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ABSTRACT OF THE THESIS 

 
 
Numerical Drag Reduction Studies on Generic Truck Models Using Passive and Active 

Flow Control 

by 

Miles E. Bellman 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2009 

Research Advisor:  Professor Ramesh K. Agarwal 

 
Drag reduction studies on generic truck models using passive shape optimization and active 

flow control are studied using numerical methods. A genetic algorithm is used to find optimal 

truck front shapes for reduced drag. The best shape found gives a 3.4% drag reduction. Active 

flow control is used to reduce drag by using oscillatory synthetic jet actuators on a generic truck 

body, a D-shaped bluff body, and the Ahmed body. Experimental data is available for these 

three configurations without and with active flow control. Actuators at the back of the trucks 

energize separating boundary layers and delay the shedding of low pressure-inducing vortices in 

the wake resulting in drag reduction. A maximum drag reduction of 16% and 21% was found to 

be possible for the two-dimensional model of a generic truck and a two-dimensional D-shaped 

bluff body respectively; these results are in close agreement with the experimental data. Active 

flow control with steady blowing on the three-dimensional Ahmed body however did not show 

drag reduction. This calculation requires further investigation. 
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Chapter 1  
 
Introduction 
 

1.1 Motivation 
 

The world needs sources of energy to power homes, businesses, and transportation 

vehicles. Much of this energy comes from fossil fuels such as oil, coal, and natural gas. 

In particular, most of the energy for all forms of transportation comes from oil. With 

the continuous increase in population as well as the large growth in the transportation 

sector, there is an increasing demand for oil worldwide. The rising demand coupled with 

dwindling supplies of oil (oil being a non-renewable energy source) has resulted in large 

increases in the price of oil in recent years. In addition, the consumption of oil is also a 

major contributor to greenhouse gas emmisions, influencing climate change.  

 

Thus, the world is currently facing the urgency of tackling the two somewhat coupled 

problems: (1) how to reduce the use of non-renewable fossil fuels by improving the 

energy efficiency via technological innovation and (2) developing alternate clean sources 

of renewable energy (e.g. wind, solar, geothermal, etc.). In this thesis, we address the 

problem of improving the energy efficiency of ground vehicles by technological 

innovation. In particular, we investigate the possibility of reducing the aerodynamic drag 

of ground vehicles by shape optimization and by flow modification using recently 

developed active flow control (AFC) devices. A 15% reduction in aerodynamic drag 

results in approximately 5% in fuel savings.  
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1.2 Current and Future Forecast of Fuel 
Consumption by Ground Vehicles 

 

Based on the 2004 data, ground vehicles (automobiles, light trucks, and other heavy 

duty vehicles) consume 77% of all oil used in all modes of transportation in the U.S. as 

shown in Figure 1.1 [1]. Currently (2008), about 12 million barrels per day of oil are 

used by ground vehicles as shown in Figure 1.2 [1]. This figure will rise to approximately 

16 million barrels per day by 2025. It is easily estimated that a 1% increase in fuel 

economy for the ground vehicles will save about 245 million gallons of fuel each year. 

There are currently 700 million ground vehicles worldwide; this number is expected to 

rise to 2 billion by 2025. In addition, current ground vehicles contribute 12% to 

greenhouse gas emmisions worldwide. This number is expected to increase to 16% by 

2025 if business is continued as usual. It turns out that at least a 5% increase in fuel 

economy can be achieved by retrofitting the proven technologies of active flow control 

on old/new vehicles. On new vehicles, additional gains in fuel economy can be achieved 

by shape optimization. 

 

 
Figure 1.1 Fuel consumption by vehicle category in U.S. [1] 
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Figure 1.2 Actual and predicted fuel consumption by vehicle category [1] 

 

1.3 Improving Fuel Efficiency of Ground 
Vehicles by Reducing the Aerodynamic 
Drag 

 

With the sharp increase in gas prices during the summer of 2008 and the increasing calls 

for reductions of greenhouse gas emissions, the Obama administration has set new fuel 

efficiency standards for cars and light trucks [2]. Similarly, there is a need for 

improvement in the fuel efficiency of heavy shipping trucks. The goal of this thesis is to 

study both passive shape optimization and active flow control methods for improving 

the fuel efficiency of heavy trucks by reducing their aerodynamic drag. 

 

Fuel efficiency is generally defined as the proportion of energy released by a fuel 

combustion process which is converted into useful work [3]. Heavy trucks use fuel to 
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overcome rolling resistance and aerodynamic drag, and for running the drive train and 

auxialliary equipment as shown in Figure 1.3 [1]. As indicated in this figure, it is possible 

to reduce energy losses in all four categories by employing presently available 

technology.  

 

Figure 1.3 Sources of fuel efficiency losses in a heavy truck [1] 

 
Six percent of the energy losses come from the drive train or from all the power 

transmitting components between the engine and the wheels. Nine percent of the losses 

come from the powering of auxiliary equipment like the air conditioning, power 

steering, and windshield wipers. Thirty-two percent of the losses come from resistance 

between the wheels and the road. The largest loss, about fifty-three percent, comes 

from overcoming the aerodynamic drag. 

 

Drag is defined as the force that opposes the relative motion of an object through a 

fluid. It consists of two components: skin friction drag due to shear stress on the truck 

walls, and the aerodynamic drag due to the difference in pressure between the front and 

back sides of a vehicle. Aerodynamic drag is a much larger contributor to the overall 

drag compared to the skin friction drag. Figure 1.4 [1] shows the three factors that 

contribute to the aerodynamic drag: the shape of the vehicle, the cross-sectional area 

perpendicular to the free-stream, and the speed of the vehicle. It should be noted from 
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Figure 1.4 that the change in speed of a vehicle contributes to the change in fuel 

requirements by a factor of three. 

  

 
Figure 1.4 Three factors contributing to fuel consumption due to changes in aerodynamic drag 

[1] 

 

Figure 1.4 also shows the schematic of pressure difference on a vehicle that contributes 

to aerodynamic drag. Neglecting the viscous effects, the inviscid steady state Bernoulli’s 

equation (1) can mathematically describe the pressure drag. Because the conditions are 

steady and the air can be considered incompressible, Bernoulli’s equation along a 

streamline can be expressed as:  

 

.
2

2

constgzVP
=++

ρ
                                                     (1) 

 

where P, ρ, V, and z are the pressure, density, velocity, and elevation of a fluid particle 

along the streamline respectively. The acceleration of gravity is g. As the vehicle moves 

through air, the oncoming air hits the front of the vehicle and essentially becomes 

stagnant. Thus, in Bernoulli’s equation (1), V≈0 and z can be taken as zero because the 
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change in elevation of the oncoming fluid can be neglected. Therefore, P becomes large 

near the truck front. At the back of the truck, the boundary layers attached to the truck 

body separate and form a vortex street behind the base of the truck. The recirculating 

flow region has a larger velocity than the front of the truck and thus lower pressure. It 

should be noted that the recirculating flow behind the truck occurs due to viscous 

effects and the Bernoulli equation is not applicable. It can be used to qualitatively 

explain the lower pressure in the base region, but cannot be used to predict the 

pressure. 

 

If the average pressure on the front and back part of the control volume surrounding 

the truck could be determined computationally or experimentally, the drag force due to 

the pressure difference would be given by: 

 

( )backfrontD PPAreaF −= ,                                           (2) 

 

where Area is the front area of the truck in the control volume. This is also equivalent to 

the back area in the control volume. Therefore, from equation (2), the aerodynamic drag 

due to pressure difference can be decreased by lowering the Pfront by shape optimization 

and increasing the Pback by active flow control. 

 

1.4 Scope of the Thesis 
 
Figure 1.5 shows various regions of flow that contribute to aerodynamic drag of a heavy 

duty truck. In this thesis, the focus is on reducing the pressure near the truck front by 

shape optimization and increasing the back pressure with active flow control so that the 

aerodynamic pressure drag is reduced. 
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Figure 1.5 Means of achieving drag reduction [1] 

 

1.4.1 Shape Optimization Using a Genetic Algorithm 
 
In this thesis, the first method investigated for truck drag reduction is the shape 

optimization of the front of the truck. A genetic algorithm, an optimization technique 

inspired by biological evolution, is employed in conjunction with a computational fluid 

dynamics (CFD) solver to find the truck front shapes with minimum drag, optimized 

for certain air speeds and some geometric constraints.   

 

1.4.2 Active Flow Control Using Synthetic Jet Actuators 
 
The second method investigated is active flow control to modify the wake of the truck 

so as to increase the base pressure and thereby reduce the aerodynamic pressure drag. 

Three truck-shaped bodies are studied: a two-dimensional generic truck body, a two-

dimensional D-shaped bluff body, and the three-dimensional Ahmed body. Synthetic jet 

actuators (SJAs) are employed for active flow control. These are attached to the back of 

the truck at appropriate locations. Using a CFD solver, the effect of these active flow 

control devices is investigated in drag reduction. 
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Chapter 2  
 
Literature Survey 
 
 
For modification of fluid flow, both passive and active flow control techniques have 

been extensively studied for the past seven decades. Passive flow control has been 

preferred because it does not require external energy input into the fluid system. Passive 

control devices such as vortex generators, microramps, LEBU, etc., have been studied 

and have yielded desired control in many applications. However, the success has been 

limited in achieving significant reduction in drag. Similarly, the success of passive flow 

control devices such as thrust vectoring and thrust augmentation of ejectors has been 

limited in reducing flow separation. 

 

Active flow control studies began during World War II. They were mainly applied to 

military applications of fluid systems. The systems employed reservoirs/sources of fluid 

from which the fluid was injected into the boundary layer flow, usually over an aircraft 

wing, or the fluid was sucked in from the boundary layer to the reservoir. Thus, the 

injection or suction of fluid was employed to alter the boundery layer flow. Because of 

the complexity of incorporating such an injection/suction system into a wing, these 

approaches were never implemented on transport aircraft. The key problem was 

incorporating the source or reservoir for the injection fluid and the tubing/ducting 

required to inject the fluid into the boundary layer. Even if the engine exhaust could be 

employed for such a purpose, the complexity of diverting it into the wing for injection 

into the boundary layer would add considerable complexity and extra weight. Suction of 

fluid from the boundary layer would also require incorporation of sucking mechanisms 

and then expulsion of the fluid from the wing again adding complexity and weight. 
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However, recent active flow control techniques (synthetic jets, pulsed jets, microjets), 

using periodic excitation technology with zero mass flux but net momentum imparted 

into the flow, have shown considerable potential for flow modification.  

 

2.1 Large Trucks Drag Reduction Using 
Active Flow Control 

 

Seifert et al. [5] experimentally studied the active control of flow behind a truck using an 

“add-on” device at the base of a generic truck body. The cylindrical “add-on” device, 

shown in Figure 2.1, employs suction and oscillatory blowing to influence and reduce 

the area of turbulent boundary layer separation behind the truck. The device is a 

combination of an ejector jet-pump and a bi-stable fluidic amplifier; it was developed 

and studied by Arwatz et al. [6]. 

 

 

Figure 2.1 Cross section of an active flow control device or actuator employing suction and 
oscillatory blowing [6] 

 

The experiments were performed on a generic nominal two-dimensional model of a 

truck in a wind tunnel as shown in Figure 2.2. Two experiments were performed at 

Reynolds numbers ranging from 200,000 to 1,000,000, corresponding to free stream 

speeds ranging from 5 to 65 mph. One experiment was performed with the cylindrical 

active flow control device (shown in Figure 2.1) attached to the top aft corner of the 

truck and the other experiment was performed with two AFC devices attached at the 
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top and bottom corners on the rear face of the truck. The bottom device employed only 

steady suction. 

 

 
Figure 2.2 Generic truck body [6] 

 

The first experiment showed a 20% aerodynamic drag reduction at lower speeds (Re = 

200,000), decreasing to 5% reduction at higher speeds (Re = 1,000,000). Net power 

savings increased with Reynolds number while the estimated maximum fuel savings 

were about 3.7% at 47 mph compared to the case without AFC. The second 

experiment, with the combination of top and bottom active flow control cylinders, 

showed 30% drag reduction at lower speeds, decreasing to 20% at higher speeds. This 

translated to about 10% in net fuel savings. 

 

2.2 Feedback Shear Layer Control for Bluff 
Body Drag Reduction 

 

Pastoor et al. [7] studied the active flow control on a D-shaped bluff body using 

feedback shear layer control. The body was mounted in a wind tunnel as shown in 

Figure 2.3. The top and bottom aft corners were fitted with actuator slots. The slots 

contained loudspeakers that created a sinusoidal zero-net-mass-flux actuation effect at a 

45° angle above and below the direction of the free stream as shown in Figure 2.3. 
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Using a reduced-order vortex model, Pastoor et al. [7] showed that the initial separation 

and roll-up of the shear layers in the bluff body wake were dominated by two-

dimensional spanwise vortex structures. They found four distinct states in the evolution 

of the D-body wake. These were startup vortices, shear layer vortices, wake instability, 

and the vortex street. This final state was consistent with the Kármán vortex street. This 

yielded a short deadwater region and strongly bent shear layers, giving low pressure in 

the aft region and consequently high drag. 

 

Pastoor et al. [7] attempted to change the wake formation by forcing synchronous 

vortex shedding. With periodic active flow control, they achieved a maximum base 

pressure increase for an actuation Strouhal number (St) of 0.15 and momentum 

coefficient, cµ, of 0.01 for all Reynolds numbers from 30,000 to 70,000 based on the 

height of the D-shaped body. This actuation created an elongated deadwater region with 

symmetrical vortex formation and a delay in the formation of the vortex street. The 

mean base pressure increased by 40% while the drag decreased by 15%. This resulted in 

a net power gain of 2.8. In some cases, depending upon the Strouhal number, the base 

pressure decreased and the drag increased above the baseline values (without AFC). 

 

 
Figure 2.3 D-shaped bluff body [7] 
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2.3 Application of Slope-Seeking to a Generic 
Car Model for Active Drag Control 

 

Brunn et al. [8] investigated the reduction of aerodynamic drag on the Ahmed body 

with active flow control in a wind tunnel. The Ahmed body [9] is a generic car model 

with a sloped back as shown in Figure 2.4. Its wake depends strongly on the back slope 

angle. For angles smaller than 30°, the flow first separates from the roof of the body, 

then reattaches on the slanted surface before separating again at the rear. For angles 

larger than 30°, the wake is completely separated. As the slant angle approaches 30°, the 

aerodynamic drag increases sharply. Brunn et al. used a 25° slant angle in their study of 

the Ahmed body.  

 

The near wake of the Ahmed body is dominated by nearly two-dimensional spanwise 

vortex structures similar to the generic truck body (section 2.1) and the D-shaped bluff 

body (section 2.2). The Ahmed body also generates longitudinal vortices that separate 

from the slant edges. Thus, the wake is highly three-dimensional as shown in Figure 2.4. 

Brunn et al. [8] used slits with periodic actuators on the middle aft edge at an angle of 

45° above the free stream direction and on the lower aft edge at an angle of 45° below 

the free stream direction. Slits with steady blowing at the slant corners were also 

employed as shown in Figure 2.5. Each actuator in Figure 2.5 was connected to a 

closed-loop slope-seeking controller that determined optimum forcing parameters in 

real-time.  
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Figure 2.4 Three-dimensional vertical structures behind the Ahmed body [8] 

 
 
 

 
Figure 2.5 Steady and periodic actuators placed on the Ahmed body for active flow control [8] 

 
 
For a Reynolds number of 400,000, experiments of Brunn et al. [8] found the greatest 

aft-pressure recovery and drag reduction with the periodic actuators at Strouhal number 

StH = 0.43 and steady blowing at slant corners at cµ = 0.002. This corresponded to a 

pressure recovery of 15% and an overall drag reduction of 13%.   
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2.4 Drag Reduction of a Generic Car Model 
Using Steady Blowing 

 

Wassen et al. [10] also studied the active flow control of aerodynamic drag on the 

Ahmed body by numerical simulation. Using a slant angle of 25° and Large Eddy 

Simulations (LES), the authors applied steady blowing through slits on all the rear edges 

of the body as shown in Figure 2.7. At a Reynolds number of 500,000, the authors 

found a drag reduction of 1.9% on the slant surface and 4.3% on the vertical surface for 

a total reduction of 6.4% due to steady blowing. The power input required for the 

steady blowing was 5.6%, thus the net gain in drag reduction was only 0.8%. Losses in 

pumps or tubing needed for steady blowing would make this reduction even smaller. 

The authors contend that by applying blowing only at the slant edges, the power input 

would decrease by 70% and still give a comparable amount of drag reduction.  

 

 

 
Figure 2.6 Three-dimensional multi-block structured grid around the Ahmed body [10] 
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Figure 2.7 Steady blowing actuators on the edges of the slant and vertical surfaces on the 

backside of the Ahmed body [10] 
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Chapter 3  
 
Computational Fluid Dynamics (CFD) 
Solver 
 
Two ANSYS computer programs were used for the numerical simulations. GAMBIT 

[11] was used to create the truck geometry and mesh while FLUENT [12] was used to 

solve for the flow field.  

 

3.1 GAMBIT 
 

GAMBIT is the preprocessing grid generation software that is provided with the 

FLUENT package. It uses a menu- and GUI-based interface. It allows the user to 

import vertex data as well as CAD models. Sophisticated geometries can be created 

using its built-in geometry tools. 

 

Meshing is done automatically after the user creates a line mesh for each feature. In two 

dimensions, GAMBIT has three grid element options that include quadrilateral 

elements, triangular elements, and a combination of quadrilateral and triangular 

elements. With these elements, GAMBIT offers five ways to construct meshes. 

GAMBIT can create a fully structured mesh, an unstructured mesh, or a combination of 

the two. Each meshing scheme has specific features that make it more suitable for 

certain types of geometries. Figure 3.1 shows an example of a 2-D regular, structured 

mesh using only quadrilateral elements. Figure 3.2 shows a 2-D unstructured mesh 

using only triangular elements and Figure 3.3 shows a 2-D unstructured mesh with 

quadrilateral elements elements. GAMBIT can also create three-dimensional meshes 

using hexahedral, wedge, pyramidal, and tetrahedral elements. There are six types of 
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meshing schemes in 3-D in which GAMBIT employs these elements. Similar to two-

dimensional meshes, the three-dimensional meshes can be fully structured, fully 

unstructured, or a hybrid combination using various types of elements.   

 

 

 
Figure 3.1 Quadrilateral structured grid 
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Figure 3.2 Triangular unstructured grid 

 
 

 
Figure 3.3 Quadrilateral unstructured grid 

 
In addition to meshing the geometry, GAMBIT has tools for grouping the elements of 

the mesh so that specific boundary conditions can be applied to these groups on various 

boundaries of the geometry. These boundary conditions include no-slip wall, pressure 
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outlet, velocity inlet, and axis of symmetry conditions among others. All elements that 

are not assigned boundary conditions are assigned continuum parameters for the 

medium as fluid or solid. After completion of the meshing and assignment of boundary 

conditions, GAMBIT allows easy export of the computational model into FLUENT—

the CFD solver. All elements and their respective conditions become integrated into a 

case file for FLUENT processing. 

 

3.2 FLUENT 
 

FLUENT is a computer program that can model fluid flow and heat transfer in 

complex geometries using an interactive, menu-driven interface. It solves the unsteady 

Reynolds-averaged Navier-Stokes equations using a finite volume technique. It can 

solve two- and three-dimensional problems in steady and unsteady simulations. 

FLUENT has the capability to solve incompressible and compressible flows using 

inviscid, laminar, and turbulent viscosity models. There are six turbulence models, 

including the two-equation k-ε and one-equation Spalart-Allmaras models. Each model 

has options to change parameters as needed for specific cases.  FLUENT also allows 

for adaptation of an existing mesh for additional grid refinement for coupling important 

features of the flow field with high pressure, density, or velocity gradients without 

changing the original mesh file from GAMBIT.  

 

FLUENT solves the non-linear fluid dynamics equations by an iterative explicit or 

implicit algorithm. The converged solution is obtained by specifying a convergence 

criterion for the residuals of the flow variables such as velocity components, pressure, 

density, etc. The user can also monitor the output variables such as the coefficient of lift 

or drag and determine the convergence manually. FLUENT has many post-processing 

tools that make it easy to visualize and plot the output of simulations. The user can 

create contour and other plots of flow variables in and around geometries used in the 

simulation. Pathlines and streamlines can also be computed at any instant of time for 

unsteady flow simulations. Animations of contour plots and vector plots can also be 
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easily created. The animation tool is very powerful since it translates the simulation data 

into flow visualization that can be interpreted more easily than columns of output data.  
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Chapter 4  
 
Passive Flow Control by Shape 
Optimization Using a Genetic 
Algorithm 
 

4.1 Introduction 
 

Design optimization is a subject of great interest in the transportation industry since 

optimization can lead to lighter, faster, and more fuel-efficient transportation vehicles.  

Due to the highly nonlinear nature of the Navier-Stokes equations, analytical 

aerodynamic solutions for air or ground transportation vehicle geometry needed for 

optimizing the objective values such as lift (e.g. aircraft) or drag are not available. 

Hence, currently almost all practical aerodynamics problems are solved iteratively using 

specialized CFD software. Furthermore, traditional gradient-based optimization 

techniques cannot be easily applied; therefore in recent years adjoint methods from 

control theory [13] and stochastic techniques such as genetic algorithms [14] have been 

increasingly employed for aerodynamic shape optimization. 

