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Exact and Approximate Solution of a Multiplexing
Problem

Mario Bonatti’ Andreas Bovopoulosi* Apostolos Dailianast* Alexei Gaivoronskit

Abstract

In this paper the detailed solution of the multiplexing problem of independent but not necessarily
homaogeneous traffic sources is presented. The “curse of dimensionality” of problems of realistic
dimensions is comprehensively addressed by a methodology employing state aggregation. A number
of detailed examples provide further insight into the multiplexing problems and their exact and
approximate solutions.

1. Classification of Multiplexing Problems

The fundamental problem of the ATM technology stems from the fact that the performance of an
ATM statistical multiplexer depends on the time behavior of the incoming traffic. As a result, with-
out sufficient traffic control provisions, an ATM network may fail to provide grade of service (GoS)
guarantees to end users. Each connection in the ATM layer results in a cell sequence {CS) that can
be both analyzed and controlled at one or more of the following time scales: call, packet, burst, and
cell [11, 8, 17]. At each of the time scales for which a CS control is provided, a resource allocation
scheme can be introduced and classified as corresponding to the call, packet, burst, or cell time scale.

The most crucial part of an ATM network is the access segment [3]. In order to understand the
multiplexing problems arising in the access segment, assume that I multiservice terrinals (MST) are
connected to the access segment. Fach MST supports one or more services, and at the cell level,
each terminal issues calls that generate “one” or multiple cell sequences (CSs). For example a digital
voice conversation results in one CS, whereas a data terminal generates a family of CSs. The simplest
possible traffic multiplexing problem that a multiplexer at the access segment must handle is the case
in which each of the terminals generates the same CS. This is a classical multiplexing problem that has
been extensively studied and is referred to henceforth as multiplexing problem A. A more complicated
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traffic multiplexing problem arises when each terminal generates one CS, while different terminals
generate different CSs. Although this problem, referred to henceforth as multiplexing problem B, has
recently received attention {4, 9, 14], it has not been fully addressed.

A third class of problems results when each terminal is a multiservice terminal and thus generates a
family of CSs. If all terminals generate the same family of CSs, then the resulting multiplexing problem
is referred to as multiplexing problem Cj. If the different multiservice terminals generate different
families of CSs, then the resulting mwltiplexing problem is referred to henceforth as Multiplexing
Problem Cs.

In this paper a comprehensive formulation of the multiplexing problem of type B is presented.
Issues related to both exact as well as approximate solutions are addressed, and a number of numerical
results are presented.

2. The Traffic Source Generator Model

In this section the parameters of the multiplexer are described. The multiplexer has a cell buffer of
size K. Time is divided into units called slots, where the time interval corresponding to a slot equals
the service time of a cell. Incoming cells are served by the multiplexer in the order of their arrival.
The cell at the front of the buffer is served at the beginming of a slot. Incoming cells are stored in
the cell buffer as long as the buffer is not full; if the buffer is full, cells are discarded. A number of
independent, but not necessarily identical, sources are multiplexed.

The time axis is partitioned in renewal intervals. Fach renewal interval is D slots long. The
slot boundaries which coincide with renewal boundaries are defined as renewal epochs. Each of the
multiplexed sources can be described as follows [5]: At the renewal epochs, the behavior of the cell
source ¢ is described by an embedded S;-state homogeneous, irreducible and aperiodic Markov chain,
with states {0,1,--,85; — 1}. Let ¢ and & be any two states of the embedded Markov chain for source
1. Let pi& be the probability that source 7 is in state ¢ at a renewal epoch, given that its state at the
previous renewal epoch was o. In addition let p¥, be the equilibrium probability that the source is in
state ¢ at a renewal epoch. Similarly let 7 A*(u), for every u, u > 0, be the total number of arrivals in

the w units of time immediately following a renewal epoch, given that the state of the source ¢ at the
del

renewal epoch was o. Further, let “ai(u) = P[ZAY(u) = k], for every u, v > 0. For simplicity the
notation "a};. will be used to refer to "ozfc(D). Given that the state of the source at the renewal epoch
is o, let 7 A% (1), for 0 < u < 1, be the total number of arrivals in the first % units of time of the nt* slot
immediately following the renewal epoch, where 0 < n < D. Notice that 7 A% (u) = 7 A*(n+u)—7 A% (n).

