at most −10|A(t)| +

O( 1
ε2

)|O(t)| due the processing of jobs the algorithm and the optimal schedule.

Proof. Now we know from Lemma 3.3.4 the change due to OPT processing jobs is at most

10
ε
|A(t)|. We will aggregate this with the change in potential due to LAPS. Combining lemma

3.3.4 and 3.3.5, we see that the aggregate change in the potential is at most the following

expression.

−10

ε
(1 + ε)|A(t)|+O(

1

ε2
)|O(t)|+ 10

ε
|A(t)| ≤ −10|A(t)|+O(

1

ε2
)|O(t)|

Thus, by the potential function framework and combining Lemma 3.3.2, 3.3.3 and 3.3.6 and

Proposition 3.3.1 we have Theorem 1.

3.4 SJF in the DAG Model

In this section we analyze a generalization of SJF to parallel DAG jobs. In this algorithm,

the jobs are sorted according to their original work and the job with the smallest work

have the highest priority. The algorithm takes the highest priority job and assigns all of its

ready nodes to machines. Then it recursively considers the next highest priority job. This

continues until all machines have a node to execute or there are no more ready nodes. In

the event that a job being considered has more ready nodes than machines available, the
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algorithm choses an arbitrary set of nodes to schedule on the remaining machines. This

algorithm is summarized in

Algorithm 2 The SJF algorithm

1: Identify the current alive jobs A(t)
2: Sort the current alive jobs A(t) by their smallest original work in non-increasing order
3: Let Ji be the first job in the ordering
4: Assign free processors to Ji until all Ji’s ready nodes are being processed
5: Repeat the process with the next smallest job, until either no more jobs or free processors

Note that interestingly, this scheduling strategies does not take the critical path length into

consideration at all. One might intuitive also consider scheduling jobs which have high

critical path length as they will take a long time to complete. However, as the analysis

shows, prioritizing based on work without taking the critical path length into account is the

way that achieves good theoretical performance.

3.4.1 Analysis of SJF for Fractional Flow Time

We use fractional flow time for this analysis. To avoid confusion, we will refer to total

flow time as integral flow time — recall that a job contributes 1 to the objective during

each time unit the job is alive and unfinished. In contrast, in fractional flow time, jobs

contributes the fraction of the work which remains for the job. Then, the goal is to mini-

mize
∑∞

t=0

∑
i∈A(t)

WA
i (t)

Wi
. Note that since our algorithm prioritizes based on just work, our

fractional flow time is also defined based just on work.

Our analysis is structured as follows: We first compare the fractional flow time of SJF (with

resource augmentation) to the integral flow time of the optimal algorithm. We then compare

the integral flow time of SJF (with further resource augmentation) to its fractional flow time.
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Through this we will prove the competitiveness of SJF’s integral flow time to that of the

optimal algorithm’s integral flow time.

Throughout the analysis we will assume without loss of generality that each job arrives

at a distinct time and has a unique amount of work. We will utilize a potential function

analysis. Recall again that, WA
i (t) and CA

i (t) denote the aggregate remaining work and

critical path length, respectively, of job Ji at time t in the algorithm’s schedule. WO
i (t) is

the aggregate remaining work of job Ji in the optimal schedule at time t. The variable W j(t)

in the potential is defined as W j(t) := max{WA
j (t) −WO

j (t), 0}. This variable is the total

amount of work job Jj has fallen behind in SJF’s schedule. The potential function itself is

the following expression.

Φ(t) =
1

ε

∑
j∈A(t)

CA
j (t) +

1

εm

∑
j∈A(t)

W j(t)

Wj

∑
i|i∈A(t)∪O(t)
Wi≤Wj

WA
i (t)−WO

i (t)



Note that there are two main terms in this potential. One term is just a summation of

remaining critical path lengths. Another is a summation of fractional flow times. These terms

will often be referred to as the first term and the second term in the potential, respectively.

We will show the following theorem with using this potential function.

Theorem 3. SJF is (1 + ε)-speed O(1
ε
)-competitive when SJF’s fractional flow time is com-

pared against the optimal schedule’s integral flow time.

Note that by definition, Φ(0) = Φ(∞) = 0 since there are no jobs at those times; the

boundary condition holds. We will now show the arrival and completion conditions.
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Lemma 3.4.1. The potential function increases by at most O(1
ε
OPT) due to the arrival

and completion of jobs.

Proof. First consider the arrivals of jobs. Suppose job J ′j arrives at a time t′, then in the

first term of the potential, a new term is created in the summation with the value 1
ε
Cj′ . This

is less than 1
ε

times the flow time of this job in an optimal schedule because Ci is a lower

bound on a job’s integral flow time (Observation 2). So, the increase in potential over all

job arrivals, only accounting for the first term, is at most 1
ε
OPT.

Now consider the second term of Φ(t′) when job J ′j arrives. The quantity W j′(t
′) = 0, because

OPT has not worked on job j′ yet so there is no difference in the amount of work remaining

for SJF or OPT; though J ′j will cause a new quantity to appear in the outer summation of

the second term of the potential, this quantity is 0.

Finally, J ′j may appear as a new quantity in the inner summation for all jobs i ∈ A(t′) with

Wi > Wj′ . However then WA
j′ (t

′)−WO
j′ (t

′) = 0 because once again neither SJF or OPT has

worked on J ′j yet. Therefore, when job J ′j arrives there is no change in the second term of

the potential.

Hence, the arrival condition holds. Next we will consider when job are completed.

When the optimal schedule completes some job J ′j at time t′. The only effect on the potential

is that some quantity may be removed from the inner summation of the second term if J ′j

is no longer in A(t′) ∪ O(t′). This is the only place where the potential considers the set of

jobs OPT is still working on. However, note that the only way for such a quantity to be

removed from the summation is if the job is also not in A(t′). If the job is not in at this time

and OPT just completed it, then clearly WA
j′ (t

′)−WO
j′ (t

′) = 0; there is no work remaining
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for either SJF or OPT on this job. Therefore, there is no change to the potential due to the

removal of this quantity.

Now consider when SJF completes some job J ′j at time t′. Because the job has been com-

pleted, CA
j′ (t
′) = 0 and W j′(t

′) = 0. Thus, removing quantities from the either the first

term or the outer summation of the second term has no effect on the potential. However we

may remove a job from the inner summation of the second term. Again, this only occurs

if j′ /∈ O(t′), which means that both SJF and OPT must have completed this job. Thus,

similar to the early case, WA
j′ (t

′)−WO
j′ (t

′) = 0. Therefore there is no change in the potential.

Overall, we can see that there is no change in the potential due to jobs being completed by

either the algorithm or the optimal schedule.

We have shown the boundary conditions as well as the bounded the changes in Φ due to

the arrival and completion of jobs. It remains to show how the potential changes due to

the algorithm and optimal schedule processing jobs. These are the only remaining ways the

potential may change. Let us fix some specific time t. Our goal now is to bound dΦ(t)
dt

. We

will begin by considering the optimal schedule’s processing of jobs, then we will examine the

processing of the algorithm, finally we will combine the two.

Lemma 3.4.2. The total change in Φ(t) at time t due to the optimal schedule processing

jobs is O(|O(t)|) + 1
ε

∑
i∈A(t)

WA
i (t)

Wi
.

Proof. Observe that the only changes in the potential which may occur due to the optimal

schedule processing a job is due to changes in the quantities WO
i (t) and W j(t), both of which

are in the second term of Φ(t).
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Let us consider a particular job Ji which OPT processes at time t and suppose that OPT

uses m′i processors to process this job. We will later take a sum over all possible jobs that

OPT processes.

First, consider the change in Φ(t) due to WO
i (t) decreasing. This quantity is within the

inner summation of the second term of the potential and only exists if the other job, job

Jj ∈ A(t), has the property that Wi ≤ Wj. In such a case, the processing of the optimal

schedule increases the quantity WA
i (t)−WO

i (t) since it reduces the quantity of WO
i (t). Each

machine in OPT has 1 speed and all work values for jobs are distinct, so the change in

potential is the following.

1

ε

m′i
m

W i(t)

Wi

+
1

ε

m′i
m

∑
j∈A(t)
Wi<Wj

W j(t)

Wj

=
1

ε

m′i
m

∑
j∈A(t)
Wi≤Wj

W j(t)

Wj

There are two parts to this change in potential. The first is for job j itself, which is weighted

by the factor W i(t)
Wi

. The second part accounts for all the other affected jobs which cause

various different changes depending on their own
W j(t)

Wj
. Since we assumed that all jobs had

distinct work, we can absorb the expression into one sum.

Also, because
W j(t)

Wj
≤ WA

j (t)

Wj
by definition of W j(t), we can simplify to the following expres-

sion, which gives the amount of change caused by the change in value of WO
i (t) when OPT

uses m′i processors on job Ji.
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1

ε

m′i
m

∑
j∈A(t)
Wi≤Wj

W j(t)

Wj

≤ 1

ε

m′i
m

∑
j∈A(t)
Wi≤Wj

WA
j (t)

Wj

Now we will consider the change in potential caused by the change in the value of W i(t)

by OPT’s processing of job Ji. This variable could, in the worst case, increase at a rate of

m′i. This will be multiplied by all the inner summation terms which include all other jobs

Jj where Wj ≤ Wi. Note that the job whose processing we are considering is job Ji and all

the other jobs are jobs Jj ∈ A(t). In multiplying by the inner summation we will omit the

−WO
j (t) part of the inner summation since that part only decreases the potential. We are

interested in how much OPT can increase the potential in the worst case so we can omit

these decreasing quantities which are difficult to bound. We can then compute the change

in potential due to the change in the value of W i(t) as the following.

1

ε

m′i
m

WA
i (t)

Wi

+
1

ε

m′i
mWi

∑
j∈A(t)
Wj<Wi

WA
j (t)

By definition,
WA
i (t)

Wi
≤ 1. Additionally, in the summation for all the Wjs we have Wj < Wi,

therefore we can switch out all the Wi for Wj and place it inside the summation. Then the

change in potential due to the change in the value of W i(t) can be simplified to the following.
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1

ε

m′i
m

+
1

ε

m′i
mWi

∑
j∈A(t)
Wj<Wi

WA
j (t) ≤ 1

ε

m′i
m

+
1

ε

m′i
m

∑
j∈A(t)
Wj<Wi

WA
j (t)

Wj

Now, we combine the two changes due to changing the values of WO
i (t) and W i(t) when

OPT processes Ji into the following expression.

1

ε

m′i
m

∑
j∈A(t)
Wi≤Wj

WA
j (t)

Wj

+

1

ε

m′i
m

+
1

ε

m′i
m

∑
j∈A(t)
Wj<Wi

WA
j (t)

Wj

 =
1

ε

m′i
m

+
1

ε

m′i
m

∑
j∈A(t)

WA
j (t)

Wj

Let PO(t) be the set of jobs the optimal schedule processes at time t. Clearly, the optimal

schedule can use at most m processors at time t, thus
∑

i∈PO(t) m
′
i ≤ m. Knowing this, we

sum over all the jobs to arrive at the total change in potential due to OPT processing jobs.

∑
i∈PO(t)

1

ε

m′i
m

+
1

ε

m′i
m

∑
j∈A(t)

WA
j (t)

Wj

 ≤
1

ε
+

1

ε

∑
j∈A(t)

WA
j (t)

Wj



Finally we know that OPT must have at least one alive job for it to process any jobs. Thus,

the first part of this expression, 1
ε
, is O(|O(t)|). With this, we have proven the lemma that the

change in potential by OPT processing jobs is no more than O(|O(t)|)+ 1
ε

∑
i∈A(t)

WA
i (t)

Wi
.

Now we consider the change in the potential Φ(t) due to the algorithm processing jobs.
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Lemma 3.4.3. The total change in Φ at time t due to the algorithm processing jobs is

O(|O(t)|)− (1 + ε)1
ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi
.

Proof. For any job Jj, we know that either the algorithm is processing jobs Ji ∈ A(t) where

Wi ≤ Wj using all m processors or the algorithm is decreasing the critical-path, CA
j (t),

at a rate of (1 + ε). This is because the algorithm, by definition, has either assigned all

processors to higher priority jobs or it is scheduling all available ready nodes for job Jj,

where in the second case by observation 1 we know that the remaining critical path of the

job is decreasing.

Suppose that the algorithm decreases the critical path of Jj. Then, this decreases the value

of CA
j (t) at a rate of −(1+ε). Alternatively, say the algorithm assigned all processors to jobs

with higher priority than Jj. Then it is the case that
∑

i | i∈A(t)∪O(t),Wi≤Wj
WA
i (t) −WO

i (t)

decreases at a rate of −(1 + ε)m due to the algorithms processing those jobs and decreasing

their remaining work. In the second case here, the change in potential is −1+ε
ε

W j(t)

wj
.

Now we consider all jobs i in the potential. The change in the potential function due to

the change in WA
i (t) and CA

i (t) over all jobs the algorithm processes can be bounded by the

− (1+ε)
ε

∑
i∈A(t)

W i(t)
Wi

. Note that since W i(t)
Wi
≤ 1 by definition, decreasing the critical path will

cause a more negative value than decreasing the work of all higher priority jobs. We lose

some of the decrease in potential with this expression, but it is still sufficient.

Consider the jobs in the summation, if Ji /∈ O(t) then it is the case that W i(t) = WA
i (t), but

if Ji ∈ O(t) then in the worst case W i(t) = 0 and we do not allow this quantity to become

negative, so we cannot say that the algorithm is decreasing the potential due to decreasing

this term. Nevertheless dropping all Ji ∈ O(t) the decrease in the potential can still be

bounded by the following expression.
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−(1 + ε)

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

The only other change that can occur is that when the algorithm causes W j(t) to decrease for

jobs Jj that the algorithm processes. It could then be multiplied by a −WO
i (t) because the

second summation in the second term is allowed to be negative. This will actually cause an

increase in the potential function. Suppose the algorithm processes job j using m′j processors

at time t. We will let PA(t) denote the set of jobs the algorithm processes. In the worst

case, W j(t) decreases at a rate of (1 + ε)m′j for each job j ∈ PA(t). The change is at most

the following:

(1 + ε)

mε

∑
j∈PA(t)

m′j
Wj

∑
i∈O(t)
Wi≤Wj

WO
i (t) ≤ 1 + ε

mε

∑
j∈PA(t)

m′j
∑
i∈O(t)
Wi≤Wj

1 [WO
i (t) ≤ Wi ≤ Wj]

≤ (1 + ε)

mε

∑
j∈PA(t)

m′j
∑
i∈O(t)

1 ≤ (1 + ε)

ε

∑
i∈O(t)

1 [
∑

j∈PA(t) m
′
j ≤ m]

=
(1 + ε)

ε
|O(t)|

Note that assuming that 0 < ε ≤ 1 is a constant. And therefore this is O(|O(t)|) Taking the

combination of these two parts results in the following expression.

−(1 + ε)

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

+

(
(1 + ε)

ε
|O(t)|

)
= O(|O(t)|)− (1 + ε)

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi
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This is exactly the statement of the lemma.

Now we are ready to prove SJF’s guarantees for fractional flow time.

Proof of [Theorem 3]

The total change in the potential due to the algorithm and optimal schedule processing jobs

can be computed from combining Lemmas 3.4.3 and 3.4.2. Note that we are summing over

the terms, some of which are negative due to decreasing the potential.

O(|O(t)|) +
1

ε

∑
i∈A(t)

WA
i (t)

Wi

+−(1 + ε)

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|) +
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

+
1

ε

∑
i∈O(t)

WA
i (t)

Wi

+−(1 + ε)
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|) +
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

+
1

ε

∑
i∈O(t)

1 +−(1 + ε)
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|) +
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

+−(1 + ε)
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|)−
∑

i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|)−
∑
i∈A(t)

WA
i (t)

Wi

Where, we arrived at the final result by noticing that the second term in the penultimate

step can be simplified like this:
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−
∑

i∈A(t)\O(t)

WA
i (t)

Wi

= −
∑
i∈A(t)

WA
i (t)

Wi

+
∑

i∈A(t)∩O(t)

WA
i (t)

Wi

≤ −
∑
i∈A(t)

WA
i (t)

Wi

+ |O(t)|

So, we have proved that the total change in the potential plus the increase in the algorithm’s

objective,
∑

i∈A(t)
WA
i (t)

Wi
, is bounded by O(1

ε
OPT). This completes the proof of the contin-

uous change in the potential. The overall competitiveness of the algorithm then follows due

to this, Lemma 3.4.1, and the boundary conditions. 2

3.4.2 From Fractional Flow to Integral Flow

We now compare the fractional flow time of SJF to its integral flow time and prove the

following lemma. Note that this lemma, combined with Lemma 3 proves Theorem 2.

Lemma 3.4.4. If SJF is s-speed c-competitive for fractional flow time then SJF is (2 + ε)s-

speed O( c
ε3

)-competitive for the integral flow time for any 0 < ε ≤ 1/2.

To show Lemma 3.4.4, we will consider two schedules created by SJF. One schedule uses s

speed and the other (2 + ε)s for some fixed 0 < ε ≤ 1/2 and some constant s. To avoid

confusion, we use F to denote the fast schedule and S to denote the slow schedule. Since

both schedules are SJF, we assume that the nodes for a job are given the same priority in

both algorithms — this priority can be arbitrary.

To begin the proof, we first show that F has always processed as much work as S at any

time given a (2 + ε) factor more speed. It may seem obvious that a faster schedule should do
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more work than the slower schedule. However, showing this is actually not straightforward

in the DAG model. In fact, in Section 3.4.3, we will actually show that if the faster schedule

has less than a (2− 2
m

) factor more speed than the slower schedule it will actually fall behind

in total aggregate work compared to the slow schedule in some instances. In other words,

F does not always process as much of each individual job as S at each point in time. This

could cause F to later not achieve as much parallelism as S. So, we must show that F does

not fall behind S given a factor of (2 + ε) more speed.

First, we will give some additioal notation specific to this section. Let S(t) (F(t)) denote the

queued jobs in S’s (or F ’s) schedule at time t, which have been released but not finished. Let

W S
i (t) (W F

i (t)) and CS
i (t) (CF

i (t)) denote the remaining work and remaining critical-path

length, respectively, for job i in S’s (F ’s) schedule at time t. The following lemma states

that if we only focus on jobs whose original processing time is less than some value ρ, it must

be the case that F did more total work on these jobs than S. We require the 2 speed in the

conversion from fractional to integral flow time in this particular lemma.

Lemma 3.4.5. At all times t and for all ρ ≥ 0, it is the case that
∑

i∈F(t),Wi≤ρW
F
i (t) ≤∑

i∈S(t),Wi≤ρW
S
i (t).

Proof. For the sake of contradiction, assume the lemma is not true and let t be the first

time that it is false for some ρ. Then at this time t, there must be some job Ji where

W S
i (t) < W F

i (t) and Wi ≤ ρ.

When Ji is released at time ri the lemma holds, i.e.
∑

i∈F(ri),Wi≤ρW
F
i (ri) ≤

∑
i∈S(ri),Wi≤ρW

S
i (ri).

Let V be the total volume of original work for jobs of size at most ρ which arrives during

[ri, t]. Note that S can do at most ms(t−ri) work during [ri, t] with speed s on m processors,
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we know that at time t the total volume of jobs in S’s schedule with original size at most ρ

is at least the following:

∑
i∈S(t),Wi≤ρ

W S
i (t) ≥

∑
i∈S(ri),Wi≤ρ

(W S
i (ri) + V −ms(t− ri))

Consider the time interval [ri, t]. Note that it must be the case that t− ri ≥ (Ci−CS
i (t))/s,

since the schedule S has decreased the critical-path of job i by Ci − CS
i (t) using a speed of

s. Further, knowing that both of the schedules execute the nodes of a particular job in the

same priority order for either schedule, then CS
i (t) ≤ CF

i (t). Therefore, we have

t− ri ≥ (Ci − CS
i (t))/s ≥ (Ci − CF

i (t))/s (3.2)

Now consider the amount of work done by F during [ri, t]. Note that for at most a
Ci−CFi (t)

s(2+ε)

amount of time during [ri, t] the schedule F have some processors idling while not executing

nodes of jobs with Wi ≤ ρ. Otherwise, by Observation 1 F would have decreased the critical-

path of job Ji during these non-busy time steps by strictly more than
Ci−CFi (t)

s(2+ε)
· s(2 + ε) =

Ci − CF
i (t). Then the remaining critical-path of job Ji at time t in F would then be less

than CF
i (t), contradicting the definition of CF

i (t). Thus, F processes a total volume of at

least (2 + ε)ms(t − ri − Ci−CFi (t)

s(2+ε)
) on jobs with original size at most ρ during [ri, t]. Hence

the following, where we invoked equation 3.2 for one of the steps.
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∑
i∈F(t),Wi≤ρ

W F
i (t) ≤

∑
i∈F(t),Wi≤ρ

W F
i (ri) + V − (2 + ε)s(t− ri −

Ci − CF
i (t)

s(2 + ε)
)

≤
∑

i∈F(t),Wi≤ρ

W F
i (ri) + V − (2 + ε)s(t− ri −

t− ri
(2 + ε)

)

=
∑

i∈F(t),Wi≤ρ

W F
i (ri) + V − (1 + ε)s(t− ri)

≤
∑

i∈S(ri),Wi≤ρ

W S
i (ri) + V − s(t− ri)

=
∑

i∈S(t),Wi≤ρ

W S
i (t)

Note that this contradicts the definition of t as a time where F did less work than S.

Now let tSi,ε denote the latest time t in S’s schedule where
WS
i (t)

Wi
≥ ε. For the fractional flow

time objective, job Ji always incurs a cost of at least ε at each moment in time during [ri, t
S
i,ε]

in S’s schedule. Let fSi,ε = tSi,ε − ri. This means that job Ji’s fractional flow time is greater

than εfSi,ε in S. In the case of integral flow time we know that a job pays a cost of 1 each

time step that it is incomplete. Thus, if the integral flow time of job i in F is bounded by

fSi,ε we can charge this job’s integral cost in F to the job’s fractional cost in S. Alternatively,

according to Observation 2, for integral flow time the optimal schedule of speed 1 must make

job Ji wait Ci time steps. Thus, if job Ji’s flow time is bounded by Ci in F then we can

charge job i’s integral flow time in F directly to the optimal schedule instead. These two

ideas are formalized in the following lemma.
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For any schedule A, we let IntCost(A) denote the integral cost of A and FracCost(A) denote

the fractional flow time of A. Finally, we let OPTI denote the optimal schedule for integral

flow time.

Lemma 3.4.6. Let EF (t) be the set of jobs i ∈ F(t) such that t ≤ ri+
10
ε2

(max{fSi,ε, Ci}). Con-

sider the quantity
∑∞

t=0 |EF (t)|, which is the contribution to the total integral flow at time t

from jobs in EF (t). It is the case that
∑∞

t=0 |EF (t)| ≤ O( 1
ε3

)(FracCost(S)+IntCost(OPTI)).

