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Abstract

We present a new proof methodology that uses dynamic process creation to capture the struc-
ture of recursive distributed algorithms. Each recursive invocation of a distributed algorithm
is modeled as a separate process, encouraging local reasoning about the individual recursive
invocations and making explicit the communication that takes place among the concurrently
executing invocations. Our methodology involves the construction of hierarchical correctness
proofs in which the state of each individual call in a refined algorithm is mapped to the state
of a corresponding call in a simpler or more abstract algorithm. Algorithm optimizations that
result in the creation of fewer recursive calls are treated cleanly in the hierarchical proofs with
the use of a hiding operator that makes explicit exactly which recursive calls of the abstract
algorithm are optimized away in the refined algorithm.

The proof methodology is presented and illustrated in the context of an extended example,
the cloture voting Byzantine agreement algorithm of Berman, Garay and Perry. Dynamic pro-
cess creation is used to capture the recursive structure of the cloture voting algorithm, and a
complete hierarchical correctness proof for the algorithm is given. The structure provided by
dynamic process creation and the hierarchical correctness proof provides considerable insight
into this rather complicated distributed algorithm.
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1 Introduction

Recursion is a powerful technique for designing sequential algorithms that are both efficient and
easy to express. Therefore, it is not surprising that recursion has found its way into distributed
algorithms. For example, Peterson’s tournament tree algorithm for n-process mutual exclusion can
be viewed as the recursive instantiation of a two-process mutual exclusion algorithm [16]. Other
examples of recursive distributed algorithms include the original Byzantine agreement algorithm
of Lamport, Pease and Shostak [23] and, more recently, the cloture voting algorithm for Byzantine
agreement of Berman, Garay and Perry (7).

What is surprising is that relatively few distributed algorithms have actually been designed
using the recursive paradigm. In part, this may be reflection on the problem domain, but the
difficulty involved in reasoning about recursive distributed algorithms may be largely to blame. In
this paper, we argue that if one views recursive distributed algorithms in terms of dynamic process
creation, then it is easier to make sense of recursive distributed algorithms. We introduce a proof
methodology, based on dynamic process creation, that offers a new way to describe, understand
and reason about recursive distributed algorithms.

Dynamic process creation, the ability to create new processes in a system in the course of
performing a computation, is virtually ubiquitous in both programming languages and models for
distributed computing. Dynamic process creation, in its simplest form, is handled in programming
languages with a system call, such as the UNIX fork, that spawns a new process. Some program-
mirg languages provide language constructs, such as Ada’s task and task access type, that provide
a higher level mechanism for creating new processes at run-time. Taken to its logical extreme, dy-
namic process creation can be used to partition a given task into multiple subtasks, each handled
by a separate process for greater concurrency and improved modularity. When nested in this way,
dynamic process creation not only yields efficient programs that are easier to understand, but also
provides a useful mechanism for masking failures in a distributed system. This kind of nesting can
be seen in systems such as ISIS (8] and Argus [25], and has been studied formally [26].

In addition to the work in programming languages supporting dynamic process creation, there
has also been a great deal of interest in developing models and proof systems to support reasoning

about systems with dynamic process creation. For example, CCS is a mathematical model of



concurrent composition where the number of new processes and their communication can change
dynamically [29]. CCS allows a single composition to create an unbounded number of processes.
The Actor model [1] provides dynamic process creation by allowing an actor to giving a continuation
leading to more than one actor. Formal proof systems that accommodate dynamic process creation
have been developed. For example, [3] provides a formal proof system for a simplified version of the
parallel programming language called POOL [2] where parallelism is modeled by dynamic process
creation.

The reason dynamic process creation is so prevalent in programming languages and models is
that it is so convenient for structuring large concurrent systems. Within distributed computing,
dynamic process creation is useful because it provides a natural mechanism for handling both local
and remote subroutine calls. Subroutines have appeared in distributed algorithms in various forms.
The simplest and most standard form is a subroutine invoked as part of the local computation of
one processor in the system. More ingenious uses involve one distributed algorithm calling another
(different) distributed algorithm as a subroutine. For example, the drinking philosophers algorithm
of Chandy and Misra [9] can be understood in terms of a generalized dining philosophers algorithm
that is called as a subroutine by the drinking philosophers algorithm in order to establish priority
for the resources and prevent starvation [35]. In this paper, we are concerned with a third type of
subroutine call in which a particular distributed algorithm calls itself to solve a smaller problem.
This is what we mean by a recursive distributed algorithm.

Recursive distributed algorithms differ substantially from recursive sequential algorithms, and
these differences make reasoning about recursive distributed algorithms much more difficult than
reasoning about their sequential counterparts. The most important difference is that in recursive
distributed algorithms, recursive calls at different levels in the recursion may proceed in parallel and
even communicate information to each other as they execute. So, although one would like to reason
locally about each recursive call, one cannot consider a single invocation of a recursive distributed
algorithm executing in isolation, but must consider the interactions that may occur among the
different invocations. In fact, it is sometimes the case that these interactions are seemingly so
important that algorithm designers find it necessary to describe their algorithms in terms of a single
global state and a single thread of control, rather than in terms of separate threads and local states

for each recursive calls. Unfortunately, this makes local reasoning even more difficult. Therefore,



it would be desirable to have a methodology for describing and proving the correctness of recursive
distributed algorithms that would enable us to reason locally about each recursive invocation of
the algorithm and to make explicit the information that is shared among concurrently executing
invocations. '

In order to accomplish this, we advocate a methodology that exploits dynamic process creation
for describing recursive distributed algorithms in a structured way and for constructing careful
proofs of their correctness. The methodology pulls together several different techniques, principally
dynamic process creation [24] and hierarchical proofs [27], and brings them to bear on the problem
of studying recursive distributed algorithms. Using dynamic process creation to model recursive
calls in a distributed system allows each recursive call to be studied in isolation. This permits local
reasoning about the individual invocations. At the same time, it is possible to treat information
sharing among different recursive calls on the same processor using explicit accesses to shared
variables. This makes it clear exactly what information is being shared among the calls. Hierarchical
correctness proofs can be constructed that relate each invocation in a refined efficient algorithm
to a corresponding invocation in a more abstract inefficient algorithm. Furthermore, optimizations
that result in fewer recursive calls in the refined algorithm can be treated in the hierarchical proof
with the use of a hiding operator. Our methodology may be summarized as the following sequence

of steps.

1. State a careful specification of the problem in terms of the interactions between a module

and its environment.

2. Describe a simple (but probably inefficient) recursive algorithm in terms of dynamic process
creation. Ideally, this simple algorithm should not require shared information among differ-
ent invocations on the same processor, except for information transmitted as parameters on

invocation (passed down the recursion tree) or results returned (passed up the recursion tree).

3. Prove that the algorithm given in (2) meets the specification given in (1). This proof may
be carried out using a variety of techniques, but when the information flow is restricted as
described in (2), the dynamic process creation structure is well-suited to a simple inductive

argument and local reasoning about each of the recursive calls.
4. Describe an efficient (but more complicated) recursive algorithm in terms of dynamic process
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creation. Describe any information sharing among different invocations on a the same proces-
sor (other than parameter and return values) in terms of atomic accesses to shared variables.

To simplify later reasoning, variable sharing should be kept to a minimum.

5. Construct a possibilities mapping' from the states of each of the processes in the complicated
efficient algorithm to the states of the corresponding processes in the simple inefficient algo-
rithm. That is, structure the mapping on a process-by-process basis that allows one to see

the correspondences in the two systems.

6. Prove that the mapping constructed in (5) implies that the efficient algorithm “simulates”
the simple algorithm at the level of the interactions that occur between the algorithm and
its environment. Since the refined algorithm is more efficient, fewer recursive calls may occur
in the refined algorithm than in the simple one. These optimizations may be handled in the

proof by a hiding operator that makes explicit exactly where these optimizations take place.

Note that, as in any hierarchical proof, steps (4), (5}, and (6) may be repeated for successively
more refined algorithms, resulting in a proof that is completed in several stages.

Because dynamic process creation is available in many programming languages and models for
distributed computing, it was not necessary for us to construct a new model in order to develop
and illustrate our methodology. Instead, we have adopted the I/Q automaton model of Lynch and
Tuttle [27, 28] with the shared memory extensions of Goldman and Lynch [18]. Reasons for choosing
the I/O automaton model include the fact that it is well-suited for modeling distributed systems
and provides mechanisms for constructing precise problem specifications, writing unambiguous
algorithm descriptions, and constructing careful correctness proofs. However, our primary reason
for choosing the I/O automaton model is that it allows us to build upon previous work in the area
of hierarchical proof techniques for distributed algorithms [27, 34, 13], as well as work on modeling
dynamic process creation [24, 26], that has been carried out within that model. We emphasize,
though, that the methodology we describe is not necessarily limited to the context of this particular
model. In fact, any model that supports dynamic process creation, supports both message passing
and shared memory, and is amenable to hierarchical proof techniques (or proofs by refinement)

should be a suitable context for the methodology we describe.

!Possibilities mapping is a kind of state mapping (see Section 2.7).



We illustrate our methodology by presenting a structured description and complete hierarchical
correctness proof for the cloture voting Byzantine agreement algorithm of Berman, Garay and
Perry [7]. In Byzantine agreement protocols, a set of non-faulty processors must agree on a value
in the presence of arbitrary messages sent by faulty processors. In the simplest of the protocols,
namely the EIG (ezponential information gathering) protocol, the algorithm runs in a series of
“rounds”. Initially, each processor exchanges its value with every other processor and creates one
node in a “computation tree” for each value received. In the following rounds values received in the
earlier rounds are exchanged and the trees grow. At the end, each processor determines its final
value using a “bottom-up” majority taking scheme. The ESFM (early stopping and fault masking)
protocol [7] is more efficient and more complicated than EIG, but not as complicated nor as efficient
as the cloture voting algorithm. ESFM is an optimized version of EIG where the computation tree
does not necessarily expand completely. The final values of some nodes are predicted and once a
processor discovers that another processor is faulty, it “pretends” that all values reported by this
faulty processor are (0. In the clotu1:e voting protocol [7], each non-faulty processor runs several
“debates” of decreasing size concurrently with a main process that secures the votes from these
debates. Each debate is similar to an ESFM protocol. Although there are multiple debates in each
processor, each debate exchanges messages only with the corresponding debates in other processors
in order to grow its computation tree. A new debate is initiated at each round. The first debate is
started at each processor with the initial value assigned to that processor by the environment. If
it can be determined that there has been sufficient communication to safely assume that both the
values 0 and 1 are represented as initial values of non-faulty processors, then a subsequent debate
may be started with initial value 0. Otherwise, each subsequent debate is started with initial value
1. So, if any debate returns 0, then a default decision value may be taken immediately. When all
the debates on a given processor return, then that processor can determine the agreed-upon value.

Berman, Garay and Perry do not present the recursive structure of their algorithm in terms
of dynamic process creation. Rather, in their formulation, each debate is a single process that
maintains all information and handles all interaction at all levels in the computation tree. Here,
we reformulate their algorithm by treating each node in the computation tree as a separate process
that is created by its parent in the tree and returns a result to that parent. That is, we use dynamic

process creation to model each recursive call within a debate rather than representing the state of



the computation as one large data structure kept by a single process. Note, however, that we have
not changed the algorithm itself. Rather, we have exposed the recursive structure of the algorithm
and described it in terms of dynamic process creation.

Because our proof is carried out in several stages, it is longer than the proof given by Berman,
Garay, and Perry (7). However, we will demonstrate that considering the cloture voting algorithm
in terms of our methodology yields several benefits. Dynamic process creation makes the structure
of the algorithms more explicit; it is easier to see what information is used by each recursive call
since that information is kept by a separate process. In addition, representing each recursive call by
a separate automaton permits us to construct possibilities mappings that relate the corresponding
automata in two systems while hiding the actions of those automata representing processes that are
“optimized away” in the more efficient algorithms. Also, modeling the recursive calls as separate
automata permits us greater flexibility in constructing our simulation arguments, where we rely
on local commutativity arguments to permit the reordering of actions within a given automaton’s
execution. Such reordering is used to construct canonical equivalent executions that simplify our
arguments. Modeling each recursive call separately also permits us to make explicit the pattern of
communication between recursive calls in different processors. We describe the algorithms and carry
out our proofs in an asynchronous setting, and then make explicit a set of conditions under which
the executions of the cloture voting protocol are correct. We then show that these conditions are
guaranteed in all synchronous executions. In this way, we make explicit exactly how synchronization
contributes to the algorithm’s correctness.

The remainder of the paper is organized as follows. In Section 2, we provide a review of the
I/O automaton model, including a discussion of possibilities mappings and the mechanisms for
dynamic process creation and shared memory. Then, we begin our extended example in Section 3
with a brief statement of the Byzantine agreement problem. This is followed by our hierarchical
correctness proof, which parallels the development of the cloture algorithm as presented by Berman,
Garay and Perry.

The proof is carried out in several stages. We begin with the modeling of the EIG algorithm.
In Section 4, we recast the EIG algorithm in terms of dynamic process creation and provide a
formal description of the EIG algorithm in the I/O automaton model. We then prove that the EIG

algorithm solves the Byzantine agreement problem. The EIG algorithm is used as the basis of our



hierarchical proof. That is, if a system simulates (in a formal sense to be explained later) an EIG
system, then that system solves the Byzantine agreement problem.

In Section 5, we describe the ESFM algorithm. The algorithm is again recast using dynamic
process creation to model the recursive structure. ESFM is then proved to be correct using a
possibilities mapping, a particular kind of state mapping (see Section 2). By exhibiting a possibilities
mapping from the states of ESFM to the states of EIG, we show that ESFM systems “simulate” EIG
systems, and therefore solve the Byzantine agreement problem. To simplify the proof, we exhibit
the possibilities mapping only for a restricted set of canonical executions, and prove based on local
commutativity arguments that every ESFM execution has an equivalent canonical execution. In
the proof that our mapping is indeed a possibilities mapping, we use a hiding technique to capture
the optimizations used in the ESFM algorithm. That is, we hide the “extra” steps taken by the
EIG protocol to “keep up” with ESFM. This hiding operator makes explicit exactly where the
optimizations of ESFM result in savings over the EIG protocol, and takes advantage of the fact
that we model each recursive call as a separate automaton.

