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Parkinson disease, the second most common neurodegenerative disorder, is caused by the loss

of dopaminergic subcortical neurons. Approximately 50% of people with Parkinson disease

experience freezing of gait (FOG), a brief, episodic absence or marked reduction of forward

progression of the feet despite the intention to walk. FOG causes falls and is resistant to

medication in more than 50% of cases. FOG episodes can often be interrupted by mechanical

interventions (e.g., a verbal reminder to march), but it is often not practical to apply these

interventions on demand (e.g., there is not usually another person to detect an FOG episode

and provide the reminder).

Wearable sensors offer the possibility of detecting FOG episodes in real time and thus de-

veloping a “closed-loop” treatment: real-time detection can be coupled with on-demand

interventions. Objective evaluation methods using wearable sensor technology to monitor
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and assess FOG have met with varying success. They do not use a signal model that cap-

tures FOG patterns explicitly, and they are of limited help in understanding the underlying

mechanisms in the structure of the sensor data captured during FOG. In this dissertation,

we first develop physically-based signal models for the sensor data, design statistical signal

processing methods to detect FOG based on its patterns, and compute the probability of

FOG. Then, we proceed to validate the system, using data from experimental gait assessment

in a group of people with Parkinson disease.

We further develop a modular approach to model, detect, and track FOG in Parkinson

disease, using four modules, namely the detection, navigation, validation, and filtering mod-

ules. To capture the gait motion, we use an inertial measurement unit (IMU) consisting

of a three-axis accelerometer and a three-axis gyroscope. We first build physically-based

signal models that describe “no movement” and “trembling motion” during FOG events. In

the detection module, we design a generalized likelihood ratio test framework to develop a

two-stage detector for determining the zero-velocity event intervals (ZVEI) and trembling

event intervals (TREI) that are associated with FOG. However, not all the detected TREI

are associated with FOG. Therefore, to filter out the TREI which are not associated with

FOG, we consider the fact that the alternating trembling motion in FOG is associated with

low foot speeds and small pitch angles. Next, to estimate these gait parameters, we employ

a zero-velocity aided inertial navigation system (ZV-INS) in the navigation module. The

ZV-INS uses the ZVEI as pseudo measurements, along with a Kalman filter, to estimate the

position, velocity, and orientation angles of the foot.

To track the degradation of the gait parameters prior to the incidence of FOG, we detect valid

gait cycles in the validation module. We first identify the non-stationary segments of the

gyroscope signal in the sagittal plane, using ZVEI. Next, we preprocess the non-stationary

xv



segments by scaling and interpolating the signal. Finally, we validate the preprocessed

non-stationary segment of the gyroscope signal in the sagittal plane as a valid gait cycle,

using an optimization framework called sparsity-assisted wavelet denoising (SAWD). In the

SAWD algorithm, we simultaneously combine low-pass filtering, multiresolution represen-

tations (wavelets), and a sparsity-inducing norm to obtain a sparse representation of the

gyroscope signal in the sagittal plane for valid gait cycles, in the form of a discrete wavelet

transform coefficient vector. We compute the root-mean-square error between the generated

template and the sparse representation of the non-stationary segment of the gyroscope data

in the sagittal plane, obtained using the SAWD algorithm. If the root-mean-square error is

less than a fixed threshold, then the gait cycle is considered valid.

Finally, to detect the onset and duration of FOG, we develop a point-process filter that

computes the probability of FOG (pFOG). We model the edges of the TREI as a point-

process, then assign weights to the edges, which depend on a participant-specific tunable

parameter and the average value of the gait parameters observed in the bin containing the

edge. To compute pFOG, we develop a Bayesian recursive filter and integrate the weights

assigned to the edges of the TREI over a time window. To adaptively adjust the participant-

specific tunable parameter, we develop two novel approaches that assign weights to the edges

of the TREI based on the gait parameters extracted from the last valid gait cycle and the

foot motion dynamics. We validate the performance of the modular system design using

real data obtained from people with Parkinson disease who performed a battery of gait

tasks known to trigger FOG. The results indicate improved performance, with an average

accuracy greater than 85% and an average false positive rate of less than 14%. Altogether,

we not only improve the accuracy of FOG detection but also open new avenues towards the

development of low-cost remote health monitoring systems, which will help provide insights
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into the frequency and patterns of FOG that affect the quality of daily life in people with

Parkinson disease.
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Chapter 1

Introduction: Model, Detect, and

Track Freezing of Gait

Parkinson disease is the second most common neurodegenerative disorder, affecting 1-1.5

million people in the United States alone. The main pathological process in Parkinson disease

is a loss of dopaminergic subcortical neurons, which leads to various motor impairments [2].

Approximately 50% of people with Parkinson disease experience freezing of gait [3,4] (FOG),

a brief, episodic absence or marked reduction of forward progression of the feet despite the

intention to walk. FOG causes falls and is resistant to medication in more than 50% of

cases [5,6]. FOG episodes can often be interrupted by mechanical interventions or strategies

(e.g., a verbal reminder to march), but it is often not practical to apply these interventions

on demand (e.g., there is not usually another person to detect an FOG episode and provide

the reminder). Wearable sensors offer the possibility of detecting FOG episodes in real time

and thus developing a “closed-loop” approach to treatment: real-time detection could be

coupled with on-demand interventions to reduce the duration of FOG episodes.

In the last decade, objective evaluation methods using wearable sensor technology to monitor

and assess FOG have been developed with varying success [7–9]. Experiments have primarily
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been conducted for understanding the bilateral coordination [10–13] of steps during gait,

using force resistive sensors embedded in the sole of the shoe. They have also employed

through analysis of the spectral characteristics of the accelerometry signal [14–16] from

devices attached to the lower extremities, or have used methods from machine learning [17–

21] to classify features extracted from inertial sensor data. However, these methods do not

present a signal model that captures the FOG patterns explicitly, and they provide limited

utility for understanding the potential underlying mechanisms revealed by the structure of

the sensor data during FOG.

Our long-term goal is to develop a valid and reliable system which will enable effective per-

sonalized treatment for mitigating FOG. The objectives of this thesis are to design a system

to automatically detect and track FOG in real-time, and translate to the developed method-

ology to into individual patient application. To detect FOG, we will develop physically-based

signal models for the sensor data associated with the FOG patterns. Based on these models,

we will design statistical signal processing methods that detect the onset and duration of

the FOG events in real-time.

FOG patterns are known to include (i) alternating trembling in the lower extremities (in-

cluding the hip, knee, and ankle joints, and the bones of the thigh, leg, and foot), and (ii) no

movement of the limbs and trunk [3,22]. FOG events are a reflection of the patterns described

in both (i) and (ii), and are characterized by small foot speeds [23,24], low pitch angles, and

high spectral power ratios [14]. To detect and track FOG in real-time, we will use a modular

approach system design shown in Fig. 1.1. To capture gait motion, we use a MEMS-based

inertial measurement unit (IMU) that consists of a three-axis accelerometer and a three-axis

gyroscope. The system design consists of four modules, specifically for detecting, tracking,

validating, and filtering. The detection module contains two fixed-threshold detectors to
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determine instances of alternating trembling intervals and no-movement (zero-velocity) in-

tervals. We consider these thresholds as fixed because they are not sensitive to the individual

gait patterns. To identify FOG gait patterns involving alternating trembling in the lower

extremities, we exploit the fact that these events are associated with alternating trembling

motion of the sensor about a fixed axis and model them as trembling event intervals. Simi-

larly, to identify FOG gait patterns such as no movement of limbs, we use the fact that these

events are associated with zero-velocity and model them as zero-velocity event intervals.

However, not all trembling and zero-velocity event intervals detected are associated with

FOG. For example, trembling intervals are associated with heel lift-off and heel strike phase

of a gait cycle, and zero-velocity event intervals are associated with the flat foot phase of a

gait cycle. Therefore, to filter out the gait events that are not associated with FOG, we use

a navigation module to extract gait parameters such as the speed and orientation angles of

the foot because FOG is associated with small foot speeds and low pitch angles. Further, to

filter out gait cycles detected in trembling event intervals, we develop a gait cycle validation

and segmentation module.

In the gait cycle validation and segmentation module, we develop a novel approach that

employs pattern matching and thresholding to validate and detect three gait events in the

gait cycle, namely midstance, toe-off, and heel-strike. To identify the data as stationary or

moving, we first use physical models that describe zero-velocity events or stationary events

of the sensor data obtained from a foot-mounted inertial system. Next, to generate a sparse

representation of the moving segments of the gyroscope measurements in the sagittal plane

for valid gait cycles, we develop a computationally efficient algorithm called sparsity-assisted

wavelet denoising (SAWD). In SAWD, we simultaneously combine linear time-invariant fil-

ters, wavelets, and sparsity-based methods to extract a discrete wavelet transform (DWT)
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Figure 1.1: A system overview of the proposed modularity-based approach to detect and
track freezing of gait in Parkinson disease. ZVEI: Zero-velocity event intervals; TREI: Trem-
bling event intervals.

coefficient vector as a sparse representation of the moving segment of the gyroscope mea-

surements in the sagittal plane. The reconstructed signal obtained from the extracted DWT

coefficient vector is smooth and preserves the typical observable patterns, such as “valleys”

and “peaks,” of a valid gait cycle for the non-stationary segments of the gyroscope signal

in the sagittal plane. We generate a template of the DWT coefficient vector by taking the

average of the DWT coefficient vectors obtained using the SAWD algorithm for all valid

gait cycles of a given trial. Thereafter, to validate any moving segment as a gait cycle, we

compute the root-mean-square error between the generated template and the sparse repre-

sentation of the moving segment of the gyroscope data in the sagittal plane, obtained using

the SAWD algorithm. If the root-mean-square error is less than a fixed threshold, then the

gait cycle is valid, i.e., not associated with FOG.
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Finally, to filter out gait patterns that are not associated with FOG, we develop a point-

process filter in the filtering module, which computes the probability of FOG. We first assign

weights to the edges of the trembling interval, which depend on the selected gait parameters

mapped to a kernel function. In addition, we use the information about the validity of

a gait cycle from the validation module to reset the point-process filter and remove gait

patterns associated with valid gait cycles. Then, we integrate these weights over a time

window using a Bayesian recursive filter. Our central hypothesis is that regions in the space

of sensor data that are assigned high values of pFOG indicate FOG with high likelihood.

The successful completion of our objectives will contribute to the development of precision

measurement through gait analysis adapted to individual gait patterns for detecting FOG.

The automatic nature of our system will enable use in a home setting, thus lowering cost

of treatment and providing access to larger amounts of sensor data to accurately evaluate

disease progression, including evolution of FOG patterns and frequency. These in turn will

be useful in the development of effective, personalized treatment methodologies to reduced

FOG and thereby improve the quality of life of individuals with Parkinson disease. We will

pursue the objectives via the following specific aims:

• Aim 1: Develop a statistically-based adaptive system to automatically de-

tect and track FOG.

We hypothesize that through use of gait parameters and parametric modeling of gait

during FOG, we can develop a novel system to compute pFOG in real time, by ap-

plying a conditional intensity function to data from commercial wearable sensors. The

resulting system will first automatically adjust a patient-specific tunable parameter

depending on the foot-motion dynamics, and then will detect the onset and duration

of FOG.
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• Aim 2: Validate the system using data from experimental gait assessment

in a group of people with Parkinson disease.

We will validate the results obtained using the system designed in Aim 1 by comparing

the algorithm’s pFOG with detection of FOG by trained gait analysis experts using

video review. We hypothesize that the sensor-based FOG system will detect FOG at

least as reliably as human experts. Validation of this sensor-based method would allow

for the immediate application of the methodology in gait laboratories, and will pave

the way for measuring FOG in clinical practice and everyday life.

Completion of these specific aims will enable researchers to study FOG in the lab using

commercially available wearable inertial sensors. Once validated, the system design can

be translated into clinical practice, improving the quality of health care and also ensure

rapid dissemination of future advances. An enhanced understanding of FOG can spur novel

treatment approaches to address FOG events. Real-time detection of FOG will allow the

development and study of on-demand interventions and the possible development of closed-

loop event-based treatment of FOG. The impact of our work will make it possible to develop

clinical systems to study FOG on a large scale, and potentially improve the quality of life

for people who experience FOG by paving the way for development of novel intervention

strategies to tackle this disabling symptom of Parkinson disease.
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1.1 Research Significance

1.1.1 Scientific Premise

The gold standard of FOG assessment involves evaluation of video recordings of ambulating

participants by expert raters of FOG [25]. The inter-rater reliability varies, ranging from low

to good [26]. However, this approach offers limited information about the frequency and pat-

terns of FOG away from the laboratory environment, requires substantial training of raters,

and consumes much time in off-line data analysis [27]. The use of consumer wearable technol-

ogy developed using inertial sensors offers a potentially more efficient alternative approach

to monitoring and assessment of FOG, and is becoming more common [28]. An inertial

sensor consists of a three-axis accelerometer and a three-axis gyroscope, which respectively

measure acceleration due to motion and gravity, and angular velocity. Automated methods

developed for objective evaluation of FOG using these sensors either use information about

the spectral characteristics of the accelerometer signal [14–16] or perform exploratory data

analysis using tools from machine learning [17–21]. However, these methods do not consider

a physically-based signal model that captures the FOG events explicitly, and they provide

limited utility for understanding the structure of the sensor data and detecting FOG. Fur-

ther, methods based on spectral characteristics of the accelerometry signal completely ignore

the effect of various sources of error in the sensor [29]. Finally, the use long window lengths

to extract features from the sensor data often lead to delays in determining the onset of the

FOG event, thus hindering use in a real-time framework.

The most commonly prescribed medication to improve symptoms in people with Parkinson

disease is levodopa. This medication is effective in only 50% of patients with FOG [5, 6].
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Even when levodopa is effective, its dose-effect is highly complex and nonlinear, and re-

mains a great therapeutic challenge [4]. Surgical treatments, such as deep brain stimulation,

have mixed results and limited effectiveness [30–33]. Clinicians have also developed non-

pharmaceutical and non-surgical intervention strategies for FOG, such as cueing [34–36],

which involves using external auditory or visual stimuli to abort FOG episodes [37, 38].

While these strategies can be effective, they can be used only in an open-loop mode (e.g.,

metronome cueing), or by requiring patients to engage in the cueing strategy when they

experience an FOG episode (e.g., reminding themselves to march). When delivered in this

manner, cueing strategies rapidly lose their effectiveness. For cueing to be effective, the ex-

ternal stimulus should ideally be carefully delivered to match an actual or impending FOG

event, i.e., in an automatic closed-loop approach. Such an approach has not been possible

due to the lack of a method to automatically detect FOG. Therefore, a system that can

automatically identify FOG in real time, and can possibly even predict the onset of FOG in

advance of an episode, would pave the way for development of novel intervention strategies

to reduce or prevent FOG and associated falls.

1.1.2 Expected Research Outcomes

The proposed method promises to develop a personalized healthcare gait analysis system

using inertial sensors. The method will adapt to individual gait patterns and automatically

detect FOG patterns explicitly in real time. This contribution is expected to have trans-

lational importance which could lead to development of novel treatment methodologies to

target FOG. The proposed method will not only improve the accuracy of FOG detection

but also open new avenues towards the development of low-cost remote health monitoring

systems, which will help provide insights into the frequency and patterns of FOG that affect
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the quality of daily life in people with Parkinson disease. The development of a personal-

ized healthcare gait analysis patient application could provide enhanced care and improve

outcomes. Unlike existing methods, our proposed system design offers a modular approach,

which will allow researchers to isolate, test, and make improvements to each module of the

system design, and thus increase the effectiveness of the overall application. Moreover, the

proposed system design establishes logical connections between the underlying mechanisms

of FOG and the physical properties measured by the sensors, which are potentially useful

in understanding the control mechanisms underlying FOG and in developing rehabilitative

interventions to reduce the incidence of FOG.

1.2 Contributions of this Work

FOG has been reported as the most disabling and distressing symptom of Parkinson disease.

The health-related impact of FOG is concerning as it leads to increased risk of falling,

reduced quality of life, and cognitive impairments. Further, the episodic nature of FOG

makes it difficult to study in laboratory settings. Despite challenges in detecting FOG, the

continuous improvement in the development of low-cost wearable sensors and the increased

computing power of inexpensive microcontrollers have created opportunities to collect and

process rich sensor data sets for specific symptoms of Parkinson disease. However, there is a

need for algorithms that can extract FOG episodes from sensor data automatically, reliably,

and in real-time.

The work done in this dissertation is innovative in several ways:
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a) We developed the first personalized gait analysis system that adapt to individual gait

patterns and automatically detect FOG in real-time.

b) Unlike existing methods, the proposed approach automatically adjusted the tunable sys-

tem parameters of an individual participant depending on the dynamics of the foot and

sampling rate of the sensors, thereby reducing the overall time required for manually

tuning the system parameters to improve the FOG detection accuracy.

c) The modularity of the proposed system design allow researchers to separately isolate,

test, and improve each of its modules, potentially resulting in the development of new

patient applications that can improve patient outcomes.

d) The proposed project is a unique multidisciplinary collaboration that integrated methods

from statistical signal processing and optimization with clinical expertise and movement

science.

e) We implemented our proposed system as an open-source Python-based toolbox to help

clinicians validate and use the proposed system design with commercial off-the-shelf wear-

able inertial sensors.

In the clinical setting, the use of a valid and reliable wearable system will not only enhance

protocol adherence and patient compliance but also decrease the need for outpatient visits

while maintaining high-quality care. In addition, the ability to detect the frequency and

patterns of FOG in daily life, and thus to to optimize treatment strategies, has the potential

to address current obstacles to mitigating FOG.
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Figure 1.2: Overview of the dissertation.

1.3 Organization of this Dissertation

The dissertation applies a modular approach to modeling, detecting, and tracking freezing

of gait in Parkinson disease participants. In Chapter 2, we present a brief overview of the

MEMS-based inertial sensors (accelerometers and gyroscopes) used in this work. InChapter

3, we develop a two-step detection algorithm to determine instances of zero-velocity event

intervals (ZVEI) and trembling event intervals (TREI). We model the inertial sensor data

for the gait patterns observed during FOG, and detect ZVEI and TREI. The goal of the

first detector is to filter out gait patterns that cannot be classified as ZVEI or TREI. To

distinguish ZVEI from TREI, we use the information from the gyroscope and develop the

second detector. The second detector detects only ZVEI and cannot filter out those gait

patterns identified as TREI, which are not associated with FOG. Therefore, to detect the

FOG region, which is a reflection of both ZVEI and TREI, we use the fact that FOG is

characterized by gait parameters, such as small foot speeds, low pitch angles, and high
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freeze indices. In Chapter 4, we present a tutorial on implementing the zero-velocity-aided

inertial navigation system that computes the position, velocity, and orientation estimates of

the sensor during gait. The INS uses the ZVEI as pseudo-measurements to correct the state

estimates of a dynamic system that tracks the position, velocity, and orientation estimates

of the foot.

In Chapter 5, to detect the onset and duration of FOG events, we develop a point-process

filter which computes the probability of FOG. We first assign weights to the edges of the

trembling interval which depend on the speed of the foot at the edges and a participant-

specific tunable parameter. Then, we integrate these weights over a time window using a

Bayesian recursive filter. To maximize the accuracy of the FOG detection, the participant-

specific tunable parameter is adjusted manually for every participant based on the foot

speeds. However, this step requires a thorough grid search operation which is tedious and

computationally expensive. In addition, a value of the tunable parameter that is participant-

specific but fixed over time is unlikely to be adequate. Ideally the parameter should be

adapted to specific gait patterns, which are subject to change depending on the participant’s

gait, symptoms, and treatment strategy.