Proof. Case 1: Consider a job i with max{fSi,ε, Ci} = fSi,ε. In this case, job i can only be

in EF (t) during [ri, ri + 10
ε2
fSi,ε]. The total integral flow time that job i in F can accumulate

during this interval is at most 10
ε2
fSi,ε. By definition of fSi,ε, job i’s fractional flow in S is at

least εfSi,ε. Hence, the total integral flow time of all jobs in F where max{fSi,ε, Ci} = fSi,ε

during times where they are in EF (t) is at most O( 1
ε3

)FracCost(S).

Case 2: Consider a job i, with max{fSi,ε, Ci} = Ci. The integral flow time in OPTI for job

i is at least Ci by definition of the critical-path. Thus, we bound the integral flow time of

all such jobs in F while they are in EF (t) by O( 1
ε2

)IntCost(OPTI).

Intuitively, we think of the jobs in EF (t) as jobs which are early at time t. Let LF (t) =

F(t) \ EF (t) be the set of late jobs at time t. The remaining portion of the proof focuses

on bounding the integral flow time of jobs in F ’s schedule at times when they are in LF (t).

We will prove that O(1
ε
)
∑

i∈S(t)
WS
i (t)

Wi
≥ |LF (t)| at all times t. That is, the total fractional

weight of jobs in S is greater than the number of late jobs in L at all times t. Thus, we

can charge the integral flow time of jobs in LF (t) to the fractional flow time of S’s schedule.

This will complete the proof.
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To prove this, we will show the following structural lemma about S and F . Let S=h(t)

(F=h(t)) denote the remaining jobs i in S’s (F ’s) schedule at time t whose original work

satisfies 2h−1 ≤ Wi < 2h for some integer h ≥ 1. Let W S
=h(t) =

∑
i∈S(t),2h−1≤Wi<2hW

S
i (t)

(W F
=h(t) =

∑
i∈F(t),2h−1≤Wi<2hW

F
i (t)) denote the remaining work in S’s (F ’s) schedule at

time t for jobs i whose original work satisfies 2h−1 ≤ Wi < 2h for some h ≥ 1. We will say

job i is in class h, if 2h−1 ≤ Wi < 2h.

Lemma 3.4.7. At all times t and for all h ≥ 1, |F=h(t) ∩ LF (t)| ≤ 10
ε

1
2h

∑h
h′=1 W

S
=h′(t).

Before we prove this lemma, we show how it can be used to bound the number of jobs in

LF (t) in terms of the fractional weight of jobs in S(t).

Lemma 3.4.8. At all times t,

O(
1

ε
)
∑
i∈S(t)

W S
i (t)

Wi

≥ |LF (t)|
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Proof. Notice that |LF (t)| =
∑∞

h=1 |F=h(t)∩LF (t)|. Using Lemma 3.4.7 we have the follow-

ing.

|LF (t)| =
∞∑
h=1

|F=h(t) ∩ LF (t)|

≤
∞∑
h=1

10

ε

h∑
h′=1

1

2h
W S

=h′(t) [By Lemma 3.4.7]

=
∞∑
h=1

10

ε

h∑
h′=1

(
1

2h′
W S

=h′(t))
1

2h−h′

=
10

ε

∞∑
h′=1

(
1

2h′
W S

=h′(t))
∞∑
h=h′

1

2h−h′

≤ 20

ε

∞∑
h′=1

1

2h′
W S

=h′(t)

≤ 20

ε

∑
i∈S(t)

W S
i (t)

Wi

[2h
′−1 ≤ Wi < 2h

′
if i in class h′]

The previous lemma with Lemma 3.4.6 implies Lemma 3.4.4. All that remains is to prove

Lemma 3.4.7.

Proof of [Lemma 3.4.7]

Assume for the sake of contradiction the lemma is not true. Let t be the earliest time the

lemma is false for some class h, i.e. |F=h(t) ∩ LF (t)| > 10
ε

∑
i∈S(t),Wi≤2h

1
2h
W S
i (t).

Let j∗ denote the job in LF (t) which arrived the earliest; j∗ is of some class h′ ≤ h. By

definition of LF (t), this implies that S processed at least (1−ε)Wi work for each job i ∈ LF (t)

where Wi ≤ 2h by time t. Since S has m processors of speed s, this means t − rj∗ ≥
1
sm

∑
i∈LF (t),Wi≤2h(1− ε)Wi.
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Consider the interval [rj∗ , t]. We first make several observations about the length of this

time interval. We know that t− rj∗ ≥ 10
ε2
Cj∗ since j∗ ∈ LF (t). We further know that during

[rj∗ , t] there can be at most Cj∗ time steps where F is not using all m processors to execute

nodes for jobs which are in a class at most h. Otherwise job J∗ would have finished all its

Cj∗ critical-path length by time t because of observation 1 and thus have been completed by

t, which is a contradiction.

Now our goal is to bound the total work S and F can process for jobs in classes h or less

during [rj∗ , t]. The schedule S can process at most sm(t − rj∗) work on jobs of class at

most h during [rj∗ , t] since it has m machines of speed s. The schedule F processes at least

(2 + ε)sm(t− rj∗ −Cj∗) work on jobs of class at most h by the observations above. Knowing

that t− rj∗ ≥ 10
ε2
Cj∗ , we see that (2 + ε)sm(t− rj∗ − Cj∗) ≥ (2 + ε)(1− ε2

10
)sm(t− rj∗).

We will use these arguments to bound the total volume of work in S at time t to draw a

contradiction. Let V denote the total original processing time of jobs which are of class

at most h that arrive during [rj∗ , t]. By Lemma 3.4.5, we have
∑

i∈F(rj∗ ),Wi≤2hW
F
i (rj∗) ≤∑

i∈S(rj∗ ),Wi≤2hW
S
i (rj∗). And therefore,

∑
i∈S(t),Wi≤2h

W S
i (t)−

∑
i∈F(t),Wi≤2h

W F
i (t)

≥

 ∑
i∈S(rj∗ )

Wi≤2h

W S
i (rj∗) + V − sm(t− rj∗)

−
 ∑
i∈F(rj∗ )

Wi≤2h

W F
i (rj∗) + V − (2 + ε)(1− ε2

10
)sm(t− rj∗)


≥ (−sm(t− rj∗))−

(
−(2 + ε)(1− ε2

10
)sm(t− rj∗)

)
[Lemma 3.4.5]

≥ 1 + ε

2
sm(t− rj∗) [ε ≤ 1/2]
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This implies that ∑
i∈S(t),Wi≤2h

W S
i (t) ≥ 1 + ε

2
sm(t− rj∗)

We also know that

t− rj∗ ≥
1

sm

∑
i∈LF (t),Wi≤2h

(1− ε)Wi

Using the fact that ε ≤ 1/2, we can simplify the expressions.

∑
i∈S(t),Wi≤2h

W S
i (t) ≥ 1 + ε

2

∑
i∈LF (t),Wi≤2h

(1− ε)Wi ≥
ε

4

∑
i∈LF (t),Wi≤2h

Wi

Knowing that jobs of class h have size at most 2h and
∑

i∈S(t),Wi≤2hW
S
i (t) ≥ ε

4

∑
i∈LF (t),Wi≤2hWi,

we complete the proof:

|F=h(t) ∩ LF (t)| =
∑

i∈LF (t)

2h−1≤Wi<2h

1 ≤ 2
∑

i∈LF (t)

2h−1≤Wi<2h

Wi

2h
≤ 10

ε

∑
i∈S(t),Wi≤2h

1

2h
W S
i (t)

This contradicts the definition of time t, which means we have proven the lemma. 2

This completes the proof of theorem 2.

3.4.3 SJF Falls Behind with Resource Augmentation

In this section we present an interesting side-result for the SJF scheduler in the DAG model.
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Figure 3.1: An example schedule of slow and fast SJF on 6 processors

In particular, we show that SJF can fall behind itself in total aggregate work when given more

resource augmentation. This is surprising because basically the same scheduling algorithm

is used, yet with speed augmentation it is actually possible for the fast schedule to have

performed less aggregate work than the slow schedule at some time t. This difficult arises

specifically due to the intricacies of the DAG model.

We consider two schedules: one slow schedule S with unit speed and one fast schedule F

with speed s for some fixed constant S. We will show that for a given speed augmentation s

and m processors, where 1 < s < 2− 2
m

, we can always construct a counterexample showing

that the fast schedule F falls behind the slow schedule S using two jobs J1 and J2.

First we shall give a concrete example with 1.6 speed where F does less aggregate work than

S does at some time t. Then, we present the general example for any speed s < 2 − 2
m

.

Intuitively, we show that the structure of J1 on the fast schedule forces J2 to be executed
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entirely sequentially, this severely limits the amount of work that can be done on J2 by the

fast schedule. Since both schedules complete J1, this directly shows that the fast schedule

completes less aggregate work.

Example for Speed 1.6 on 6 processors

In the concrete example, the fast schedule have 1.6 speed. Consider two jobs J1 and J2 as

given in the figure. J1 consists of a sequential chain of nodes of total length 16, followed by

5 chains of nodes all having total length 30 (i.e. a block of width 5 and length 30). Note

the construction of the DAG means that at time 10 the fast schedule will have finished the

entire chain, while the slow one will still have 6 nodes to do. J2 arrives at the absolute time

of 10 and consists of a block of width 5 with length 6, followed by a long sequential chain

of nodes. In this example, the length of this chain is 140. Note that the total work of J2

is 170, which is more than J1’s total work 166. Thus, J2 has lower priority under both the

slow and fast SJF.

The time we consider for the contradiction is at t = 46. By this point, both F and S have

finished J1, therefore it is sufficient to compare the amount of work done on J2. In the

slow schedule for the first 6 steps once J2 arrives, due to the fact that J1 can only utilize 1

processor, 30 nodes of J2 is finished. A further 30 nodes of J2 finishes for a total of 60 at

time t.

The fast schedule is of more interest. With 1.6 speed augmentation, effectively 16 nodes

can be finished in the time that the slow schedule requires to finish 10 nodes. Therefore,

when J2 arrives, the fast schedule has already finished the first chain and reached the highly

parallel portion of J1. As J1 has higher priority than J2, this forces J2 to be executed on
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Figure 3.2: An example schedule of slow and fast SJF for m processors.

the only remaining processor sequentially. Hence, due to the length of the block in J1, the

first block (30 nodes) of J2 is executed completely sequentially. The rest of J2 is a chain and

has to run sequentially due to the structure of the DAG. Therefore, J2 is performed entirely

sequentially.

Now we compare the amount of work of J2 done by S and F during the time interval [10, 46],

which has length 36. The slow schedule with unit speed finishes 60 nodes of J2. Taking the

speed augmentation of 1.6 into account, F can sequentially execute 36 ∗ 1.6 = 57.6 nodes of

J2. Hence, less than 60 nodes of J2 finishes executing by F . This means that F has fallen

behind in comparison to S in terms of aggregate work at time t = 46.
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General Case for Speed s on m processors

We now show the general case where a speed of 2 − 2
m

is necessary for the fast schedule to

catch up in total aggregate work compared to the slow schedule. We assume that the fast

schedule is given some speed s = 1 + ε with the restriction that 0 < ε < 1 − 2
m

. Similar to

the concrete example, we construct the two jobs with J1 being a chain followed by a block

and J2 being almost the opposite but having larger work and lower priority. The key idea is

that for J1, the fast schedule must reach the highly parallel portion earlier, more precisely, at

the release time of J2. Note that for every node processed by the slow schedule in the initial

chain of J1, the fast schedule processes 1 + ε nodes, gaining ε nodes over the slow schedule.

Consider Figure 3.2, for similarity to the previous example we introduce a constant L. In

the previous concrete example, we had L = 6. Let J1 begin with a chain of length L
ε

+ L,

followed by a block of length (m− 1)L and parallelism (width) (m− 1). J2 will consist of a

block of length L with parallelism (m− 1) followed by a long chain of sufficient length such

that J2 has more work and lower priority than J1. J2 arrives at exactly time L
ε
.

The time that will be examined is time t =
(
L
ε

+ L
)

+ (m − 1)L. Note that at this point

both the schedules have finished J1 and therefore it is sufficient to compare the amount of

work done on J2. In the slow schedule, J2 arrives when only 1 processors is used to execute

J1, as the highly parallel block has not been reached. Therefore, for the next L time steps a

total of (m− 1)L nodes of J2 are finished with parallelism m− 1. On the following (m− 1)L

steps, J1 occupies m− 1 processors, while J2 reaches its chain and is processed sequentially.

A total of 2L(m − 1) nodes of J2 are finished at time t. We also note that a total of mL

time steps have passed in the slow schedule between the arrival of J2 and time t.
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From the construction of the initial chain of J1, the fast schedule completes all L
ε
+L = L

ε
(1+ε)

nodes of the strand by the time L
ε

that J2 arrives. Due to the higher priority of J1, the parallel

block of J1 take precedence over that of J2. Note that the parallel block of J1 has a width

of m− 1, which occupies all but one processor for as long as (m− 1)L steps. This forces J2

to only execute sequentially on the remaining single processor for all its (m− 1)L nodes of

the parallel block in J2. When J1 finally completes and all m processors are free, J2 reaches

its sequential chain. Therefore, J2 is processed entirely sequentially in the fast schedule.

The amount of time which passes between the arrival of J2 and t is just mL. Consider the

speed augmentation of the fast schedule and recall that ε < 1 − 2
m

. The total number of

nodes of J2, that the fast processor can sequential execute between the arrival of J2 and t,

is mL(1 + ε) < mL(2 − 2
m

) = 2L(m − 1). Recall that the slow schedule performed exactly

2L(m− 1) nodes of J2 during the same time interval. Therefore, the fast schedule with 1 + ε

speed performs less total aggregate work at time t in comparison to the slow schedule.

Note that this example does not hold when ε ≥ 1 as the final calculation would result in the

fast processor finishing more nodes of J2.

3.5 Conclusion

In this chapter we have proved the first results on a flow time objective in the DAG model.

Though it may be not too unexpected that algorithms such as LAPS perform well in theory,

it is interesting that SJF also works for this problem since there were no greedy algorithms

known for average flow time for parallelizable jobs. Certainly, this is an interesting step

towards more practical average flow time algorithms in the DAG model. Additionally, the
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DAG model can occasionally exhibit very interesting behaviour as we have shown in section

3.4.3 where the same scheduler with more speed can somehow fall behind in aggregate work

compared to one with less speed. Nevertheless, with this first result on average flow time in

the DAG model, the way is open for optimizing other flow time objective - a task we will

actively pursue in the upcoming chapters.
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Chapter 4

Maximum Flow Time

In this chapter we consider the problem of minimizing the maximum flow time of a set of

jobs in the DAG model. We are scheduling these jobs on m identical machines or processors.

These are the first known non-trivial results for maximum flow time in the DAG model. All

of the algorithms considered in this chapter are non-clairvoyant, meaning that they have no

prior knowledge of the size or structure of the jobs or when they arrive.

We will describe several contributions to this area. First, we start with an idealized First-

in-First-Out (FIFO) scheduler. At each time step, FIFO looks at jobs in the order of arrival

and allocates each job as many processors it can use until it runs out of jobs or processors.

For this scheduler, we prove the following theorem in section 4.2.

Theorem 4. FIFO is a (1+ ε)-speed O(1
ε
)-competitive scheduler for the maximum flow time

in the DAG model.

We then generalize this result to the work stealing scheduler in 4.3. The reason we use

work stealing is because it is a practical and efficient scheduler that is used in many parallel

languages and libraries. In comparison, an implementation of the ideal FIFO scheduler is
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likely to have high overhead since it is centralized and potentially preempts jobs to re-allocate

processors at every time step.

For work stealing, we prove that a version of it called admit-first is scalable for “reasonable

jobs”. More specifically, we prove the following theorem about admit-first work-stealing.

Theorem 5. Admit-first work-stealing with (1 + ε)-speed has a maximum flow time of

O( 1
ε2

max{OPT, ln(n)}) over n jobs for any fixed ε > 0 with high probability.

Note that if any job has span Ω(lg n) or work Ω(m lg n), then OPT ≥ lnn and admit-first

is (1 + ε)-speed O( 1
ε2

)-competitive with high probability, therefore it would be scalable.

We will also introduce a generalization of the admit-first scheduler called steal-k-first. Our

goal in this generalization is to design a work-stealing scheduler that is closest to FIFO since

FIFO has strong theoretical performance though it suffers in implementation. Steal-k-first

is parameterized by k. Intuitively as k becomes larger, this algorithm becomes closer to the

FIFO scheduler. Theoretically, this scheduler is (k + 1 + ε))-speed O( 1
ε2

max{OPT, ln(n)})-

competitive for any ε > 0 and k ≥ 0. It reduces to admit-first when k = 0.

To complement our algorithmic results on work-stealing, we also provide a lower bound for

work-stealing schedulers in 4.4.

Theorem 6. The competitive ratio of any randomized work-stealing scheduler is Ω(lg n).

Note this means if all jobs in the input are tiny jobs with work o(lg n), then work stealing

cannot be scalable due to the randomization involved. This shows that our bounds for

work-stealing are essentially tight.
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To test these more practical scheduling algorithms, we evaluated them experimentally in

section 4.5. We implemented admit-first and steal-k-first in Thread Building Blocks (TBB)

and compared their performance with a simulated optimal scheduler on both realistic and

synthetic workloads. Experimental results shows that a work stealing scheduler (especially

steal-k-first) will have comparable performance to the optimal scheduler.

Finally, in section 4.6 we consider the case where jobs have weights and show that the

non-clairvoyant algorithm Biggest-Weight-First (BWF) works well for this problem.

Theorem 7. BWF is a (1+ ε)-speed O( 1
ε2

)-competitive algorithm for the weighted maximum

flow time in the DAG model of parallelism.

Due to lower bounds present for weighted maximum flow time in the online setting, this is

the best positive result that can be shown.

4.1 Preliminaries

In this online scheduling problem, there are n jobs which arrive over time. These jobs are

scheduled on m identical processors. Each job Ji has an arrival (release) time ri, which is

the first time an online scheduler is aware of the job. At any point in time, we will use A(t)

to refer to the set of alive jobs in algorithm A’s schedule. Alive jobs are jobs which have

arrived but have not yet been completed.

In the more general weighted maximum flow problem, each job could have a weight wi —

this weight is known to the scheduler when the job arrives and may not be correlated to the

work of the job. For unweighted maximum flow, wi = 1 for all jobs. For the majority of
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this chapter we will consider the unweighted case. We will only consider the weighted case

in section 4.6.

Recall that ci is the completion time of job Ji in the algorithm’s schedule. We use Fi = ci−ri

as the flow time of job Ji in the algorithm’s schedule. The goal of the scheduler is to minimize

maxi∈[n] wiFi.

As in the previous chapter, we are working with Directed-Acyclic-Graph jobs here as well.

Recall that each of these jobs Ji corresponds to a DAG Gi. Each node (task) v in Gi has an

associated processing time pv and the node must be processed sequentially on a processor

for pv time to be completed. A node in Gi cannot be executed until all of its predecessors

in Gi have been executed. We say that a node is ready if all of its predecessors have been

processed. Multiple ready nodes for the same job can be scheduled simultaneously. A job is

completed once all nodes in its DAG are completely processed. We do not assume that the

scheduler knows the DAG in advance.

Two parameters important to the analysis of DAG jobs are the critical path length Ci and

the total work Wi. We have previously defined these quantities very early in section 1.2.3.

But they will be used frequently in this chapter so we shall briefly mention them again:

• The critical path length of Ji is the length of the longest path in Gi where each node

v in the longest path contributes pv to the length of the path. Note that Ci is a lower

bound on the execution time of Ji for any scheduler.

• The work Wi of job Ji is the sum of the processing times of all the nodes in the DAG.

Wi

m
is a lower bound on the execution time of the job on m processors.
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The following proposition will be used throughout this chapter, it states that any time a

scheduler is working on all the ready nodes for some job Jj, then the scheduler must be

decreasing the remaining critical path of Jj. This proposition has been shown in many

previous works including [36].

Proposition 4.1.1. If during each time step during a time interval [t′, t], a scheduler of

speed s is always scheduling all available nodes for a job Jj, then the scheduler reduces the

critical path length of Ji by s(t− t′).

We are now ready to give and analyze the first algorithms for minimizing the maximum flow

time for DAG jobs.

4.2 FIFO for Maximum Flow Time

In this section our goal is to prove theorem 4 which states that the algorithm First-In-First-

Out (FIFO) is (1 + ε)-speed O(1
ε
)-competitive for minimizing the maximum unweighted flow

time for any 0 < ε < 1.

The FIFO algorithm is defined as follows. At any time t, FIFO orders the jobs in increasing

order by their arrival time, breaking ties arbitrarily. The algorithm then assigns all of the

ready nodes for the first job to unique processors, then recursively does the same for the

next job in the list. This continues until all processors have been assigned some node or

there are no more ready nodes available. The algorithm may have a choice on which ready

nodes of a job to schedule if the job has more ready nodes than the number of processors

that have not been assigned to a node when the job is considered. In this case, we assume
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the scheduler chooses an arbitrary set of ready nodes from the job. Algorithm 3 provides an

overview of this procedure.

Algorithm 3 The FIFO algorithm

1: Examine the current alive jobs, A(t)
2: Sort jobs by arrival time in increasing order
3: Execute jobs in order by assigning processors to ready nodes

The rest of this section is devoted to proving Theorem 4. We assume for the remainder of

this section that FIFO is given (1 + ε)-speed for some constant 0 < ε < 1 and we will show

that FIFO is 3
ε

competitive. We will now use proof by contradiction.

Assume for the sake of contradiction that FIFO has a competitive ratio larger than 3
ε
. We

consider the instance for which FIFO does not achieve a competitive ratio of 3
ε
. Let job

Ji be the job with the maximum flow Fi in this instance in FIFO’s schedule. Therefore,

OPT < ε
3
Fi by assumption. Since no jobs that arrive later than Ji has any effect on how or

when Ji is scheduled due to FIFO’s scheduling policy, we may assume that Ji is the last job

to arrive.

We begin by showing that during the time interval job Ji is alive in FIFO’s schedule, the

processors must be busy for most of the interval. We define one time step as the time period

for a s-speed processor to execute one unit of work. In other words, in one time step m

processors with speed s can finish m work of jobs. On processors with different speeds, the

length of a time step will be different; the number of time steps on a s-speed processor in T

units of time is sT , while it is T on a processor with 1 speed. Intuitively, we want each time

step to correspond to a unit amount of work being performed by a processor.

Lemma 4.2.1. During the interval [ri, ci] in FIFO’s schedule, there can be no more than

ε
3
Fi time steps where not all m processors are busy working on jobs.
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Proof. For the sake of contradiction, suppose there are at least ε
3
Fi time steps during [ri, ci]

where not all processors are busy.

