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In this thesis we consider interval estimation of excess risk related effective dose

(ERED) in dose-response studies using tobit model. Let P (x) be the probability

of response at dose level x. Considering the background probability P (0), excess

risk at dose level x > 0 is P (x) − P (0). Then ERED100p is the dose level at which

p = P (x)−P (0)
1−P (0)

. When P (0) = 0, ERED is same as the regular ED.

Tobit regression model is used when the outcome variable in a dose-response study is

left censored and continuous. We first describe the maximum likelihood estimation

of EREDs in tobit model, and then we propose five interval estimation methods of

EREDs, including the delta method, the Fieller method, the likelihood ratio method,

the non-parametric bootstrap method and the parametric bootstrap method. For

both non-parametric and parametric bootstrap methods, we consider three different



ways to construct the confidence interval, including the percentile method, bias-

corrected model and bias-corrected accelerated method. Simulation studies show that

when the normal assumption of the tobit model is met, i.e. the latent response is

normally distributed, we recommend the delta method for ERED50 and the likelihood

ratio method and the parametric bootstrap percentile method for ERED05. When

the error distribution is non-normal but symmetric, we recommend the parametric

bootstrap percentile method and the nonparametric bootstrap percentile method.

When the error distribution is non-normal but asymmetric, we recommend the Fieller

method, the likelihood ratio method and the parametric bootstrap bias-corrected

method. When the error distribution is normal, the three nonparametric bootstrap

methods are not recommended. When the error distribution is non-normal but sym-

metric, the parametric bootstrap bias-corrected method and the parametric bootstrap

bias-corrected accelerated method are not recommended. When the error distribution

is non-normal but asymmetric, the parametric bootstrap percentile method and the

parametric bootstrap bias-corrected accelerated method are not recommended.
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Chapter 1

Introduction

Effective dose (ED) is usually determined by analyzing dose-response data. Let P (x)

denote the probability of response for dose level x. ED100p satisfies P (ED100p) =

p. For example, in pharmacology, people usually focus on the association of dose

levels and effectiveness. Effective dose ED100p is the amount of drug that produces a

therapeutic response in 100p percent of the subjects taking it. In toxicology, ED100p

is the amount of drug that have a toxic response in 100p percent of the subjects taking

it. Two commonly used EDs are ED50 for p = 0.5 and ED05 for p = 0.05.

In some studies, some subjects can have response at zero dose level. Removing this

background, we consider so-called excess risk (ER)(Simpson et al. 2004). For in-

stance, in the aforementioned concept of pharmacology, it is defined as the difference

between the proportion of subjects with a particular dose effect who were using drugs,

P (Drug), and the proportion of subjects with the same effect who did not take drugs,

P (no Drug), i.e.

ER = P (Drug) − P (no Drug). (1.1)
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Without loss of generality, we assume the background is at x = 0. Then the excess

risk at dose level x is P (x) − P (0), and the excess risk due to dose is given by

r(x) =
P (x) − P (0)

1 − P (0)
. (1.2)

Excess risk related effective dose ERED100p is then defined by

r(ERED100p) = p. (1.3)

In general, ERED is different from the regular ED, but EDER100p = ED100p if

P (0) = 0.

Different models were proposed to fit dose-response data, such as logistic regression

model, probit regression model and tobit regression model (Ashford and Smith 1964;

Berkson 1944; Huang et al. 2002; Morgan 1992; Müller and Wang 1990; O’Brien et

al. 2003; Ronald 2000). When the response is binary, such as dead or alive, logistic

or probit regression model is often used.

In occasions where the response is a left censored continuous variable, tobit regression

model (Tobin, 1958; Amemiya, 1984; O’Brien et al., 2003) is used. For example,

O’Brien et al. (2003) conducted a study of ultrasound-induced lung hemorrhage

in crossbred pigs to explore the biological mechanisms responsible for ultrasound-

induced lung hemorrhage. Pigs were exposed to pulsed ultrasound focused on the

lung. As described in O’Brien et al. (2003), in addition to observing the occurrence

of lesions, defined as the existence of hemorrhage involving lung due to acoustic

pressure, researchers also recorded the depth or surface area of the lesion in the lung,
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which results in a left censored continuous response. O’Brien then estimated ED

using a tobit model.

In this thesis, we propose five different methods for interval estimation of ERED

under tobit regression model, the delta method, the Fieller method, the likelihood

ratio method, the nonparametric bootstrap method and the parametric bootstrap

method. Chapter 2 describes the maximum likelihood estimation of EREDs under

the tobit regression model. Chapter 3 describes five interval estimation methods. In

Chapter 4, we compare the performance of these methods using simulation studies

and suggest the delta method for ERED50 and the likelihood ratio method and the

parametric bootstrap percentile method for ERED05 when the normal assumption

holds. In Chapter 5, we give the conclusions and discuss some future work.
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Chapter 2

Maximum likelihood estimation of

ERED

Dose-response data with left censored response are usually fitted by tobit regression

model . In a tobit regression model (Amemiya, 1984; O’Brien et al., 2003), the

response variable yi depends on a latent variable ui, which is linearly related to the

dose levels xi. What we observed are response variables yi and the dose levels xi, but

ui are unobservable.

Define the indicator function I(A) = 1 if A is true, and 0 otherwise. Then the tobit

regression model is defined as

ui = β0 + β1xi + ϵi,

yi = uiI(ui > c). (2.1)

where β = (β0, β1)
T are unknown parameters, c is a known censoring threshold and

ϵi’s are independently and identically distributed (i.i.d.) normal errors with E(ϵi) = 0

and Var(ϵi) = σ2. Without loss of generality, we assume that the threshold c = 0,
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then the tobit model is

yi = max(0, ui),

ui ∼ N(β0 + β1xi, σ
2). (2.2)

From (2.2), we have

P (yi > 0) = P (ui > 0) = Φ

(
β0 + β1xi

σ

)
, (2.3)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

When xi = x, the 100pth percentile of yi is

Q100p(xi) = max(0, β0 + β1xi + σΦ−1(p)). (2.4)

Notice that the background probability is P (0) = Φ(β0

σ
). Based on (1.2), excess risk

r(x) = p implies

q = P (x) = p + (1 − p)P (0) = p + (1 − p)Φ

(
β0

σ

)
(2.5)

Let θ = (β0, β1, σ)T and ρp(θ) = ERED100p. When it is clear from context, we ignore

its dependence on p and θ. Then we have

ρ =
σΦ−1(q) − β0

β1

. (2.6)
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Let di = I(yi > 0). Since P (yi = 0) = 1−Φ
(

β0+β1xi

σ

)
and P (yi > 0) = Φ

(
yi−β0−β1xi

σ

)
,

the likelihood function can be written as

L =
n∏

i=1


[
1

σ
ϕ

(
yi − β0 − β1xi

σ

)]di

×
[
1 − Φ

(
β0 + β1xi

σ

)]1−di
 , (2.7)

where ϕ(·) is the density function of the standard normal distribution. And the

log-likelihood function is

log L =
n∑

i=1

{
di

[
− log σ + log ϕ

(
yi − β0 − β1xi

σ

)]
+ (1 − di) log

[
1 − Φ

(
β0 + β1xi

σ

)]}
.