Finally, in Section 6, we present the cloture algorithm, reformulated in terms of dynamic process
creation, and its proof of correctness. The hierarchical proof is completed with a possibilities
mapping from the cloture protocol to ESFM. The cloture voting algorithm gains efficiency by
initiating a series of “debates” of decreasing size. Each debate is essentially another instantiation
of the ESFM protocol. In order to permit local reasoning about each of the separate “debates” in
the cloture voting algorithm, we introduce an oracle that abstracts away those properties of the
rest of the system upon which each of the debates depends. That is, as we consider each debate,
we view the remaining debates as being encapsulated within a single oracle that guarantees certain
properties. The oracle models the faults reported from other debates and captures the flow of
information among many simultaneous instantiations of the algorithm. It is helpful in isolating
and reasoning about individual instantiations of the algorithm. We show that every ESFM system
with an oracle simulates an “ordinary” ESFM system. Since in an asynchronous system the debates
can be created at any time and since the size of successive debates decreases, we stipulate certain
conditions and prove the cloture algorithm as a conditional property based on these hypotheses.
Given these conditions, we show that each “debate” in the cloture algorithm simulates an ESFM

system with an oracle. We then define a synchronous executions of the cloture voting algorithm



and show that the hypotheses are satisfied in all such executions. The correctness proof for the

synchronous cloture algorithm follows directly.

2 The 1/O Automaton Model

The I/O Automaton model [27, 28] is used to present the algorithms and proofs of correctness. The
model provides a composition operator that permits the modular construction of large systems and
a specification mechanism for writing precise statements of the problems to be solved by modules
in concurrent systems. The model encourages very careful algorithm descriptions, and can be used
to construct rigorous correctness proofs, including hierarchical correctness proofs. In addition, the
model can be used for carrying out complexity analysis and for proving impossibility results.

The I/O automaton model is significantly different from CCS [30] and CSP [19] in that input and
output actions in the I/O automaton model are distinguished, and an I/O automaton cannot block
an input action from occurring. In that sense, I/Q automata are similar to I/Q-systems [20], a model
that also provides support for composition and verification using simulation arguments [21, 22].

In this section, we provide a brief introduction to the model, including a discussion of techniques
for modeling shared memory and dynamic process creation. The details of the model and these

techniques may be found elsewhere {18, 24, 28].

2.1 I/O Automata

An I/O automaton is essentially a nondeterministic (possibly infinite-state) automaton with an
action labeling each transition. An automaton’s actions are classified as either ‘input’, ‘output’, or
‘internal’. An automaton can establish restrictions on when it will perform an output or internal
action, but it is unable to block the performance of an input action.

Formally, an action signature S is a partition of a set acts(§) of actions into three disjoint sets
in(9), out(S), and int(S) of input actions, outpul actions, and internal actions, respectively. We
denote by ezt(S) = in(§) U out(S) the set of external actions. We denote by local(§) = out(S) U
int(9) the set of locally-controlled actions. An I/O automaton A consists of five components: an
action signature sig(A); a set states(A) of stales; a nonempty set stert(A) C states(A) of start

states; a transition relation steps(A) C states(A) x acts(A) x states( A} with the property that for



every state s’ and input action x there is a transition (s',7,s) in steps(A); and an equivalence
relation part(A) partitioning the set local( A) into a countable number of equivalence classes. Each
class of a relation may be thought of as a separate process. We refer to an element (s',,s) of
steps(A) as a step of A. If (¢,7,38)is a step of A, then 7 is said to be enabled in s'. Since every
input action is enabled in every state, automata are said to be input-enabled. This means that an
automaton is unable to block its input.

An execution of A is a finite sequence sg, 71, $1,..., Ty, Sy OF an infinite sequence sg, Ty, 81, T2,. ..
of alternating states and actions of A such that (s;,mi41,8i41) is a step of A for every i, and
so € start(A). The schedule of an execution a, denoted sched(a), is the subsequence of a consist-
ing of the actions appearing in ¢. The behavior of an execution or schedule ¢, denoted beh{a),
of A is the subsequence of o consisting of ezternal actions. The sets of executions, finite execu-
tions, schedules, finite schedules, behaviors, and finite behaviors are denoted ezecs(A), finezecs{A),
scheds(A), finscheds(A), behs(A), and finbehs( A), respectively. A particular action may occur sev-
eral times in an execution or a schedule; we refer to a particular occurrence of an action as an evendt.
An eztended step of A is a triple (s;,71...7,,8in) such that there exists states s; fori < j < i+ n

such that (s;,m;4+1-i,8;41) is a step of A for every j.

2.2 Composition

We can construct an automaton that models a complex system by composing automata that model
the simpler system components. When we compose a collection of automata, we identify an output
action 7 of one automaton with the input action 7 of each automaton having 7 as an input action.
Consequently, when one automaton having = as an output action performs r, all automata having
T as an action perform 7 simultaneously (automata not having r as an action do nothing).

Since we require that at most one system component controls the performance of any given
action, any collection of automata to be composed must have disjoint sets of locally-controlled
actions and no automaton in the collection may have as an input action an internal action of
another aitomaton.

In the composition A = [];cy A; of a compatible collection of automata {4;};.;, the output
actions of A are all the output actions of the components {A;};.;, the internal actions are all

the internal actions of the components, and the input actions are the remaining actions of the
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components. Thus, an action that is an output of one component and an input of another becomes
an output action of the composition. In our proofs, it is sometimes convenient to hide such actions.
If Ais an automaton and X is a set of output actions of A, then Hidex(A)is the automaton differing
from A only in that out(Hideg(A)) = out(A)— X and int(Hides(A)) = int(A)UZ. We also define
the set of equivalence classes of the composition to be the union of all the sets of equivalence classes
of the component automata.

Each state of the automaton A resulting from the composition is a vector of states of the
component automata. Given an execution a = sp7m14] ... of A4, let a]A; (read “a projected on A4;”)
be the sequence obtained by deleting 7;5; when 7; € acts(A;) and replacing the remaining $; by

§;i], the #** component of the state vector .

2.3 Fairness

Of all the executions of an I/0 automaton, we are primarily interested in the ‘fair’ executions —
those that permit each of the automaton’s primitive components (i.e., its classes or processes) to
have infinitely many chances to perform output or internal actions. The definition of automaton
composition says that an equivalence class of a component automaton becomes an equivalence
class of a composition, and hence that composition retains the essential structure of the system’s
primitive components. In the model, therefore, being fair to each component means being fair to
each equivalence class of locally-controlled actions. A fair execution of an antomaton A is defined

to be an execution a of A such that the following conditions hold for each class C of part(A):
1. If o is finite, then no action of C is enabled in the final state of a.

2. If a is infinite, then either a contains infinitely many events from C, or a contains infinitely

many occurrences of states in which no action of C is enabled.

We denote the set of fair executions of A by fairezecs(A). We say that 8 is a fair behavior of A if 8
is the behavior of a fair execution of 4, and we denote the set of fair behaviors of A by fairbehs(A).
Similarly, 8 is a fair schedule of A if 8 is the schedule of a fair execution of A, and we denote the

set of fair schedules of A by fairscheds(A).
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2.4 Shared Memory Extensions

The I/O automaton model has been extended to allow modeling of shared memory systems, as well
as systems that have both shared memory and shared action communication [18]. Here, we use the
shared memory extensions to model data structures shared by processes running within the same
processor, whereas message passing is used to model communication between processes running
on different processors. A special kind of output action, called a shared memory action is used
to model an atomic access to shared memory. Each shared memory action contains information
that corresponds to the contents of the shared memory before and after the action occurs. Shared
mermory actions are used by shared memory automata to access the shared variables. Each shared
memory automaton must be prepared to handle any value it may observe in the shared variables,
so the preconditions of an output action may not depend on the values of the shared variables.
Since shared memory automata are special cases of I/ automata, all the I/0 automaton model
definitions (notably composition and fairness) apply to shared memory automata as well. Shared
memory automata operate in a system in which the environment is free to change the contents of the
shared memory at any time. However, a closeout operator C is provided for taking a shared memory
automaton A and a set of variables X and producing a new shared memory automaton C(4, X)
in which the given set of variables is made private (absorbed into the local state of the composed
automaton). This discussion should be sufficient to understand the use of shared variables in the

algorithms presented here. For more details on the shared memory extensions see [18].

2.5 Dynamic Process Creation

To model dynamic process creation, we adopt the technique described in [24]. A system in which
processes are created and destroyed can be modeled as the set of all processes (where each process
is an I/O automaton) that could possibly be created during any execution of the system. Creation,
then, simply “wakes up” the desired automaton, which becomes “alive”. For each automaton, a
predicate is defined which indicates whether or not it is alive in a given state; the automaton does
not actually do anything when it is not alive. Only live automata may take steps; however, when
an automaton is not alive it may take a step involving an input action which is a creation action.

An additional requirement is that a creation action has no effect if the automaton is already alive.

12



2.6 Problem Specification

A ‘problem’ to be solved by an I/O automaton is formalized as a set of (finite and infinite) sequences
of external actions. We define a schedule module H to consist of two components, an action signature
sig(H), and a set scheds(H ) of schedules. Each schedule in scheds(H ) is a finite or infinite sequence

of actions of H.

Although the model does not allow an automaton to block its environment or eliminate un-
desirable inputs, we can formulate our problems (i.e., correctness conditions) to require that an
automaton exhibits some behavior only when the environment observes certain restrictions on the
production of inputs. A useful notion for discussing such restrictions is that of a module ‘preserving’
a property of behaviors. Informally, a module preserves a property P iff the module is not the first
to violate P: as long as the environment only provides inputs such that the cumulative behavior
satisfies P, the module will only perform outputs such that the cumulative behavior satisfies P.
A formal definition and a proof that a composition preserves a property if each of the component
automata preserves the property are given elsewhere [28].

An automaton is said to solve a problem P provided that its set of fair behaviors is a subset of
P and the automaton is said to implement the problem P if its set of finite behaviors is a subset
of P. Sometimes it is sufficient to establish a correspondence between two concurrent systems only
from the point of view of each “user” rather than in a global perspective. That is, we want the
behavior at each user to be the same in the two systems, but we are not interested in the relative
order of actions at different users. Let U be a set of disjoint subsets of the external actions of an
automaton B. That is, U = {U;}ier of users for some index set Z, where ezt(B) 2 ;7 U; and

Vi,jeZ,i# j=U;nU; = 0. Wesay that an automaton A simulates an automaton B with respect

to users U = {U;}iez if and only if
1. ext(B) = ext(A), and
2. VP € scheds(A),3a € scheds(B) such that Vi € Z, 8|U; = a|U;.

Thus, if one system simulates another, then all users in the first system should see the same sequence
of actions they could have seen in some execution of the second system.
Let B be a schedule module or an automaton and let U = {U;};cr be a set of disjoint subsets

of the external actions of B. We say that B is closed under reordering with respect to U iff
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VB € sched(B), for every permutation 8, of S|U, if 8,|U; = BIU; Vi € Z, then there exists a
schedule B’ € sched(B) such that 8, = §/|U. The following lemma follows from the definitions:

Lemma 1: Let A and B be automata or schedule modules such that ezt(4) = ext(B). If B is

closed under reordering with respect to U and A simulates B with respect to U, then A solves B.

2.7 Hierarchical Proofs in the I/O Automaton Model

In a hierarchical proof, one shows that the system of interest solves some intermediate system,
which in turn solves the problem. We now describe one method for proving that an automaton A
solves an automaton B [27]. This method makes use of the notion of a possibilities mapping, a
correspondence between the states of the two automata that can be used to prove that 4 solves B.

Suppose A and B are automata with the same external action signature, and suppose b is a
mapping from states(A) to the power set of states(B). The mapping h is said to be a possibilities

mapping from A to B if the following conditions hold:
1. For every start state ag of A, there is a start state by of B such that by € h(ag).

2. If &’ is a reachable state of A, ¥’ € h(a’) is a reachable state of B, and (&', 7,a) is a step of A,

then there is an extended step (¥',7,b) of B such that y|ezt(B) = 7|ezt(A), and b € A{a).

If a is a state of A, then astate b € h(a) in B is referred to as a possibility for a. The first condition
of possibilities mapping says that every start state of A has as one of its possibilities a start state
of B. The second condition says that steps of A and B preserve possibilities. By exhibiting a
possibilities mapping we prove that A implements B. When every fair execution is finite (as in the
systems in this paper) and A implements B, it follows that A solves B. The interested reader is
referred to [28].

Sometimes, we are interested in showing a correspondence not for all executions of a system,
but only for a restricted subset of its executions. Therefore, for a system A with execution a, we

say that h is a possibilities mapping from A to a system B for execution o iff
1. if ag is the initial state of a, then there is a start state by of B such that by € h(ao), and

2. if @’ is a state of a, b’ € h(a') is a reachable state of B, and (a,7,a) is a step in «, then there

is an extended step (4,7, b) of B such that y|ext(B) = w|ext(A), and b € h(e).
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If ® is the subset of executions of A of interest and A is a possibilities mapping from A to B for
all o € ¢, then we know that for all behaviors of A of interest, there exists an execution of B with
the same behavior. One may think of this restricted set of executions as an external constraint on
the set of reachable states in the original definition.

The following corollary follows immediately from the definitions.

Corollary 2: Let k be a possibilities mapping from a system A to another system B for execution
a for all @ € ®, where & C ezecs(A). Let U be a set of disjoint subsets of ext(A) (i.e. U is the set
of “users” of A). If V&' € execs(A), Ja € ® such that sched(a’) is a permutation of sched(a) and

for all » € U sched(a’)|u = sched(a)|u, then A simulates B.