Let “a () def {"A‘ (¢) = k]. For simplicity the notation A? will be used to refer to A% (1), and

the notation 7oy’ * will be used to refer to Tal (1),

The source ¢ traffic load is the mean number of arriving cells from source ¢ in a slot time interval
and is given by

D-1 oo
def “ZZAX ol xpl = —ZZZI»X”QZ’X;?; . (1)
Yo k=1 Yo n=0 k=1



In Section 6, a number of well known source models are shown to be special cases of this model.

The class of Markov renewal CSs of the type described above is closed under superposition, i.e.
the superposition of a number of CSs of the type described above results in another CS of the same
type [7]. If the index ¢ representing the specific source ¢ is removed from the above equations, then
the corresponding parameters refer to the collective behavior of all sources (z.e. the superposition of
all the incoming CSs). The traffic source mode] described above is rich yet amenable to performance
analysis [5).

3. Exact Analysis of the Behavior of a Multiplexer

The state of the multiplexer immediately before the beginning of the n** slot since the last renewal,
for all n, 0 £n < D —1, is described by (4., ¢), where 7. is the total number of cells in the multiplexer
at the end of the previous slot, and ¢ is the state of the cell sources respectively at the beginning of
the 0% slot.

If & is the state of the sources and j. is the number of cells in the multiplexer buffer immediately
before the beginning of the n* slot, let "bj" (n) be the probability that the multlplexel will have j5
cells at the end of the nt* slot for all n, 0 < n < D — 1. Using the notation [z] M 4 mm{:c, M}, and
tz]ar def max{z, M}, the transition probabilities ave defined for 0 < 7,57 < K,and 0 <n < D—1 as
follows:

oyt UEgF160 ifje < K .
jc (ﬂ’) - 1 - E_;l:‘__lc—ljﬂ aa]_Jc+l(Jc>D) lfj;‘ = .K ( )
0 otherwise
Let the square matrix “P, be defined such that “P,(j., 77) Al 5 b;:: (n) for 0 € je, 77 € K and

0<n<D~-1. Inshort,
o def arde
P, [ b::',-c (n)]

With “W}?} defined as the equilibrium probability that the system is in state (j., o) immediately
before the beginning of the n*® slot since the last renewal epoch, let %x(®) o \& ’Il'((]n) , 7 'n'gn) NS 71'_5?)]
forevery [, 0 I <T -1, forevery n, 0 < n <D —1 and for every ¢, 0 <17 < 8§ — 1. Notice that
ES i"“fr(“ = 1/D, for all n, 0 < n £ D — 1. The algorithm used to compute the equilibrium
pmbablhtles 7i7(n) for all n0<n<D-1,foralll,0<iI<T —1andforeveryi,0<i<5—1,1s
the Gauss-Seidel overrelaxation algorithm presented in [16].

Let L, be the random variable describing the number of cells lost in a slot time interval. Further,
let "Y;-(ck‘”) be the probability that % cells are lost during the n* slot since the last renewal epoch,
where 0 < n £ D -1, given that the system is in state (j,, ¢) immediately before the beginning of the
nt* slot. Thenfor 0 <n <D -1,

K 0 e
oy ki) & { Lje=lic-1lo ¥z-jet1(ie>0) HE=0 @)
% X ket L(fe>0) ifk>1



ey & eyl oy L oy WMIT 0 0 < n < D— 1, then for k > 0, the probability that
k cells are lost in a slot time interval is given by

D-1
PlLy=# = 3. 5 oatoy{™ (4)
Yo n=0

3.1. The Waiting Time Distribution of a Traffic Source at the Mul-
tiplexer

A cell arriving u time units after the beginning of the n!* slot following the last renewal is tagged,
where 0 < % < 1. Let the multiplexer state be (j, o) immediately before the beginning of the nt* slot
since the last renewal, foralln, 0 <n < D—-1.If j. + “A,(u) < K, then the cell is accepted; otherwise
it is rejected. Accepted cells are served in the order of their arrival. In what follows a methodology is
introduced for the computation of the waiting time distribution of an accepted cell.