Consider FIFO’s scheduling policy. Anytime during [ri, ci] when FIFO is not processing

nodes on every processor, FIFO must be scheduling all of the ready nodes of Ji. Due to this,

at these times FIFO is working on the critical path length of Ji by Proposition 4.1.1. Let

the critical path length of Ji be Ci, then we have Ci ≥ ε
3
Fi.

OPT cannot finish a job in less time than its critical path length, this leads to OPT ≥ Ci ≥
ε
3
Fi, so the competitive ratio is Fi

OPT
≤ 3

ε
, which is a contradiction.

Lemma 4.2.1 showed that for most of the time steps in [ri, ci] FIFO has m processors busy

working. In the next lemma, we show that the work done by FIFO during [ri, ci] is concen-

trated on jobs which did not arrive before ri − Fi.

We define processor idling steps to be the aggregate number of time steps per processor

where the processor is not working on any job. Hence, during a single time step where not

all m processors are busy, there can be at most m processor idling steps (as there are m

processors).

Lemma 4.2.2. During [ri, ci], FIFO does more than m(1 + ε
3
)Fi work on jobs which arrived

after ri − Fi.

Proof. Since Ji is the job with the maximum flow time Fi in the schedule, all previous jobs

must have had less flow time than Fi. Therefore, all jobs which received any processing

during [ri, ci] must have arrived no earlier than ri − Fi.
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To complete the lemma we calculate the total work done during [ri, ci]. From Lemma 4.2.1

the number of processor idling steps is at most m ε
3
Fi during [ri, ci]. Since the processors

have speed 1 + ε, the total work that is done during [ri, ci] is at least

m(1 + ε)Fi −m
ε

3
Fi > m(1 +

ε

3
)Fi

which completes the lemma.

Using the previous lemmas we can complete the proof.

Proof of Theorem 4 We consider the work of the optimal schedule. OPT achieves a flow

time of OPT < εFi
3

from the assumption that FIFO does not achieve a competitive ratio of

3
ε
.

Consider all the jobs which arrived during [ri−Fi, ri], OPT must finish every such job before

ri+
ε
3
Fi. During the interval [ri−Fi, ri+ ε

3
Fi] the optimal schedule can do at most m(1+ ε

3
)Fi

work with 1 speed.

However from Lemma 4.2.2, we know that FIFO did a significant amount of work. The jobs

which arrive after ri−Fi must have more than m(1+ ε
3
)Fi work. Hence the optimal schedule

cannot possibly finish all jobs by time ri + ε
3
Fi. This is a contradiction. 2

This concludes the proof of Theorem 4. We will examine a variant of the work-stealing

scheduler in the next section.

72



4.3 Work-Stealing for Unweighted Maximum Flow time

In this section, we consider a variation of work stealing called steal-k-first work stealing.

Randomized work stealing is a very effective scheduler for a single DAG job in practice since

the amount of scheduling and synchronization overhead is small. We would like to leverage

and extend this to the case with multiple DAG jobs.

The formal definition of this algorithm will be discussed later. Our goal in this section is to

show the following theorem.

Theorem 8. The maximum unweighted flow time of the steal-k-first work stealing scheduler

with (k + 1 + (k + 2)ε) speed is O( 1
ε2

max{OPT, lnn}) for any k ≥ 0 and any 0 < ε < 1
k+2

with high probability.

By scaling the constant ε using the constant k in Theorem 8, we can trivially obtain the

Corollary below.

Corollary 4.3.1. The maximum unweighted flow time of the steal-k-first work stealing sched-

uler with (k + 1 + ε) speed is O( 1
ε2

max{OPT, lnn}) for any k ≥ 0 and any 0 < ε < 1 with

high probability.

The admit-first work stealing scheduler is the same as the steal-k-first with the constant

k = 0. In such a case we have the following result.

Corollary 4.3.2. The maximum unweighted flow time of the admit-first work stealing sched-

uler with (1 + ε) speed is O( 1
ε2

max{OPT, lnn}) for any 0 < ε < 1 with high probability. In

particular, if OPT ≥ lnn, then the scheduler is (1 + ε)-speed O( 1
ε2

)-competitive with high

probability.
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Work Stealing for a Single Job

The work stealing scheduler [14] is a distributed scheduler for scheduling a single parallel

program. We have described the work stealing scheduler very early in Section 2.1. Work

stealing is a As this section focuses extensively on work stealing, we will briefly describe the

scheduler once again.

In work stealing, the runtime system creates a worker thread for every available core. Each

worker maintains a local double-ended queue (deque). When a worker generates new ready

nodes it pushes the new work onto the bottom of its deque. When a worker finishes its

current node, it pops a ready node from the bottom of its deque. If there are no nodes in

the local deque, the worker becomes a thief and randomly picks a victim worker and tries

to steal work from the top of the victim’s deque. We assume that it takes a unit time step

to steal work between workers.

However, importantly, work stealing is not strictly a greedy scheduler though it provides

strong probabilistic guarantees of linear speedup for a single job [14].

Work Stealing for Multiple Jobs

Though the work stealing scheduler is designed for scheduling a single job, we can extend

it to scheduling multiple jobs in a straightforward way. In addition to the deque of each

worker, a global FIFO queue is dedicated for the arrival and admission of new jobs. When

a new job is released, it is inserted into the tail of the global queue. A worker will admit a

job by popping if from the head of the global queue in FIFO order.
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Under different admission strategies, workers could choose to steal work or admit a job in

different orders. In this paper, we consider a strategy, namely steal-k-first work stealing, in

which each worker always tries to randomly steal first and only tries to admit a new job if

there are k consecutive unsuccessful steal attempts for some constant k ≥ 0.

Now we analyze the theoretical performance of steal-k-first and we present its empirical

performance in Section 4.5.

Proof Structure

To prove steal-k-first is competitive for maximum flow time, we need to show that it does

not fall far behind the optimal schedule. We assume for the sake of contradiction that it

does at some time t. Then we go back in time to a point t′ where the algorithm was not far

behind the optimal solution. This time is carefully defined by recursively going back in time

ensuring (1) that the algorithm is always doing a significant amount of work during [t′, t]

and (2) that we can actually find t′ while ensuring (1) is true.

After finding such a time t′, we are able to show that while the algorithm may fall far behind

the optimal schedule during [t′, t] due to not taking advantage of the parallelizability of jobs,

it eventually is able to do a large amount of work. With faster speed, it catches up and this

allows us to bound its performance.

Before formally proving the theorem, we first show that steal-k-first does not idle much when

there are jobs to execute.
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Idling Steps in Steal-k-First

We define processor idling steps to be the aggregate number of time steps per processor where

the processor is not working on a job (and is stealing instead). Recall we have assumed that

each steal attempt takes 1 time step. To bound the idling time in steal-k-first’s schedule, we

first state a theorem from [14], which provides the bound on the time that a work stealing

scheduler spends on stealing during the execution of a single job.

Lemma 4.3.3. During the time interval [ei, ci] where ei and ci are the execution start time

and completion time of a job Ji respectively, the expected number of steal attempts is bounded

by 32mPi where Pi is the critical-path length and m is the number of processors. Moreover,

for any δ > 0, the number of steal attempts is bounded by 64mPi+16 ln(1/δ) with probability

at least 1− δ.

The Lemma above only applies to the case of a single job. By extending it we can obtain a

useful lemma for the case with n jobs. In the following lemma, let ei denote the time that

job Ji is admitted from the global queue by a processor. This is the first time the job is

started.

Lemma 4.3.4. For a time interval that lies between the start time ei and completion time

ci of a job Ji, with probability at least 1− 1
n

, the number of processor idling steps is bounded

by 64mPi + 32 ln(n) ≤ 64mOPT + 32 ln(n).

Proof. Consider Lemma 4.3.3 and choose δ = 1
n2 . The probability of any job Ji exceeding

the idling time bound 64mPi + 16 ln(n2) = 64mPi + 32 ln(n) during [ei, ci] is 1
n2 . This idling

time bound holds for any time interval that is between [ei, ci]. Union bounding over all n

jobs and subtracting from 1 yields the probability in the lemma.
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We will also use the following lemma to later bound the idling time due to steal attempts

between the arrival time ri and the start time ei of a job Ji.

Lemma 4.3.5. Under steal-k-first with a speed of s = k+ 1 + (k+ 2)ε, the number of idling

steps during a time interval [t′, t] that is contained in [ri, ei], the time between when a job

arrives and is removed from the global queue, is at most k
k+1

(k+ 1 + (k+ 2)ε)m(t− t′) + km.

Proof. Every time a processor has more than k steal attempts, the processor will do one unit

of work. Thus for any time interval of length (t− t′) there can be at most a s k
k+1

(t− t′) + k

steal attempts per processor.

Otherwise, s
k+1

(t− t′)+1 work will be done by the processor etaoinshrdlu The lemma follows

by aggregating over all processors.

Now we will bound the amount of work steal-k-first does. We say that a job Ji spans a time

interval [ta, ta−1], if its release time ri ≤ ta and its completion time ci ≥ ta−1.

Lemma 4.3.6. If a job spans a time interval [ta, ta−1], then steal-k-first work stealing with

speed k + 1 + (k + 2)ε does at least k+1+(k+2)ε
k+1

m(tb − ta)− (km+ 64mOPT + 32 ln(n)) work

with probability at least 1− 1
n

.

Proof. By definition, [ta, ta−1] lies between [ri, ci]. From Lemma 4.3.5, the number of idling

steps during [ta, ei] is at most k
k+1

(k + 1 + (k + 2)ε)m(ei − ta) + km ≤ k
k+1

(k + 1 + (k +

2)ε)m(ta−1 − ta) + km.

From Lemma 4.3.4, the number of idling steps during [ei, tb] is at most 64mOPT + 32 ln(n)

with probability at least 1− 1
n
.
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Thus, during [ta, ta−1] the amount that work steal-k-first with speed k+ 1 + (k+ 2)ε does is

at least the following:

(k + 1 + (k + 2)ε)m(ta−1 − ta)− (64mOPT + 32 ln(n))

−
(

k

k + 1
(k + 1 + (k + 2)ε)m(ta−1 − ta) + km

)
=
k + 1 + (k + 2)ε

k + 1
m(tb − ta)− (km+ 64mOPT + 32 ln(n))

This occurs with probability at least 1− 1
n
.

We have now shown that steal-k-first work stealing does a reasonable amount of work. We

will eventually use this knowledge to prove Theorem 8.

Time Intervals in Steal-k-First

The main challenge in analyzing steal-k-first is that it is difficult to show that the remaining

processing time of jobs in its queue is comparable to that of OPT’s queue. Rather than

directly bounding the differences between the two queues as done previously for FIFO, we

will construct a set of time intervals where steal-k-first must be busy most of the time. Using

the assumption that steal-k-first has resource augmentation, we will draw a contradiction

by showing that steal-k-first has completed a large amount of work which is more than the

total amount of work available during a time interval.

From here on, our goal is to show that the steal-k-first with (k+1+(k+2)ε)-speed achieves a

maximum flow time of O( 1
ε2

max{OPT, ln(n)}) with high probability. To simplify the proof,
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Ji

Job Jq active at riby WS

Ci - ri =	Fi

…
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Job	J0

t0 =	r0

ri – t0	> ε Fi

Job Ju released	in	[ri,	ci],	OPT	works	on	after	ci

Job	J1

t1 =	r1

t0 – t1> ε Fi

Job Jβ

tβ =	rβ

Job	Jβ	-1

tβ-1

tβ-1 – tβ> ε Fi

Job Jp releasedat t’,	OPT	finishedbefore tβ

tβ – t’ < ε Fi

t’

Figure 4.1: An example execution trace of work-stealing identifying jobs’ release and com-
pletion times.

we rewrite the objective to eliminate the max and show instead that steal-k-first achieves a

maximum flow of 65
ε2

(OPT + ln(n) + k), k ≥ 0 is a constant and 0 < ε < 1
k+2

.

Let Ji be the job in steal-k-first’s schedule with the maximum flow time Fi. Recall that ri

and ci are the arrival and completion time of Ji, respectively. To show contradiction, we

assume that Fi ≥ 65
ε2

(OPT + ln(n) + k).

We will recursively define a set of time intervals

T = {[t′, tβ], [tβ, tβ−1], [tβ−1, tβ−2] . . . [t1, t0], [t0, ri], [ri, ci]}

where t′ ≤ tβ ≤ tβ−1 ≤ . . . ≤ t1 ≤ t0 ≤ ri ≤ ci. To illustrate the time intervals, Figure 4.1

shows an example execution trace of steal-k-first.

Let t0 be the arrival time of the earliest arriving job among the jobs that are not finished by

steal-k-first right before time ri. For instance, in Figure 4.1 there are two jobs (job J0 and

job Jq) that are active right before ri. Among then, job J0 has the earliest arrival time, so

t0 is defined using it. If there are no jobs right before ri, let t0 = ri.

Now we will define further intervals recursively. Given the time ta−1, we want to define ta.

If ta−1 − ta ≤ εFi, then we are finished defining intervals; otherwise, we define ta as the

arrival time of the earliest arriving job among those that are not finished by steal-k-first
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right before time ta−1. We say that a certain job Ja defines an interval [ta, ta−1], if it is the

earliest arriving job unsatisfied by steal-k-first right before ta−1 and ta is its arrival time.

Note that this process of defining intervals will always terminate. Specifically, the procedure

terminates when ta−1 − ta ≤ εFi, which must happen if one goes back to the first time a job

arrives. We let β denote the maximum value that a takes during this inductive definition.

Hence, [tβ, tβ−1] is the earliest time interval defined in this scheme. Moreover, the arrival time

t′ of the earliest arriving job among those that are unfinished right before time tβ satisfies

t′ − tβ ≤ εFi. As in Figure 4.1, interval [t′, tβ] is the first such interval that has length less

than εFi.

Work Done by Steal-k-First

We intend to show that steal-k-first does a lot of work during the interval [tβ, ci]. In fact,

we will show that if the assumption of Fi ≥ 65
ε2

(OPT + ln(n) + k) is true, then steal-k-first

would have done more work than the total work of all jobs that are active during [tβ, ci],

which is not possible and leads to a contradiction, thus proving the theorem.

To do so, we partition [tβ, ci] into two sets of time intervals, specifically S1 = {[ta, ta−1],∀ 0 <

a ≤ β} ∪ {[t0, ri]} during [tβ, ri], and S2 = {[ri, ci]}. We first show that for intervals in S1,

steal-k-first does more work than OPT.

Lemma 4.3.7. For any time interval [ta, ta−1] ∈ S1 during [tβ, ri], with probability at least

1− 1
n

the work that steal-k-first does is more than m(ta−1 − ta), which is as much as OPT

does.
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Proof. By definition, there is a job Ja which defines this time interval. Specifically, this job

spans the time interval. According to Lemma 4.3.6, we know that with probability 1− 1
n

the

amount of work that steal-k-first does is at least k+1+(k+2)ε
k+1

m(ta−1− ta)− (km+ 64mOPT+

32 ln(n)).

Recall that by assumption that Fi >
65
ε2

(OPT+ln(n)+k) and by definition (ta−1−ta) > εFi,

we have

(ta−1 − ta) > εFi >
65

ε
(OPT + ln(n) + k) =

1

ε

1

m
(65km+ 65mOPT + 65m ln(n))

>
1

ε

1

m
(km+ 64mOPT + 32 ln(n))

Hence, (km+ 64mOPT + 32 ln(n)) < εm(ta−1 − ta).

Thus during any time interval [ta, ta−1] in S1, the work done by steal-k-first (with speed

k + 1 + (k + 2)ε) on jobs is at least:

k + 1 + (k + 2)ε

k + 1
m(ta−1 − ta)− (km+ 64mOPT + 32 ln(n))

> m(ta−1 − ta) +
(k + 2)ε

k + 1
m(ta−1 − ta)− εm(ta−1 − ta)

= m(ta−1 − ta) +
ε

k + 1
m(ta−1 − ta)

Clearly OPT with only 1 speed can only do at most m(ta−1 − ta) work during this time

interval. Therefore, steal-k-first does more work.

We now show that for S2, steal-k-first does a lot of work too.

Lemma 4.3.8. During [ri, ci] ∈ S2, the amount of work that steal-k-first does on jobs is

more than mFi + εmFi +mOPT with probability 1− 1
n

.
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Proof. Consider the work that steal-k-first does during [ri, ci]. By definition this interval has

a length of Fi and we know that Ji spans this interval.

Directly applying Lemma 4.3.6, we derive that with probability 1 − 1
n

the amount of work

done by steal-k-first during [ri, ci] is at least the following.

k + 1 + (k + 2)ε

k + 1
mFi − (km+ 64mOPT + 32 ln(n))

=mFi + εmFi +
ε

k + 1
mFi − (km+ 64mOPT + 32 ln(n))

By definition, 0 < ε < 1
k+2

. Therefore, 1
k+1

1
ε
> 1. Also recall by assumption we have that

Fi >
65
ε2

(OPT + ln(n) + k). Then, we can obtain the following.

ε

k + 1
mFi >

m

k + 1

65

ε
(OPT + ln(n) + k)

>65m(OPT + ln(n) + k)

>(km+ 64mOPT + 32 ln(n)) +mOPT

From the last line it should be clear that ε
k+1

mFi − (km+ 64mOPT + 32 ln(n)) > mOPT.

Therefore, the amount of work done by steal-k-first during [ri, ci] is more than mFi+ εmFi+

mOPT with probability 1− 1
n
.

We need one more critical argument to complete the analysis. The reason we defined these

time intervals inductively is to identify the jobs that are active under steal-k-first during

[tβ, ci]. The total volume of these jobs is bounded by the work that OPT can finish. However,
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just showing that steal-k-first does more work than OPT during [tβ, ci] will not suffice, as

OPT could have done part of this work either before tβ or after ci. As shown in Figure 4.1,

the two jobs (job Jp and job Ju) in dotted shade are executed by steal-k-first during [tβ, ci],

while OPT finished job Jp before tβ and started working on job Ju after ci. The next lemma

bounds the maximum amount of work that are available for steal-k-first to work on during

[tβ, ci].

Lemma 4.3.9. For jobs that are active under steal-k-first during [tβ, ci], their total amount

of work is at most m(ri − tβ) +m(εFi + OPT + Fi).

Proof. By definition, [tβ, ci] consists of time intervals of S1 during [tβ, ri] and time interval

of S2 = {[ri, ci]}. Also recall that the length of interval [ri, ci] is Fi. Hence, the total length

of [tβ, ci] is (ri − tβ) + Fi.

Moreover, by definition of tβ, the earliest arriving job that is unsatisfied by steal-k-first just

before time tβ must have arrived no earlier than time tβ− εFi. Thus, the jobs that are active

under steal-k-first during [tβ, ci] all arrived during [tβ − εFi, ci].

Further, all these jobs have an optimal maximum flow time no more than OPT under the

optimal scheduler. Therefore, OPT must be able to complete all of them by time ci+OPT.

Knowing that OPT can only work on these jobs during [tβ−εFi, ci+OPT], the total amount

of work of those jobs can have volume at most m(ri − tβ) +m(εFi + OPT + Fi).

Finally, we are now able to complete the proof.

Proof of Theorem 8 To prove the theorem, we consider the jobs that are active under

steal-k-first during [tβ, ci]. By Lemma 4.3.9, we know that the total amount of work of these

jobs, denoted as X, is bounded: X ≤ m(ri − tβ) + m(εFi + OPT + Fi). Note that these
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jobs are the only ones available for steal-k-first to work on during [tβ, ci]. Therefore, during

[tβ, ci] steal-k-first cannot do more than X work even with speedup.

Also consider the minimum amount of work that steal-k-first must have done during [tβ, ci],

denoted as Y , if we assume Fi >
65
ε2

(OPT + ln(n) + k) is true. We will see that Y > X,

which leads to a contradiction.

From Lemma 4.3.7, we know that during [tβ, ri] the amount of work steal-k-first does is more

than the following.

m

( ∑
0<a≤β

(ta−1 − ta) + (ri − t0)

)
= m(ri − tβ)

From Lemma 4.3.8, we know that during [ri, ci], steal-k-first does more than mFi + εmFi +

mOPT work. Thus, for interval [tβ, ci], we have Y > m(ri − tβ) +mFi + εmFi +mOPT.

Now we compare X and Y :

Y −X >m(ri − tβ) +mFi + εmFi +mOPT

−m(ri − tβ)−m(εFi + OPT + Fi) > 0

Hence, Y > X. In other words, if the assumption of Fi is true, during [ri, ci] steal-k-first

must have done more work than the total available work, which gives a contradiction.

Thus, we obtain the theorem. 2
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Remarks on Steal-k-First

Note that for steal-k-first work stealing with k = 0, instead of steal first, this scheduler will

in fact admit all jobs from the global queue first. We denote this special case as admit-first.

From Theorem 8, we know that the theoretical performance of steal-k-first is better with

smaller constant k.

Therefore, admit-first has the best theoretical performance and is O( 1
ε2

)-competitive with

high probability with 1 + ε speed, as it guarantees that a job’s execution is not delayed by

unnecessary random stealing. This is Theorem 5.

However, we will show in Section 4.5 that steal-k-first for a relatively large k performs better

than admit-first empirically. Intuitively, if there is any job available for stealing, then in

expectation m consecutive random steal attempts would be able to find the stealable work.

Thus, for k ≥ m, steal-k-first better approximates FIFO, which we know works well.

In contrast, in admit-first jobs could run sequentially when there are more than m unfinished

jobs. During these times, jobs at the end of the global queue take long time to be admitted

and they further take longer time to finish sequential execution in the worst case. Hence,

this could increase the maximum flow time of the system.

Moreover, steal-k-first requires a speed of more than (k + 1) theoretically to be competitive

mainly due to the worst case scenario where each job has a unit time of work but takes k

stealing steps to admit. However, in practice, jobs have much larger work and the constant

k steal attempts for admitting a job is negligible in practice.
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4.4 Work Stealing Lower Bound

In this section we give a lower bound for the work stealing algorithm. We show that in the

online setting, when given any constant speed, the scheduler is Ω(log n) competitive. This

shows that our upper bound analysis of the algorithm is effectively tight.

Lemma 4.4.1. Work stealing is Ω(log n)-competitive for maximum flow time in the online

setting when given any constant resource augmentation.

Proof. Let n be an input parameter and let the number of machines be m = log n. Let s be a

constant specifying the resource augmentation given to work stealing. The schedule consists

of n jobs, which are identical. A job consists of one task which is the predecessor of m/10

independent tasks. Note that the total work of the job is m/10 + 1 and can be competed

by a 1 speed scheduler scheduler in 2 time steps. A single job is released at multiples of 2m

starting at time 0. Note that even if a job is executed sequentially, it will complete in only

m/10 + 1 time steps. Thus, these jobs do not have overlapping times where multiple jobs

are alive in any non-idling schedule.