3 The Byzantine Agreement Problem

In the Byzantine agreement problem [23], a set of non-faulty processors must agree on a value in
the presence of arbitrary messages sent by faulty processors. More precisely, consider n processors,
t of which may be faulty. If we let P denote the set of processors and T denote the set of faulty
processors, then the set of processors NF = P — T are called non-faulty. We assume that the
non-faulty processors initially do not know the set T'. Each processor begins with an initial value,

either 0 or 1, and processors must decide on final values according to the following conditions:
¢ agreement: If two non-faulty processors decide on final values v and v/, then v = v'.

o validity: If all non-faulty processors start with the same initial value v, then v is the only

allowable decision by a non-faulty processor.
s termination: All non-faulty processors eventually decide on a final value.

Faulty processors may behave maliciously in order to confuse the rest of the system. In other words,
they may send conflicting messages to different non-faulty processors in order to “fool” them into
deciding on different final values.

Typical measures for the complexity of a Byzantine agreement algorithm include resiliency (the
number ¢ of faulty processors tolerated in a systém of n processors), time (the number of “rounds”

r of message exchange required), and the maximum message size m. The Byzantine agreement
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problem has been studied extensively. Lower bounds on resiliency (n > 3t) [23, 15]2, time (r = t+1
rounds) {12, 14], and message size (m = 1) are known. So far, no algorithm has achieved all three
of these bounds, but several algorithms have achieved two of the three, or have come close to all
three bounds [4, 5, 6, 7, 10, 11, 12, 17, 23, 31, 33]. For a comparison of these algorithms in terms
of these complexity measures, see [11] and [17]. The cloture voting protocol, the central example of
this paper, works when n > 4%, uses {+ 1 rounds of communication, and message size polynomial in
n. These results hold for synchronous protocols only, and it has been shown that every completely

asynchronous protocol for this problem has the possibility of nontermination, even with only one

faulty processor [16].

3.1 Schedule Module B

We now define Schedule Module B, a specification of the Byzantine Agreement problem. The
schedule module captures the problem to be solved by the set of non-faulty processors in the
face of an environment that controls the initiation of the protocol at each non-faulty processor,
the scheduling of all message delivery events, and the contents of all messages delivered to non-
faulty processors on behalf of faulty processors. Well-formedness and liveness requirements of the
environment are stated explicitly as part of the specification. The problem is formulated in terms of
asynchronous computation. Later, we identify conditions (guaranteed in synchronous executions)

under which the problem is solvable. An illustration of the module B and its relaiionship to the

environment is shown in Figure 1.

CREATE(x,v)

SEND(g x,v)

( Message System )

Figure 1: Schedule module B and its environment.

2Although randomized algorithms can be used to solve Byzantine agreement with ‘high’ probability, no determin-

istic algorithm can solve Byzantine agreement when more than one third of the processes are faulty [23, 15].
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Because we are working in an asynchronous setting, we need to place liveness conditions on the
behaviors of the faulty processors. Faulty processors must continue to send messages as if they are
participating in the algorithm (but may send conflicting messages to different processors). However,
the faulty processors must still adhere to the communication patterns of a given algorithm; otherwise
they could be trivially detected as faulty. Since different algorithms have different patterns of
communication, we would like a general mechanism for defining the liveness conditions. For this,
we introduce the following definitions of node-names, root-names, and peers.

Recall that P is the set of processor names, with T C P the set of names of faulty processors and
NF = P—T the set of names of non-faulty processors. Let node-names be an arbitrary set of names
that we will use to identify automata in our system. Let root-names be a set of names containing
exactly one element for each g € NF', where we write root-name, to denote the particular element
of root-names corresponding to g. We write node z or automaton z to refer to the automaton with
name z. If ¢ € root-names, then node z is called a root node. We will require the environment
to create each root node to initiate the algorithm at each processor. The other nodes are used to
model the processes created dynamically as the execution unfolds. Let peers be a mapping from
node-names to the power set of P. For a node z, peers(z) denotes the set of all processors from
which z is willing to accept a message. Let M be the universal set of messages. This set captures
the allowable set of messages that may be exchanged between the nodes in an algorithm.

Since we want the behavior of a faulty processor to be constrained by the choice of the algorithm,
we do not fix the values for node-names, root-names, peers, and M here; instead we treat them
generally in our problem statement. Later, when we present specific algorithms, these sets will be
given concrete values. Now the signature of B can be given.

Input actions:
CREATE(r,v, P,t) where r € root-names, v € {0,1}
RECV(h,z,u) where z € node-names, h € peers(z), p € M

Output actions:

RETURN(r,v) where r € root-names, v € {0,1}

CREATE(z,v,Q,m) where z € node-names — root-names, v € {0,1},Q C Pm<torm= 1

SEND(g,z,p) where g € NF, z € node-names, u € M
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We have CREATEand RETURN actions for every non-faulty processor. The CREATE(r, v, P, t)
action with r = root-name, is under the control of the environment and initiates the algorithm at
processor g with initial value »; the set of processors P involved in the consensus and the num-
ber of faulty processors ¢ are also communicated by this action. The RETURN(r,v) action with
r = root-name, is used by non-faulty processor g to report its final value v.

The CREATE(z,v,Q,m) actions not only are used internally to invoke recursive calls in the
algorithm by awakening nodes in the computation tree within a processor but also serve as notifi-
cations to the message system that a new automaton z has been awakened, and may now receive
messages. The parameters ¢ and m denote the set of all processors and the number of faulty
processors respectively. Each SEND(g,z,u) action informs the message system to deliver a value
4 to the node z from a node in the non-faulty processor g. The corresponding RECV (g, z,u)
action is output by the message system to deliver that message. The other RECV(j, z, u) actions,
with j € T, are the arbitrary messages delivered on behalf of the faulty processors and are under
the control of the environment. Note that we explicitly model neither the message system nor the
faulty processors, but simply define the weakest possible restrictions on their behaviors. We define

an arbitrary sequence g of actions of the schedule module B to be well-formed iff

(wfl) Vz € node-names there exists at most one CREATE(z,v,Q,m) and at most one
RETURN(z,v') in 3, and the RETURN action must occur later than the corre-
sponding CREATE,

(wi2) Vg € NF,¥z € node-names there exists at most one action in § of the form
SEND(g,z,v) for v € {0,1}, and if z € root-names, then for each u € M, there
exists at most one SEND(g,z, ) action in f3,

(wi3) Yh € P,¥z € node-names there exists at most one action in S of the form
RECV(h,z,v) for v € {0,1}, and if z € root-names, then for each u € M, there
exists at most one RECV (h,z, p) action in 8,

(wid) Vi € NF,Vz € node-names if RECV(j,z,u) occurs in 3, then the corresponding
SEND(j,z,p) occurs earlier in £.

The well-formedness conditions say that every node is created at most once, returns only after it

is created, there is only one message, with v € {0, 1}, for a given source-destination pair, and that
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no duplicate messages are directed toward a root node. We say that an arbitrary sequence 3 of

actions of B is input-live iff

(il1) Vr € root-names there exists a CREATE(r, v, P,t) action in f such that v € {0,1},

(i12) Vz € node-names, Vj € peers(z) N T if a CREATE(z,v,Q,m) occurs in § and
if z is not a leaf node, then there exists a RECV(j,xz,v) action in 8 such that
v € {0,1}, and

(i13) if a SEND(g,z,v) action occurs in S such that ¢ € NF, = € node-names, and
a CREATE(z,v',Q,m) occurs in B, then a corresponding RECV (g, z,v) occurs
later than both the SEND and CREATE actions in §.

The first liveness condition (il1) states that the algorithm is initiated at each processor. The
sécond liveness condition (il2) says that the faulty processors must continue to participate in the
algorithm. This is needed since we do not assume that the computation proceeds in synchronized
rounds. Finally, (il3) says that messages sent by a non-faulty processor are eventually delivered by
the message system. Note that (il3) guarantees delivery even if the destination node is not created

until after the message is sent.

Now we can define the set of schedules for B. Let # be a sequence of actions in sig(B). Then

B € scheds(B) iff
1. B preserves well-formedness in 8, and
2. if B is well-formed and input-live, and n > 3¢ then the following “Byzantine properties” hold:

(bl) agreement: if RETURN(r,v) occurs in § for some r € root-names and v € {0,1}, then

no RETURN(+',v') occurs in § for any r' € root-names such that v # v’

(b2) validity: if Jv € {0, 1} such that for every r € root-names, CREATE(r,v, P,t) occurs
in B3, then every RETURN(r,v') has v' = v.

(b3) termination: Vr € root-names, RETURN(r, v;) occurs in 3 for some v, € {0,1}.

For schedule module B, we define the users U = {U, }, . ppots Where U, = {CREATE(r,v, P,1),
RETURN(r,v)}, where v € {0,1}.

Lemma 3: Schedule module B is closed under reordering with respect to U.
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Proof: Let § € sched(B) and let 3, be a permutation of #|U such that YU, € U, 8,|U, = B|U,. .
We construct ' from §, as follows: Let 8’ = f,. Since the order (w.r.t. each user) in which the
CREATE and RETURN actions occur in 3, is same as that in 8, @' is well formed and satisfies
the three properties (bl), (b2), and (b3). To meet the liveness condition (il2), we simply append

the actions of the form RECV(j,z,v) one for each j € T at the end of #'. [

4 Exponential Information Gathering

The basis of our hierarchical proof is a simple but inefficient algorithm for Byzantine agreement
known as exponential information gathering [7] (EIG), a variant of the original Byzantine agreement
algorithm [23]. The EIG algorithm proceeds in a series of rounds, although here we do not assume
that these rounds are synchronized. In the first round, each processor exchanges its value with every
other processor. In the subsequent rounds values received in the previous round are exchanged.
After ¢t 4+ 1 rounds, each processor determines its final value using a “bottom up” majority-taking
scheme. In the more efficient versions of this algorithm that we describe later, processors do not
exchange all the values. Instead, the algorithm detects faults and masks values sent by the faulty

processors to some predetermined default value.

4.1 The Algorithm

We model the EIG algorithm using dynamic process creation to capture its recursive structure. We
model each processor as a collection of automata organized into a tree. The environment creates
(awakens) the automaton at the root of the tree to initiate the algorithm, and each non-leaf node
in the tree of automata awakens its children on the basis of values received from its corresponding
automata in the trees of other processors. Each automaton returns a value to its parent based on
the majority of the values returned by its children, and finally the root node returns a decision
value to the environment. One might argue that our presentation of the simplest of the Byzan-
tine agreement algorithms (exponential information gathering) is made more complicated by the
introduction of separate processes to capture the recursive structure of the algorithm. However,
the extra effort in modeling this additional structure in the simple algorithm pays us back by per-

mitting straightforward and insightful hierarchical proofs of correctness for the more sophisticated
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algorithms (ESFM and cloture).

To describe the algorithm formally, we use a notation similar to that in [7]. For an alphabet

A

Figure 2: EIG-tree for ¢ with set £ = {a,b,¢,d} and index ¢ = 1.

T, let £* denote the set of sequences from the set X* without repetitions, and let £} denote the
set of sequences from Z* of length at most k. Let A € 3°* be the empty sequence. For ¢ € 3,
we define an EIG-tree for g with the set ¥ and index ¢ to be a tree with root vertex [, g] and
with one vertex for each pair of the form [o, g] (read “node ¢ in ¢”) for all ¢ € £}, ,, where each
node [o, g] has as its children all nodes of the form [¢7, g] such that oj € £f,,. Figure 2 shows an
EIG-tree for processor a, where the component o of a node [0, a] is derived as the concatenation of
the labels along the path from the root to itself. Note that since every node [, a] in an EIG-tree
must have a o € L, ,, no path in the EIG-tree shown in Figure 2 has a repeated label. Although o
represents a sequence, we sometimes abuse the notation and let ¢ stand for the set of all elements
in the sequence. When the processor name g is clear from the context, we sometimes write node
o instead of [o,g]. Two nodes [o,¢] and [0, ¢'] (in possibly different EIG-trees) are said to be
cousins iff ¢ = ¢’. From this definition, a node [o, g] is a cousin of itself.

In modeling the EIG algorithm, we capture the recursive structure by establishing for each
processor a tree of automata as follows. The set of automata are named using sequences from P*
of length at most ¢ + 1, where ¢ = |T'| is the number of faulty processors in the system; the root
automaton is named by A (the empty sequence); and the children of o have names of the form
¢j € P*. The algorithm starts at each processor with the creation of the root automaton with
a particular initial value. Each automaton awakened during the execution sends its value to the
cousin nodes in all processors. After the receipt of the value v of an automaton ¢ on processor j,

the automaton ¢ on processor g wakes up the automaton o7 with an initial value ». This continues
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until the trees grow to a depth of ¢ 4+ 1. Then each node establishes a final value. The final value of
a leaf is its initial value. Internal nodes compute their final values by taking the majority value of
all of their children’s final values. The value returned by the root automaton on a given processor

is the final value of that processor.

Input Actions: Output Actions:
s CREATE([o,9],v,@,m) ° CREATE([O’J g] v, Q,m)
E:  s.vinitial, 5-Vnal — ¥, ¥ §'.status = ‘running’
s.P,sn,si—Q,|Q],m (ej,v) € s'.child
if |0l <1t J & &' .created
then s.pending_sends — @ m=s'1
s.status — ‘running’ Q=s.P-{j}
else  s.pendingsends — @ E: s.created « s'.created U {;}
s.status — ‘fixed e SEND(g,[o,h],v)
e RECV(j,[o,g),v), where j € s.P P: bk € & .pending sends
E: s.child « s'.child U {(¢],v)} v = 8 Winitial
e RETURN([o7,g},v) E: s.pendingsends «— s'.pending sends — {h}
E: if v # L then s.ret{v] — s .ret[v]+1 e RETURN([o,9l, f)
P: &' .status =‘fixed’
. f = & vana
Internal Actions: E: sstatus «— ‘returned’

. FINAL([J, g, v) where v € {0,1}
P: s'status = ‘running’
s'.pending_sends = @
& ret[0] + 5’ .ret{l] = s'.n
v=10= s .ref[0] > s.n/2
v=1= s ref[l] > s.n/2
E: s.status, s.vgna «— ‘fixed’, v

Figure 3: Transition relation for automaton [o, g] in EIG.