(2.8)

The MLE of θ̂ = (β̂0, β̂1, σ̂)
T

is then given by maximizing (2.7). Then the MLE of

ERED100p is

ρ̂ = ̂ERED100p =
σ̂Φ−1(q̂) − β̂0

β̂1

, (2.9)

where q̂ = p + (1 − p)Φ
(

β̂0

σ̂

)
. In the statistical programming language R, we can use

the survreg() function in the survival package to fit a tobit regression model and

obtain the MLE θ̂.
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Chapter 3

Interval estimation of ERED

Interval estimation is needed to reflect uncertainty in parameter estimation. Huang

(2008) proposed interval estimation of ED in tobit model using the delta method, the

Fieller method, the likelihood ratio method, parametric and non-parametric boot-

strap method. In this chapter, we develop these approaches for interval estimation of

ERED in tobit models.

3.1 The delta method

The delta method is based on the first-order Taylor expansion of the parameter esti-

mates, by ignoring all the terms involving the quadratic term and higher power terms.

Suppose that we have a sequence of random variables {Xn} such that

√
n(Xn − θ)

d→ N(0, σ2) as n → ∞,
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where θ and σ2 are some finite constants and
d→ denotes convergence in distribution.

If function g is differentiable and its derivative is not zero at θ, keeping the first-order

Taylor series expansion of g(Xn) around θ and ignoring all the higher order terms,

we have

g(Xn) ≈ g(θ) + g′(θ)(Xn − θ).

Moving g(θ) to the left-hand side and multiplying both sides by
√

n, we have

√
n[g(Xn) − g(θ)] ≈ g′(θ)

√
n(Xn − θ).

Since
√

n(Xn − θ)
d→ N(0, σ2), we have

√
n[g(Xn) − g(θ)]

d→ N
(
0, σ2[g′(θ)]

2
)
. (3.1)

For the multivariate case with k parameters θ = (θ1, θ2, · · · , θk)
T , under similar as-

sumptions and following the same technique for the one dimensional case, we assume

√
n(θ̂ − θ)

d→ N(0, Σ(θ)).

If g is a function of θ with the first order partial derivatives g′(θ) = ∂g/∂θ =(
∂g
∂θ1

, ∂g
∂θ2

, · · · , ∂g
∂θk

)T
, which is continuous and not all zero at θ, then by the Taylor

expansion, we have

√
n(g(θ̂) − g(θ))

d→ N(0, [g′(θ)]T Σ(θ)[g′(θ)]). (3.2)

According to (2.5), ERED100p is a function ρ of the model parameter θ, with θ =

(β0, β1, σ)T in the tobit regression model. Therefore, the variance of ̂ERED100p can
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be estimated using (3.2) as

̂
Var( ̂ERED100p) = [ρ′(θ̂)]T Σ̂(θ)ρ′(θ̂) (3.3)

Then an asymptotically 100(1 − α)% confidence interval of ERED100p is given by

̂ERED100p ± zα/2

√ ̂
Var( ̂ERED100p), (3.4)

where zα is the (1−α)th quantile of the standard normal distribution. Since in R, the

estimated covariance matrix Σ̂ is based on η = log(σ) instead of σ, we re-parameterize

the tobit regression model with η. From (2.8), we have

̂ERED100p = ρ(θ̂) =
eη̂Φ−1(q̂) − β̂0

β̂1

, (3.5)

where q̂ = p + (1 − p)Φ
(

β̂0

eη̂

)
and ρ′(θ̂) = (ρ′

β̂0
, ρ′

β̂1
, ρ′

η̂) with

ρ′
β̂0

=
1

β̂1

(1 − p)ϕ( β̂0

eη̂ )

ϕ(Φ−1(q̂))
− 1

 ,

ρ′
β̂1

= −ρ(θ̂)

β̂1

,

ρ′
η̂ =

1

β̂1

eη̂Φ−1(q̂) −
β̂0(1 − p)ϕ( β̂0

eη̂ )

ϕ(Φ−1(q̂))

 .

(3.6)
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3.2 The Fieller method

The Fieller method was first introduced by Fieller (1954). It constructs confidence

intervals by using ratios of a linear combination of random variables.

Suppose that we have bivariate normal variables α̂ and β̂ with mean vector (α, β)

and variance covariance matrix V . Let Vij be the (i, j)th element of the 2× 2 matrix

V . If θ = −α/β, that is α + θβ = 0. Considering the linear combination α̂ + θβ̂, we

have α̂+ θβ̂
d→ N(0, σ2), where σ2 = V11 +2θV12 + θ2V22. Then, a 100(1−α)% Fieller

confidence interval for θ is given by the set of θ values that satisfy the inequality

(α̂ + β̂θ)2

V11 + 2θV12 + θ2V22

< z2
α/2.

Now, we apply the Fieller method to construct confidence intervals of EREDs in the

tobit regression.

From the asymptotic assumption of the MLE, the 100(1 − α)% Fieller confidence

interval for ERED100p is given by the set of values satisfying

(β̂1ρ − eη̂Φ−1(q̂) + β̂0)
2

aT Cov(θ̂)a
< z2

α/2, (3.7)

and the limits of the confidence interval can be obtained by solving

(β̂1

2
−vβ1z

2
α/2)ρ

2−2(ρ̂β̂1

2
+vβ0β1z

2
α/2−a2vβ1ηz

2
α/2)ρ+(ρ̂β̂1)

2
−z2

α/2bΣ(−2)b
T = 0, (3.8)
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where a = (a1, ρ, a2)
T , a1 = 1 −

eη̂(1−p)ϕ

(
β̂0
eη̂

)
ϕ(Φ−1(q̂))

, a2 = −eη̂Φ−1(q̂) −
β̂0(1−p)ϕ

(
β̂0
eη̂

)
ϕ(Φ−1(q̂))

, Σ =

Cov(θ̂) =


vβ0 vβ0β1 vβ0η

vβ0β1 vβ1 vβ1η

vβ0η vβ1η vη

, Σ(−2) =

 vβ0 vβ0η

vβ0η vη

, and b = (1, a2)
T .