Now fix any job and consider the probability that the job executes completely sequentially

by a work stealing scheduler. This occurs if every steal attempt fails to find the processor

holding the tasks for the job. In a single time step, the probability that m− 1 processors do

not successfully steal is (1− 1
m−1

)m−1 ≥ 1
2e

for sufficiently large m. The probability that all

processors fail to steal for m/10 time steps is greater than ( 1
2e

)m/10.

Now consider the expected number of jobs which execute sequentially by work stealing.

There are n = 2m jobs released. The expected number of jobs to execute sequentially is

2m( 1
2e

)m/10 ≥ 1. Thus, the expected maximum flow time of work stealing with s speed is
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Figure 4.2: Experimental results comparing the maximum flow time running on three work
distributions with three different load settings and scheduled using simulated OPT, steal-k-
first, and admit-first (from left to right). Note that the scale of the y-axis for the figures
differ. From all different settings, OPT has the smallest max flow time, while admit-first has
the largest max flow time.

m/10+1
s

= logn
s

. Knowing that the optimal solution has maximum flow time 2 and s = O(1),

the lemma follows.

4.5 Experimental Results for Unweighted Maximum

Flow Time

In this section we present the experimental results using realistic and synthetic workloads to

compare the performance of OPT and two work stealing strategies: (1) Admit-first where

workers preferentially admit jobs from the global queue and only steal if the queue is empty,

and (2) Steal-k-first where workers preferentially steal and only admit a new job if k steal

attempts fail (we use k = 16). Our experiments indicate that steal-k-first performs better

and is almost comparable to an optimal scheduler.
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Figure 4.3: Work distribution of two workload: Bing web search [31] and an option pricing
finance server [42].

Setup: We conduct experiments on a server with dual eight-core Intel Xeon 2.4Ghz pro-

cessors with 64GB main memory. The server runs Linux version 3.13.0, with processor

throttling, sleeping, and hyper-threading disabled. The work-stealing algorithms are imple-

mented in Intel Thread Building Block (TBB) [41] version 4.3, a well-engineered popular

work-stealing runtime library. We extended TBB to schedule multiple jobs arriving online

by adding a global FIFO queue for admitting jobs and we implement both admit-first and

steal-k-first.

Since we do not know the optimal scheduler, we must approximate it using a simulated

scheduler by reducing a parallel scheduling problem to a sequential scheduling problem on a

single processor. In particular, for this lower bound, we assume that there is no preemption

overhead and that each job can get linear speedup (fully parallelizable). Therefore, we can

execute each job one at a time assuming it is a sequential job with execution time equal to

its W/m where W is its total work. We then run all jobs using FIFO which is optimal in this

setting. When jobs are fully parallelizable, this reduces the problem to the case where there

88



is only one machine. In this setting, it is well known that FIFO is optimal for maximum

flow time [19]. Thus, this scheduler has the performance for maximum flow time that is at

least as good as any feasible scheduler, including the optimal schedule.

Workloads: We evaluate different strategies on work distributions from two real-world

applications shown in Figure 4.3 and additional synthetic workloads with log-normal dis-

tribution. Henceforth we shall refer to workload generated from the three distributions as

the Bing workload, the finance workload and the log-normal workload, respectively. For

each distribution, we select a set of queries-per-second, QPS, to generate workloads with

low (∼ 50%), medium (∼ 60%), and high (∼ 70%) machine utilization respectively, and

the inter-arrival time between jobs is generated by a Poisson process with a mean equal to

1/QPS. Each job contains CPU-intensive computation and is parallelized using parallel for

loops. 100, 000 jobs are used to obtain a single point in the experiments.

Figure 4.2 shows the experimental results comparing simulated OPT, steal-k-first and admit-

first under three different work distributions and three different load settings (i.e., query-

per-second). The experiments indicate that, even though our results on OPT are lower

bounds on maximum flow time, steal-k-first performs comparably to OPT — matching our

intuition that it is a closer approximation for maximum flow time, as discussed at the end

of Section 4.3.

Recall that steal-k-first has worse theoretical performance than admit-first. However, in

practice, admit-first generally performs worse in terms of maximum flow time and the perfor-

mance difference increases as load increases (for instance, for Bing and log-normal workloads

with high utilization, admit first has twice the maximum flow). This matches our intuition

— at higher loads, admit-first executes jobs more or less sequentially, while steal-first pro-

vides parallelism to already admitted jobs before admitting new jobs. Therefore steal-first
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is closer to FIFO in that it tries to execute jobs that arrived earlier with more parallelism.

Therefore, in practice, steal-first is likely to be a good implementation for schedulers that

want to minimize maximum flow time without incurring the large overheads of FIFO.

4.6 Weighted Maximum Flow Time

In this section our goal is to prove that the algorithm Biggest-Weight-First (BWF) is a

scalable algorithm for minimizing the maximum weighted flow time, which is Theorem 7.

BWF is defined as follows similarly to FIFO except that priority is given to the jobs with

the biggest weight. At any time t, BWF orders the jobs in decreasing order by their weight,

breaking ties arbitrarily. The algorithm then assigns all of the ready nodes for the first job

to some processor. The algorithm recursively does the same for the next job in the list. This

continues until all processors have been assigned some node or there are no more ready nodes

available. Like FIFO, BWF may have a choice on which ready nodes of a job to schedule if

the job has more ready nodes than the number of processors which have not been assigned

to a node when the job is considered. In this case, we assume the scheduler chooses an

arbitrary set of ready nodes.

The reminder of this section is devoted to proving Theorem 7. For the rest of this section,

we assume that BWF is given (1 + 3ε)-speed for some constant 0 < ε < 1
3

and we will show

that BWF is 3
ε2

competitive. Fix any sequence of jobs and let OPT denote the optimal

schedule on this instance as well as the optimal maximum weighted flow time. Let F ∗a be

the flow time of a job Ja in OPT.
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Let Ji be the job in BWF’s schedule with the maximum weighted flow time wiFi. For the

sake of contradiction, we assume that wiFi >
3
ε2
OPT. Since OPT = wiF

∗
i , Fi >

3
ε2
F ∗i ,

where F ∗i is the flow time of Ji in OPT. By comparing to the weight wi of job Ji, any jobs

with weight at least wi are referred as heavy jobs, and any jobs with less weight than wi are

referred as light jobs.

Time Intervals in BWF

Similar to the time intervals specified in Section 4.3, we will inductively define a set of time

intervals

T = {[t′, tβ], [tβ, tβ−1], [tβ−1, tβ−2] . . . [t1, t0], [t0, ri], [ri, ci]}

where t′ ≤ tβ ≤ tβ−1 ≤ . . . ≤ t1 ≤ t0 ≤ ri ≤ ci.

Recall that ri and ci are the arrival and completion time of Ji, respectively. Consider the

heavy jobs that BWF is scheduling right before ri. Let t0 be the arrival time of the earliest

arriving one of those jobs. If there are no heavy jobs right before ri, then let t0 = ri.

Now we define further intervals recursively. Given the times ta−1, we want to define ta. If

ta−1 − ta ≤ εFi, then we are done defining time intervals; otherwise, we define ta to be the

arrival time of the earliest arriving heavy job Ja that are unsatisfied under BWF right before

time ta−1. Again if there are no heavy jobs unsatisfied by BWF just before time ta−1 then let

ta = ta−1. We let β denote the maximum value that a takes during this inductive definition.

Hence, [tβ, tβ−1] is the earliest time interval defined in this scheme.

Note that this process of defining intervals is almost the same as in Section 4.3. The only

difference is that the job Ja, which defines the interval [ta, ta−1], is the earliest unfinished
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heavy job under BWF. We only consider heavy jobs, because under BWF only heavy jobs can

preempt job Ji and other heavy jobs; any light jobs can only execute when all the available

nodes of all the active heavy jobs are already executing by some processors.

Thus, when analyzing the flow time of Ji and other heavy jobs, we can ignore the remaining

light jobs, since they cannot interfere with the execution of heavy ones. Hence, the processor

idling steps in the remaining of this section refers to the time steps where a processor is not

working on nodes corresponding to heavy jobs.

We begin the proof by showing that during all time intervals between [tβ, ri], BWF is using

most time steps to process ready nodes for heavy jobs.

Lemma 4.6.1. During any interval [ta, ta−1] where a ≤ k, the number of processor idling

steps is at most m ε2

3
Fi.

Proof. For the sake of contradiction, assume that this is not true. Then consider the job

which defines [ta, ta−1] and let this job be Ja. By definition this heavy job arrived at ta and

is still being processed at time ta−1. From BWF’s scheduling policy, every time step during

[ta, ta−1], where some processors find no nodes from heavy jobs to work on, all ready nodes

of Ja are being scheduled. Hence the processors are decreasing the remaining critical path

of Ja at these times by Proposition 4.1.1. Since the job is not finished until at ta−1, this job

must have a critical-path length Pa longer than Pa > ta−1 − ta > ε2

3
Fi. Also since Ja is a

heavy job and wa ≥ wi and by assumption wiFi >
3
ε2
OPT, its weighted flow time is at least

wa(ta−1 − ta) > wa
ε2

3
Fi ≥ wi

ε2

3
Fi >

ε2

3

3

ε2
OPT ≥ OPT
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However, OPT cannot complete a job faster than its critical-path length, so F ∗a ≥ Pa.

Further, Ja’s weighted flow time under OPTis at most the maximum weighted flow time

OPT. We have

OPT ≥ waF
∗
a ≥ waPa > wa(ta−1 − ta) > OPT

This gives a contradiction.

Using the previous lemma, we bound the aggregate amount of work done by BWF on heavy

jobs during [tβ, ri].

Lemma 4.6.2. During [tβ, ri], the amount of work that BWF does on heavy jobs is more

than m(1 + 2ε)(ri − tβ).

Proof. From Lemma 4.6.1, we know that there are only m ε2

3
Fi processor idling steps where

a processor is not working on nodes corresponding to heavy jobs during any time interval

[ta, ta−1]. In addition, we know ta−1 − ta > εFi, since a ≤ β. Hence, the work done by BWF

(with 1 + 3ε speed) on heavy jobs during [ta, ta−1] is at least:

m(1 + 3ε)(ta−1 − ta)−m
ε2

3
Fi

>m(1 + 3ε)(ta−1 − ta)−m
ε

3
(ta−1 − ta)

>m(1 + 2ε)(ta−1 − ta)

Summing over all the intervals results in the lemma.

Similarly, we can bound the amount of work done by BWF on heavy jobs during [ri, ci].
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Lemma 4.6.3. During [ri, ci], the amount of work that BWF does on heavy jobs is more

than m(1 + 2ε)Fi.

Proof. By assumption, F ∗ < ε2

3
Fi. Since OPT cannot finish a job in less time than its

critical-path length, job Ji has Pi ≤ F ∗i <
ε2

3
Fi. From Proposition 4.1.1, we can derive that

the number of processor idling steps where a processor is not working on heavy jobs is at most

mPi. Hence, the amount of work done by BWF during [ri, ci] is at least m(1+3ε)Fi−mPi >

m(1 + 3ε)Fi −m ε2

3
Fi > m(1 + 2ε)Fi, since ε < 1

3
.

Now we bound the maximum amount of work that are available for BWF to work on during

[tβ, ci].

Lemma 4.6.4. For jobs that are active under BWF during [tβ, ci], their total amount of

work is at most m(ri − tβ) +m(1 + ε+ ε2

3
)Fi.

Proof. By definition, the total length of [tβ, ci] is (ri − tβ) + Fi. Moreover, by definition of

tβ, the earliest arriving heavy job that is unsatisfied by BWF just before time tβ must have

arrived no earlier than time tβ−εFi. Thus, the heavy jobs that are active under BWF during

[tβ, ci] all arrived during [tβ − εFi, ci].

Furthermore, all these heavy jobs have an optimal maximum weighted flow time no more

than OPT under the optimal scheduler, i.e., OPT ≥ F ∗awa. By definition of a heavy job

wa ≥ wi and by assumption wiFi >
3
ε2
OPT, we have waFi ≥ wiFi >

3
ε2
OPT > 3

ε2
F ∗awa.

Thus, the flow time F ∗a of these heavy jobs under the optimal schedule is F ∗a <
ε2

3
Fi.

Therefore, OPT must be able to complete all of them by time ci+
ε2

3
Fi. Knowing that OPT

can only work on these jobs during [tβ−εFi, ci+ ε2

3
Fi], the total amount of work of those jobs

can have volume at most m(ri− tβ +Fi) +m(εFi +
ε2

3
Fi) = m(ri− tβ) +m(1 + ε+ ε2

3
)Fi.
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Finally, we are ready to complete the proof.

Proof of Theorem 7 To prove the theorem, we consider the heavy jobs that are active

under BWF during [tβ, ci]. By Lemma 4.6.4, we know that the total amount of work of these

jobs, denoted as X, is bounded: X ≤ m(ri− tβ) +m(1 + ε+ ε2

3
)Fi. Note that these jobs are

the only ones available for BWF to work on, so during [tβ, ci] BWF cannot do more than X

work even with speedup.

On the other hand, consider the minimum amount of work that BWF must have done during

[tβ, ci], denoted as Y , assuming that wiFi >
3
ε2
OPT is true. We will see that Y > X, which

leads to a contradiction.

From Lemma 4.6.2, we know that during [tβ, ri] the amount of work BWF does is more than

m(1 + 2ε)(ri − tβ) From Lemma 4.6.3, we know that during [ri, ci], BWF does more than

m(1 + 2ε)Fi work. Thus, for interval [tβ, ci], we get Y > m(ri − tβ) +m(1 + 2ε)Fi.

Now we compare X and Y and note that ε < 1
3
:

Y −X >m(ri − tβ) +m(1 + 2ε)Fi

−m(ri − tβ)−m(1 + ε+
ε2

3
)Fi > 0

Hence, if the assumption of wiFi is true, then during [ri, ci] BWF must have done more

work than the total available work, which gives a contradiction. By scaling ε, we obtain the

theorem. 2
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Remarks

This result of weighted flow time can be applied to maximum stretch. In the sequential

setting, weighted flow time captures maximum stretch by setting the weight to be the inverse

of the processing time. In other words, the flow of a job is scaled by the inverse of its

processing time in the stretch objective for sequential jobs.

However, stretch is not well-defined for DAG jobs. In particular, it is unclear whether the

flow time should scaled by the inverse of the total work or the critical path length. Although

there are two natural interpretations of the stretch in the DAG setting, both of them can be

still captured by weighted flow time if the algorithm has knowledge of the total work or the

critical path length of the jobs.

It remains an open question whether there are any scalable algorithms for maximum stretch

for DAGs in the case that the algorithm is completely non-clairvoyant.

4.7 Conclusion

The DAG model has been influential in design of theoretically good and practically efficient

schedulers for executing single parallel program. We have now given the first results in

this model for maximum flow time, an important scheduling metric, for multiprogrammed

environment where jobs arrive online. In combination with the result described in chapter

3, we have covered two of the most important objectives in online scheduling.
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Our results in this chapter also offer hints that the online scheduling of parallel programs in

the DAG model might be different than in the arbitrary speed-up curves model. It would

be of interest to further explore connections and differences between these two models.
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Chapter 5

Practical Average Flow Time

In this chapter, we will return to the problem of minimizing average flow time in the DAG

model of parallelism. For this problem, n parallel DAG jobs arrive over time (online) and

share a single machine with m identical processors. However, in this chapter we are partic-

ularly interested in designing a theoretically good and practically efficient algorithm for this

problem which can be implemented in real systems.

In chapter 3, we discussed the first theoretical results on average flow time for scheduling

multiple DAG jobs online, show by Agrawal et. al [2].

There we showed that Latest-Arrival-Processor-Sharing (LAPS) [22] — an algorithm which

generalizes Round-Robin (RR) — is (1 + ε)-speed O( 1
ε3

)-competitive in this model. We

also described a variant of a greedy algorithm called shortest-job-first (SJF), more precisely

defined in our case as smallest-work-first (SWF), and showed that it is (2 + ε)-speed O( 1
ε4

)-

competitive.

However, these theoretical discoveries do not lead to good practical schedulers. There are

several reasons why, the most important of which is preemption. A preemption occurs

when a processor switches between jobs it is working on without finishing the job. Both
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of these algorithms require an unacceptable number of preemptions. The LAPS algorithm

requires splitting the processing power evenly among a set of jobs, so it preempts jobs every

infinitesimal time step; it has an unbounded number of preemptions. The SWF algorithm is

a greedy scheduler and requires redistributing processors to jobs every time the parallelism

(number of ready nodes) of any job changes. In the worst case, the number of preemptions

by SWF depends on the total number of nodes in all the DAGs combined, which can number

in the millions per program in practice.

When a preemption occurs the state of a job needs to be stored and then later restored; this

leads to a large overhead in performance. In addition, once a preemption occurs for a job

in the schedule, a different processor may be the one to resume it later — this is a process

called migration — which has even higher overhead. Thus, from a practical perspective,

schedulers with a large number of preemptions have high overhead, leading to a large gap

between theory and practice.

For scheduling DAG jobs online to minimize average flow time, we would like to replicate

the success of work stealing (a scheduler for single DAGs that works well in practice) and

build on current theoretical discoveries to find an algorithm that has both strong theoretical

guarantees and good practical performance. We would like to provide an algorithm which

achieve the following:

• It provides good theoretical guarantees.

• It is be non-clairvoyant, i.e., it requires no information about the properties of a job

to make scheduling decision; that is, the scheduler is oblivious to the processing time,

parallelism, DAG structure, etc., when making scheduling decisions.
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• It should be decentralized, i.e., require no or little global information or coordination

between processors to make scheduling decisions.

• It should perform few preemptions or migrations.

To incur low scheduling overhead, we want to design a decentralized work stealing based

scheduler. Work stealing has been described extensively in both the previous chapter and

section 2.1. Work stealing can lead to both fewer preemptions and smaller synchronization

overhead.

The natural approach to extend work stealing to this problem is to only allow processors

to work on jobs in their own deque until their deque is empty and only make scheduling

decisions on steal attempts — similar to normal work stealing.

Recall that in the previous chapter, we used this sort of approach to design a practical

scheduler for minimizing maximum flow time [3]. Unfortunately, for average flow time, using

a scheduler that never preempts until its deque is empty does not lead to good theoretical

guarantees.

Consider the following input. A large parallel job arrives first and occupies all processors.

After this, a huge number of small jobs arrive. The optimal scheduler will complete the small

jobs before the large job, but any scheduler that does not preempt will continue to give all

processors to the big job. This causes a huge number of small jobs to have a large flow time.

One can extend this example to show both that preemptions are necessary and that natural

adaptations of work stealing fail to yield good performance.

In this chapter we will define an algorithm called Distributed Random Equi-Partition (DREP),

which operates as follows. When a new job arrives at time t, each processor decides to assign
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itself to the new job with probability 1/nt, where nt is the number of incomplete jobs at

time t. Processors assigned to a particular job work on the ready nodes of this job using

a work-stealing scheduler. When a job completes, each processor assigned to that job ran-

domly picks an unfinished job and assigns itself to this unfinished job. Preemptions only

occur when jobs arrive. The DREP algorithm uses a decentralized protocol, has a small

number of preemptions, and is non-clairvoyant.

We will show the following theorems about this algorithm.

Theorem 9. When processors assigned to a particular job execute ready nodes of the job

using a work-stealing scheduler, DREP is (4 + ε)-speed O( 1
ε3

)-competitive for minimizing

average flow time in expectation for parallel DAG jobs on m identical processors for all fixed

0 ≤ ε ≤ 1
4

DREP improves upon the prior results for average flow time in two aspects. First, DREP

uses a decentralized scheduling protocol. Second, DREP uses few preemptions. Previous

algorithms required a global coordination and a number of preemptions unbounded in terms

of m and n. We show that using DREP, the number of preemptions is bounded sinc DREP

only preempts a job when a new job arrives.

Theorem 10. DREP requires processors to switch between unfinished jobs at most O(mn)

times over the entire schedule. If jobs are sequential, the total expected number of preemptions

is O(n).

In theory, DREP has a worse speed augmentation than what is known for LAPS. But unlike

LAPS, DREP is the first theoretical result which could realistically be implemented and

used in systems. To verify this, we have evaluated this algorithm via both simulations and

real implementation.
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For simulations, we compared DREP against schedulers that are theoretically good but

cannot be implemented faithfully in practice due to frequent preemptions, including shortest-

remaining-processing-time (SRPT) [40], shortest-job-first (SJF) [15] and round-robin (RR) [20].

The simulation is designed to approximate a lower-bound on the average flow time, since it

does not account for any scheduling or preemption overheads. Our evaluation showed that

DREP approaches the performance of these (close to optimal) schedulers as the number of

processors increases.

For evaluations based on actual implementation, we extended Cilk Plus [27], a production

quality work-stealing runtime system originally designed to process a single parallel job. We

implemented DREP as well as other schedulers that are implementable but do not provide

bounds on average flow, including an approximated version of smallest-work-first (SWF) [2].

The empirical evaluation based on the actual implementation demonstrates that DREP has

comparable performance with SWF.

In the following section we introduce some preliminaries and notation necessary for the

chapter. Then, we describe and analyze the DREP algorithm in sections 5.2 and 5.3. We

will describe the experimental results in the following section.

5.1 Preliminaries

In this average flow time problem we are again n total jobs that arrive online and must be

scheduled on m identical processors. Each job is in the form of a directed acyclic graph

(DAG). There are two important paramemters for a job Ji, there are two important parame-

ters: its work, Wi, which is the sum of the processing times of all the nodes in the DAG, and
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its critical-path length, Ci, which is the length of the longest path through its DAG, where

the length is the sum of the processing times of the nodes along that path.

Two important observations about these quantities are here below.

Observation 3. Any job Ji takes at least max{Wi

m
, Ci} time to complete in any schedule

with unit speed.

Observation 4. If a job Ji has all of its r ready nodes being executed by a schedule with

speed s, where r ≤ m, then the remaining critical-path length of i decreases at a rate of s.

When analyzing a scheduler A (DREP in our case), let WA
i (t) be the remaining work of job

Ji in A’s schedule at time t. Let CA
i (t) be the remaining critical-path length for job Ji in A’s

schedule at time t - the longest remaining critical path. Let A(t) be the set of active jobs in

A’s schedule which have arrived but unfinished at time t. In all these notations, we replace

the index A with O when referring to the same quantity in the optimal schedule. We will

let OPT refer to both the final objective of the optimal schedule and the schedule itself.

Potential Function Analysis:

Similar to chapter 3, we will use potential function analysis to analyze our algorithm. We

will briefly restate this framework.

Recall that in this technique, we define a potential function Φ(t), which depends on the state

of the considered scheduler A and the optimal solution at time t. Let Ga(t) (respectively,

Go(t)) denote the current cost of A at time t. The change in A’s objective at time t is

denoted by dGa(t)
dt

; for the sum of completion times, this is equal to the number of active jobs

103



in A’s schedule at time t, i.e. dGa(t)
dt

= |A(t)|. To bound the competitiveness of a scheduler

A, one shows the following conditions.