All slots are enumerated according to their proximity to a renewal epoch. Each time slot is assigned
a number between 0 and D — 1. According to the enumeration rule, the first slot following the renewal
epoch is numbered 0, the next slot is numbered 1, and so on.

Let W[ (u, jc, @) be the random variable describing the waiting time of the k** accepted cell arriving
w units of time after the beginning of the n® slot since the last renewal, for 0 < n < D — 1 and
0 < u < 1, given that the multiplexer state immediately before the beginning of the n** slot is (4., o).

I K2y (Ges0) & K —jot 1. > 0),
Wiw,je,o) = 1—u+ lje—1lo+k (5)

forl <k < KZ

mar”
Given that the state of the source at the last renewal epoch was o, let F,Sa‘n) (1) be the distribution
of the arrival time of the k** cell during the n‘* slot following the last renewal epoch, for 0 < u < 1
and 0 <n < D — 1. Then,

P{Wn( . O') > _',r;] _ i\’jwim:(jcad) f(} 1(W!;3(u’jc, O') > m)degff,'n} (u)
Jes K o (Geso) ¢l (o)
Ek-:l fo dFL (‘U,)

(6)

Notice that W} (u, je, o) is a decreasing function of w for all k, k& > 0. Let U7 (2, 7., o) be the maximum.
value of u in the interval [0, 1) for which WZ(u, je,0) > ©. Then,

P[W”(jc,o-) > g_,] o= E-"':’ﬁu(ic-a) Pl A, >k,

L==1

Klaz(icio) pro e ot . n :
{ k=1 Pl A, (Uk (:L,g,;,a))Zk] if Eii—fqlu(.?caa) P[aAn > k] > 0; (7)
unde fined, otherwise,

foralln, 0 <n<D~1.

Let
PIW™(je,0) > al, if Tpp=Uo7) P74y > K] > 0; ()
otherwise,

PW"(je,0) > 2] = {

3



fE)r alln, 0 < n < D —1. Let the column vector “P[W™ > z] be defined such that its (jc)m element is
PW™(g.,0) > «], for all possible values of j.. Then, if P{W < z] is the probability that any incoming
cell will be delayed at most 2z units of time, then for z, z > 0,

Sve Doy MR > ]
Yove LR exme B[ > 0]

PIW > z] = (9)

4. Computation of Performance Bounds

The algorithms presented in the previous sections give exact description of the steady state behavior
of the multiplexer. From this it is easy to define various performance measures which are needed for
the multiplexer dimensioning. Unfortunately, the requirements in terms of CPU time may be excessive
for realistic systems. In order to reduce the computational burden, observe that in many cases it is
not necessary to know all steady state probabilities. Often the values of one or several performance
measures f, such as the average cell loss or the average waiting time, suffice. Such measures ave linear
functions® of the steady state probabilities, and more efficient algorithms for the computation of the
upper and lower bounds of the quantities of interest can be derived [10, 13, 15, 16, 2].

- The problem in question can be formulated as follows: & &f {0,1,---,5—1}. Find

f = cnt (10)
subject to constraints
7 =P #w>0, Zm:l , (11)
ies

where m and ¢ are row vectors of dimension S and define respectively the equilibrium probabilities and
the state contribution to the performance measure. P is the state transition matrix of the discrete
Markov chain. Under well known assumptions Equation 11 has a unique solution 7 which defines the
steady state distribution of the Markov chain. However, formally the problem in Equations 10-11 can
be considered a linear programming problem:

max exl (12)
subject to constraints
w(P-I) =0, w20, > m=1 . (13)
)
The dual of the above optimization problem is [12]
min z (14)
v,z
subject to
(P—DoT+2 >, (15)

*The expected waiting time is a ratio of two linear functions. It can be expressed as the unique solution of a linear
program through a non-linear transformation [6].



where Z is a vector of dimension S, with all components equal to z, and for arbitrary values of z and
v.