Because the Fieller confidence interval is constructed by a quadratic equation, the

confidence interval maybe finite, a union of two infinite intervals, the entire real line

or non-exist. The Fieller method and the delta method are asymptotically equivalent.

When the sample size is large, the two methods give similar results.

3.3 The likelihood ratio method

By inverting likelihood ratio (LR) tests, we can obtain LR confidence intervals for

parameters (Shao, 2003). LR tests are defined as follows.

Assume that L(θ|X) is the likelihood function based on data X for unknown param-

eter θ in a parameter space Ω. Let Ω0 and Ω1 be two partitioned disjoint subsets of

Ω. Suppose that we wish to test the hypotheses

H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1. (3.9)

In order to compare these two hypotheses, we compute restricted maximum likelihood

L(θ⋆|X) = supθ∈Ω0
L(θ|X) under the null hypothesis H0 and unrestricted maximum

likelihood L(θ̂|X) = supθ∈Ω L(θ|X). Define the LR statistic λ(X) as

λ(X) =
L(θ⋆|X)

L(θ̂|X)
. (3.10)

11



Then a LR test for hypotheses (3.9) is to reject the null hypothesis H0 if λ(X) < c,

where c is a constant.

Now assume that Ω = Rk and Ω0 is determined by H0 : θ = g(ϑ), where ϑ is

a (k − r) × 1 vector of unknown parameters and g is a continuously differentiable

function. Assume that there exists an MLE θ̂ of θ and an MLE ϑ̂ of ϑ under the

null hypothesis H0. Then the LR test statistic is

λ(X) =
L(g(ϑ̂)|X)

L(θ̂|X)
.

Given some mild regularity conditions, under H0, −2 log λ(X)
d→ χ2

r, where χ2
r is a

random variable having the chi-square distribution with r degrees of freedom. Then

the likelihood ratio test with rejection region λ(X) < e
−χ2

r,α/2 has an asymptotic

significance level α. So, if c is chosen to be e
−χ2

r,α/2 , an asymptotically 100(1 − α)%

confidence set of θ is

C(X) = {θ : −2(log[L(g(ϑ̂)|X)] − log[L(θ̂|X)] ≤ χ2
r,α}. (3.11)

Now we show how to use the LR method to obtain confidence intervals for EREDs.

Let ρ = ERED100p. Considering null hypotheses

H0 : ρ = ρ0 versus H1 : ρ ̸= ρ0. (3.12)

First, re-parameterize the tobit model with parameter θ = (ρ, β1, η)T . Assume that

the maximum log-likelihood function is l(θ̂), where θ̂ is the MLE of θ and the profile

log-likelihood is lp(ρ0, β̃1, η̃), where (β̃1, η̃) is restricted the MLE of (β1, η) when setting

12



ρ = ρ0. Then the LR test rejects the null hypothesis at significant level α when

−2[lp(ρ0, β̃1, η̃) − l(θ̂)] > χ2
1,α. (3.13)

And the 100(1− α0)% LR confidence interval for ERED100p is given by the set of ρ0

that satisfies

lp(ρ0, β̃1, η̃) − l(θ̂) +
1

2
χ2

1,α > 0. (3.14)

3.4 The bootstrap methods

Bootstrap was first introduced by Efron (1979). It is a data-based resampling method

to obtain statistical inferences, often for confidence intervals and standard errors. A

thorough discussion on bootstrap can be found in Efron and Tibshirani (1993). The

usage of bootstrap methods for our problem is essentially the same as in Huang (2008)

except that our interest is to estimate ERED. But for completeness, we include the

related part in Huang (2008) in the following.

3.4.1 Bootstrap confidence intervals

Given bootstrap replications {θ̂∗1, θ̂∗2, · · · , θ̂∗B} of an estimate θ̂ from B bootstrap sam-

ples, there are often three ways to construct bootstrap confidence intervals for a pa-

rameter θ, the percentile method, the bias-corrected (BC) method and bias-corrected

accelerated method (BCa).

13



The percentile method

Percentile method uses sample percentiles of bootstrap replicates to define the confi-

dence limits. The 100(1 − α)% confidence interval of θ is established by the 100α/2

and 100(1 − α)/2 percentiles of the B bootstrap replicates θ̂∗,

[θ̂∗(α/2), θ̂∗(1−α/2)]. (3.15)

Although the percentile interval closely matches the exact confidence interval, in prac-

tice, they may not give dependably accurate coverage probabilities in all situations.

Because of that, bias-corrected method BC and bias-corrected accelerated method

BCa are proposed as improved versions of the percentile method.

The bias-corrected method

In order to adjust the bias from the bootstrap distribution, the BC method was

proposed. Let θ̂ be the estimate from the original data and define the factor ẑ0, which

is a measure of the discrepancy between the median of the B bootstrap estimates θ̂∗

and the original sample estimate θ̂, as

ẑ0 = Φ−1(#{θ̂∗ < θ̂}/B). (3.16)

Then the 100(1 − α)% BC bootstrap confidence interval for θ is given by

[
θ̂∗(α1), θ̂∗(α2)

]
, (3.17)

14



where α1 = Φ(2ẑ0 − z1−α/2) and α2 = Φ(2ẑ0 + z1−α/2).

The bias-corrected accelerated method

The BCa method as an improvement from the BC method. Define

â =

∑n
i=1(θ̂(.) − θ̂(i))

6
[∑n

i=1 (θ̂(.) − θ̂(i))
2
]3/2

, (3.18)

where θ̂(i) is the ith jackknife estimate of θ and θ̂(.) =
∑n

i=1 θ̂(i)/n. Then the 100(1 −

α)% BCa interval for θ is given by

[
θ̂∗(α3), θ̂∗(α4)

]
, (3.19)

where α3 = Φ
{
ẑ0 +

ẑ0−z1−α/2

1−â(ẑ0−z1−α/2)

}
and α4 = Φ

{
ẑ0 +

ẑ0+z1−α/2

1−â(ẑ0+z1−α/2)

}
.