Boundary condition: Φ is zero before any job is released, and Φ is non-negative after all

jobs are finished.

Completion condition: Summing over all job completions by the optimal solution and

the algorithm, Φ does not increase by more than β ·OPT for some β ≥ 0.

Arrival condition: Summing over all job arrivals, Φ does not increase by more than α ·

OPT for some α ≥ 0.

Running condition: At any time t when no job arrives or completes, dGa(t)
dt

+dΦ(t)
dt
≤ c·dGo(t)

dt

Integrating these conditions over time shows that A is (α + β + c)-competitive.

In the next section we define DREP and give an theoretical analysis of its performance.

5.2 DREP for Sequential Jobs

We will first introduce our algorithm Distributed Random Equi-Partition (DREP) for the

case where jobs are sequential. The idea of DREP is that it picks a random set of m jobs to

work on and re-assigns processors to jobs only when a job arrives or completes. Specifically,

when a new job arrives, if there are one or more free processors then one such processor

tries to take the new job. If all processors are busy, each processor switches to the new job

with probability 1
|A(t)| (breaking ties arbitrarily to give the job at most one processor), where
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|A(t)| is the number of active jobs at the moment. Jobs that are not taken by any processor

are stored in a queue. A job Jj may be in this queue for two reason:

1. Jj was not assigned to a processor on arrival (no processor happened to switch to it)

2. Jj was executing on some processor and that processor preempted Jj to switch to

another job that arrived later.

When a job completes, the processor assigned to the job chooses a job to work on uniformly

at random from the queue of jobs.

DREP’s theoretical guarantee on average flow time for sequential jobs is subsumed by the

analysis for parallel jobs (Section 5.3). An important feature of DREP is the small number

of preemptions, which only occur when jobs arrive, and the total number of preemptions

is O(n) in expectation, implying the second part of Theorem 10. This is because either

there is a free processor which takes the new job (no preemption) or there are at least m

active jobs, in which case the probability that a processor preempts is 1
|A(t| ≤

1
m

. Therefore,

on a job arrival, the expected number of preemptions is 1. We note that this is the first

non-clairvoyant algorithm in the sequential setting, even on a single processor, to use O(n)

preemptions and be competitive for average flow time.

In the next section, we will adapt this algorithm to the case where jobs are parallelizable

DAGs. We will show how to combine the algorithm with work stealing.
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5.3 DREP with Work-Stealing: A Practical Parallel

Scheduling Algorithm

This section presents a practical scheduler for scheduling parallel jobs to minimize average

flow time. This algorithm combines both work-stealing and DREP from the prior section.

We show that the performance bound of this scheduler is O(1)-competitive using O(1)-speed

augmentation.

5.3.1 Combining DREP with Work-Stealing

We will first describe work-stealing and then explain the modifications needed to combine it

with DREP.

Work Stealing:

Work-stealing is a decentralized randomized scheduling strategy to execute a single parallel

job. Each processor p maintains a double-ended queue, or deque, of ready nodes. When a

processor p executes a node u, u may enable one, two, or zero ready nodes. Like in prior

works, we assume that a node has out-degree at most two. This is because the out-degree

of nodes in a parallel program is constant in practice, since the system can only spawn a

constant number of nodes in constant time. In addition, any constant out-degree can be

converted to two out-degree with no asymptotic change in work and span. If one ready node

is enabled, p simply executes it. If two ready nodes are enabled, p pushes one to the bottom

of its deque and executes the other. If zero ready nodes are enabled, then p pops the node at
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the bottom of its deque and executes it. If p’s deque is empty, p becomes a thief, randomly

picks a victim processor and steals the top of the victim’s deque. If the victim’s deque is

empty and the steal is unsuccessful, the thief continues to steal at random until it finds work.

At all times, every processor is either working or stealing; like most prior work, we assume

that each steal attempt requires constant work.

DREP with Work Stealing:

At time t, each processor is assigned to some job and we maintain a queue of all jobs in the

system. The processors assigned to the same job use work stealing to execute the job. When

a new job arrives, each processor may preempt itself with probability 1
|A(t)| , upon which it is

de-assigned from its current job and assigned to the new job. When a job completes, each

processor assigned to the job independently picks a job J uniformly at random from the job

queue and is assigned to J . Since preemptions only occur when jobs arrive, there are at most

O(mn) preemptions — fewer in most cases, since generally not all processors will preempt

themselves on job arrival.

The are two main modifications necessary to the standard work stealing. First, we must

handle the deques to support multiple jobs instead of a single job. Second, we must imple-

menting the preemption when a new job arrives. In standard work-stealing, each processor

has exactly one deque permanently associated with it; the total number of deques is equal to

the number of processors. This property no longer holds in this new scheduler as there are

multiple jobs with preemptions. Therefore, instead of associating deques with processors, we

associate deques with jobs. At time step t, let pi(t) be the number of processors working on

a job Ji that has started executing but yet not finished. Ji maintains a set of di(t) deques,

where di(t) ≥ pi(t). Each processor p working on Ji will be assigned one of these deques to
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work on. Once assigned a deque, a processor works as usual, pushing and popping nodes

from its assigned deque. When p’s deque is empty, it picks a random number between 1 and

di(t) and only steals from the di(t) deques that are associated with Ji.

Now we must handle when jobs arrive. Say a processor p was working on job Ji and therefore

working on an assigned deque d. Suppose a new job Jj arrives and processor p is unassigned

from Ji and assigned to Jj. The deque d remains associated with Ji; p will mark the deque d

“muggable.” A new deque d′ associated with Jj will be assigned to p to work on. Therefore,

at any time, each job Ji has a set of dai (t) = pi(t) active deques, deques currently assigned

to processors working Ji, and dmi (t) muggable deques, deques not currently assigned to any

processor working on Ji. The total number of deques di(t) = dmi (t) + pi(t).

When a processor p assigned to Ji makes a steal attempt, it randomly steals from the deques

associated with Ji. If the victim deque d is active (a processor is working on it), the steal

proceeds as usual: p takes the top node of d. If the victim deque d is muggable instead, p

performs a mugging, taking over the entire deque.

When a job completes, each of the processors assigned to this job chooses an available job

to work on uniformly at random from the queue of jobs.

We will also note the following facts about muggable deques.

1. Muggable deques are only created when jobs arrive.

2. Muggable deques are never empty, since the processor can simply deallocate its empty

assigned deque instead of marking it as muggable.

3. Muggings are always successful, since the thief can take everything.
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4. Once a thief mugs a deque, it can always do at least one unit of work since muggable

deques are never empty.

5.3.2 Analysis of DREP with Work-Stealing

Now we will analyze the DREP algorithm for minimizing average flow time. The goal is to

show Theorem 9. Throughout this section, we assume that the algorithm is given 4 + 4ε

resource augmentation for ε ≤ 1
4
.

We will define a potential function and argue that the arrival, completion and running

conditions are satisfied. However, we break from the standard potential function analysis of

parallel jobs (from [2]) because the work-stealing algorithm is not strictly work-conserving.

Typically, the potential functions used previously use Observation 4 to ensure a job’s critical

path decreases whenever the job has fewer ready nodes than the number of cores it receives.

However, this observation does not apply to work stealing. To deal with this, our potential

function will have another, different potential function embedded within it, adapted from

prior work on work stealing.

Probability of Working on a Job:

We will first give a lemma on the probability that a processor is working on a specific job.

Lemma 5.3.1. For any job Jj ∈ A(t) and a processor i, the probability that i is working on

Jj at t is 1
|A(t)| .
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Proof. We prove the lemma inductively on the arrival and completion of jobs. Fix any time

t and let n′ = |A(t)| be the number of alive jobs in the algorithm just before time t.

First consider the arrivals of jobs. Initially, when there are no jobs, the lemma statement is

trivially true. At time step t, say there are n′ jobs alive, and a new job Jn′+1 arrives. The

probability of any processor i switching to this job Jn′+1 is 1
n′+1

since there are now n′+1 jobs

alive. Now consider any job Jj that was alive before the new job arrived. By the inductive

hypothesis processor i is working on Jj with probability 1
n′

just before job Jn′+1’s arrival.

A processor that was working on Jj has a probability of (1 − 1
n′+1

) of not switching to the

newly arrived job. Therefore, the probability that the processor continues working on Jj is

then 1
n′

(1− 1
n′+1

) = 1
n′+1

.

As for the completion of jobs, say that a job Jj′ is completed at time t. Suppose a processor

i becomes free after a job finishes. In the algorithm, the processor chooses a new job to work

on at random. This precisely gives a probability of 1
n′−1

to process any specific job — the

desired probability. The lemma holds for any alive job and any processor i that became free.

Alternatively, consider a processor i not working on the job completed. Let i → j be the

event that processor i is working on job Jj just before time t and i 9 j be the event it is

not. This processor is working on any alive Jj with probability Pr[i→ j | i 9 j′] = Pr[i→

j and i9 j′]/Pr[i9 j′].

Inductively, we have Pr[i 9 j′] = 1 − 1
n′

and Pr[i → j and i 9 j′] = Pr[i → j] = 1
n′

.

Therefore, Pr[i→ j | i9 j′] = 1
n′−1

.
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Potential function

We now define the potential function for the algorithm. Recall that potential functions are

designed to approximate the algorithm’s future cost at any time t assuming no more jobs

arrive. This approximation is relative to the optimal remaining cost. To define the potential,

we introduce some new notations. Let Zi(t) := max{WA(t)−WO(t), 0} for each job Ji. The

variable Zi(t) is the total amount of work job Ji has fallen behind in algorithm A at time

t as compared to the optimal solution (the lag of i). Further, let CA
i (t) be the remaining

critical path length for job Ji in the algorithm’s schedule. Define ranki(t) =
∑

j∈A(t),rj≤ri 1

of job Ji to be the number of jobs in A(t) that arrived before job Ji.

The overall potential function has an embedded potential function adapted from prior work

on work stealing. To avoid confusion, we call the overall potential function the flow potential.

The first term 1
m

ranki(t)Zi(t), which we call the work term, captures the remaining cost from

the total remaining work of the jobs. The second term dmi (t), which we call the mug term, is

used to handle the number of muggings. The last term (described next), which we call the

critical-path term, captures the remaining cost due to the critical path of the current jobs.

For defining the critical-path term, we embed a different potential function, which we call the

steal potential, similar to the potential function used by prior analysis on work stealing [5].

Given a job Ji with critical-path length Ci executed using work stealing, we define the depth

d(u) of node u as the length of the longest path that ends with this node in the DAG. The

weight of a node is w(u) = Ci − d(u). The steal potential of a node is defined as follows: a

ready node that is on the deque has potential ψ(u) = 32w(u) and an assigned node, a node

that is executing, has potential ψ(u) = 32w(u)−1. The total steal potential of a job Ji at time

111



t, represented by ψi(t), is the sum of the steal potentials of all its ready and assigned nodes

at time t.

The overall flow potential of a job Ji can now be defined.

Φi(t) =
10

ε

(
ranki(t)

m
(Zi(t) + dmi (t)) +

320

ε2
log3 ψi(t)

)

The total potential of the schedule is Φ(t) =
∑

i∈A(t) Φi(t).

Analysis:

In order to prove Theorem 9, we first show the completion and arrival conditions in Lemma 5.3.2.

Then we will show the running condition in Proposition 5.3.3, which is proven using Lem-

mas 5.3.4 to 5.3.9.

Now we we show the completion and arrival conditions.

Lemma 5.3.2. The completion of jobs by either A or OPT do not increase the potential.

The arrival of all jobs increases the potential function by O( 1
ε2

)OPT in expectation.

Proof. When A completes a job, removing the work and critical-path terms from the po-

tential has no effect on either this job or other jobs. The rank of other jobs could decrease,

but this can only decrease the potential. Completion in OPT also has no effect for the same

reason. In addition, when a job completes, other jobs only gain processors; therefore, the

number of muggable deques dmi cannot increase for any job.
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When Ji arrives, Zi = dmi = 0. Its steal potential is ψi(t) = 32Ci ; therefore, the critical-path

term in Φi(t) is 320
ε2

log3 ψi(t) = O(1/ε2)Ci. Over all jobs, the total change in critical-path

term of Φ is bounded by O(1/ε2)
∑

iCi. Since Ci is a lower bound on a job’s execution time,

this quantity is bounded by OPT’s objective function.

When a job Ji arrives, the work term and the critical-path term of other jobs don’t change

because the rank of other jobs remains the same. We now consider the change in the mug

term dmj of other jobs. When a job arrives, each other job loses m
|A(t)|−

m
|A(t)|+1

processors in ex-

pectation and therefore creates that many more muggable deques in expectation. Therefore,

the expected increase in potential from the mug term is

E
[

dΦ(t)

dt

]
≤ 10

ε

∑
i∈A(t)

(
ranki(t)

m

(
m

|A(t)|
− m

|A(t)|+ 1

))
≤ 10

ε

1

|A(t)|(|A(t)|+ 1)

∑
i∈A(t)

(ranki(t))

≤ 10

ε

|A(t)|2

|A(t)|(|A(t)|+ 1)
≤ 10

ε

Therefore, each job arrival changes the mug term by a constant. Since each job takes at

least constant time to complete in OPT, we get the bound.

Proving the running condition is will be far more difficult than proving the completion

and arrival conditions. There are two cases for the running condition depending on the

algorithm’s status. One is when most processors are executing nodes of some job. The other

is when there are many processors with no work to execute. The major challenges lie in

the second case. Typically, under a work-conserving scheduler, we can argue that if many

processors have no work to do, then there must be few ready nodes in the system; this would
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allow us to use Observation 4 to argue that the critical-path length of all jobs are decreasing

and thus, we are making progress towards completing the jobs.

However, in a work-stealing scheduler, it is challenging to quantify that the algorithm is

making progress even if many processors are idle. As in [5], the steal potential function

allows us to argue the following: if a job has di(t) deques, then di(t) steal attempts reduce

the critical-path length by a constant in expectation.

This, unfortunately, brings us to another complication. In a normal work-stealing scheduler,

di(t) = pi(t) = m where pi(t) is the number of processors given to job i at time t and di(t)

is the number of deques at time t. At a high-level, this means the total number of steal

attempts in expectation is bounded by mCi. But in our case, pi(t) changes over time. Worse

still, di(t) can be much larger than pi(t) when Ji has a lot of muggable deques. In particular,

while steal attempts are “effective” at reducing the critical-path length when di(t) ≈ pi(t),

they are ineffective when too many steals are muggings caused by the presence of a large

number of muggable deques. We must account for these steal attempts using the additional

dmi term.

To handle these complications, the analysis uses resource augmentation 4 + 4ε. This means

that each time step of OPT will be 4 + 4ε time steps for A. We index time according to

OPT’s time steps. During these 4 time steps, no new jobs can arrive; jobs can only complete.

In particular, say job Ji has pi(t) processors before time step t. Then during this time step t,

at least (4+4ε)pi(t) processor steps were spent on this job (if the job did not complete during

this time step).4 We will argue that during this step, if a job has 2pi(t) steals (but not too

many muggings), then the steal potential of the job reduces by a constant factor; therefore,

4A job cannot lose processors during a time step since no new jobs can arrive in the middle of a time
step. A job may gain processors since work-stealing scheduler A may complete jobs during the time step,
but that will only increase the number of processor steps available to the active jobs.
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the flow potential of the job reduces sufficiently since the flow potential’s critical-path term

is the log of the steal potential. If instead at least (2+2ε)pi(t) of these time steps were spent

on executing nodes of the job or mugging, then we will argue that the potential reduces due

to the work and mug terms. Now we will begin our proof of the running condition.

Proposition 5.3.3. In expectation, the running condition holds at any time t. That is, at

any time t it is the case that dGa(t)
dt

+ dΦ(t)
dt
≤ O( 1

ε2
) · dGo(t)

dt
.

The running condition involves the instantaneous change of the potential at any moment

in time. We index time by OPT’s time steps, and bound this for each fixed time step t.

At time t, consider the set of active jobs in DREP A(t). Though A(t) is a random variable

dependent on the processing of DREP, we will show that the running condition holds for any

A(t). If we do so, by the definition of expected value, we have shown that in expectation the

running condition holds. First, we bound how much the optimal can increase the potential.

Lemma 5.3.4. The optimal schedule’s processing of jobs at t increases the potential function

by at most 10
ε
|A(t)|.

Proof. The optimal schedule’s processing only changes the first term Zi(t) for any job that

it processed the critical path term depends on the algorithm as well as dmi (t). The first term

for any job is a product of the rank and work remaining of the job. Therefore, the increase

in potential is maximized if OPT uses all m processors to work on the job with maximum

rank in A(t). Therefore, the increase in potential is at most m10
ε

1
m
|A(t)| = 10

ε
|A(t)|.

The increase in the potential due to the optimal solution needs to be offset by either charg-

ing it to the optimal cost or by showing a decrease in the potential from the algorithm’s

processing of jobs. First we consider the case where we can charge to the optimal solutions

cost.
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Claim 5.3.5. At time t, if |O(t)| ≥ ε
10
|A(t)|, then the running condition is satisfied.

Proof. Note that the potential never increases due to A’s processing of jobs since A can only

decrease the remaining work and critical-path lengths of jobs. If |O(t)| ≥ ε
10
|A(t)|, we will

ignore the algorithm’s impact on the potential. We will just use 5.3.4 to examine the running

condition.

dGa(t)

dt
+

dΦ(t)

dt
≤ |A(t)|+ 10

ε
|A(t)| ≤ (1 +

10

ε
)
10

ε
|O(t)|

≤ O(
1

ε2
)|O(t)| = O(

1

ε2
)
dGo(t)

dt

The other case, where we consider the decrease in potential from the algorithm processing

jobs, is significantly more difficult. Recall we are using a speed augmentation of 4 + 4ε.

Therefore, each time step has (4 + 4ε) processor steps which are spent either working or

stealing, where some steal attempts become muggings if they find a muggable deque. We

first argue about work and mugging steps. Fix a job Ji. If any time step starts with a lot of

muggable deques for job Ji, then at least half the processor steps in that time step are spent

on either working or mugging. The reason is straightforward — if a time step has a lot of

muggable deques, then many of the steal attempts will become muggings. Therefore for job

Ji, either a lot of work is done or there were a lot of muggings.

Lemma 5.3.6. If a job has di(t) ≥ 2pi(t) deques at the beginning of the time step, then it

has (2 + 2ε)pi(t) work plus mugging steps in expectation.

Proof. 1/2 of the deques are muggable at the beginning of the time step. Say the job has s

steal attempts and w work steps. The expected number of mugging steps is s/2. Say that
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the total number of processor steps in the time step were x ≥ (4 + 4ε)pi. Therefore, the

total expected number of work plus mugging steps is s/2 + w = s/2 + x − s = x − s/2 ≥

x− x/2 = x/2 ≥ (2 + 2ε)pi.

We can now argue that if time step t has many work plus mugging steps for a job that is

not in OPT’s queue, then this time step reduces this job’s flow potential.

Lemma 5.3.7. If a job Ji ∈ A(t) and Ji 6∈ O(t), and this job does at least (2 + 2ε)pi(t) work

or mugging steps during this time step, then the change in flow potential due to A in this

step is E
[

dΦAi (t)

dt

]
≤ −20+20ε

ε|A(t)| ranki(t).

Proof. We know that E [pi] = m/ |A(t)|. Therefore, the expected number of work plus

mugging steps is (2 + 2ε)m/ |A(t)|. Each mugging reduces the number of muggable deques

dmi by 1 in expectation. In addition, since this job is not in OPT’s queue, each work step

reduces this job’s Zi(t) term by 1. Therefore, we can plug in this change in potential into

the potential function to get E
[

dΦAi (t)

dt

]
≤ −10

ε
ranki(t)
m

E
[

dZi(t)+d
m
i (t)

dt

]
≤ −20+20ε

ε|A(t)| ranki(t).

Now we need to consider time steps that have a lot of steal attempts but not too many

muggings. Here, we can use the original work stealing analysis showing that steal attempts

reduce steal potential and thus the critical-path term in the flow potential. We will use a

known lemma from the paper [5].

Lemma 5.3.8. The depth-potential ψi(t) never increases. In addition, if a job has d deques

and there are d steal attempts between time t1 and t2, then Pr{ψi(t1)−ψi(t2) ≥ ψi(t1)/4} > 1
4
.

Hence, E[logψi(t2)] ≤ E[logψi(t1)]− 1
16

.

We can now argue that a time step with “enough steal attempts” and not too many muggable

deques reduces the critical-path term of the flow potential Φi(t).
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Lemma 5.3.9. If job Ji has pi(t) processors and di(t) ≤ 2pi(t) deques, then if the job

has 2pi(t) steal attempts or completes, the change in flow potential of this job due to A is

E
[

dΦAi (t)

dt

]
≤ −200/ε2.

Proof. From Lemma 5.3.8, we know that E
[

dψi(t)
dt

]
≤ −1/16 if it has enough steal at-

tempts; the same is trivially true if the job completes. Plugging it into the potential, we get

E
[

dΦAi (t)

dt

]
≤ −10

ε
320
ε

1
16
≤ −200/ε2

We can now complete the proof of the running condition.

Proof of [Lemma 5.3.3] Case 1: At least ε/10 |A(t)| jobs have more than 2pi(t) steal

attempts and di ≤ 2pi(t). In this case, due to Lemma 5.3.9, each of these jobs reduces the

flow potential by 200/ε2; therefore, the total flow potential reduction due to A is at least

20/ε |A(t)|.

Case 2: At least (1 − ε/10) |A(t)| have fewer than 2pi(t) steal attempts or lots of deques

di > 2pi(t). In the first case, this job has more than (2+2ε)pi work steps in a straight-forward

way since there are a total of (4 + 4ε)pi steps in that time step. In the second case, from

Lemma 5.3.6, the time step has more than (2 + 2ε)pi work plus mugging steps. Therefore,

in either case, the total number of work and mugging steps is at least (2 + 2ε)pi.

In addition, from Lemma 5.3.8, we know that the algorithm can never increase the potential

during execution. Hence, Claim 5.3.5 is still true. Therefore, we only need worry about

the case where OPT has few jobs — fewer than ε |A(t)| /10. In this case, among the (1 −

ε/10) |A(t)| jobs that have many work and mugging steps, at least (1 − ε/5) |A(t)| of these

jobs are in A(t), but not in O(t). We apply Lemma 5.3.7 on these jobs to obtain E
[

dΦA(t)
dt

]
≤∑

i∈A(t)\O(t)−
20+20ε
ε|A(t)| ranki(t). Assuming the worst case that these are the lowest rank jobs we
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get the following change to the potential.