If instead the problem in Equations 10-11 were viewed as a maximization problem, then the dual
would have been the following minimization problem

maxs (16)
subject to
(PNl +27 < (T (17)

where Z is a vector of dimension 5, with all components equal to z, and for arbitrary values of z and
U,

Due to the ergodic property the solution of Equations 12-13 exists, and its optimal value f coin-
cides with the optimal value of its dual problem [12]. But from the weak duality theorem of linear
programming [12], any feasible solution of the minimization problem is an upper bound of any feasible
solution of the maximization problem. Since an arbitrary value of v combined with a value of z given
by the equation z = maxpes(cr +vk — X ;e viPhi) constitute a feasible solution of the Equations 14-15,
the upper bound of the optimal solution of the maximization problem is given by

f < max(ep +vp — Y vipi) - (18)
kes ies

Similarly, an arbitrary value of v combined with a value of z given by the equation z = minges(cr +
Y= 2 ies Vilki) constitute a feasible solution of the Equations 16-17, and a lower bound of the optimal
solution of the maximization problem is given by

min(es, + vy ~ Z’Uipki) <5 . (19)
kes i€S ’

Now consider the case in which all inequalities in Equations 15 and 17 are satisfied as equalities

at the optimal solution, i.e.
v=vPT +z—¢c . (20)

This is the most interesting case because from the complementary slackness thieorem of linear pro-
gramming [12], it is known that if Equations 15 and 17 are strict inequalities, the problem is redundant
in the sense that the corresponding rows of the matrix P do not influence the value of the performance
measure. That is, if Equation 20 is not satisfied, then the transition probabilities from some state can
be arbitrarily changed without changing the performance measure.

Equations 11 and 20 can now be compared. A solution to Equation 11 is the following fixed point
algorithm
a*tl =gp (21)

which converges to the steady state distribution of the Markov chain as s — co under well known
assumptions. The similar fixed point algorithm for the system of Equations 20 has the following form:

v =Pl 4z — ¢ (22)



or equivalently,

=Y vtz —c (23)
=5y
for all k € §. Observe that due to Equations 18 and 19, the following estimate on each iteration holds:

mnl(c;. +uf =Y uipm) < f < max(ck +uf = > vipk) (2
ey ics
or equivalently, 41 +1
z+ I;Eé‘?(“i- v )Sf<zt Te%{(v’” v =

where the difference between the left and right sides of the inequality tends to zero under the same
assumptions which guarantee the convergence of Equation 21. Note that Equations 23 and 25 depend

on the unknown quantity Z. The substitution u* def v® + s% results in z 4 v® — v5TL = 45 — o5t
W =uwPT — ¢ V (26)
and
1]2111(&; —uft™ < f <max(u A (27)
The previous equations lead to the following algorithm:
Wl =upT — ¢ (28)
f= max(uk —uth (29)
f= mm(uh —uyth (30)
Wherefzfzi,f—-iﬁOass—)oo.
The above equations are the basis of following value-iteration algorithm [16).
Value-Iteration Algorithm for the Computation of the Performance Bounds
Step 0. Choose ul) = —¢y for all k € S. Let s := 1.
Step 1. Compute the value function uf, k € §, from
up, = Epkjuj_l - (31)

JES

Step 2. Compute the bounds

mm{uk —uith

L=
f=

max{uk —uith)

Ifo<f— [ < ef, where ¢ is a tolerance number, then stop. Otherwise, go to Step 3.
Step 3. s := s+ 1 and go to Step 1.



The convergence rate of this value-iteration algorithm can be further accelerated by the introduc-
tion of a relaxation factor. The reader is referred to [16] for details. Unfortunately, for problems with
a large state space, this algorithm may prove to be prohibitively slow. In this case approximations
must be used. One approach to approximation is presented in Section 5, where the value iteration
algorithm is combined with aggregation.