To filter the TREI that are not associated with FOG, we develop a gait cycle validation and

segmentation module in Chapter 6. In the validation module, we use ZVEI, along with

the non-stationary segments of the gyroscope signal in the sagittal plane, to identify if the

non-stationary segment of the inertial sensor represents a valid gait cycle. To validate any

non-stationary segment of the gyroscope signal in the sagittal plane as a valid gait cycle, we

develop an optimization framework called sparsity-assisted wavelet denoising. In Chapter

7, we integrate the different modules and develop a statistically-based adaptive system to

automatically detect and track FOG. We develop two novel methods to automatically adjust
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the participant-specific tunable parameter based on the foot motion dynamics. We validate

the performance of the proposed system design using real data obtained from people with

Parkinson disease who performed a set of gait tasks. In Chapter 8, we draw conclusions

and propose potential future directions.

1.3.1 Publications
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in the dissertation:

• G. V. Prateek, I. Skog, M. E. McNeely, R. P. Duncan, G. M. Earhart, and A. Ne-

horai, “Modeling, detecting, and tracking freezing of gait in Parkinson disease using

inertial sensors,” in IEEE Transactions on Biomedical Engineering, vol. 65, no. 10, pp.

2152-2161, Oct. 2018. (Chapters 3 and 5)

• G. V. Prateek, P. Mazzoni, G. M. Earhart, and A. Nehorai, “Gait cycle validation

and segmentation using inertial sensors,” in revision IEEE Transactions on Biomedical

Engineering. (Chapter 6)

• G. V. Prateek, P. Mazzoni, G. M. Earhart, and A. Nehorai, “A modular approach

for tracking freezing of gait in Parkinson disease using inertial sensors,” in preparation,

2019. (Chapter 7)

The following is a list of journal publications completed during my Ph.D. studies, but ex-

cluded from the dissertation for thematic reasons:
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• G. V. Prateek, M. Hurtado, and A. Nehorai, “Target detection using weather radars

and electromagnetic vector sensors,” Signal Processing, vol. 137, pages 387-397, Aug

2017.

• G. V. Prateek, Y. E. Ju, and A. Nehorai, “Sparsity-assisted signal denoising and

pattern recognition in time-series data,” submitted to IEEE Transactions on Signal

Processing.

1.4 Notations

The following general notation will be used throughout the thesis. Bold uppercase and

lowercase letters denote a matrix and vector, respectively. Superscript/subscript a and ω

represent accelerometer and gyroscope signals, respectively. Uppercase letters that are not

bold denote scalars. For any matrix A, AT, A−1, and Tr {A} respectively denote the

transpose, inverse, and trace of A. IN represents an N ×N identity matrix. The norms ‖·‖2

and ‖·‖1 indicate the ℓ2 and ℓ1 norms, respectively.
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Chapter 2

Sensor Module: Inertial Measurement

Unit

In this chapter, we briefly review the inertial sensors used in tracking the foot motion dynam-

ics of Parkinson disease participants. An inertial sensor consists of accelerometer and gyro-

scope, which measure specific force and angular rate, respectively. We provide an overview

of micro-electro-mechanical systems (MEMS) based inertial sensors, including their working

principle, and briefly talk about the different types of errors which arise in MEMS technol-

ogy. In addition, we provide the specifications of the different types of inertial sensors that

were used in this work. We also briefly discuss two different inertial system configurations

commonly used in commercial applications.

2.1 Introduction

In the last decade, inertial sensor technology has been rapidly incorporated in many consumer

electronic products, including smart phones, tablets, gaming systems, TV remotes, and toys.
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The rapid growth is mainly due to the steep reductions in cost, enabled by highly integrated

silicon micro electromechanical systems (MEMS)/complementary metal oxide semiconduc-

tor (CMOS) technologies, coupled with an expanding awareness of the benefits of applying

motion tracking capability to enhance user interaction with various devices [39]. MEMS

technology is of particular interest because the sensors are relatively small and lightweight,

and can easily be incorporated into electronic devices. As a result, many industries, such as,

gaming, robotics, health care, defense, and automotive manufacturing, have seen a tremen-

dous growth in the number of applications using these sensors [40]. For instance, in 2017,

MEMS-based systems were reported to have a total value of $12.5 billion, a figure which is

expected to grow to $58.7 billion in 20241.

A MEMS-based inertial sensor consists of an accelerometer and gyroscope which measure

specific forces and angular rates, respectively. An inertial measurement unit (IMU) combines

multiple accelerometers and gyroscopes, usually three axes aligned orthogonally in a 3D-

plane, to capture full motion dynamics of the system. This chapter presents a brief overview

of the MEMS-based technology used in inertial sensors. Section 2.2 describes the different

frames of reference useful in modeling inertial sensor data. Section 2.3 presents the signal

model of the accelerometer and gyroscope inertial sensor data, and the different type of errors

associated with these sensors. Section 2.4 outlines different inertial system configurations

that are commonly used in the various applications listed above. Section 2.4 lists the inertial

system configurations that are commonly used in commercial applications.

1 Worldwide Micro-Electro-Mechanical Systems (MEMs) Sensors Market 2018-2024: Total Value
is $12.5 Billion in 2017, Up from $10.35 Billion in 2016, and Will Grow to $58.7 Billion in 2024.
https://markets.businessinsider.com/news/stocks/worldwide-micro-electro-mechanical-systems-mems-sensors-market-2018-2024
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2.2 Frames of Reference

To estimate position, velocity, and orientation, inertial navigation systems often must trans-

form measurements from one frame of reference to another. The three frames of reference

shown in Fig. 2.1 are most commonly used in the inertial navigation literature. Not shown is

a fourth frame, the body frame, which describes the motion of the foot of the participant’s.

xi

xe

ye

yi

zi, ze

xn

yn
zn

Figure 2.1: An illustration of the different frames of reference.

• The inertial frame, denoted by i, is a stationary frame. The IMU measures linear

acceleration and angular velocity with respect to this frame. The frame’s origin is at

the center of the earth, and the inertial x and z axes point toward the vernal equinox

and along the Earth’s spin axis, respectively.

• The earth frame, denoted by e, coincides with the i-frame, but rotates with the earth,

i.e., it has its origin at the center of the earth and axes which are fixed with respect

to the earth. The x-axis passes through the prime meridian (0◦ longitude) and the

equator (0◦ latitude).

• The navigation frame, denoted by n, is the local geographic frame in which we want

to navigate. It is also commonly known as the North-East-Down (NED) system. For

most applications, it is defined as stationary with respect to the earth. However, in
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cases when the sensor is expected to move over large distances, it is customary to move

and rotate the n-frame along the surface of the earth.

• The body frame (not shown in Fig. 2.1), denoted by b, is the coordinate frame of the

moving IMU. Its origin at the center of the accelerometer or gyroscope triad and is

horizontally aligned with the casing. All inertial measurements are resolved in this

frame.

2.3 Inertial Measurement Unit

An IMU consists of three orthogonal accelerometers and three orthogonal gyroscopes, re-

spectively measuring linear acceleration and angular velocity as shown in Fig. 2.2. In an

inertial navigation system, the raw sensor measurements from the IMU are processed using

navigation mechanization equations to track the position, velocity, and orientation of the

device.

Sensor Module

ometer

Gyroscope

s̃b

ω̃b

[s̃b]x

[s̃b]y

[s̃b]z

[ω̃b]x

[ω̃b]y

[ω̃b]z

Figure 2.2: The IMU consists of a three-axis accelerometer and a three-axis gyroscope.
The accelerations and angular velocities measured by the accelerometer and gyroscope are
denoted by s̃b = [[s̃b]x, [s̃

b]y, [s̃
b]z]

T and ω̃b = [[ω̃b]x, [ω̃
b]y, [ω̃

b]z]
T, respectively.

18



Proof
mass

S
e
n
s
it
iv

e
 a

x
is

Spring

Spring

D
is

p
la

c
e

m
e
n
t

s
c
a
le

Figure 2.3: Electromechanical schematic of an accelerometer.

2.3.1 Accelerometers

An accelerometer measures linear acceleration in units of gs, where 1g is the Earth’s gravita-

tional acceleration, given as 9.8 m/s2. The fundamental concept of an accelerometer can be

understood with the help of the electromechanical schematic of spring-mass-damper system

as shown in Fig. 2.3. A proof mass is suspended on a mechanical frame and free to move

along the accelerometer’s sensitive axis. When an input force is applied to the case along

the sensitive axis, the mass is displaced from its original position, compressing/stretching

the spring, depending on the direction of the force. The resultant position of the mass with

respect to the case is proportional to the applied acceleration, which is measured by a change

in the capacitance. However, gravitational acceleration acts directly on the proof mass, and

not via the spring, and applies the same acceleration to all the components of the accelerom-

eter. Hence, there is no relative motion of the mass with respect to the case. Therefore, the

accelerometer measures non-gravitational acceleration, known as specific force, and cannot

distinguish between inertial and gravitational acceleration. Note that only when the sensi-

tive axis of the case is aligned with the Earth’s gravity can linear acceleration be computed

by compensating for the Earth’s gravity. In other words, during a free fall, the specific force
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measured by the accelerometer is zero. Conversely, under zero acceleration, the specific force

is equal and opposite to the acceleration due to gravity.

If sbib denotes the specific force, where the superscript b denotes the body frame and the

subscript ib denotes the measurement of the body frame with respect to the inertial frame,

then

sbib = r̈b
ib − gb

b, (2.1)

where r̈b
ib is the inertial acceleration (second derivative of the position vector) and gb

b is

the gravitational acceleration. The negative sign indicates the direction of gravitational

acceleration, which points towards the center of the earth.

2.3.2 Gyroscopes
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Figure 2.4: Electromechanical schematic of a gyroscope.

A gyroscope is used to measure angular velocities or rotational motion in units of deg/s or

rad/s. The fundamental concept of a gyroscope is illustrated by the the electromechanical

schematic of a vibratory spring-mass-damper system shown in Fig. 2.4. A proof mass is
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suspended so that the mechanical system has two degrees of freedom, one along the sense

axis and the other along the drive axis. The proof mass is driven into sinusoidal motion

along the drive axis at a known velocity, canceling out any Coriolis acceleration due to linear

acceleration [41]. When the gyroscope is rotated along an axis orthogonal to the drive axis,

the Coriolis acceleration acting on the vibrating proof mass is proportional to the rate of

rotation along an axis orthogonal to the vibrating axis. Assuming that the amplitude of

the proof mass’s velocity is known, the rate of rotation can be computed by measuring the

change in the capacitance caused due to Coriolis acceleration.

The gyroscope measures the angular velocity of the body frame with respect to the inertial

frame, expressed in the body frame and denoted by ωb
ib. The superscript b denotes the

measurement frame of reference, whereas the subscript ib indicates that the measurements

are relative to the inertial frame of reference. The angular velocity, ωb
ib, can be expressed as

ωb
ib = Rb

n(ω
n
ie + ωn

en) + ωb
nb,

where ωn
ie, ω

n
en, and ωb

nb respectively are the angular velocities of earth with respect to the

inertial frame, navigation frame with respect to the earth, and body frame with respect to

the navigation frame. The earth rotates around its own z-axis in 23.9345 hours with respect

to the stars, and its rate is approximately 7.29×10−5rad/s. Further, if the navigation plane,

which is a tangential plane on the surface of the earth, is defined as stationary with respect

to the earth, then the angular velocity ωn
en is zero. Therefore, in the case of pedestrian

navigation systems and ambulatory gait analysis, where we assume that the navigation

frame is stationary, the angular velocity of the body frame with respect to the inertial frame
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is given as

ωb
ib ≈ ωb

nb. (2.2)

2.3.3 Error Characteristics

The main sources of errors can be broadly classified into five categories [29].

• Bias is a constant offset of the sensor measurements from its true value. For example,

gyroscope measurements are offset by a constant value when the sensor is not rotating.

• White noise is the noise whose amplitude follows a Gaussian distribution of a zero

mean and variance σ2.

• Temperature effects are errors due to temperature fluctuations caused by environmental

changes, which affect the piezoelectric material used in the MEMS devices.

• Calibration errors are due to imperfections in the integrated circuit (packaging) and

in the fabrication of the IMU array, scale factors, and misalignment of the sensitivity

axes. These errors are observed only when the accelerometer undergo acceleration and

the gyroscope is rotated.

• Flicker noise is inversely proportional to the bandwidth of the sensor. For a gyroscope,

the effect of flicker noise is observed at low frequencies, but it is overshadowed by white

noise at high frequencies.

There are several ways to mitigate the different types of errors observed in an inertial sensor.

Errors in the gyroscope due to constant bias can be estimated by taking a long term mean
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or median of the gyroscope’s output when there is no rotational motion. A similar technique

cannot applied to the accelerometer, because the component of gravity will appear as bias.

Therefore, to cancel the bias, it is necessary to estimate the precise orientation of the device

with respect to gravity. Traditional methods of estimating constant bias and scale factors for

inertial sensors involve using expensive mechanical rigs [42–44]. Simplified alternatives using

manual rotation of the inertial sensor also work well in practice [45–47]. In addition, multiple

IMUs (MIMU) or an IMU array can also cancels out the biases and enable estimation of the

scale factors [48]. In Fig. 2.5, we plot a histogram of the measurements obtained from a

stationary three-axis accelerometer and three-axis gyroscope by using an Openshoe inertial

sensor [49]. We also fit a distribution to the histogram plot, using the histfit function in

MATLAB. As can be seen, the measurement noise resembles a Gaussian curve.
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Figure 2.5: Stationary accelerometer and gyroscope histogram plots. (a) Histogram of ac-
celerometer measurements for 17 seconds of data from a stationary sensor, along with a
Gaussian fit to the data. (b) Histogram of gyroscope measurements for 17 seconds of data
from a stationary sensor, with a Gaussian fit to the data.
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2.3.4 Sensor Specifications

We used IMUs manufactured by three different companies in our work. The technical spec-

ifications of each IMU are listed in Table 2.1.

Table 2.1: Features of the low-cost IMU used in this work.

Manufacturer
Accelerometer Gyroscope Sampling Rate Number of Cost of

Range Range (Wireless) IMUs Development Kit

Openshoe [49]
±2g, ±4g, ±250deg/s, ±500deg/s,

125 Hz 4 $112.00
±8g, ±16g ±1000deg/s, ±2000deg/s

Opal APDM [50] ±2g, ±6g
±1500deg/s - z-axis

128 Hz 1 $2400.00
±2000deg/s - x,y-axis

Shimmer [51] ±2g
±250deg/s, ±500deg/s,

1024 Hz 1 $495.00
±1000deg/s, ±2000deg/s

2.4 Inertial System Configurations

Inertial system configurations can be broadly classified into two groups depending on the

frame of reference in which the rate-gyroscopes and accelerometers operate.

• Stable Platform Systems : In these systems, the inertial sensors are mounted on a

platform which is isolated from any external rotational motion, i.e., the platform is held

in alignment with the global frame. The sensors are mounted on a stable platform and

any rotational motion of the platform is canceled out by torque motors. A schematic

of the stable platform inertial navigation algorithm is shown in Fig. 2.6.

• Strapdown inertial navigation algorithm: In these systems, the inertial sensors are

attached or strapped to the device, and therefore the measurements are obtained in
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Figure 2.6: Stable platform inertial navigation algorithm.

the body frame. For example, in case of pedestrian navigation systems, the sensors are

strapped to the foot or ankle of the person, and raw measurements obtained from the

sensors must be rotated from the body frame to the global frame to track the person.

The stable platform inertial navigation algorithm is shown schematically in Fig. 2.7.
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Figure 2.7: Strapdown platform inertial navigation algorithm.

Note that the stable platform and strapdown systems are based on the same underlying

navigation mechanization equations. The main difference between the two systems is that

strapdown systems tend have reduced mechanical complexity and tend to be physically

smaller than stable platform systems, because strapdown systems do not require additional

system components to remove external rotation motion. In this work, we use a strapdown

inertial system configuration where the sensor is attached to the foot of the Parkinson disease
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participant. The mathematical details of implementing the starpdown inertial system are

presented in Chapter 4.
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Chapter 3

Detection Module: Zero-velocity and

Trembling Event Intervals

In this chapter, we build a physical model of the inertial sensor data that describes the

stationary and trembling motion of the gait during the freezing of gait (FOG) events. Based

on broad clinical observations, FOG patterns include alternating trembling in the lower

extremities (including the hip, knee, and ankle joints, and the bones of the thigh, leg,

and foot), and no movement of the limbs and trunk. We model gait patterns, such as no

movement of limbs and alternating trembling in FOG, as zero-velocity event intervals (ZVEI)

and trembling event intervals, respectively. We design a generalized likelihood ratio test

(GLRT) framework to develop a two-stage detector for detecting ZVEI and TREI. We also

develop a methodology to determine the detection module parameters, such as thresholds

and scale factors. With the help of an illustrative example, we demonstrate the output of

the detector during an FOG event. The results indicate that the detectors can detect ZVEI

and TREI; however, not all the TREI are associated with FOG.
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3.1 Introduction

Parkinson disease (PD) is a neuro-degenerative disorder that affects 1-1.5 million people

in the United States alone. The main cause of PD is a loss of dopaminergic, sub-cortical

neurons, which leads to motor impairments [52]. Many individuals with PD experience

difficulty walking, the emergence of which is considered as a red flag for onset of disability [53].

Approximately 50% of people with PD experience freezing of gait (FOG), a “brief, episodic

absence or marked reduction of forward progression of the feet despite the intention to

walk” [4]. FOG events, which are a known risk factors for falls, occur suddenly, generally last

for a few seconds, and tend to increase in frequency and duration as the disease progresses.

The most commonly prescribed medication to improve symptoms in people with PD is

levodopa. The effective period of the drug varies between two and six hours [15], and

decreases as the disease progresses [54]. Recent studies have shown that cueing techniques

that apply spatial or temporal external stimuli associated with the motor activity enhance

gait and reduce FOG [38,55]. For example, auditory stimulation (see e.g., [35,56]) and visual

markers are used as cueing mechanisms to improve locomotor function in people with PD.

Currently, to validate the severity of FOG, clinicians use patient questionnaires such as the

new FOG-Questionnaire (NFOG-Q) [57] that rely on patient self-report. There is a growing

need to develop automated methods for detecting FOG, with the ultimate goal of being able

not only to measure but also to predict and prevent episodes of FOG.

In the last decade, methods using wearable technology for monitoring and assessing gait pat-

terns and FOG have been developed with varying success. These methods variously employ

a) electromyography (EMG) sensors [58,59]; b) force resistive sensors [60,61]; c) video-based

gait analysis [62, 63]; or d) inertial sensors (accelerometers and gyroscopes) [15, 19, 64–70].
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In the case of inertial sensors, the spectral characteristics of the accelerometer signal in the

vertical direction provide information that is helpful in distinguishing FOG patterns from

normal PD gait patterns. For example, researchers use the spectral characteristics of the

accelerometer signal to develop a four stage automatic gait detection algorithm [64, 65]. In

prior reports, a freeze-index (FI) is defined as the ratio of the square of the power spectrum

in two different non-overlapping frequency bands [66]. An extension of the FI method for

a variable size window and online detection is presented in [67, 68, 71]. The use of machine

learning methods to classify features extracted from the accelerometer signal that capture

the uncoordinated nature of the gait, such as trembling of the feet, short stride lengths, and

unstable walking, is explored in [19, 69, 70]. However, the preceding methods do not neces-

sarily present a signal model that captures the FOG patterns explicitly, and they use long

window lengths to compute the spectral characteristics of the accelerometer signal, which

leads to delays when determining the onset of the FOG event. Further, methods developed

using machine learning techniques lack explanatory power and provide limited utility for

understanding the structure of the data [8].