We define an EIG system type to describe the structure of an EIG system. An EIG system
type is a six-tuple (P, T, nodes, roots, peers, Y}, where P and T are sets of processor names with
T C P denoting the set of faulty processors, nodes is a set of automaton names from P, x NF,
roots C nodes contains the names of automata initiated by the environment, peers is a mapping
from nodes to the power set of P, and ) is a forest of automaton names. We require that n > 3t.
For every non-faulty processor ¢ € NF, we define nodes, = {[0,9] | ¢ € P2}, and roots, = [A, ¢].
For every node o, peers(c) = {j:j€ PAj ¢ o}, the set of processors from which node o is
willing to receive messages. The allowable set of messages M = {0,1,0| 0 € P?,}. Finally,

Y ={Y,|lg € NF}, where )Y, is the EIG-tree for g with set P and index ¢.

22



To construct an EIG system for a given EIG system type, we associate an automaton [o, g] with
each element [o, g] of nodes. Each non-faulty processor g is modeled as the composition of all the
automata with names from the set nodes,, and the EIG system itself is the composition of all the
non-faulty processors. More formally, for each non-faulty processor ¢ € NF, X, =[] Aenodes, A.
Then the EIG system is the composition [[,cnp X,

Each component automaton [o, g] for a non-faulty processor g in an EIG system exchanges
messages with its cousin automata. If [o,g] receives a value of v from j then it wakes up the
automaton [oj, g] with the value of v. The state of the automaton [o, g] consists of the components
Yfinal, Vinitial, Status, ret, child, created and pending_sends. The values ¥y and vgna) are the initial
and final values of the automaton respectively. The variable status defines the activity of the
automaton. We say that an automaton is ‘alive’ if its status is either ‘running’ or ‘fixed’, and we
say it is ‘confirmed’ if its status is either “fixed’ or ‘returned’. The variable ret maintains the number
of children that have returned with a specific final value. The set child contains pairs (oj,v) such
that o7, ¢] is a child of [, g] in ), that was already created or is to be created with a value v; the
set created contains all the children of [o, g] that were actually created; and the set pending_sends
C P contains the processors to which the initial value of {o, g] needs to be sent. Initially, status
is ‘dormant’ and ¥in;iial a0d VEnal are undefined (L); the values of ret[0] and ret[1] are 0. The sets
pending_sends, child, and created are initially empty. In addition we have three variables P, n, and
t local to an automaton which hold the set of all possible children, the number of such children,
and the number of potentially faulty processors in the system. P, n, and ¢ are undefined initially.

The transition relation for the automaton [o, ¢] in the EIG system is shown in Figure 3. We
specify the transition relation of an automaton by giving for each action a list of preconditions (P)
and effects (E). An action is enabled from any state ¢ satisfying the action’s preconditions, and the
action takes the automaton to the state s such that s can be obtained by modifying s’ as indicated
by the action’s effects. Since input actions are enabled in every state, the obvious precondition
(true) is omitted.

The actions of the automaton [o, g] are as follows. The CREATE([o, ¢], v, @, m) input action
awakens the automaton. It initializes the initial value w;4;;. and the local variables P and ¢. If
[o, 9] is not a leaf node (Jo| < t) and m # L it sets the status to ‘running’; otherwise the status is

set to ‘fixed’. The set pending_sends is set to  if the automaton is not a leaf node, and the final
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)

- CREATE(y, vi, P1, 1)
_SENDA{g,y.v1)

RECV(h, y,v)

CREATE(z, v2, P2,12)

Message System

(

Figure 4: Actions for a node y in an EIG system shared with its parent z, child z, and the message

system.

value Ufnal 18 set to v if m # L. The automaton Jo, ¢] sends its initial value to all processors h & o
using the SEND(g, [0, k], ¥initial) output action. It receives the values sent to it by other processors
through the RECV (h,[o,¢],v) input action. The RECV(h, [o, g}, v) input action (the receipt of
the input value v of the node [o,h]) places (¢j,v) in the set child for the later creation of the
corresponding child. The CREATE([¢7, ¢], v, @, m) output action creates a child of [o, g]; the sets
child and created are used to ensure each child is created only once. The RETURN ([ej, g], v) input
action increments ret[v], the number of children with final value v. FINAL([e, g]), the only internal
action, fixes the final value of [, g] based on the majority of the return values of its children. The
RETURN([e, g}, f) output action returns the final value of [o, g] to its parent.

The actions of an automaton y shared with its parent x, a child z, and the message system are
shown in Figure 4. Each CREATE action also informs the message system that an automaton has
been awakened and may now receive messages. The messages destined for cousin automata are sent
through the message system with the SEND action. Messages from cousin automata are delivered
by the RECYV action from the message system. Note that the output RETURN action of a child

of ¥ is an input action to y. This action also carries the final value of the child to its parent.
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4.2 Proof of Correctness

We give an assertional proof to show that every EIG system solves the Byzantine agreement prob-
lem. For an automaton name z € nodes, we let s; denote the state of the automaton named z.
We begin by showing that each automaton in an EIG system preserves well-formedness. We then

state a number of invariants on the states of well-formed executions. These invariants are used to

show that every EIG system solves Byzantine agreement.
Lemma 4: Every automaton [e, ¢] in an EIG system preserves well-formedness.

Proof:  Since the effect of the CREATE([oj,g),v,Q,m) output action is to add j to the set
created, the automaton [o, g] creates a child [oj,g] at most once. After sending a message to
another processor h, h is removed from the set pending-sends, thus allowing for at most one SEND
to a given processor. The precondition of the RETURN requires that the status of the node [z, ¢]
be ‘fixed’; but after the RETURN action its status is set to ‘returned’. Thus there will be at most

one action of the form RETURN([e,g],v) in any execution of [o, g]. |

Lemma 5: Let s be a state in a well-formed execution of an EIG system. The following properties

hold:

(s1) Yz € nodes, s;.ret[v] is equal to the number of children y of « with s,.vanal = v and s,.status =

‘returned’.

(s2) For any o € P such that
VYh € NF,[o,h] is ‘confirmed’ and
Voj € P*,Vg € NF,5[5; g]-Vinal = S[o;,h]-Vfinals
it follows that YA € NF, s[4 ¢]-Ufinal = $[o,4] - Vfinal-
That is, if a non-leaf node = and its cousins are confirmed and if each child of z and its cousins

have a common final value, then z and its cousins will also have some common final value.

(53) Yg,j € NF,slaj,g].stat'us # ‘dormant’ = 3[¢j,9] Vinitial = S[a,;] - Vinitial-
That is, the initial values of the children of a node z are determined by the initial values of

its cousins in peers(z).
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(s4) For any ¢ € P? and v € {0,1} such that
Yg € NF,|o,g] is ‘confirmed’ and
there exists a majority of children [, g] of [0, g] with s[y; 5]-Vfinat = v,
it follows that Vg € NF, 8¢ ¢]-Vfinal = v-
Intuitively, if for a node z and its cousins, the majority of each of their children have some

common final value, then the node 2 and its cousins will also have the same final value.

(85) Yo € P?,Yg,j € NF, [0],9] is ‘confirmed’ = s[,; ]-Vhinal = S[o,;]-Vinitial.
That is, the final values of the children of a node z are determined by the initial values of its

cousins in peers(z).

(s6) Yo € P?,Vj € NF,3v € {0,1} such that Yg € NF, [oj,g]}is ‘confirmed’ = s[4;, 4]-Uinal = v-
If 7 and g are non faulty processors, then the final values of the node [¢3j, ¢] and its cousins

will be the same.

(s7) Vo € T*,3v € {0,1} such that Vg € NF, [0, ¢] is ‘confirmed’ = s[, 5] Vfinal = v-
If o is a non repeating sequence of faulty processors, then a node Jo, ¢g] and its cousins will

have the same final value. Note that A € T°.

Proof: The invariant (s1) holds initially, since all automata start in the ‘dormant’ state and
ret[v] = 0. The only action which makes sf,; )-status = ‘returned’ is the shared RETURN([o], g],v)
action which has s[,; g]-vfinal = v in its precondition; this action also increments sp, g5.ret[v].

Since sp,4)-status = ‘dormant’ initially, (s2) holds initially. Let [o, g} be ‘confirmed’ for all g.
The only action which transforms the automaton from being not confirmed to being ‘confirmed’ is
the FINAL({o, g], v) action which assigns the majority of all the values returned from the children
of [0, ¢]- Since, every child of [o, g] has the same value as its cousins, we have the same majority
value being assigned to the vana of the automata [o, g] for every non-faulty processor g.

Initially, when the status is dormant (s3) holds vacuously. CREATE([cj,9],v,Q,m)is the only
action which changes the status and also initializes vinitjal to v. The precondition of the CREATE
action requires (¢4, v) to be in the set child. Only the RECYV action inserts the message (o7, v) into
the set child. Due to well-formedness conditions, a SEND(j, [o, g], v) action must occur earlier. The
preconditions on SEND require that v = s’[o, ;]-Vinitial: Since vjnigal is “write once,” the invariant

holds.
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Invariant (s4) follows directly from the majority operation at every node [o,g] during the
FINAL([o, g], v} action, which also makes [, g] ‘confirmed’.

We prove (s5) by decreasing induction on the length of o. Note that || < 2, s0 |o] = t is our
basis. For {o| = t, due to (s3) we have sp; g)-Vinitial = S[o,j]-Vinitial- Since the value of m is always
chosen as s.t we have S[0j,g)Vinal = S[o;,g]-Vinitials according to the effect of the CREATE action.

Let |o| < ¢ and 8[o,j]-Umitial = V. Assume that [oj, h] is ‘confirmed’ for all A € NF. Since
S[0,7)- Vinitial = v, from (s3) we have s[,; ] Vinitial = © for all g € NF. Inductively, for every k € NF,
if ojk € P* then s,k g]-Vfnal = v for all g € NF. Since |T| =, |oj| < t, and the number of such
k’s is at least n — ¢ — ¢ > ¢, we can apply property (s4) and get Sp,;,a]-Vfinal = .

Property (s6) is a direct consequence of (s5).

We prove (s7) by contradiction. Let 7 € T* be the deepest node in the EIG tree such that (s7)
does not hold. Consider rj € P*. If j € NF, then 3v such that sf,;,].Vfinal = v for all g € NF
according to (s6). If j € T, then we have 7j € T*. Again s[,;g].Vinal has the same value for all
g € NF due to the assumption. Thus, from (s2) we have a common (the majority) value across all

processors for the vgna of 7. ]

To show progress and termination of the EIG algorithm, we introduce a variant function V
which satisfies the following: every action decreases V, there is a lower bound for V, and whenever
V is greater than this lowest element, some action is enabled. The existence of such a function
proves termination.

The variant function ¥ has five components, the first three relating to the status of the automata
in the system, and the last two relating to the communication between the automata in different
EIG trees. Note that the communication actions (SEND and RECYV) do not modify the status
variable in the state of any automaton. Let o be a prefix of an execution of an EIG system, and

let o end in state s. We define V(a) = (D, R, F, P, W), where

= |{z € nodes : s;.status = ‘dormant’}|,

= |{z € nodes : s,.status = ‘running’}|,

D

R

F = |{z € nodes : s;.status = ‘fixed’}|,
P =3 cenodes |5z-pending_sends|, and
w

= (number of SEND events in «) — (number of RECV events in a).
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Informally, D is the total number of automata in the system which are ‘dormant’, R is the to-
tal number of automata that are ‘running’, F is the total number of automata that have their
final values ‘fixed’, P is the number of messages ‘pending’ in the message system, and W is the
total number of messages waiting to be delivered. We let the domain of values for V be ordered
lexicographically.

Let treesize(n,t) be the size of an EIG tree for a set of n processors and index ¢. That is,
treesize(n,t) = TtHL[1%3(n — 4). Since each non-faulty processor initially has a full tree of

dormant automata, the initial value of the variant function is
V = ((n — t) x treesize(n,1),0,0,0,0).

Note that the domain of all the components in V is the set of non-negative integers, so V is bounded

from below by (0,0,0,0,0).

Lemma 6: Let a = Srs be a prefix of an input well-formed execution of an EIG system. Then

V(a) < V(8).

Proof: The proof is a case analysis. Let V(8) = (D', R, F', P/, W'). Based on each possible action
w, we compute the value V(a), and observe that V(a) < V(5).
(D-1L,R+1,F,P+n-|o|, Wi |o|<t+1

x = CREATE([o,g], 0, @, m): V(a) =
(D' -1,R, F' +1,P', W) otherwise

x = FINAL: V(a) = (D', R' - 1,7 + 1,P", W').

o 7= RETURN: V(o) = (D', R, - 1,P',W').
o © = SEND: V(a) = (D', R, F',P' — 1, W' + 1).

r = RECV: V(a) = (D', R/, F, P W -1).

Lemma 7: If a is an input well-formed and input live execution of an EIG system and V(a) >

(0,0,0,0,0) in state s of , then some action in the system is enabled in state s.

Proof: We show that if at least one of the components of the variant function is positive then there

is an action enabled in the system. We analyze case by case.
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¢ Let W > 0. This implies that at least one message is waiting to be delivered. Due to the
liveness assumptions on the environment this message eventually will be delivered. Thus a

RECYV action is enabled.

Let P > 0. There is an automaton [o, g] such that sy, ;).pending sends is not empty. Hence

the action SEND(g, [0, k], »;) is enabled for some % and v;.