3.4.2 Nonparametric and parametric bootstrap methods

Bootstrap can be done either in a nonparametric way or a parametric way. Nonpara-

metric bootstrap relies on the consideration of the discrete empirical distribution F̂

generated by a random sample from an unknown distribution F . In empirical dis-

tribution F̂ , equal probability is assigned to each sample item. In the parametric

bootstrap setting, we consider F to be a member of some prescribed parametric fam-

ily and obtain F̂ by estimating family parameters from the data.
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The nonparametric bootstrap

The nonparametric bootstrap method is a simple pairwise resampling of (yi, xi). The

procedure for the tobit regression model is listed as follows.

1. Randomly sample i∗1, i
∗
2, · · · , i∗n with replacement from {1, 2, · · · , n}.

2. For j = 1, · · · , n, set y∗
j = yi∗j

, x∗
j = xi∗j

.

3. Fit the tobit regression model by using the sample (y∗
1, x

∗
1), · · · , (y∗

n, x
∗
n) and obtain

the MLE of ERED100p.

4. Repeat Steps 1-3 B times and establish a 100(1 − α)% confidence interval for

ERED100p by either the percentile method, the BC method or the BCa method

from B estimates of ERED100p.

The parametric bootstrap

The parametric bootstrap is to resample the pseudo-residuals of the parametric model.

This applies to the tobit regression model. We propose the procedure as follows.

1. Set x∗
i = xi

2. For yi = 0, generate the latent ui based on the conditional distribution Ui|Ui ≤ 0,

which is a truncated normal distribution with mean ŷi = β̂0 + β̂1xi and variance σ̂2

when the error term is assumed normal. Then obtain pseudo-residuals r̃i = ui − ŷi;

and for yi > 0, let r̃i = yi − ŷi.

3. Sample r∗i from the pseudo residuals (r̃1, r̃2, · · · , r̃n) with replacement.

4. Let u∗
i = ŷi + r∗i and y∗

i = u∗
i I[u∗

i > 0].

5. Fit the tobit regression model using the bootstrap sample (y∗
1, x

∗
1), · · · , (y∗

n, x∗
n) and

obtain the MLE of ERED100q.
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6. Repeat Steps 1-5 B times and establish a 100(1−α)% confidence interval by using

either the percentile method, the BC method or the BCa method from B estimates

of ERED100p.
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Chapter 4

Comparison of different interval

estimation methods

In this Chapter, we further study the performance of the proposed estimation con-

fidence intervals in Chapter 4 for ERED50 and ERED05 by simulation studies. We

generated data from both normal and non-normal error distributions, with the nor-

mal error distribution corresponding to the case tobit regression is a correct model

and the non-normal error distribution corresponding to the misspecified case. Hence,

we can study both the efficiency and robustness of these interval estimation methods.

4.1 Simulation setup

In our simulation study, we consider simulated data set with differen sample sizes,

from different error distributions and experiment designs. In Table 4.1, we summa-

rize the data generating configurations, which is the same as in Huang (2008). For

experiment designs, we consider random designs with dose levels from the uniform

distribution on (1.5, 7) and fixed designs with five dose levels 2.5, 3.5, 4.5, 5.5 and 6.5
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and also assume equal numbers of observations at each dose level. Then, we generated

censored response from tobit regression model as follows,

ui = β0 + β1xi + ϵi,

yi = uiI(ui > 0).

True values of β0 and β1 and distribution of ϵi can be found in Table 4.1. We focus

on five different error distributions Fϵ.

(D1) standard normal distribution N(0, 1).

(D2) the Cauchy distribution.

(D3) a normal mixture distribution 2/3N(0, 1) + 1/3N(30, 1).

(D4) a normal mixture distribution 5/6N(0, 1) + 1/6N(30, 1).

(D5) the slash distribution. The slash distribution can be obtained by dividing a stan-

dard normal random variable by an independent uniform random variable U(0, 1).

The last four distributions are non-normal with (D2) and (D5) being symmetric and

(D3) and (D4) being asymmetric. When the error distribution is assumed the stan-

dard normal, based on the above setting, for random designs, about 30 percent of

observations are censored; for fixed designs, this proportion is about 25 percent.

In each simulation study, we generated 500 Monte Carlo samples and for each interval

estimation method, we calculate its coverage probability (CP ) and median interval

length (ML) corresponding to the 95% confidence intervals of ERED50 and ERED05.

In total, nine interval estimation methods are considered, including the delta method

(D), the Fieller method (F), the LR method (LR), parametric bootstraps percentile

method (P-P), parametric bootstraps BC method (P-BC), parametric bootstraps

BCa method (P-BCa), nonparametric bootstraps percentile method (N-P), nonpara-

metric bootstraps BC method (N-BC) and nonparametric bootstraps BCa method
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Table 4.1: Simulation configuration

Designs n Fϵ β0 β1 σ2 xi

Random 100, 50 Normal -3 1 1 U(1.5, 7)
Fixed 100, 50 Normal -3 1 1 (2.5, 3.5, 4.5, 5.5, 6.5)

Random 100, 50 Non-normal -3 1 1 U(1.5, 7)
Fixed 100, 50 Non-normal -3 1 1 (2.5, 3.5, 4.5, 5.5, 6.5)

(N-BCa). For bootstrap methods, the number of bootstrap replicates is B = 200. In

Table 4.2-4.5, numbers in () in CP column are variance of coverage probability and

numbers in () in ML column are median absolute deviation of median interval length

times 1.4826.

4.2 Comparison of efficiency

First, we compare the efficiency of various interval estimation methods using data

generated based on the normal error distribution. Column D1 in Tables 4.2-4.5 give

the results for interval estimation of ERED50 and ERED05 in random designs and

fixed designs. For ERED50 in random designs, the delta method, the likelihood ratio

method and the parametric bootstrap percentile method give coverage probability

larger than 95%. Among these three methods, the delta method has the shortest

median interval length. The Fieller method gives coverage probability 95.8% when

n = 100, but only 94.6% when n = 50; the parametric bootstrap bias-corrected

method gives coverage probability 95.2% when n = 50, but only 93.6% when n = 100.