To overcome these drawbacks, we develop a physical model for the sensor data, design

statistical signal processing methods to detect FOG based on its patterns. The detection

module includes a two-step detection algorithm to determine instances of zero-velocity event

intervals (ZVEI) and trembling event intervals (TREI) (see Fig. 3.1a). In Section 3.3.1,

we derive the first detector which can detect ZVEI or TREI; this detector cannot separate

these two events. In other words, the goal of the first detector is to filter out gait patterns

that cannot be classified as ZVEI or TREI. In Section 3.3.2, we derive the second detector,

which uses information from the gyroscope to distinguish ZVEI from TREI. This is necessary

because the ZVEI/TREI identified by the first detector contains some gait patterns modeled

as trembling events, but not associated with FOG. The second detector only detects ZVEI
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and cannot filter out those gait patterns identified as TREI which are not associated with

FOG. An illustration of the goals of the different detectors can be found in Fig. 3.1b. To

validate the detection module, we use the experimental setup described in Section A.1 of

Appendix A. To select the optimal values of the thresholds and scale factors of the detectors,

we develop a novel method in Section 3.4.2 and 3.4.3. With the help of illustrative examples,

in Section 3.5, we demonstrate the performance of the detector module in Fig. 3.1.
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Sensor Module Detection Module
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(a) A schematic of the multi hypothesis detection module.
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ZVEI
SPACE OFTREI

DETECTOR-I

DETECTOR-II

(b) An illustration of the sub-
sets of the gait patterns that
the different detectors iden-
tify.

Figure 3.1: The goal of the first detector is to detect zero-velocity and trembling events, and
filter out gait patterns that are not associated with FOG. The goal of the second detector is
to distinguish zero-velocity events from trembling events.

3.2 Signal Model and Statistics

If ya
k ∈ R

3×1 and yω

k ∈ R
3×1 denote the measurements of a three-axis accelerometer and

a three-axis gyroscope, respectively, at time instant k, then these measurements can be

modeled as

ya
k = sak + ea

k

yω

k = sωk + eω

k .

(3.1)
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Figure 3.2: Gait patterns. (a) Zero-velocity event intervals (ZVEI) are associated with no
movement gait pattern in FOG. (b) Trembling event intervals (TREI) are associated with
alternating trembling in the lower extremities gait pattern in FOG.

Here, sak and sωk denote the true specific force and angular velocity experienced by the ac-

celerometer and gyroscope, respectively. Further, ea
k and eω

k denote the measurement errors

of the accelerometer and gyroscope, which are assumed to be white, mutually uncorrelated,

and Gaussian distributed with zero mean and covariance matrices σ2
aI3 and σ2

ω
I3, respec-

tively.

Based on broad clinical observations, FOG patterns include alternating trembling in the

lower extremities (includes the hip, knee, and ankle joints, and the bones of the thigh, leg,

and foot), and no movement of the limbs and trunk [72,73]. Short, shuffling steps, not specific

to or necessarily related to freezing, are observed in parkinsonian gait [74, 75]. Festination

is usually associated with a progressive shortening and quickening of steps that often results

in a freeze where forward/backward progression ceases [76].

We model gait patterns such as no movement of limbs in FOG, and short, shuffling steps in

parkinsonian gait, as ZVEI. These events are associated with the flat foot phase of a gait

cycle. ZVEI are defined as the time instances when the IMU is stationary, i.e., the IMU

has a constant position and orientation; see Fig. 3.2a for illustration. During ZVEI, the

accelerometer measures only the earth’s gravitational acceleration, i.e., gva, where g and
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va are the magnitude and direction of a unit vector along the gravity. For parkinsonian

gait with short, shuffling steps, the duration of the ZVEI are smaller than regular steps

during normal PD gait. Further, we model gait patterns such as alternating trembling in

FOG, and short, quickening steps on the toes and forepart of the feet in festinating gait,

as TREI. These events are associated with heel lift-off and heel strike phase of a gait cycle.

TREI are modeled as the motion of the IMU about an unknown fixed axis, and of unknown

magnitude which depends on the severity of the trembling; see Fig. 3.2b for illustration.

During trembling event, the accelerometer measures the sum of the inertial acceleration and

gravitational acceleration, i.e., αa
ku

a+gva, where αa
k and ua are the magnitude and direction

of a unit vector along the trembling axis. In this case, the accelerometer cannot distinguish

between the axis aligned with the gravity field and trembling.

3.3 Detectors

In this section, we develop a physical model to describe the signal from the inertial sensor

during the zero-velocity and trembling event, and design a statistically-based approach to

detect these gait patterns. In particular, we develop a two-step detection algorithm to

identify zero-velocity and trembling events. We formulate the two-step detection algorithm

as a hypothesis testing problem and solve it using the generalized likelihood ratio test (GLRT)

framework [77].
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Figure 3.3: Using the accelerometer data, we develop an energy-based detector to filter gait
patterns that are neither ZVEI nor TREI.

3.3.1 Detector-I

The goal of the first detector is to detect zero-velocity and trembling events, as illustrated

in Fig. 3.3, and filter out gait patterns that are not associated with FOG . The detection

problem can be formulated as

H1,H2 , IMU is stationary or experiencing trembling

H0 , Otherwise.

(3.2)

For notation, we denoteH1 andH2 together asH1,2. Under H1,2, the specific force measured

by the accelerometers in (3.2), in the time window ΩN of size N consisting of the time samples

{k, . . . , k +N − 1}, can be modeled as

H1,H2 : ∀k ∈ ΩN : sak = αa
ku

a + gva,

H0 : ∃k ∈ ΩN : sak 6= αa
ku

a + gva.

(3.3)
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Given the signal model in (3.3), it can be shown (see Appendix B.1) that the generalized

loglikelihood ratio test for detecting ZVEI and TREI are given by

TD1(y
a) =

1

N

∑

k∈ΩN

{
1

σ2
a

‖ya
k − gv̂

a‖2P⊥
û
a

}
H12

< γ′D1
, (3.4)

where v̂a and ûa denote the estimated unit vectors in the direction of earth’s gravitational

acceleration vector and the trembling axis, respectively. Here, ya = [(ya
k)

T, . . . , (ya
k+N−1)

T]T,

P⊥
ûa = I − ûa(ûa)T, and γ′D1

is the detector threshold.

To understand the intuitive meaning of (3.4), let us assume that the measurement error in

the accelerometer is zero. When the IMU is stationary, the output from the accelerometer

is given as gva. If the estimate of v̂a is close to va, then the weighted norm in (3.4) is close

to zero. When the IMU experiences trembling about a fixed axis, ua, then the output of

the accelerometer consists of both a gravitational and a trembling component. In Appendix

B.1, we show that ûa is the eigenvector in the direction of maximum eigenvalue of Ga =

∑

k∈ΩN
(ya

k − gv̂
a)(ya

k − gv̂
a)T. If the estimate of v̂a closely matches the true direction of the

gravitational vector, va, then, the matrix Ga captures the outer product of the accelerometer

output along the trembling axis. The matrix Ga is symmetric and positive semi-definite.

For any symmetric and positive semi-definite matrix, the eigenvector corresponding to the

maximum eigenvalue represents the direction of the semi-major axis, and its eigenvalue

represents the length of the semi-major axis. Therefore, the eigenvector, ûa, represents the

estimated trembling axis. If the estimated trembling axis, ûa, matches the direction of the

true trembling axis, ua, then the weighted norm in (3.4) is zero, because the projection of

ûa on P⊥
ûa is zero.
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Figure 3.4: To identify ZVEI based on the region identified by the first detector, we develop
a second detector which uses information from the gyroscope.

3.3.2 Detector-II

To distinguish ZVEI from TREI, we develop a second detector as illustrated in Fig. 3.4.

Based on the hypotheses H1 and H2 defined in the previous subsection, we get

H1 , IMU is stationary (ZVEI)

H2 , IMU is experiencing trembling (TREI).

(3.5)

Under H1, the IMU has a constant position and orientation. Because the gyroscopes are

highly sensitive to angular motion, we include angular velocity measurements in the hypoth-

esis testing problem in (3.5). Mathematically, under the assumption that the hypothesis

H1,2 is true, the signal model for the two hypothesis in (3.5) can be written as

H1 :







∀k ∈ ΩN : sak = gva ⇐⇒ αa
k = 0

∀k ∈ ΩN : sωk = 0

H2 :







∃k ∈ ΩN : sak = αa
ku

a + gva, ⇐⇒ αa
k 6= 0

∃k ∈ ΩN : sωk 6= 0

.

(3.6)
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Given the signal model in (3.6), it can be shown (see Appendix B.2) that the generalized

loglikelihood ratio test for detecting ZVEI or TREI are given by

TD2(y) =
1

N

∑

k∈ΩN

{

1

σ2
ω

‖yω

k ‖
2 +

1

σ2
a

[∥
∥
∥
∥
ya
k − g

ȳa

‖ȳa‖

∥
∥
∥
∥

2

− ‖ya
k − gv̂

a‖2P⊥
û
a

]}

H1

<γ′D2
, (3.7)

where y is the concatenation of the accelerometer and gyroscope measurements given by

[(ya)T, (yω)T]T, yω = [(yω

k )
T, . . . , (yω

k+N−1)
T]T, ȳa = (1/N)

∑

k∈ΩN
ya
k, and γ

′
D2

is the detec-

tor threshold.

To understand the intuitive meaning of (3.7), let us again assume that the measurement

error is zero for both the accelerometer and gyroscope. When the IMU is stationary, i.e.,

during zero-velocity event, the first term contains only error measurements, which are set to

zero. The last term in (3.7) follows the same explanation as before, i.e., when the estimates

of v̂a and ûa match the true direction of the gravity vector and trembling axis, respectively,

then the last term in (3.7) goes to zero. Further, when the IMU is stationary, the average

mean vector of the measured accelerometer data seen in the window ΩN , denoted as ȳa,

is the same as the measured accelerometer data, which is given as gva. Due to this, the

second term in (3.7) also goes to zero. Therefore, under the assumption that the IMU is

stationary and the measurement error is zero, the test statistic in (3.7) is close to zero.

However, during a trembling event in Fig. 3.2 and under the assumptions that the measured

errors are zero, the last term in (3.7) goes to zero when the estimates ûa and v̂a are close to

the true values. The first and second terms are non-zero because gyroscope measurements

are non-zero and accelerometer measurements contain both gravitational and specific force

components. Therefore, the test statistic in (3.7) is non-zero under H2.
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Observation: The signal model in (3.3) captures a large set of gait patterns that are not asso-

ciated with FOG. The signal model in (3.6) distinguishes zero-velocity events from trembling

events, but cannot filter out gait patterns that are not associated with FOG. In other words,

the trembling events identified by the Detector-II also include falsely detected FOG events.

Therefore, to filter out these falsely detected events, we use the fact that FOG events are

associated with small foot speeds [24, 78]. This is done using a point-process filter, which

fuses the output from the detector framework with the speed information provided by a

foot-mounted inertial navigation system.

3.4 Parameters of the Detectors

In this subsection, we develop a methodology to select the parameters of the detectors

developed in Section 3.3.1 and 3.3.2. In particular, we identify the thresholds of the detectors

so that the FOG region in the inertial sensor data is detected. To obtain the optimal value

of the thresholds, we define specific metrics and maximize or minimize them depending on

the objective used.

3.4.1 Metrics

We define four metric variables that are used to evaluate the performance of the system

design. The definition of each metric is as follows:
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Figure 3.5: An illustration of FAL, DL, and MDL. The overlapping region between the video
and inertial sensor method is the detection length (gray color). The region detected by the
video but not by the inertial sensor method is the missed detection length (light orange
color). The region detected by the inertial sensor method but not by the video is the false
alarm length (light blue color).

1) Detection Length (DL) is defined as the length of the overlapping regions detected using

both video data and the inertial sensor based method, for an episode of FOG. In other

words, DL reflects the times when both methods agree that FOG is present.

2) Missed Detection Length (MDL) is defined as the length of the non-overlapping regions be-

tween the FOG instances detected using video data and the inertial sensor based method,

for an episode of FOG. When the inertial sensor based method fails to detect a FOG in-

stance detected by the video data in either foot, then the length of that instance of FOG

is also considered as MDL.

3) False Alarm Length (FAL) is defined as the length of the non-overlapping region which is

detected as a FOG instance by the inertial sensor based method, but not by the experts

marking the video data.

4) Total Length (TL) is defined as the total length of the IMU data (the same as the duration

of the video data).

In Fig. 3.5, we present an illustration of DL, FAL, and MDL. Based on the metric variables,

we define two performance metrics, namely, the true positive rate (TPR) or sensitivity, and
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the false alarm rate (FAR):

TPR =
DL

DL+MDL
and FAR =

FAL

TL
. (3.8)

If TPR is close to one, then the episodes of FOG detected by the IMU match closely with

the video data. Similarly, if FAR is close to zero, then the number of falsely detected FOG

episodes is small. We say that an inertial sensor based algorithm performs as well as the

video-based method if both TPR and 1−FAR are close to one. When DL = 0 and MDL = 0,

we say the TPR = 1, because no FOG episodes were detected by the video data nor by the

algorithm using the IMU data.

3.4.2 Detector-I

UnderH1,2, the distribution of the test statistic in (3.4) follows a chi-square distribution when

ûa and v̂a are estimated accurately. Each term in (3.7) follows a χ2
1 distribution because

rank(P⊥
ûa) = 1 and P⊥

ûa is an idempotent matrix. The test statistic in (3.7) represents the

sum of independent chi-square distributions with ν = 1 degrees of freedom. Hence, (3.7)

follows χ2
N distribution. The exact detection performance is given by PFA = Qχ2

N
(γ′D1

),

where γ′D1
is the detection threshold of Detector-I for a given probability of false alarm, and

Qχ2
N
is the right-tail probability for a chi-squared distribution with N degrees of freedom.

To obtain the threshold γ′D1
, we consider 5 second IMU data for six different PD partici-

pants (TT004–BLOCK, TT006–NARROW, TT013–NARROW, TT015–NARROW, TT021–

BLOCK, and TT027–BLOCK). The IMU data consists of either a specific type of FOG pat-

tern (turning freeze for TT004–BLOCK and TT013–NARROW, initiation freeze for TT021–

BLOCK and TT027–BLOCK) or no specific FOG pattern. ZVEI, FOG intervals, and other
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Figure 3.6: Average value of TPR and 1 − FAR curves for different values of Detector-I
threshold γ′D1

.

gait patterns are identified in the video and marked as ZVEI (video), FOG (video), and

MOVE (video), respectively. The synchronization between the video and IMU data was

done manually. We use the definitions of TPR and FAR in (3.8) to evaluate the performance

of the Detector-I across different values of threshold γ′D1
. We use ZVEI (video) and FOG

(video) regions as ground truth data. In Fig. 3.6, we plot the average value of TPR and

1 − FAR obtained across the six datasets. We observe that, as the Detector-I threshold

increases, the average value of TPR increases because Detector-I includes both TREI and

ZVEI. However, the average value of 1 − FAR decreases with the increase in the threshold

because gait patterns that are modeled as neither ZVEI nor TREI, but contain similar en-

ergy information are also identified. Further, in Fig. 3.6, we do not observe a significant

improvement in the average value of TPR across different window lengths. Considering these

factors, we choose γ′D1
= 34.39 for N = 100 because the average value of the TPR curve
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demonstrates a small improvement in the performance on increasing the threshold beyond

34.39.

3.4.3 Detector-II

Under H1, i.e., when the foot is stationary, the distribution of the test statistic in (3.7) again

follows a chi-square distribution when ûa and v̂a are estimated accurately. The difference

between the second and third terms in (3.7) is approximately equal to zero, because each

term indicates the energy due to the error measurements. The test statistic in (3.7) is the

sum of independent chi-squared distributions, with ν = 1. Therefore, the expression of

the test statistic under H1 follows a χ2
N distribution. The exact detection performance is

given by PFA = Qχ2
N
(γ′D2

), where γ′D2
is the detection threshold of Detector-II for a given

probability of false alarm.

The sensitivity of the gyroscope is characterized σω because it scales the test statistic in

(3.7). To determine the sensitivity of the gyroscope signal, we plot the average values of

TPR and 1 − FAR across different values of threshold γ′D2
and σω/σa with σa = 1.0. Since

the goal of the Detector-II is to distinguish ZVEI from TREI, we compute the average values

of TPR and 1−FAR based on (3.8). As the ground truth, we use ZVEI detected in the video.

We fix N = 100, σa = 1.0, and γ′D1
= 34.39 for Detector-I, and evaluate the performance

of the second detector. As the value of σω goes to zero, the test statistic tends towards

infinity because ZVEI are detected for finite values of the Detector-II threshold. Therefore,

for small values of σω, the average value of TPR is close to zero. Similarly, the lower half

of Fig. 3.7b detects no ZVEI when σω is small. As the sensitivity of the gyroscope and

threshold γ′D2
increase, the average value of TPR increases and 1−FAR decreases. However,
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(a) TPR: N = 100. (b) 1− FAR: N = 100.

(c) TPR: N = 200. (d) 1− FAR: N = 200.

Figure 3.7: Sensitivity of gyroscope: Image plots of average value of TPR and 1 − FAR for
ZVEI across different values of Detector-II threshold and standard deviation of the gyroscope.

for a fixed large value of σω/σa, i.e., γ
′
D2
≥ 10.0 the TPR curves begin to saturate (see Fig.

3.7a). This behavior is due to the fact that the maximum region that the Detector-II can

detect is bounded by the ZVEI/TREI region detected by the Detector-I. We represent the

regions with high average TPR (95 − 99%) and 1 − FAR (90 − 95%) values, respectively

with solid-line and dashed-line plot. We set σω/σa = 0.8 for N = 100 which lies in 95− 99%

region of the average TPR plot and 90− 95% region of the average 1− FAR plot. However,

due to the saturation behavior of the average value of TPR curve, the threshold γ′D2
can take

many finite values.

To determine the optimal threshold γ′D2
, we compute the performance of the foot-mounted

inertial navigation system for the calibration task. In the calibration task, the participant

was asked to walk forward along a full 6 meter straight path. On reaching the end, the
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Figure 3.8: Performance of the foot-mounted inertial navigation system plot across different value of the
threshold.

participant made a 180◦ turn and returned to the starting point. Each calibration task

contains two datasets where the participant was asked to follow the same trajectory twice.

The starting point and ending of the trajectory are the same and the total average distance

traveled varied between 13.0-13.5 meters because the participants took an extra step or two

beyond the physically marked end-point to complete the first turn. We compute the ratio

of the root mean square (RMS) of the position error and distance traveled as follows [79]

10 log10

(

100
RMS position error

Distance traveled

)

, (3.9)

where the root mean square of the position error is defined as the distance between the

starting and ending point of the trajectory during the calibration task, and the distance

traveled is defined as the sum of the distances between the position coordinates at the edges

of the ZVEI during OFF state. When the threshold of Detector-II is set to a low value, no

ZVEI are detected. In this case, the total distance measured by the system sums to zero, and
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the performance metric in (3.9) is not defined, as shown in the left half of Fig. 3.8. When

the threshold is set to a very high value, zero-velocity update is always ON and the ZVEI

detected by Detector-II is equal to the ZVEI/TREI identified by the Detector-I. Due to this,

the total distance is a non-zero value close to zero, and thus the curve representing equation

(3.9) begins to saturate. Therefore, the optimal value is obtained at the point when the

curve in (3.9) attains a minimum value and the estimated total average distance is within an

error-bound region of the true average distance. For the calibration task, the total distance

traveled by the participants is 12.5 ± 1.5 meters. In Fig. 3.8, for N = 100, (3.9) attains

a minimum at γ′D2
= 2.00 and the average distance traveled is equal to 13.5 meters, which

lies within one standard deviation distance of the total average distance traveled by all the

participants.