E
[

dΦA(t)

dt

]
≤ −20 + 20ε

ε|A(t)|

(1− ε
5

)|A(t)|∑
i=1

i ≤ −20 + 20ε

ε|A(t)|
(1− ε

5
)2|A(t)|2

2

≤ −1

ε
|A(t)|(10 + 3ε) [ε ≤ 1

2
]

Therefore, in both cases, the flow potential reduces by at least 1
ε
|A(t)|(10 + 3ε) due to A.

Since OPT increases the flow potential by at most 10
ε
|A(t)| from Lemma 5.3.4 and we have

dGa(t)
dt

= |A(t)|. Therefore, the running condition is satisfied. 2

With this last lemma, we have shown that the arrival, completion and running conditions

hold. Note that we used (4 + 4ε) speed in the analysis of the running condition. Therefore,

we can conclude that the work-stealing scheduler is O(1) competitive with (4 + 4ε) speed

augmentation completing the proof of the main theorem.

5.4 Experimental Evaluation

This section presents the evaluation of DREP through both simulation and empirical experi-

ments based on actual implementations. Simulations allow us to compare DREP with a wide

variety of scheduling policies, including ones that are clairvoyant and/or infeasible to imple-

ment due to the need to preempt at infinitesimal time steps. Actual implementation allows

us to evaluate DREP against a set of practical scheduling policies that are implementable

but do not provide any theoretical bounds, including an approximation of Smallest Work

First (SWF) [2], i.e., the SJF counterpart for parallel jobs, which is clairvoyant and work
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conserving. We obtain the actual implementations by modifying Cilk Plus [27], a produc-

tion quality parallel runtime system, to approximate SWF and DREP and compare their

performance in practice.

5.4.1 Evaluation Based on Simulations

Compared Algorithms: Via simulations, we compare DREP against a wide variety of

schedulers: shortest-remaining-processing-time (SRPT) [40], shortest-job-first (SJF) [15]

(which generalizes to smallest-work-first (SWF) [2] for parallel jobs), and round robin (RR) [20].

We compare against SRPT and SJF, because they are scalable, i.e., (1 + ε)-speed O(1
ε
)-

competitive for average flow for sequential jobs on multiprocessors. We also compare to

RR, which is (2 + ε)-speed O( 1
ε2

)-competitive, because intuitively DREP simulates RR by

uniformly and randomly partitioning cores across all active jobs.

It is important to note that all the existing algorithms, including the ones that we compared

in the simulation, suffer from frequent preemptions, high overheads, and non-clairvoyance.

LAPS [22], in particular, is very difficult to implement since it needs to know the parameter

epsilon (speedup against the optimal) and preempts at infinitesimal time steps — it must

process epsilon fraction of arriving jobs equally at any time. Because of this, LAPS is even

difficult to implement in the simulation. Therefore, we do not compare against LAPS in the

simulation experiments.

Moreover, the simulation results can be thought of as the lower bounds of what these schedul-

ing algorithms can achieve, because they do not account for any scheduling or preemption

overhead, which can significantly increase the average flow time in practice.
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(a) Finance workload, low
load

(b) Finance workload, high
load

(c) Bing workload, low load(d) Bing workload, high
load

Figure 5.1: Sequential jobs with multiprocessors setting with low and high machine utiliza-
tions

(a) Finance workload, low
load

(b) Finance workload, high
load

(c) Bing workload, low load(d) Bing workload, high
load

Figure 5.2: Fully parallel jobs setting with low and high machine utilizations

Setup: We use two different work distributions from real-world applications to generate

the workloads: the Bing workload and the Finance workload [35]. We randomly generate a

job by randomly sample its work from the experimented work distribution. For each work

distribution, we vary the queries-per-second (QPS) to generate three levels of system loads:

low (∼ 50%), medium (∼ 60%), and high (∼ 70%) load (machine utilization), respectively.

For a particular QPS, we randomly generate the inter-arrival time between jobs using a

Poisson process with a mean equal to 1/QPS. For each experiment setting, we generate

100, 000 jobs and report their average flow time under different schedulers.
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We also evaluate the impact on the average flow by increasing the number of processors. To

ensure that the average machine utilization remains the same across experiments, we scale

the amount of work of each job according to the number of processors.

We simulate two job cases: (1) the sequential jobs with multiprocessors setting, where each job

is sequential and can use only one processor at any time, and (2) the fully parallel jobs setting,

where each job obtains near-linear speedup with respect to the number of processors given.

These two settings capture the two extreme cases of scheduling parallel jobs. Note that in our

simulation experiments, we assume that all jobs are equally parallel since running accurate

simulations with different and changing parallelisms is difficult. In our real experiments, we

do not make this assumption.

Comparison: Figure 5.1 shows the results of simulating the sequential jobs on multiple

processors setting, and Figure 5.2 shows the results for the fully parallel job setting. We

only show the results with the low and high machine utilizations, since the trend is similar

with medium utilization.

For sequential jobs on multiprocessors in Figure 5.1, SRPT and SJF have been proved to be

scalable for average flow; but they are both clairvoyant, i.e., requiring the a priori knowledge

of the amount of work for each job. In contrast, DREP and RR are non-clairvoyant and

DREP’s performance is very close to RR’s performance in both workloads. When the number

of processors is small, the gap between DREP/RR and SRPT/SJF is the widest while DREP

gets close to optimal as the number of cores increases. This is because, intuitively, SRPT

and SJF always work on the “right job”, while DREP and RR give equal processing time to

all jobs. In particular, with a small number of processors, DREP is more likely to encounter

situations where smaller jobs that arrive later are stuck waiting for long jobs that occupy

all the processors. Other schedulers either have the advantage of clairvoyant and thus know
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(a) Finance workload on 16
core

(b) Bing workload on 16 core (c) Finance workload on 8
core

(d) Bing workload on 8 core

Figure 5.3: Parallel Cilk Plus jobs on multicore with varying system load and different work
distributions

which jobs are smaller and should be processed first (e.g., SJF and SRPT), or they have the

advantage of very frequent preemptions (e.g., RR), allowing them to preempt the long jobs

in such scenario. DREP has comparable performance without such advantages and is thus

more practical.

For the fully parallel job setting in Figure 5.2, we compare against SRPT and SWF. Since

jobs are fully parallel, SRPT and SWF schedulers reduce to SRPT and SJF for sequential

jobs on a single sequential machine (since the job with the least remaining work or the job

with the smallest work will occupy the whole machine), so SRPT is optimal and SJF is

scalable. Thus, in these experiments, these schedulers are operating in an “easier setting.”

In addition, SRPT and SJF can now devote all their processors to “the right job”, while

DREP may still get unlucky and not process small jobs that get stuck in the queue. Even
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so, the difference in performance is at most a factor of 3.25 compared to SRPT (which is

optimal) and less than 3 compared to SJF (which is scalable). In this setting, DREP’s

performance is still close to RR and approaches RR as the number of cores increase. Note

that on a small number of cores the gap between DREP and RR is larger on the Bing

workload than the Finance workload. This is because Bing workload has some very large

jobs. For other algorithms, this does not matter, as they can still finish short jobs fast by

either being clairvoyant (SRPT, SJF) or doing many preemptions (RR). However, DREP

will occasionally schedule a large job. With 1 core, this can have a large negative effect on

the outcome. As the number of cores increase, this effect diminishes – therefore, DREP is

worst on Bing with 1 core but converges to RR on many cores.

5.4.2 Evaluation Based on Real Implementation

To evaluate the empirical performance and practicality of DREP, we implemented a work-

stealing based DREP in Cilk Plus [27], a widely-used parallel runtime system. For com-

parison, we implemented a few variants of work-stealing based scheduling strategies: steal-

first [35], admit-first [35], and an approximation of smallest-work-first [2] explained below.

Setup: Similar to the simulations, we evaluate the schedulers using the Finance and Bing

workloads. The data is collected on a 16-core machine with Linux 4.1.7 with RT PREEMPT

patch. Each data point presented is the average flow of an execution with 10, 000 jobs.

DREP Implementation: We implemented DREP in Cilk Plus by adding a global job

queue. At the platform startup, a master thread inserts jobs into the job queue according to

the workload specification. During the execution, a worker (a surrogate of a core) is assigned

to an active job and only steals work from this job. By DREP, an active job is associated with
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n/|A(t)| workers in expectation. This is achieved by letting the master thread determine

upon a job arrival that whether a core should preempt with a probability of 1/|A(t)|. If

it determines that a core should preempt to work on the newly arrived job, it notifies the

worker by setting a flag. Once the worker notices that the flag is set, it switches to work

on the job specified by the master. In our current implementation, a worker checks whether

this flag is set on steal attempts. In an improved implementation, a worker can check the

flag at function calls, allowing the new job to be worked on faster while paying some small

overheads of frequent checking. We left this implementation as our future work. Each active

job keeps track of its associated deques. When a worker runs out of work, it randomly steals

into the set of deques associated with the assigned job.

Other Scheduling Policies: We implemented several variants of work-stealing based

schedulers and an approximation of SWF to compare with DREP. Both steal-first and admit-

first extends the standard work-stealing algorithm by also incorporating a FIFO job queue.

In steal-first, a worker, upon running out of work, tries to steal work from other workers,

favoring jobs that have started processing. Only when it cannot find any work to do among

jobs that have started, it then admits a new job from the queue. Admit-first does the op-

posite — whenever a worker runs out of work, it always admits a new job from the queue,

if there is one. Both admit-first and steal-first have been shown to work well for max flow

time [3], especially steal-first which approximates FIFO. We also implemented an approxi-

mation of SWF, where every worker when running out of work, checks every active job in

the system and works on the job with the smallest amount of work.

Comparison: Theoretically and from the simulations, SWF has performance advantages

both by being clairvoyant and by requiring frequent preemptions. However, Figure 5.3

shows that DREP has comparable performance in practice with the work-stealing based
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SWF for all the different settings. In practice, preemption overhead is not negligible, so a

scheduler cannot preempt very frequently. In particular, the approximation of SWF cannot

immediately preempt the execution of a large job to work on the newly available work from a

smaller job. In contrast, DREP tries to maintain an approximately equal number of workers

(cores) to each active job, so that a large parallel job can hardly monopolize the entire

system. The implemented steal-first in Figure 5.3 only bears 2n number of failed stealing

attempts before admitting a new job. Its performance becomes worse when it allows more

failed stealing attempts, which is thus not shown in the figure. Not surprisingly, DREP and

admit-first have similar performance for average flow time. This is because admit-first keeps

at least one worker per job when the number of active jobs is smaller than the number of

cores. In addition, admit-first lets workers to randomly steal from each other, resulting in

roughly equal resources between jobs, which is the same with DREP.

5.5 Conclusion

This chapter focused on a practically efficient scheduler for optimizing the average flow time

of parallel jobs. The scheduler randomly distributes processors between the jobs, and each

job uses work stealing to execute in parallel on its assigned processors. While this algorithm

has a slightly worse theoretical guarantee than the best-known algorithm for the problem, it

is the first provably efficient algorithm that has low enough overhead to use in practice for

parallel jobs. The evaluations demonstrate its strong performance.
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Chapter 6

Throughput

In this chapter, we examine a problem in the directed acyclic graph model that is very

different from the previous problems which focused on flow time objectives. Our problem is

instead on scheduling preemptive jobs online to meet deadlines. In this problem we again

have n jobs to schedule on m machines. However, each job Ji arrives at time ri and has a

deadline di. The relative deadline of the job is then Di = di − ri. Each job also has a profit

or weight pi; this amount of profit is gained by the scheduler when the job is completed by

its deadline. The throughput of a schedule is defined as the total profit of the jobs completed

by their deadlines and the goal of the scheduler is to maximize the profit it obtains.

After the throughput result, we will also study a generalization of throughput called the

general profit scheduling problem. In this problem, each job Ji is associated with a function

pi(t) which specifies the profit obtained for finishing job Ji at ri + t. It is assumed that pi

can be different for each job Ji but the functions are arbitrary non-increasing functions; a

scheduler should not obtain more profit for delaying a job.

As expected, we are working in the directed acylic graph (DAG) model of parallelism. We

will give the first non-trivial results for scheduling DAG jobs online to maximize throughput
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and then generalize these results to the general profit problem. To formalize these results,

recall that there are two important parameters in the DAG model: the critical-path length

Ci of job Ji (its execution time on an infinite number of processors) and its total work Wi

(its uninterrupted execution time on a single processor). The value of max{Ci,Wi/m} is a

lower bound on the amount of time any 1-speed scheduler takes to complete job Ji on m

cores.

We will focus on schedulers that are aware of the values of Ci and Wi when the job arrives,

but are unaware of the internal structure of the job’s DAG. That is, besides Ci and Wi, the

only other information a scheduler has on a job’s DAG is which nodes are currently available

to execute. For DAG tasks, this is a reasonable model for the real world programs written

in languages mentioned above since the DAG generally unfolds dynamically as the program

executes. We call such an algorithm semi-non-clairvoyant 5.

Even with a semi-non-clairvoyant scheduler, we can prove the following lower bound.

Theorem 11. In the DAG model, there exists inputs where any semi-non-clairvoyant sched-

uler requires speed augmentation of 2−1/m to be O(1)-competitive for maximizing throughput.

Roughly speaking, scheduling even a single DAG job in time smaller than Wi−Ci
m

+Ci is a hard

problem even offline when the entire job structure is known in advance. This is captured by

the classic problem of scheduling a precedence constrained jobs to minimize the makespan.

For this problem, there is no 2 − ε approximation assuming a variant of the unique games

conjecture [44]. In Section 6.3, we will give an example DAG where any semi-non-clairvoyant

scheduler will take roughly Wi−Ci
m

+ Ci time to complete while a fully clairvoyant scheduler

can finish in time Wi/m. By setting the relative deadline to be Di = Wi/m = Ci, every

5It is also very difficult to optimize throughput if the scheduler does not know these quantities
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semi-non-clairvoyant scheduler will require a speed augmentation of 2−1/m to have bounded

competitiveness because otherwise it will complete no jobs.

With the previous lower bound in place, we cannot hope for a (1+ε)-speed O(1)-competitive

algorithm. To circumvent this hurdle, one could hope to show O(1)-competitiveness by either

using more resource augmentation or by making an assumption on the input. Intuitively,

the hardness of the problem comes from having a relative deadline Di that is very close to

max{Ci,Wi/m} because then no scheduler can finish the job without resource augmentation.

In practice, jobs rarely have such tight deadlines. We show that so long as Di ≥ (1 +

ε)(Wi−Ci
m

+ Ci) then there is a O( 1
ε6

)-competitive algorithm.

Theorem 12. If for every job Ji it is the case that (1 + ε)(Wi−Ci
m

+ Ci) ≤ Di, then there is

a O( 1
ε6

)-competitive algorithm for maximizing throughput.

We note that this immediately implies the following corollary, which uses (2 + ε) speed

augmentation but has no assumptions on the input.

Corollary 6.0.1. There is a (2+ε)-speed O( 1
ε6

)-competitive algorithm for maximizing through-

put.

Proof. No schedule can finish a job Ji if its relative deadline is smaller than max{Ci, Wi

m
}

and we may assume that no such job exists. Using this, we have that (Wi

m
+ Ci) ≤ 2Di.

Consider transforming the problem instance giving the algorithm and the optimal solution

together 2 + ε speed. In this case, the condition of Theorem 12 is met since we can view

this as scaling the work in each node of the jobs by 2 + ε. This scales both the work and

critical-path length by 2 + ε. The corollary follows by observing that in this case we are

comparing to an optimal solution with 2+ ε speed which is only stronger an optimal solution

with 1 speed.
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We note that the theorem also immediately implies the following corollary for “reasonable

jobs.”

Corollary 6.0.2. There is a (1 + ε)-speed O( 1
ε6

)-competitive for maximizing throughput if

(Wi − Ci)/m+ Ci ≤ Di for all jobs Ji.

Note that this theorem uses speed augmentation but has a tighter assumption on the dead-

lines than in theorem 12. This assumption on the deadlines is reasonable since, as we show

in Section 6.3, there exists inputs for which even the best semi-non-clairvoyant scheduler has

unbounded performance if the deadline is tighter.

Later on, we will consider the general profit scheduling problem. We will first make the

following assumption, similar to the assumption in the throughput problem: all jobs Ji

has a general profit function which satisfies pi(d) = pi(x
∗
i ), where 0 < d ≤ x∗i for some

x∗i ≥ (1 + ε)(Wi−Ci
m

+ Ci). This assumption states that there is no additional benefit for

completing a job Ji before time x∗i . This is the natural generalization of our assumption for

throughput case since it basically means that the algorithm can take up to time x∗i to finish

the job. The function is arbitrarily decreasing otherwise. Using this, we show the following.

Theorem 13. If for every job Ji it is the case that pi(d) = pi(x
∗
i ), where 0 < d ≤ x∗i for

some value of x∗i ≥ (1 + ε)(Wi−Ci
m

+ Ci) then there is a O( 1
ε6

)-competitive algorithm for the

general profit objective.

This gives the following corollary immediately, just as for throughput, which removes the

assumption but uses speed augmentation.

Corollary 6.0.3. There is a (2+ε)-speed O( 1
ε6

)-competitive algorithm for maximizing general

profit.
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We will begin by describing the constraints on the jobs and the algorithm in section 6.1 and

6.2.1. Then we will analyze the algorithm in the deadlines case, after which we will give the

example which requires (2 + ε) speed for any semi-non-clairvoyant scheduler in section 6.3.

The general cost function problem will follow in section 6.4.

6.1 Preliminaries

In the problem considered, there is a set J of n jobs {J1, J2, ..., Jn} which arrive online.

The jobs are scheduled on m identical processors. Job Ji arrives at time ri. Let pi(t) be

an arbitrary non-negative non-increasing function for job Ji. The value of pi(t) is the profit

obtained by completing job i at time ri + t. Under some schedule, let ti be the time it takes

to complete Ji after its arrival. The goal is for the scheduler to maximize
∑

i∈[n] pi(ti).

Scheduling jobs with deadlines is a special case of this problem. In the deadlines problem,

each job Ji has a deadline di and the scheduler obains a profit of pi if it is completed by

this time. Here, we will let Di = di − ri be the relative deadline of the job. To make the

underlying ideas of our approach clear, we will first focus on proving this case and the more

general problem will be later, in section 6.4.

Each job is represented by a Directed-Acyclic-Graph (DAG) as in the previous chapters. A

node in the DAG is ready to execute if all its predecessors have completed. A job is completed

only when all nodes in the job’s DAG have been processed. The scheduler knows the ready

nodes for a job at any point in time, but does not know the entire DAG structure.

A DAG job has two important parameters. The total work Wi is the sum of the processing

time of the nodes in job i’s DAG. The span or critical-path-length Ci is the length of the
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longest path in job i’s DAG, where the length of the path is the sum of the processing

time of nodes on the path. Because there are costs and profits in this problem, we will use

the notation Li instead of Ci to refer to the critical path length of a job in order to avoid

confusion. Using this notatation, to show Theorem 12 we assume that (1+ε)(Wi−Li
m

+Li) ≤ Di

for all jobs Ji. This assumption shall be maintained throughout this chapter.

6.2 Jobs with Deadlines

First, we give an algorithm and analysis proving Theorem 12, which is the throughput

problem where jobs have deadlines and profits. There are a lot of notation necessary for

this algorithm and they can be found in Tables 6.1, 6.2 and 6.3. Throughout the proof, we

let CO denote the jobs that the optimal solution completes by their deadline and let
∥∥CO

∥∥
denote the total profit obtained by the optimal solution. Our goal is to design a scheduler

that achieves profit close to
∥∥CO

∥∥. Throughout the proof, it will be useful to discuss the

aggregate number of processors assigned to a job over all time. We define a processor step

to be a unit of time on a single processor.

6.2.1 Algorithm

In this section, we introduce our algorithm S. On every time step, S must decide which

jobs to schedule and which ready nodes of each job to schedule. When a job Ji arrives,

S calculates ni — the number of processors “allocated” to Ji. On any time step when S
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decides to run Ji, it will always allocate ni processors to Ji. In addition, since S is semi-non-

clairvoyant, it is unable to distinguish between ready nodes of Ji; when it decides to allocate

ni nodes to Ji, it arbitrarily picks ni ready nodes to execute if more than ni nodes are ready.

We first state some observations regarding work and critical-path length.

Observation 5. If a job Ji has all of its r ready nodes being executed by a schedule with

speed s on m processors, where r ≤ m, then the remaining critical-path length of Ji decreases

at a rate of s.

We have made the above observation for previous results in the DAG model.

As mentioned earlier, we also assume that the deadline for each job follows the condition

that (1 + ε)(Wi−Li
m

+ Li) ≤ Di for some positive constant ε.

We define the following constants. Let δ < ε/2, c ≥ 1 + 1
δε

and b = (1+2δ
1+ε

)1/2 < 1 be fixed

constants. For each job Ji, the algorithm calculates ni as (Wi−Li)
Di

1+2δ
−Li

. The value of ni is the

number of processors our algorithm will give to job Ji if we decide to execute Ji on some

time step.

Let xi := Wi−Li
ni

+ Li. By Observation 5 it is the case that if ni processors are given to job

i for xi units of time then the job will be completed regardless of the order the nodes are

executed in. This will be Observation 6.

Observation 6. Job Ji can meet its deadline if it is given ni dedicated processors for xi time

steps in the interval [ri, di].

We define the density of a job as vi = pi
xini

. Note that this is a non-standard definition of

density. We define the density as pi
xini

instead of pi
Wi

, because we will think of job i requiring
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xini processor steps to complete by Scheduler S. Thus, this definition of density indicates

the potential profit per processor step that S can obtain by executing Ji.

The scheduler S maintains jobs that have arrived but are unfinished in two priority queues.

A priority queue Q stores all the jobs that have been started by S. In this priority queue,

the jobs are sorted according to the density from high to low. Another priority queue P

stores all the jobs that have arrived but have not yet been started by S. Jobs in P are also

sorted according to their densities from high to low.

Job Execution

At each time step t, S picks a set of jobs in Q to execute, in order from highest to lowest

density. If a job Ji has been completed or if its absolute deadline di has passed (di > t), S

removes the job from Q. When considering job Ji, if the number of unallocated processors is

at least ni the scheduler assigns ni processors to Ji for execution. Otherwise, it continues on

to the next job. S stops this procedure when either all jobs have been considered or when

there are no remaining processors to allocate.

We introduce some notations to describe how jobs are moved from queue P to Q. A job

Ji is δ-good if Di ≥ (1 + 2δ)xi. A job is δ-fresh at time t if di − t ≥ (1 + δ)xi. For any

set T of jobs, let the set A(T, v1, v2) contains all jobs in T with density within the range

[v1, v2). We define N(T, v1, v2) =
∑

Ji∈A(T,v1,v2) ni. This is the total number of processors

that S allocates to jobs in A(T, v1, v2). We will say that the set of job A(T, v1, v2) requires

N(T, v1, v2) processors.
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Adding Jobs to Q

There are two types of events that may cause S to add a job to Q. These events can occur

when either a job arrives or S completes a job. When a job Ji arrives, S adds it to queue Q

if it satisfies the following conditions:

(1) Ji is δ-good;

(2) For all job Jj ∈ Q ∪ {Ji} it is the case that N (Q ∪ {Ji}, vj, cvj) ≤ bm. In words, the

total number of processors required by jobs in Q∪{Ji} with density in the range [vj, cvj)

is no more than bm.