Let F > 0. Let [0, g] be an automaton such that its status is ‘fixed’. The action RETURN([o, g], v¢)

is enabled for some vy.

e Let D > 0. Let [oj,¢] be a node closest to the root that has not yet been created (i.e.
the status is ‘dormant’). Consider the status of the automaton [o,j]. There are three
cases. Cases (i) and (ii): If sf, jj.status = ‘returned’ or sp, jj.status = ‘fixed’, then we

have .s[a‘ﬂ.pending_sends] = 0 implying that the action SEND(j, [0, ], $[0,j)- Vinitial) OCcurs

in . Due to the third liveness condition (il3), the corresponding RECYV action occurs in
a. So the action CREATE([oj, g}, v:,@,m) is enabled. If the RECV action does not occur
in @, then W > 0, so an action is enabled as argued above. Case (iii): If s, jj.status =
‘running’, then there are two possibilities. Either |s[m-] .pending_sends' > 0 implying P > 0

or |S[4,7] .pending_sends| = 0 which has already been discussed in the previous cases.

e Let R > 0. Assume that F = 0, or else we already have an action enabled. Let [o,g] be
the deepest automaton which has its status as ‘running’. The children of [e, g] must have as
their status either ‘returned’ or ‘dormant’. If all the children have returned then the action
FINAL([o, g], v) will be enabled. If at least one of the children is dormant, then D > 0, which

was discussed earlier.

Lemma 8: In every input well-formed and input live fair execution of an EIG system, the EIG

algorithm terminates.

Proof: Termination also means that all the top-level automata return. The lowest value of the
variant function (0,0,0,0,0) says that there is no automaton with its status ‘dormant’, ‘running’,
or ‘fixed’ implying that all the automata have ‘returned’. Thus the Lemma is immediate from

Lemma 6, Lemma 7, and the definition of fairness. [ ]
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Theorem 9: Every EIG system solves the Byzantine agreement problem (schedule module B).

Proof:
o Agreement follows from Lemma 5(s7).

o Validity: If all ¢ € NF start with s[y g)-¥initial = v then by (s5) of Lemma 5 for every j € NF
we have s[; g].vfnal = © for every non-faulty processor g whenever [7, g] is ‘confirmed’. Hence

from (s4) of Lemma 5 we have s[y g]-Vfinal = ¥.

o Termination was proven in Lemma 8,

5 Early Stopping and Fault Masking

The next step in our hierarchical proof is to show that an intermediate algorithm called early
stopping and fault masking (ESFM) simulates EIG using a possibilities mapping. The ESFM
strategy allows non-faulty processors to reach agreement with less communication. The final values
of some nodes may be predicted before computing all initial values (early stopping). Once a
processor discovers that another processor j is faulty (fault discovery), it may pretend that all
values reported by j are 0 (fault masking); this increases the number of cases where early stopping

applies.

5.1 The Algorithm

We define an ESFM system type to be a six-tuple (P, T, nodes, roots, peers,Y) similar to the EIG
system type. An ESFM system is an instance of the ESFM system t{ype with the same properties
as that of an EIG system except that we now require that n > 4f{. Each node is modeled as a
shared memory I/O automaton, where each node [o, g] has access to the data structure 7; and the
sets Faulty, and Siopped;. These shared data structures make explicit exactly what information
is being shared among the recursive calls on a given processor. We use the set Faulty, to share
the information about the set of faults detected thus far among the automata within processor g.

The operation setfault(Faultyg, 7) includes the processor j in the set Faulty, and the operation
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getfaults( Faulty,) returns the set of processors known to be faulty. This set is initially empty.
The structure of 7 is identical to that of an EIG-tree for ¢ with set P and index ¢, and each
node in the tree holds the state of the node which could be either ‘alive’ or ‘returned’. Initially all
nodes are marked as ‘returned’ and the set Stopped is empty. The operations on this tree structure
are as follows: set(g,7;) records node fo, g] as ‘alive’, prune(o, 7;) records the status of all the
descendants of the node [o,g] in 7, as ‘returned’ (since these nodes can be treated as if they have
returned), and getstopped(Stopped,, o) returns the set of nodes [o’, A] that have stopped early
such that ¢’ is a proper ancestor of ¢ in the tree 7.

Each processor g has its own variables Faulty,, Stopped,, and 7; that are shared among all
nodes in ¢. Nodes at each processor access the variables for that processor. Therefore, we define the
automaton X, for every non-faulty processor g as X; = C([Iaenodes, 4 {Faultyg,Stoppedg,’I;}),
where C is the closeout operator (see Section 2) that makes the set Faulty, and the tree 7, private
to the composition. The ESFM system is the composition [[;cyp Xy. The tree structure 7 is not
necessary for the correctness of the ESFM protocoi; but we will need the tree data structure in the
cloture voting algorithm, so we use it here to set up a correspondence that will simplify our later
arguments.

The definition of each automaton [e, g] in the ESFM algorithm is given in Figure 5. In addition
to the state components of the automata in the EIG algorithm, each automaton maintains a few
additional local state variables. The local variable faulty is the set of faulty processors known to
this automaton, stop_signals is the set of processors which must be informed if this automaton
stops early, halted is the set of automata of interest which have stopped early in other processors,
and marked is a subset of halted. These sets are initially empty. The notation child[v] denotes
the number of elements ¢ such that (o, v) is in the set child. For all & € P* such that |¢g| > 1
we define tail(c) to be the element j of P such that ¢ = ¢'j for some ¢’ € P* (That is, tail(c)
is the last element in the sequence ¢). In addition to the actions carried over from the EIG
algorithm, we have the actions DISCOVER_FAULT, MASK_FAULT, STOP_EARLY, UPDATFE
and STOPPED_EARLY. They are used for fault discovery, fault masking, early stopping, updating
both the set of stopped automata and the set of faulty processors known to the automaton, and
for processing the set of stopped automata in other processors. It is interesting to see how each

optimization is handled by a separate action whose precondition states exactly in what situations
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the optimization may be applied.

The UPDATE([e, g]) action is used to update an automaton’s local information by accessing
the shared data structures. The action updates the local variable faulty to the set of all processors
reported as faulty by the automata in the processor g, and updates the local variable halted to the
set of proper ancestors known to have stopped early in some processor.

The DISCOVER_FAULT([o, g]) action inserts the processor name tail(g) into the local state
variable faulty if there exist at least ¢ + 1 — F items in each of child[0] and child[1], where F' =
|o N &' faulty|.

Using the MASK _FAULT([o, g]) action, the node [o, g] pretends that values reported by faulty
processors are 0; this action removes the entries of the form (¢, 1) from the set child and includes
those entries of the form (¢7,0) into that set for all j € s.faully. We will see that this does not
affect the correctness of the algorithm, because EIG works regardless of the behavior of the faulty
processors. Note that due to asynchronous executions a fault detected by one node may not be
immediately marked by other nodes, but only after they execute the UPDATE and MASK_FAULT
actions.

If there is an overwhelming number of the children with the same initial value, the action
STOP_EARLY ([o,g],v) fixes the final value of {o,g] and prunes 7;. Pruning is not necessary
in ESFM, but it makes the proof simpler when we move to the cloture voting protocol, where we
show a correspondence between parts of cloture voting protocol and ESFM. Pruning the tree makes
explicit which recursive calls are “optimized away” in ESFM.

The STOPPED_EARLY ([o,g]) action is used to identify the nodes that have stopped early
in the system and make appropriate changes to the state of [o,g]. The precondition of the
STOPPED_EARLY ([o,g]) action is that there exists an element [¢’,k] in the set halted such
that ¢'i is a proper ancestor of . If & = g, then [o, ¢] does not need the result of this node or its
children. Further more, even if h # g, [o, ¢] cannot expect its cousin [o, A} (or its descendants) to
send messages. In such cases, if a node [¢”, g] has already been created, it should be terminated
(for optimization), where ¢” is a descendant of o. Otherwise, we simply adjust the local variable

S[s,g)+ P so that [o, g] never creates its child foh, g].
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Input Actions:

® CREATE([O’, gk v, @Q,m)
§.Vinitial — v
set{o, T;)
s.Psnst—Q,|1Q,m
if(Jo| <tAm# 1)
then s.status « ‘running’
else  s.status — ‘“fixed’
if o] <t
then s.pending sends «— @
if m # 1 then s.vgpar — v

¢ RECV(j,[o,¢],v), where j € s.PAv e {01}
E: if (c,0) & s'.child
then s.child — s'.childU {(cj,v)}

e RETURN([cj,4g),v)
E: if v # 1 then sret[v] — s ret{v]+1

Internal Actions:

e UPDATE([s,g})
P: &' .status = ‘running’
E: s.halted = getstopped(Stopped ;, o)
s.faulty — getfaults(Faulty,)

o STOPPED_EARLY ([o, g])
P:  [¢',h] € s halted
[¢’, h] € s’ .marked
where ¢ = o'ijy
&' status # ‘returned’
E: s.marked — s'.marked U {[o’, h]}
if (g=hVhE€«)then
s.status, s.vgp0 — ‘fixed’, L
else if (i # hAj # h) then
s.Psn—s P—{h},ssn—-1

e DISCOVER_FA ULT([a', g])
P:  s'.status = ‘running’
child[0] > &'.t + 1 — |e N &' faulty|
child[1] > st + 1 — |o N &' .faulty|
E: s.faulty — s faulty U{tail(c)}
setfault(Faulty,, tail(o})

Output Actions:

. CREATE([O'_’,-,g],v, Q, m)
s’ .status = ‘running’
(¢4,v) € 8'.child
J € &' .created
(A = childfv} > (sf'm—st))=>m=1
-(3 : child[o] > (Fn—s't)) = m=4s1
Q=s.P-{j}
E: s.created « s’.created U {}
MASK_FAULT([o,9])
P: ¢'.status = ‘running’
E: s.child « §'.child — {(¢],v) | § € s.faulty}
+{(c4,0) | j € s.faulty A j € 5.P}

STOP.EARLY(][O‘ g],v)
s’ .status = ‘running’
s'.pending_sends = @
§.P C & .created
child[v] > (s'.n — s'.t)
E: prune(c, T;)
s’ status, s.vgpa +— ‘fixed’, v

. FINAL([a’ g], v) where v € {0,1}
P: s'.status = ‘running’
s’ .pending_sends = )
&' P C & .created
v=0= s ret[0] > s'.n/2
v=1=s"ret[l] > s'.n/2
E: prune(s,T,)
s’ .status, 8.vana — “fixed’, v
e SEND(g, [0, k], v)
P: h € ¢ .pendingsends
v = 5 Vinitial
E: s.pending_sends «— s'.pending_sends — {h}
e SEND(g,[) h], o) where h € P
P: (3 :child[v'] > (s'.n — §'.1))
h & s' stop_signals
s’ .stop_signals C P
E: s.stop_signals — s .stopsignals U {A}
* RETURN([e, 4], f)

P: s .status == ‘fixed’
f = & Vanal
E: s.status «— ‘returned’

Figure 5: Transition relation for automaton [e,¢] in ESFM.

Input Action:

e RECV(j,[» g],7), where j € P and 7 € P*
E: Stopped, — Stopped, U {[r,]}

Figure 6: Additional action for automaton [, g] in ESFM.



The RECV (3, [o, g}, v) action is modified from EIG so that it ignores messages from processors
that have been detected as faulty. The CREATE and SEND actions are modified to facilitate the
automata in ESFM to stop early. The CREATFE output action creates the children with L as the
value of m whenever early stopping is possible based on the initial values, and the CREATE input
action sets its status to ‘fixed’ if the value of m is L. In this way, an automaton that is created after
its parent satisfies the stop early condition simply sends its value to its cousins but does not create
any of its own children. The SEND(g, [A, k], o) action informs the processor 4 that the automaton
[o, ¢] has the potential of stopping early. The root node in each processor uses a special action in
addition to those described above. The RECV(j, [, g], 7) action receives the information that the
automaton [, j] has stopped early and adds it to the variable Stopped,. The special action of the
root node of processor g are given in Figure 6.

Although our description of the algorithm is formulated differently, the ESFM algorithm pre-
sented here is essentially the same algorithm as that given by Berman, Garay, and Perry [7].
However, there are three differences between our ESFM algorithm and theirs. First, we make ex-
plicit that the default value is 0 when the return values from the children are equally split between
0 and 1. Second, we take advantage of the fact that the algorithm works regardless of the behavior
of the faulty processors and let fault masking be non-deterministic in our description. Finally, our

algorithm description is in an asynchronous model.

5.2 Correctness Proof

We prove the ESFM algorithm correct using the possibilities mapping technique described in Sec-
tion 2.7. By establishing a possibilities mapping from the states of an ESFM system to the states of
an EIG system, we show that ESFM systems simulate EIG systems and hence solve the Byzantine
agreement problem. We wish to show that for any execution of an ESFM system A, there exists
an execution of an EIG system B with the same system type such that the schedules of the two
executions, when projected on the CREATE/RETURN actions of the root-nodes, are the same. In
other words, we are interested only in the external behaviors of the non-faulty processors; we do
not require that the behaviors of the faulty processors (as controlled by the environment) are the
same in the two systems. For every possible execution of A, we are free to exhibit any possible

faulty behavior in B that gives the proper correspondence at the non-faulty nodes. Therefore, in
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our proof that there is an execution of B for every possible execution of A, we hide the actions
from the the faulty processors. These are the RECV actions which have a faulty processor as the
sender.

We also hide another set of actions. Since the ESFM system A may create fewer nodes than
the EIG system B, we hide the actions of nodes in B which are not created in A so as to show a
correspondence. Nevertheless, these nodes in B are created so that the trees of every processor in
B can “keep up” with that of A. Thus, when a node in A executes a RETURN action, after fixing
its final value due to a simple majority of its children’s return values, the corresponding node in
B can return because it has its complete set of children which would return their final values. In
the case where a node in A returns after stopping early, we may not have created all the children
of that node in B. So we reorder the execution of A such that we always have all the children of a
particular node in B whenever that node returns in A. By showing a correspondence between such
a “reordered” canonical execution of 4 and an execution of B, and by showing that every execution
of A is equivalent (from the point of view of its external behavior) to some canonical execution
execution we prove that A simulates B. By moving all the FINAL and RETURN actions to the
end, we make sure that before any node returns we create all the nodes in the protocol. The fact
that each recursive call is modeled as an automaton with its own state makes it easy to argue that
such a reordering is possible, because it is easy to argue locally that two actions of an automaton
are “commutative”.