3.5 Illustrative Examples

In this section, with the help of an illustrative example, we demonstrate the output of

the detector module of the proposed detection module in Fig. 3.1a. We use the inertial

sensor data for participant identity (PID) TT004 and TT027, performing the BLOCK and

figure EIGHT task, during which the participant experiences a turning and initiation freeze,

respectively. The details of the tasks are listed in Table A.1 of Appendix A.1.

3.5.1 Detector-I

The goal of Detector-I is to detect shuffling or trembling motion intervals, which are modeled

as ZVEI and TREI, respectively. In Fig. 3.9a and Fig. 3.9b, we plot the outputs of the
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(a) Three axis accelerometer signal

(b) Three axis gyroscope signal

(c) Output of Detector-I (ZVEI/TREI)

Figure 3.9: ZVEI and TREI detected by Detector-I for TT004–BLOCK task.

three-axis accelerometer and the three-axis gyroscope sensor, respectively. In Appendix

3.4.2 of the supplementary material, we demonstrate the procedure to obtain the system

parameters for Detector-I, using video data as the reference system. We set the size of the

window ΩN = 100, the standard deviation of the accelerometer signal σa = 1.0, and the

threshold of Detector-I γ′D1
= 34.53. The output of Detector-I based on the test statistic

in (3.4) is shown in Fig. 3.9c. Detector-I in Fig. 3.9c is ON when the angular velocities

measured by the gyroscope are zero and the specific force measured by the accelerometer

in the y-axis is 9.8m / s2, indicating ZVEI. Further, Detector-I is also ON at some non-zero

velocity instances, indicating possible TREI associated with FOG.
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(a) Output of Detector-II (TREI)

(b) Output of Detector-II (ZVEI)

Figure 3.10: Detector-II separates ZVEI from TREI.

3.5.2 Detector-II

As stated previously, the goal of Detector-II is to distinguish ZVEI from TREI based on the

output of Detector-I. We refer to Appendix 3.4.3 of the supplementary material to obtain

the design parameters of Detector-II. We use the same window length ΩN as in Detector-I.

In addition, we set the standard deviation of the gyroscope σω = 0.8 and the threshold

γ′D2
= 2.00. The output of Detector-II, based on the test statistic in (3.7), is shown in Fig.

3.10a and Fig. 3.10b. The time periods when ZVEI is ON, the angular velocities are close to

zero because no rotational motion is observed when the foot is stationary. Furthermore, the

time intervals that are not identified as ZVEI by Detector-II are labeled as TREI, as shown

in Fig. 3.10a. However, not all TREI are associated with FOG.

In Fig. 3.11, we overlay the zero-velocity events, freezing of gait, and other gait events

detected in the video data, and generate a state diagram of the various outputs of the

detection module. The red curve is the output of Detector-I based on the test statistic in

(3.4). The goal of Detector-II is to determine the ZVEI when Detector-I is ON. The blue

46



FOG (Video) ZVEI (Video) MOVE (Video)

Figure 3.11: State diagram of Detector-I and Detector-II for PID TT004–BLOCK task with an overlay of
the video data.

curve is the output of Detector-II for the test statistic in (3.7). In Fig. 3.11, we observe

that there is a significant overlap between the ZVEI identified by the Detector-II and ZVEI

(video) indicated with a blue background. In addition, the FOG region detected in the

video contains both ZVEI and TREI, because a turn freeze includes both trembling and

short stride lengths. However, Detector-II also identifies gait patterns that not associated

with FOG. Therefore, the detectors alone cannot identify the FOG regions accurately.

3.5.3 Estimated Tremor Axis

In Fig. 3.12a, we plot the 3D trajectory of a single gait cycle for a short shuffling step,

obtained for PID–TT027 during the figure EIGHT trial. In this gait cycle, the participant

experiences initiation freeze prior to starting the second figure EIGHT trial. We plot the

estimate tremor axis, denoted by ûa, for the detected trembling event intervals. To display

the alternating trembling motion of the tremor axis in the navigation plane, we use the

orientation angles (roll, pitch, and yaw) to rotate ûa from the body frame to the navigation
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(a)

IMU

gva
αa
ku

a

(b)

Figure 3.12: Tremor axis plot. (a) Trajectory plot of the gait during initiation freeze with
an overlay of the tremor-axis for PID–TT027. The initiation gait freeze was observed before
the second EIGHT trial. The tremor-axis is shown in magenta color only for the detected
trembling event intervals. (b) An illustration of the accelerometer sensor data during a
tremor where ua is the tremor axis, va is the gravity vector, αa

k is the magnitude of tremor,
and g is the earth’s gravity.

frame. The vector ûa, displayed in magenta color in Fig. 3.12a, denotes direction of the

tremor axis as illustrated in Fig. 3.12b). The detector thresholds are fixed at γ′D1
= 34.39

and γ′D2
= 2.0. We observe that during initiation of the gait cycle, the vectors representing

the direction of the tremor axis demonstrates trembling motion. This behavior also explains

the time invariance of the tremor axis for a small interval of time, i.e., αa
ku

a+gva ∀k ∈ ΩN .

Furthermore, the TREI identified by Detector-II also detects phases of a gait cycle that are

not associated with FOG.
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Figure 3.13: A schematic of the two-step detection algorithm in the detection module.

3.6 Chapter Summary

In this chapter, we developed a physical model for the sensor data that describes the trem-

bling motion during FOG events. Next, we designed a generalized likelihood ratio test

framework to develop a two-stage detector for determining the zero-velocity and trembling

events in the gait. As illustrated in Fig. 3.13, the first detector identified ZVEI and TREI,

but could distinguish between them and the second detector identified ZVEI. We also devel-

oped a methodology to identify the optimal parameters of the detection module. With the

help of illustrative examples using real data from Parkinson disease participants, we showed

that the detection module detected ZVEI and TREI; however, not all TREI are associated

with FOG. Therefore, to filter out the TREI which are not associated with FOG, we consider

the fact that the alternating trembling motion in FOG are associated with low foot speeds

and small pitch angles. In the next chapter, to estimate these gait parameters, we employ a

zero-velocity aided inertial navigation system in the navigation module.
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Chapter 4

Navigation Module: Zero-velocity

aided Inertial Navigation System

In this chapter, we explore implementing a strapdown inertial system. To extract the gait

parameters associated with freezing of gait (FOG), we employ a zero-velocity aided inertial

navigation system (ZV-INS) in the navigation module. The ZV-INS uses the accelerometer

and gyroscope sensor measurements along with the zero-velocity event intervals (ZVEI) to

estimate the position, velocity, and orientation of the foot via dead reckoning. The ZVEI

act as pseudo-measurements, useful in correcting the estimates of the position, velocity, and

orientation. We derive the state-space models of a strapdown inertial navigation system,

which are commonly used in a pedestrian navigation system. Further, we implement the ZV-

INS by using the Kalman filter. Finally, we provide an illustrative example demonstrating

the gait parameters extracted using the navigation module.
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4.1 Introduction

There has been an increasing demand for a robust and accurate positioning system that works

in indoor and outdoor environments. A global positioning system (GPS) provides a whole

range of navigation accuracies at very low cost and with low power consumption. Devices

that use GPS are portable and well suited for integration with other sensors, communica-

tion links, and databases. Still, because GPS does not work in all environments, especially

indoors, autonomous positioning systems are needed. The main challenge in developing an

infrastructure-free positioning solution is to create a technology that is sufficiently accu-

rate in GPS-limited environments. Since inertial navigation systems (INS) technology can

work in almost all environments where GPS has difficulties, micro-electromechanical systems

(MEMS) inertial technology is seen as both a possible complement to GPS technology and

a potential alternative to GPS. For example, INSs can provide position information when-

ever GPS signals are unavailable (in tunnels, indoors, in underground facilities), ensuring

a seamless provision of position information. Because an INS is low cost, portable, and

infrastructure-free, they are well suited for ambulatory gait analysis [15, 19, 64–70].

An INS is a navigation aid that uses a computing platform, accelerometers, and gyroscopes

to continuously dead reckon the position, orientation, and velocity (direction and speed of

movement) of a moving object without the need for external references [80–82]. The principle

of dead reckoning is the process of estimating an object’s position by tracking its movements

relative to a known starting point. The navigation equations for obtaining the position and

velocity estimates are based on the kinematic equations, i.e., the derivative of the position

is the velocity, and the derivative of the velocity is the acceleration. Consequently, starting

from a stationary point, integrating the acceleration once and twice, respectively, yields

the velocity and the change in position. However, to obtain the acceleration measurement,
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the body frame (the reference frame of the sensor) must be transformed to the navigation

frame (the reference frame of the object/person to be tracked), because the accelerometer

measures specific force, and cannot distinguish gravitational and inertial acceleration. The

transformation of axis from the body frame to the navigation frame is made possible by

a three-axis gyroscope, which measures the angular velocity or rotational motion of the

object. Integrating the angular velocities gives the relative orientation of the sensor, which

can then be used to transform the accelerometer measurements from the body frame to the

navigation frame. An excellent overview of implementing the zero-velocity aided inertial

navigation system is also presented in [80–82].

Section 4.2 describes the background required for developing the ZV-INS. Sections 4.3.1 and

4.3.1 respectively develop the state-space models for the navigation mechanization equations

and their corresponding perturbation equations, for a strapdown inertial navigation system.

Section 4.4 presents the output of the navigation module, using real data from Parkinson

disease participants.

4.2 Preliminaries

4.2.1 Rotation Matrix

In the navigation frame (the plane drawn tangential to a point on the surface of the earth),

denoted by the North (N), East (E), and Down (D) axes, gravitational acceleration acts

downward, and has a magnitude of 9.8m / s2. The accelerometer in the body frame mea-

sures both inertial and gravitation acceleration, and cannot distinguish between the two

measurements. To remove the gravitational acceleration, we use a rotation matrix obtained
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Figure 4.1: Euler angles. z− y′−x′′ sequence (intrinsic rotations; N coincides with y′). The
angle rotation sequence is φ, θ, ψ. Note that in this case ψ > 90◦ and θ is a negative angle.
Image source: Wikipedia.

by integrating the angular velocity measurements, to rotate the body frame to the naviga-

tion frame. Let Rn
b ∈ R

3×3 denote a rotation matrix from the body frame to the navigation

frame. The subscript and superscript respectively represent the current and transformed

reference frames. If [φ, θ, ψ]T denotes the roll, pitch and yaw angles when the initial axes are

aligned with the body frame, then the rotation matrix that transforms the body frame to

the navigation frame is given as

Rn
b = R(ψ)R(θ)R(φ),

=










cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1



















cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)



















1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)










,

where R(ψ), R(θ), and R(φ), respectively, are rotation matrices along z, y′, and z′′, as

shown in Fig. 4.1
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Properties of a Rotation Matrix

• Coordinate Axis Transformation: Let rb ∈ R
3×1 and rn ∈ R

3×1 respectively denote a

position vector in the b-frame and n-frame. Then, any vector in the n-frame can be

represented as

rn = Rn
br

b, (4.1)

where Rn
b ∈ R

3×3 is the rotation matrix from the body frame to the navigation frame.

Similarly, any position vector in the body frame can be represented as:

rb = Rb
nr

n. (4.2)

• Unitary Matrix : For any rotation matrix Rb
n,

(Rn
b)

−1 = (Rn
b)

T = Rb
n and |Rn

b| = 1.

• Derivative: Consider an arbitrary fixed point in the navigation frame. Let xb ∈ R
3×1

and xn ∈ R
3×1, respectively, be the coordinates of the point in the body frame and the

navigation frame. Then, xn is constant because the point is fixed in the navigation

frame. Further, xb is time-varying because the body frame is rotating with an angular

velocity vector ωb
ib = [(ωb

ib)x, (ω
b
ib)y, (ω

b
ib)z]

T. Then, we can express xn as

xn = Rn
bx

b. (4.3)

Since ẋn = 0, taking the derivative on both sides of (4.3), we get

ẋn = Ṙn
bx

n +Rn
bẋ

b =⇒ −ẋb = Rb
nṘ

n
bx

b. (4.4)
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However, the rate of change of a vector, i.e., its derivative, can be represented by using

a cross-product. Thus, (4.4) can be expressed as:

ẋn = ẋb + ωb
ib × xb =⇒ −ẋb = ωb

ib × xb = Ωb
ibx

b. (4.5)

Finally, from (4.4) and (4.5), we get

Rn
bṘ

n
b = Ωb

ib =⇒ Ṙn
b = Rn

bΩ
b
ib, (4.6)

where Ωb
ib is a skew-symmetric matrix given as

Ωb
ib =









0 −[ωb
ib]z [ωb

ib]y

[ωb
ib]z 0 −[ωb

ib]x

−[ωb
ib]y [ωb

ib]x 0









. (4.7)

4.3 ZVEI-Aided Inertial Navigation System

In this section, we develop the state-space models for the navigation mechanization equations

and their corresponding perturbation equations, for a strapdown inertial navigation system

[82, Chapter, 10]. We use the navigation mechanization equations to estimate the position,

velocity, and orientation angles. To correct the estimates of position and velocity, we use the

zero-velocity event intervals as pseudo measurement updates along with the Kalman filter.

We also derive the state-space model for the perturbation equations of a strapdown inertial

navigation system, and implement it by employing an extended Kalman filter.
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4.3.1 Navigation Mechanization Equations

Näıve Implementation of INS

Let pn ∈ R
3×1 and vn ∈ R

3×1 denote respectively the position and velocity estimates,

expressed in the navigational frame. Then, the navigational mechanization equations for a

low-cost inertial navigation system can be written as

ṗn = vn, (4.8)

v̇n = Rn
bs

b + gn, (4.9)

Ṙn
b = Rn

bΩ
b
nb, (4.10)

where Ωb
nb is a skew-symmetric matrix. The derivations of equations (4.8) and (4.9) are

presented in Appendix C.1. We get (4.10) from the derivation property of a rotation matrix,

as seen in (4.6). Note that in (2.2), we make an approximation, ωb
ib ≈ ωb

nb because the nav-

igation frame is fixed. Equations (4.8) and (4.9) are based on the kinematic equations, i.e.,

the derivative of the position is the velocity, and the derivative of the velocity is the accel-

eration. However, to compute acceleration in the navigational frame, the body frame must

be rotated to the navigation frame, and the gravitational acceleration must be compensated

for. The transformation or rotation matrix of the body frame to the navigation frame is

feasible by integrating the the rotation matrix in (4.10). A block diagram illustration of the

steps required to compute the navigation mechanization equations described in (4.8)–(4.10)

is shown in Fig. 4.2. As can be seen, the näıve implementation of the navigation mechanical

implementation requires three integration blocks.
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Figure 4.2: Block diagram implementation of navigational mechanization equations in a
strapdown inertial system.

We also note that (4.10) is a nonlinear function and that the rotation matrix cannot be

estimated directly by plugging (4.10) into a linear recursive filter, such as the Kalman filter.

Therefore, to linearize (4.10), we rewrite it in terms of quaternions [82, Appendix D]. If

q ∈ R
4×1 denotes the quaternion vector equivalent of the rotation matrix Rn

b, then (4.10)

can be rewritten as

q̇ =

(

cos(‖w‖)I +
sin(‖w‖)

‖w‖
W

)

q, (4.11)

= Ω(ωdt)q, (4.12)

where Wi =
1
2

∫ tk
tk−1

ωi(τ)dτ, ∀i ∈ {1, 2, 3}, and W is the integral of the angular rates over

the k-th sampling interval t ∈ (tk−1, tk] given as

W =






0 −wT

w [w]×




 =












0 −W1 −W2 −W3

W1 0 −W3 W2

W2 W3 0 −W1

W3 −W2 W1 0












. (4.13)

By employing quaternions, we can transform the nonlinear function in (4.10) to an affine/linear

function expressed as quaternions in (4.11). Because (4.11) is affine, it can be directly plugged
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into the Kalman filter along with position and velocity equations. The orientation angles

can either be computed directly from the quaternions or from the rotation matrix obtained

using the quaternions. An excellent review of the quaternion algebra and the derivation of

(4.11) can be found in [82, Appendix D].

Let xk = [pT

k , v
T

k , q
T

k ]
T ∈ R

10×1 denote the concatenated state vector consisting of the posi-

tion, velocity, and quaternion estimates at sample time k. By discretizing of the continuous

equations in (4.8), (4.9), and (4.11), and dropping the superscript n for notational conve-

nience, the state vector xk can be expressed as









pk

vk

qk









=









pk−1 + vk−1dtk

vk−1 + (qk−1s
b
kq

−1
k−1 − g)dtk

Ω(ωkdtk)qk−1









(4.14)

where qk−1s
b
kq

−1
k−1 is the quaternion equivalent of rotating a vector from one frame to another

[82], g = [0, 0, g]T, g = 9.8m / s2, and dtk is the sampling rate of the sensors.

Observations : We observe that the position and velocity estimates in (4.8) and (4.9) are

correlated. Further, as shown in Fig. 4.2, computing the position estimates requires three

integration blocks. Therefore, small errors in the measurement of angular velocities can

result in cubic errors in the position estimates, because each integration block increases the

exponent of the error by a factor of one. As a result, small errors accumulate, and the quality

of the position, velocity, and orientation estimates deteriorates swiftly over time.

To mitigate the error growth in an inertial navigation system, several methods have been

proposed. These include mitigating the error in the gyroscope measurements by employing

high grade IMUs or complementing IMU devices with a global positioning system (GPS)
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and odometer to correct the position and velocity estimates. However, there are trade offs

involved in using high grade IMUs. For instance, the cost is very high and the size of the

sensor also increases with the sensitivity, thereby diminishing its applicability in consumer

electronic goods. In contrast, low-cost alternatives, such as the GPS are portable and can

estimate the position to within a few centimeters accuracy; however, these estimates become

unavailable in indoor environments, especially in the case of a pedestrian navigation system,

which results degrades the position, velocity, and orientation estimates. To overcome these

drawbacks, we exploit the fact that a foot-mounted IMU shows the foot goes to zero-velocity

during ZVEI. In a GPS-aided INS, the INS uses the GPS updates along with the Kalman

filter to correct the position updates. Similarly, in the ZV-INS, the INS uses ZVEI as

pseudo measurements to correct the estimates of the velocity. Recall that during ZVEI,

the velocity of the foot goes to zero, and thus the velocity component of the state vector

becomes observable. As a result, the Kalman filter uses the ZVEI to correct the position and

velocity estimates. Note that because both position and velocity are correlated, correcting

the velocity estimates also corrects the position estimates.