For ERED50 in fixed designs, although all methods give coverage probability smaller

than 95%, the delta method, the likelihood ratio method, the parametric bootstrap
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percentile and the parametric bootstrap bias-corrected method give higher coverage

probability, above 94% when n = 100 and above 92% when n = 50. The delta method

still has the shortest median interval length. For ERED05 in random designs, when

n = 100, the delta method, the Fieller method and the likelihood ratio method give

coverage probability larger than 95%. When n = 50, the delta method, the Fieller

method, the likelihood ratio method, the parametric bootstrap percentile method,

the parametric bootstrap bias-corrected method and the nonparametric bootstrap

bias-corrected give coverage probability larger than 94%, where only the likelihood

ratio method give coverage probability larger than 95%. The likelihood ratio method

has the shortest median interval length when sample size is large and the parametric

bootstrap bias-corrected method has the shortest median interval length when sample

size is small. For ERED05 in fixed designs, the delta method, the Fieller method,

the likelihood ratio method and the parametric bootstrap bias-corrected method give

coverage probability larger than 92.5% when n = 100; the likelihood ratio method,

parametric bootstrap percentile method and the parametric bootstrap bias-corrected

give coverage probability larger than 92.5% when n = 50.

Among all results, three nonparametric bootstrap methods give the lowest coverage

probability most times, except when estimating ERED05 at n = 50 in fixed designs.

Controlling on sample size, for the same method, results from random designs are

always give higher coverage probability than results from fixed designs. The biggest

difference is 4.6% using parametric bootstrap percentile method at n = 50.

We recommend the delta method for ERED50 and the likelihood ratio method,

the parametric bootstrap percentile method and parametric bootstrap bias-corrected

method for ERED05. And the three nonparametric bootstrap methods are not rec-

ommended.
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4.3 Comparison of robustness

In addition to comparing the efficiency, we further study the robustness to the normal

error assumption by fitting the tobit regression model (2.1) to data generated from

non-normal error distributions. When the error distribution is symmetric, such as the

Cauchy distribution and the slash distribution, in random designs and fixed designs

(column D2 and D5 in Tables 4.2-4.5), for ERED50, we see that all methods have

poor coverage probability, less than 85%. Comparing the results using same method

under D2 and D5, when the coverage probability is close, median interval length is

longer under D5. For ERED05 under D2 in both designs, the parametric bootstrap

percentile method and nonparametric bootstrap percentile method give the coverage

probability larger than 89% when n = 50 and the parametric bootstrap percentile

method gives coverage probability above 87% when n = 100. For ERED05 under D5

in both designs, the likelihood ratio method and the nonparametric bootstrap per-

centile method give coverage probability larger than 95% when n = 50 and coverage

probability larger than 84% when n = 100. Compare this two methods, when the

coverage probability is close, nonparametric bootstrap percentile method always gives

shorter median interval length. For all result of ERED05 under D2 and D5, the para-

metric bootstrap bias-corrected method and the parametric bootstrap bias-corrected

accelerated method give the coverage probability less than 60%. Also notice that, all

methods give higher coverage probability when sample size is small.

When the true error distribution is not symmetric, like 2/3N(0, 1) + 1/3N(30, 1)

or 5/6N(0, 1) + 1/6N(30, 1), in random designs and fixed designs (column D3 and

D4 in Tables 4.2-4.5), for ERED50, we see that all methods have poor coverage

probability, especially, less than 21% under D3. For ERED05 under D4 when n =
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100, all methods have coverage probability less than 85%; when n = 50, the Fieller

method and the likelihood ratio method give coverage probability larger than 88%

and the likelihood ratio method has shorter median interval length. For ERED05

under D3 in random designs, the Fieller method and the likelihood ratio method

give coverage probability larger than 90%. Compare these two methods, the Fielller

method has shorter median interval length when sample size is larger, while the

likelihood ratio method has shorter median interval length when sample size is small.

For ERED05 under D3 in fixed designs, the delta method, the Fieller method, the

likelihood ratio method, the parametric bootstrap bias-corrected method and the

nonparametric bootstrap bias-corrected method give coverage probability larger than

90%. Among these methods, the parametric bootstrap bias-corrected method has

the shortest median interval length. For ERED05 under D3 in fixed designs, the

nonparametric bootstrap percentile method and the nonparametric bias-corrected

accelerated method also give coverage probability larger than 90% when sample size

is small. For all results of ERED05 under D3 and D4 in both designs, the parametric

bootstrap percentile method and the parametric bootstrap bias-corrected accelerated

method give the lower coverage probability.

Different from Section 4.2, the median length of the same method for ERED50 is

smaller than that for ERED05 when the error distribution is not symmetric, however,

the median length of the same method for ERED50 is larger than that for ERED05

when the error distribution is symmetric. For different sample sizes, it is also seen

that for larger data sets, all interval estimation methods provide shorter intervals in

all cases.

To sum up, when the error distribution is non-normal but symmetric, we suggest the

parametric bootstrap percentile method when the error distribution has heavy tail
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like the cauchy distribution and the nonparametric bootstrap percentile method when

the error distribution has extreme heavy tail like the slash distribution, but we do

not recommend the parametric bootstrap bias-corrected method or the parametric

bootstrap bias-corrected accelerated method. When the error distribution is non-

normal but asymmetric, we suggest the parametric bootstrap bias-corrected method

when there are more outliers like the normal mixture D3 and the Fieller method

and the likelihood ratio method when there are less outliers like the normal mixture

D4, but we do not recommend the parametric percentile method or the parametric

bootstrap bias-corrected accelerated method.

4.4 Summary

Based on the above results, we conclude the followings:

1. When data are generated from the normal error distribution, which is satisfying

the assumption of the tobit regression model, we recommend the delta method

for ERED50 and the likelihood ratio method and the parametric bootstrap

percentile method for ERED05.

2. When the error distribution is non-normal, not all of these methods perform

well. When the error distribution is symmetric, we recommend the parametric

bootstrap percentile method and nonparametric bootstrap percentile method.

When the error distribution is asymmetric, we recommend the Fieller method,

the likelihood ratio method and the parametric bootstrap bias-corrected method.