5. Guaranteed Bounds for Multiplexer Performance
Through State Aggregation

As mentioned in [10] “the curse of dimentionality” forces the development of useful techniques for
problems of practical significance. One of the techniques that has been considered in the literature is
state aggregation [10, 1, 13, 15, 2]

In [10] fixed-weight aggregation is presented. In this context let X = {0,1,---, K — 1} be the

aggregated state space. The state k of the aggregated state space includes all states in the subset A,
for k € KC of the state space S. Further, A; N A; = @ for all 4,5 € K and ¢ # j. Upexc Ar = S. Let
Ai" be the weight of state s in the aggregated state k. Then let g;; be the transition probability in
the aggregated Markov chain from the aggregated state & to the aggregated state [, and let r;, be the
aggregated cost of the aggregated state k. Then,

g =) ALY paj (32)

s jeA;
=y M, (33)
sedy
S M=l (34)
seA;.

for all £,1 € K.

In general the weight-factors should be a function of the equilibrium probabilities. Under the
aggregated form the problem in question can be formulated as follows: Find

o = ri7 (35)

subject to constraints

#=7Q, #20, ) H=1, (36)
Vi

where # and r are row vectors of dimension X and define respectively the equilibrium aggregated
probabilities and the aggregated state contribution to the performance measure. Using a methodology
simular to as that used to solve the non-aggregated problem in the previous section, it can be proven
that

U,S+1 — uSQT - (37)
and
: i3 a 1
min(uf — uth) < f* < max(ef - i) (38)



The previous equations lead to the following algorithm:

wttl = u*QT —r (39)
F=max(u} —ui™) (40)
f= 1’2}}1\%1(15;8‘ —ufth (41)

WhereTZfZL7—?—}Oandj_—i—}0ass—>oo.

Equation 40 can be further analyzed:

f=max(f, - uwi™) =

= max (u, Z uiqy + Tk)
ek

= 1&5}\2‘:(1@ o Zuf Z ,\S’f z Psj + Z /\ifcs)

ekl sed; jEA; s€Ay

= I;g;gc{ > AS (Cs —>oul > ps.?') + ui} : (42)
SEA,

ekl jed,

From Equation 42 a number of different upper bounds can be derived. For example if all states in
a group are equally weighted, then

= max Z Zuf E Dsj )+ uf, (43)
hek { |A’~l ( ek jed ) }
where |Ay| is the cardinality of the set Ay, for all k € K.
It is worth noting that if A% = E—-— for s € &, then the non-aggregated and aggregated versions

€Ay
of the problem have the same objective function value. This is desivable because any lower and upper

bounds for the aggregated version are lower and upper bounds for the non-aggregated problem as well.

An upper bound of f which holds for all possible choices of the weight-parameters in Equation 43
and thus is also an upper bound of the non-aggregated problem is given by

f = max ma,:’c(c_9 Zuf Z psj) +ui} . (44)

ek Lsed, fre JeA,

Similarly, a lower bound of f which holds for all possible choices of the weight-parameters and thus is
also a lower bound of the non-aggregated problem is given by

= {Igf{ggﬁ( Zuf Z f[)sj) +uf} . (45)

ek jed



The previous equations lead to the following algorithm [2]:
Value-Iteration Algorithm for the Computation of the Performance Bounds

Step 0. Choose ug = maxje4, ¢; for all k. Set ?0 = max;es ¢; and io = minjes ¢;. Let 5 = 1.
Step 1. Compute the value function uj, from

up™t = max(yuf Y7 pej — o) (46)
Ylek  jed
Step 2. Compute the bounds

-5+1 s s+1
= max(u; — uj 47
f max(uf — ug™) (47)
st — min(us — St 48
£ = min(ud - ut) (19)

If I?SH —F| € € and | f“’"l — f°| € ¢, where ¢ is a perspective tolerance number, then stop.

Otherwise, go to Step 3.
Step 5. s :== s+ 1 and go to Step 1.

The reader is referred to [2] for further details.