Error Model Implementation of INS

In this subsection, we derive an error model to track the temporal dynamics of the inertial

sensor errors. These errors arise due to the uncertainties in the sensors and the gravity field,

which often cause the position, velocity, and orientation estimates to drift over time. There-

fore, estimating the sensor errors prior to applying the navigation mechanization equations

can improve the estimates of the navigation parameters. The error model for a strapdown
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Figure 4.3: Complementary feed-forward implementation of the navigation equations, using
the Kalman filter.

inertial navigation system is given as

δṗn = δvn, (4.15)

δv̇n = Rn
bδs

b −Ωsnǫ, (4.16)

ǫ̇ = Rn
bδω

b
nb, (4.17)

where δpn and δvn, respectively, are the errors in the position and velocity estimates; δsb

and δωn
nb, respectively, are the accelerometer and gyroscope measurement errors in the body

frame; and ǫ denotes the misalignment errors in the orientation angles. The derivation

of (4.15)–(4.17) is presented in Appendix C.2. Note that (4.17) is an affine function of

δωb
nb. Thus, we can avoid using quaternion representation for the state-space model of the

temporal dynamics of the inertial sensor errors. Because the derivation of (4.15)–(4.17)

involves first-order approximations, we implement (4.15)–(4.17) using an extended Kalman

filter (EKF). In navigation literature, error models implemented using Kalman filters are

also referred to as “complementary feed-forward Kalman filters.” Note that, in the case of

an EKF implementation of the error models, the errors in the velocity become observable

during ZVEI.
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In Fig. 4.3, we provide a block digram implementation of the complementary feed-forward

Kalman filter used in the navigation module. If δxk = [δpT

k , δv
T

k , ǫ
T

k ]
T ∈ R

9×1 denotes the

concatenation of the error estimates in position, velocity, and orientation at time sample k,

then the continuous equations in (4.15)–(4.17), after discretization, can be written as









δpk+1

δvk+1

ǫk+1









=









I3 I3dtk 03

03 I3 Ωsn
k
dtk

03 03 I3

















δpk

δvk

ǫk









+









03 03

[Rn
b]k 03

03 [Rn
b]k














δsbk

δωb
k




 , (4.18)

δxk+1 = Fkδxk +Gkδwk, (4.19)

where [Rn
b]k is the rotation matrix at the k-th time instance, and

Fk =









I3 I3dtk 03

03 I3 Ωsn
k
dtk

03 03 I3









, Gk =









03 03

[Rn
b]k 03

03 [Rn
b]k









, (4.20)

are the state matrices. Equation (4.19) represents the state model of the ZV-INS. The

process noise δwk ∈ R
6×1 is assumed to be distributed as a Gaussian random vector with a

zero mean, and a covariance matrix defined as

Q = E
(
δwkδw

T

k

)
,

=






σ̃2
aI3 03

03 σ̃2
ωI3




 , (4.21)

where σ̃2
a and σ̃2

ω are respectively the variances of the process noise of the accelerometer and

gyroscope. If Pk denotes the 9-state error covariance matrix for the error model in (4.19),
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then the error covariance matrix is updated as follows:

Pk = FkPk−1F
T

k +GkQGT

k . (4.22)

Next, the error estimates of the state equation in (4.19) are corrected using the updates from

the ZVEI. If yk ∈ R
3×1 denotes the observed velocity error, and Ik(·) ∈ {0, 1} is an indicator

function, such that Ik(·) = 1 if k belongs to a zero-velocity event interval, and Ik(·) = 0

otherwise, then the observed velocity error can be written as

yk = Ik

([

03 I3 03×4

]

xk + δuk

)

= Ik (Hkxk + δuk) , (4.23)

where xk = [pT

k , v
T

k , q
T

k ]
T ∈ R

10×1, and δuk ∈ R
3×1 is the measurement noise. Equation

(4.23) represents the measurement/observation model of the ZV-INS. The measurement

noise is assumed to be distributed as a Gaussian random vector with a zero mean, and a

covariance matrix defined as

R = E
(
δukδu

T

k

)
,

= σ2
vI3, (4.24)

where σ2
v is the variance of the errors in velocity measurements. When the foot is stationary,

the velocity component of the state vector xk becomes observable, and therefore the error

estimates δxk are corrected using the Kalman filter. If Kk denotes the Kalman gain, then

Kk = PkH
T(HPkH

T +R)−1. (4.25)
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The Kalman gain in (4.25) is used to update the error state vector δxk and the error covari-

ance matrix Pk, using the following equations:

δxk = Kk[x̂k]4:6, (4.26)

Pk = (I9 −KkH)Pk. (4.27)

Finally, the navigation parameters are corrected as follows:









pk

vk

ǫk









=









pk

vk

0









+Kkvk, and (4.28)

qk = Ω(ǫk)qk. (4.29)

The details of implementing the foot-mounted inertial navigation system via an extended

Kalman filter are presented in Algorithm 1.

4.4 Numerical Results

In this section, with the help of an illustrative example, we extract gait parameters by using

the ZV-INS discussed in the previous section. We use inertial sensor data from the TUG1

trial dataset for PID 08. In the TUG trial, the participant stands up, walks 3 meters from

the chair, turns, walks back, and returns to a sitting position.
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Algorithm 1 Zero-velocity Aided Foot-Mounted INS

1: procedure zvei ins(sb, ωb, zvei)
2: initialize:
3: MAX← len(zvei), k ← 0
4: Pk, Q, R, H ← initialize filters ⊲ From (4.19) and (4.23)
5: Fk, Gk ← initialize state model ⊲ From (4.19)
6: x̂k ← initialize navigation equations ⊲ From (4.19)
7: repeat:
8: k ← k + 1
9: x̂k ← navigation equations ⊲ From (4.14)
10: Fk, Gk ← update state matrices
11: δxk ← Fkδxk−1 ⊲ From (4.19)
12: Pk ← FkPk−1F

T

k +GkQGT

k ⊲ From (4.22)
13: if zk is ON then ⊲ If zero-velocity event
14: Kk ← PkH

T(HPkH
T +R)−1 ⊲ From (4.25)

15: δxk ←Kk[x̂k]4:6 ⊲ From (4.26)
16: Pk ← (I9 −KkH)Pk ⊲ From (4.22)
17: x̂k ← correct navigation states ⊲ From (4.28) and (4.29)
18: end if
19: until k = MAX
20: end procedure

4.4.1 Illustrative Example

In Fig. 4.4, we plot the sensor data obtained from a three-axis accelerometer and a three-axis

gyroscope attached to the instep region of the foot of the participant. The sensor data is

sampled at Fs = 128 Hz.

In Fig. 4.5, we plot the orientation angles estimated using the ZV-INS. The roll and pitch

angles are initialized using the accelerometer measurements, whereas the yaw angle is initial-

ized to 0◦. The initial heading direction is unknown because we do not use magnetometers.

Because the TUG1 trial involves two turns, we note that the yaw angle in Fig. 4.5c starts

at 0◦ and ends at approximately 360◦.
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Figure 4.4: Inertial sensor data. (a) Three-axis accelerometer. (b) Three-axis gyroscope.
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Figure 4.5: Left foot roll, pitch, and yaw angles obtained during the TUG trial for PID 08.

Fig. 4.6 shows the ZVEI, speed, and height of the left foot obtained using ZV-INS. The ZVEI

are the outputs of Detector-II. Recall that during the ZVEI, the accelerometer measures the

earth’s gravitational acceleration and the angular velocities measured by the gyroscope are

zero, because no rotational motion is observed. Next, we compute the speed of the foot by

taking the ℓ2-norm of the velocity vector. As can be seen in Fig. 4.6b, the speed of the
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Figure 4.6: Zero-velocity event intervals, speed, and height (z-axis) of the left foot extracted
using the zero-velocity aided INS for the TUG trail datasets.

foot goes to zero when the ZVEI in Fig. 4.6a is ON. We also plot the height of the foot

or the z-axis component of the position vector. As can be seen in Fig. 4.6c, the height of

the foot resets to zero at ZVEI because both the position and velocity are correlated in the

navigation mechanization equations in (4.8) and (4.9).

In Fig. 4.7, we plot the trajectory of the left foot in the xy-plane for the TUG trial. Recall

that in the TUG1 trial the participant stands up, walks 3 meters from the chair, turns,

walks back, and returns to a sitting position. As can be seen in Fig. 4.7, the trajectory

of the left foot makes a sharp 180◦ turn at the 3 meter mark on the y-axis. Further, we

also notice that the trajectory tends to drift from the starting point, given that the initial

heading direction was set to 0◦. The drift in the trajectory occurs because the errors in the

heading estimates are not observable, and therefore cannot be contained. To explain this

of phenomenon heading drift, we need to look at the temporal dynamics of the diagonal

elements of the error covariance matrix Pk.
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Figure 4.8: Error covariances of the position, velocity, and orientation estimates.

In Fig. 4.8, we plot the square root of the diagonal elements of the error covariance matrix of

the navigation parameters. We make two important observations from the error covariance

plots.
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(1) The error covariances of the velocity vector are reset during ZVEI. Recall that during

ZVEI, the velocity component of the error state in (4.16) becomes observable, and thus,

the Kalman filter corrects the navigation estimates and its corresponding error covari-

ances. Therefore, the error covariances of the velocity vector are always reset during the

ZVEI.

(2) Both the error covariances of the yaw angle and the x and y components of the position

vector, drift over time. The drift in the heading is primarily due to the poor observability

of INS errors when ZVEI are the only measurements available to the Kalman filter. For

simplicity, let us assume that the errors due to accelerometer measurement δsb are zero.

Then, from (4.16), the error model for the velocity is given as

δv̇n = −Ωsnǫ, (4.30)

where sn are the specific forces measured by the accelerometer and the superscript n

denotes the navigation frame. If we express the individual components of the velocity

vector in the navigation frame in terms of the North (N), East (E), and Down (D) axes,

then (4.30) can be written as









δv̇N

δv̇E

δv̇D









= −









0 −sD sE

sD 0 −sN

−sE sN 0

















ǫN

ǫE

ǫD









. (4.31)

During ZVEI, the horizontal acceleration in the north and east axis are zero, and only

gravitational acceleration in the down axis is observable and non-zero. Therefore, the

orientation errors in the down axis are not observable because the horizontal accelerations

along the north and east axes are zero. As a result, there exists no means to correct
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the errors in the yaw angle, so they drift over time. Recall that any small measurement

error in the orientation angle estimates can result in exponential error in the position

estimates (see Fig. 4.2). Because the yaw angle errors drift, the position error also drifts.

We observe this phenomenon in Fig. 4.8a and Fig. 4.8c.

Several techniques can mitigate the heading drift. These include employing high grade

inertial measurement units, magnetometers, drift compensated inertial measurement units,

or position updates from GPS. However, incorporating these techniques is beyond the scope

of this work.

4.4.2 Data Analysis

We evaluate the performance of the ZV-INS by extracting gait parameters from Parkinson

disease participants for the Opal APDM sensor database, given in Appendix A.2. We com-

pare our results with the gait parameters extracted using Mobility labs software (MLBS),

which is compatible with Opal APDM sensors. Note that the implementation details of the

INS using the MLBS are unknown because the software is proprietary. We evaluate the

performance of the INS algorithm for the two-minute walk task dataset described in Table

A.2 of Appendix A.2. We extract the following gait parameters.

1) The toe-off angle of the foot is the angle of the foot as it leaves the floor at push-off. The

pitch of the foot when flat is zero.

2) The heel-strike angle of the foot is the angle at the point of initial contact. The pitch of

the foot is zero when the foot is flat, and positive when the heel makes first contact.
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3) The gait cycle consists of exactly one heel-strike and one toe-off event, in that order,

between two consecutive flat foot events.

4) Swing is defined as the percentage of the gait cycle during which the foot is not on the

ground, i.e., it is the ratio of the time between the last heel-strike and toe-off events to

the time of the corresponding gait cycle.

5) The stride length is the distance between two consecutive foot falls at the moments of

initial contacts.

Note that the gait parameters are extracted only for valid gait cycles. To determine valid gait

cycles, and identify the heel-strike and toe-off event of the gait cycles, for the ZV-INS, we

use the gait cycle validation and segmentation algorithm described in Chapter 6. As can be

seen in Table 4.1, the average values of the gait parameters estimated using the zero-velocity

aided INS are within one standard deviation of the existing method’s values.

Fig. 4.9 shows the boxplot of the average values of the foot speed and pitch angle, for valid

gait cycles (VGC) detected using the validation module and FOG events in the inertial sensor

data marked by a trained gait analysis expert for the tasks listed in Table A.2 of Appendix

A.2. As can be seen, FOG events are associated with small foot speeds and low pitch angles

caused by the alternating trembling motion.

4.5 Chapter Summary

We discussed implementing a zero-velocity aided inertial navigation system, we derived the

navigation mechanization equations and their corresponding error models, and used the
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Table 4.1: Gait parameters extracted using the MLBS and ZV-INS.

PID #
Toe-off Angle Heel-Strike Angle Swing as %GCT Stride Length

MLBS ZV-INS MLBS ZV-INS MLBS ZV-INS MLBS ZV-INS

01 39◦ ± 1.0◦ 37.1◦ ± 4.4◦ −25◦ ± 1.2◦ −20.9◦ ± 2.4◦ 42%± 0.5% 40.3%± 11.7% 1.30± 0.02 1.24± 0.29
02 18◦ ± 1.2◦ 18.7◦ ± 2.4◦ −9◦ ± 1.0◦ −9.9◦ ± 1.5◦ 32%± 1.0% 31.1%± 6.2% 0.69± 0.04 0.68± 0.14
03 36◦ ± 0.8◦ 33.3◦ ± 3.9◦ −14◦ ± 1.7◦ −12.7◦ ± 2.1◦ 39%± 1.1% 38.4%± 10.0% 1.20± 0.03 1.13± 0.29
05 38◦ ± 0.8◦ 34.6◦ ± 4.9◦ −23◦ ± 1.3◦ −20.6◦ ± 2.1◦ 39%± 0.7% 39.5%± 10.0% 1.20± 0.03 1.22± 0.20
08 32◦ ± 1.5◦ 27.5◦ ± 5.5◦ −16◦ ± 2.6◦ −16.6◦ ± 1.9◦ 36%± 1.1% 36.4%± 8.1% 1.00± 0.03 0.83± 0.37
09 40◦ ± 1.9◦ 38.4◦ ± 9.9◦ −23◦ ± 2.4◦ −18.4◦ ± 4.2◦ 40%± 1.3% 36.9%± 11.3% 1.40± 0.08 1.15± 0.50
10 35◦ ± 1.1◦ 30.7◦ ± 4.8◦ −14◦ ± 3.0◦ −16.9◦ ± 2.2◦ 40%± 1.3% 37.9%± 10.9% 1.20± 0.05 1.15± 0.50

MLBS: Mobility labs software; ZV-INS: Zero-velocity inertial navigation system.
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Figure 4.9: Boxplots of average values of the gait parameters during valid gait cycles (VGC)
and freezing of gait (FOG) events.

Kalman filter to estimate the position, velocity, and orientation angles. We validated our

implementation by comparing the gait parameters extracted using the ZV-INS with an ex-

isting proprietary software compatible with the APDM Opal sensors. We also demonstrated

that FOG events are associated with small foot speeds and low pitch angles. In the next

chapter, we will develop an estimation filter that combines the trembling event intervals with

the gait parameters associated with FOG, and computes probability of FOG.
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Chapter 5

Filtering Module: Trembling Event

aided Point-Process Filter

In this chapter, to detect the onset and duration of freezing of gait (FOG), we develop a

point-process filter, which computes the probability of FOG (pFOG). We model the edges of

the trembling event intervals (TREI) as a point-process, assign weights to the edges, which

depend on the average value of the speed of the foot at the edge and a participant-specific tun-

able parameter. The participant-specific tunable parameter determines the weight, which is

inversely proportional to the average value of the speed of the foot. Then, we integrate these

weights over a time window, using a Bayesian recursive filter. We adjust the participant-

specific tunable parameter manually for every participant based on their gait patterns. We

validate the performance of the proposed system design using real data obtained from people

with Parkinson disease who performed a set of gait tasks. We compare our FOG detection

results with an existing method that only uses accelerometer data. The results indicate that

our method yields 81.03% accuracy in detecting FOG events, and a three-fold decrease in

the false-alarm rate relative to the existing method.
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5.1 Introduction

A temporal point-process is a stochastic set of localized process composed of events or in-

stances that occur in continuous time. Because these processes are localized at a finite set

of time points, they are widely employed in several disciplines including economics, compu-

tational neuroscience, seismology, astronomy, and others [83]. For example, point-processes

are commonly used as models for random events in time, such as the arrival rate of cus-

tomers in a queue (queuing theory) [84], impulses generated by a neuron (computational

neuroscience) [85–87], particles in a Geiger counter (measuring ionizing radiation) [88], char-

acterize the timing and regularity of heart beats [89], and searchers on the world-wide web

(data analytics) [90]. For each of these processes, there is an underlying continuous pro-

cess that is evolving in time and the associated point-process occurs when the time-series

representing the continuous process is above or below certain fixed threshold.

Point-processes are characterized into different classes based on the probability of firing an

event in a small time interval. The simplest form of a point-process is the Poisson process.

In this process, the probability of firing an event is independent of the firing activity of

the past spiking activity. In addition, if the probability of firing an event is independent

of time, then the process is called homogeneous Poisson process. For any time interval in

a homogeneous Poisson process, the point-process increment follows a Poisson distribution

and the increments from non-overlapping intervals are independent [83]. Note that the

homogeneous Poisson process demonstrates a stationary distribution of a Markov chain.

However, in many practical scenarios, the point-process is non-stationary, i.e., the firing

activity changes with time. For example, if we were to count the number of cars crossing an

intersection near a workplace, then rate of crossing the intersection increases during peak

office hours. In other words, the firing rate function that defines the probability of observing
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Figure 5.1: System design.

an event is dependent on time. We call such processes as inhomogeneous Poisson process.

Both homogeneous and inhomogeneous Poisson processes are independent of the past events.

Several systems that produce point-processes are not only dependent on time but also on

past data. To characterize the probability of firing an event that depends on historical data,

we use the conditional intensity function, and the resulting point-process is called as a doubly

stochastic point-process [91].

In this work, develop a system design to detect and track freezing of gait (FOG) as shown

in Fig. 5.1. Recall that the goal of Detector-II is to distinguish zero-velocity event intervals

(ZVEI) from trembling event intervals (TREI). We model the edges of the TREI as a doubly

stochastic point-process. We assign weights to the edges, which depend on the average

value of the speed of the foot at the edge and a participant-specific tunable parameter. The

participant-specific tunable parameter determines the weight, which is inversely proportional

to the average value of the speed of the foot. Then, we characterize the weights and the

edges of the trembling event intervals, using a conditional intensity function. To compute

the probability of freezing of gait (pFOG), we integrate these weights over a time window

using a Bayesian recursive filter. To maximize the number of freezing of gait events detected,
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we adjust the participant-specific tunable parameter manually for every participant based

on the gait patterns.

Section 5.2 describes the background required for developing the point-process. Section 5.3

develops the TREI-aided point-process filter for computing pFOG. Section 5.4 provides an

example to demonstrate the output of the each module in Fig. 5.1, using real data from

Parkinson disease participants. Section 5.5 presents the experimental results.

5.2 Preliminaries

5.2.1 Conditional Intensity Function

Given an observation (0, T ], let N(t) be a counting process which is the total number of

events in (0, t], for t ∈ (0, T ]. We define conditional intensity function for t ∈ (0, T ] as

λ(t|H(t)) = lim
∆t→0

P (N(t+∆)−N(t) = 1|H(t))

∆t
(5.1)

where P (·) is a conditional probability, and H(t) is the history of the sample path and of

any covariates up to time t [92]. Conditional intensity function is also referred as stochastic

intensity or hazard function. It follows that the conditional intensity function λ(t|H(t))

can also be defined in terms of the inter-event probability density at time t, denoted by

P (t|H(t)), as

λ(t|H(t)) =
P (t|H(t))

1−

∫ t

0

P (u|H(t))du

. (5.2)
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The probability of an event in [t, t + ∆) given H(t) and no other event is observed in (0, t)

is given as:

P (u ∈ [t, t+∆)|u > t,H(t)) =
P (u ∈ [t, t +∆) ∩ u > t|H(t))

P (u > t|H(t))

=

∫ t+∆

t

P (u|H(u))du

1−

∫ t

0

P (u|H(u))du

=
P (t|H(t))∆

1−

∫ t

0

P (u|H(t))du

+ o(∆)

= λ(t|H(t))∆ + o(∆) (5.3)

where ∆ is a small bin measured in seconds or samples and o(∆) refers to all events smaller

than ∆, such as observing two or more events in the interval ∆ [92]. The intuitive explanation

of (5.3) is that the conditional intensity function characterizes the stochastic structure of the

event train. In other words, λ(t|H(t))∆ defines the probability of an event given the history

up to time t. In the next Section, we model the edges of the TREI as a point-process and

define a suitable conditional intensity function to compute the probability of FOG.