3. When the error distribution is normal, the three nonparametric bootstrap meth-

ods are not recommended. When the error distribution is non-normal but
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symmetric, the parametric bootstrap bias-corrected method and the paramet-

ric bootstrap bias-corrected accelerated method are not recommended. When

the error distribution is non-normal but asymmetric, parametric bootstrap per-

centile method and parametric bootstrap bias-corrected accelerated method are

not recommended.
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Table 4.2: 95% confidence intervals of ERED50 in random designs

method (D1) (D2) (D3) (D4) (D5)
CP ML CP ML CP ML CP ML CP ML

n=100
D 0.950 0.623 0.278 2.217 0.020 0.533 0.716 0.535 0.464 3.385

(0.048) (0.047) (0.201) (1.638) (0.020) (0.039) (0.203) (0.041) (0.249) (2.833)
F 0.958 0.633 0.094 2.817 0.012 0.539 0.676 0.541 0.080 5.239

(0.040) (0.050) (0.085) (2.505) (0.012) (0.040) (0.210) (0.042) (0.074) (5.488)
LR 0.968 0.663 0.216 3.531 0.020 3.370 0.714 3.365 0.300 5.540

(0.031) (0.100) (0.169) (3.207) (0.020) (0.062) (0.204) (0.088) (0.210) (5.740)
P − P 0.950 0.626 0.036 2.131 0.008 0.521 0.634 0.522 0.074 3.177

(0.048) (0.056) (0.035) (1.204) (0.008) (0.049) (0.232) (0.047) (0.069) (1.800)
P − BC 0.936 0.625 0.082 1.582 0.014 0.525 0.800 0.524 0.096 3.208

(0.060) (0.062) (0.075) (1.198) (0.014) (0.056) (0.160) (0.054) (0.087) (2.990)
P − BCa 0.936 0.627 0.096 1.521 0.016 0.526 0.802 0.527 0.108 2.990

(0.060) (0.064) (0.097) (1.102) (0.016) (0.057) (0.0159) (0.054) (0.096) (2.599)
N − P 0.936 0.613 0.242 2.674 0.014 0.519 0.698 0.520 0.344 4.224

(0.060) (0.066) (0.183) (2.105) (0.014) (0.056) (0.211) (0.053) (0.226) (3.914)
N − BC 0.930 0.612 0.150 2.819 0.014 0.519 0.732 0.520 0.164 5.127

(0.065) (0.068) (0.128) (2.422) (0.014) (0.056) (0.196) (0.058) (0.137) (5.362)
N − BCa 0.932 0.613 0.254 2.519 0.016 0.520 0.734 0.521 0.276 4.431

(0.063) (0.067) (0.189) (1.968) (0.016) (0.055) (0.195) (0.058) (0.200) (4.330)
n=50
D 0.958 0.925 0.648 2.000 0.176 0.792 0.852 0.796 0.792 3.299

(0.040) (0.101) (0.228) (1.042) (0.145) (0.078) (0.126) (0.084) (0.165) (2.804)
F 0.946 0.954 0.398 2.822 0.122 0.811 0.776 0.816 0.358 7.572

(0.051) (0.111) (0.240) (2.131) (0.107) (0.083) (0.174) (0.091) (0.230) (6.574)
LR 0.956 1.036 0.488 4.048 0.168 0.969 0.832 0.917 0.594 8.485

(0.042) (0.228) (0.250) (3.960) (0.140) (0.403) (0.140) (0.299) (0.241) (10.502)
P − P 0.952 0.927 0.364 2.516 0.152 0.762 0.792 0.759 0.468 4.226

(0.046) (0.113) (0.232) (1.810) (0.129) (0.084) (0.165) (0.089) (0.249) (3.972)
P − BC 0.952 0.932 0.338 1.600 0.194 0.765 0.866 0.764 0.368 2.869

(0.046) (0.118) (0.224) (0.986) (0.156) (0.093) (0.116) (0.099) (0.233) (2.793)
P − BCa 0.946 0.926 0.374 1.578 0.204 0.765 0.868 0.769 0.394 2.652

(0.051) (0.123) (0.224) (0.949) (0.162) (0.093) (0.115) (0.104) (0.230) (2.516)
N − P 0.948 0.925 0.664 2.567 0.188 0.764 0.848 0.772 0.768 4.281

(0.049) (0.142) (0.223) (2.000) (0.153) (0.101) (0.129) (0.102) (0.178) (4.373)
N − BC 0.942 0.922 0.466 2.662 0.200 0.768 0.858 0.772 0.458 6.163

(0.055) (0.133) (0.249) (2.200) (0.160) (0.105) (0.122) (0.096) (0.248) (7.261)
N − BCa 0.930 0.920 0.534 2.434 0.208 0.772 0.860 0.772 0.532 4.587

(0.065) (0.138) (0.249) (1.854) (0.165) (0.104) (0.120) (0.099) (0.249) (4.918)
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Table 4.3: 95% confidence intervals of ERED50 in fixed designs

method (D1) (D2) (D3) (D4) (D5)
CP ML CP ML CP ML CP ML CP ML

n=100
D 0.944 0.649 0.438 2.451 0.010 0.555 0.696 0.548 0.632 3.766

(0.053) (0.066) (0.246) (2.152) (0.010) (0.051) (0.212) (0.045) (0.233) (3.678)
F 0.936 0.661 0.142 3.717 0.006 0.562 0.642 0.555 0.130 7.796

(0.060) (0.070) (0.122) (4.003) (0.006) (0.053) (0.230) (0.046) (0.113) (8.341)
LR 0.944 0.676 0.310 4.340 0.008 0.672 0.676 0.669 0.408 8.300

(0.053) (0.133) (0.214) (4.762) (0.008) (0.323) (0.219) (0.269) (0.242) (10.138)
P − P 0.924 0.657 0.106 2.316 0.000 0.536 0.592 0.538 0.188 3.259

(0.070) (0.073) (0.095) (1.618) (0.000) (0.059) (0.242) (0.058) (0.153) (2.458)
P − BC 0.942 0.656 0.118 1.933 0.012 0.530 0.764 0.526 0.108 3.783

(0.055) (0.074) (0.104) (1.881) (0.012) (0.065) (0.180) (0.064) (0.096) (4.210)
P − BCa 0.942 0.653 0.128 1.794 0.016 0.530 0.766 0.528 0.132 3.448

(0.055) (0.072) (0.112) (1.651) (0.016) (0.064) (0.179) (0.061) (0.115) (3.769)
N − P 0.932 0.657 0.398 3.080 0.000 0.537 0.686 0.541 0.452 5.283

(0.063) (0.086) (0.240) (3.007) (0.000) (0.060) (0.215) (0.053) (0.248) (5.829)
N − BC 0.926 0.653 0.206 3.482 0.002 0.538 0.698 0.540 0.206 7.785

(0.069) (0.085) (0.164) (3.743) (0.002) (0.060) (0.211) (0.051) (0.164) (9.687)
N − BCa 0.928 0.655 0.336 3.072 0.004 0.537 0.700 0.541 0.288 5.993