The hiding of all the actions of automata not created in A makes explicit the optimizations
carried out in the ESFM protocol. We view this as a general technique for handling optimization
of algorithms with dynamic process creation. Before presenting the proof that ESFM systems
simulate EIG systems we need a few definitions. Let o be an execution of an ESFM system A.

We define Topr(a) = Uzeagpr(a) acts(z) where Aopr(a) is the set of automata [o,9] € A
such that STOP_EARLY ([r,g],v)is enabled in «, where [r, ¢] is a proper ancestor of |o, g]. Thus
Aopr(a) includes the descendants of all automata that have the potential of stopping early during
the execution of . Note that if the execution « proceeds in a series of *rounds,” these automata
will not be created. Thus, the set Topr(a) includes all the actions that are “optimized away.”

We also hide the set of RECV actions which have a faulty processor as the sender and those

actions of the automata that are created with m = L. This allows us to argue only about the actions
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which are of interest in EIG. More formally, let H(a) = Xopr(a) U {RECV(j,[0,9),v)|j €T} U
acts(L(a)), where L(a) is the set of automata that are created with m = L.

Let EIG be the set of actions that are not part of any EIG system. The set EIG would include the
actions DISCOVER_FAULT, MASK_FAULT, STOP_-FARLY, STOPPED_EARLY, and UPDATE.
For an arbitrary automaton X we define OPTo(X) = Hidey ) 5ra(X)-

Thus, for an ESFM system A with type (P, T,nodes,roots, peers, )}, OPT,(A) defines an
optimized form of the corresponding EIG system with type {P, T, nodes, roots, peers, Y}. Since the
actions in H{a) do not form part of the external interface between the user and the system and
since the actions in EIG are “irrelevant” in an EIG system, we exhibit a mapping from executions
of optimized ESFM systems of the form OPT,(X) to executions of EIG systems while hiding the
actions from the set H(a). Now we define what it is for two schedules to be equivalent and what
we mean by “reordering”.

Commutativity: Two actions 7, and 73 of an automaton § are commutative, denoted my| 7y,
iff for every state ¢’ and s, s'm 78 is an extended step of § exactly when s'memys is an extended
step of S.

Equivalence: Let 8, 8; be two schedules of a system 5. We say that 5, is equivalent to fs,
denoted f; = B, iff §; is a permutation of §; and for every state s’ and s, s'8;8 is an extended
step of § exactly when s’8;s is an extended step of .

Thus if §; &~ B2, then for every sg € stari(5), if s is reachable from sg via schedule 3; then s
is also reachable reachable from sg via schedule B;. It should be noted that not all permutations
are equivalent schedules, but if we permute only commutative actions then we will get equivalent
executions. This is exactly what we will do in our proof, where we move all the FINAL and
RETURN actions to the end. Let Zpp(X) = {FINAL([o,g],v), RETURN([o,g},v) € acts(X)},
and let Tpr(X) be the remaining actions of X for an EIG or an ESFM system X.

Reordering: Let a be an execution of 4, an ESFM system. We define § = reorder(a), the
reordering of the schedule of o as follows: If 8; = a|SFr(4), and B2 = a|SFr(A), then 8 = £ 55
where f; is obtained from the sequence f; after performing a “stable sort” over its actions in
decreasing length of o, where [o, g] is the first component of the actions for some g € P.

Let INT(g) = acts([A, g])—{CREATE([), g1, v:,Q,m), RETURN([), g],vs) € acts({A, g])} and
let U = acts(Hideint(g)([A, 91)), for g € NF. Intuitively, U, defines the set of external actions of
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a “user process.” The following lemma says that the reordering does not change the sequence of

actions seen at each user process U,.

Lemma 10: Let Uy = {U, : g € NF} for an ESFM system A of type (P, T, nodes, roots, peers, )).
If o is an execution of A, then scheds(a)|U,; = reorder(a)|U, for all U, € Uy4.

Proof: Let a be an execution of A, let 8 = sched(a), and let 8, = reorder(a). Note that the
reorder mapping moves only the RETURN actions. Once the ‘status’ of an automaton becomes
‘fixed’, it can be changed only by the RETURN action. Thus when a RETURN action becomes
enabled, it remains enabled forever until it occurs in #. In the construction of 5, we only move the
RETURN actions past other CREATFE actions. So, B, is still a possible schedule of 4, and that
the order of occurrence of CREATE and RETURN actions is the same from the point of view of

each Uj,. In other words for each U, we have for all U; € Uy, 8|U,; = B,|U,. [

We now show that every ESFM execution has an equivalent canonical execution.

Lemma 11: For every ESFM system A and a € ezecs(A) with schedule g, there exists o’ €
ezecs(A) with schedule 8’ such that 8’ = reorder(a) and 8 = §'.

Proof: Let §' = reorder(a). We have to show that § ~ §’. Since in reordering we move only the
FINAL and RETURN output actions to the end, we just have {o show that for any action & &
acts{ A} such that 7 occurs after RETURN ([o, g], v), 7| FINAL([o, ¢], v) and =||RETURN ({0, g], v)
hold for all possible values of fo,g] and v. The preconditions of the FINAL action says that
5[0,g]-status = ‘running’. Observe that FINAL([o,g],v) is the only action in the whole system
which can take the automaton fo, g} from ‘running’ to another state when the stop early condition
does not hold. Since the output action SEND and the input actions RETURN and RECYV of the
automaton [o, g] have no effect on the preconditions of FINAL, this action remains enabled once it is
enabled. The other actions of the automaton [o, g] are enabled only when s, gj.status = ‘running’.
Thus = ||FINAL([o,g],v) holds for all © occurring after RETURN(fo,g],v). The argument for
RETURN([o, g], v) is similar.

Since =~ f', from the definition of equivalence £’ is also a schedule of ESFM. We choose o to

be the execution corresponding to g’ |

37



We now define the mapping h from states of ESFM to states of EIG. Let Sgsppm be the state of
an ESFM system of type (P, T, nodes, roots, peers, )} and let Sgig be the state of an EIG system
of the same type. Let s and t be the state components of the automaton [e,¢] in Sgspm and
Sgig respectively. We say that Sgig is a possibility of Sgspm (i.e. Seic € A(SEspm)) iff for all

fo, g} € nodes, whenever [o, g] is “alive” in both s and ¢, we have:

s P C P
s < tn

st € {tt,1}

s.child C  ¢.child

s.created C t.created
s.pending_sends 2 t.pending _sends
for v € {0,1} s.ret[v] < t.ret[v]
for v € {0,1} 5.Vinitial =¥ €& LVinitial = ¥
8.Ufinal = ¥ A s.status = ‘fixed” <«  Lugna = v A Lstatus = “fixed’

where we define
s.child C t.child = (0j, v) € s.child = (o7, v) € L.child i j < NF
3v' € {0,1} : (67,7 € t.child otherwise
We now show that h is a possibilities mapping from the states of the automata in ESFM to the states
of the automata in EIG. This requires demonstrating that each of the two conditions for possibilities
mapping, as defined in Section 2.7 is satisfied by h. We begin by showing, in Lemma 12, that A
is a possibilities mapping provided that ESFM never erroneously detects a non-faulty processor
as faulty by expanding the children of automata in EIG which are never created in ESFM and
hiding the corresponding executions. Then we show, in Lemma 13, that ESFM does indeed detect
only “true” faults. The desired result follows as Theorem 14. The following definitions are used
in the proofs below. Let B be an EIG system of type {P, T, nodes, roots, peers, ) and let a be an
execution of B.
For o € execs(B), we define expansion(a,o) to be a sequence of actions $13; such that 8 is
the schedule of @ and 82 = (|Z¢r(B))|U acts([r,h]) where h € NF, o is a prefix of 7 € P2,

and ao’ is an execution of B after which no actions are enabled.
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For a € ezecs(B), we define compression(a,[o,g]) to be a sequence of actions 4 such that
B = (a|Zrr(B))| U acts([7, g]) where ¢ is a proper prefix of 7 € Py,,.

Informally, ezpansion(a, g) is the sequence of actions from « followed by the sequence of actions
consisting only of CREATE, SEND, and RECYV actions from the descendants of the automaton
[o, ¢] and its cousins; and compression(a, [o, g]) is the subsequence of & consisting of the FINAL
and RETURN actions from the proper descendants of the automaton [o,g]. We use expansion
while growing the EIG computation tree and use compression while taking the bottom up majority

to fix the final values.

Lemma 12: Suppose that every fault detected by an ESFM system of type {P, T, nodes, roots, peers, Y
is an element of T. Then for all ESFM systems A of type (P, T, nodes, roots, peers, Y) with execu-
tions a, there exists an execution o' with sched(a’) = sched(a) and an EIG system B with system
type (P, T, nodes, roots, peers, Y) such that h is a possibilities mapping from OPT,(A) to OPT,(B)

for execution ¢'.

Proof: Let o be an execution of A with schedule 8 = reorder(a). (We know by Lemma 11 that
a' exists.) Let A° = OPT,(A), B° = OPT,(B) and let s and ¢ denote the states of the automata
A° and B° respectively.

For the start state sg of o’ we have iy € h(sg) such that i is the start state of B°. Since there
is no automata in either A° or B° that is ‘alive’, the first condition of the possibilities mapping is
met trivially.

To show that the second condition of the mapping also holds we consider each action 7 individ-
ually. Let (&/,,3) be a step of o', let ¢’ € A(s'), and let ay?’ be an execution of B°. We have to
find a - such that (#',7,t) is an extended step in B° and ¢ € h(s) such that r|ezt( A°) = v]ext(B°).

Let ap be the execution of B° after one step in the simulation (i.e. ap = ajgt'y).

e T = CREATE([o,9],v,Q,m). If ®# € acts(L(a)) then choose ¥y = CREATE([s,g],v,Q,m")
such that m' = sp gj.t, otherwise choose ¥ = 7. Thus in both cases we have r|ezt(4°) =
Ylezt(B°). Since m' is chosen such that m € {m’, 1} and since the CREATEF action has the

same effect over other state variables in both systems, the mapping is preserved.

o m = SEND(g,[o,h],v). Since this action has exactly the same effect in both A° and B°, we

simply let ¥ = m which trivially satisfies the mapping.
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e T = RECV(j,[o,g],v). There are two cases. Case (i) j € T: because of hiding, v|ext(A°) is
empty. Let CREATE(([oj,9],v’,@, m) be the child created as the result of the action . We
let ¥y = RECV(j,[o, g],v). Since this RECV action is hidden in both the systems the choice
of v satisfies the condition w|ez#(A°) = v|ezt(B®). Case (ii) § € NF: let 4 = 7. In either
case we have sy, g).child C #f, ,.child. Since ‘child’ is the only state variable that the RECV

action has any effect on, the mapping is preserved by our choice of 7.

o 7|ext(A°) = empty and x is MASK_FAULT([o,g]). The state component s.child may be
changed to replace the values received from faulty processors to a default. Since ESFM
detects only true faults, the relation s.child C t.child still holds after the MASK FAULT

action. So, we simply let ¥ = ‘null’, which satisfies the other condition for possibilities

mapping (r|ext(A°) = ‘null’ = ylext(B°)).

o 7lext(A°) = empty and 7 is one of UPDATE, or DISCOVER_FAULT,or MARK, or SEND(g, {\, R}, 7),
or RECV(j,§A, k], 7). Since these actions do not affect any variable that appears in the state
mapping, they do not change the state mapping. So letting ¥ = ‘null’ trivially satisfies the

other condition 7|ext(A°) = ‘null’ = y|ext(B®).

o mlexzt(A°) = empty and « is either STOPPED _EARLY ([o,g],v) or STOP_EARLY ([o,¢]).
The effect of STOP_FARLY is to fix the final value in the state s. Since in state ¢ of B° the
status of [a, g] is not yet fixed the mapping holds. The action # = STOPPED_EARLY has
the same effect as STOP_EARLY or decreases the value of the local variables s.n and |s.P)|.
In the latter case, since corresponding variables are not decreased by B° in the state ¢, we

still have s.P C ¢t.P and s.n < t.n.

o T|exi(A°) =empty such that the remaining actions of & consist only of either the FINAL or
the RETURN actions. It is at this point that we expand the EIG trees in B® to “keep up”
with ESFM. Note that creating those automata in B° which are never created in A° does not
disturb the mapping. This is because the creation action only adds to the set t.created in B®
and the new automata are not alive in A°. Further any actions concerning these automata
are hidden in both systems leading to w|ezxt(A4°) = ‘null’ = y|ext(B°). More formally, the

sequence ap has as its schedule expansion(ajg, A).
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¢ 7 = RETURN([o, g], v). There are two cases. Case (i): If v € {0,1} then welet ¥ = 7 and the
mapping is trivially satisfied. Case (ii): If v = L then welet y = FINAL([o,g], v ) RETURN(([o, g],?")
such that FINAL([o,g],?v) is enabled in B°. Since we hide these actions in both the sys-
tems we have w|ezt(A°) = ‘null’ = y|ext(B°). In either case the possibilities mapping holds
because the variable ‘ret’ of the parent of the node [¢, ¢g] is the only variable affected, and
in either case we increment this variable in the system B°. Note that after the RETURN
action the node [o, g] is no longer ‘alive’. Since [, g] is not alive in both the systems, the
mapping of this node between the two systems A° and B° is met trivially. Note that case (ii)
occurs when the parent [r, g] of the node [o,g] in A® stops early and returns with an action
RETURN([r,g),u). We must show that the node [r, g] still returns u as its final value in
the system B. The proof is simple. Since [r,g] stopped early, sy, gj-child[u] > n — ¢ — |7]
and at least n — 2t of its children [rj,g] such that j € NF have initial value u. From the
correspondence exhibited earlier for the SEND, RECYV, and CREATE actions, it follows that
the same holds in the system B. From Lemma 5(s3), we know that at least n — 2t nodes of
the form [r, ] such that j € NF had u as their initial values. Since n — 2t > (n -t — |1|)/2,
from Lemma 5(s5) and (s4) we will have u as the eventual final value of [r,g] in the system
B also.

o 7 = FINAL([o,g),v). Whenever such an action occurs in B® we recursively fix the final
values of all the children of [o, g} and allow them to return. Once every child has returned
the FINAL action of the automaton [o, g] becomes enabled. More formally, the sequence ag
has as its schedule the concatenation of compression(ay, [0, g]) and FINAL([o, g],v). Note
that since the mapping held in the states s’ and ¢/, the majority value will not change after

the compression.