5.3 Point-Process Filter

In this section, we describe the filtering module in the system design in Fig. 5.1. We

develop a point-process which is characterized by the conditional intensity function [93],

whose parameters are modeled as a Gaussian autoregressive model [87,94–96]. By combining

the information about the speed of the foot with the detected TREI via a conditional intensity

function, we compute the probability of FOG (pFOG).
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Recall that Detector-I identifies the zero-velocity and trembling events, and Detector-II only

separates zero-velocity events from trembling events. The edges of the TREI also contain

information of either the beginning or ending of ZVEI, which represents FOG patterns,

characterized by small foot speeds. Therefore, we detect the edges of the TREI and model

them as spikes generated from a point-process. The spikes are divided into equal segments or

bins of length B = ∆Fs samples, where ∆ is the width of the bin interval in seconds and Fs is

the sampling rate of the IMU. Let δBk and bk denote an indicator variable2 and the number

of spikes in the interval ((k − 1)∆, k∆], k ∈ N, respectively. Further, let wk denote a weight

associated with each bin interval. FOG patterns such as trembling and short shuffling steps

are characterized by small foot speeds [78]. To identify bins with small foot speeds, we first

compute the average bin speed for the bin intervals ((k−1)∆, k∆]. Then, we use a Gaussian

kernel with zero mean and σs standard deviation to assign larger weights to bins with smaller

average foot speeds. In our proposed method, the system parameter σs is considered as a

participant-specific tunable parameter. As σs decreases, the bin weights corresponding to

smaller foot speeds increase.

Let δB1:k = [δB1, · · · , δBk], b1:k = [b1, · · · , bk], andw1:k = [w1, · · · , wk] denote the activity of

observable parameters up to time k∆. Let Hk = [δBk−ℓ−1:k−1, bk−ℓ−1:k−1,wk−ℓ−1:k−1] denote

the history of the activity of the spikes observed in the interval ((k − ℓ − 1)∆, (k − 1)∆],

where ℓ represents length of the history. Let θk = [θk,0, · · · , θk,ℓ−1]
T ∈ R

ℓ denote a latent

parameter vector. We model the number of spikes observed in the k-th interval as a binomial

distribution with probability mass function given by

f(bk|θk,Hk) =

(
B

nk

)

pbkk (1− pk)
(B−bk), (5.4)

2δBk = 1, if bk 6= 0 and δBk = 0, if bk = 0.
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where

pk =
exp (λk(θk,Hk))

1 + exp (λk(θk,Hk))
and (5.5)

λk(θk,Hk) = α + β

(
ℓ−1∑

i=0

θ2k,iwk−iδBk−i

)

= α + β(θT

kWkθk), (5.6)

and Wk = diag{wkδBk, . . . , wk−ℓ+1δBk−ℓ+1} ∈ R
ℓ×ℓ. In (5.5), pk is a sigmoid function that

represents instantaneous pFOG in the interval ((k−1)∆, k∆], α denotes a fixed background

firing rate, and β is a fixed scaling parameter. The exponential term is defined as the

conditional intensity function [93] and the log-exponential is denoted as λk(θk,Hk). In

(5.6), we model the history of spikes as an auto-regressive process where θk,i represents the

auto-regressive coefficients. The parameters that define the conditional intensity function

in (5.6) are either fixed or observable, except for θk (a latent parameter vector), which

is modeled as a linear evolution process with Gaussian errors [87, 94–97]. We define the

evolution process of the latent parameter as

θk+1 = Akθk + nk, (5.7)

where Ak is the system evolution matrix and nk is zero-mean additive Gaussian noise with

covariance Nk. The probability of freezing of gait (pFOG) is given as

p′k =
1

l

l−1∑

i=0

pk−i. (5.8)
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Applying Bayes’ rule to (5.4) and (5.7), the posterior density of the parameter vector in the

k-th interval is given as

f(θk|bk,Hk) =
f(bk|θk,Hk)f(θk|Hk)

f(bk|Hk)
, (5.9)

where

f(θk|Hk) =

∫

f(θk|θk−1,Hk)f(θk−1|bk−1,Hk−1)dθk−1

=

∫

f(θk|θk−1)f(θk−1|bk−1,Hk−1)dθk−1. (5.10)

The last equality comes from (5.7), where θk does not depend on the aggregate history of

the spikes, Hk. Based on (5.7), we assume that the latent parameter vector, θk, follows a

Gaussian distribution. There is no closed form expression for the Bayesian recursive filter in

(5.9) and (5.10). Therefore, we develop the approximate filters based on the Gaussian ap-

proximations. The Gaussian approximation of the posterior density of the latent parameter

vector in (5.7) can be motivated by the fact that the Binomial distribution in (5.4) con-

verges towards a Gaussian distribution as the number of samples in each bin, B, increase.

Let θk|k−1 = E[θk|Hk] and Jk|k−1 = Cov[θk|Hk] denote the mean and the covariance of

one-step prediction density. Similarly, let θk|k = E[θk|bk,Hk] and Jk|k = Cov[θk|bk,Hk]

denote the mean and the covariance of the posterior distribution. Then, using the Laplace
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Gaussian filter approximation method [96,97], the point-process filter equations are given as

θk|k−1 = Fkθk−1|k−1, (5.11a)

Pk|k−1 = FkJk−1|k−1F
T

k +Nk, (5.11b)

θk|k = θk|k−1 + Jk|k [(bk − Bpk)λ
′
k(θk,Hk)]θk|k−1

, (5.11c)

(Jk|k)
−1 = J−1

k|k−1 +
[
(Bpk − bk)λ

′′
k(θk,Hk) +Bpk(1− pk)λ

′
k(θk,Hk)(λ

′
k(θk,Hk))

T
]

θk|k−1
, .

(5.11d)

where the first derivative and second derivative of λk(θk,Hk), denoted as λ′k(θk,Hk) and

λ′′k(θk,Hk), are given as 2βWkθk and 2βWk, respectively. We provide the details of the

derivation of (5.11a)-(5.11d) in Appendix D.1 of the supplementary material. Equations

(5.11a) and (5.11b) are the mean and covariance of a one-step prediction distribution. Simi-

larly, equations (5.11c) and (5.11d) are the mean and covariance of the posterior distribution,

respectively. The second term in (5.11c) is the learning rate, analogous to the the posterior

update step of a Kalman filter. The term (bk/B − pk) in (5.11c) is the innovation term,

because bk/B represents the probability of spikes in the measurement model and pk is the

probability of spikes in the state model, observed in the k-th time interval. However, unlike

the Kalman filter posterior update step, here the posterior update step depends on the pos-

terior update covariance matrix instead of the prediction covariance matrix. We compute

pk in (5.5), evaluated at θk = θk|k at every time instance k∆, to obtain the instantaneous

pFOG. The details of implementing the pFOG algorithm are listed in Algorithm 2.
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Algorithm 2 TREI Aided Point-Process Filter

1: procedure pFOG(v, t, σs)
2: initialize:
3: k ← 0, ∆← ⌈fs/8⌉, ℓ← length of history process
4: θ0|0,J0|0 ← initialize point-process filter
5: MAX← ⌈len(t)/∆⌉,
6: repeat:
7: k ← k + 1
8: bk−ℓ−1:k−1,∆Bk−ℓ−1:k−1 ← generate point-process(t)
9: Wk ← generates weights(v, σs)
10: θk|k−1 ← Akθk−1|k−1 ⊲ From (5.11a)
11: Jk|k−1 ← AkJk−1|k−1A

T
k +Nk ⊲ From (5.11b)

12: pk ← 1/(1 + exp(−λk(θk,Hk))) ⊲ From (5.5)
13: θk|k ← θk|k−1 + Jk|k [(bk −Bpk)λ′k(θk,Hk)]θk|k−1

⊲ From (5.11d)

14: J−1
k|k ← J−1

k|k−1+
[
(Bpk − bk)λ′′k(θk,Hk) +Bpk(1− pk)λ′k(θk,Hk)(λ

′
k(θk,Hk))

T
]

θk|k−1

⊲ From (5.11c)
15: p′k = (1/l)

∑ℓ−1
i=0 pk−i ⊲ From (5.8)

16: until k = MAX
17: end procedure

5.4 Illustrative Example

In this section, with the help of an illustrative example, we demonstrate the output of each

module of the proposed system design in Fig. 5.1. In particular, we use the inertial sensor

data for participant identity (PID) TT004, performing the BLOCK task, during which the

participant experiences a turning freeze.

5.4.1 Detector-II and INS

As stated previously in Chapter 3, the goal of Detector-II is to distinguish ZVEI from TREI

based on the output of Detector-I. We use the same window length ΩN as in Detector-I.

In addition, we set the standard deviation of the gyroscope σω = 0.8 and the threshold
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(a) Output of Detector-II (TREI)

(b) Output of Detector-II (ZVEI)

(c) Output of the INS (speed of the foot)

Figure 5.2: Detector-II separates ZVEI from TREI.

γ′D2
= 2.00. The output of Detector-II, based on the test statistic in (3.7), is shown in Fig.

5.2a and Fig. 5.2b. In Fig. 5.2b, Detector-II detects ZVEI which can be verified with the

information about the speed of the foot shown in Fig. 5.2c. When zero-velocity updates are

ON, the speed of the foot is close to zero. The time intervals that are not identified as ZVEI

by Detector-II are considered as TREI, as shown in Fig. 5.2a. However, not all the TREI

are associated with FOG. Hence, to filter out falsely detected TREI that are not associated

with FOG, we use the proposed point-process filter.
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Table 5.1: Point-process filter parameters.

Parameters of the point-process filter Assigned value
Width of each bin, ∆ 0.1 seconds
Length of each bin, ∆Fs 100 samples
Length of the history of spikes, ℓ 10
Background firing rate, α -15
Fixed scaling parameter, β 35
State transition matrix, Ak Iℓ
Process noise covariance matrix, Nk 10−14Iℓ
Initial state of the parameter vector, θ0|0 0.351ℓ

Initial covariance matrix, P0|0 102Nk

Participant-specific tunable parameter, σs 0.4

(a) Spikes with an overlay of foot speed

(b) Bin weights with ∆ = 0.1 seconds and σs = 0.4

(c) pFOG output of the point-process filter

Figure 5.3: Detection of FOG using the point-process filter.
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5.4.2 Point-Process Filter

Recall that the goal of the point-process filter is to filter out the falsely detected FOG events

in the TREI. The edges in the TREI contain information about both ZVEI and TREI which

represents FOG patterns characterized by small foot speeds. In Fig. 5.3a, we model the edges

of TREI as spikes and overlay the speed of the foot obtained from the inertial navigation

system. In Table 5.1, we list the values assigned to the parameters of the point-process

filter. The participant-specific tunable parameter σs assigns a unit weight to bin interval

with average bin speed zero, as shown in Fig. 5.3b. In Fig. 5.3c, the region consisting of

high density of spikes with small foot speeds corresponds to an increase in the pFOG curve

with some delay. We set the pFOG threshold as 0.7. When the pFOG is greater than 0.7,

we determine the local minimum of the pFOG curve and denote it as the onset time of FOG.

The duration of freezing is determined by subtracting the instant when the pFOG curve

goes below 0.7 from the onset time, as indicated with red background in Fig. 5.3c. Further,

on computing the onset and duration of FOG event, we notice a significant overlap between

the FOG region detected by processing the IMU data using our proposed system design

(represented with red background) and the video data in the reference system (represented

with gray background). The mismatch between the FOG region detected using the video

and the inertial sensor data in Fig. 5.3c is also attributed to the difference in the temporal

resolution of the two systems under consideration.

5.5 Experimental Evaluation

In this section, we analyze the performance of the system design in Fig. 5.1, using real

data from 16 people with Parkinson disease, given in Appendix A.1. We also compare our
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results with an existing method that determines FOG events based on the FI method [66],

computed using the vertical axis measurements of the accelerometer data. To calculate the

FI [66], we downsample the accelerometer data by a factor of 10 and compute the ratio of

the square of the area of the power spectrum in the ‘freeze-band’ and ‘loco-band’, using a

moving window of 6 seconds. The FI is normalized by multiplying by 100 and taking the

natural logarithm.

Out of the sixteen participants, only eight (PID TT003, TT004, TT005, TT007, TT013,

TT017, TT021, and TT027) demonstrated FOG. In total, 58 events of FOG were detected

using the video data, of which 38 events were categorized as turning freeze, 12 events as

initiation or gait freeze, and 8 events as festinating gait with freezing. For each participant,

we first identified the task with the greatest number of FOG events to determine the tunable

parameters, i.e., the FI-threshold and kernel parameter σs. The FI-threshold and kernel

parameter were tuned such that the number of FOG events detected was maximized for the

identified task. In the proposed method, the system parameters such as detector thresholds,

size of the window, standard deviation of the accelerometer and gyroscope, and point-process

filter variables remain fixed for all participants across all tasks. Only the participant-specific

tunable parameter is adjusted for every participant and remains fixed across all tasks. For

participants who demonstrated FOG in the video-based reference system, the individual FI-

threshold ranged from 4.5 to 10.0 (mean=6.56 and s.d.=1.67), and the kernel parameter σs

ranged from 0.24 to 0.4 (mean=0.30 and s.d.=0.06). We present a detailed analysis of our

proposed approach for PID TT027 in Appendix D.2. In Tables 5.2 and 5.3, we summarize

the number of FOG events detected using FI and our method, respectively. For simplicity,

we call our method the pFOG method. Overall, the pFOG method obtained an accuracy

of 81.03%, i.e., 47/58 FOG events were detected using a tuned participant-specific kernel

parameter (see Table 5.2). Further, when compared with the FI method, our method shows
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Table 5.2: Number of FOG events detected for different participants across the gait tasks.

PID
PARAMETER BACK BLOCK EIGHT NARROW TURN TOTAL
FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG

TT003 7.0 0.40 (0/0) (0/0) (0/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (0/1) (0/1)
TT004 4.5 0.24 (0/2) (2/2) (5/6) (5/6) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (5/8) (7/8)
TT005 7.0 0.35 (0/1) (1/1) (0/0) (0/0) (0/0) (0/0) (0/1) (1/1) (0/0) (0/0) (0/2) (2/2)
TT007 10.0 0.24 (5/8) (6/8) (0/0) (0/0) (0/1) (1/1) (0/1) (0/1) (0/0) (0/0) (5/10) (7/10)
TT013 6.0 0.25 (0/0) (0/0) (1/3) (2/3) (0/0) (0/0) (2/2) (1/2) (0/0) (0/0) (3/5) (3/5)
TT017 7.0 0.40 (0/0) (0/0) (1/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (1/1) (0/1)
TT021 5.0 0.30 (1/1) (1/1) (3/3) (3/3) (1/2) (1/2) (0/0) (0/0) (1/1) (1/1) (6/7) (6/7)
TT027 6.0 0.29 (3/3) (3/3) (7/8) (7/8) (4/4) (3/4) (2/3) (3/3) (5/6) (6/6) (21/24) (22/24)
TOTAL 6.56 0.30 (9/15) (13/15) (17/22) (17/22) (5/7) (5/7) (4/7) (5/7) (6/7) (7/7) (41/58) (47/58)
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Table 5.3: Detection performance for different types of FOG events..

Event type (No. of events) (tuned) FI (tuned) pFOG
Turn Freeze (38) 71.05% (27) 84.21% (32)
Initiation/Gait Freeze (12) 75.00% (9) 75.00% (9)
Festination with Freeze (8) 62.50% (5) 75.00% (6)
Overall (58) 70.68% (41) 81.03% (47)

either an improvement or equivalent performance in detecting different types of FOG events

(see Table 5.3). We also compared our proposed approach with the FI method for a fixed

value of participant-specific tunable parameter and FI-threshold. These values were obtained

by taking the average of these parameters across all FOG participants (see Table 5.2). The

results are presented in Appendix D.3. For a fixed value of the participant-specific tun-

able parameter, the pFOG method obtained an accuracy of 72.41% whereas the FI method

obtained an accuracy of 56.68% (see Table D.1 of the Appendix D.3). This observation mo-

tivates the need to develop methods that can automatically adjust the participant-specific

tunable parameter based on individual gait patterns.

Next, we compute the TPR and FAR for all participants across all tasks, using video as

the reference system. For participants who did not exhibit FOG, the FI-threshold is set to

the mean value of the FI-threshold obtained for FOG participants, rounded to the nearest

integer. Similarly, for non-FOG participants, the kernel parameter σs = 0.4, a value which

assigns a unit weight if the average speed in the bin is zero. We call this the ‘baseline

setting’. In Table 5.4, we summarize the average values of TPR and FAR for all tasks across

all participants. We first notice that the proposed method demonstrates a low average FAR

for non-FOG participants using the baseline setting. Next, we observe that the average value

of TPR for FOG participants using the proposed and existing method are nearly the same.

However, the proposed method demonstrates an overall accuracy of 81.03% (see Tables 5.2

and 5.3). Further, the proposed method shows a more than three-fold decrease in the average
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Table 5.4: Average value of TPR and FAR.

Performance Metric FI pFOG
Avg. FAR (non-FOG participants) 0.07 0.03
Avg. TPR (FOG participants) 0.66 0.73
Avg. FAR (FOG participants) 0.21 0.07
Avg. TPR (all participants) 0.82 0.86
Avg. FAR (all participants) 0.15 0.05

value of FAR for FOG participants. A similar trend is also observed in the average values

of TPR and FAR for all tasks across all participants using the pFOG method, displaying an

overall improvement in the accuracy of determining the onset and duration of FOG.

5.6 Chapter Summary

In this chapter, we developed a point-process filter which was characterized by a conditional

intensity function. We modeled the edges of the TREI as a point-process, and assigned

weights to the edges of the TREI. The weights assigned depended on a participant-specific

tunable parameter and the average value of the speed of the foot in the bin containing the

edge. We considered the average value of the foot speed as a gait parameter because freezing

of gait is associated with small foot speeds. Finally, we integrated these weights over a time

window, using a Bayesian recursive filter called as the TREI-aided point-process filter, and

computed the pFOG. We demonstrated that regions in the inertial sensor that contain FOG

demonstrated high pFOG. We manually tuned the participant-specific tunable parameter

for individual participant, and maximized the number of FOG events detected. Our results

demonstrated an overall improvement in detecting the number of FOG events and also a

three-fold decrease in the false alarm rate when compared with an existing method. The price

payed is an increased computational load and the need for additional sensors (gyroscopes).
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However, considering that ultra-low-cost IMUs today can be manufactured at cost less than

one dollar and that powerful floating point micro-controllers are readily available, advanced

signal processing strategies such as that proposed in the paper are practical and feasible for

most applications.

The participant-specific tunable parameter was adjusted manually for every participant

based on their gait patterns. This adjustment required a thorough grid search operation,

which was a tedious and computationally expensive task. In addition, a value of the tunable

parameter that was participant-specific but fixed over time was unlikely to be adequate. Ide-

ally, the parameter should be adapted to specific gait patterns, which are subject to change

depending on the participant’s gait, symptoms, and treatment strategy. To automatically

adjust the participant-specific tunable parameter, we first detect valid gait cycles and then

adjust the parameter based on the gait parameters in the valid gait cycle.
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Chapter 6

Validation Module: A Sparsity-based

Gait Cycle Validation Algorithm

In this chapter, we develop an algorithm to automatically validate and segment a gait cycle

in real time into three gait events, namely midstance, toe-off, and heel-strike, using inertial

sensors. We first use the physical models of sensor data obtained from a foot-mounted in-

ertial system to differentiate stationary and moving segments of the sensor data. Next, we

develop an optimization routine called sparsity-assisted wavelet denoising (SAWD), which

simultaneously combines linear time invariant filters, orthogonal multiresolution represen-

tations such as wavelets, and sparsity-based methods, to generate a sparse template of the

moving segments of the gyroscope measurements in the sagittal plane for valid gait cycles.