(0.067) (0.083) (0.223) (3.048) (0.004) (0.059) (0.210) (0.053) (0.205) (7.026)
n=50
D 0.946 0.920 0.740 2.229 0.116 0.777 0.816 0.766 0.848 3.274

(0.051) (0.131) (0.192) (1.404) (0.103) (0.098) (0.150) (0.096) (0.129) (2.863)
F 0.938 0.955 0.420 4.066 0.086 0.798 0.758 0.786 0.418 10.894

(0.058) (0.144) (0.244) (3.757) (0.079) (0.109) (0.183) (0.103) (0.243) (5.509)
LR 0.942 0.964 0.594 6.313 0.106 0.948 0.790 0.928 0.702 12.317

(0.055) (0.253) (0.241) (7.349) (0.095) (0.376) (0.166) (0.334) (0.209) (16.233)
P − P 0.906 0.931 0.452 3.105 0.082 0.755 0.722 0.750 0.492 4.973

(0.085) (0.135) (0.248) (2.696) (0.075) (0.099) (0.201) (0.105) (0.250) (4.987)
P − BC 0.926 0.932 0.386 2.041 0.140 0.741 0.840 0.736 0.344 5.497

(0.069) (0.133) (0.237) (1.717) (0.120) (0.103) (0.134) (0.103) (0.226) (6.733)
P − BCa 0.924 0.922 0.426 1.934 0.156 0.740 0.842 0.739 0.352 6.168

(0.070) (0.134) (0.245) (1.549) (0.132) (0.100) (0.133) (0.105) (0.228) (7.716)
N − P 0.922 0.925 0.774 3.180 0.114 0.764 0.778 0.762 0.792 6.063

(0.072) (0.151) (0.175) (2.904) (0.101) (0.093) (0.173) (0.100) (0.165) (7.012)
N − BC 0.908 0.925 0.502 3.655 0.120 0.759 0.782 0.751 0.414 7.827

(0.084) (0.150) (0.250) (3.736) (0.106) (0.091) (0.170) (0.090) (0.243) (9.801)
N − BCa 0.910 0.919 0.574 2.925 0.136 0.760 0.780 0.753 0.476 6.747

(0.082) (0.148) (0.245) (2.614) (0.118) (0.091) (0.172) (0.090) (0.249) (8.176)
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Table 4.4: 95% confidence intervals of ERED05 in random designs

method (D1) (D2) (D3) (D4) (D5)
CP ML CP ML CP ML CP ML CP ML

n=100
D 0.950 0.920 0.500 0.491 0.850 0.784 0.698 0.778 0.758 0.486

(0.048) (0.063) (0.250) (0.223) (0.128) (0.074) (0.211) (0.078) (0.183) (0.232)
F 0.954 0.931 0.530 0.654 0.900 0.793 0.780 0.786 0.768 0.669

(0.044) (0.067) (0.249) (0.324) (0.090) (0.076) (0.172) (0.081) (0.178) (0.385)
LR 0.966 0.895 0.650 0.591 0.908 0.795 0.796 0.786 0.840 0.644

(0.033) (0.055) (0.228) (0.344) (0.084) (0.071) (0.162) (0.079) (0.134) (0.480)
P − P 0.936 0.876 0.884 1.050 0.772 0.664 0.548 0.665 0.778 0.913

(0.060) (0.085) (0.103) (0.399) (0.176) (0.078) (0.248) (0.070) (0.173) (0.410)
P − BC 0.936 0.872 0.182 0.146 0.826 0.655 0.626 0.658 0.294 0.194

(0.060) (0.091) (0.149) (0.192) (0.144) (0.081) (0.234) (0.077) (0.208) (0.227)
P − BCa 0.932 0.880 0.184 0.147 0.800 0.656 0.592 0.657 0.296 0.194

(0.063) (0.086) (0.150) (0.194) (0.160) (0.083) (0.242) (0.077) (0.208) (0.226)
N − P 0.926 0.876 0.716 0.658 0.786 0.671 0.590 0.675 0.886 0.666

(0.069) (0.105) (0.203) (0.298) (0.168) (0.079) (0.242) (0.076) (0.101) (0.394)
N − BC 0.926 0.865 0.614 0.627 0.828 0.675 0.638 0.675 0.794 0.623

(0.069) (0.102) (0.237) (0.331) (0.142) (0.081) (0.231) (0.084) (0.164) (0.388)
N − BCa 0.920 0.870 0.622 0.636 0.800 0.673 0.612 0.679 0.784 0.608

(0.074) (0.102) (0.235) (0.334) (0.160) (0.082) (0.237) (0.079) (0.169) (0.366)
n=50
D 0.940 1.367 0.618 0.879 0.890 1.164 0.838 1.172 0.786 0.804

(0.056) (0.126) (0.236) (0.576) (0.098) (0.151) (0.136) (0.156) (0.168) (0.547)
F 0.940 1.394 0.624 1.511 0.922 1.192 0.880 1.198 0.804 1.773

(0.056) (0.141) (0.235) (0.652) (0.072) (0.159) (0.106) (0.165) (0.158) (0.494)
LR 0.962 1.284 0.844 1.135 0.928 1.179 0.894 1.189 0.952 1.367

(0.037) (0.106) (0.132) (0.627) (0.067) (0.125) (0.095) (0.128) (0.046) (1.218)
P − P 0.942 1.275 0.926 1.795 0.828 1.022 0.712 1.017 0.826 1.873

(0.055) (0.148) (0.069) (0.777) (0.142) (0.129) (0.205) (0.134) (0.144) (0.864)
P − BC 0.943 1.257 0.462 0.936 0.884 1.012 0.808 1.006 0.504 1.072

(0.054) (0.140) (0.249) (1.011) (0.103) (0.136) (0.155) (0.145) (0.250) (1.339)
P − BCa 0.934 1.270 0.470 0.978 0.848 1.011 0.770 1.006 0.520 1.133

(0.062) (0.151) (0.249) (1.076) (0.129) (0.136) (0.177) (0.140) (0.250) (1.413)
N − P 0.926 1.287 0.894 1.321 0.848 1.029 0.756 1.029 0.960 1.283

(0.069) (0.205) (0.095) (0.623) (0.129) (0.138) (0.184) (0.147) (0.038) (0.765)
N − BC 0.942 1.271 0.734 1.334 0.874 1.023 0.796 1.031 0.842 1.306