It is interesting to note that the invariants of the EIG system (Lemma 5) are used in the above
proof of the ESFM system. This is because those invariants depend only on the actions of EIG
and ESFM contains all those actions. The following lemma states that every fault detected in an

ESFM system is an element of T. We say that a processor j is marked in a tree 7; if and only if
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j € Faulty,, and that the shared tree data structure 7; is properly marked if and only if every fault

marked in 7 is an element of T

Lemma 13: If « is an execution of an ESFM system, then 7 is properly marked for all g € NF.

Therefore, every fault detected by an ESFM system is an element of T'.

Proof: By definition 7, is properly marked initially. Let s'rs be a subsequence of a and let 7,
be properly marked in state s'. The DISCOVER_FAULT action of the ESFM system is the only
action which detects a processor to be faulty. Let [o,¢] = [¢'7, g] be an automaton in the ESFM
system and let F' = |a n sia, d .fa,ultyl. By the preconditions of the DISCOVER_FAULT action, j
is marked faulty in the tree 7, if for each v € {0, 1} there exist at least ¢ + 1 — F' children of o, g]
with initial value v.

Let n = |P|, j be non-faulty and s[, j].%initiat = vj. From Lemma 5(s3) all automata of the
form fo'j, k] such that h € NF have v; as their initial values and the automaton [o, g] = [¢'7, ¢]
has at least n — || — (¢ — F) children with initial value v;. So there can be at most ¢t — F' children

with values different from »;. Thus an ESFM system will not detect j as faulty. [

Since for all actions in an ESFM system we have the possibilities mapping maintained and since
ESFM detects only true faults, we conclude that for reordered executions of an ESFM system there
exist an EIG systems exhibiting the corresponding executions. Note that formulating the algorithms
in terms of dynamic process creation has permitted us to reason locally about each recursive call.
That is, the possibilities mapping is structured as a relationship between the corresponding recursive
calls in the two systems. This is one benefit of presenting the EIG algorithm using dynamic process

creation.
Theorem 14: ESFM systems simulate EIG systems with respect to the users U (Section 3.1).

Proof: Lemma 12 together with Lemma 13 says that for every execution of an ESFM system
there exists an EIG execution corresponding to the reordered execution of the ESFM execution.
In Lemma 11, we have shown that for every execution of an ESFM system there is an equivalent
reordered execution, and from Lemma 10 we know that the external behavior of the users is not

affected by reordering. So, from Corollary 2, we see that ESFM systems simulate EIG systems. m
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6 Cloture Voting

In the cloture voting protocol each non-faulty processor runs several agreement protocols, called
debates, concurrently. A new debate is initiated at each of the ¢ + 1 rounds. The first debate is
started at each processor with the initial value assigned to that processor by the environment. If
it can be determined that there has been sufficient communication to safely assume that both the
values 0 and 1 are represented as initial values of non-faulty processors, then a subsequent debate
may be started with initial value 0. Otherwise, each subsequent debate is started with initial value
1. So, if any debate returns 0 the default decision value may be taken immediately. The debate
that is started at round k, debate(k), is exactly same as the ESFM protocol except that it runs for
t+ 1~ & rounds and that it has some a priori information about faulty processors, communicated
to it by other debates. The protocol guarantees that if any of the debates return zero, then at least

one correct processor has started with an initial value of zero.

6.1 The Algorithm

We define a cloture system type to be a six-tuple (P, T, nodes, roots, peers, Y) similar to the ESFM
system type. The nodes in a cloture system type have three components: debate number, node
name, and processor name. Thus, we define nodes;, = {[d,0,g] [0 < d < t+ 1,0 € P2,}. For
g € ¥ we define a cloture-forest for g with set £ and index z to be a collection of EIG-trees for ¢
with set ¥ and index ¢, for 2 > ¢ > 0, where the nodes in each EIG-tree are of the form [i, ¢, ¢] such
that o € Z,;. The trees of names of automata V = {J), | ¢ € NF'}, where ), is a cloture-forest
for g with processors P and index ¢. A cloture system is an instance of the cloture system type
with n > 4¢. As in ESFM, we model explicitly the information shared among the nodes on a given
processor g by a shared data structure 7,. 7y is similar to the corresponding ESFM data structure,
except that 7, is an array of trees of decreasing size. Similarly, Stopped, is now an array of sets,
one for each debate. Every debate(k) reads its own tree Ty[k] and reports a detected fault to the
other debates by marking a particular vertex in all trees in 7;. The state information of each node
in the shared tree is used by the monitor in determining the initial values of the debates. The
transition relation for the automaton [d, o, g} is given in Figure 7.

The cloture debate given here is strikingly similar to the ESFM algorithm except for the an
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Input Actions:

¢ CREATE([d,o,g],v,Q,m)
E:  $.%initial; $-Yfinal — ¥, ¥
set(c, Tg[d])
s.P,s.n, st — Q,|Q|,m
if(e]<t+1—dAm#£ 1)
then sstatus — ‘running’
else  s.status — ‘fixed’
if loj <t+1-d
then s.pendingsends — @
if m # 1 then s.vgpa — v

e RECV(j, [d: a, g]!”)a where j € s.PAvV E {0! 1}
E: if (07,0) &€ & .child
then s.child — s'.childu {(¢7,v)}

o RETURN([d,o4,9],v)
E: if v # 1 then s.ret[v] — & .ret[v]+1

Internal Actions:

e UPDATE([d,0,g])
P: & .status = ‘running’
E: shalted = getstopped(Stopped  [d], )
s.faulty — getfaults(Faulty, )

o STOPPED_EARLY([d,0,g])
P: [d,o', k] € & halied
[d,c¢’, h] € s’ .marked
where o =d'ijy
&' .status # ‘returned’
E: s.marked — s'.marked U {[d,o’, h]}
if (9= hVvhEe~)then
s.status, s.vapa & ‘fixed’, L
else if (i £ h A j # h) then
s8.P,s.n— 8. P—{h},sn—-1

« DISCOVER_FAULT([d, ,g))
P: s'.status = ‘running’
child{0] > s'.t + 1 — |o N ' faulty|
child[1] > .t + 1 — |o N ' faulty]
E: sfaulty — & faulty U{tail(c)}
setfault(Faulty,, ta:l(o))

Output Actions:

. CREATE([d o, g],v Q,m)

P: & .status = ‘running’
(cj,v) € 8'.child
J & &' .created
(B = childv'] > (fn—s)=>m=1
~(3v’ :: child[v'] > (s'n~s't)) > m=41
Q=sP-1{j)

E: s.created — & .created U {;}

o MASK_FA ULT([d e, g])
P: & .status = ‘running’
E: s.child — s .child — {(o],v) | j € s.faulty}
+{(sj,0) | j € s.faulty A j € 5.P}
* STOP.EARLY([d,0,g},v)
P: & .status = ‘running’
s’ pending_sends = @
s'.P C s’ .created
child[v] > (¢'.n — &'.t)
E: prune(c, T;[d])
s’ .status, s.vgna) — ‘fixed’, v
. FINAL([d o9, v) where v € {0,1}
P: & .status = ‘running’
s'.pending.sends = 0
§'.P C s'.created
v=0= sret[0] > s'.n/2
v=1= ¢.ret[l] > &.n/2
E: prune(s, T,[d))
s'.status, s.vgna — ‘fixed’, v
e SEND(g,[d,o,k],v)
P: k€ ¢ .pendingsends
v = &' vinitial
E: s.pending sends — s'.pending sends — {h}
e SEND(g,[d, A h],0) where he P

P: (3 :: child[v'] > (s'.n — 8'.1))
h ¢ s’ .stop_signals
§' stop_signals C P
E: s.stop_signals « s’ .stop_signals U {h}

RETURN([d,s,9), f)
P: ¢ .status = ‘fixed’
f = 3’-Uﬁnal
E: s.status — ‘returned’

Figure 7: Transition relation for automaton [d, o, g] in the cloture voting protocol.

Input Action:

¢ RECV(j,[d, A g],7), where j € P and T € P*

E: Stopped,[d] — Stopped,[d] U {([d,,])}

Figure 8: Additional action for automaton [d, A, ¢] in the cloture voting protocol.

44



extra component in the node names (indicating the debate number). Since debate(k) runs only
for t+1 —k rounds the CREATFE input action fixes the final value of the automaton that is created
in round ¢ 4 1 — k as this will be one of the leaf nodes in that debate. There is a set of special
actions for the nodes of the form [d, A, ¢] similar to that in ESFM (see Figure 8). These actions

mark in the tree 7[d] the nodes that have stopped early in debate d.

Input Actions: Output Actions:
e CREATE([A g),v,Q,t) o CREATE([d, ), g],vi, @, m)
E: s.alive — ‘true’ P: s .alive
s.P st —Q,t d<s't+1
s.nextdebate — 0 d = s.nextdebate
s.initial «— v I C & faulty
d =0 = v; = & .initial
* RETURN(I4,, .91, 01) (i =0Ad>0)= (If] =dANTS > )
:  s.outcome[d] — vy .
m=s1—|f|
Q=§P-f

E: s.nextdebate — s'.nextdebate + 1

e RETURN([), g],vs)

Internal Actions:

¢ UPDATE P:  s.alive
P: & .alive vy = min{s’.outcome} # L
E: s.faulty « getfaulty(7;) E: s.alive «— *false’

Figure 9: Transition relation for the monitor of processor g

We model the root-node for each processor as an automaton we call the monitor. This monitor
creates a total of t+ 1 debates (see Figure 9). The initial value of the first debate is the initial value
assigned to that processor by the environment. The initial values of other debates are determined by
whether the total number of nodes whose values are yet to be sent exceeds a threshold § = 2n3 [7).
This total is computed by examining the shared data structure 7,. Let i*® level of a tree 7;[k]
denote the set of all nodes [k,o,g] in Tg[k] such that |o| = i. We define NTS(7,[d]) to be the
number of nodes in the deepest level of the tree T,[d] such that every node in that level is either
marked by the “set” operation or by the “prune” operation and NT5(7,) is the maximum value of
NTS(7,[d]) such that 0 < d < t. The maximum number of the nodes, whose initial values are to be
communicated, computed this way across all the debates within the processor g is compared with
the threshold 5. The state of the monitor consists of the variables alive which when set indicates
that the monitor is active, nextdebate which is the number of the next debate, and initial which
is the initial value of the first debate, and an array outcome which accumulates the return values

from all the debates. Note that the set of processors and the number of faulty processors can be
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smaller in later debates if enough faults were detected earlier.

6.2 Correctness Proof

We show, using another possibilities mapping, that each debate of the cloture voting algorithm
simulates an ESFM system. As an intermediate system for our proof, we define an ESFM’ system
to be exactly the same as the ESFM system, except that it has an orecle that “miraculously” marks
nodes as faulty in the shared data structure of ESFM at arbitrary points in the execution. More
formally, an oracle is an automaton whose only action is to mark some arbitrary nodes as faulty
in the shared data structure of an ESFM system using the setfault(7,j) action. We say that
an oracle is correct if it never marks a non-faulty processor as faulty. We show that, provided the
oracle is correct, every ESFM’ system simulates an ESFM system.

To prove the correctness of the cloture algorithm, we show a correspondence between the execu-
tions of each debate and the executions of an ESFM’ system. For every step of the debate, ESFM’
also takes a step except that when the debate masks a fault based on a fault detected in some other
debate, ESFM’ waits until the oracle marks such a processor to be faulty. Thus, the oracle models
the fault detection information propagating back and forth between different debates. By neatly
capturing the information (faults detected) contributed by the other debates, the oracle permits
reasoning about each debate in isolation.

Unlike Berman, Garay, and Perry [7], we describe the algorithm in an asynchronous setting
that allows debates to be created at any time, nondeterministically. A problem with this is that
processors might prematurely start debate(k) when only less than k faults are detected. Therefore,
we stipulate the following “cloture conditions (CCs)” and prove the correctness of the cloture al-
gorithm as a conditional property based on these hypotheses. In other words, we prove that if an
execution of a cloture system satisfies these conditions, then it corresponds to a correct execution
of an ESFM. So, any possible implementation of our specification of the cloture algorithm that
satisfies these conditions is a correct implementation. At the end of this section, we show that a

synchronous implementation is one such possible implementation.

The Cloture Conditions: Let o be an execution of a cloture system.
(CC1) For every automaton [d,o0,g], a FINAL action action occurs in « only if the
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STOP_EARLY action is not enabled and no later RECV action can result in
s.child[v] = s.n — s.t for some v € {0,1}.

(CC2) I there exists a processor ¢ and debate(k) such that CREATE([k, A, ¢],0,Q,t —
|f]) occurs in o, then for every processor h € NF there exists a v; such that a
CREATE([k, X, g), v, @,t — | f|} occurs in « and that |f] = k.

(CC3) Every CREATE([d, A, g],v,Q, m) action occurs after all create actions of the form
CREATE([d',0,¢'),v',Q',m') such that d > d' + |} for all ¢ € P* and occurs
before any create action of the form CREATE([d',o,¢'],?’,Q’,m’) such that d <

d' + |o| for all ¢ € P*.

The first cloture condition (CC1) states that every automaton reports its final value only after
receiving enough values. In other words, we want it to be the case that if an automaton will be
able to stop early on the basis of its initial values, then it will do so on that basis, and not on
the basis of values returned by its children. The second condition (CC2) states that if a monitor
of a processor starts debate(k) with initial value 0 then it must be the case that this monitor
knows about a set of k¥ faulty processors and that this set is also known to other monitors. This
information is necessary to ensure agreement, since the debate has fewer than ¢ + 1 rounds. The

last condition (CC3) states that the monitor creates exactly one debate in each round.
Lemma 15: If the oracle is correct, every fault detected by an ESFM’ system is an element of T.