 

This chapter investigates the application of a genetic algorithm to shape optimization of 

the front part of a generic truck for minimizing its drag coefficient. The space of cubic 

Bezier curves is employed for defining the front shape of the truck. Initially, the genetic 

algorithm for shape optimization was developed for maximizing the lift coefficient of a 

low Reynolds number airfoil employing the design space of Joukowski airfoils. Here, we 

first describe the shape optimization of low Reynolds number airfoils for maximum lift 

at a given Mach number and angle of attack for UAV applications. This is then followed 
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by the shape optimization of the front shape of a truck at a given speed for minimizing 

the drag coefficient. 

 

4.2 Genetic Algorithms 
 

Genetic algorithms are a class of stochastic optimization algorithms inspired by 

biological evolution.  In genetic algorithms, a set or generation of input vectors, called 

individuals, is iterated over, successively combining traits of the best individuals until a 

convergence is achieved. In general, GA employs the following steps [13, 15].  

 

1. Initialization: Randomly create k individuals. Each individual is a chromosome 

with n individuals. See Figure 4.1. 

 

 
Figure 4.1 Individuals with n alleles 

 
2. Evaluation: Evaluate the fitness of each individual. 

3. Natural Selection: Sort the individuals from best to worst fitness. Remove a 

subset of the individuals. Often the individuals that have the worst fitness are 

removed. However, culling, the removal of individuals with similar fitness is 

sometimes performed. 

4. Reproduction: Pick pairs of individuals to produce an offspring. This is often 

done by roulette wheel sampling; that is, the probability of selecting some 

individual hi for reproduction is given by: 
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A crossover function is then performed to produce the offspring. Generally, the 

crossover is implemented by choosing a crossover point on each individual and 

swapping alleles – or vector elements – at this point as illustrated in Figure 4.2. 

 

 
Figure 4.2 General Crossover 

 
5. Mutation: Randomly alter some small percentage of the population as shown in 

Figure 4.3. 

 

 
Figure 4.3 Mutation 

 
6. Check for Convergence: If the solution has converged, the best individual 

observed is returned. If the solution has not yet converged, label the new 
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generation as the current generation and go back to step 2. Convergence is often 

defined by computation of a certain number of generations or a similarity 

threshold. 

 

4.3 Airfoil and Truck Parameterization 
 

4.3.1 Joukowski Transformation for Airfoil 
Parameterization 
 
The Joukowski transformation [16] provides an easy mechanism for describing an airfoil 

by a small number of geometric parameters. It allows the definition of an airfoil in the 

standard coordinate system by transforming a circle in a conformal plane. The 

conformal coordinate system is denoted as the ζ-plane with ξ and η axes. The 

transformation then maps a circle centered in the second quadrant that intersects the 

positive ξ-axis at point (c, 0) to an airfoil in the z-plane by the following functions: 
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This transformation has several desired properties.  If the center of the circle is in the 

second quadrant and the circle intersects the positive ξ-axis, then the airfoil will have a 

sharp trailing edge.  The transformation also ensures that the camber line of the airfoil 

will start and end on the x-axis, removing the need for any further translations or 

transformations. Figure 4.4 illustrates the application of the Joukowski Transformation.  
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Figure 4.4 Joukowski Transformation 

 

4.3.2 Bézier Curves for Truck Front Parameterization 
 
The Joukowski transformation illustrates that a small set of control points can describe 

a shape made of many points. Each control point has a large influence on the shape 

produced. Thus, the genetic algorithm can find the optimal shape quickly by only having 

to deal with a small number of points. This idea can be applied to other optimization 

problems. 

 

The Bézier curve is a parametric curve discovered in 1962 by the French engineer Pierre 

Bézier. He originally used the curves to design automobiles. The Bézier curve utilizes 

two anchor points and n control points. The anchor points, P0 and Pn, determine where 

the curve begins and ends. The control points, P1…Pn-1, influence the curve’s path 

between the anchor points. The transformation from anchor and control points to a 

line is given by: 
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Just as Bézier used the above parameterization to design automobiles, this 

parameterization has been employed in this work to describe the shape of a truck front. 

The parameterization uses only two control points, P1 and P2, as shown in Figure 4.5 
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and is thus a cubic Bézier curve. The anchor points are kept at constant x and y values 

while the control points are generated and improved by the genetic algorithm. 

 

 

 
Figure 4.5 Bézier curve cubic parameterization 

 
 

4.4 Algorithm Implementation 
 

In this section the computational setup is described. Figure 4.6 schematically illustrates 

how the genetic algorithm (GA) interfaces with the external mesh generation and CFD 

flow solver. 

 

 

Figure 4.6 Illustration of information flow in genetic algorithm implementation process 

 

A genetic algorithm individual is represented by either an airfoil or truck geometry data 

file. The file is passed to GAMBIT, which is employed to create a two-dimensional 

individual mesh 

fitness

GA GAMBIT FLUENT

P0 x 

xx 

x P1 

P2 P3
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structured, unstructured, or hybrid mesh. The GAMBIT mesh is then transported as 

input to FLUENT for computation of the flow field. FLUENT is employed iteratively 

to solve for the coefficient of lift Cl or the coefficient of drag Cd. The solution process, 

shown in Figure 4.6, is continued until the convergence in the desired objective value is 

achieved. 

 

In our calculations, a generation size of 10 individuals was used. Each generation had a 

mutation rate of 5% and a natural selection rate of 50% with no culling tolerance; that 

is, there was no attempt made to remove similar airfoils or trucks. Since the objective 

value could take both positive and negative values, roulette wheel sampling could not 

easily be used for selecting reproducing individuals. Instead, the lowest 50% of each 

generation were removed and reproduction was done by randomly selecting two 

individuals. Note, however, that the fittest individuals were still most likely to reproduce 

because the top 50% of each generation perpetuated to the next generation. The 

offspring individual was then obtained by stepping a random amount in the direction of 

the fitter parent according to equation (10) below and shown in Figure 4.7. 

 
( ) ( ) ( ) 22121 1,0, xxxxx +−⋅= randcrossover                              (10) 

 

 

Figure 4.7 Extrapolation-based crossover 

 
 

Convergence was determined when the fitness of all individuals in a generation differed 

by no more than 0.001, which usually occured between 150 and 250 generations, or 



 

 
 

28

when 250 generations had passed. This second constraint on convergence was applied 

to prevent the algorithm from running for unreasonably large amounts of time. 

 

4.4.1 Airfoil Constraints 
 
The Joukowski transformation was used to parameterize an airfoil with three 

parameters: ξ, η, and r. All airfoils were scaled to have a chord length of unity with 

constraints on the parameters described by equations (7-9). Equation (7) constrained the 

airfoil search space by preventing the creation of infinitely thin airfoils. Equation (8) 

constrained the search space to the upper half plane so that the negatively cambered 

airfoils were not considered. Equation (9) eliminated “fat” airfoils from the search space 

by limiting the thickness to chord ratio to 20%. 
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4.4.2 Truck Constraints 
 
The Bézier curve was used to parameterize a truck front with four coordinates of the 

parameters: P1(x1,y1) and P2(x2,y2). The anchor points, P0 and P3, were held fixed at 

specific points during the optimization. Their y-positions relative to each other were 

held at -0.222 and 0.222, respectively. P3 was held at -0.954 along the x-direction while 

P1 changed positions along the x-direction for different cases considered. P1 and P2 y-

coordinates were constrained to be random within the boundaries of the P0 and P3 y-

coordinates. P1 and P2 x-coordinates were held on the right of the P3 x-coordinate and 

on the left by boundaries set differently for each optimization. 
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4.5 Mesh Generation 
 

GAMBIT was used to generate meshes with combined structured and unstructured 

grids for each airfoil and truck considered by the genetic algorithm. A journal file was 

used to automatically produce a mesh that FLUENT could use to evaluate an airfoil or 

truck. The journal had to be robust enough to create a usable mesh for any airfoil or 

truck front shape lest the algorithm would stop running. It took many tries to create a 

generic mesh journal file that would work for any shape. For both the airfoil and truck 

fronts, completely structured meshes were tried, but were found to only work for 

certain families of shapes. An unstructured mesh had to be used to conform to any type 

of shape. 

 

Thus, the final mesh journal file used a combination of structured and unstructured 

grids. The faces of the grid not attached to the airfoil or truck front were meshed using 

the structured quadrilateral cells. It was required that the number of nodes on opposite 

faces were identical. To ensure this distribution, a set number of nodes were defined 

(not relative node spacing) along each edge. The faces of the grid attached to the airfoil 

or truck were meshed using the unstructured triangular cells. This allowed any airfoil or 

truck front shape that was produced to be meshed without errors that would stop 

FLUENT from running.  

 

The full mesh for the randomly created airfoil is shown in Figure 4.8. The airfoil is 

placed in the middle of the square with respect to the y-axis. Its distance from the left 

and right far-field boundaries is 12.5c and 20c respectively, where c is the chord length 

of the airfoil.  The airfoil sits on a face that has an unstructured triangular mesh as 

shown in Figure 4.9. Rectangular faces surround the airfoil face. Each rectangular face 

uses structured quadrilateral cells. Each cell in contact with the airfoil is split into four 

equal-sized smaller cells as shown in Figure 4.10.  This cell adaptation increases the 

accuracy of the solver in the critical boundary layer region where viscous effects are 

dominant.  The resulting mesh had a node/cell/face count of 15,990/30,485/14,495.   
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Figure 4.8 Automatically generated adaptive mesh for airfoil 

 
 

 
Figure 4.9 Automatically generated adaptive mesh for airfoil, zoomed-in view 
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Figure 4.10 Automatically generated adaptive mesh for airfoil, zoomed-in view 

 
 
The full mesh for the truck is shown in Figure 4.11. The truck is placed at the center of 

the semi-circle with radius 12.5L, where L is the length of the truck base. Rectangular 

faces border the semi-circle and have length 20L.  The truck front, which is randomly 

created in the algorithm, is bordered by a face with an unstructured triangular grid as 

shown in Figure 4.13. The cells immediately surrounding the truck are split into four 

equal-sized cells as shown in Figure 4.12.  This cell adaptation increases the accuracy of 

the solver in the critical areas where drag-inducing flow structures are dominant. It also 

increases the accuracy at the back of the truck where bluff body wake features are 

dominant. The resulting grid had a node/cell/face count of 38,176/68,330/30,154.  
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Figure 4.11 Automatically generated adaptive mesh for truck 

 
 

 
Figure 4.12 Automatically generated adaptive mesh for truck, zoomed-in view 
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Figure 4.13 Automatically generated adaptive mesh for truck, zoomed-in front view 

 

4.6 Flow Field Computation 
 

FLUENT was used to solve for the coefficients of lift and drag for a given airfoil, and 

for the coefficient of drag for a given truck. A journal file was used to automatically 

initialize and evaluate each case while saving a record of the relevant coefficients, Cl and 

Cd. For the airfoil cases, the FLUENT journal initialized the calculations for a Reynolds 

number of 100,000 with the chord as the characteristic length. The truck cases used a 

Reynolds number of 303,957 with the maximum truck height as the characteristic 

length. The airfoil had a chord length of 10 cm while the truck had a height of 0.45 m. 

Temperature and static pressure for the truck cases were defined to be at sea level 

conditions with an ambient temperature of 298.5 K and an ambient pressure of 101,325 

Pa respectively. The airfoil cases used the same conditions; this would be the case for a 

vehicle whose maximum altitude would not exceed 100 meters. At this temperature and 

pressure, density of air ρ = 1.184 kg/m3 and the dynamic viscosity of air µ =1.849x10-5 

kg/m-s were used. For the airfoil, the flow was assumed to be laminar because of its 

low Reynolds numbers. The laminar viscosity was calculated from Sutherland’s law:   
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where µo = 1.716x10-5 kg/m-s, To = 273 K, and S =111 K. For the truck, the flow was 

assumed to be turbulent. While the flow at the front of the truck was laminar, the 

boundary layer separation and consequent roll up of vortices behind the truck caused 

the wake flow to be turbulent. To model the turbulent flow, the k-ε turbulence model 

was employed. The turbulent eddy viscosity was calculated with: 

ε
ρµ µ

2kCt = ,                                                        (11) 

where Cµ = 0.09. 

 

4.7 Results and Discussion 
 

4.7.1 Airfoil Optimization 
 
The primary objective of this study was to generate optimized low Reynolds number 

airfoils that maximized the coefficient of lift at 0° and 2° angles-of-attack. At first, a 

first-order accurate Navier-Stokes solver and a standard pressure solver FLUENT were 

used. Later, to investigate the solution dependence on mesh size and the order-of-

accuracy of the solver, the mesh density was doubled and a first-order Navier-Stokes 

solver was employed along with an improved pressure solver, PRESTO, in FLUENT. 

Table 4.1 summarizes the results. 

 

Table 4.1 Results for Cl - optimized airfoils, Rec = 100,000 

Angle of attack, α (°) Optimized Cl t/c (%) 

0 2.35 11.5 

2 3.05 10.2 
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Angle of attack, 0° The first airfoil case optimized the airfoils at a Reynolds number 

of 100,000 and angle of attack of 0°. The coefficient of lift was found to be 2.35 and the 

thickness to chord ratio was 11.5 percent. Figure 4.14 shows that the airfoil is 

moderately cambered, increasing the effective angle of attack and consequently, the 

coefficient of lift. While increasing camber can cause separation of flow near the trailing 

edge, this optimized airfoil keeps the flow attached, eliminating the added drag due to 

separation. Figure 4.15 shows the pressure distribution on the Cl-optimized airfoil. 

Figure 4.16 shows the convergence plot of the Cl-optimized airfoil; the coefficient of lift 

eventually attains the maximum value as the number of generations increases. The 

genetic algorithm does a good job of quickly finding the range of airfoils in which the 

optimized airfoil will occur. After two generations the genetic algorithm finds the 

optimal camber for the airfoil. It then increases the thickness of the airfoil for increased 

coefficient of lift, but does not create shapes that allow the flow to separate.  

 
 
 

 
Figure 4.14 Velocity vectors for the Cl-optimized airfoil at α = 0°, Rec = 100,000 
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Figure 4.15 Pressure coefficient plot for the Cl-optimized airfoil at α = 0°, Rec = 100,000 

 
 

 

 
Figure 4.16 Convergence plot for the Cl-optimized airfoil at α = 0°, Rec = 100,000 

 
 
Angle of attack, 2° The second airfoil case optimized the airfoils at a Reynolds 

number of 100,000 and an angle of attack of 2 degrees. The optimized coefficient of lift 

was found to be 3.05 with a thickness to chord ratio of 10.2 percent. This airfoil looks 
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similar to the airfoil optimized at 0° angle of attack except that it has a smaller thickness. 

This is because the airfoil experiences more drag at the higher angle of attack, so 

thickness decreases to lower that drag. The increased angle of attack naturally increases 

the coefficient of lift. Figure 4.17 shows the shape of the Cl-optimized airfoil with 

velocity vectors. Figure 4.18 shows the pressure distribution on the optimized airfoil 

and Figure 4.19 shows a convergence plot showing the evolution of the airfoils as the 

number of generations increases. 

 

 
Figure 4.17 Velocity vectors for the Cl-optimized airfoil at α = 2°, Rec = 100,000 
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Figure 4.18 Pressure coefficient plot for the Cl-optimized airfoil at α = 2°, Rec = 100,000 

 
 

 
Figure 4.19 Convergence plot for the Cl-optimized airfoil at α = 2°, Rec = 100,000 
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4.7.2 Truck Front-Shape Optimization 
 
Five cases were run to find optimal front shapes of the truck. Each case had different x0 

and xMin constraints. The five cases are shown in Table 4.2. The baseline case for this 

study was the generic truck of section 2.1. Its coefficient of drag was 1.045; its 

calculation is discussed later in section 5.4. 

 
Table 4.2 Results for Cd-optimized truck front 

Case x0 xMin Optimized Cd % Change in Cd compared to baseline 

1 -1.145 -2 0.789 -24.5 

2 -1.5 -2 1.009 -3.4 

3 -1.5 -3 1.033 -1.1 

4 -2 -3 1.056 +1.1 

5 -2 -4 0.712 -31.9 

 
 
Case 1  It optimizes the truck front shape with a separation of 0.191 between P0 

and P3 in the x-coordinate. The left boundary for the control points was kept at x = -2. 

Figure 4.20 shows the convergence plot showing the evolution of generations towards 

the optimized shape. The genetic algorithm finds the range of optimal truck fronts 

within the first generation and then tweaks the shapes to find the best truck front shape 

within that range. Figure 4.21 shows the velocity contours surrounding the optimized 

truck front. The shape allows air to flow smoothly over the top edge with no separation 

at P3. The bottom edge slightly obstructs the flow creating a low velocity bubble near 

the nose and some separation at P0. The coefficient of drag was calculated to be 0.789, 

which is a 24.5% drop from the baseline case.   

 

While this seems like a great improvement over the baseline case, there are hidden 

fitness values which the genetic algorithm does not address. For example, where would 

the engine go in this truck? Where would the driver sit? It would not be easy to 

convince the trucking industry that they should drastically change their truck cab 

designs. It would be easier to find a truck front shape that improves on exisiting 
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designs, but still has the same basic shape as trucks that are in service today. Thus, 

although this truck front shape shows marked improvements over the baseline truck, it 

is not an ideal improvement. 

 

 
Figure 4.20 Convergence plot for Case 1 Cd-optimized truck front, ReH = 303,957 

 
 

 
Figure 4.21 Velocity contours for Case 1 Cd-optimized truck front, ReH = 303,957 
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Case 2  This case attempted to steer the genetic algorithm towards creating an 

improved truck front in the image of existing commercial designs. The separation 

between P0 and P3 in the x-coordinate was widened to 0.546 while the left boundary for 

the control points was kept at x = -2. Figure 4.22 shows the convergence plot for the 

genetic algorithm. Figure 4.23 shows the velocity contours for the optimized truck 

front. The top edge is slanted and lets the air flow over without any obstruction. The 

bottom edge is about 15º from the vertical and allows a stagnation point to develop just 

below the truck nose. This creates some boundary layer separation at P0. The drag 

coefficient for this truck was 1.009, giving a 3.4% drop from the baseline case. 

 

Although this truck front shape does not reduce the drag as substantially as does Case 1, 

it is more practical since it allows room for the engine and the passengers along with a 

slight improvement in the coefficient of drag. The Case 2 optimized truck front is also 

similar to exisiting commercial designs and could be easily implemented by industry. 

 
 

 
Figure 4.22 Convergence plot for Case 2 Cd-optimized truck front, ReH = 303,957 
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Figure 4.23 Velocity contours for the Case 2 Cd-optimized truck front, ReH = 303,957 

 
 
Case 3  This case attempted to improve on Case 2 by moving the left constraint 

for the control points to x = -3. The anchor points were kept at the same positions as in 

Case 2. The convergence plot for Case 3 is given in Figure 4.24. It indicates that it took 

about 10 generations to determine the range of optimized truck fronts. Figure 4.25 

shows the velocity contours surrounding the optimized truck front. This truck front is 

similar to Case 1, but has a more elongated frontal nose. While both the top and bottom 

edges allow the air to flow smoothly, the coefficient of drag nevertheless has a high 

value of 1.033. This is only 1.1% less than the baseline case. Regardless, this truck front 

shape exhibits undesirable characteristics (lack of sufficient room for engine and 

passengers) that would make it hard to propose to the truck industry. 
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Figure 4.24 Convergence plot for Case 3 Cd-optimized truck front, ReH = 303,957 

 
 

 
Figure 4.25 Velocity contours for the Case 3 Cd-optimized truck front, ReH = 303,957 
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Case 4  This case keeps the control points’ boundary at x = -3, and creates an 

even larger gap, 1.046, between the anchor points. This was done to try to influence the 

genetic algorithm to create an optimized truck front shape that would be similar to 

existing commercial shapes. Indeed, Figure 4.26 shows a shape that, while not 

consistent with trucks, looks more like a car. The shape takes a gradual positive slope at 

first and then becomes steeper before smoothing out to meet the top anchor point. This 

latter part creates a low velocity area at the front of the shape which then speeds up as it 

moves further downsteam. The bottom edge is horizontal and goes directly into the 

back part of the truck. The coefficient of drag for this optimized truck front shape was 

1.056. This is 1.1% higher than that for the baseline case. While it was a useful 

experiment in trying different constraints, it did not result in an optimized shape with 

reduced drag. Figure 4.27 shows the convergence plot of the genetic algorithm for this 

case. 

 

 
Figure 4.26 Velocity contours for Case 4 Cd-optimized truck front, ReH = 303,957 
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Figure 4.27 Convergence plot for Case 4 Cd-optimized truck front, ReH = 303,957 

 
 
Case 5  Finally, in Case 5, the distance between the anchor points was kept the 

same as in Case 4, but the left boundary for the control points was moved even further 

out to x = -4. This was again to determine if the distance between the anchor points 

allowed the algorithm to find an optimal truck front with an acceptable design. Figure 

4.28 shows the optimized truck front shape and the velocity contours around it. Both 

the top and bottom edges do well to cut smoothly through the flow, however the top 

edge becomes almost vertical as it hits the top anchor point. Although this feature 

creates some boundary layer separation, it allows the truck front shape to be closer to 

existing commercial designs. The coefficient of drag was 0.712, resulting in a reduction 

of 31.9% from the baseline case. It appears that this truck front shape does well both to 

decrease the drag and keep its design within existing parameters. Unfortunately, Figure 

4.28 also shows that the truck front is larger than the box trailer that the truck would be 

pulling. This would create a need for a lot of excess material that would increase the 

weight of the truck and essentially nullify some of the gains in the efficiency achieved by 
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the decrease in drag. Figure 4.29 shows the convergence plot for the genetic algorithm 

for this case. 