If these conditions are met, then Ji is inserted into queue Q; otherwise, job Ji is inserted

into queue P (and remain un-started). When a job is added to Q, we say that the job is

started by S.

At the completion of a job, S considers the jobs in P from highest to lowest density. S first

removes all jobs with absolute deadlines that have already passed. Then S checks if a job Ji

in P can be moved to queue Q by checking whether job Ji is δ-fresh and condition (2) from

above. If both the conditions are met, then Ji is moved from queue P to queue Q.

Remark

Note that the Scheduler S pre-computes a fixed number of processors ni assigned to each

job, which may seem strange at first glance. However, this makes sense because ni is approx-

imately the minimum number of dedicated cores job Ji requires to complete by Di
1+2δ
→ Di,

without knowing Ji’s DAG structure. In addition, as long as Ji can complete by its deadline,
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it obtains the same profit pi. Therefore, there is no need to complete Ji earlier by executing

Ji on more dedicated cores. Moreover, by carefully assigning ni, we are able to bound the

number of processor steps spent on job Ji as shown in Lemma 6.2.3, which is critical for

bounding the profit obtained by the optimal solution.

Analysis Outline

Our goal is to bound the total profit that S obtains. We first discuss some basic properties

of S in Section 6.2.2. In Section 6.2.3 be bound the total profit of all the jobs S starts by

the total profit of jobs that S completes. Then in Section 6.2.4 we bound the total profit

of the jobs the optimal solution completes by the total profit of jobs that S starts. Putting

these two together, we are able to bound the performance of S.

6.2.2 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in the proof. We

first bound the number of processors ni that S will allocate to job Ji.

Lemma 6.2.1. For every job Ji, the following holds: ni ≤ b2m.

Proof. By assumption we know that Di ≥ (1 + ε)(Wi−Li
m

+ Li)

The definition of ni gives the following.

ni =
Wi − Li
Di

1+2δ
− Li

≤ Wi − Li
1+ε

1+2δ
(Wi−Li

m
+ Li)− Li

≤ 1 + 2δ

1 + ε
m = b2m
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Lemma 6.2.2. Every job Ji is δ-good, i.e. xi(1 + 2δ) ≤ Di.

Proof. Note that Li ≤ 1
1+ε

Di by assumption. Since ni = Wi−Li
D

1+2δ
−Li

, we have xi(1 + 2δ) =

(Wi−Li
ni

+ Li)(1 + 2δ) = ( Di
1+2δ
− Li + Li)(1 + 2δ) ≤ Di.

This next lemmas bounds the total number of processor steps occupied by a job.

Lemma 6.2.3. xini ≤ aWi, where a is 1 + 1+2δ
ε−2δ

.

Proof. By definition we have

xini = Wi − Li + niLi ≤ Wi +
Wi − Li
Di

1+2δ
− Li

Li ≤ Wi +
Wi − Li
Di

1+2δ
− Di

1+ε

( Di

1 + ε

)
≤ Wi +

(Wi − Li)Di(1 + 2δ)

Di(ε− 2δ)
≤ Wi +

Wi(1 + 2δ)

ε− 2δ
≤ Wi

(
1 +

1 + 2δ

ε− 2δ

)

Observation 7. At any time and for any v > 0, the total number of processors required by

all the jobs Ji that are in queue Q and have density v ≤ vi < cv is no more than bm, i.e.

N(Q, vi, cvi) ≤ bm.

Proof. Jobs are only added to queue Q when a new job arrives or a job completes. According

to algorithm S, at both times, a job is only added to Q when this condition is satisfied.

Now we are ready to begin the first part of the proof.
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6.2.3 Bounding the Profit of Jobs S Completes

In this section, we bound the profit of jobs completed by S compared to the profit of all

jobs it ever starts (adds to Q). Let R denote the set of jobs S starts (that is, the set of jobs

added to queue Q). Among the jobs in R, let C be the set of jobs it completes and U be the

set of jobs that it does not complete. We say job Ji (and its assigned processors) is v-dense

for some given density v, if job Ji has density vi ≥ v. For any set A of jobs, define ‖A‖ as∑
i∈A pi, the sum of the profits of jobs in the set.

Lemma 6.2.4. For a job Ji ∈ U = R \ C that was added to queue Q but does not complete

by its deadline, S must have run cvi-dense jobs for at least δxi time steps where Ji is in Q

using at least (1− b)m processors at each such time.

Proof. Since Ji is at least δ-fresh when added to Q and it does not complete by its deadline,

there are at least δxi time steps where S is not executing Ji because of Observation 6. In

each of these the time steps, all the m processors must be executing vi-dense jobs.

By Observation 7, jobs in Q with density in range [vi, cvi) require at most N(Q, vi, cvi) ≤ bm

processors to execute. Therefore, for each of the δxi time steps, there are at least (1− b)m

processors executing jobs which are cvi-dense. So the total number of processor steps where

cvi-dense jobs are executing is at least δxi(1− b)m.

We now bound the profit of the jobs completed by their deadline under S by those jobs

which are started.

Lemma 6.2.5. ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖R‖.

138



Proof. To prove this lemma, we will use a charging scheme with credit transfers between the

jobs. We give each job Ji ∈ R a bank account Bi. Initially, all completed jobs (in C) are

given pi credits and other jobs (in U) have 0 credit. We will transfer credits between the

jobs in C and the jobs in U . We want to show that after the credit transfer, every job Ji in

R will have Bi ≥ (ε− 1
(c−1)δ

)pi. This implies ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖R‖.

Now we explain how credits are transferred. For each time step, a processor executing Ji

will transfer
vjnj
δbm

credits from Bi to every job Jj in queue Q that has density vj ≤ vi
c

.

For every job Jj ∈ U , Lemma 6.2.4 implies that there are at least δxj time steps where at

least (1−b)m processors are executing cvj-dense jobs. By our credit transfer strategy Jj will

receive at least
vjnj
δbm

credits from each processor in a time step. Therefore, the total credits

Jj receives is at least

δxj(1− b)m(
vjnj
δbm

) = vjxjnj(
1− b
b

) = pi(
1− b
b

).

This bounds the total amount of credit each job receives. We now show that not too much

credit is transferred out of each job’s account. We bound this on a job by job basis. Fix

a job Ji ∈ R and consider how many credits it transfers to other jobs during its execution.

By Observation 6, we know that Ji can execute for at most xi time steps on ni dedicated

processors before its completion.

The job Ji will also transfer credit away to all jobs in Q with density less than vi
c

at any

point in time where Ji is being processed. These are the jobs in A(Q, 0, vi
c

). Let us fix an

integer l ≥ 1 and consider the set of jobs A(Q, vi
cl+1 ,

vi
cl

) in Q that have density within the

range [ vi
cl+1 ,

vi
cl

).
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Note that the total number of processors required by them is N(Q, vi
cl+1 ,

vi
cl

) ≤ bm by Obser-

vation 7. Knowing that a job Jj in A(Q, vi
cl+1 ,

vi
cl

) has density vj ≤ vi
cl

by definition, we can

understand that the total credits job Ji gives to jobs in A(Q, vi
cl+1 ,

vi
cl

) per processor assigned

to Ji during any time step is at most the following:

∑
Jj∈A(Q,

vi
cl+1 ,

vi
cl

)

vjnj
δbm

≤
∑

Jj∈A(Q,
vi
cl+1 ,

vi
cl

)

vi
cl
nj

δbm
=

vi
δbmcl

∑
Jj∈A(Q,

vi
cl+1 ,

vi
cl

)

nj

=
vi

δbmcl
N(Q,

vi
cl+1

,
vi
cl

) ≤ vi
δbmcl

bm =
vi
δcl
.

This bounds the total credit transferred to jobs in A(Q, vi
cl+1 ,

vi
cl

) during a time step for each

processor assigned to Ji. We sum this quantity over all l ≥ 1 and all ni processors assigned

to i to bound the total credit transferred away from job Ji during a time step. In this

calculation, recall that c > 1 by definition.

nivi
δ

∞∑
l=1

1

cl
=
(nivi

δ

) 1
c

1− 1
c

=
(nivi

δ

) 1

c− 1

Therefore, the total credits Ji transfers to all the jobs in A(Q, 0, vi
c

) over all times wheere it

is executed is at most (xinivi
δ

) 1
c−1

= pi
(c−1)δ

due to the fact that a job will be executed for at

most xi time steps in S’s schedule.

Now we put will put these two observations together. Each job Ji receives at least pi
1−b
b

credit and pays at most pi
(c−1)δ

. After the credit transfer, the credits that a job Ji has is at

least the following:

pi
1− b
b
− pi

(c− 1)δ
= pi(ε−

1

(c− 1)δ
)
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By our choice of c, this quantity is always positive. Therefore, we conclude that ‖C‖ ≥

(ε− 1
(c−1)δ

) ‖R‖. This completes the proof of the lemma.

6.2.4 Bounding the Profit of Jobs OPT Completes

In this section, we bound the profit of the jobs OPT completes by all of the jobs that S

starts. Our high level goal is to first bound the total amount of time OPT spends processing

jobs that S does not complete by the time that S spends processing jobs. Then using this

and properties of S we will be able to bound the total profit of jobs OPT completes. At a

high level, this works since S focuses on processing high density jobs and OPT and S both

spend a similar amount of time processing jobs. We will begin by showing that if not too

many processors are executing vi
c

-dense jobs then all such jobs must be currently executing.

Lemma 6.2.6. For any density vi and time, if there are less than b(1 − b)m processors

executing vi
c

-dense jobs, then all vi
c

-dense jobs in queue Q are executing and N(Q, vi
c
,∞) <

b(1− b)m.

Proof. By definition, there are at least m − b(1 − b)m > bm − b(1 − b)m = b2m processors

executing jobs with density less than vi
c

. For the sake of contradiction, suppose there is a

vi
c

-dense job Jj that is not being executed in S. By Lemma 6.2.1 we know that nj ≤ b2m.

Therefore, Jj would have been executed by S on the b2m processors that are executing lower

density jobs, this a contradiction.

Now we know all vi
c

-dense jobs in queue Q are executing. By assumption they are using less

than b(1− b)m processors. Therefore the lemma follows.
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In the next lemma, we show that if not too many processors are running vi
c

-dense jobs then

when a job arrives or completes, the schedule S will start processing a vi-dense job that is

δ-fresh, for any density vi (if such a job exists). In particular, the job Jj will pass condition

(2) of for adding jobs to Q in the definition of S.

Lemma 6.2.7. Consider a fixed density vi. At a time where a new job arrives or a job

completes if there are less than b(1− b)m processors executing vi
c

-dense jobs, then a δ-fresh

vi-dense job Jj (arriving or in queue P ) will be added to Q by S, assuming such a job Jj

exists.

Proof. By Lemma 6.2.6, we know that all vi
c

-dense jobs in queue Q are executing on less

than b(1− b)m processors. By Lemma 6.2.1, we know that nj ≤ b2m. Therefore,

N(Q ∪ {Jj},
vi
c
,∞) < b(1− b)m+ b2m = bm

Consider any δ-fresh job Jj that is also vi-dense. Consider any job Jk where Jj ∈ A(Q ∪

{Ji}, vk, cvk). By definition of Jj being vi-dense it must be the case that A(Q∪{Ji}, vk, cvk) ⊆

A(Q∪{Jj}, vic ,∞). The above implies that N(Q∪{Ji}, vk, cvk) ≤ N(Q∪{Jj}, vic ,∞) ≤ bm.

Thus, the condition (2) in our algorithm is satisfied.

For an arbitrary set of jobs E and any v ≥ 0, we let TO(v, E) denote the total work processed

by the optimal schedule for the jobs in E that are v-dense. We similarly let TS(v, E) be the

total number of processors steps S used for executing jobs in E that are v-dense over all

time. Now we are ready to bound the time that OPT spends on jobs that S never adds to

Q.
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Lemma 6.2.8. Consider the jobs in J \R, the jobs that are never added to Q (never started).

For all v > 0, TO(v,J \R) ≤ 1+2δ
δb(1−b)TS(v

c
,J ).

Proof. Let {Ik = [sk, ek]} be the set of maximal time intervals where at least b(1 − b)m

processors are running v
c
-dense jobs in S’s schedule. Notice that by definition

∑∞
k=1(ek −

sk)b(1− b)m ≤ TS(v
c
,J ).

Consider a job in Ji ∈ J \ R that is both δ-good and v-dense and additionally arrives

during [sk, sk+1). Note that during the intervals [ek, sk+1], less than b(1 − b)m processors

are executing v
c
-dense jobs. Lemma 6.2.7 implies that if Ji arrives during [ek, sk+1] it will be

added to Q. This contradicts the assumption that Ji ∈ J \ R. Therefore, Ji must arrive

during [sk, ek) and is in queue P at time ek.

Note that at time ek, the number of processors executing v
c
-dense jobs decreases, so there

must be a job that completes at time ek. Again, by Lemma 6.2.7 if Ji is δ-fresh at time ek

then it will be added to Q at this time. Again, this contradicts Ji ∈ J \ R. Thus, the only

reason that S does not add Ji to Q is because Ji is not δ-fresh at time ek. Knowing that Ji

is δ-good at ri and is not δ-fresh at ek, we have ek − sk ≥ ek − ri ≥ δxi.

So at time ek, Ji is not δ-fresh. So di − ek < (1 + δ)xi <
1+δ
δ

(ek − sk).

Let Kk be the set of v-dense jobs that arrive during [sk, sk+1) but are not completed by S.

Because OPT can only execute all jobs in Kk during [sk, di] with at most m processors, we

can show the following:

TO(v,Kk) ≤(di − sk)m = ((di − ek) + (ek − sk))m ≤
1 + 2δ

δ
(ek − sk)m
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This completes the proof after the following calculations.

TO(v, U) =
∞∑
k=1

TO(v,Kk) ≤
∞∑
k=1

(
1 + 2δ

δ
)m(ek − sk) ≤

1 + 2δ

δ

1

b(1− b)
TS(

v

c
,J )

Using the previous lemma, we can bound the profit of jobs completed by OPT by the profit

of jobs started by S.

Lemma 6.2.9. ∥∥CO
∥∥ ≤ (1 + (1 +

1 + 2δ

ε− 2δ
)(1 +

1

εδ
)

1 + 2δ

δb(1− b)

)
‖R‖

.

Proof. We may assume WLOG that OPT completes all jobs it starts. First we partition

CO, the jobs that OPT completes, into CO
R and CO

S where CO
S = CO ∩R, that is, the set of

jobs that our algorithm started at some point. The remaining jobs are placed in CO
R . Clearly∥∥CO

S

∥∥ ≤ ‖R‖. Now it remains to bound
∥∥CO

R

∥∥.

Consider every job in CO
R and let the set of densities of these jobs be {µ1, µ2, . . . , µm} from

high to low. For notational simplicity let µ0 =∞ and µm+1 = 0. Recall that OPT completed

all jobs it started. Thus for each job with density µi, it ran the job for a corresponding Wi

processor steps. Let βi denote the number of processor steps our algorithm takes to run jobs

with densities within (µi−1

c
, µi
c

].
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We have TO(v,J \ R) ≤ 1+2δ
δb(1−b)TS(v

c
,J ) from Lemma 6.2.8 for all densities v. Equivalently,

for any given density v, we have the following.

TO(v,J \R) =
v∑
i=1

Wi ≤
1 + 2δ

δb(1− b)

v∑
i=1

βi =
1 + 2δ

δb(1− b)
TS(

v

c
,J )

We then sum over all densities. The subtraction of densities is necessary to insure that each

density is only counted a single time.

m∑
v=1

(
(µv − µv+1)

v∑
i=1

Wi

)
≤

m∑
v=1

(
(µv − µv+1)

1 + 2δ

δb(1− b)

v∑
i=1

βi

)

The left hand side can be simplified:

m∑
v=1

(
(µv − µv+1)

v∑
i=1

Wi

)
=

m∑
i=1

Wi

m∑
v=i

(µv − µv+1) =
m∑
i=1

Wi(µi − µm+1) =
m∑
i=1

Wiµi

The right hand side similarly simplifies to 1+2δ
δb(1−b)

∑m
i=1 βiµi, leading to the inequality that∑m

i=1 Wiµi ≤ 1+2δ
δb(1−b)

∑m
i=1 βiµi. Recall that densities such as µi are defined by µi = pi

xini
and

xini ≤ aWi. Therefore:

m∑
i=1

Wiµi =
m∑
i=1

Wipi
xini

≥
m∑
i=1

Wipi
aWi

≥
m∑
i=1

pi

(1 + 1+2δ
ε−2δ

)
=

1

(1 + 1+2δ
ε−2δ

)

∥∥CO
R

∥∥

And also, by the definition of βi, we know that
∑m

i=1 βi
µi
c
≤ ‖R‖.
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We combine these expressions to obtain the following.

1

(1 + 1+2δ
ε−2δ

)

∥∥CO
R

∥∥ ≤ m∑
i=1

Wiµi ≤
1 + 2δ

δb(1− b)

m∑
i=1

βiµi ≤
1 + 2δ

δb(1− b)
c ‖R‖

⇒
∥∥CO

R

∥∥ ≤ (1 +
1 + 2δ

ε− 2δ

)(
1 + 2δ

δb(1− b)

)
c ‖R‖

⇒
∥∥CO

∥∥ =
∥∥CO

R

∥∥+
∥∥CO

S

∥∥ ≤ (1 + (1 +
1 + 2δ

ε− 2δ
)(1 +

1

εδ
)

1 + 2δ

δb(1− b)

)
‖R‖

Finally we are ready to complete the proof of bounding the profit OPT obtains by the total

profit the algorithm obtains for jobs it completed.

Lemma 6.2.10.

∥∥CO
∥∥ ≤

(
1 + (1 + 1+2δ

ε−2δ
)(1 + 1

εδ
) 1+2δ
δb(1−b)

)
ε− 1

(c−1)δ

‖C‖

Proof. The proof of this lemma is simply through the combination of Lemma 6.2.5 and

Lemma 6.2.9.

Therefore, we prove Theorem 12 by showing that scheduler S is O( 1
ε6

)-competitive for jobs

with deadlines and profits, when (1 + ε)(Wi−Li
m

+ Li) ≤ Di.

In the next section we will show that any semi-non-clairvoyant scheduler must have roughly

2 speed if it is competitive for throughput unless it makes some assumptions on the deadlines

of jobs.
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Figure 6.1: Additional Notation

OPT optimal schedule and also optimal objective
m the number of processors
Wi the total work of job Ji
Li the span of job Ji
Di relative deadline of job Ji
ri the arrival time of Ji
di the absolute deadline of Ji (that is, ri +Di)

A(T, v1, v2) all jobs in T with density within the range [v1, v2)
N(T, v1, v2) =

∑
Ji∈A(T,v1,v2) ni, the total number

of processors required by A(T, v1, v2)
v-dense if Job Ji has density vi ≥ v

δ < ε/2
c ≥ 1 + 1

εδ

b = (1+2δ
1+ε

)1/2 < 1

a = 1 + 1+2δ
ε−2δ

Figure 6.2: Additional Notation for Throughput

pi the profit of job Ji
ni = (Wi−Li)

Di
1+2δ

−Li
, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji
vi = pi

xini
the density of Ji

δ-good job Ji has Di ≥ (1 + 2δ)xi
δ-fresh at time t, job Ji has di − t ≥ (1 + δ)xi

R the set of jobs started by S
C the set of jobs completed by S
U unfinished jobs by S (that is, R \ C)
CO the set of jobs completed by OPT
J the set of all jobs
TO(v, E) the total work processed by the optimal schedule

for the jobs in E that are v-dense
TS(v, E) the total number of processors steps S used

for executing jobs in E that are v-dense
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Figure 6.3: Additional Notation for General profit

pi(t) the profit of job Ji if the job with arrival time ri
completes by ri + t

ni = (Wi−Li)
x∗
i

1+2δ
−Li

, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji

vi = pi(Di)
xini

the density of Ji

6.3 Examples

In this section, we will give some example DAGs to show why Theorem 12 is close to the best

theorem we can hope for using two examples. The first example, shown in Figure 6.4a, shows

the limitations of semi-non-clairvoyance. In particular, a semi-non-clairvoyant scheduler does

not know the structure of the DAG in advance since the DAG unfolds dynamically. At any

time step, the scheduler only knows the ready nodes available for execution. Given this

limitation, consider the DAG shown in Figure 6.4a. This job has one sequential chain with

length L = W
m

, where W is the total work of the job and m is the number of processors. The

remaining W −W/m work are fully parallelizable in a block and can also be done in parallel

with the chain. Therefore, L is the span of the jobs.

Since a semi-non-clairvoyant scheduler cannot distinguish between ready nodes, it may make

unlucky choices and execute the entire block of W −W/m = W − L ready nodes first in

(W − L)/m time steps and then execute the chain of L nodes sequentially — leading to a

total time of (W − L)/m+ L. On the other hand, a fully clairvoyant scheduler can execute

the entire DAG in W/m time. Therefore, a semi-non-clairvoyant scheduler needs at least

2 − 1/m speed augmentation to ensure that it can complete the DAG at the same time as

OPT.
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(a) Non-clairvoyance limitation (b) Difficult DAG

Figure 6.4: Two Examples

We now show another example DAG indicating that it would be reasonable to always set

deadlines as D ≥ (W − L)/m + L if we do not know the structure of the DAG a priori.

Figure 6.4b shows an example DAG, which consists of a chain of L − ε nodes followed by

W −L+ ε nodes that can run in parallel. Each node in the DAG takes ε time to run, so the

total work of the DAG is W and the span is L. For such a DAG, even a fully clairvoyant

scheduler needs L− ε+ W−L+ε
m

= W−L
m

+ L− ε(1− 1
m

), which approaches to W−L
m

+ L when

ε→ 0.
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6.4 Jobs with General Profit Functions

In this section, we will focus on a more general problem. In particular, each job Ji has a

non-negative non-increasing profit function pi(t) indicating its profit if the job with arrival

time ri completes by ri + t. Our goal is to design a scheduler that maximizes the profit to

make it close to what the optimal solution can obtain. That optimal profit will be denoted

by ‖O‖.

First, we present our scheduler S parameterized using a fixed constant 0 < ε < 1. Similar

to Section 6.2.1, let δ < ε/2, c ≥ 1 + 1
δε

and b = (1+2δ
1+ε

)1/2 < 1 be fixed constants.