Thereafter, to validate any moving segment as a gait cycle, we compute the root-mean-square

error between the generated sparse template and the sparse representation of the moving

segment of the gyroscope data in the sagittal plane obtained using SAWD. Finally, we find

the local minima for the stationary and moving segments of a valid gait cycle to detect the

gait events. We compare our proposed method with existing methods, for a fixed threshold,

using real data obtained from three groups, namely controls, participants with Parkinson
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disease, and geriatric participants. Our proposed method demonstrates an average F1 score

of 87.78% across all groups for a fixed sampling rate, and an average F1 score of 92.44%

across all Parkinson disease participants for a variable sampling rate.

6.1 Introduction

Movement disorders are common in the general elderly population, and the prevalence in-

creases with age, from 10% between 60 to 69 years to more than 60% in those over 80

years [98, 99]. The evaluation of movement disorders includes clinical observations and as-

sessment of gait, both of which may guide the choice of therapies and rehabilitation strate-

gies [100].

In the last decade, gait analysis has moved away from equipment-intensive, laboratory-

based analyses toward the use of wearable sensors. Several gait segmentation methods for

ambulatory gait analysis using wearable technology have been developed, with varying suc-

cess [101,102]. These methods employ sensing modalities such as electromyography (EMG)

sensors [103], force-sensitive resistor (FSR) sensors [104–106], pressure sensors [107,108], in-

ertial sensors [109–113], or a combination of two or more sensing modalities [114–119]. Note

that the granularity of a gait segmentation method, i.e., the number of phases of a gait

cycle detected, varies with the choice of sensing modalities. In the case of inertial sensors,

the existing methods are based on thresholding sensor measurements [109–111,114–116,118],

template matching via dynamic time warping [113], or machine learning based methods such

as hidden Markov models [112, 119]. Across all these methods, gyroscope measurements in

the sagittal plane are the best choice for gait segmentation because the measurements contain

typical time-series patterns such as “valleys,” “peaks,” and “plateaus.” These patterns are
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respectively, toe-off and heel-strike, mid-swing, and midstance. While thresholding methods

work well in practice, these methods do not have a mechanism to verify and validate the

observable patterns of the gyroscope signal in the sagittal plane, which leads to low preci-

sion. As an alternative, dynamic time warping is a pattern matching method that computes

a similarity measure between a template representing a valid gait cycle and an input se-

quence [120]. However, the threshold required to validate an input sequence as a gait cycle

is not fixed and exhibits a large variance [121]. Yet another alternative, machine learning

methods, requires large samples of training data across many participants and manual seg-

mentation of gait phases, depending on the granularity of the task, to label the training data.

Moreover, it is computationally expensive to learn the parameters of the machine learning

task.

To overcome these drawbacks, we propose a modular approach that employs pattern match-

ing and thresholding, to validate and detect three gait events in the gait cycle, namely

midstance, toe-off, and heel-strike. To identify the data as stationary or moving, we first use

physical models that describe zero-velocity events or stationary events of the sensor data ob-

tained from a foot-mounted inertial system. Next, to generate a sparse representation of the

moving segments of the gyroscope measurements in the sagittal plane for valid gait cycles,

we develop a computationally efficient algorithm called sparsity-assisted wavelet denoising

(SAWD). In SAWD, we simultaneously combine linear time-invariant filters, wavelets, and

sparsity-based methods to extract a discrete wavelet transform (DWT) coefficient vector as

a sparse representation of the moving segment of the gyroscope measurements in the sagit-

tal plane. The reconstructed signal obtained from the extracted DWT coefficient vector is

smooth and preserves the typical observable patterns, such as “valleys” and “peaks,” of a

valid gait cycle for the nonstationary segments of the gyroscope signal in the sagittal plane.
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We generate a template of the DWT coefficient vector by taking the average of the DWT co-

efficient vectors obtained using the SAWD algorithm for all valid gait cycles of a given trial.

Thereafter, to validate any moving segment as a gait cycle, we compute the root-mean-square

error between the generated template and the sparse representation of the moving segment

of the gyroscope data in the sagittal plane, obtained using the SAWD algorithm. If the

root-mean-square error is less than a fixed threshold, then the gait cycle is valid. Finally,

we find the local minima for the stationary and moving segments of a valid gait cycle to

identify toe-off and heel-strike gait events. To demonstrate the robustness of our proposed

method, we herein generate the DWT coefficient vector using inertial sensor data from a

healthy participant and evaluate the method’s performance on data obtained from controls,

participants with Parkinson disease, geriatric participants. In addition, we also show the

threshold-invariance property of our proposed method across different sampling rates.

There are several advantages of developing a modularity-based approach for validating and

segmenting a gait cycle in real time. These include the ability to incorporate the gait

cycle validation and segmentation module into the existing zero-velocity aided foot-mounted

inertial navigation systems to accurately identify phases of the gait that are affected [49,122]

and the development of novel cueing strategies for mitigating disabling motor symptoms such

as freezing of gait in Parkinson disease [37, 123, 124]. Section 6.2 describes the background

required for detecting zero-velocity or stationary segments of sensor data from a foot-mounted

inertial system. Section 6.3 develops an algorithm to validate a gait cycle and detect toe-

off and heel-strike events using the non-stationary gyroscope measurements in the sagittal

plane. Section 6.4 presents an illustrative example to demonstrate the robustness of our

proposed method. Section 6.5 compares the results of our proposed method with some

existing methods. Section 6.6 presents the conclusions.
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6.2 Preliminaries

6.2.1 Gait Events

There are two main components of a gait cycle: stance and swing. A typical gait cycle for a

healthy adult consists of 62% stance and 38% swing phase [125]. These two gait phases are

further divided into eight events: Five (heel-strike, flat-foot, midstance, heel-off, and toe-off)

during the stance phase, and three (acceleration, midswing, and deceleration) occur during

the swing phase [125]. In this work, we use gyroscope measurements in the sagittal plane to

detect toe-off and heel-strike events of the stance phase of a gait cycle. The location of the

toe-off and heel-strike events detected using the gyroscope signal in the sagittal plane vary

depending on the location of the sensor on the foot [109–119]. With the help of FSR and

inertial sensors, it was verified in [109,110] that the local minima of the gyroscope signal in

the sagittal plane represent the toe-off and heel-strike events when the sensor is attached to

the instep region of the foot.

6.2.2 Zero-velocity Events Intervals

In this subsection, we provide a brief background of the physical models of the inertial sensor

data obtained from a foot-mounted inertial system to segment the data as stationary or

moving. If ya
k ∈ R

3×1 and yω

k ∈ R
3×1 denote the measurements of a three-axis accelerometer

and a three-axis gyroscope, respectively, at time instant k, then these measurements can be
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modeled as

ya
k = sak + ea

k

yω

k = sωk + eω

k .

(6.1)

Here, sak and sωk denote the true specific force and angular velocity experienced by the ac-

celerometer and gyroscope, respectively. Further, ea
k and eω

k denote the measurement errors

of the accelerometer and gyroscope, which are assumed to be white, mutually uncorrelated,

and Gaussian distributed with zero mean and covariance matrices σ2
aI3 and σ2

ω
I3, respec-

tively. To distinguish stationary from non-stationary instances, we use the zero-velocity

detector. We define two hypotheses, H0 and H1, as follows:

H0 := Sensor is moving

H1 := Sensor is stationary.

(6.2)

Mathematically, the signal model for the two hypotheses in (6.2) can be written as

H0 :







∃k ∈ ΩW : sak 6= gva

∃k ∈ ΩW : sωk 6= 0

H1 :







∀k ∈ ΩW : sak = gva,

∀k ∈ ΩW : sωk = 0

,

(6.3)

where g is the Earth’s gravity, va is the direction of the gravity vector (which is unknown),

and ΩW is a window of size W consisting of the time samples {k, . . . , k+W − 1}. Given the

signal model in (6.3), it can be shown that the generalized loglikelihood ratio test, denoted
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by Tk(y
a,yω) at time index k, for detecting zero-velocity event intervals is given by

1

W

∑

k∈ΩW

{

1

σ2
ω

‖yω

k ‖
2
2 +

1

σ2
a

∥
∥
∥
∥
ya
k − g

ȳa

‖ȳa‖

∥
∥
∥
∥

2

2

}

H1

<γD, (6.4)

where ya = [(ya
k)

T , . . . , (ya
k+W−1)

T ]T ∈ R
3N×1, yω = [(yω

k )
T , . . . , (yω

k+W−1)
T ]T ∈ R

3N×1, ȳa =

(1/W )
∑

k∈ΩW
ya
k ∈ R

3×1, and γD is the detector threshold. The derivation of (6.4) can be

found in [79] and [1, Appendix B]. It is also possible to use only gyroscope measurements to

identify foot-mounted inertial sensor data as stationary or non-stationary regions [126–128].

In this work, we define a midstance event as the time instance under H1 when Tk(y
a,yω) is

minimum, i.e., if ΩMi
is a segment of inertial sensor data of variable lengthMi > 0.1 seconds,

for the i-th stride under H1, then the midstance event is mathematically expressed as

MSi ← arg min
k,k∈ΩMi

Tk(y
a,yω). (6.5)

We choose the time index when Tk(y
a,yω) is minimum as the midstance event because

during a midstance event the foot is completely stationary.

6.3 Gait Cycle Validation and Segmentation

In this section, we develop a new approach to validate a gait cycle and detect gait events such

as toe-off and heel-strike, using the gyroscope sensor data in the sagittal plane. The proposed

algorithm is applied only to the regions of the sensor data when the sensor is moving, i.e.,

when hypothesis H0 in (3.5) is true. Our goal is to extract a sparse representation of the

segments of the gyroscope signal for valid gait cycles.
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6.3.1 Discrete Wavelet Transform

Multiresolution orthogonal representations, such as discrete wavelet transform (DWT), are

widely used in a variety of signal and image processing applications [129]. Wavelet coefficients

are computed by integrating the product of a signal and oscillating functions obtained by

stretching and translating a locally oscillating basis function, referred to as a wavelet [130].

Because of their low computational complexity and high accuracy in representing signals,

wavelets are used in many applications, such as compression, denoising, and pattern recog-

nition [130].

Let x ∈ R
N×1 be an N -dimensional vector. To model x in wavelet-domain, we use windowed

discrete wavelet transform (WDWT). The WDWT coefficients, denoted by k ∈ R
U×V , de-

pend on the window length, the windows overlap factor, and the number of levels of the

wavelet decomposition. In our work, we define Ψ : RU×V → R
N (the synthesis equation of

WDWT) as

Ψk := WDWT−1(k), (6.6)

whereas ΨT : RN → R
U×V (the analysis equation of WDWT) is defined as

ΨTx := WDWT(x). (6.7)

In this work, the length of the window U depends on the sampling frequency Fs, and is

given as U = 2J , where J is the smallest positive integer for which U ≥ Fs. The value of

J determines the maximum levels of wavelet decomposition. The length of V depends on

the percentage of overlap between two consecutive windows and generates an overcomplete
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dictionary, k. If V = 1, then WDWT is the same as DWT. Furthermore, WDWT in (6.6)

and (6.7) satisfies a generalized version of Parseval’s identity [130, 131], i.e., ‖Ψk‖ = ‖x‖,

and demonstrates the perfect reconstruction property, i.e., ΨΨT = I.

6.3.2 Zero-Phase Filters as Matrices

Linear time-invariant filters are easy to implement and are also efficient, especially when

the frequency band of the signal of interest is known. However, when designed as matrices

and used in batch-mode processing, these filters are computationally expensive where the

complexity increases as the number of samples increase. To overcome the computational load,

the authors in [132,133] developed computationally efficient zero-phase noncausal high-pass

and low-pass recursive filter designs as banded Toeplitz matrices. The banded Toeplitz allows

using fast solvers for a banded system of linear equations. Further, the zero-phase property

allows employing these filters in an optimization framework as matrix operators, without

introducing any phase distortions from the filter. We denote the zero-phase low-pass filter

matrix operator as LPFω0(·), where

LPFω0(x) := Lx = A−1Cx. (6.8)

Here, 0 ≤ ω0 ≤ 1/2 is the normalized 3dB cutoff frequency of the low-pass filter, and

A ∈ R
N×N and C ∈ R

N×N are banded Toeplitz matrices [132, 133].
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6.3.3 Sparsity-Assisted Wavelet Denoising (SAWD)

Let yωs ∈ R
N×1 denote the measured gyroscope signal segment under hypothesis H0, where

the superscript ωs indicates measurement in the sagittal plane. The length of the signal N

depends on the speed of the foot and the threshold γD of the zero-velocity event interval

detector in (6.4), and varies with every gait cycle. We begin by scaling yωs so that its

amplitude ∈ [−1, 1]. If ys denotes the scaled gyroscope signal, then

ys = 2

[
yωs −max (yωs)

max(yωs)−min(yωs)

]

− 1, (6.9)

where max(·) and min(·) are the maximum and minimum of the input vector. In the next

step, we use a 1D linear interpolation filter on ys so that the length of the interpolated signal

is equal to the sampling rate. Let y denote the 1D linear interpolated signal, and then

y = interp1(ys, t1, t2), (6.10)

where interp1 is the 1D linear interpolation function in MATLAB or Python, and t1 and

t2 are vectors containing sample points of length N and Fs, respectively. The scaling step

follows the interpolation step, and these two steps cannot be interchanged. Note that in

the signal preprocessing step (scaling and interpolating), the gyroscope signal preserves the

patterns of interest of a valid gait cycle. The preprocessed signal is only used for validating

a gait cycle whereas the scaled non-stationary segment is used for for determining the toe-off

and heel-strike events because interpolation does not preserve the location of local minima.

In the next step, we minimize a cost function to extract the DWT coefficients of a smoothed

segment of a valid gait cycle so that it preserves the typical observable patterns. In particular,
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we solve the following optimization problem:

argmin
k

{1

2
‖L(y − Ψk)‖22

}

, (6.11)

where L is the low-pass filter in (6.8) with a normalized cutoff frequency ω0, and Ψk is the

synthesis equation of the WDWT in (6.6). Note that the optimization problem in (6.11)

is the standard least-squares problem and has a closed-form expression. Solving (6.11)

gives the set of DWT coefficients required to reconstruct the low-frequency signal of the

scaled gyroscope measurement vector. However, many entries of the DWT coefficient matrix

k are close to zero and do not significantly contribute in the reconstruction of the low-

frequency signal. Therefore, we introduce a regularization term to reduce the number of

DWT coefficients required to represent the low-frequency signal. The cost function of the

modified optimization problem, denoted by C(y,k), is given as

C(y,k) = argmin
k

{1

2
‖L(y − Ψk)‖22 + λ ‖k‖1

}

, (6.12)

where λ > 0 is the regularization parameter. The first term in (6.12) is the data fidelity

term, which is same as (6.11), whereas the second term is the regularization term on the

dictionary, k, of DWT coefficients representing the low-frequency signal. In (6.12), we

simultaneously combine low-pass filtering, wavelet representation, and a sparsity-inducing

norm. We apply the alternative direction method of multipliers (ADMM) [134, Chapter 3] to

iteratively minimize the cost function in (6.12). We begin by decoupling the cost function in

(6.12) using the Douglas-Rachford variable splitting method [135]. The cost can be rewritten
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as

argmin
k,u

{1

2
‖L(y − Ψu)‖22 + λ ‖k‖1

}

,

such that u = k.

(6.13)

Applying the augmented Lagrangian [134] to (6.13) we get the following iterative optimiza-

tion routine:

repeat :

u← argmin
u

{1

2
‖L(y − Ψu)‖22 +

µ

2
‖u− k − d‖22

}

, (6.14a)

k← argmin
k

{

λ ‖k‖1 +
µ

2
‖u− k − d‖22

}

, (6.14b)

d← d− (u− k), (6.14c)

until convergence,

where µ > 0 determines the rate of convergence and does not affect the final value of the

cost function in (6.12). The equation (6.14a) is the standard least-squares problem, whose

solution is given as

u← (ΨTLTLΨ + µIN)
−1(ΨTLTLy + µ(k + d)), (6.15)

where we use the perfect reconstruction property of wavelets, i.e., ΨΨT = IN . Expanding

(ΨTLTLΨ + µI)−1 using the matrix inversion lemma [136], we can further simplify (6.15)
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as

(ΨTLTLΨ + µIN)
−1 = (ΨTCT(AAT)−1CΨ + µIN)

−1

=
1

µ

(
I − ΨTCTG−1ΨC

)
, (6.16)

where G = (µAAT +CCT) is a banded matrix. Therefore, (6.15) can be written as

u←
1

µ

[
I − ΨTCTG−1ΨC

]
(ΨTLTLy + µ(k + d)). (6.17)

The least-squares solution in (6.17) can be further simplified as a two-step iterative problem

and is given as

g ←
1

µ
ΨT(CT(AAT)−1Cy) + (k + d) (6.18a)

u← g − ΨT(CTG−1CΨ (g)). (6.18b)

The solution to (6.14b) is the solution to the least absolute shrinkage and selection operator

(LASSO) problem [137] and is expressed as

k ← soft(u− d, λ/µ), (6.19)

where the soft-threshold function is defined as

soft(x, T ) :=







x− T (x/|x|), |x| > T

0, |x| ≤ T

. (6.20)
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Algorithm 3 Sparsity-Assisted Wavelet Denoising (6.12)

1: procedure SAWD(y, A, C, λ, µ)
2: initialize:
3: G← (µAAT +CCT)
4: k ← ΨT(A−1Cy)
5: d← 0
6: b← (1/µ)ΨT(CT(AAT)−1Cy)
7: repeat:
8: g ← b+ k + d ⊲ From (6.18a)
9: u← g − ΨT(CTG−1CΨ (g)) ⊲ From (6.18b)
10: k ← soft(u− d, λ/µ) ⊲ From (6.19)
11: d← d− (u− k) ⊲ From (6.14c)
12: until convergence
13: return Ψk, k
14: end procedure

The complete algorithm is called sparsity-assisted wavelet denoising and is listed as Algorithm

3. Note that the matrix G is always invertible when the degree of the low-pass filter is of

the third-order or lower [132, 133, 138].

Remark : The convergence of the Douglas-Rachford splitting and the alternating direction of

multipliers demonstrates a linear convergence rate [139]. Because of the linear convergence

rate of the ADMM approach, the computational complexity of our proposed method does

not depend on the length of the signal or the sampling rate, unlike existing methods.

6.3.4 Gait Cycle Validation and Segmentation

We generate a template of the DWT coefficients by taking the average of the DWT coef-

ficients obtained by solving (6.12) for valid gait cycle segments of gyroscope data in the
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sagittal plane. If kT denotes the template of the DWT coefficients, then

kT =
1

M

M∑

i=1

ki, (6.21)

where M represents the number of valid gait cycles and ki represents the DWT coefficients

obtained by solving (6.12) for the i-th valid gait cycle. Next, we compute the root-mean-

square error, denoted by RMSEi, between the extracted DWT coefficients for a moving

segment of the gyroscope data and the template DWT coefficients as follows:

RMSEi =

[

1

Fs

Fs∑

j=1

(kT,j − ki,j)
2

]1/2

. (6.22)

A segment of the gyroscope signal measured in the sagittal plane under hypothesis H0 is a

valid gait cycle if

RMSEi < γGCVS, (6.23)

where γGCVS is the template matching threshold. In our work, we set γGCVS as one standard

deviation distant from the mean of the RMSE computed during the template generation

task. If (6.23) is true, then we determine the toe-off and heel-strike events for the i-th stride,

denoted by TOi and HSi, respectively, by finding the local minima of the scaled gyroscope

signal ys. The first local minimum represents the toe-off event, whereas the second represents

the heel-strike event. We segment the scaled gyroscope signal ys in (6.9) into two or more

segments, depending on the smoothness of the signal, with a fixed threshold of 0.5. If ΩTi

and ΩHi
represent, respectively, the first segment and the union of the remaining segments
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[
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]
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y = interp1(ys, t1, t2)

ki = argminki
C(y,ki)

Tk(y
a,yω)

H1

<γD

RMSE(kT,ki) ≤ γGCVS

MSi

TOi

HSi

TOi ← argmink,k∈ΩTi
ys

HSi ← argmink,k∈ΩHi
ys

Figure 6.1: Gait cycle validation and segmentation algorithm overview. The proposed
modularity-based approach consists of three modules: a) sensor module, b) detection mod-
ule, and c) validation module. The detection and validation modules are used to identify
midstance, and toe-off and heel-strike phase of a gait cycle, respectively.

of ys that are below the threshold, then

TOi ← arg min
k,k∈ΩTi

ys, (6.24)

HSi ← arg min
k,k∈ΩHi

ys, (6.25)

where Ti and Hi are the lengths of the segments of ΩTi
and ΩHi

.