 

 

 
Figure 4.28 Velocity contours for Case 5 Cd-optimized truck front, ReH = 303,957 

 
 

 
Figure 4.29 Convergence plot for Case 5 Cd-optimized truck front, ReH = 303,957 
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4.8 Conclusions 
 
The goal of this chapter was to find optimal airfoil shapes with maximum lift at low 

Reynolds numbers on the order of Re = 105 for UAV applications and to determine 

optimal front shapes of shipping trucks for reduced drag. However, this study also 

provided a lesson in understanding how to interface a genetic algorithm with a CFD 

solver. Specifically, a good adapted, resolved mesh journal file that works for any shape 

must be created before running the algorithm. A journal file that does not do this will 

stop the algorithm from running. The mesh should use an unstructured grid in the mesh 

face where the variable geometry lies. Any other face that does not interface with the 

geometry can use a structured grid. 

 

The genetic algorithm also has some limitations. It searches for the optimal 

configuration of traits that give the best fitness value. However, the best configuration 

of traits usually has multiple fitness values that can make it optimal. For example, the 

genetic algorithm, employed for airfoil optimization, used the coefficient of lift as its 

fitness value; however the drag of the airfoil also matters. For the truck, the genetic 

algorithm used the coefficient of drag as its fitness value, but also needs to allow room 

for an engine and a driver. How can multiple fitness values be enforced using a genetic 

algorithm? Constraints must be used to push the algorithm to only consider a certain 

range of shapes that will uphold all the fitness values. Thus, constraints are very 

important for implementing the genetic algorithm. 

 

After implementing an adapted, resolved mesh that would work for any truck front 

shape and constraints to address multiple fitness values, the genetic algorithm found 

new optimal shapes. The best shape that this author found was Case 2 as it reduced the 

coefficient of drag by 3.6%, but also left room for the important components of the 

truck. Thus, there are better truck front shapes than exisiting ones, and even better 

shapes could be found by adding more control points or tweaking the constraints. 
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Unfortunately, each case took about 2 weeks to run. This was due to the large number 

of iterations required to obtain a converged solution of the flow field. More computing 

power could make this faster in the future. Also, the use of an artificial neural network 

(ANN) could boost the genetic algorithm’s speed. An ANN would use previously 

calculated fitness values and corresponding traits to train a network of nodes. The 

nodes would then be able to take in a set of traits and produce a fitness value without 

calculating the flow field. Thus, the number of needed flow field calculations needed 

could be reduced from 400 to 200, cutting the total genetic algorithm CPU time in half.   
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Chapter 5  
 
Active Flow Control Using Synthetic Jet 
Actuators (SJA) 
 

5.1 Introduction 
 

This chapter utilizes Active Flow Control (AFC) by placement of synthetic jet actuators 

on the rear face of generic truck bodies to alter the wake flow pattern and consequently, 

reduce aerodynamic pressure drag. Studies were performed on a two-dimensional 

generic truck body [5], a two-dimensional D-shaped bluff body [7], and the three-

dimensional Ahmed body [8, 10] described in the literature survey of chapter 2 for 

which the experimental data is available. There were two main parts to this research. In 

the first part, numerical simulations were performed for the three configurations in 

references [5], [7], and [10] without AFC, and were compared with the experimental 

data for the drag coefficient. We refer to three simulations without AFC as baseline 

cases. Because numerical simulations are approximations to actual fluid flow, it was 

important to compute the baseline results for validation to determine if this gave similar 

values and trends for the flow quantities as the experimental data before employing 

active flow control. The second part of this research was to numerically determine drag 

reductions with active flow control using different SJA configurations behind the three 

generic truck bodies and compare them with the drag reductions found experimentally.  
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5.2 Bluff Body Wakes 
 

Bluff body wakes are characterized by the Kármán vortex street, named after the 

engineer and physicist Theodore von Kármán. A typical Kármán street behind a circular 

cylinder is shown in Figure 5.1 [20]. As the boundary layer from the front of the truck 

grows and reaches the back of the truck, it cannot stay attached to the wall and 

separates from the truck surface. The upper and lower surface boundary layers detach 

and roll up in an asymmetrical manner like a Kármán vortex street. This asymmetrical 

wake structure is perpetuated by a strong interdependence between the upper and lower 

shear layers.  

 

In Pastoor et al. [7], the vortex formation behind a D-shaped bluff body is described. 

Figure 5.2, from Reference [7], shows vortex A being created behind the D-shaped 

body by a roll-up of the upper shear layer. This in turn induces the creation of a new 

vortex by separation of the lower boundary layer; it is denoted as B. Once vortex B 

grows in size and moves downstream, it triggers the creation of a new vortex from the 

upper shear layer. These strong vortices in the near wake result in a small deadwater 

region, or area of stagnant flow, and strongly bend the shear layers. This recirculating 

flow results in low pressure at the base of the body, which contributes to high pressure 

drag. Pressure drag is a difference between the streamwise force due to pressure acting 

on the front and back part of the bluff body. 

 

Figure 5.1 Kármán vortex street behind a cylinder [20] 
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Figure 5.2 Asymmetrical vortex shedding from a D-shaped bluff body [7] 

 

In order to reduce drag with active flow control, it must change the wake structure 

behind the bluff body such that the base pressure increases. This can be achieved by 

energizing the upper and lower boundary layers to delay vortex formation. The aim is to 

synchronize the vortex shedding from the boundary layers farther away from the truck’s 

base. This will create a larger deadwater region which will increase the pressure at the 

base and thereby reduce drag. Figure 5.3 illustrates this new wake structure by applying 

AFC. 
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Figure 5.3 Symmetrical vortex shedding behind the D-shaped bluff body as a result of active 
flow control [7] 

 

5.3 Synthetic Jet Actuators (SJAs) 
 

While the use of passive flow control devices for drag reduction (vortex generators, 

microramps, LEBU, etc.) has been intensively studied in the past five decades, active 

flow control methods, other than injection and suction, have been a subject of intense 

study only during the past decade. Steady-state blowing or suction into the boundary 

layer have been tried dating back to World War II, but, due to the added penalty of 

weight from additional ducting systems and maintenance issues, were never 

implemented on a commercial aircraft. However, recent development in AFC devices 

such as oscialltory jets, microjets, splash jets, and pulsed jets have shown possibilities for 

implementation of these devices on commercial aircraft in the not too distant future. 

 

In this thesis, we consider a relatively new active flow control device called an 

oscillatory jet or synthetic jet actuator (SJA). This device creates a net-zero-mass-flux 
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momentum impulse into the flow. The device is light weight, compact, and low cost. It 

can be easily installed on aircraft wings or trucks without the need for any fluidic 

plumbing. Futhermore, the SJA has the potential of being significantly more efficient 

than its steady-state counterparts. 

 

 
Figure 5.4 Schematic of SJA operation [21] 

 
A simple schematic of the operation of the SJA is shown in Figure 5.4. Figure 5.5 shows 

the detailed schematic of the operation of an SJA. The actuating diaphragm or 

membrane is made from carbon fiber. The diaphragm is attached to a hollow cylinder 

around which an electric copper coil is wrapped. The diaphragm and electric coil 

cylinder assembly is surrounded by a magnet with a small gap. When a voltage on the 

order of 6 V amplitude is applied to the electric coil, current flows through the coil. In 

the presence of the magnetic field of the surrounding magnet, an electromotive force is 

induced which moves the cylinder/diaphragm assembly. The diaphragm follows a 

sinusoidal motion at the frequency of the applied AC voltage. As the diaphragm 

oscillates, the air is pushed out and sucked in through a small slit at the front of the SJA 

assembly as shown in Figure 5.5. A typical SJA and its hardware assembly are shown in 

Figure 5.6. The jet can issue from both the front and back parts of the assembly. These 

SJAs can be easily flush-integrated with the surface of a wing or truck back. 

 

The performance of an SJA is characterized by two key non-dimensional parameters. 

The Strouhal number, St, compares the SJA operating frequency to the typical time it 

takes the fluid to advect through the boundary layer: 

 

∞

=
U
fHSt ,                                                              (12) 
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where f is the operating frequency, H is the height of the truck, and U∞ is the free 

stream velocity. The momentum coefficient, cµ, specifies the momentum the SJA 

imparts into the flow. It also provides a measure of the cost of actuation:  

 

2

2

2
∞

=
U
q

H
Sc A

µ ,                                                         (13) 

 

where S is the width of the SJA slit and qA is the root mean square value of vSJA = 

v0sin(2πft); vo being the amplitude of the oscillatory velocity of the SJA. 

 

Most importantly, the power costs of the SJAs must be quantified to show that 

deployment is not unreasonably expensive. Crowther and Gomes [19] have developed 

the following equation for the required fluid power for a flow control application: 

 

3
3

2
1

12 ∞

∆
= UsVW A

R
F δρ

λ
π ,                                           (14) 

 

where VR is the ratio of v0 to U∞, ∆ is the ratio of S to the boundary layer height δ, λ is 

the ratio of SJA spanwise spacing to S, and sA  is the spanwise extent of the SJA array. 

The boundary layer height is estimated by a zero pressure gradient laminar or turbulent 

flat plate model given as: 
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Figure 5.5 Detailed schematic of the operation of the SJA [21] 
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Figure 5.6 Typical parts of the SJA (on left) and SJA assembly (on right) [21] 

 
 

5.4 Generic Truck Body 
 

5.4.1 Introduction 
 
Numerical simulations were performed on a two-dimensional generic truck body 

described in section 2.1. The computed baseline flow field was compared to the 

experimental data to determine an adaptive grid distribution and turbulence model 

which provided the closest agreement between the two. The grid was sufficiently dense 

so that the solution was almost grid independent. Several turbulence models were 

investigated namely the Spalart-Allmaras (SA), k-ε, and realizable k-ε. It was found that 

the realizable k-ε model gave the best results when compared with the experimental 

data. After the validation of the baseline case (without AFC), active flow control was 



 

 
 

57

employed using three different configurations of SJAs on the base of the truck. Finally, 

the relative effectiveness of these configurations was determined by comparing the 

computed drag coefficient. The wake structure and the pressure distributions at the 

truck base were analyzed. 

 

5.4.2 Computational Solution Procedure 
 
Geometry Modeling and Grid Generation      The generic truck body geometry 

from reference [5] was created in GAMBIT as shown in Figure 5.7. Figure 5.8, Figure 

5.9, and Figure 5.10 show the complete mesh, zoomed-in view of the mesh near the 

truck, and the adapted mesh in the synthetic jet regions respetively. In Figure 5.8, the 

computational domain has a semi-circular farfield with a radius of 12.5L; the 

downstream farfield is at 20L from the base of the truck. These farfield faces have 

rectangular cells which are used to create a structured mesh. The mesh decreases in cell 

size as it moves towards the truck geometry. The mesh surrounding the truck, shown in 

Figure 5.9, was adapted for better flow field resolution. The resulting adapting mesh had 

a node/cell/face count of 28,185/56,936/28,751. 

 

 

 

Figure 5.7 Generic truck dimensions [5] 

 

0.355L 

0.754L

0.916L 

L = 1.25
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Figure 5.8 Generic truck body: complete computational domain with structured mesh 

 
 

 
Figure 5.9 Generic truck body with zoomed-in mesh near the body 
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Figure 5.10 Generic truck body with zoomed-in adapted mesh very close to the body and 

synthetic jet regions 

 
 
Several SJAs, each with 1.7 mm in slit width (same as in the experiment of Seifert et al. 

[5]), were placed on the back of the generic truck at strategic locations. Figure 5.11 

shows the SJA configuration in which two SJAs were placed near the top and bottom of 

the rear of the truck in the direction of the free stream. Figure 5.12 shows the SJA 

configuration in which two SJAs operate at an angle of 45° to the free stream direction. 

Figure 5.13 shows the the third configuration in which two SJAs are placed at the back 

of the truck as in the first configuration of Figure 5.11 with an additional SJA placed at 

the top surface of the truck near the boundary layer separation point. 

 



 

 
 

60

 
Figure 5.11 Configuration 1: Two SJAs at the rear face of the truck in the direction of the free 

stream 

 

 
Figure 5.12 Configuration 2: Two SJAs at the rear face of the truck at an inclination of 45° to 

the free stream 

 

 
Figure 5.13 Configuration 3: Two SJAs at the rear face of the truck in the direction of the free 

stream and one SJA on the top surface of the truck 

 
 
CFD Solution  The commercial CFD solver FLUENT was employed to 

compute the flow fields and the coefficient of drag. Baseline (without AFC) and flow 

fields with active flow control were computed at three free stream velocities: 10, 20, and 

30 m/s corresponding to Reynolds numbers of 3.08 x 105, 6.16 x 105, and 9.24 x 105 

45° 

45° 
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respectively based on the height of the truck as the characteristic length. The free stream 

temperature and static pressure values were taken to be at sea level conditions; that is 

288.5 K and 101325 Pa respectively. The density of air ρ = 1.225 kg/m3 and the 

dynamic viscosity of air µ =1.849x10-5 kg/m-s were used. The flow near the front of the 

truck was considered laminar while the wake flow behind the truck was considered 

turbulent. The realizable k-ε turbulence model was employed. For computations of flow 

fields with active flow control, the boundary condition vSJA = v0sin(2πft) for SJAs was 

employed over the slot width with f = 100 Hz and v0 = 0.5U∞.  

 

5.4.3 Results and Analysis 
 
Computed and experimental results for baseline (without AFC) flow field results are 

given in Table 5.1; they are also shown in Figure 5.14 in graphical form. Computed 

experimental results show different trends as the Reynolds number increases. The 

experiment shows that the coefficient of drag Cd increases as the Reynolds number 

increases while the computations show that the coefficient of drag Cd decreases as the 

Reynolds number increases. However, the computed and experimental values of Cd 

differ at most by 6.6%; in this sense the computed and experimental values can be 

considered close enough. We believe that the numerical results are accurate. The 

coefficient of drag varies with the drag force in the numerator and the square of the free 

stream velocity in the denominator. While the drag force increases with an increase in 

the free stream velocity, the velocity in the denominator increases quadratically. Thus, 

the coefficient of drag should decrease with an increase in the Reynolds number (for the 

range of Reynolds numbers considered). This result agrees with the results reported in 

the literature. 

 

For the baseline case, computed velocity contours behind the truck are shown in Figure 

5.16, Figure 5.17, and Figure 5.18 at Reynolds numbers 3.08 x 105, 6.16 x 105, and 9.24 x 

105 respectively. Each figure shows the recircultaing flow in the base flow region which 

occurs when the boundary layers from the top and bottom surface of the truck separate 

from the truck body. Figure 5.16 shows the vortex formation occurring near the upper 
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boundary layer region as well as the vortex created by the separation of the lower 

boundary layer which moves up and away from the base. As the time progresses, the 

new vortex formation shifts to the region near the bottom boundary layer and the upper 

vortex moves downward and away from the base. This process repeats itself and forms 

the Kármán vortex street. The asymmetrical shedding of vortices creates a low pressure 

region at the base of the truck. The difference between the pressures at the front of the 

truck and the back of the truck results in aerodynamic pressure drag. The goal of active 

flow control is to reduce this pressure drag. 

 

Table 5.1 Experimental versus computed Cd for the generic truck body for the baseline case 
(without AFC) 

Reynolds Number Experimental Cd Computed Cd % Difference w.r.t. 

experimental Cd 

3.08 x 105 0.98 1.045 6.6 

6.16 x 105 0.98 0.993 1.3 

9.24 x 105 1.02 0.978 4.1 

 
 
Computed active flow control results with two SJAs as in configuration 1 (Figure 5.11) 

are shown in Table 5.2. A reduction in drag can be observed with respect to baseline 

values. The reduction in the coefficient of drag increases from 8.94% to 15.62% as the 

Reynolds number increases. The velocity contour plots near the base of the truck for 

each Reynolds number are shown in Figure 5.19, Figure 5.25, and Figure 5.31. It can be 

observed that the recirculating flow region has become almost symmetric with a large 

deadwater region (indicated in dark blue). The upper and lower boundary layers are 

rolling up and creating vortices further away from the base than in the baseline flow. 

The vortices are also being shed symmetrically. This feature of the flow increases the 

pressure at the truck base. Figure 5.20, Figure 5.26, and Figure 5.32 show this increase 

in the pressure at the base. These figures show the baseline pressure variation at the 

truck base in the blue-dashed line and the active flow control pressure variation at the 

truck base in the red solid line. The base pressure with AFC is more uniform and larger 
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than the base pressure for the baseline case. The greater baseline pressure with active 

flow control results in a decrease in the drag.  

 

Table 5.2 Computed active flow control results for the generic truck body with two SJAs in 
configuration 1 (Figure 5.11) 

Reynolds Number Baseline Cd 
(without AFC)

Cd with AFC 
SJA config. 1 

% Change in Cd 
w.r.t. baseline case 

3.08 x 105 1.045 0.951 8.94 

6.16 x 105 0.993 0.860 13.41 

9.24 x 105 0.978 0.825 15.62 

 

Computed active flow control results with two SJAs in configuration 2 (Figure 5.12) are 

shown in Table 5.3. Again, reduction in drag was obtained at all three Reynolds 

numbers. The reduction in coefficient of drag from 8.75% to 15.79% was obtained as 

the Reynolds number increased. The velocity contour plots at the truck base for each 

Reynolds number are shown in Figure 5.21, Figure 5.27, and Figure 5.33. As in the case 

of configuration 1 (Figure 5.11) with the two SJA setup, the recirculating flow has 

become almost symmetric with a larger deadwater region (shown in dark blue). While 

the upper and lower boundary layers continue to roll up and create vortices, this occurs 

further away from the truck base than in the case with baseline flow where the 

asymmetric Kármán vortex street develops close to the base flow region. In this case, 

vortices are again being shed almost symmetrically. Again, the pressure in the base 

region increases. Figure 5.22, Figure 5.28, and Figure 5.34 show this increase in pressure 

compared to the baseline case (without AFC). Again, the base pressure with AFC is 

more uniform compared to the baseline base pressure. This increase in pressure with 

active flow control results in reduced aerodynamic pressure drag. 
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Table 5.3 Computed active flow control results for the generic truck body with two SJAs in 
configuration 2 (Figure 5.12) 

Reynolds Number 
Baseline Cd 
(without AFC) 

Cd with AFC 
SJA config. 2 

% Change in Cd 
w.r.t. baseline case 

3.08 x 105 1.045 0.953 8.75 

6.16 x 105 0.993 0.856 13.78 

9.24 x 105 0.978 0.823 15.79 

 
 
Computed active flow control results with three SJAs in configuration 3 (Figure 5.13) 

are shown in Table 5.4. Again, reduction in drag is obtained at all three Reynolds 

numbers. The reduction in coefficient of drag from 6.35% to 14.16% was obtained as 

the Reynolds number increased. The velocity contour plots at the truck base for each 

Reynolds number are shown in Figure 5.23, Figure 5.29, and Figure 5.35. Again, the 

recirculating flow region has become almost symmetric with a larger deadwater region 

(shown in dark blue). While the upper and lower boundary layers continue to roll up 

and create vortices, this occurs further away from the truck base than is the case with 

the baseline flow. In this case again, the vortices are being shed symmetrically. Again, 

the pressure in the truck base region increases. Figure 5.24, Figure 5.30, and Figure 5.36 

show this increase in pressure compared to the baseline case (without AFC). Again, the 

base pressure with AFC is more uniform compared to the baseline base pressure. This 

increase in pressure with active flow control results in reduced aerodynamic pressure 

drag. 

 

Using Crowther and Gomes’ power calculation, each SJA in each configuration would 

require 0.0058%, 0.046%, and 0.156% of the original propulsive power at Reynolds 

numbers of 3.08 x 105
, 6.16 x 105

, and 9.24 x 105 respectively. 
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Table 5.4 Computed active flow control results for the generic truck body with three SJAs in 

configuration 3 (Figure 5.13) 

Reynolds Number 
Baseline Cd 
(without AFC) 

Cd with AFC SJA 
config. 3  

% Change in Cd 
w.r.t. baseline case 

3.08 x 105 1.045 0.978 6.35 

6.16 x 105 0.993 0.868 12.63 

9.24 x 105 0.978 0.839 14.16 

 
 

 
Figure 5.14 Experimental Cd versus computed Cd for the generic truck body for the baseline 

case (without AFC) 

 
 
Figure 5.15 shows a comparison of the coefficient of drag for active flow control with 

three different SJA configurations versus the baseline coefficient of drag. The second 

SJA configuration (Figure 5.12), with two SJAs at an inclination of 45° with respect to 

the free stream placed at the top and bottom of the rear face of the truck, gives the 

largest drag reductions followed closely by the first SJA configuration (Figure 5.12) with 

two SJAs placed at the top and bottom corners of the truck parallel to the free stream. 

The third configuration with three SJAs (Figure 5.13) also reduces the drag. The largest 
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drag reduction for each configuration occurs at Reynolds number 9.24 x 105 and the 

smallest drag reduction occurs at Reynolds number 3.08 x 105.  