Upon the arrival of a job Ji, the scheduler S assigns a number of allocated cores ni, a relative

deadline Di and a set of time steps Ii to Ji (according to the assignment procedure described

below). For each time step t in Ii, we can say that Ji is assigned to t. Scheduler S always

executes the highest density jobs that is assigned to t. If S decides to execute Ji in a time

step, it will give ni processors to Ji. Let xi := Wi−Li
ni

+ Li. We again define the density of a

job as vi = pi(Di)
xini

= pi(Di)
Wi+(ni−1)Li

. We will now formally specify the algorithm of scheduler S

for job assignment and execution.

subsubsection*Assigning cores, deadlines and slots When a job Ji arrives, the scheduler will

assign a relative deadline Di and a set of time steps Ii with ni processors. These time steps

are the only time steps in which Ji is allowed to run.

Recall (from Theorem 13) that we assume that the profit function stays the same until

some value x∗i ≥ (Wi−Li
m

+ Li)(1 + ε). The number of assigned processors ni is calculated as

ni = Wi−Li
x∗
i

1+2δ
−Li

.
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The assignment for the deadline Di is determined by searching all the potential deadlines D

to find the minimum valid deadline. The set of time steps Ii is determined using the chosen

deadline Di.

For each potential relative deadline D > (1 + ε)Li, the scheduler S checks whether it is a

valid deadline through the following steps.

First, it selects a set of time steps I. It does so using the following process. Assuming D

is assigned to Ji, then the density of Ji is v = pi(D)
Wi+(ni−1)Li

. For each time step t from ri to

ri + D, let ‖I(t)‖ be the number of time steps that have already been added to I before

considering time step t. Let J(t) denote the set of jobs that are currently has time t among

its assignments. We only add t to the set I if it satisfies the following condition about the

density of jobs which have t assigned: For every job Jj ∈ J(t), N (J(t) ∪ {Ji}, vj, cvj) ≤ bm.

In words, the total number of processors required by jobs in J(t) ∪ {Ji} with density in the

range [vj, cvj) is no more than bm.

I contains all the time steps during [ri, ri + Di) that can be assigned to Ji. If ‖I‖ ≥

(1 + δ)
(
Wi−Li
ni

+ Li

)
, which is at least δ times longer than the time Ji required to run on

ni processors, then the deadline D is said to be valid. A valid assignment always exists by

setting the deadline large enough.

Among all the valid deadlines, S chooses the smallest valid deadline for Ji. This selection

results in the highest profit. Given this deadline Di, Ji will be assigned with the corre-

sponding set Ii. Because Di is the minimum valid deadline, the corresponding set Ii must

satisfy ‖Ii‖ = (1 + δ)
(
Wi−Li
ni

+ Li

)
; otherwise, there must exist a shorter deadline D that is

also valid. Intuitively, with this assignment, Ji can complete by its deadline if no other jobs

interfere. Note that Ji may not be completed by its deadline as we will allow higher density
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jobs that arrive after Ji to be scheduled during Ii. These higher density jobs might interrupt

Ji.

Executing Jobs

At each time step t, S picks a set of jobs in J(t) to execute in order from highest to lowest

density, where J(t) are the set of jobs that have been assigned to time step t. That is, jobs

Ji where t ∈ Ii. When considering job Ji, if the number of unallocated processors is at least

ni, then the scheduler allocates ni processors to Ji. Otherwise, it continues on to the next

job in J(t). S stops this procedure when either all jobs have been considered or when there

are no remaining processors to allocate.

Remark

Unlike the scheduler for jobs with deadlines, here we try to complete a job Ji by a calculated

deadline Di that is as close to x∗i as possible. This is because the obtained profit decreases

as the completion time increases but there is no additional benefit for completing a job Ji

before time x∗i . With a carefully designed deadline Di, we are able to prove the performance

bound of the scheduler. Similar to Section 6.2, we start by stating the basic properties of

the scheduler S, followed by bounding the total profit obtained by S.

However, the proofs that bound the profit of jobs that are completed by OPT differ greatly

from that for jobs with deadlines. This is because in addition to losing the profit of jobs that

do not complete by their assigned deadlines, scheduler S can also have less profit compared

to OPT if the completion time of a job under S is later than under OPT. By taking into

152



account all these jobs, we are still able to bound the performance of S for jobs with general

profit functions.

6.4.1 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in the proof and

can be obtained directly from the algorithm of scheduler S. These lemmas are similar to

the lemmas shown in Section 6.2.2 if we replace xi∗ with Di. We state them here again for

completeness.

Lemma 6.4.1. For every job Ji we have that ni ≤ b2m, where b = (1+2δ
1+ε

)1/2.

Proof. By definition, we know that x∗i ≥ (1 + ε)(Wi−Li
m

+ Li). Therefore, we have

ni =
Wi − Li
x∗i

1+2δ
− Li

≤ Wi − Li
1+ε

1+2δ
(Wi−Li

m
+ Li)− Li

≤ 1 + 2δ

1 + ε
m = b2m

Lemma 6.4.2. Under scheduler S, we have xini ≤ aWi and vi ≥ pi(Di)
aWi

, where a = 1 + 1+2δ
ε−2δ

.

Proof. By definition, x∗i > Li(1 + ε). Therefore, we have

xini = Wi − Li + niLi = Wi +
Wi − Li
x∗i

1+2δ
− Li

Li ≤ Wi +
Wi − Li
x∗i

1+2δ
− x∗i

1+ε

( x∗i
1 + ε

)
≤ Wi +

(Wi − Li)x∗i (1 + 2δ)

x∗i (ε− 2δ)
≤ Wi

(
1 +

1 + 2δ

ε− 2δ

)

Therefore, we have vi = pi(Di)
xini

≥ pi(Di)
aWi

.
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Lemma 6.4.3. For every job Ji with the assignment ni, Di and Ii, Job Ji can meet its

deadline Di, if it is executed by S for at least xi time steps in Ii (on ni dedicated processors).

Lemma 6.4.4. For every job Ji, xi(1 + 2δ) ≤ x∗i .

Proof. Note that Li ≤ 1
1+ε

Di by requirement of potential assignment. Since ni = Wi−Li
x∗
i

1+ε
−Li

, we

have xi(1 + 2δ) = (Wi−Li
ni

+ Li)(1 + 2δ) ≤ (
x∗i

1+ε
− Li + Li)(1 + 2δ) =

x∗i
1+ε

(1 + 2δ) ≤ x∗i .

Lemma 6.4.5. At any time step t during the execution and for any density range [v, cv),

the total number of cores required by all the jobs Ji ∈ J(t) (that have been assigned to t) with

density v ≤ vi < cv is no more than bm, i.e. N (J(t), vi, cvi) ≤ bm.

6.4.2 Bounding the Profit of Jobs S Completes

Similar to Section 6.2.3, we bound the profit of jobs completed by scheduler S compared to

the profit of all jobs. Let J denote the set of jobs arrived during the execution, C denote

the set of jobs that actually complete before their deadlines assigned by S, and U = J \ C

be the set of jobs that didn’t finish by their deadlines assigned by S. We say job Ji (and

its assigned processors during execution) is v-dense, if its density vi ≥ v. For any set A of

jobs, define ‖A‖ as
∑

Ji∈A pi(Di), the sum of the profits of jobs in the set under S.

Lemma 6.4.6. For a job Ji ∈ J \ C that does not complete by its deadline, the number of

time steps in Ii where S runs cvi-dense jobs using at least (1− b)m processors is at least δxi.

Proof. From Lemma 6.4.3, we know that job Ji can complete if it can execute for xi time

steps by S. Also note that according to the assignment process (1 + δ)xi = ‖Ii‖, where ‖Ii‖

is the number of time steps assigned to Ji during [ri, ri +Di]. Since it does not complete by
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its deadline, there are at least δxi time steps in Ii where S does not execute Ji. Consider

each of these time steps t. According to Lemma 6.4.5, jobs in J(t) with density in range

[vi, cvi) require at most N (J(t), vi, cvi) ≤ bm processors to execute. Therefore, there must

be at least (1− b)m processors executing cvi-dense jobs. Otherwise, S would execute all jobs

in A (J(t), vi, cvi), which includes job Ji.

Lemma 6.4.7. ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖J ‖.

The proof of this lemma uses a charging scheme and proceeds exactly like the proof of

Lemma 6.2.5.

6.4.3 Bounding the Profit of Jobs OPT Completes

Similar to Section 6.2.4, we will now bound the profit of the jobs OPT completes. We are

first going to consider the number of processor steps OPT spends on jobs that S finishes

later than OPT. For these jobs, we can assume that S makes no profit at all since in the

worst case, the profit function may become 0 as soon as OPT finishes it. Our high level goal

is to first bound the total number of processor steps OPT spends on these jobs, which will

allow us to bound OPT’s profit. This section of the will differ greatly from the throughput

proof.

We begin by showing that if not too many processors are executing vi
c

-dense jobs then all

such jobs must be currently processed under S.

Lemma 6.4.8. Consider a job Ji and a time t∗ < Di. For any time step t ∈ [ri, ri + t∗] \ Ii

(that is not added to Ii by S), the total number of processors required by vi
c

-dense jobs in

J(t) must be more than b(1− b)m, i.e., N(J(t), vi
c
,∞) > b(1− b)m.
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Proof. Because t ∈ [ri, ri + t∗] \ Ii and t∗ < Di, we know that time step t is before Di.

Since t is not added to Ii, it must be the case that for some density vj ∈ (vi
c
, vi], the required

condition is not true, i.e., N (J(t) ∪ {Ji}, vj, cvj) > bm. Note that vj must be in the range

(vi
c
, vi]. This is because without assigning Ji to time step t it is true thatN (J(t), vj, cvj) ≤ bm

according to S, therefore Ji must have a density within the range of [vj, cvj) in order to make

impact.

By Lemma 6.4.1, we know that ni ≤ b2m. Therefore, we will have the following.

N (J(t), vj, cvj) = N (J(t) ∪ {Ji}, vj, cvj)− ni > bm− b2m = b(1− b)m

Therefore, we obtain N(J(t), vi
c
,∞) ≥ N (J(t), vj, cvj) > b(1− b)m.

Let O be the set of jobs completed by OPT. For each job Ji ∈ O, let d be the difference

between Ji’s completion time and arrival time under OPT; the profit of Ji under OPT is

pi(d). According to the assumption in Theorem 13, we know that if d ≤ x∗i , then pi(d) =

pi(x
∗
i ) for some x∗i ≥ (Wi−Li

m
+ Li)(1 + ε). Therefore, we can assume that OPT assigns

a relative deadline D∗i to Ji, where D∗i = max{d, x∗i }. Thus, OPT obtains a profit of

pi(d) = pi(D
∗
i ).

Lemma 6.4.9. Consider a job Ji such that Di assigned by scheduler S is larger than the

deadline D∗i assigned by OPT, i.e., Di > D∗i , the number of time steps during [ri, ri + D∗i )

where scheduler S is actively executing vi
c

-dense jobs on at least b(1 − b)m cores is at least

δ
1+2δ

D∗i .

Proof. By definition of D∗i and Lemma 6.4.4, we know that D∗i ≥ x∗i .
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Consider the number of time steps in time interval [ri, ri +D∗i ] that are added to Ii, it must

be less than (1 + δ)
(
Wi−Li
ni

+ Li

)
= (1 + δ)xi; otherwise, D∗i would be a valid deadline under

scheduler S with higher profit. Therefore, the number of time steps in [ri, ri + D∗i ] \ Ii is

more than D∗i − (1 + δ)xi ≥ D∗i − 1+δ
1+2δ

x∗i ≥ D∗i − 1+δ
1+2δ

D∗i = δ
1+2δ

D∗i .

By Lemma 6.4.8, we know that for each time step t ∈ [ri, ri + D∗i ] \ Ii, the total number of

processors required by vi
c

-dense jobs in J(t) must be more than b(1− b)m. Therefore, there

must be at least b(1 − b)m cores executing vi
c

-dense jobs under scheduler S at time step t

and the number of such steps is at least δ
1+2δ

D∗i .

Among the jobs in O, let O1 be the set of jobs that the deadline Di assigned by scheduler S

is no larger than the deadline set by OPT, i.e., Di ≤ D∗i <∞. In other words, the obtained

profit of these jobs under scheduler S is no less than that under OPT, i.e., pi(Di) ≥ pi(D
∗
i ),

since the profit function pi(t) is non-increasing.

Let O2 be the remaining jobs O2 = O \O1. Let ‖X‖∗ be the total profit that OPT obtains

from jobs in X and ‖X‖ be the total profit that S obtains from jobs in X. For jobs in O1,

we have ‖O1‖∗ ≤ ‖O1‖.

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total work processed

by the optimal schedule for the jobs in E that are v-dense. Let βi denote the total number

of time steps where S is actively processing job Ji. By definition, we have βi ≤ xi
1+ε

. We

similarly let TS(v, E) be the summation of βini over all jobs i in E that are v-dense. Note

that this counts the total number of processor steps S executes jobs in E that are v-dense

over all time.

157



Now we are ready to bound the time that OPT spends on jobs O2 that scheduler S obtains

less profit than OPT.

Lemma 6.4.10. Consider a job Ji in O2, the deadline Di assigned by scheduler S is longer

than deadline D∗i assigned by OPT. For all v > 0, TO(v,O2) ≤ 2(1+2δ)
δb(1−b)TS(v

c
,J ).

Proof. For any job Ji ∈ O2, we denote the lifetime of Ji under OPT as the time interval

[ri, ri +D∗i ), where D∗i is the deadline assigned by OPT. For any density v > 0, let l be the

number of time steps which make up the union of the lifetimes of all jobs in A(O2, v,∞).

By definition, TO(v,O2) ≤ lm, since OPT can execute them on at most m processors.

Let M ⊆ O2 be the minimum subset of O2 that the union of the lifetimes of jobs in M covers

the same time intervals of jobs in O2. By the minimality of M , we know that at any time

t, there are at most two jobs in M that cover time t. Therefore, we can further partition

M into two sets M1 and M2, where for any two jobs in M1 or any two jobs in M2, their

lifetimes do not overlap. By definition, either M1 or M2 has a union lifetime that is at least

l/2. WLOG, we assume that it is M1.

Consider Ji ∈M1 and let ki be the number of time steps during its lifetime [ri, ri+D
∗
i ) where

scheduler S is actively executing vi
c

-dense jobs on at least b(1− b)m cores. By Lemma 6.4.9,

we know k ≥ δ
1+2δ

D∗i . Therefore, during [ri, ri +D∗i ) the number of processor steps where S

is processing vi
c

-dense jobs is at least b(1− b)m δ
1+2δ

D∗i .

Let K =
∑

M1
ki, be the total number of processor steps where S is processing v

c
-dense jobs

(since vi ≥ v) during the intervals in M1. Thus, by definition,

K ≥ δb(1− b)
1 + 2δ

m
∑
Ji∈M1

D∗i >
δb(1− b)

1 + 2δ
m× l

2
≥ δb(1− b)

2(1 + 2δ)
TO(v,O2)
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Clearly, by adding additional intervals that are not in M1, we have TS(v
c
,J ) ≥ K >

δb(1−b)
2(1+2δ)

TO(v,O2), which gives us the bound.

Lemma 6.4.11.

‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ ≤
(

1 + (1 +
1 + 2δ

ε− 2δ
)(1 +

1

εδ
)
2(1 + 2δ)

δb(1− b)

)
‖J ‖

Proof. First, by the definition of O1 and O2, we have ‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ and ‖O1‖∗ ≤

‖O1‖ ≤ ‖J ‖. Now it remains to bound ‖O2‖.

We have TO(v,O2) ≤ 2(1+2δ)
δb(1−b)TS(v

c
,J ) from Lemma 6.4.10 for all densities v. The remaining

proof for the lemma is similar to that in Lemma 6.2.9, except for a different that will be

involved. Therefore, ‖O2‖∗ ≤ (1+ 1+2δ
ε−2δ

)c2(1+2δ)
δb(1−b) ‖J ‖. Taking the summation of ‖O1‖∗+‖O2‖∗

completes the proof.

We are now ready to complete the proof and bound the profit OPT obtains by the total

profit the algorithm obtains for jobs it completed.

Lemma 6.4.12.
∥∥CO

∥∥ ≤ 1+ac
2(1+2δ)
δb(1−b)

ε− 1
(c−1)δ

‖C‖.

Proof. This is just by combination of Lemma 6.4.7 and Lemma 6.4.11.

6.5 Conclusion

In this chapter we gave the first non-trivial result showing a scheduling algorithm which is

provably good for maximizing throughput for DAGs. In addition, we extend the result and

give an algorithm for the general profit scheduling problem with DAG jobs.
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Chapter 7

Conclusion

Over the recent years, computing systems have grown more and more parallel. From mobile

phones to web servers, most computers now have multiple processors. This trend is predicted

to continue into the future. Therefore, exploiting the parallelism of computing systems will

only grow in importance. This thesis focused on developing techniques which improve the

efficiency of parallel systems - specifically, how to schedule multiple programs in a multicore

system.

We study jobs in the DAG model, which naturally model parallel programs generated by

many common languages and libraries. We work in the client-server scheduling model and

give algorithms that are theoretically sound and algorithms that perform well in practice. In

chapter 3 we gave the first theoretically good algorithm for minimizing the average flow time

of a set of DAG jobs. We analyze both the algorithms LAPS and SJF and prove that LAPS

is scalable while SJF is (2 + ε)-speed, constant competitive. This result opened the way for

other objectives for scheduling DAG jobs online. In chapter 4 we examine the problem of

minimizing the maximum flow time. First we showed that FIFO is a scalable algorithm.

However, FIFO is not an algorithm that is easy to implement for DAG jobs in practice. We

also incorporated the randomized work-stealing scheduler to design a practical algorithm
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for maximum flow time. Using the idea of work-stealing, we revisit the problem of average

flow time in chapter 5 and show a practical algorithm, DREP, that has strong theoretical

guarantees and low scheduling overhead. Finally, we examine different online scheduling

objectives, throughput and general cost, in chapter 6, and give strong theoretical results for

the problem.

The goal of this thesis was to develop a theory of scheduling multiple parallel programs.

To that end, we looked at the commonly studied online scheduling objectives and provided

strong results for each of them. Of course, there are still many open problems remaining in

scheduling multiple DAGs. I mention a few of the most interesting ones here.

There is an open problem remaining within the details of our maximum flow time result. For

sequential jobs in the online non-clairvoyant setting, resource augmentation is not necessary

to obtain a constant competitive algorithm. However, this is not the case for parallel jobs in

the arbitrary speed-up curves model where there is a O(log n) lower bound even for schedulers

which uses O(1) speed augmentation. In the DAG model, we have show that FIFO is (1+ε)-

speed O(1)-competitive, but there may exist an algorithm that is constant competitive which

does not require speed augmentation6. Intuitively, FIFO seems like the correct algorithm

for this problem, however, it is difficult to prove its competitiveness without developing new

proof techniques involving the structure of DAG jobs. It would be very interesting to resolve

this open problem.

There are also some other flow time objectives which remain open such as the Lk norms of

flow time and stretch. Though less popular objectives than the average and the maximum

flow time, there are well known results in the case of sequential jobs. It is natural to try

6Note that for the weighted maximum flow problem, there does exist a lower bound for schedulers without
resource augmentation. This means our result in chapter 4 for weighted max flow is tight up to constant
factors
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to extend these result to the DAG model. Stretch, in particular, is a interesting problem in

this regard.

Finally, the work in this thesis were all on the identical machines setting where all the

processors we schedule on are exactly the same. There are many other settings which would

be interesting to study. There is not much known about scheduling DAG jobs in the related

machines setting where different processors have different speeds. There is also not much

known when other resources are taken into account, such as memory. Both of these are

worthwhile problem settings that correspond to real-world computing systems. It is well

worth trying to understate the way to efficiently run parallel jobs since these system will

only grow more and more sophisticated in the future.

One day, we shall understand scheduling parallel programs just as well as for sequential

programs. This thesis represents a major step in developing the theory of scheduling jobs

in the DAG model. By designing theoretically good and practically efficient scheduling

algorithms for many of the most popular online scheduling objectives, we have made much

progress towards the ultimate goal.
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[39] Kirk Pruhs, Jiŕı Sgall, and Eric Torng. Online scheduling. In Handbook of Scheduling -

Algorithms, Models, and Performance Analysis. 2004.

[40] Dana Randall, editor. Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January

23-25, 2011. SIAM, 2011.

[41] James Reinders. Intel threading building blocks - outfitting C++ for multi-core processor

parallelism. O’Reilly, 2007.

[42] Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn S. McKinley. Exploiting proces-

sor heterogeneity in interactive services. In 10th International Conference on Autonomic

Computing, ICAC’13, San Jose, CA, USA, June 26-28, 2013, pages 45–58, 2013.

[43] Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence con-

straints. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages

491–500, 2008.

[44] Ola Svensson. Conditional hardness of precedence constrained scheduling on identical

machines. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC

2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 745–754, 2010.

[45] Eric Torng and Jason McCullough. SRPT optimally utilizes faster machines to minimize

flow time. ACM Trans. Algorithms, 5(1):1:1–1:25, 2008.

168



[46] Gerhard J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor.

Comput. Sci., 130(1):5–16, 1994.

169


	Scheduling Multiple Parallel Jobs Online
	Recommended Citation

	List of Figures
	Acknowledgments
	Abstract
	Introduction
	Client-Server Scheduling Model
	Objectives in Online Scheduling

	Background on Online Scheduling
	Resource Augmentation
	Scheduling Setting
	Parallel Jobs

	Overview

	Overview and Related Work
	Work Stealing
	Online Scheduling
	Results

	Average Flow Time
	Introduction
	Preliminaries
	Additional notation
	Potential Function Analysis:

	LAPS in the DAG Model
	SJF in the DAG Model
	Analysis of SJF for Fractional Flow Time
	From Fractional Flow to Integral Flow
	SJF Falls Behind with Resource Augmentation

	Conclusion

	Maximum Flow Time
	Preliminaries
	FIFO for Maximum Flow Time
	Work-Stealing for Unweighted Maximum Flow time
	Work Stealing Lower Bound
	Experimental Results for Unweighted Maximum Flow Time
	Weighted Maximum Flow Time
	Conclusion

	Practical Average Flow Time
	Preliminaries
	DREP for Sequential Jobs
	DREP with Work-Stealing: A Practical Parallel Scheduling Algorithm
	Combining DREP with Work-Stealing
	Analysis of DREP with Work-Stealing

	Experimental Evaluation
	Evaluation Based on Simulations
	Evaluation Based on Real Implementation

	Conclusion

	Throughput
	Preliminaries
	Jobs with Deadlines
	Algorithm
	Properties of the Scheduler
	Bounding the Profit of Jobs S Completes
	Bounding the Profit of Jobs OPT Completes

	Examples
	Jobs with General Profit Functions
	Properties of the Scheduler
	Bounding the Profit of Jobs S Completes
	Bounding the Profit of Jobs OPT Completes

	Conclusion

	Conclusion
	References