(0.055) (0.190) (0.195) (0.0875) (0.110) (0.144) (0.162) (0.153) (0.133) (1.004)
N − BCa 0.926 1.280 0.768 1.403 0.856 1.027 0.760 1.033 0.838 1.390

(0.069) (0.209) (0.178) (0.868) (0.123) (0.141) (0.182) (0.148) (0.136) (1.098)
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Table 4.5: 95% confidence intervals of ERED05 in fixed designs

method (D1) (D2) (D3) (D4) (D5)
CP ML CP ML CP ML CP ML CP ML

n=100
D 0.930 1.026 0.478 0.551 0.912 0.870 0.796 0.859 0.716 0.536

(0.065) (0.072) (0.250) (0.290) (0.080) (0.098) (0.162) (0.088) (0.203) (0.324)
F 0.928 1.046 0.522 0.813 0.936 0.883 0.828 0.870 0.744 0.831

(0.067) (0.078) (0.250) (0.347) (0.060) (0.102) (0.142) (0.090) (0.190) (0.414)
LR 0.950 0.991 0.686 0.769 0.950 0.879 0.848 0.870 0.866 0.859

(0.048) (0.058) (0.215) (0.578) (0.048) (0.091) (0.129) (0.083) (0.116) (0.774)
P − P 0.918 0.962 0.874 1.111 0.898 0.767 0.776 0.760 0.798 1.121

(0.075) (0.090) (0.110) (0.443) (0.092) (0.096) (0.174) (0.102) (0.161) (0.517)
P − BC 0.926 0.964 0.210 0.191 0.908 0.768 0.724 0.754 0.302 0.236

(0.069) (0.083) (0.166) (0.252) (0.084) (0.104) (0.200) (0.099) (0.211) (0.299)
P − BCa 0.914 0.962 0.212 0.188 0.888 0.769 0.696 0.757 0.304 0.223

(0.079) (0.084) (0.167) (0.250) (0.099) (0.101) (0.212) (0.103) (0.212) (0.297)
N − P 0.916 0.961 0.712 0.772 0.898 0.769 0.746 0.772 0.932 0.794

(0.077) (0.109) (0.205) (0.414) (0.092) (0.091) (0.189) (0.087) (0.063) (0.486)
N − BC 0.924 0.959 0.544 0.762 0.906 0.771 0.786 0.770 0.760 0.197

(0.070) (0.108) (0.248) (0.512) (0.085) (0.094) (0.168) (0.089) (0.182) (0.701)
N − BCa 0.924 0.959 0.558 0.793 0.898 0.773 0.764 0.768 0.742 0.826

(0.070) (0.111) (0.247) (0.563) (0.092) (0.094) (0.180) (0.086) (0.191) (0.744)
n=50
D 0.900 1.413 0.598 0.898 0.910 1.206 0.836 1.191 0.804 0.864

(0.090) (0.153) (0.240) (0.659) (0.082) (0.196) (0.137) (0.180) (0.158) (0.559)
F 0.902 1.468 0.632 1.796 0.942 1.241 0.890 1.223 0.812 2.435

(0.088) (0.174) (0.233) (0.911) (0.055) (0.212) (0.098) (0.194) (0.153) (0.911)
LR 0.936 1.329 0.866 1.264 0.942 1.227 0.890 1.207 0.982 1.432

(0.060) (0.102) (0.116) (0.873) (0.055) (0.133) (0.098) (0.140) (0.018) (1.374)
P − P 0.928 1.299 0.930 1.793 0.894 1.070 0.806 1.064 0.890 1.780

(0.067) (0.149) (0.065) (0.667) (0.095) (0.168) (0.156) (0.162) (0.098) (0.798)
P − BC 0.930 1.300 0.498 1.152 0.900 1.067 0.810 1.061 0.596 1.558

(0.065) (0.142) (0.250) (1.135) (0.090) (0.165) (0.154) (0.159) (0.241) (1.992)
P − BCa 0.922 1.302 0.508 1.194 0.884 1.065 0.792 1.063 0.600 1.594

(0.072) (0.139) (0.250) (1.125) (0.103) (0.163) (0.165) (0.159) (0.240) (2.040)
N − P 0.922 1.286 0.922 1.299 0.904 1.073 0.792 1.063 0.984 1.420

(0.072) (0.178) (0.072) (0.601) (0.087) (0.149) (0.165) (0.148) (0.016) (0.866)
N − BC 0.922 1.274 0.736 1.355 0.928 1.083 0.832 1.063 0.836 1.547

(0.072) (0.177) (0.194) (0.736) (0.067) (0.152) (0.140) (0.151) (0.137) (1.229)
N − BCa 0.916 1.282 0.744 1.413 0.916 1.074 0.806 1.062 0.846 1.576

(0.077) (0.182) (0.190) (0.740) (0.077) (0.145) (0.156) (0.151) (0.130) (1.311)
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Chapter 5

Conclusions and future work

In this thesis, we propose five interval estimation methods of EREDs in tobit models

and compare their efficiency and robustness by simulations. Simulation studies show

that, when data are generated from the normal error distribution, which is satisfying

the assumption of the tobit regression model, we recommend the delta method for

ERED50 and the likelihood ratio method and the parametric bootstrap percentile

method for ERED05. When the error distribution is non-normal but symmetric, we

recommend the parametric bootstrap percentile method and the nonparametric boot-

strap percentile method. When the error distribution is non-normal but asymmetric,

we recommend the Fieller method, the likelihood ratio method and the parametric

bootstrap bias-corrected method. When the error distribution is normal, the three

nonparametric bootstrap methods are not recommended. When the error distribution

is non-normal but symmetric, the parametric bootstrap bias-corrected method and

the parametric bootstrap bias-corrected accelerated method are not recommended.

When the error distribution is non-normal but asymmetric, the parametric bootstrap

percentile method and the parametric bootstrap bias-corrected accelerated method

are not recommended.
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In our simulation studies, we found three interesting phenomena on interval estima-

tion for EREDs. All methods give higher coverage probability when sample size is

relative small. When the normal assumption holds, controlling on sample size, for the

same method, results from random designs are always give higher coverage probability

than results from fixed designs. The median length of the same method for ERED50

is smaller than that for ERED05 when the error distribution is non-normal but asym-

metric, however, the median length of the same method for ERED50 is larger than

that for ERED05 when the error distribution is non-normal but symmetric. These

issues deserve further consideration.
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