C d  for Baseline vs. SJA configurations

0.8

0.85

0.9

0.95

1

1.05

1.1

2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06

Reynolds number

C d

Baseline

SJAs Config. 1
(Figure 5.11)

SJAs Config. 3
(Figure 5.13)

SJAs Config. 2
(Figure 5.12)

Figure 5.15 Computed Cd with active flow control for the generic truck body for three SJA 
configurations: config. 1 (Figure 5.11), config. 2 (Figure 5.12), and config. 3 (Figure 5.13) 
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Baseline  
 

 
Figure 5.16 Computed velocity contours for the baseline flow (without AFC) at Re = 3.08 x 105 

for the generic truck body 

 
 

 
Figure 5.17 Computed velocity contours for the baseline flow (without AFC) at Re = 6.16 x 105 

for the generic truck body 
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Figure 5.18 Computed velocity contours for the baseline flow (without AFC) at Re = 9.24 x 105 

for the generic truck body 

 
Active Flow Control  
 

 
Figure 5.19 Computed velocity contours for flow with active flow control for the generic truck 

body with two SJAs in configuration 1 (Figure 5.11) at Re = 3.08 x 105 
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Figure 5.20 Baseline Cp versus Cp with active flow control for the generic truck body with two 

SJAs in configuration 1 (Figure 5.11) at Re = 3.08 x 105 

 

 
Figure 5.21 Computed velocity contours for flow with active flow control for the generic truck 

body with two SJAs in configuration 2 (Figure 5.12) at Re = 3.08 x 105 
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Figure 5.22 Baseline Cp versus Cp with active flow control for the generic truck body with two 

SJAs in configuration 2 (Figure 5.12) at Re = 3.08 x 105 

 

 
Figure 5.23 Computed velocity contours for flow with active flow control for the generic truck 

body with three SJAs in configuration 3 (Figure 5.13) at Re = 3.08 x 105 
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Figure 5.24 Baseline Cp versus Cp with active flow control for the generic truck body with three 

SJAs in configuration 3 (Figure 5.13) at Re = 3.08 x 105 

 

 
Figure 5.25 Computed velocity contours for flow with active flow control for the generic truck 

body with two SJAs in configuration 1 (Figure 5.11) at Re = 6.16 x 105 
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Figure 5.26 Baseline Cp versus Cp with active flow control for the generic truck body with two 

SJAs in configuration 1 (Figure 5.11) at Re = 6.16 x 105 

 

 
Figure 5.27 Computed velocity contours for flow with active flow control for the generic truck 

body with two SJAs in configuration 2 (Figure 5.12) at Re = 6.16 x 105 
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Figure 5.28 Baseline Cp versus Cp with active flow control for the generic truck body with two 

SJAs in configuration 2 (Figure 5.12) at Re = 6.16 x 105 

 

 
Figure 5.29 Computed velocity contours for flow with active flow control for the generic truck 

body with three SJAs in configuration 3 (Figure 5.13) at Re = 6.16 x 105 
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Figure 5.30 Baseline Cp versus Cp with active flow control for the generic truck body with three 

SJAs in configuration 3 (Figure 5.13) at Re = 6.16 x 105 

 

 
Figure 5.31 Computed velocity contours for flow with active flow control for the generic truck 

body with two SJAs in configuration 1 (Figure 5.11) at Re = 9.24 x 105 
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Figure 5.32 Baseline Cp versus Cp with active flow control for the generic truck body with two 

SJAs in configuration 1 (Figure 5.11) at Re = 9.24 x 105 

 

 
Figure 5.33 Computed velocity contours for flow with active flow control for the generic truck 

body with two SJAs in configuration 2 (Figure 5.12) at Re = 9.24 x 105 
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Figure 5.34 Baseline Cp versus Cp with active flow control Cp for the generic truck body with two 

SJAs in configuration 2 (Figure 5.12) at Re = 9.24 x 105 

 

 
Figure 5.35 Computed velocity contours for flow with active flow control for the generic truck 

body with three SJAs in configuration 3 (Figure 5.13) at Re = 9.24 x 105 
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Figure 5.36 Baseline Cp versus Cp with active flow control for the generic truck body with three 

SJAs in configuration 3 (Figure 5.13) at Re = 9.24 x 105 

 

5.5 D-shaped Bluff Body 
 

5.5.1 Introduction 
 
Numerical simulations were performed on a two-dimensional D-shaped bluff body 

described in section 2.2. The computed baseline flow field was compared to the 

experimental data to determine an adaptive grid distribution and turbulence model 

which provided the closest agreement between the two. After the validation of the 

baseline case (without AFC), active flow control (AFC) was employed using two SJAs at 

an angle of 45° to the free stream direction (Figure 5.41) with parameters as in the 

experimental work of Pastoor et al. [7]. Detailed comparisons between the 

computations and experimental data were made for the flow field and the drag 

coefficient. 
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5.5.2 Computational Solution Procedure 
 
Geometry Modeling and Grid Generation    The D-shaped bluff body 

employed in the experiments of Pastoor et al. [7] is shown in Figure 2.3. In the 

experiment, the body was of the same width as the width of the wind tunnel which 

essentially eliminated the three-dimernsional effects. Therefore, we considered it 

reasonable to model the D-shaped bluff body of Figure 2.3 as a two-dimensional body 

for the numerical simulations. The body geometry (Figure 5.37) was created in 

GAMBIT with a complete computational domain and mesh shown in Figure 5.38. 

Figure 5.39 and Figure 5.40 show the zoomed-in view of the adaptive mesh near the 

body and the adapted mesh in the synthetic jet regions respectively. The mesh was 

created in a similar fashion as that for the generic truck body, described in section 5.4. It 

has a semi-circular farfield with a radius of 12.5L. The farfield behind the rear face is at 

a distance of 20L. Each farfield face is structured with rectangular cells. The mesh 

decreases in cell size as it moves from the farfield boundaries to the body surface. The 

mesh in the vicinity of the body, shown in Figure 5.39, is adapted for greater flow field 

resolution in regions where the drag-inducing structures are dominant. The resulting 

mesh has a node/cell/face count of 37,452/75,519/38,067. Two SJAs were placed on 

the back of the D-shaped bluff body at locations and angles with respect to the free 

stream direction as shown in Figure 5.41. The SJAs have slit widths of 1 mm, which is 

the same as in the experiment. 
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Figure 5.37 Geometry of the D-shaped bluff body [7] 

 

 

 
Figure 5.38 D-shaped bluff body: complete computational domain with structured mesh 

 
 

L = 0.262

0.931L 

0.275L 0.069L 0.137L 
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Figure 5.39 D-shaped bluff body with zoomed-in mesh near the body 

 

 
Figure 5.40 D-shaped bluff body with zoomed-in adapted mesh very close to the body and 

synthetic jet regions 
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Figure 5.41 Two SJA locations and their exit angles on the rear face of the D-shaped bluff body 

 
CFD Solution  The commercial CFD solver FLUENT was employed to 

compute the flow field and the coefficient of drag. Baseline (without AFC) and active 

flow control flow fields were computed at Reynolds numbers of 35,000, 46,000, 58,000, 

and 70,000 based on the body height as the characteristic length. The free stream 

temperature and static pressure values were taken to be at sea level conditions; that is, 

288.5 K and 101325 Pa respectively. The density of air ρ = 1.225 kg/m3 and the 

dynamic viscosity of air µ =1.849x10-5 kg/m-s were used. The Spalart-Allmaras (SA) 

turbulence model was employed in the calculations. The SJAs in Figure 5.41 were 

specified to have St = 0.15 and cµ = 0.01. These were the optimal values of St and cµ 

used in the experiments [7] to acheieve maximum drag reduction. 

 

5.5.3 Results and Analysis 
 
Experimental and numerical results for the D-shaped bluff body are given in Table 5.5 

and Figure 5.42. Baseline (without AFC) numerical results are higher than the baseline 

experimental results by nearly 20%. However, both the computed and experimental 

results show an increase in the coefficient of drag with an increase in the Reynolds 

number. One of the reasons large discrepencies between the computed and 

experimental value of Cd could be that the numerical work was done in two dimensions 

while the experimental model was three-dimensional. Although the experimental body 

spanned from wall to wall in the wind tunnel, essentially eliminating any finite body 

effects, there may be significant wind tunnel wall effects that were not accounted for in 

45° 

45° 
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the 2-D CFD model. In addition, the Reynolds numbers varied from 35,000 to 70,000 

which are relatively low compared to the generic truck case of section 5.4. The SA 

turbulence model is not suitable at these Reynolds numbers. These two issues need 

further investigation. 

 
Table 5.5 Experimental versus computed Cd for the D-shaped bluff body 

Reynolds 
Number 

Experimental 
Cd (baseline 
case without 
AFC) 

Experimental 
Cd with AFC 

Computed 
Cd (baseline 
case without 
AFC) 

Computed 
Cd with AFC 

% Change in 
computed Cd 
with AFC 

35,000 0.92 0.77 1.14 0.98 13.8 

46,000 0.89 0.75 1.16 0.96 17.1 

58,000 0.90 0.76 1.18 0.95 19.7 

70,000 0.91 0.76 1.20 0.95 21.3 

 
 
Active flow control results also show a similar discrepency between the numerical and 

experimental coefficients of drag. This is expected because the two issues stated above 

also hold for flow with AFC. The experimental active flow control results show about 

15 to 16% decrease in the coefficient of drag while the computed results show 14 to 

21% decrease depending upon the Reynolds number as shown in Table 5.5 and Figure 

5.42. Similar to the generic truck body (section 5.4), the numerical results for this case 

show larger decreases in the coefficient of drag with increasing Reynolds number.  

 

Computed velocity contours for the baseline case (without AFC) are given in Figure 

5.43 and Figure 5.44 for Reynolds numbers of 35,000 and 70,000, respectively. These 

plots show similar wake flow structures as for the generic truck body in section 5.4. 

Both figures exhibit the Kármán vortex street that characterizes a bluff body wake. 

Computed velocity contours with AFC are shown in Figure 5.45 and Figure 5.47. In this 

case, the SJAs have created much more symmetrical wake flow structures. However, 

unlike the generic truck body, the deadwater deadwater region is smaller, but is large 

enough to increase the base pressure and thus decrease the aerodynamic pressure drag 



 

 
 

83

of the body. Figures Figure 5.46 Figure 5.48 show the increase in computed base 

pressure with AFC compared to the base pressure without AFC. 

 

Using Crowther and Gomes’ power calculation, each SJA would require 0.0036%, 

0.0080%, 0.016%, and 0.029% of the original propulsive power at Reynolds numbers of 

35,000, 46,000, 58,000, and 70,000 respectively. 

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

30,000 50,000 70,000

Reynolds number

C d

Experimental
Cd (baseline,
without AFC)
Experimental
Cd with AFC

Computed Cd
(baseline,
without AFC)
Computed Cd
with AFC

Figure 5.42 Experimental versus computed Cd for the D-shaped bluff body 
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Baseline  
 

 
Figure 5.43 Computed velocity contours for the D-shaped bluff body for the baseline case 

(without AFC) at Re = 35,000 

 
 

 
Figure 5.44 Computed velocity contours for the D-shaped bluff body for the baseline case 

(without AFC) at Re = 70,000 
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Active Flow Control  

 
Figure 5.45 Computed velocity contours for the D-shaped bluff body with AFC at Re = 35,000 

 
 

 
Figure 5.46 Computed Cp for the D-shaped bluff body for the baseline case (without AFC) and 

the case with AFC at Re = 35,000 
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Figure 5.47 Computed velocity contours for the D-shaped bluff body with AFC at Re = 70,000 

 
 

 
Figure 5.48 Computed Cp for the D-shaped bluff body for the baseline case (without AFC) and 

the case with AFC at Re = 70,000 
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5.6 Ahmed Body 
 

5.6.1 Introduction 
 
Numerical simulations were performed on the three-dimensional Ahmed body as given 

in sections 2.3 and 2.4. Computed baseline flow (without AFC) was compared to the 

experimental data to determine adaptive grid distribution and turbulence model which 

provided the closest agreement between the two. The grid was sufficiently dense so that 

the solution was almost grid independent. Active flow control was employed using 

simulated SJAs in two different configurations as given in the experimental work. Its 

usefulness was determined with final drag coefficient and analysis of wake structure and 

pressure at the truck base. 

 

5.6.2 Computational Solution Procedure 
 
Geometry Modeling and Grid Generation  The Ahmed body geometry 

(Figure 5.49), from reference [18], was created in three dimensions in GAMBIT with a 

structured 3-D mesh shown in Figure 5.50. Figure 5.51 and Figure 5.52 show two 

different views of the mesh on the surface. Three dimensional meshing must be done 

carefully to ensure that all cell volumes mesh correctly with their surrounding cell 

volumes; they do not create negative cell volumes (or Jacobians) in the domain. 

Particular care was needed at the slant face and at SJA faces. The detailed dimensions of 

the body are shown in Figure 5.49; slant angle φ = 25°. In Figure 5.50, each meshed 

volume is structured with a rectangular parallelepiped cells. The mesh decreases in cell 

volume as it moves from the farfield to the truck so that the pertinent flow field 

structures are accurately resolved. The resulting mesh had a node/cell/face count of 

271,248/829,131/286,775. 

 

In one simulation, steady blowing actuators were placed on the back of the Ahmed 

body at locations shown in Figure 2.7. The slits were 2.1 mm in width. In another 
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simulation, SJAs were placed on the back of the body at locations and angles shown in 

Figure 2.5. The slit widths of the SJAs were 5 mm. 

 

 

Figure 5.49 Ahmed body geometry (all dimensions are in mm) 

 
 
 

 
Figure 5.50 3-D structured mesh surrounding the Ahmed body 

 

Front 
View 

Side 
View

Plan 
View 
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Figure 5.51 Surface mesh on the Ahmed body (view showing the details of the front part) 

 
 

 
Figure 5.52 Surface mesh on the Ahmed body (view showing the details of the back part) 

 
 
CFD Solution  The commercial CFD solver FLUENT was employed to 

compute the flow fields and the coefficient of drag. Baseline (without AFC) and flow 
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fields with active flow control were computed at a Reynolds numbers of 500,000 with 

the body height as the characteristic length. Free stream temperature and static pressure 

values were taken to be at sea level conditions; 288.5 K and 101325 Pa respectively. The 

density of air ρ = 1.225 kg/m3 and the dynamic viscosity of air µ =1.849x10-5 kg/m-s 

were used. The Spalart-Allmaras (SA) turbulence model was employed in the 

calculations. In the simulation with steady blowing, the steady blowing jets had blowing 

velocity equal to the free stream velocity. In the simulation with SJAs, the SJAs were 

specified with St = 0.43 and cµ = 0.009. These values were taken from reference [8]. 

 

5.6.3 Results and Analysis 
 
The Ahmed body geometry was initially created in two-dimensions for reasons of 

simplicity to allow for less computational time. However, the baseline computed 

coefficient of drag was found to be lower than the experimental value. This result led to 

a closer examination of the wake flow structures found in the experimental work. It was 

found that while spanwise two-dimensional vortex structures occured at the back edges 

of the Ahmed body similar to the wake structures generated by the 2-D generic truck 

body and D-shaped bluff body, the Ahmed body also exhibited longitudinal vortex 

structures (because of an aspect ratio of cross-section close to unity) that could only be 

resolved in three dimensions. These vortices were generated along the slant edges and 

the vortex plane was perpendicular to the free stream. Thus, these vortices would have 

never been realized in a two-dimensional simulation. 

 

The three-dimensional simulation for the baseline case (without AFC), while 

computationally more expensive, gave the numerical value of the coefficient of drag 

within 1% of the experimental result as shown in Table 5.6. Figure 5.53 shows the 

spanwise vortices behind the Ahmed body. The longitudinal vortex structures are 

shown in Figure 5.54. Pressure contour plots for baseline flow are shown in Figure 5.55. 

Figure 5.56 shows the computed pressure contours on the front face of the Ahmed 

body for the baseline flow at Reynolds number of 500,000. Figure 5.57 shows regions of 

low pressure along the slant edges where the longitudinal vortices are produced. This 
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figure also shows a region of low pressure at the top of the base where the flow initially 

separates. 

 
Table 5.6 Experimental versus computed drag coefficient Cd for the Ahmed body 

Case Reynolds Number Experimental Cd Computed Cd 

Baseline 500,000 0.374 0.378 

Steady Blowing 500,000 0.350 0.385 

 

 

 

Figure 5.53 Spanwise vortices behind the Ahmed body 

 



 

 
 

92

 
Figure 5.54 Longitudinal vertical structures behind the Ahmed body 

 

Active flow control was applied using steady blowing from the four edges that define 

the base of the Ahmed body. The AFC with steady blowing was implemented to 

compare the results with the experimental data [10]. As shown in Table 5.6, numerical 

results show that the steady blowing has a negative effect on the coefficient of drag; the 

coefficient of drag increases. Experiments however show a small decrease in drag 

coefficient Cd. Additional numerical simulations with finer grids and alternative 

turbulence models need to be explored to improve the numerical prediction and make it 

closer to the experimental value of the drag coefficient. Figure 5.58 and Figure 5.59 

show a noticeable pressure decrease in the base region. Both the slanted back and 

vertical back regions show an increase in the size of the area of the low pressure region 

as well as a decrease in the pressure magnitude. The experimental results showed a 6.4% 

decrease in the coefficient of drag with steady blowing; however, the overall efficiency 

using AFC increased by only 0.8% because the SJAs used 5.6% of the original 

propulsive power. With such a small increase in efficiency using AFC, steady blowing 

does not appear to be a strong candidate for achieving drag reduction. 
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Baseline  

 
 

 
Figure 5.55 Isometric view of computed Cp contours for baseline flow (without AFC) past the 

Ahmed body, Re = 500,000 

 
 
 
 

 
Figure 5.56 Computed Cp contours on the front face of the Ahmed body for baseline flow 

(without AFC), Re = 500,000  
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Figure 5.57 Computed Cp contours on the rear face of the Ahmed body for the baseline flow 

(without AFC), Re = 500,000 

 
 
 

 
Figure 5.58 Isometric view of computed Cp contours on the Ahmed body for AFC with steady 

blowing, Re = 500,000 
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Figure 5.59 Computed Cp contours on the rear face of the Ahmed body for AFC with steady 

blowing, Re = 500,000 

 
 

5.7 Conclusions 
 

In this chapter we studied the flow fields of three different generic truck bodies by 

numerical simulations. The three configurations chosen in this study were used because 

of the availability of experimental data. Numerical computations were performed for 

baseline cases (without AFC), and for flow fields with AFC using Synthetic Jet 

Actuators (SJAs). Computations showed reasonable agreement with the experimental 

data for the coefficient of drag for most of the cases considered. Both the computations 

and experiments show that it is possible to achieve significant drag reduction by active 

flow control.  

 

The first case, the generic truck body of Seifert et al. [5], was modeled in two 

dimensions. For this case, the baseline numerical drag coefficients agreed within 5% of 

the experimental values at Reynolds numbers ranging from 3.08 x 105 to 9.24 x 105. 

However, the numerical results showed an expected decrease in the drag coefficient 

with increasing Reynolds number while the experiments showed an increase in the drag 



 

 
 

96

coefficient with increasing Reynolds number. This discrepancy is currently being 

resolved in consultation with the author of the experiment as well as by conducting 

additional numerical simulations. Active flow control, using SJAs in three different 

configurations on the rear face of the body, showed 9 to 16% reduction in drag 

coefficient depending upon the Reynolds number and the parameters of the SJAs 

(frequency, amplitude, width, and location). 

 

The second case of the D-shaped bluff body of Pastoor et al. [7] was also modeled in 

two dimensions. For this case, the baseline (without AFC) numerical drag coefficients 

agreed within 20% of the experimental values. The source of this large discrepancy 

between the computed and experimental value of Cd perhaps comes from the fact that 

the computations were performed in two dimensions while the experimental work was 

done in three dimensions. The other sources of error in numerical results, namely the 

grid resolution and turbulence model, are unlikely to be the cause of such a large 

discrepancy. Using active flow control, with two SJAs placed at the top and bottom 

corners of the rear face of the body and inclined at 45° to the free stream (Figure 5.12), 

numerical simulations showed a 14 to 21% reduction in drag depending upon the 

Reynolds number compared to the baseline (without AFC) case. Experimental results 

found similar reductions in drag. 

 

The third case of the Ahmed body [8, 10] was modeled in three dimensions. For this 

case, the baseline (without AFC) numerical drag coefficients agreed within 1% of the 

experimental value at a Reynolds number of 500,000. While this simulation was 

computationally intensive, it validated the numerical methodology—grid resolution, 

turbulence model, numerical solver, etc. Using active flow control, with steady blowing 

at the back of the body, numerical simulations found an increase in drag. This was 

contrary to the experimental result which showed a 6.4% decrease in drag coefficient. 

This discrepancy requires further investigation.  

 

It should be noted that a 15% reduction in aerodynamic pressure drag of the vehicle is 

equivalent to about 5% in fuel savings. Numerical simulations show promise of 

significant aerodynamic pressure drag reduction of truck-shaped vehicles by 
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manipulating the flow in the wake region using AFC. Using AFC on millions of ground 

vehicles has the potential of saving millions of gallons of fuel and of reducing operating 

costs as well as greenhouse gas emmisions.  



 

 
 

98

 

Chapter 6  
 
Future Work 
 
The results presented in this thesis clearly demonstrate the potential of both shape 

optimization and active flow control techniques for reducing the aerodynamic drag of 

ground vehicles. The results also point the way in several directions for future work. 

 

For shape optimization, additional studies should be conducted by employing different 

constraints for the control and anchor points. It would be interesting to let the genetic 

algorithm allow free movement of both anchor points in the x-coordinate direction or 

to remove the restraint for the control points in the y-coordinate direction. Finally, the 

genetic algorithm should be extended to three dimensions for shape optimizations of   

3-D truck fronts. 

 

In applying the active flow control with Synthetic Jet Actuators (SJAs), the influence of 

various parameters of SJAs on the effectiveness of flow control should be studied. The 

SJA parameters include velocity amplitude, frequency, slit width, SJA location, SJA 

angle, phase among SJAs, and number of SJAs. Previous experiments [7, 8] have used 

feedback closed-loop control models for finding the best velocity amplitude and 

frequency parameters. Perhaps, a genetic algorithm could be developed and employed 

to find the best combination of SJA parameters for achieving optimal effectiveness 

using AFC. 