6. Study of Different Traffic Sources

In order for a traffic source generator to be useful im an ATM environment, it must be capable of
modeling a rich variety of traffic behaviors. A performance analysis based on such a traffic source
generator is useful because it provides a uniform methodology through which a control infrastructure
can be tested under diverse traffic conditions. In this section, a number of different traffic source models
appearing in the ATM literature are presented and shown to be special cases of the traffic source model
described in Section 3 and utilized throughout this paper. By showing how a wide variety of continuous
and discrete time traffic source generators can be modeled using the traffic source model described in
Section 3, it is demonstrated that the traffic generator on which the performance analysis presented
in this paper is based is indeed capable of modeling a rich variety of traffic behaviors [5, 7).

6.1. A Poisson Process Traffic Source

A traffic source following a Poisson distribution with rate ¢ can be described as follows: S =1, pgg = 1
and pg = 1.

k
ak(u) — e—cu (C;"t']) ,
foru>0,0<n<D—1,and k > 0. Finally,
ap(u) = ap(u)

for0<u<l,andfor0<n<D-1.

10



6.2. Multiplexing of N Independent and Identically Distributed Two-
state Bursty Sources

A bursty source is modelled as a two-state Markov chain. The Markov chain makes a transition every
1/c units of time. When the Markov chain enters state I, a cell is generated with probability Dgen-
Notice that poo + pg1 = 1 and pyg+p11 = 1. Let

Q def (900 Q'OI)

qio qu1

Let “¢(0,n) ( respectively “g(1,n)) be the probability that after » transitions, the two-state Markov
chain will be in state 0 (r espectively 1), given that the state of the Markov chain at the last renewal
epoch was o. Also let q(n) [“q(O n) “q(1,n)]. If o = 0, then %(0) o [10], and if o = 1, then
La(0) def [01]. “g(n}) = “¢(0)Q™, for n > 0 and o € {0, 1}. The probability that % cells are generated
in m consecutive transitions of the Markov chain is given by:

1 1 m m
)RS H (o, )P L (S K = k)
& k=0 km=0n=1 j=1
For this type of source model, 5 = 2’ ag = 0’ g1 = 1: Poo = OQ(U)D): Pyl = iQ(la-D)a
po = %g(0,D), and p11 = q(1,D).

1

. z;{.1=0 EAL“J—WO HLM} Tq(kn,n) 1:35“3“1(2W’3i i k) if1<|uc]
ap(u) = 41 ifk=0,and 1> |uc] -
0 otherwise

for o € {0,1}, and 0 € v < D, and k > 0. Finally,
Tal(u) = “q(0, [nc)) er(l(n+u)e| - [ne)) + (1, [nc))?arn(l(n+u)e| — |nc))

forc € {0,1},£>0,0<n<D—-1,and0<u<1.

When N of the above sources are multiplexed, the state of the multiplexed sources is the number
of active sources.

N-1

afw) € Y “aplw e e M ap WY oj=0)
kot vk _1=k i=0

forallk > 0,kg > 0,-- ky—1 20,0 <n<D—-1, and 0 < » £ 1. Furthermore the probability that

the state of the mult1plexed sources makes a transition from state o to o9 is given by

N—1—
Poros = i | Zai o PiPS M piipe TR 10k + By = 02)
gron ]~1=0 fon =0 dl - kl} kl) N - 01 — k?-? kg o . )

for all 61,00 € {0,1,---,N — 1}.

11



6.3. Binomial Traffic Source Model

Cells are generated every 1/c units of time with probability p. The binomial traffic source model can
be seen as a traffic source with 8 =1, pgg = 1 and py = 1.

onlu) = (“jfj)pku _ el

for 0 € u < D, and k > 0. Finally,

af(u) = (I.(n -+ “);J - an'l)pk (1~ p)[(u+u)cj—[ncj—k

for 0<n<D-1,0<u<l,and k> 0.

6.4. The Constant Bit Rate Traffic (CBRT) Source

The CBRT source is another example of a single state traffic source. One cell is generated every 1 /¢
units of time. Let D be an integer multiplier of 1/c. For this type of traffic source, S = 1, ppg = 1 and
o = 1.

o) = P2 <u< 50 < (lue] = )

[

for 0 <u £ D, and & > 0. Finally,

ap(u) = Pllin+u)e] — [ne] = k] = {|(n+uwe| — |ne] = k)
for0<n<D-1,0<u<l,and k>0.