Proof: The proof follows directly from Lemma 13. [

Theorem 16: Every ESFM system with type {P,T,nodes, roots, peers,y) and a correct oracle

(the ESFM' system) simulates an ESFM system.

Proof: The possibilities mapping h defined in Section 5.2 holds from ESFM' systems to ESFM

systems as well. Since we hide all the actions involving faulty processors, the proof is similar. m

Theorem 17: If the cloture conditions are satisfied, every debate in the cloture system with type

(P, T, nodes, roots, peers, Y) simulates an ESFM’ system (an ESFM system with type (P, T, nodes, roots, peers, )

and a correct oracle 0).
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Proof: There are two cases, depending on whether the debate is started with initial value 0 at some
processor. Let debate(k) be started with an initial value 0 by some processor. From (CC2) we have
a set f C T globally known as faulty; each debate starts with n — k processors with exactly ¢ — &
of them faulty such that |f] = k. Since n — k > 4(¢ — k) debate(k) is an ESFM system with type
(P - f,T — f,nodes, roots, peers, ¥}.

The second case is where all debate(k) start with the initial value 1. Let s be the state of
the root automaton of this debate. From the safety property (s3) of Lemma 5 we have at least
s.n — 8.t children of the root with an initial value of 1. After the root sends its initial value to other
processors, the STOP_EARLY action will be enabled. Due to (CC1) all these debates stop early
with the final value 1. Thus all these debates return 1 as their final value.

Since every debate is an ESFM system, the first fault detected by the cloture voting system is
in T due to Lemma 13. This fault is known to all the debates in the system. (Note that we use
the oracle O to model the faults reported from other debates.) Every debate continues to detect

only correct faults due to Lemma 15. Thus a debate is essentially an ESFM’ system with a correct

oracle. [ |

Since each debate is a correct ESFM’ protocol, the remainder of the proof is concerned only

with proving certain properties of the monitor, which secures the final outcomes from different

debates.

Lemma 18: A non-faulty processor starts a debate with value 0 only if there is at least one non-

faulty processor with vjpiia = 0.

Proof: Let all non-faulty processors start with an initial value of 1. From Lemma 5(s3) we know
that at least n — ¢ children of the root node in each processor is created with the same initial value
1. The CREATE output action of an automaton creates at least one child with m = L. Since this
child never creates any of its own children, this will be at the deepest level where all the automata
are either set to ‘alive’ or marked by prune. Hence for any processor g, NT5(7,;) does not exceed

n, which is well below the threshold S. So the monitor never starts a debate with an initial value

of 0. ]
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Lemma 19: If all non-faulty processors start with a value 0 then there is at least one debate which

returns 0.

Proof: The first debate in all processors are started with the initial value provided by the environ-

ment. Since an ESFM' system simulates an EIG system, the first debate in all processors return

the value 0. ]

Theorem 20: If the cloture conditions are satisfied, the cloture algorithm simulates ESFM.

Proof: From Theorem 16 and Theorem 17 we know that every debate in the cloture system simu-
lates an ESFM system. Since all monitor automata use the same function to determine the final
decision value, from Lemma 18 and 19 it follows that the cloture algorithm simulates ESFM if the

cloture conditions are satisfied. ]

We now give a definition of a synchronous execution of the cloture voting algorithm and show
that the cloture conditions are satisfied in all such executions. This is followed by a straightforward
theorem to complete the proof.

Define LEVEL(r,9) = [lo<ici+1lds 0, 9] such that [¢] = r — d. That is, the automaton
LEVEI(r,g) includes all automata in the processor g that are created during round r in any

of its debates. Let a be an execution of the cloture voting system and let

II{r,g) =  acts(LEVEL(r,g)) U
{SEND(g,[d, A\, k), 7), RECV(h,[d, A, g],7), MARK([d, ), g1, [d, 7, A])},
where h € P,0<d<t,7€ P*and |r|=7r —d.

Let 8 = a|lI(r, g). We say that « is synchronous iff

{Synl) The actions of 8 occur in the following order: first all CREATE input actions, then
all SEND actions that send the initial values to other processors, then RECYV ac-
tions that receive initial values from other processors, then any DISCOVER_FAULTs,
then all UPDATEs, then any MASK_FAULTs, then any STOP_EARLYSs, then any
SEND actions that inform other processors about stopping early, then RECV ac-

tions that receive information from other processors about stop early, then all
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STOPPED_EARLYs, then any CREATE output actions, then any RETURN in-
put actions, then any FINAL actions, and finally all RETURN output actions.

(Syn2) For every automaton in the composition LEVEL(r,g), if there is a CREATE
input action for an automaton in 3 then there is exactly one UPDATE, DIS-
COVER_FAULT, STOP_.EARLY, and output RETURN action for that automaton

in B, if they are ever enabled.

(Syn3) If my € II(ry,9), w2 € II(r2,¢) and if both m; and x; are enabled, then m; occurs

before 72 whenever r; < r4.

The requirement (Synl) makes sure that execution proceeds in rounds; it also specifies an intuitive
ordering of the actions of the system. The requirement (Syn2) along with (Synl) states that every
fault detected by different automata within a processor becomes known to all automata that are
created later in that processor, and (Syn3) requires that in a given round, all actions of higher level
automata are first executed before any actions of lower level automata. In a synchronous execution
a, we say that an action 7 occurs in round » if and only if 7 € II(r, g) for some g € NF. Note that
in a synchronous execution, when an automaton y stops early due to sufficient agreement among
initial values, it would still wait for its children to return before returning itself. Since every child
2 of ¥ would have been created by a CREATE(2,v,,Q;, L) action, z would return after sending its
initial value to its cousin automata. This synchronous execution of the cloture algorithm is similar
to that given in [7].

Now we will show that the synchronous execution of the cloture system satisfies the cloture
conditions. The condition (CC2) states that if the monitor creates a debate with an initial value
0 in round r, then there exists a set of at least r processors known to be universally faulty at the
beginning of round r. We will show that if this is not the case, then the value of NTS(7,) is always
below the threshold S. Let F(r) = { 717 € spp g fanlty in round r}, where g € NF and [A,g] is
the monitor of the processor g. That is, F(r) is the set of processors universally known to be faulty

at round r.

Lemma 21: Let a be a synchronous execution of the cloture system and let ¢ = 7¢ such that
7 € T* and ¢ € NF. Assume that a CREATE([d, 0, ¢]),v,@Q,m) action occurs in & in round r < ¢

of a. Then a RETURN([d,0,¢],v) occurs in round = or in round r + 1 in « for all ¢’ € NF.
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Proof: Let s[4]-initia = v. Note that i € NF. Let ¢’ € NF. The node {d,0, g] is cre-
ated as a result of a message received due to the SEND(4,[d, 7,¢'],v) action. If r = ¢, then a
RETURN([d, 0, g'], v) action occurs in . Otherwise, in the next round of r+1 SEND(g',[d, o, h], v)
occurs in « for all A € P — o. Since the corresponding RECYV actions follow the SENDs in a syn-
chronous execution, we will have child[v] > n — ¢ — 1 > n —t — |o| for all nodes [d, o, g] such that
g € NF. So the STOP_EARLY([d, 0, g],v) actions occur in « for all ¢ € NF. The corresponding

RETURN actions occur immediately after these actions. [ |

The above lemma says that if a node z = [d, 0, g] is created in round r < t of a synchronous
executtion of the cloture system, then the automaton z and its cousins will be ‘pruned’ in the next
round. Now we show that if a node z = [d, 0, g] stopped early in round » such that o = 7i and

7 € T*, then that automaton and its cousins will be ‘pruned’ in round r + 1.

Lemma 22: Let « be a synchronous execution of the cloture system, let ¢ € NF and let 0 = 73
such that 7 € T* and ¢ € P. Then a RETURN([d, 5, g], v) action occurring in « for some g € NF
implies that a RETURN action occurs in round r or in round r + 1 in « for each node [d, o, ¢']

such that ¢’ € NF.

Proof: The case where i € NF is proved in Lemma 21. Consider now ¢ € T* and a node [d, o, ¢]
created in round r — 1. If » = ¢, then a RETURN([d,0,4],v) action occurs for each g’ € NF.
If r < t, then the RETURN([d, 0, g].v) action is preceded by either a STOP_EARLY action or
a FINAL action. From the preconditions of these two actions, it follows that the automaton
[d, o, g] must have at least n — 2¢ children [d,c7,g] such that j € NF and has v as their initial
value. In case of STOP_.EARLY this requirement is trivial and in case of FINAL it follows from
Lemma 5(s5). Note that these children are created due to the SEND(j,[d, o, ¢],v) from j € NF.
Thus, CREATE({d,cj,¢'],v,Q',m") occurs in a for at least n — 2t children of [d,0,¢’] for each

g' € NF. Now the result follows from Lemma 21. [ ]

Now we show that if a debate is created with initial value 0 in round r, then there exists a set

of at least r processors universally known to be faulty before that debate is created.
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Lemma 23: If an action CREATE([r, A, g],0, Q,m) occurs in an execution a of the cloture voting

system, then |F(r — 3)| 2 r.

Proof: Since g starts the debate with initial value 0, we know that for some debate d in g,
NTS(7,[d]) > 2n® at the beginning of round r. Let d = 0. Consider a node [0,0,g] which is
‘alive’(i.e. included in computing NTS(T,)). Let ¢ = j1,42,...,5. We will first show, by contra-
diction, that for 1 < k < r — 2, we have j, € F(k) - F(k - 1).

Assume that ji € F(k —1). Then, at round k — 1 every processor would set the initial value of
the node o to 0 (the MASK_FAULT fault action). In round &, from Lemma 5(s3), ¢ would have
at least n — t — |o| children with initial value 0 and would be pruned (the STOP_EARLY action)
and will not be included in computing NTS(7,).

Assume that jp ¢ F(k). Then for at least one processor g, ji is not known to be faulty.
Therefore, for the node {d, s, g] we have child[v] < ¢t + 1 — |o| for some v € {0,1}. This implies
that for v = 1 — v child[v'] > n — ¢ + |o|. Thus this automaton stops early in round k. From
Lemma 22, this implies that in round &+ 1 all of its cousins will be pruned and will not be included
in computing NT.5(7,).

Let ar = |F(k) — F(k —1)|. We proved that for £ < r — 3,a; > 1. The maximum number
of possible jy ...j.—3 is at most [[;=3 ax. If [F(k)| = £p23 ax < r, then the number of possible
71 -..Jjr—3 would be at most 8, thus the number of possible j;...j.—2 would be at most 8¢ < 2n
and the number of possible 7;...j, would be less than 2n3.

Since a processor g creates a debate with an initial value of 0 in round r only when NT.5(7;) >
2n3, we have |F(r — 3)| > r, hence |F(r = 1)| > r.

Let d = k. This debate must have been started by some processor g with the value 0, otherwise
the stop early condition would have been satisfied and all these debates would return in one round.
This means that NTS(7,[d']) > 2n® for some &' < k and that |F(k — 1)| > k. By a similar reasoning

given for d = 0, we can show that |F(r — 3) — F(k)| 2 r — k. Hence the claim. [

Lemma 24: Every synchronous execution of the cloture algorithm satisfies the cloture conditions.

31t follows from the claim that for natural numbers a; ...am,s such that 221 a; =m+ 3, H::: a, < 2° holds.
Proof: Without loss of generality assume that a; > 0. Then & = a; — 1 is a natural number and that 1+ b < 2° for

m

every natural number and the claim reformulates to H.=1(1 +b0) < 22.=. bi _ g8
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Proof: The first condition (CC1) is satisfied trivially because all STOP_.EFARLY actions in LEVEI(r, g)
occur after all of the RECYV actions. Since we create a debate with an initial value of 0 only if the to-
tal number of nodes whose value is to be sent exceeds the threshold 2n?, the second condition (CC2)

follows from Lemma 23. The final condition (CC3) is obvious from the definition of LEVEL(r,g). m

Let us define a Synchronous Cloture system to be a cloture system in which all the executions

are synchronous executions.

Theorem 25: A Synchronous Cloture system C of type (P, T, nodes, roots, peers,)) solves the

Byzantine agreement problem.

Proof: That is, we have to show that the Synchronous Cloture system C solves the schedule module
B. From Theorem 20 and Lemma 24, it follows that the C simulates ESFM with respect to U.
Since ESFM systems simulate EIG systems (Theorem 14) and since EIG systems solve Byzantine
agreement problem (Theorem 9), by transitivity C' simulates B.

Since the Byzantine properties (Section 3.1) were stated using only the CREATE and RETURN
actions of the roots, we restrict our attention only to these actions. This allows us to to partition
these external actions into sets U, = {CREATE(r,v;, P,t), RETURN(r,vs)} for each r € roois.
From Lemma 3, we know that schedule module B is closed under reordering with respect to U =
UrerootsUr. Therefore, we can apply Lemma 1 to conclude that the Synchronous Cloture system

solves the Byzantine agreement problem. [ ]

7 Conclusion and Further Work

We have shown that expressing the recursive structure of a distributed algorithm in terms of
dynamic process creation can facilitate understanding of the algorithm by making the recursive
structure more explicit, permitting local reasoning about system components, and making possible
the use of hiding techniques for handling optimization, particularly in hierarchical proofs. In
addition, we have shown that the use of an “oracle” for capturing the flow of information among
many simultaneous instantiations of an algorithm can be helpful in isolating and reasoning about
individual instantiations of the algorithm. Our treatment of the cloture algorithm was handled

entirely in an asynchronous setting, given certain “cloture conditions” that we showed are satisfied
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by synchronous executions. This helped to identify the role of synchronization in the original cloture
algorithm. We feel that the use of recursion in distributed algorithms can be powerful. It will be
interesting to see how the techniques presented here can be used in understanding or designing

other recursive distributed algorithms, including the new Byzantine agreement protocol of Garay

and Moses [17].
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