 

While this thesis has demonstrated the effectiveness of SJAs on drag reduction for 

several bluff bodies, suction and oscillatory blowing (SaOB) actuation devices have also 

been proven useful [6] for drag reduction on bluff bodies. These devices can also be 
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easily attached to the back of a truck. Additional simulation on SaOB devices should be 

conducted to evaluate their effectiveness for drag reduction vis-à-vis SJAs.  

 

To improve the numerical simulation results for the D-shaped bluff body, three-

dimensional numerical computations should be performed with and without active flow 

control. Similarly, additional three-dimensional computations for the Ahmed body 

should be performed with active flow control.  

 

All the future work suggested above assumes the generic truck shape bodies are 

surrounded only by the free stream, without the presence of the ground. The ground 

effect must be included for realistic determination of drag without and with AFC, both 

in experimental and numerical simulations. 

 

Finally, the shape optimization and active flow control methods should be combined to 

find the largest amount of drag reduction possible. Based on the results presented in 

this thesis, total drag reduction of about 25% (compared to the vehicle drag without 

shape optimization and AFC) appears to be feasible. 
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Appendix A 
 
Java Code for Airfoil Shape 
Optimization Using a Genetic 
Algorithm 
 
/** 
 * GALite.java 
 * Author: Brandon Morgan 
 *  
 * This is the main class used in optimization.  It represents the 
optimization 
 * code from GAANNFluent separated from the GUI components.   
 */ 
 
package galite; 
 
import ann.ANNAirfoil; 
import ann.OnlineANN; 
import ga.Generation; 
import ga.Individual; 
 
public class GALite { 
 public static final int DEBUG_LEVEL = 2; 
 public static OnlineANN net = null; 
  
 private double mutRate, removePercentage; 
 private int genSize, numGens, E; 
 private Airfoil bestIndividual; 
 private Generation gen; 
  
 public GALite(double mutRate,double removePercentage,int 
genSize, int numGens){ 
  this.mutRate = mutRate; 
  this.removePercentage = removePercentage; 
  this.genSize = genSize; 
  this.numGens = numGens; 
  E = (int) Math.round(genSize * this.removePercentage); 
   
   
  //Set up the ANN 
  try{ 
   net = new OnlineANN(20); 
   ANNAirfoil foil1 = new ANNAirfoil(-
0.35,0.0,36.70146039826009); 
   //foil1.setObjective(12.645768628); // Cl/Cd 
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   foil1.setObjective(0.40683743); //Cl 
   ANNAirfoil foil2 = new ANNAirfoil(-
2.0,10.0,44.118199448833565); 
   //foil2.setObjective(33.322463795); // Cl/Cd 
   foil2.setObjective(1.744573); // Cl 
   ANNAirfoil foil3 = new ANNAirfoil(-
0.35,0.0,0.4436541384011625); 
   //foil3.setObjective(0.138968970); //Cl/Cd 
   foil3.setObjective(0.033142283); //Cl 
   ANNAirfoil foil4 = new ANNAirfoil(-
0.35,10.0,13.095334310034984); 
   //foil4.setObjective(7.295466139); //Cl/Cd 
   foil4.setObjective(2.1870077); //Cl 
   for(int i=0;i<8;i++){ 
    net.addTrainingPt(foil1); 
    net.addTrainingPt(foil2); 
    net.addTrainingPt(foil3); 
    net.addTrainingPt(foil4); 
   } 
  } 
  catch(Exception e){ 
   e.printStackTrace(); 
   System.exit(-1); 
  } 
 } 
  
 public Airfoil runOptimization(){ 
  gen = new Generation(genSize); 
     while(!gen.isFull()){ 
      gen.addIndividual(generateIndividual()); 
     } 
      
     bestIndividual = (Airfoil) gen.getBestIndividual(); 
      
     if(DEBUG_LEVEL > 1) 
      System.out.println("***** Generation 0  *****"); 
     if(DEBUG_LEVEL > 1) 
      System.out.println(gen); 
     if(DEBUG_LEVEL > 0) 
      System.out.println("(0) Best Ind: " + 
bestIndividual.getFitness()); 
      
     for(int i=1; i<=numGens; i++){ 
      advanceGen(); 
      if(DEBUG_LEVEL > 1) 
          System.out.println("***** Generation " + i + " 
*****"); 
         if(DEBUG_LEVEL > 1) 
          System.out.println(gen); 
         if(DEBUG_LEVEL > 0) 
          System.out.println("(" + i + ") Best Ind: " + 
bestIndividual.getFitness()); 
     } 
   
  return bestIndividual; 
 } 
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 private Airfoil generateIndividual(){ 
  double a = Math.random() * AirfoilModifier.minA; 
     double b = Math.random() * AirfoilModifier.maxB; 
     double t = Math.random() * AirfoilModifier.maxThck; 
     double m = Math.sqrt(b*b + a*a); 
     double delta = Math.PI/2.0 + Math.atan(-a/b); 
     double r = Math.sqrt( Math.pow(-1.0/(0.77*t) * 
m*Math.cos(delta) - a,2.0) + Math.pow(b,2.0) ); 
      
     Airfoil af = new Airfoil(); 
     AirfoilModifier.modAirfoil(af, a, b, r); 
  return af; 
 } 
  
 private void advanceGen(){ 
  Generation nextGen = new Generation(genSize); 
   
  //Multiplication 
  int count =0; 
  while(count<E){ 
   Airfoil i1 = (Airfoil) 
gen.getIndividual((int)Math.floor(Math.random()*genSize)); 
   Airfoil i2 = (Airfoil) 
gen.getIndividual((int)Math.floor(Math.random()*genSize)); 
   if(i1!=i2 ){ 
    nextGen.addIndividual(crossover(i1,i2)); 
    count++; 
   } 
    
  } 
  naturalSelection(); 
  Individual[] survivors = gen.getIndividuals(); 
  for(int i=0;i<survivors.length;i++){ 
   nextGen.addIndividual(survivors[i]); 
  } 
 
  mutate(nextGen); 
   
  gen = nextGen; 
   
 
  if(bestIndividual == null || 
gen.getBestIndividual().getFitness() > bestIndividual.getFitness()){ 
   bestIndividual = new 
Airfoil((Airfoil)gen.getBestIndividual()); 
   if(DEBUG_LEVEL > 1) 
    System.out.println("new best individual: " + 
bestIndividual.getFitness()); 
  } 
 } 
  
 private Airfoil crossover(Airfoil i1, Airfoil i2){ 
  double a1,a2,b1,b2,r1,r2; 
   
  if(i1.getFitness() > i2.getFitness()){ 
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   a2 = i1.A; 
   b2 = i1.B; 
   r2 = i1.R; 
   a1 = i2.A; 
   b1 = i2.B; 
   r1 = i2.R; 
  } 
  else{ 
   a2 = i2.A; 
   b2 = i2.B; 
   r2 = i2.R; 
   a1 = i1.A; 
   b1 = i1.B; 
   r1 = i1.R; 
  } 
   
  double a = Math.random()*(a2-a1) + a2; 
  double b = Math.random()*(b2-b1) + b2; 
  double r = Math.abs(Math.random()*(r2-r1) + r2); 
 
  Airfoil af = new Airfoil(); 
  AirfoilModifier.modAirfoil(af, a, b, r); 
   
  return af; 
 } 
  
 private void naturalSelection(){ 
  gen.removeIndividuals(genSize-E); 
 } 
  
 private void mutate(Generation nextGen){ 
  for(int i=0;i<nextGen.getTotalNum();i++){ 
   if(Math.random() <= mutRate){ 
    Airfoil ind = (Airfoil) 
nextGen.getIndividual(i); 
     
    double a = Math.random() * 
AirfoilModifier.minA; 
       double b = Math.random() * AirfoilModifier.maxB; 
       double t = Math.random() * 
AirfoilModifier.maxThck; 
       double m = Math.sqrt(b*b + a*a); 
       double delta = Math.PI/2.0 + Math.atan(-a/b); 
       double r = Math.sqrt( Math.pow(-1.0/(0.77*t) * 
m*Math.cos(delta) - a,2.0) + Math.pow(b,2.0) ); 
     
    Airfoil mutant = new Airfoil(); 
    AirfoilModifier.modAirfoil(mutant, a, b, r); 
     
    nextGen.removeIndividual(ind); 
    nextGen.addIndividual(mutant); 
   } 
  } 
 } 
  
 public static void main(String[] args){ 
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  GALite gal = new GALite(0.05,0.5,10,250); 
  System.out.println("Best Overall: " + 
gal.runOptimization()); 
 } 
} 
 
 
 
 
 
 
 
/** 
 * Airfoil.java 
 * Author: Brandon Morgan 
 *  
 * This class encapsulates all of the methods required to evaluate 
the 
 * fitness of a particular airfoil defined by parameters (A,B,R) 
 *  
 * A = xi coordinate of circle center in zeta plane 
 * B = eta coordinate of circle center in zeta plane 
 * R = radius of circle in zeta plane 
 */ 
 
package galite; 
 
import java.io.BufferedReader; 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileReader; 
import java.io.FileWriter; 
 
import ann.ANNAirfoil; 
 
import ga.Individual; 
 
 
public class Airfoil implements Individual{ 
 public static final int FLUENT_EVALS = 200; 
 public static int FUNCTION_EVALS = 0; 
 //Note that these are kept public so updates to design 
parameters 
 //and fitness can be decoupled 
 public double A,B,R;      // Design Parameters 
 private double fitness;   // Store fitness so it only needs to 
be calculated once 
  
 /**Constructor for copying an existing airfoil**/ 
 public Airfoil(Airfoil af){ 
  this(af.A,af.B,af.R); 
 } 
  
 /**Default constructor.  Initialize everything to 0.**/ 
 public Airfoil(){ 
  A = 0; 
  B = 0; 



 

 
 

105

  R = 0; 
  fitness = 0; 
 } 
  
 /**Main constructor**/ 
 public Airfoil(double A, double B, double R){ 
  this.A = A; 
  this.B = B; 
  this.R = R; 
  setFitness(); 
 } 
  
 /**Returns most positive intersection with xi axis**/ 
 public double getC(){ 
  return Math.sqrt(R*R - B*B) + A; 
 } 
  
 /**Returns most negative intersection with xi axis**/ 
 public  double getD(){ 
  return A - Math.sqrt(R*R - B*B); 
 } 
  
 /**Returns angle from xi axis to center of circle**/ 
 public double getDelta(){ 
  return Math.PI/2.0 + Math.atan(-A/B); 
 } 
  
 /**Returns distance from origin to center of circle**/ 
 public double getM(){ 
  return Math.sqrt(B*B + A*A); 
 } 
  
 /**Returns chord length (unscaled)**/ 
 public double getL(){ 
  double t = getThick(); 
  double c = getC(); 
  return 4.0 * (R - 0.77*t*c); 
 } 
  
 /**Returns camber**/ 
 public double getH(){ 
  double m = getM(); 
  double delta = getDelta(); 
  return 2.0*m*Math.sin(delta); 
 } 
  
 /**Returns thickness percentage (t/c)**/ 
 public double getThick(){ 
  double m = getM(); 
  double delta = getDelta(); 
  double c = getC(); 
  return -1.0/(0.77*c)*m*Math.cos(delta); 
 } 
  
 /** 
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  * Returns Cl based on potential theory for an angle of 
attack, alpha 
  * @param alpha angle of attack 
  * @return coefficient of lift 
  */ 
 public double getPotentialCl(double alpha){ 
  double t = getThick(); 
  double h = getH(); 
  double l = getL(); 
  return 2.0*Math.PI*(1.0 + 0.77*t)*Math.sin(alpha + 
2.0*h/l); 
 } 
  
 /**This method should only be called when the airfoil is 
constructed or 
 when it is changed.  This is the method that will invoke 
Fluent, ANN, 
 potential theory, etc. to determine an airfoil's fitness.**/ 
 public void setFitness(){ 
  //Uncomment this line to use potential theory to get the 
fitness 
  //fitness = getPotentialCl(0); 
   
  //Uncomment this line to use Fluent exclusively to get 
the fitness 
  //fitness = getScoreWithFluent(); 
   
  //Uncomment this line to use the ANN exclusively to get 
the fitness 
  //fitness = getScoreWithANN(); 
   
  //Uncomment this line to use Fluent/ANN to get the 
fitness 
  fitness = getScore(); 
   
 } 
  
 /**This method simply returns the stored fitness value.**/ 
 public double getFitness(){ 
  return fitness; 
 } 
  
 /** 
  * This method is responsible for carrying out the series of 
events that 
  * leads to invoking Fluent to evaluate the airfoil.   
  *  
  * First, a Gambit process is invoked which will read in 
airfoil.dat and 
  * create a mesh.  The java process blocks until this process 
completes 
  *  
  * Second, a cleanup process is invoked to delete the 
temporary files created 
  * by Gambit.  The java process blocks until this process 
completes. 
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  *  
  * Third, the Fluent process is invoked.  Unfortunately, the 
java process 
  * cannot block on this process because it spawns a separate 
process of its 
  * own.  So, instead, the java process will spin until a 
particular file, 
  * "trans.jou" is created by the Fluent process.  At this 
time, the java 
  * process will continue and read in values from "cd-history" 
and "cl-history" 
  * to determine the objective value. 
  *  
  * If the java process encounters a read error, the value of 
the objective 
  * function returned will be -1. 
  *  
  * If the history files exist but are empty, the value of the 
objective 
  * function returned will be -200 
  *  
  * @return objective value, as obtained with Fluent 
  */ 
 private double getScoreWithFluent(){ 
  try{ 
   Process gambitProc = 
Runtime.getRuntime().exec("gambitTest.bat"); 
   gambitProc.waitFor(); 
   Process cleanupProc = 
Runtime.getRuntime().exec("cleanup.bat"); 
   cleanupProc.waitFor(); 
   Process fluentProc = 
Runtime.getRuntime().exec("fluentTest.bat"); 
   File transcript = new File("trans.jou"); 
   while(!transcript.exists()){ 
    //do nothing...we are waiting for fluent to 
exit 
   } 
    
   BufferedReader cdInput =  new BufferedReader(new 
FileReader(new File("cd-history"))); 
   BufferedReader clInput =  new BufferedReader(new 
FileReader(new File("cl-history"))); 
    
   double cd = 1; 
   double cl = -200; 
   String line; 
    
   //skip the first two lines 
   for(int i=0;i<2;i++){ 
    cdInput.readLine(); 
    clInput.readLine(); 
   } 
    
   //Uncomment this code to average over some number 
of evaluations 
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   /*int count = 0; 
   double sum = 0; 
   while(cdInput.ready()){ 
    count++; 
    line = cdInput.readLine(); 
    if(count > 1750){ 
     line = 
line.substring(line.indexOf("\t")+1); 
     sum += Double.parseDouble(line); 
    } 
    //line = 
line.substring(line.indexOf("\t")+1); 
   } 
   if(sum != 0) 
    cd = sum/((double)(count - 1750.0)); 
   
   count = 0; 
   sum = 0; 
   while(clInput.ready()){ 
    count++; 
    line = clInput.readLine(); 
    if(count > 1750){ 
     line = 
line.substring(line.indexOf("\t")+1); 
     sum += Double.parseDouble(line); 
    } 
   } 
   if(sum != 0) 
    cl = sum/((double)(count - 1750.0));*/ 
    
   while(cdInput.ready()){ 
    line = cdInput.readLine(); 
    line = line.substring(line.indexOf("\t")+1); 
    cd = Double.parseDouble(line); 
   } 
    
   while(clInput.ready()){ 
    line = clInput.readLine(); 
    line = line.substring(line.indexOf("\t")+1); 
    cl = Double.parseDouble(line); 
   } 
    
   //return score cl or cl/cd with scaling for 0.1m 
airfoil 
   double score = cl;//cl/cd; 
      
   return score; 
  } 
  catch(Exception e){ 
   e.printStackTrace(); 
   return -1; 
  } 
 
 } 
  
 private double getScoreWithANN(){ 
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  return GALite.net.evaluate(A,B,R); 
 } 
  
 public double getScore(){ 
  AirfoilPublisher.publishAirfoil(this,"airfoil.dat"); 
  try{ 
    
   double score; 
    
    if(FUNCTION_EVALS < FLUENT_EVALS){ 
      score = getScoreWithFluent(); 
      ANNAirfoil foil = new 
ANNAirfoil(A,B,R); 
      foil.setObjective(score); 
      GALite.net.addTrainingPt(foil); 
    } 
    else 
      score = getScoreWithANN(); 
    
   BufferedWriter recordWriter =  new 
BufferedWriter(new FileWriter(new File("record.txt"), true)); 
   if(FUNCTION_EVALS == FLUENT_EVALS){ 
    System.out.println("Switching to ANN..."); 
    recordWriter.write("Switching to ANN...\n"); 
   } 
   recordWriter.write("(" + A + "," + B + "," + R + 
") th: " + getThick() + " fitness: " + score +"\n"); 
   recordWriter.close(); 
    
   //System.out.println("fitness: " + cl/cd); 
   FUNCTION_EVALS++; 
   return score; 
  } 
  catch(Exception e){ 
   e.printStackTrace(); 
   return -1; 
  } 
   
 } 
  
 public String toString(){ 
  return "(" + A + "," + B + "," + R + ") th: " + 
getThick() + " fitness: " + getFitness(); 
 } 
 
} 
 
 
 
 
 
 
 
 
/** 
 * AirfoilPublisher.java 
 * Author: Brandon Morgan 
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 *  
 * This class provides methods for getting a collection of points 
describing 
 * an Airfoil object.  (These methods used to be in Airfoil.java but 
have  
 * been moved here for clarity) 
 */ 
 
package galite; 
 
 
import java.awt.geom.Point2D; 
import java.io.BufferedWriter; 
import java.io.FileWriter; 
 
public class AirfoilPublisher { 
 public static final double eps = 1e-15; //Used for determining 
absolute 0 and 1 
 public static final int numPts = 50;    //Points to be 
published on each surface  
  
 /**  
  * Convenience method for getting a set of points describing 
the airfoil 
  * @param af Airfoil  
  * @param n number of points on each side 
  * @return 
  */ 
 public static Point2D.Double[] getAirfoilPoints(Airfoil af, 
int n){ 
  return getAirfoilPoints(af.A,af.B,af.R,n); 
 } 
  
 /** 
  * This method returns a collection of points that describe 
the airfoil 
  * defined by parameters (A,B,R) 
  *  
  * @param A xi-coordinate of circle center 
  * @param B eta-coordinate of circle center 
  * @param R radius of circle 
  * @param n number of points on each surface of airfoil 
  * @return array of 2*n points describing airfoil 
  */ 
 public static Point2D.Double[] getAirfoilPoints(double 
A,double B, double R,int n){ 
   double c = Math.sqrt(R*R - B*B) + A; 
   double d = A - Math.sqrt(R*R - B*B); 
    
   double th_trailing = 1.5*Math.PI + Math.acos(B/R); 
   double th_leading = 1.5*Math.PI - Math.acos(B/R); 
    
   double translation = d * (1.0 + Math.pow(c,2.0) /( 
Math.pow(d,2)+ Math.pow(0,2) ) ); 
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   double scaleFactor = 1.0 / (c * (1.0 + 
Math.pow(c,2.0) /( Math.pow(c,2)+ Math.pow(0,2) ) ) - d * (1.0 + 
Math.pow(c,2.0) /( Math.pow(d,2)+ Math.pow(0,2) ) )); 
    
   double[] airfoil_x = new double[2*n]; 
   double[] airfoil_y = new double[2*n]; 
    
   //leading edge to trailing edge --> d to c, top 
surface 
   double theta,xi,eta; 
   //System.out.println("NEW AIRFOIL!!! leading: " + 
Airfoil.rad2Deg(th_leading) + "trailing: " + 
Airfoil.rad2Deg(th_trailing)); 
   for(int i=0;i<n;i++){ 
    theta = th_leading - i * (th_leading + 
2.0*Math.PI-th_trailing)/(n-1); 
    xi = Math.cos(theta)*R+A; 
       eta = Math.sin(theta)*R+B; 
       airfoil_x[i] = ( xi * (1.0 + Math.pow(c,2.0) /( 
Math.pow(xi,2)+ Math.pow(eta,2) ) ) - translation)*scaleFactor; 
       if(Math.abs(airfoil_x[i]) < eps || Math.abs(1.0-
airfoil_x[i]) < eps) 
        airfoil_x[i] = Math.round(airfoil_x[i]); 
       airfoil_y[i] = ( eta * (1.0 - Math.pow(c, 2.0) /( 
Math.pow(xi,2)+ Math.pow(eta,2) ) ) )*scaleFactor; 
       if(Math.abs(airfoil_y[i]) < eps || Math.abs(1.0-
airfoil_y[i]) < eps) 
        airfoil_y[i] = Math.round(airfoil_y[i]); 
   } 
    
   //leading edge to trailing edge --> d to c, bottom 
surface 
   for(int i=0;i<n;i++){ 
    theta = th_leading + i * (th_trailing-
th_leading)/(n-1); 
    xi = Math.cos(theta)*R+A; 
       eta = Math.sin(theta)*R+B; 
       airfoil_x[i+n] = ( xi * (1.0 + Math.pow(c,2.0) /( 
Math.pow(xi,2)+ Math.pow(eta,2) ) ) - translation)*scaleFactor; 
       if(Math.abs(airfoil_x[i+n]) < eps || Math.abs(1.0-
airfoil_x[i+n]) < eps) 
        airfoil_x[i+n] = Math.round(airfoil_x[i+n]); 
       airfoil_y[i+n] = ( eta * (1.0 - Math.pow(c, 2.0) 
/( Math.pow(xi,2)+ Math.pow(eta,2) ) ) )*scaleFactor; 
       if(Math.abs(airfoil_y[i+n]) < eps || Math.abs(1.0-
airfoil_y[i+n]) < eps) 
        airfoil_y[i+n] = Math.round(airfoil_y[i+n]); 
   } 
    
   double maxVal = 0; 
   for(int i=0;i<2*n;i++){ 
    if(Math.abs(airfoil_x[i]) > maxVal) 
     maxVal = airfoil_x[i]; 
    if(Math.abs(airfoil_y[i]) > maxVal) 
     maxVal = airfoil_y[i]; 
   } 
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   for(int i=0;i<2*n;i++){ 
    airfoil_x[i] /= maxVal; 
    airfoil_y[i] /= maxVal; 
   } 
 