Notice that the binomial source model can be seen as a special case of the two-state Markov chain
model for go; = ¢i0 = p, and that the CBRT source can be seen as a special case of the binomial

source model for p = 1.

6.5. Multiplexing of N Non-Homogeneous Sources

The arrival process of source ¢ is completely described by the gquantities a:’i (u)for 0 <n<D-1,
0<u <1, and & > 0. The overall arrival process of N cell streams is described by the quantities

def [
“afw) T Y Pop’@e @ Ml Hu)l(o = f(oo, -, on-1))
kgteken =k

forall k> 0,k 20,---ky_120,0€n<D—-1,and 0<u < 1.

Special attention has to be given to the appropriate definition of the state ¢ which in general is a
function f(og,---,on-1) of the states og,---,on_1. The number of states of the multiplexed sources
cannot be higher than Sy x - - x Sy_; and is usually much less [7]. If one of the sources, say the first,
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has one state, that is if Sy = 1, then the total number of states of the superposition equals the number
of states of the superposition of the remaining of the sources. Therefore, the presence of single state
sources does not affect the state space of the multiplexed sources.

The expected number of lost cells from the i*? source is given by

D-1 K

Bi=3 3 S % > zk i WJCH%’”LZJS K+ lje—1ofo
- .

n=0 j,=009€ Sy INw1ESN_ Jot-tin_17e

for i € {0,---, N — 1}. For further details the reader is referred to [7).

7. Examples and Discussion

In this section, a number of examples illustrating the results derived in this paper are presented. The
first class of examples (illustrated in Figures 1 through 4) is based on the multiplexing of independent
and identically distributed (i.i.d.) bursty sources. A bursty source is modeled by the two-state discrete
Markov chain model introduced in Section 6.2. Let

Activity = Prob[Source is active] = S (49)
o1+ P1o
Further, let
. _ 1
Burstiness — Maximum Source Rate - - = ' : . (50)
Mean Source Rate 2 X Pyen x Prob[source is active]
Therefore,
. 1

Burstiness = . (51)

Activity X Pyep

The mean burst length is ]% cells, and the mean silence length is 531; Further, notice that

1 - Output Link Rate . (52)

¢ Maximum Source Rate

In Figure 1, the buffering required for the multiplexing of a number of i.i.d bursty sources under
a specific cell loss probability GoS is computed. As expected, the increased number of multiplexed
sources leads to a linear increase in the traffic activity of the multiplexer, which in turn results in a
nonlinear increase in the buffering required if the same cell loss probability is to be maintained.

The analysis presented in Figure 1 is based on the exact description of the source behaviors
and is computationally expensive. In general, if § — 1 two-state discrete Markov chain sources are
superimposed, the complexity of the problem is proportional to S x (K +1). In an ATM environment
and for a 140 Mbps link supporting low bursty (up to 2 Mbps) sources, S — 1 would likely be greater
than 100. The complexity of the corresponding problem would therefore be on the order of 100K.
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In order to reduce complexity, an approximation must be introduced. In the example illustrated in
Figure 2, a three-state approximation of the behavior of the original S-state Markov chain is employed.
This aggregation reduces the number of states to 3(K + 1)D.

Let u (for underload), n (for normal load), and o (for overload) refer to the three aggregated states.
Let Ay be the subset of the S — 1 state space composed of the underload states. Let A, be the subset
of the state space composed of the normal load states. Finally let .4, be the subset composed of the

remaining states. Then,
P, = icds Lujeds PiPis
kl
2ied, Di
for 0,6 € {u,n,0}. While in state o, the aggregate source generates 7 cells with probability T—L’

. e, Pi
for i € Ag, and o € {u,n,o}.