   Point2D.Double[] ret = new Point2D.Double[2*n]; 
   for(int i=0;i<2*n;i++){ 
    ret[i] = new 
Point2D.Double(airfoil_x[i],airfoil_y[i]); 
   } 
    
   return ret; 
 
 } 
  
 /** 
  * Convenience method for publishing a file containing an 
airfoil description 
  * @param af Airfoil 
  * @param filename name of file 
  * @return true if file was written, false otherwise 
  */ 
 public static boolean publishAirfoil(Airfoil af, String 
filename){ 
  return publishAirfoil(af.A,af.B,af.R,filename); 
 } 
  
 /** 
  * This method writes a file containing a collection of points 
that describe 
  * an airfoil parameterized by (A,B,R).  [For use with Gambit] 
  * @param A xi-coordinate of circle center 
  * @param B eta-coordinate of circle center 
  * @param R radius of circle 
  * @param filename name of file 
  * @return true if file was written, false otherwise 
  */ 
 public static boolean publishAirfoil(double A, double B, 
double R, String filename){ 
  Point2D.Double[] pts = getAirfoilPoints(A,B,R,numPts); 
  try{ 
      // Create file  
      FileWriter fstream = new FileWriter(filename); 
      BufferedWriter out = new BufferedWriter(fstream); 
      out.write(numPts+ " 2\n"); 
      for(int i=0;i<2*numPts;i++){ 
       out.write(pts[i].x+ " " + pts[i].y + " 0\n"); 
      } 
      out.close(); 
      return true; 
   } 
   catch (Exception e){ 
    System.err.println("Error: " + e.getMessage()); 
    return false; 
   } 
 } 



 

 
 

113

} 
 
 

 
 
 
/** 
 * AirfoilModifier.java 
 * Author: Brandon Morgan 
 *  
 * This class provides encapsulation of all the checks that must 
occur 
 * when an airfoil is to be created or changed to ensure that  
 * the constraints are met. 
 */ 
 
package galite; 
 
public class AirfoilModifier { 
 public static final double minA = -10; 
 public static final double maxA = -.35; 
 public static final double minB = 0; 
 public static final double maxB = 10; 
 public static final double maxThck = 0.20; 
 public static final double minThck = 0.01; 
  
 public static void modAirfoil(Airfoil af, double aNew, double 
bNew, double rNew){ 
  //Check A: minA <= A <= maxA 
  if(aNew < minA) 
   af.A = minA; 
  else if(aNew > maxA) 
   af.A = maxA; 
  else 
   af.A = aNew; 
   
  //Check B: minB <= B <= maxB 
  if(bNew < minB) 
   af.B = minB; 
  else if(bNew > maxB) 
   af.B = maxB; 
  else 
   af.B = bNew; 
   
  //Check R: C must be strictly positive 
  af.R = rNew; 
  if(af.getC() <= 0 || Double.isNaN(af.getC())) 
   af.R = Math.sqrt(Math.pow(1.01*af.A,2.0) + 
Math.pow(af.B, 2.0)); 
   
  //Now check thickness (this is also checking R) 
  if(af.getThick() > maxThck) 
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   af.R = Math.sqrt( Math.pow(-1.0/(0.77*maxThck) * 
af.getM()*Math.cos(af.getDelta()) - af.A,2.0) + Math.pow(af.B,2.0) 
); 
  else if(af.getThick() < minThck) 
   af.R = Math.sqrt( Math.pow(-1.0/(0.77*minThck) * 
af.getM()*Math.cos(af.getDelta()) - af.A,2.0) + Math.pow(af.B,2.0) 
); 
  
  af.setFitness(); 
 } 
} 
 
 
 
 
 
 
 
 
 
 
package ga; 
 
/* 
 * @(#)BubbleSortAlgorithm.java 1.6 95/01/31 James Gosling 
 * 
 * Copyright (c) 1994 Sun Microsystems, Inc. All Rights Reserved. 
 * 
 * Permission to use, copy, modify, and distribute this software 
 * and its documentation for NON-COMMERCIAL purposes and without 
 * fee is hereby granted provided that this copyright notice 
 * appears in all copies. Please refer to the file "copyright.html" 
 * for further important copyright and licensing information. 
 * 
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY 
OF 
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT 
LIMITED 
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE 
FOR 
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING 
OR 
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. 
 */ 
 
/** 
 * A bubble sort demonstration algorithm 
 * SortAlgorithm.java, Thu Oct 27 10:32:35 1994 
 * 
 * @author James Gosling 
 * @version  1.6, 31 Jan 1995 
 * 
 * Modified 23 Jun 1995 by Jason Harrison@cs.ubc.ca: 
 *   Algorithm completes early when no items have been swapped in 
the  
 *   last pass. 
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 */ 
public class BubbleSorter{ 
    public static void sort(Individual a[]){  
     for (int i = a.length; --i>=0; ) { 
      boolean flipped = false; 
      for (int j = 0; j<i; j++) { 
 
       if (a[j].getFitness() > a[j+1].getFitness()) { 
        Individual T = a[j]; 
        a[j] = a[j+1]; 
        a[j+1] = T; 
        flipped = true; 
       } 
      } 
      if (!flipped) { 
       return; 
      } 
        } 
    } 
} 
 
 
 
 
 
 
 
/** 
 * Generation.java 
 * Author: Brandon Morgan 
 *  
 * This class provides a data structure for storing all of the 
Individual members 
 * of a GA Generation 
 */ 
 
package ga; 
 
import java.util.Iterator; 
import java.util.Vector; 
 
 
public class Generation { 
 private Vector<Individual> inds; 
 private int totalNum; 
  
 public Generation(int totalNum){ 
  this.totalNum = totalNum; 
  inds = new Vector<Individual>(); 
 } 
  
 public boolean addIndividual(Individual i){ 
  if(inds.size() < totalNum) 
   return inds.add(i); 
  else 
   return false; 
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 } 
  
 public double getGenerationFitness(){ 
  double ret = 0; 
  Iterator<Individual> it = inds.iterator(); 
  double fit; 
  while(it.hasNext()){ 
   fit = it.next().getFitness(); 
   if(fit > 0) 
    ret += fit; 
  } 
  return ret; 
 } 
  
 public boolean removeIndividual(Individual i){ 
  return inds.remove(i); 
 } 
  
 public Individual removeIndividual(int i){ 
  return inds.remove(i); 
 } 
  
 public boolean isFull(){ 
  return inds.size() >= totalNum; 
 } 
  
 public Individual getBestIndividual(){ 
  Iterator<Individual> it = inds.iterator(); 
  Individual best = null; 
   
  while(it.hasNext()){ 
   Individual ind = it.next(); 
   if(best == null || ind.getFitness() > 
best.getFitness()) 
    best = ind; 
  } 
   
  return best; 
 } 
  
 public int getTotalNum(){ 
  return totalNum; 
 } 
  
 public Individual getIndividual(int i){ 
  return inds.get(i); 
 } 
  
 public int getCount(){ 
  return inds.size(); 
 } 
  
 public Individual[] getIndividuals(){ 
  return inds.toArray(new Individual[0]); 
 } 
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 public void removeIndividuals(int num){ 
  Individual[] indArray = inds.toArray(new Individual[0]); 
  BubbleSorter.sort(indArray); 
  for(int i=0;i<num;i++){ 
   removeIndividual(indArray[i]); 
  } 
 } 
  
 public String toString(){ 
  Individual[] indArray = inds.toArray(new Individual[0]); 
  BubbleSorter.sort(indArray); 
  String str = ""; 
    
  for(int i=0;i<indArray.length;i++){ 
   Individual ind = indArray[i]; 
   str += "" + i + ": " + ind.getFitness() + "\n";  
  } 
   
  return str; 
 } 
} 
 
 
 
 
 
 
 
/** 
 * Individual.java 
 * Author: Brandon Morgan 
 *  
 * Interface for use with GA 
 */ 
 
package ga; 
 
public interface Individual { 
 public double getFitness(); 
} 
 
 
 
 
 
 
 
 
 
/** 
 * ANNAirfoil.java 
 * Author: Brandon Morgan 
 *  
 * This class provides encapsulation of airfoil data for the ANN 
package 
 * Note that data is stored in a scaled form - that is: a, b, & r 
are all 
 * scaled to be between -1 and 1. 
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 */ 
 
package ann; 
 
import galite.AirfoilModifier; 
 
public class ANNAirfoil { 
 private double a,b,r; 
 private double objective; 
  
 public ANNAirfoil(double a, double b, double r){ 
  double maxA = Math.abs(AirfoilModifier.minA);  //maximum 
magnitude of A 
  double maxB = Math.abs(AirfoilModifier.maxB);  //maximum 
magnitude of B 
  double maxM = Math.sqrt(maxB*maxB + maxA*maxA); 
//maximum magnitude of M 
  double maxDelta = Math.PI; //maximum magnitude of delta 
  double maxR = Math.sqrt( Math.pow(-
1.0/(0.77*AirfoilModifier.minThck) * maxM*Math.cos(maxDelta) + 
maxA,2.0) + Math.pow(maxB,2.0) ); 
   
  // These values must be between -1 and 1, hence the 
scaling 
  this.a = a/maxA; 
  this.b = b/maxB; 
  this.r = r/maxR; 
 } 
  
 public void setObjective(double o){ 
  objective = o; 
 } 
  
 public double getObjective(){ 
  return objective; 
 } 
  
 public double getA(){ 
  return a; 
 } 
  
 public double getB(){ 
  return b; 
 } 
  
 public double getR(){ 
  return r; 
 } 
  
 public ANNVector getInputVector(){ 
  double[] ret = {a,b,r}; 
  return new ANNVector(ret); 
 } 
  
 public ANNVector getOutputVector(){ 
  double[] ret = {objective}; 
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  return new ANNVector(ret); 
 } 
  
 public String toString(){ 
  return "(" + a + ", " + b + ", " + r + "): " + 
objective; 
 } 
} 
 
 
 
 
 
 
 
 
 
/** 
 * ANNMatrix.java 
 * Author: Brandon Morgan 
 *  
 * This class general matrix operations for use with training the 
ANN 
 *  
 */ 
 
 
package ann; 
 
public class ANNMatrix { 
 public ANNVector[] data; 
  
 public ANNMatrix(ANNVector[] data){ 
  this.data = data.clone(); 
 } 
  
 public ANNMatrix times(double c){ 
  ANNVector[] ret = new ANNVector[data.length]; 
  for(int i=0;i<ret.length;i++){ 
   ret[i] = data[i].times(c); 
  } 
  return new ANNMatrix(ret); 
 } 
  
 public ANNVector times(ANNVector vec) throws 
ANNVector.VectorLengthException{ 
  double[] ret = new double[vec.length()]; 
  for(int i=0;i<ret.length;i++){ 
   ret[i] = data[i].dot(vec); 
  } 
  return new ANNVector(ret); 
 } 
  
  public ANNMatrix plus(ANNMatrix mat) throws 
ANNVector.VectorLengthException{ 
  ANNVector[] ret = new ANNVector[data.length]; 
  for(int i=0;i<ret.length;i++){ 
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   ret[i] = data[i].plus(mat.getRow(i)); 
  } 
  return new ANNMatrix(ret); 
 } 
   
  public ANNMatrix minus(ANNMatrix mat) throws 
ANNVector.VectorLengthException{ 
   ANNVector[] ret = new ANNVector[data.length]; 
   for(int i=0;i<ret.length;i++){ 
    ret[i] = data[i].minus(mat.getRow(i)); 
   } 
   return new ANNMatrix(ret); 
  } 
   
 public double max(){ 
  double ret = data[0].max(); 
  for(int i=1;i<data.length;i++){ 
   double mx = data[i].max(); 
   if(mx > ret) 
    ret = mx; 
  } 
  return ret; 
 } 
  
 public double min(){ 
  double ret = data[0].min(); 
  for(int i=1;i<data.length;i++){ 
   double mx = data[i].min(); 
   if(mx < ret) 
    ret = mx; 
  } 
  return ret; 
 } 
   
  public ANNVector getRow(int i){ 
   return new ANNVector(data[i].data); 
  } 
   
  public ANNVector getCol(int c){ 
   double[] ret = new double[data.length]; 
   for(int i=0;i<data.length;i++){ 
    ret[i] = data[i].get(c); 
   } 
   return new ANNVector(ret); 
  } 
   
  public String toString(){ 
   String str = ""; 
   for(int i=0;i<data.length;i++){ 
    str += data[i]; 
    str += "\n"; 
   } 
   return str; 
  } 
   
  public static ANNMatrix abs(ANNMatrix mat){ 
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  ANNVector[] ret = new ANNVector[mat.data.length]; 
  for(int i=0;i<ret.length;i++){ 
   ret[i] = ANNVector.abs(mat.data[i]); 
  } 
  return new ANNMatrix(ret); 
 } 
} 
 
 
 
 
 
 
 
 
 
/** 
 * ANNTrainer.java 
 * Author: Brandon Morgan 
 *  
 * This is the base class used to train an ANN.  I have stripped 
away much of 
 * the implementation that was used for training offline.  This file 
remains 
 * because OnlineANN inherits from it 
 */ 
 
package ann;/* 
 
 */ 
 
import java.io.IOException; 
import java.util.Random; 
import java.util.Vector; 
 
 
public class ANNTrainer { 
 public static final double rand_min = -0.01; 
 public static final double rand_max = 0.01; 
 //public static final double eta = 0.0005; //Cl/Cd 
 //public static final double eps = 0.005; //Cl/Cd 
 public static final double eta = .5; //Cl 
 public static final double eps = 0.005; //Cl 
 public static final Random numGen = new Random(2182); 
  
 protected int H; //Number of hidden units 
 protected int D; //Number of input units 
 protected int K; //Number of output units 
  
 ANNMatrix w,w_last,del_w; //input weights, last time step, 
update step 
 ANNMatrix v,v_last,del_v; //hidden weights, last time step, 
update step 
 ANNVector z,y,x,r; //hidden unit evaluations, output, input, 
true output 
 Vector<ANNAirfoil> data; //training data  
  



 

 
 

122

 public ANNTrainer(int H) throws IOException, 
ANNVector.VectorLengthException{ 
  this.H = H; 
  D = 3; 
  K = 1; 
   
  //initialize(); 
  //train(); 
 } 
  
 protected void train() throws ANNVector.VectorLengthException{ 
   
  double error = 1;//abs(w.minus(w_last)).max() + 
abs(v.minus(v_last)).max(); 
   
  while( error > eps){ 
   //System.out.println("Error ("+ H + "): " + 
error); 
   v_last = new ANNMatrix(v.data); 
   w_last = new ANNMatrix(w.data); 
    
   for(int t=0;t<data.size();t++){ 
    x = data.get(t).getInputVector(); 
    r = data.get(t).getOutputVector(); 
     
    for(int h=0;h<H;h++){ 
     z.data[h] = sigmoid(w.data[h].dot(x)); 
    } 
     
    for(int i=0;i<K;i++){ 
     y.data[i] = v.data[i].dot(z); 
    } 
     
    for(int i=0;i<K;i++){ 
     del_v.data[i] = z.times((r.data[i]-
y.data[i])).times(eta); 
    } 
     
    for(int h=0;h<H;h++){ 
     double sumDiff = 0; 
     for(int i=0;i<K;i++){ 
      sumDiff += (r.data[i]-
y.data[i])*v.data[i].data[h]; 
     } 
     del_w.data[h] = 
x.times(eta*sumDiff*z.data[h]*(1-z.data[h])); 
    } 
     
    for(int i=0;i<K;i++){ 
     v.data[i] = 
v.data[i].plus(del_v.data[i]); 
    } 
    for(int h=0;h<H;h++){ 
     w.data[h] = 
w.data[h].plus(del_w.data[h]); 
    } 
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   } 
    
   error = abs(w.minus(w_last)).max() + 
abs(v.minus(v_last)).max(); 
    
  } 
   
 } 
  
 //Convenience method 
 static ANNVector abs(ANNVector v){ 
  return ANNVector.abs(v); 
 } 
  
 //Convenience method 
 static ANNMatrix abs(ANNMatrix m){ 
  return ANNMatrix.abs(m); 
 } 
  
 static double[] ones(int k){ 
  double[] ret = new double[k]; 
  for (int i=0;i<ret.length;i++){ 
   ret[i] = 1; 
  } 
  return ret; 
 } 
  
 static double[] zeros(int k){ 
  double[] ret = new double[k]; 
  for (int i=0;i<ret.length;i++){ 
   ret[i] = 0; 
  } 
  return ret; 
 } 
  
 static double[] rands(int k, double min, double max){ 
  double[] ret = new double[k]; 
  for(int i=0;i<ret.length;i++){ 
   //ret[i] = min + Math.random()*(max-min); 
   ret[i] = min + numGen.nextDouble()*(max-min); 
  } 
  return ret; 
 } 
  
 static double sigmoid(double t){ 
  return 1.0 / (1.0+Math.exp(-t)); 
 } 
 
  
} 
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/** 
 * ANNVector.java 
 * Author: Brandon Morgan 
 *  
 * This class general vector operations for use with training the 
ANN 
 *  
 */ 
 
package ann; 
 
public class ANNVector { 
 public double[] data; 
  
 public ANNVector(double[] data){ 
  this.data = data.clone(); 
 } 
  
 public double dot(ANNVector v) throws VectorLengthException{ 
  return dot(v.data); 
 } 
  
 public double dot(double[] v) throws VectorLengthException{ 
  if(v.length != data.length) 
   throw new VectorLengthException("Vectors must be 
same length"); 
  else{ 
   double sum = 0; 
   double[] d = new double[data.length]; 
   for(int i=0;i<d.length;i++){ 
    sum += data[i]*v[i]; 
   } 
   return sum; 
  } 
 } 
  
 public ANNVector plus(ANNVector v) throws 
VectorLengthException{ 
  return plus(v.data); 
 } 
  
 public ANNVector plus(double[] v) throws 
VectorLengthException{ 
  if(v.length != data.length) 
   throw new VectorLengthException("Vectors must be 
same length"); 
  else{ 
   double[] d = new double[v.length]; 
   for(int i=0;i<d.length;i++){ 
    d[i] = data[i]+v[i]; 
   } 
   return new ANNVector(d); 
  } 
 } 
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 public ANNVector minus(ANNVector v) throws 
VectorLengthException{ 
  return minus(v.data); 
 } 
  
 public ANNVector minus(double[] v) throws 
VectorLengthException{ 
  if(v.length != data.length) 
   throw new VectorLengthException("Vectors must be 
same length"); 
  else{ 
   double[] d = new double[v.length]; 
   for(int i=0;i<d.length;i++){ 
    d[i] = data[i]-v[i]; 
   } 
   return new ANNVector(d); 
  } 
 } 
  
 public ANNVector times(ANNVector v) throws 
VectorLengthException{ 
  return times(v.data); 
 } 
  
 public ANNVector times(double[] v) throws 
VectorLengthException{ 
  if(v.length != data.length) 
   throw new VectorLengthException("Vectors must be 
same length"); 
  else{ 
   double[] d = new double[v.length]; 
   for(int i=0;i<d.length;i++){ 
    d[i] = data[i]*v[i]; 
   } 
   return new ANNVector(d); 
  } 
 } 
  
 public ANNVector pow(double c){ 
  double[] d = new double[data.length]; 
  for(int i=0;i<d.length;i++){ 
   d[i] = Math.pow(data[i],c); 
  } 
  return new ANNVector(d); 
 } 
  
 public ANNVector times(double c){ 
  double[] d = new double[data.length]; 
  for(int i=0;i<d.length;i++){ 
   d[i] = data[i]*c; 
  } 
  return new ANNVector(d); 
 } 
  
 public String toString(){ 
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  String str = "<"; 
  for(int i=0;i<data.length;i++){ 
   str += data[i]; 
   if(i!= data.length -1) 
    str += ", "; 
  } 
  str += ">"; 
  return str; 
 } 
  
 public double max(){ 
  double ret = data[0]; 
  for(int i=1;i<data.length;i++){ 
   if(data[i] > ret) 
    ret = data[i]; 
  } 
  return ret; 
 } 
  
 public int maxIndex(){ 
  int ret = 0; 
  double maxVal = data[0]; 
  for(int i=1;i<data.length;i++){ 
   if(data[i] > maxVal){ 
    ret = i; 
    maxVal = data[i]; 
   } 
  } 
  return ret; 
 } 
  
 public double min(){ 
  double ret = data[0]; 
  for(int i=1;i<data.length;i++){ 
   if(data[i] < ret) 
    ret = data[i]; 
  } 
  return ret; 
 } 
  
 public int minIndex(){ 
  int ret = 0; 
  double minVal = data[0]; 
  for(int i=1;i<data.length;i++){ 
   if(data[i] < minVal){ 
    minVal = data[i]; 
    ret = i; 
   } 
  } 
  return ret; 
 } 
  
 public double get(int i){ 
  return data[i]; 
 } 
  



 

 
 

127

 public int length(){ 
  return data.length; 
 } 
  
 public static ANNVector abs(ANNVector vec){ 
  double[] dat = new double[vec.data.length]; 
  for(int i=0;i<dat.length;i++){ 
   dat[i] = Math.abs(vec.data[i]); 
  } 
  return new ANNVector(dat); 
 } 
  
 public class VectorLengthException extends Exception { 
  public VectorLengthException(String s){ 
   super(s); 
  } 
 } 
  
} 
 
 
 
 
 
 
 
/** 
 * OnlineANN.java 
 * Author: Brandon Morgan 
 *  
 * This class trains an ANN online.  It is used by GALite when 
running in 
 * GA/ANN mode. 
 */ 
 
package ann; 
 
import galite.Airfoil; 
import galite.GALite; 
 
import java.io.IOException; 
import java.util.Vector; 
 
 
public class OnlineANN extends ANNTrainer{ 
  
 public OnlineANN(int H) throws IOException, 
ANNVector.VectorLengthException{ 
  super(H); 
  initialize(); 
 } 
  
 protected void initialize() throws IOException{ 
  ANNVector[] w_vec = new ANNVector[H]; 
  ANNVector[] w_last_vec = new ANNVector[H]; 
  ANNVector[] del_w_vec = new ANNVector[H]; 
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  for(int i=0;i<H;i++){ 
   w_vec[i] = new 
ANNVector(rands(D,rand_min,rand_max)); 
   w_last_vec[i] = new ANNVector(ones(D)); 
   del_w_vec[i] = new ANNVector(zeros(D)); 
  } 
  w = new ANNMatrix(w_vec); 
  w_last = new ANNMatrix(w_last_vec); 
  del_w = new ANNMatrix(del_w_vec); 
   
  ANNVector[] v_vec = new ANNVector[K]; 
  ANNVector[] v_last_vec = new ANNVector[K]; 
  ANNVector[] del_v_vec = new ANNVector[K]; 
  for(int i=0;i<K;i++){ 
   v_vec[i] = new 
ANNVector(rands(H,rand_min,rand_max)); 
   v_last_vec[i] = new ANNVector(ones(H)); 
   del_v_vec[i] = new ANNVector(zeros(H)); 
  } 
  v = new ANNMatrix(v_vec); 
  v_last = new ANNMatrix(v_last_vec); 
  del_v = new ANNMatrix(del_v_vec); 
   
  z = new ANNVector(zeros(H)); 
  y = new ANNVector(zeros(K)); 
  x = new ANNVector(zeros(D)); 
   
  data = new Vector<ANNAirfoil>(); 
 } 
  
 //convenience method for interfacing with GAirfoils 
 public double evaluate(double A, double B, double R){ 
  ANNAirfoil af = new ANNAirfoil(A,B,R); 
  double[] x = new double[] 
{af.getA(),af.getB(),af.getR()}; 
  try{ 
   ANNVector y = evaluate(new ANNVector(x)); 
   return y.data[0]; 
  } 
  catch(ANNVector.VectorLengthException vle){ 
   vle.printStackTrace(); 
   return -300; 
  } 
   
 } 
  
 public ANNVector evaluate(ANNVector x) throws 
ANNVector.VectorLengthException{ 
  ANNVector z = new ANNVector(ANNTrainer.zeros(H)); 
  ANNVector y = new ANNVector(ANNTrainer.zeros(K)); 
   
  for(int h=0;h<H;h++){ 
   z.data[h] = ANNTrainer.sigmoid(w.data[h].dot(x)); 
  } 
   
  for(int i=0;i<K;i++){ 
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   y.data[i] = v.data[i].dot(z); 
  } 
   
  return y; 
 } 
  
 public void addTrainingPt(ANNAirfoil foil){ 
  data.add(foil); 
  try{ 
   ANNVector[] w_vec = new ANNVector[H]; 
   ANNVector[] w_last_vec = new ANNVector[H]; 
   ANNVector[] del_w_vec = new ANNVector[H]; 
   for(int i=0;i<H;i++){ 
    w_vec[i] = new 
ANNVector(rands(D,rand_min,rand_max)); 
    w_last_vec[i] = new ANNVector(ones(D)); 
    del_w_vec[i] = new ANNVector(zeros(D)); 
   } 
   w = new ANNMatrix(w_vec); 
   w_last = new ANNMatrix(w_last_vec); 
   del_w = new ANNMatrix(del_w_vec); 
    
   ANNVector[] v_vec = new ANNVector[K]; 
   ANNVector[] v_last_vec = new ANNVector[K]; 
   ANNVector[] del_v_vec = new ANNVector[K]; 
   for(int i=0;i<K;i++){ 
    v_vec[i] = new 
ANNVector(rands(H,rand_min,rand_max)); 
    v_last_vec[i] = new ANNVector(ones(H)); 
    del_v_vec[i] = new ANNVector(zeros(H)); 
   } 
   v = new ANNMatrix(v_vec); 
   v_last = new ANNMatrix(v_last_vec); 
   del_v = new ANNMatrix(del_v_vec); 
    
   z = new ANNVector(zeros(H)); 
   y = new ANNVector(zeros(K)); 
   x = new ANNVector(zeros(D)); 
   if(GALite.DEBUG_LEVEL>1) 
    System.out.print("Training point (" + 
Airfoil.FUNCTION_EVALS + ")..."); 
   train(); 
   if(GALite.DEBUG_LEVEL>1) 
    System.out.print("Complete!\n"); 
  } 
  catch(ANNVector.VectorLengthException vle){ 
   vle.printStackTrace(); 
   System.exit(-1); 
  } 
 } 
  
   
  
} 
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Appendix B 
 
Java Code for Truck Front Shape 
Optimization Using a Genetic 
Algorithm 
 
/** 
 * GATruck_Miles.java 
 * Author: Miles Bellman 
 *  
 * This is the main class used in optimization.   
 */ 
 
package gatruck_Miles; 
 
 
public class GATruck_Miles { 
 private int genSize, numGens, E; 
 private double removePercentage, mutRate; 
 public static TruckMaker bestTruck; 
 private Generation one; 
 public static double timeStep = 0.02; 
 private int existingGenerations = 0; 
  
  
 public GATruck_Miles(int genSize, int numGens, double 
removePercentage, double mutRate){ 
  this.genSize = genSize; 
  this.numGens = numGens; 
  this.removePercentage = removePercentage; 
  E = (int) Math.round(genSize * this.removePercentage); 
  this.mutRate = mutRate; 
 } 
  
 private TruckMaker generateIndividual(){ 
  /**random bezier coordinates**/ 
  /*double x0 = Math.random() * (Truck.minX-Truck.maxX) + 
Truck.maxX; 
  //System.out.println("x0: " + x0);*/ 
  double x1 = Math.random() * (Truck.minX-Truck.maxX) + 
Truck.maxX; 
    
   //Check to make sure x1 > x0. If not, let x2 be 
randomly  
   //between x0 and maxX. 
   /*if(x1 > x0){ 
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    x1 = x1; 
   } 
   else{ 
    x1 = Math.random() * (x0-Truck.maxX) + 
Truck.maxX; 
   }*/ 
    
  //System.out.println("x1: " + x1); 
  double y1 = Math.random() * (Truck.maxY-Truck.minY) + 
Truck.minY; 
  //System.out.println("y1: " + y1); 
  double x2 = Math.random() * (Truck.minX-Truck.maxX) + 
Truck.maxX; 
   
   //Check to make sure x2 > x1. If not, let x2 be 
randomly 
   //between x1 and maxX. 
   /*if(x2 > x1){ 
    x2 = x2; 
   } 
   else{ 
    x2 = Math.random() * (x1-Truck.maxX) + 
Truck.maxX; 
   }*/ 
    
  //System.out.println("x2: " + x2); 
  double y2 = Math.random() * (Truck.maxY-Truck.minY) + 
Truck.minY; 
  //System.out.println("y2: " + y2); 
  /*double x3 = Math.random() * (Truck.minX-Truck.maxX) + 
Truck.maxX; 
   
   //Check to make sure x3 > x2. If not, let x2 be 
randomly  
   //between x0 and maxX. 
   if(x3 > x2){ 
    x3 = x3; 
   } 
   else{ 
    x3 = Math.random() * (x2-Truck.maxX) + 
Truck.maxX; 
   } 
   
  //System.out.println("x3: " + x3);*/ 
   
  //create new truck 
  /*TruckMaker truck = new TruckMaker(x0, x1, y1, x2, y2, 
x3);*/ 
   
  TruckMaker truck = new TruckMaker(x1, y1, x2, y2); 
   
  //check for truck front boundaries 
  Truck.modTruck(truck); 
   
  return truck;   
 } 
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 /**Run the optimization*/ 
 public void runOptimization(){ 
  //one = manyIndividuals(); //Use this if starting from 
the beginning 
   
  one = existingIndividuals(7); //Input existing truck 
generation if starting from the middle. Be sure to manually put in 
truck parameters in existingIndividuals() method 
   
  bestTruck = new TruckMaker(); //Create an initial bad 
fitness truck to compare the first trucks against 
  
  for (int i=1+existingGenerations; i<numGens; i++){ 
   one.determineFitness(i); 
//  
//   /**Find truck with lowest coefficient of drag */ 
   System.out.println("***** Generation " + i + 
"*****\n"); 
   bestTruck = one.getBestTruck(); 
   System.out.println("Best truck cd = " + 
bestTruck.getFitness() + "\n"); 
//   
//   /**Create new generations to find best truck*/ 
   advanceGen(); 
  } 
   
 } 
   
 /**generate genSize number of individuals**/ 
 private Generation manyIndividuals(){ 
  //new generation of trucks 
  Generation trucks = new Generation(genSize); 
   
  //loop to generate 10 trucks 
  for(int i=0;i<genSize;i++){ 
   trucks.addTruck(generateIndividual());  
  } 
   
  return trucks; 
 } 
  
 /**create generation with existing trucks**/ 
 private Generation existingIndividuals(int 
existingGenerations){ 
  //Input the generation 
  this.existingGenerations = existingGenerations-1; 
//subtract one because the for loop in runOptimization adds 1 
   
  //new generation of trucks 
  Generation trucks = new Generation(genSize); 
   
  //add existing trucks manually  
  trucks.addTruck(new TruckMaker(-2.9948310257474904,-
0.222,-0.95,-0.1267490592651832,1.4204726)); 
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  trucks.addTruck(new TruckMaker(-3.0,-0.222,-0.95,-
0.08525626657512106,1.3125177)); 
  trucks.addTruck(new TruckMaker(-2.514424824276382,-
0.222,-1.686611227710031,-0.222,1.0905675)); 
  trucks.addTruck(new TruckMaker(-3.0,-0.222,-
1.7084102276527584,-0.222,1.2414024)); 
  trucks.addTruck(new TruckMaker(-3.0,-0.222,-
1.444037409809154,-0.17239877085533709,1.1084004)); 
  trucks.addTruck(new TruckMaker(-3.0,-0.222,-
1.5220690038020037,-0.222,1.1736187)); 
  trucks.addTruck(new TruckMaker(-0.95,-
0.053305132261264786,-
1.8052743015662764,0.06275919120570522,1.1253602)); 
  trucks.addTruck(new TruckMaker(-1.0977770676437586,-
0.01600149800927278,-
1.9410896745427835,0.06680081185688938,1.0992951)); 
  trucks.addTruck(new TruckMaker(-2.217934867076381,-
0.18339685691539798,-1.6518612234587944,-
0.0716736455931544,1.0832282)); 
  trucks.addTruck(new TruckMaker(-3.0,-0.222,-
1.6340503593536528,-0.222,1.0769502)); 
 
  return trucks; 
 } 
 /**Use previous generations to create new generations*/ 
 private void advanceGen(){ 
  //System.out.println("Begin advance gen\n"); 
  Generation nextGen = new Generation(genSize); 
   
  /**Create E number of new trucks by using coordinates 
from two random trucks from the previous generation*/ 
  int count = 0; 
  while(count<E){ 
   TruckMaker truck1 = 
one.getTruck((int)Math.floor(Math.random()*genSize)); 
   TruckMaker truck2 = 
one.getTruck((int)Math.floor(Math.random()*genSize)); 
   if(truck1 != truck2){ 
    nextGen.addTruck(crossover(truck1,truck2)); 
    count++; 
   } 
  } 
    
   /**Check to make sure it works*/ 
   //System.out.print("***Next generation of 
trucks***\n"); 
   //nextGen.outputTrucks(); 
   
  /**Remove E number of trucks from the previous 
generation with the highest Cd*/ 
  naturalSelection(); 
  //one.outputTrucks(); 
  //System.out.println(one.getTruckVectorSize()); 
   
  /**Add surviving trucks to nextGen of trucks*/ 
  for(int i=0;i<one.getTruckVectorSize();i++){ 
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   nextGen.addTruck(one.getTruck(i)); 
  } 
   
   /**Check to make sure it works*/ 
   //System.out.println("***Next generation of trucks 
with survivors***\n"); 
   //nextGen.outputTrucks(); 
    
  /**Mutate*/ 
  mutate(nextGen); 
   
  /**Original generation becomes nextGen*/ 
  one = nextGen; 
  //System.out.println("***Next generation of trucks***"); 
  //one.outputTrucks(); 
   
   
 } 
  
 /**Take coordinates of two trucks and combines them to get a 
new truck*/ 
 private TruckMaker crossover(TruckMaker truck1, TruckMaker 
truck2){ 
  //System.out.println("Begin crossover\n"); 
  //double x0_1,x0_2; 
  double x1_1,x1_2; 
  double y1_1,y1_2; 
  double x2_1,x2_2; 
  double y2_1,y2_2; 
  //double x3_1,x3_2; 
   
  if(truck1.getFitness() < truck2.getFitness()){ 
   //x0_2 = truck1.X0; 
   x1_2 = truck1.X1; 
   y1_2 = truck1.Y1; 
   x2_2 = truck1.X2; 
   y2_2 = truck1.Y2; 
   //x3_2 = truck1.X3; 
   //x0_1 = truck2.X0; 
   x1_1 = truck2.X1; 
   y1_1 = truck2.Y1; 
   x2_1 = truck2.X2; 
   y2_1 = truck2.Y2; 
   //x3_1 = truck2.X3; 
  } else { 
   //x0_1 = truck1.X0; 
   x1_1 = truck1.X1; 
   y1_1 = truck1.Y1; 
   x2_1 = truck1.X2; 
   y2_1 = truck1.Y2; 
   //x3_1 = truck1.X3; 
   //x0_2 = truck2.X0; 
   x1_2 = truck2.X1; 
   y1_2 = truck2.Y1; 
   x2_2 = truck2.X2; 
   y2_2 = truck2.Y2; 
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   //x3_2 = truck2.X3; 
  } 
   
  /**Create new truck coordinates with crossover of two 
old trucks biasing towards truck with smaller Cd*/ 
  //double x0 = Math.random()*(x0_2-x0_1) + x0_2;  
  double x1 = Math.random()*(x1_2-x1_1) + x1_2;  
  double y1 = Math.random()*(y1_2-y1_1) + y1_2;  
  double x2 = Math.random()*(x2_2-x2_1) + x2_2;  
  double y2 = Math.random()*(y2_2-y2_1) + y2_2;  
  //double x3 = Math.random()*(x3_2-x3_1) + x3_2; 
   
  TruckMaker truck = new TruckMaker(x1,y1,x2,y2); 
  Truck.modTruck(truck); 
   
  return truck; 
 } 
  
 private void naturalSelection(){ 
  //System.out.println("***Begin natural selection***\n"); 
  BubbleSorter.sort(one); 
  //System.out.println("***Sorted Trucks from worst to 
best***\n"); 
  //one.outputTrucks(); 
  one.removeTrucks(genSize-E); 
  //System.out.println("***Remaining trucks after natural 
selection\n***"); 
  //one.outputTrucks(); 
 } 
  
 private void mutate(Generation nextGen){ 
  for(int i=0;i<nextGen.getGenSize();i++){ 
   TruckMaker truck = nextGen.getTruck(i); 
   truck.fitness = 1000000; //make sure truck with 
new coordinates is evaluated and not assumed to have its old fitness 
value 
   if(Math.random() <= mutRate) { 
     
    //double x0 = Math.random() * (Truck.minX-
Truck.maxX) + Truck.maxX; 
    //System.out.println("x0: " + x0);  
    double x1 = Math.random() * (Truck.minX-
Truck.maxX) + Truck.maxX; 
    //System.out.println("x1: " + x1); 
    double y1 = Math.random() * (Truck.maxY-
Truck.minY) + Truck.minY; 
    //System.out.println("y1: " + y1); 
    double x2 = Math.random() * (Truck.minX-
Truck.maxX) + Truck.maxX; 
    //System.out.println("x2: " + x2); 
    double y2 = Math.random() * (Truck.maxY-
Truck.minY) + Truck.minY; 
    //System.out.println("y2: " + y2); 
    //double x3 = Math.random() * (Truck.minX-
Truck.maxX) + Truck.maxX; 
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    TruckMaker mutant = new 
TruckMaker(x1,y1,x2,y2); 
    Truck.modTruck(mutant); 
     
    nextGen.removeTruck(truck); 
    //System.out.println("Truck removed for 
mutation"); 
    nextGen.addTruck(mutant); 
    //System.out.println("Truck added for 
mutation"); 
   } 
  } 
 } 
  
  
  
// private convertToGambitTrucks() { 
//  //create 
// } 
  
// private void TruckOutput(TruckMaker truck){ 
// System.out.println("Truck front variables " + truck.X1 + ", " 
+ truck.Y1 + ", " + truck.X2 + ", " + truck.Y2); 
//} 
 public void individualEvaluate(double x1, double y1, double 
x2, double y2){ 
  TruckMaker truck = new TruckMaker(x1,y1,x2,y2); 
  GambitTrucks gt = new GambitTrucks(truck); 
  gt.buildTruck(timeStep); 
  gt.publishFile("truck.dat"); 
 } 
  
 public static void main(String[] args){ 
  GATruck_Miles firstTry = new 
GATruck_Miles(10,100,0.5,0.05); 
  //TruckMaker truck = firstTry.generateIndividual(); 
  //firstTry.runOptimization(); 
  firstTry.individualEvaluate(-1.3412659889425127,-0.222,-
1.7720019384233845,-0.021087335036547118); 
   
//  firstTry.TruckOutput(truck); 
 } 
} 
 
 
 
 
 
 
 
 
 
 
package gatruck_Miles; 
 
import java.util.Vector; 
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 /* 
  * @(#)BubbleSortAlgorithm.java 1.6 95/01/31 James Gosling 
  * 
  * Copyright (c) 1994 Sun Microsystems, Inc. All Rights 
Reserved. 
  * 
  * Permission to use, copy, modify, and distribute this 
software 
  * and its documentation for NON-COMMERCIAL purposes and 
without 
  * fee is hereby granted provided that this copyright notice 
  * appears in all copies. Please refer to the file 
"copyright.html" 
  * for further important copyright and licensing information. 
  * 
  * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE 
SUITABILITY OF 
  * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT 
LIMITED 
  * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE 
LIABLE FOR 
  * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, 
MODIFYING OR 
  * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. 
  */ 
 
 /** 
  * A bubble sort demonstration algorithm 
  * SortAlgorithm.java, Thu Oct 27 10:32:35 1994 
  * 
  * @author James Gosling 
  * @version  1.6, 31 Jan 1995 
  * 
  * Modified 23 Jun 1995 by Jason Harrison@cs.ubc.ca: 
  *   Algorithm completes early when no items have been swapped 
in the  
  *   last pass. 
  *    
  * Modified 18 Dec 2008 by milesbellman@gmail.com 
  */ 
 public class BubbleSorter{ 
     public static void sort(Generation a){  
      for (int i = a.getGenSize(); --i>=0; ) { 
       boolean flipped = false; 
       for (int j = 0; j<i; j++) { 
 
        if (a.getTruck(j).getFitness() < 
a.getTruck(j+1).getFitness()) { 
         TruckMaker T = a.getTruck(j); 
         a.replaceTruck(a.getTruck(j+1), j); 
         a.replaceTruck(T,j+1); 
         flipped = true; 
        } 
       } 
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       if (!flipped) { 
        return; 
       } 
         } 
     } 
 } 
 
 
 
 
 
 
 
/** 
 * GambitTrucks.java 
 * Author: Miles Bellman 
 *  
 * This is the class that parameterizes the trucks, sends them to 
 * GAMBIT for meshing, and sends the mesh to FLUENT for flow field 
 * calculation.   
*/ 
 
package gatruck_Miles; 
 
import java.io.BufferedReader; 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileReader; 
import java.io.FileWriter; 
 
/**Convert trucks in a generation to coordinates that can be 
imported to GAMBIT**/ 
 
public class GambitTrucks {  
 public static final double x0 = -2; 
 public static final double y0 = -0.222; 
 public static final double x3 = -0.954; 
 public static final double y3 = 0.222; 
 public static final double backTopX = 0; 
 public static final double backTopY = 0.222; 
 public static final double backBottomX = 0; 
 public static final double backBottomY = -0.222; 
 public static final int extraPoints = 3; 
 public double x1,y1,x2,y2,Ax,Bx,Cx,Ay,By,Cy,fitness; 
 public double[] gambitTruckXCoordinates, 
gambitTruckYCoordinates, cdArray; 
 public int iterations; 
  
 public GambitTrucks(TruckMaker truck){ 
  this.x1 = truck.X1; 
  this.y1 = truck.Y1; 
  this.x2 = truck.X2; 
  this.y2 = truck.Y2; 
  this.Cx = getCx(x1,x0); 
  this.Bx = getBx(x2,x1,Cx); 
  this.Ax = getAx(x3,x0,Cx,Bx); 
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  this.Cy = getCy(y1,y0); 
  this.By = getBy(y2,y1,Cy); 
  this.Ay = getAy(y3,y0,Cy,By);   
 } 
  
 public void buildTruck(double timeStep){ 
  iterations = (int) (1/timeStep); 
  gambitTruckXCoordinates = new double[iterations + 
extraPoints]; 
  gambitTruckYCoordinates = new double[iterations + 
extraPoints]; 
  double t = 0; 
   