Figure 2 demonstrates results based on the three-state approximation of the source behavior.
In particular 20 iid. bursty sources are multiplexed. The overall behavior of the multiplexed
sources is described by a 21-state discrete Markov chain, which is approximated by a 3-state Markov
chain. The partition of the original 21 states into the aggregate three states is as follows: A, =
{0, -, Thresholdl}, A, = {Thresholdl+1,- -, Threshold2}, A, = {Threshold2+1, - --,21}. Whereas
the results presented in Figure 2 are quite good, this type of source aggregation does not always give
good results. This is due to the fact that an efficient state aggregation cannot be identified without
consideration of the parameters of the multiplexer, such as buffer size and service rate [7).

In Figures 3 and 4, it is demonstrated that the output rate of the multiplexer divided by the peak
input traffic rate is a fundamental quantity in the characterization of the cell loss probability. Observe
that for buffer sizes less than this ratio, cach source has at most one cell in the buffer, whereas for
buffer sizes greater than this ratio, each source may have multiple cells in the buffer. The shape of the
cell loss probability versus the buffer size raises the question of whether buffering can be considered
an effective method for the solution of the congestion problem. It appears that buffering should be
used only for a temporary surge of traffic.

In Figure 5, three classes of sources are statistically multiplexed. The first class contains five two-
state Markov chain sources with pg; = 0.00625, pyp = 0.025, ¢ = 1 and Pgen = .2. The second class
contains five two-state Markov chain sources with pg; = 0.003125, p1g = 0.0125, ¢ =1 and Pgen = -2.
The third class of traffic is a Poisson source with rate 0.2. Notice that the first and second classes
include sources with identical activity and burstiness, whereas the second class sources have twice the
average size of the idle and active periods compared to the first class sources. Figure 5 shows the loss
probability of the overail multiplexed sources. Figure 6 shows the loss probability of a source belonging
to each of the three classes. From Figure 6, it is observed that as anticipated for a given buffer size
the least loss is experienced by the Poisson traffic source. Bursty CSs experience higher loss. Among
the bursty sources, those with shorter active/idle periods experience less loss. From this result one
concludes that the activity and burstiness factors do not uniquely characterize a CS. The expected
length of an idle plus an active cycle is an additional parameter which plays a very important role in
the overall characterization of a CS[7].

Figures 7, 8 and 9 present results of the approximations given in Section 5. In particular it is
assumed that the initial buffer capacity equals the output rate divided by the peak input rate. The
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buffer sizes reported on the figures refer to the additional buffer capacity. In Figure 7 300 binomial
sources with maximum arrival rate of 2 Mb/sec are multiplexed. The service rate of the multiplexer
is 140Mb/sec. The original buffer is approximated by a buffer with 10 positions. Figure 8 depicts
the maximal allowed number of binomial sources which have maximum arrival rate 2 Mb/sec and
various values of the parameter p (which is the activity of a binomial source) under the condition that
the overall cell loss probability does not exceed 1078, In this example ¢ = 1. The actual size of the
additional buffer capacity is 50 cells. It is clear that the minimum number of sources that can be
multiplexed is 70, which is the case if each source receives the peak bandwidth allocation of 2 Mb/sec.
In this case the cell loss probability will be zero for all possible activity values. The other curves are
derived based on the upper bound value derived with the value iteration algorithm presented in Section
5. Notice that the solutions derived under the assumption of zero extra buffer are good enough. The
curve that corresponds to the extra buffer size of 10(dotted curve) is almost indistinguishable from the
exact solution. Experimentation [2] demonstrates that the quality of the approximation is maintained
even if the sources are two-state Markov chains. In Figure 9 the states of source are not aggregated,
but the buffer is approximated. The general behavior of the bounds is similar to the binomial case.
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Multiplexing of i.i.d. Sources
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Figure 1: Buffering requirement for the multiplexing of a number of i.i.d. sources at a specific cell loss
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Figure 2: Evaluation of the effectiveness of approximating a multistate bursty source through a three
state approximation
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Figure 3: An example of the importance of the

Figure 4: A further example of the importance of the
multiplexer
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Multiplexing of Three Non-Homogenous Classes of CSs
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Figure 5: Cell loss probability for the three non-homogeneous CS class case
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2, Multiplexer dimensioning for binomial sources
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