  //bezier curve first 
  for(int i=0;i<iterations;i++){ 
   gambitTruckXCoordinates[i] = (Ax*Math.pow(t,3)) + 
(Bx*Math.pow(t,2)) + (Cx*t) + x0; 
   gambitTruckYCoordinates[i] = (Ay*Math.pow(t,3)) + 
(By*Math.pow(t,2)) + (Cy*t) + y0; 
   t = t + timeStep; 
  } 
   
  //Add top and back of truck points 
  for(int j=iterations;j<iterations+extraPoints;j++){ 
   if(j==iterations){ 
    gambitTruckXCoordinates[iterations] = x3; 
    gambitTruckYCoordinates[iterations] = y3; 
   } else if(j==iterations+1){ 
    gambitTruckXCoordinates[iterations+1] = 
backTopX; 
    gambitTruckYCoordinates[iterations+1] = 
backTopY; 
   } else{ 
    gambitTruckXCoordinates[iterations+2] = 
backBottomX; 
    gambitTruckYCoordinates[iterations+2] = 
backBottomY; 
   } 
    
  } 
   
  //Scale coordinates so longest part is 1.25m 
//  double tip = 0; 
//  for(int i=0;i<gambitTruckXCoordinates.length;i++){ 
//   if(gambitTruckXCoordinates[i] < tip){ 
//    tip = gambitTruckXCoordinates[i]; 
//   } 
//  } 
//   
//  double scaleFactor = -1.25/tip; 
//  for(int i=0;i<gambitTruckXCoordinates.length;i++){ 
//   gambitTruckXCoordinates[i] = 
gambitTruckXCoordinates[i] * scaleFactor; 
//   gambitTruckYCoordinates[i] = 
gambitTruckYCoordinates[i] * scaleFactor; 
//  } 
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  //Ensure bottom of truck is at 0.05m and back of truck 
is at 0.05m 
  /*double xDifference = 0.05 - 
gambitTruckXCoordinates[gambitTruckXCoordinates.length-1];  
  double yDifference = 0.05 - 
gambitTruckYCoordinates[gambitTruckYCoordinates.length-1];  
  for(int i=0;i<gambitTruckXCoordinates.length;i++){ 
   gambitTruckXCoordinates[i] = 
gambitTruckXCoordinates[i] + xDifference; 
   gambitTruckYCoordinates[i] = 
gambitTruckYCoordinates[i] + yDifference; 
  }*/ 
   
    
 } 
 
  /*public void printTruckCoordinates(){ 
   for(int i=0;i<truckX.length;i++){ 
    System.out.println(truckX[i]+"    
"+truckY[i]); 
    System.out.println(truckY[i]); 
    System.out.println("x" + i + ": " + 
truckX[i] + "   " + "y" + i + ": " + truckY[i]); 
   } 
   
   System.out.println("Now Y"); 
   
   for(int i=0;i<truckY.length;i++){ 
    System.out.println(truckY[i]+"\n"); 
    System.out.println("x" + i + ": " + 
truckX[i] + "   " + "y" + i + ": " + truckY[i]); 
   } 
  }*/ 
  
 public double getFitness(){ 
  return fitness; 
 } 
  
 public double getScoreWithFluent(int generation, int 
iteration, double fitness){ 
  //first check to see if the truck is new or already has 
a fitness. If it's new, its fitness will be 100000. 
  System.out.println("Fitness: " + fitness); 
  if (fitness != 1000000){ 
   return fitness; 
  } 
    
  else 
   publishFile("truck.dat"); 
   //publishFile("truck, " + generation + "-" + 
iteration + ".dat"); 
    
   try{ 
    Process gambitProc = 
Runtime.getRuntime().exec("gambitTest.bat"); 
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    gambitProc.waitFor(); 
    Process cleanupProc = 
Runtime.getRuntime().exec("cleanup.bat"); 
    cleanupProc.waitFor(); 
    Process fluentProc = 
Runtime.getRuntime().exec("fluentTest.bat"); 
    File transcript = new File("trans.jou"); 
    while(!transcript.exists()){ 
     //do nothing...we are waiting for 
fluent to exit 
    } 
     
    BufferedReader cdInput =  new 
BufferedReader(new FileReader(new File("cd-history"))); 
    //BufferedReader clInput =  new 
BufferedReader(new FileReader(new File("cl-history"))); 
     
    double cd = 1; 
    //double cl = -200; 
    String line; 
     
     
     
     
    /**Determine fitness from coefficient of 
drag history produced by FLUENT**/ 
    //Skip the first two lines 
    for(int i=0;i<2;i++){ 
     cdInput.readLine(); 
    } 
     
    //Coefficient of drag is resolved by 19000th 
iteration (10000 1st Order, 10000 2nd Order) 
    //First: Store last cd iterations in array 
for easy evaluation 
    int count = 0; //index for cdArray 
    cdArray = new double[1000000]; //Must 
initialize array with a dimension. This will be more than enough. 
    while(cdInput.ready()){ 
     line = cdInput.readLine(); //Reads the 
both the iteration and the cd 
     line = 
line.substring(line.indexOf("\t")+1); //Makes it so line only reads 
the cd 
     cdArray[count] = 
Double.parseDouble(line); //Stores the cd as a double in cdArray 
     count++; 
    } 
     
    System.out.println("Count is " + count); 
    //Second: Determine if last 1000 cd 
iterations are oscillating or flat line  
    double sum = 0; //sum of last 1000 cd 
iterations 
    double avg = 0; //average of last 1000 cd 
iterations 
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    for(int i=count-1; i==count-1001; i--){ 
     sum = sum + cdArray[i]; 
    }  
     //find average of the last 1000 
iterations 
     avg = sum/1000; 
      
     //determine if last 1000 iterations 
are flat line and find the flat line 
     if ((avg - cdArray[count-1]) < 
0.0001){ 
      cd = cdArray[count-1];  
     }  
     //cd history is oscillating 
     else 
      cd = avg; 
     
    /*if(sum != 0) 
     cd = Math.sqrt(sum/((double)(19876 - 
19161)));*/ 
    
    /*count = 0; 
    sum = 0; 
    while(clInput.ready()){ 
     count++; 
     line = clInput.readLine(); 
     if(count > 3500){ 
      line = 
line.substring(line.indexOf("\t")+1); 
      sum += Double.parseDouble(line); 
     } 
    } 
    if(sum != 0) 
     cl = sum/((double)(count - 3500.0));*/ 
     
    /*while(cdInput.ready()){ 
     line = cdInput.readLine(); 
     line = 
line.substring(line.indexOf("\t")+1); 
     cd = Double.parseDouble(line); 
    }*/ 
     
    /*while(clInput.ready()){ 
     line = clInput.readLine(); 
     line = 
line.substring(line.indexOf("\t")+1); 
     cl = Double.parseDouble(line); 
    }*/ 
     
    //System.out.println("Cd = " + cd); 
    cd = Math.abs(cd); 
    if (cd == 0){ 
     cd = 10000; 
    } 
    return cd; 
   } 
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   catch(Exception e){ 
    e.printStackTrace(); 
    File transcript = new File("trans.jou"); 
    while(!transcript.exists()){ 
     //do nothing...we are waiting for 
fluent to exit 
    } 
    return 10000; 
   } 
 } 
  
 public boolean publishFile(String filename){ 
    try{ 
       // Create file  
       FileWriter fstream = new FileWriter(filename); 
       BufferedWriter out = new 
BufferedWriter(fstream); 
       out.write(gambitTruckXCoordinates.length+ " 
2\n"); 
       for(int 
i=0;i<gambitTruckXCoordinates.length;i++){ 
        out.write(gambitTruckXCoordinates[i]+ " " + 
gambitTruckYCoordinates[i] + " 0\n"); 
       } 
       out.close(); 
       return true; 
    } 
    catch (Exception e){ 
     System.err.println("Error: " + e.getMessage()); 
     return false; 
    } 
 } 
 private double getAx(double x3, double x0, double Cx, double 
Bx){ 
  return x3 - x0 - Cx - Bx; 
 } 
  
 private double getBx(double x2, double x1, double Cx){ 
  return (3*x2) - (3*x1) - Cx; 
 } 
  
 private double getCx(double x1, double x0){ 
  return (3*x1) - (3*x0); 
 } 
  
 private double getAy(double y3, double y0, double Cy, double 
By){ 
  return y3 - y0 - Cy - By; 
 } 
  
 private double getBy(double y2, double y1, double Cy){ 
  return (3*y2) - (3*y1) - Cy; 
 } 
  
 private double getCy(double y1, double y0){ 
  return (3*y1) - (3*y0); 
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 } 
  
} 
 
 
 
 
 
 
 
 
/** 
 * Generation.java 
 * Author: Miles Bellman 
 *  
 * This is the class that holds the trucks for evaluation 
*/ 
 
package gatruck_Miles; 
 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileWriter; 
import java.util.Vector; 
 
 
public class Generation { 
 private Vector<TruckMaker> trucks; 
 private int genSize; 
 private double timeStep = 0.02; 
  
 public Generation(int genSize){ 
  this.genSize = genSize; 
  this.trucks = new Vector<TruckMaker>(); 
 } 
  
 /**Add 10 trucks*/ 
 public void addTruck(TruckMaker truck){ 
  trucks.add(truck); 
 } 
  
 /**Replace a truck at a specific index*/ 
 public void replaceTruck(TruckMaker truck, int i){ 
  trucks.removeElementAt(i); 
  trucks.insertElementAt(truck,i); 
 } 
  
 /**Get a truck*/ 
 public TruckMaker getTruck(int i){ 
  return trucks.elementAt(i); 
 } 
  
 /**Get truck generation size*/ 
 public int getGenSize(){ 
  return genSize; 
 } 
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 /**Get length of vector trucks*/ 
 public int getTruckVectorSize(){ 
  return trucks.size(); 
 } 
  
 /**Remove trucks with "bad" fitness*/ 
 public void removeTrucks(int num){ 
  for(int i=0;i<num;i++){ 
   trucks.removeElementAt(0); 
  } 
 } 
  
 /**Remove a truck*/ 
 public boolean removeTruck(TruckMaker truck){ 
  return trucks.remove(truck); 
 } 
  
 /**Get the trucks and their X1,X2 values*/ 
 public void outputTrucks(){ 
  for(int i=0;i<trucks.size();i++){ 
   TruckMaker truck = trucks.elementAt(i); 
   System.out.println(truck.X1 + ", " + truck.Y1 + ", 
" + truck.X2 + ", " + truck.Y2 + " fitness: " + truck.fitness 
+"\n"); 
  }   
 } 
  
 /**create the coordinates for this generation of trucks and 
store in vector "truckers"*/ 
 public void determineFitness(int generation){ 
  for(int i=0;i<trucks.size();i++){ 
   TruckMaker truck = trucks.elementAt(i); 
   GambitTrucks gt = new GambitTrucks(truck); 
   gt.buildTruck(timeStep); 
   trucks.elementAt(i).fitness =  
gt.getScoreWithFluent(generation,i,trucks.elementAt(i).fitness); 
//Math.abs(trucks.elementAt(i).getX1()); 
   try{ 
    BufferedWriter recordWriter =  new 
BufferedWriter(new FileWriter(new File("record.txt"), true)); 
    recordWriter.write("Generation: " + 
generation + " (" + trucks.elementAt(i).getX1() + "," + 
trucks.elementAt(i).getY1() + "," + trucks.elementAt(i).getX2() + 
"," + trucks.elementAt(i).getY2() + ") fitness: " + 
trucks.elementAt(i).fitness + "\n"); 
    recordWriter.close(); 
   } 
   catch(Exception e){ 
    e.printStackTrace(); 
   } 
  } 
 } 
  
 /**Get truck of the generation that has the lowest coefficient 
of drag*/ 
 public TruckMaker getBestTruck(){ 
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  //TruckMaker bestTruck = new TruckMaker(); 
  for(int i=0;i<trucks.size();i++){ 
   //System.out.println("Currently running truck cd = 
" + trucks.elementAt(i).getFitness()); 
   if(trucks.elementAt(i).getFitness() < 
GATruck_Miles.bestTruck.getFitness()){ 
    GATruck_Miles.bestTruck = 
trucks.elementAt(i); 
    //System.out.println("New best truck cd = " 
+ GATruck_Miles.bestTruck.getFitness()); 
   } 
   else{ 
    //System.out.println("ELSECurrent best truck 
cd = " + GATruck_Miles.bestTruck.getFitness()); 
   } 
  } 
   
  return GATruck_Miles.bestTruck; 
 } 
} 
 
 
 
 
 
 
 
/** 
 * Truck.java 
 * Author: Miles Bellman 
 *  
 * This class ensures the randomly chosen control points are within  
 * the specified constraints 
*/ 
 
package gatruck_Miles; 
 
public class Truck { 
 //Bezier boundary coordinates 
 public static final double maxX = -0.95; 
 public static final double minX = -3; 
 public static final double minY = -0.222; 
 public static final double maxY = 0.222; 
  
 public static void modTruck(TruckMaker truck){ 
  //check X0 
  /*if (truck.X0 < minX) 
   truck.X0 = minX; 
  else if (truck.X0 > maxX) 
   truck.X0 = maxX; 
  else 
   truck.X0 = truck.X0;*/ 
   
  //check X1 
  if (truck.X1 < minX) 
   truck.X1 = minX; 
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  else if (truck.X1 > maxX) 
   truck.X1 = maxX; 
  else 
   truck.X1 = truck.X1; 
   
  //check Y1 
  if (truck.Y1 < minY) 
   truck.Y1 = minY; 
  else if (truck.Y1 > maxY) 
   truck.Y1 = maxY; 
  else 
   truck.Y1 = truck.Y1; 
  
  //check X2 
  if (truck.X2 < minX) 
   truck.X2 = minX; 
  else if (truck.X2 > maxX) 
   truck.X2 = maxX; 
  else 
   truck.X2 = truck.X2; 
  
  //check Y2 
  if (truck.Y2 < minY) 
   truck.Y2 = minY; 
  else if (truck.Y2 > maxY) 
   truck.Y2 = maxY; 
  else 
   truck.Y2 = truck.Y2; 
   
  //check X3 
  /*if (truck.X3 < minX) 
   truck.X3 = minX; 
  else if (truck.X3 > maxX) 
   truck.X3 = maxX; 
  else 
   truck.X3 = truck.X3;*/ 
 } 
  
} 
 
 
/** 
 * TruckMaker.java 
 * Author: Miles Bellman 
 *  
 * This class creates truck objects  
*/ 
 
package gatruck_Miles; 
 
 
public class TruckMaker{ 
 public double X0,X1,Y1,X2,Y2,X3,fitness; 
 public final static double Y0 = -0.222; 
 public final static double Y3 = 0.222; 
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// public TruckMaker(TruckMaker truck){ 
// 
 this(truck.X0,truck.X1,truck.Y1,truck.X2,truck.Y2,truck.X3); 
// } 
//  
// public TruckMaker(){ 
//  this(0,0,0,0,0,0); 
// } 
  
 public TruckMaker(double X0, double X1, double Y1, double X2, 
double Y2, double X3){ 
  this.X0 = X0; 
  this.X1 = X1; 
  this.Y1 = Y1; 
  this.X2 = X2; 
  this.Y2 = Y2; 
  this.fitness = 1000000; 
 } 
  
 public TruckMaker(double X1, double Y1, double X2, double Y2){ 
  this.X1 = X1; 
  this.Y1 = Y1; 
  this.X2 = X2; 
  this.Y2 = Y2; 
  this.fitness = 1000000; 
 } 
  
 public TruckMaker(double X1, double Y1, double X2, double Y2, 
double fitness){ 
  this.X1 = X1; 
  this.Y1 = Y1; 
  this.X2 = X2; 
  this.Y2 = Y2; 
  this.fitness = fitness; 
 } 
 public TruckMaker(){ 
  this.fitness = 1000000; 
 } 
  
 public double getX0(){ 
  return X0; 
 } 
 public double getX1(){ 
  return X1; 
 } 
 public double getY1(){ 
  return Y1; 
 } 
 public double getX2(){ 
  return X2; 
 } 
 public double getY2(){ 
  return Y2; 
 } 
 public double getX3(){ 
  return X3; 
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 } 
 public double getFitness(){ 
  return fitness; 
 } 
 
   
} 
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Appendix C 
 
MATLAB postprocessing codes 
 
%%Plots the airfoil in the given directory%% 
 
function plotAirfoil(dir,file,shift,color) 
[x,y,z] = textread([dir file],'%f%f%f'); 
 
%Flip the second half of each vector so the points are in CW order 
s = length(x) / 2; 
for i = s+1:3/2*s 
   temp = x(s*2-(i-(s+1))); 
   x(s*2-(i-(s+1))) = x(i); 
   x(i) = temp; 
    
   temp = y(s*2-(i-(s+1))); 
   y(s*2-(i-(s+1))) = y(i); 
   y(i) = temp; 
end 
 
plot(x,y+shift,color); 
axis equal 
 
 
 
 
%%Plots the airfoil fitness history for a given GA record%% 
 
clear all 
 
[A B R th fit] = textread('record_sans_ANN.txt','(%f,%f,%f) th: %f 
fitness: %f'); 
 
dat = zeros(1,length(fit)); 
dat(1) = fit(1); 
for i=2:length(fit) 
    dat(i) = max(dat(i-1),fit(i)); 
end 
 
plot(dat); 
xlabel('Number of Evaluations'); 
ylabel('C_l'); 
 
 
 
 
%%Plots the truck%% 
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%%"points" must be specified with the truck coordinates 
%%"x_controlPoints" must be specified accordingly 
 
del_t=0.02; % 0.02 is timestep used in java code 
N = 1/del_t; % number of iterations 
 
points = [-4.0,0.06696551700106383,-1.2070755950768948,-0.222]; 
 
x_controlPoints = [-2,points(1),points(3),-0.954]; % input middle 
two manually 
y_controlPoints = [-0.222,points(2),points(4),0.222]; % input middle 
two manually 
 
%%Bezier curve coefficients 
c_x=3*(x_controlPoints(2)-x_controlPoints(1)); 
b_x=3*(x_controlPoints(3)-x_controlPoints(2))-c_x; 
a_x=x_controlPoints(4)-x_controlPoints(1)-c_x-b_x; 
 
c_y=3*(y_controlPoints(2)-y_controlPoints(1)); 
b_y=3*(y_controlPoints(3)-y_controlPoints(2))-c_y; 
a_y=y_controlPoints(4)-y_controlPoints(1)-c_y-b_y; 
 
%%Bezier curve 
t=0; X=0; Y=0; 
for i=1:N 
    X(i)=a_x*(t^3)+b_x*(t^2)+c_x*t+x_controlPoints(1); 
    Y(i)=a_y*(t^3)+b_y*(t^2)+c_y*t+y_controlPoints(1); 
    t = t + del_t; 
end 
 
%% Add other truck points 
X(N+1) = -0.954; Y(N+1) = 0.222; 
X(N+2) = 0; Y(N+2) = 0.222; 
X(N+3) = 0; Y(N+3) = -0.222; 
X(N+4) = X(1); Y(N+4) = Y(1); 
 
% %% Scale truck so longest part is 1.25m 
% tip = 0; 
% for i=1:length(X) 
%     if (X(i) < tip) 
%         tip = X(i); 
%     else 
%         % do nothing 
%     end 
% end  
% scaleFactor = -1.25/tip; 
% for i=1:length(X) 
%     X(i) = X(i) * scaleFactor; 
%     Y(i) = Y(i) * scaleFactor; 
% end 
 
plot(X,Y); xlabel('x(meters)'); ylabel('y(meters)'); 
axis([-3 0 -.5 .5]); 
%legend('fitness = 1.009'); 
%%Plots the truck fitness history for a given GA record%% 
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clear all 
 
[gen x1 y1 x2 y2 fit] = textread('record.txt','Generation: %f 
(%f,%f,%f,%f) fitness: %f'); 
 
dat = zeros(1,length(fit)); 
dat(1) = fit(1); 
for i=2:length(fit) 
    dat(i) = min(dat(i-1),fit(i)); 
end 
 
plot(dat); 
xlabel('Number of Evaluations'); 
ylabel('C_d'); 
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Appendix D 
 
User Defined Function (UDF) for 
Synthetic Jet Actuators in FLUENT 
 
/*******************************************************************
******* 
/* UDF for specifying a transient velocity profile boundary 
condition   
 
The only two variables that should change are G, the frequency, and 
A, the amplitude   */ 
/*******************************************************************
******/ 
 
#include "udf.h" 
#define PI 3.1415926535897932384626433832795 
 
DEFINE_PROFILE(top_inlet_unsteady_velocity, thread, position)  
{ 
  real x[ND_ND];                                  /* holds the 
position vector */ 
  real y, G = 100; 
  real z, A = 5; 
  float velocity, t; 
  face_t f; 
 
  t = RP_Get_Real("flow-time"); 
 
   begin_f_loop(f, thread)    
 { 
    F_CENTROID(x,f,thread); 
 
    F_PROFILE(f, thread, position) = A*(sin(2*PI*G*t)); 
 } 
   end_f_loop(f, thread); 
} 
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