6.4 Illustrative Example

In this section, with the help of an illustrative example, we demonstrate our proposed

method. We develop methods to identify the cutoff frequency ω0 of the low-pass filter in

(6.8) and tune the parameter µ to improve the rate of convergence of the SAWD algorithm.
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(a) Gyroscope signal segments in the sagittal plane.
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(b) DWT coefficients of the gyroscope signal seg-
ments.

Figure 6.2: Scaled and interpolated gyroscope signal segments measured in the sagittal
plane, with corresponding DWT coefficients. The solid line indicates the mean value, and
the shaded region indicates one standard deviation variance.

6.4.1 Data Collection and Hardware

We used APDM Opal sensors [50] to collect accelerometer and gyroscope sensor data for a

participant walking on a treadmill. The sensors operate at a sampling frequency of Fs = 128

Hz and are firmly attached to the instep region of the foot with the help of elastic Velcro

straps. Data from the sensors was transmitted in wireless mode to a laptop and stored in

HDF5 format. As a reference system, we used a GoPro camera placed a few feet away from

the treadmill. In addition, a digital clock was also placed next to the treadmill, so that the

readings on the clock were clearly captured in the video data. The digital clock readings

were used to manually synchronize the video data with the inertial sensor data.

6.4.2 Experiment

To validate and segment a gait cycle, a healthy male participant of age 30 was recruited.

The participant stood on the treadmill, with his feet in comfortable stance width. When a

tone sounded, the participant began to walk, slowly accelerating at a comfortable pace and
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reaching gait speed of 1.34 m/s (3 miles/hr) in the first 15 seconds of the trial. Then, for the

next 15 seconds, the participant walked at a steady pace of 1.34 m/s, which was maintained

with the help of the speed indicator on the treadmill. Finally, in the last 15 seconds of

the trial, the participant began to slowly decelerate from a steady pace of 1.34 m/s to a

standstill. Each trial lasted for 45 seconds and was repeated seven times. To generate the

template of the DWT coefficient vector kT, we used datasets from the treadmill walking

experiment because the dataset contains inertial sensor data with variable walking speeds.

6.4.3 Template Generation

To detect midstance events, we set the zero-velocity detector threshold γD = 2.0 in (6.4).

The size of the window is set to one-eighth of the sampling rate Fs, i.e., W = 16. Further,

the standard deviations of the accelerometer and gyroscope are set to σa = 1.0 and σω = 0.8,

respectively. The details of the steps for obtaining the parameter of the zero-velocity de-

tector are presented in [1, Appendix D and E]. Next, using the zero-velocity detector, we

segment the gyroscope measurements in the sagittal plane and detect the regions when the

IMU is not stationary, i.e., when hypothesis H0 is true in (3.5). The segments of the gyro-

scope measurements in the sagittal plane under hypothesis H0 are scaled and interpolated

employing (6.10) and (6.9), respectively. To design the WDWT in (6.6) and (6.7), we select

a Daubechies wavelet (db4 or D8) as the mother wavelet because it closely resembles the

shape of the gyroscope signal in the sagittal plane for a valid gait cycle. We use a window

length of the next highest power of the sampling rate Fs, expressed as a power of 2, i.e.,

U = 27 = 128. Further, we use non-overlapping windows, i.e., V = 1, because the length of

the scaled segment N ≤ Fs for all valid gait cycles across varying gait speeds of the treadmill

walking trial [140]. In Fig. 6.2a and 6.2b, we plot the scaled and interpolated gyroscope
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Figure 6.3: Spectrum plot of the scaled and interpolated gyroscope signal segments. The
solid line indicates the spectral mean value. The dashed blue line indicates the normalized
cutoff frequency ω0 = 0.025 of the low-pass signal.

signal segments and corresponding DWT coefficients for valid gait cycles of the fifth trial of

the treadmill experiment, selected at random. As can be seen in Fig. 6.2a, each segment con-

sist of observable patterns of interest, i.e. , “valleys” and “peaks.” Further, we notice that

the DWT coefficients in Fig. 6.2b consist of large coefficients in the lower frequency scales

[2j−1, 2j), j ∈ {1, 2, 3}, small coefficients in the mid frequency scales [2j−1, 2j), j ∈ {4, 5},

and coefficients close to zero in the high frequency scales [2j−1, 2j), j ∈ {6, 7}. The DWT

coefficients in the lower frequency scales represent the low-frequency signal. Therefore, it is

sufficient to retain these coefficients to reconstruct a template of the gait cycle that preserves

the observable patterns of interest.

To determine the cutoff frequency of the low-frequency signal, we compute the Fourier trans-

form of each segment and select the cutoff frequency ω0 such that the range of frequencies

representing the dominant energy regions are retained. In Fig. 6.3, we plot the N -point

discrete Fourier transform (DFT) of the scaled and interpolated gyroscope signal segments

on a normalized frequency scale 0 ≤ ω0 ≤ 0.5, where the length of DFT is set to N = 512.

As can be seen, the energy of the segments resides in the lower frequency range of the nor-

malized frequency scale. Therefore, to obtain a smoothed template of the input signal such

that preserves its shape, we select ω0 = 0.025, equivalent to 3.2 Hz, as shown in Fig. 6.3 with
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a dashed blue vertical line. The cutoff frequency ω0 and the length of the interpolated signal

are used to construct the banded matrices A and C. Using (6.8), we design a zero-phase

low-pass filter as a banded matrix [133].

In Fig. 6.4, we demonstrate the rate of convergence of the SAWD algorithm across different

values of µ. Note that µ affects only the rate of convergence and not the final value of the

cost function. We plot the average value of the cost function for µ ∈ {0.01, 0.1, 1} obtained

for valid gait cycle segments of the fifth trial of the treadmill experiment. As can be seen in

Fig. 6.4, the SAWD algorithm converges in less than five iterations on average for µ = 0.1.

Further, the SAWD algorithm takes 0.02 ± 0.01 seconds per gait cycle to converge on a

Windows computer (2.7 GHz Intel Core i7) running MATLAB 2016b, and thus making it

feasible to implement the algorithm in real time.

In Table 6.1, we report the results of the average reconstruction error and the average number

of non-zero DWT coefficients across different values of λ. The reconstruction error is defined

as the root-mean-square error between the reconstructed signal ΨkT (see Fig. 6.5a) and

the signal obtained by averaging the low-frequency segments of valid gait cycles (see Fig.

6.5c). The cutoff frequency of the low-frequency signal is same as the cutoff frequency of the

low-pass filter used in the SAWD algorithm. Table 6.1 shows that, as the λ value increases,

the reconstruction error increases, but, the number of non-zero DWT coefficients decreases.

To find a good balance between the reconstruction error and the number of non-zero DWT

coefficients, we select λ = 0.05.

We plot the outputs of the SAWD algorithm, Ψk and k, in Fig. 6.5a and 6.5b, respectively.

We notice that the low-frequency signal Ψk obtained by solving (6.12) in Fig. 6.5a is smooth

and preserves the observable patterns of interest of a valid gait cycle. Further, as shown in

Fig. 6.5b, the dominant DWT coefficients in the lower frequency scales [2j−1, 2j), j ∈ {1, 2, 3}
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Table 6.1: Reconstruction error and non-zero coefficients

λ Reconstruction Error (Avg.) Non-Zero Coefficients (Avg.)

0.01 0.007685 13.764706
0.03 0.015022 10.852941
0.05 0.022069 10.323529
0.07 0.029112 9.558824
0.09 0.036047 9.000000
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1

1.05

Figure 6.4: The solid lines indicate the average value of the cost function for different values
of µ ∈ {0.01, 0.1, 1}. The convergence rate varies with the value of µ, however, it does not
affect the cost function.

remain unaffected whereas the DWT coefficients in higher frequency scales [2j−1, 2j), j ∈

{4, 5, 6, 7} are either zero or nearly zero. The template of the DWT coefficients kT is obtained

using (6.21). It is shown as a solid line in Fig. 6.5b, which is a sparse representation of the

scaled and interpolated gyroscope segment. In the fifth trial of the treadmill walking task,

a total of 31 gait cycles were identified from the video data, i.e., M = 31. In Fig. 6.5c

and 6.5d, we plot the scaled and interpolated low-frequency signal for ω0 = 0.025 and the

corresponding DWT coefficients without applying the SAWD algorithm. We notice that the

shapes of the two smoothed signals in Fig. 6.5a and 6.5c are quite similar. However, the

DWT coefficients obtained using the SAWD algorithm contain fewer non-zero coefficients

than the DWT coefficients obtained using only the low-pass filter. Further, the RMSE in

(6.22) for the SAWD algorithm is small (0.246418 ± 0.229323) in comparison to that of the

low-pass filtering method (0.465160 ± 0.118028). Thus, the SAWD algorithm can extract
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(a) Reconstructed segments after applying the
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(b) DWT coefficients of the reconstructed signal.
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(c) Reconstructed segments after applying low-pass
filtering.
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(d) DWT coefficients of the reconstructed signal.

Figure 6.5: Scaled and interpolated gyroscope signal segments measured in the sagittal plane
and its corresponding DWT coefficients. The solid line indicates the mean value, and the
shaded region indicates one standard deviation variance.

a sparse representation of a valid gait cycle in the form of DWT coefficients with minimum

RMSE.

6.4.4 Validation and Segmentation

To validate a moving segment of the inertial sensor data as a gait cycle, we use the gener-

ated DWT coefficient template kT and the DWT coefficients k obtained using the SAWD

algorithm for any moving segment of the gyroscope signal in sagittal plane, and compute

the RMSE in (6.22). The threshold in (6.23), γGCVS, is set to the maximum of one standard
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Table 6.2: Validation of toe-off, heel-strike, swing as percentage of gait cycle using the GCVS method.

Trial #
Toe-off Angle (mean ± std) Heel-Strike Angle (mean ± std) Swing as %GCT (mean ± std) Gait Cycles (detect/actual)

MLBS GCVS MLBS GCVS MLBS GCVS MLBS GCVS

2 30◦ ± 3.2◦ 35.3◦ ± 5.6◦ −14◦ ± 2.2◦ −12.9◦ ± 3.0◦ 39%± 1.2% 38.6%± 9.3% 22/27 25/27
3 31◦ ± 5.3◦ 32.9◦ ± 7.3◦ −15◦ ± 2.4◦ −18.3◦ ± 3.1◦ 40%± 2.1% 41.7%± 2.4% 29/31 29/31
4 33◦ ± 3.5◦ 32.6◦ ± 6.2◦ −17◦ ± 2.6◦ −17.5◦ ± 2.3◦ 40%± 2.0% 42.1%± 3.0% 23/30 27/30
5 32◦ ± 5.1◦ 31.4◦ ± 6.9◦ −18◦ ± 2.7◦ −20.0◦ ± 2.7◦ 40%± 0.9% 42.6%± 2.5% 27/31 28/31
6 33◦ ± 3.2◦ 33.4◦ ± 5.6◦ −18◦ ± 2.5◦ −19.4◦ ± 2.5◦ 40%± 1.7% 42.7%± 3.0% 29/31 30/31
7 33◦ ± 4.8◦ 31.8◦ ± 5.2◦ −18◦ ± 2.6◦ −18.4◦ ± 2.5◦ 40%± 1.1% 43.2%± 3.1% 26/30 29/30

Overall 32◦ ± 4.1◦ 32.9◦ ± 6.1◦ −16.6◦ ± 2.5◦ −17.7◦ ± 2.6◦ 40%± 1.5% 41.8%± 3.8% 156/180 168/180
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deviation of the RMSE values obtained for the valid gait cycles of the treadmill walking

experiment, i.e., γGCVS = 0.50. If a segment is a valid gait cycle, then we compute the

toe-off and heel-strike events using (6.24) and (6.25), respectively. Table3 6.2 compares the

performance our proposed method with an existing method implemented by Mobility Lab

software (MLBS) [50]. The MLBS gait segmentation algorithm is based on a fixed thresh-

olding method developed in [109]. To evaluate the performance of our proposed method, we

define four metrics [50].

1) The toe-off angle of the foot is the angle of the foot as it leaves the floor at push-off. The

pitch of the foot when flat is zero.

2) The heel-strike angle of the foot is the angle at the point of initial contact. The pitch of

the foot is zero when the foot is flat, and positive when the heel makes first contact.

3) The gait cycle consists of exactly one heel-strike and one toe-off event, in that order,

between two consecutive flat foot events.

4) Swing is defined as the percentage of the gait cycle during which the foot is not on the

ground, i.e., it is the ratio of the time between the last heel-strike and toe-off events to

the time of the corresponding gait cycle.

When computing the number of valid gait cycles using video data, we ignore the first stride

because the foot starts from a midstance event. A gait cycle in the video data is defined

as a valid gait cycle if it if it consists of exactly one heel-strike and one toe-off event, in

that order, between two consecutive midstance events. In Table 6.2, we use the DWT

template kT generated in the fifth trial and evaluate the performance of our method in

3Results obtained in the first trial were not included because no video was available
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the remaining trials. We use a zero-velocity aided foot-mounted inertial navigation system

(INS) described in [49,122,141] to estimate the pitch angle of the foot during the gait. The

INS uses the accelerometer and gyroscope sensor measurements along with the zero-velocity

event intervals [1, 79, 142] to estimate the position, velocity, and orientation of the foot via

dead reckoning [143]. As can be seen in Table 6.2, our proposed method detects equal or

more number of gait cycles than the existing method across all trials, except the second,

of the treadmill walking task. In addition, the average values of the estimated toe-off and

heel-strike angles are within one standard deviation of the existing method values.

To demonstrate the robustness of our proposed approach, we use the left foot DWT template

generated in the fifth trial of the treadmill experiment for a healthy participant, and compute

the number of gait cycles detected for inertial sensor data collected in Appendix A.2. In Table

6.3, we report the performance of our proposed method for two tasks whose descriptions are

as follows:

1) Timed up and go (TUG): The participant stands up, walks 3 meters from the chair, turns,

walks back, and returns to a sitting position.

2) Stand and walk (SAW): The participant stands at one end of the walkway, with their

feet comfortably apart and their hands on their hips, for 30 seconds, when a tone sounds.

Then the participant walks 7 meters, turns, walks back, and stops, now facing the opposite

direction of their starting position.

The ground truth was again determined using video data. We ignored the open-ended walk

task dataset because the participant’s gait was not captured in the video data during some

instances of the trial. As can be seen in Table 6.3, our proposed method demonstrates

an improved performance in detecting valid gait cycles across different tasks. In addition,
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Table 6.3: Performance of MLBS and GCVS algorithms

PID #
TUG1 TUG2 SAW

MLBS GCVS MLBS GCVS MLBS GCVS

01 1/3 3/3 1/4 4/4 7/10 9/10
02 5/13 13/13 7/13 10/13 18/20 19/20
03 0/6 6/6 0/7 7/7 5/8 8/8
05 0/4 3/4 1/5 5/5 0/8 7/8
08 1/6 6/6 0/6 6/6 7/12 11/12
09 0/6 5/6 0/7 7/7 7/10 10/10
10 0/3 2/3 0/5 5/5 5/8 8/8

Overall 7/41 38/41 9/47 44/47 49/76 72/76

our proposed method also detected gait cycles during turns when the gait did not involve

pivoting using either of the two feet.

6.5 Numerical Results

In this section, we compare our proposed method with existing methods based on either

thresholding or template matching and thresholding. We use the prefixes online (ON) and

offline (OFF) to indicate if an existing method can be implemented in real time. The details

of implementing the existing methods are as follows:

• The peak detection (OFF-PDT) algorithm is an offline implementation of the gait cycle

validation and segmentation algorithm which works on the principle of thresholding

the gyroscope signal in the sagittal plane [109]. In the first step, the gyroscope signal

is filtered using a high-pass IIR filter with cutoff frequency 0.25 Hz. Next, the mid-

swing area is determined by finding the local maxima of the gyroscope signal. Only

peaks that are greater than 50◦/sec are considered. In addition, if multiple adjacent

peaks within 500 millisecond are detected, the peak with the highest amplitude is
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selected. In the final step, the local minimum peaks within a ±1.5 millisecond interval

around the local maxima are searched such that the amplitudes of the local minima

are less than −20◦/sec, and the two local minimums on either side of the mid-swing

peak, representing the toe-off and heel-strike events, are separated by at least 200

milliseconds.

• The subsequence dynamic time warping (OFF-SDTW) is an offline implementation of

the gait cycle validation and segmentation algorithm which works on the principle of

thresholding and template matching [113]. To generate a template of a valid gait stride,

the gyroscope measurement in the sagittal plane obtained from 25 elderly individuals

performing a 40 meter walk protocol, is manually segmented, scaled, and interpolated.

Given an input sequence of gyroscope measurements in the sagittal plane, the OFF-

SDTW algorithm scales the amplitude of the gyroscope measurements, and constructs

a distance matrix which captures the similarity measurements between the input se-

quence and template. Note that the method proposed in [113] can also be extended to

multidimensional axes, however, in this work we only considered the sagittal axis of the

gyroscope. In the next step, matrix which represents the accumulated cost of warp-

ing the template to parts of the input sequence is constructed. Thereafter, the local

minima of the top row of the accumulated cost matrix, which represents the starting

points of the warping paths are determined using a fixed threshold γOFF−SDTW. Fi-

nally, a monotonically decreasing path, called the “warping path,” is traced from the

local minima in the first row of the accumulated cost matrix to the last row of the

accumulated cost matrix. Additional constraints based on the duration and overlap-

ping regions of the warping paths are also applied to remove outliers. In our work, we

determined the optimal value of the threshold γOFF−SDTW by manually incrementing
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its value in steps of five and selected the one that gave the best results. We used a

fixed threshold of γOFF−SDTW = 20.0 in all our simulations.

• Dynamic time warping (ON-DTW) is a real-time implementation of the gait cycle

validation and segmentation algorithm which constructs a distance grid between the

given input sequence and the template signal, and finds the shortest path through the

grid which minimizes the total distance between the two sequences [120]. The total

distance of the shortest path is the measure of similarity between the two sequences.

For example, if the input sequence is exactly same as the template sequence, then the

measure of similarity is zero. However, in many practical scenarios, it is very rare for the

input sequence to match the template sequence. Therefore, in practice, a certain fixed

threshold γON−DTW is used to determine sequences that match closely with the template

sequence. In addition, we applied a fourth-order zero-phase low-pass Butterworth filter

with a cutoff frequency of 15 Hz to smooth and reduce the variance of the similarity

measure of the input sequence. To generate a template signal, we scaled, interpolated,

and computed the average of the non-stationary segments gyroscope signal in the

sagittal plane for the second experiment of the treadmill walking task. Analogous to

the GCVS algorithm, a similarity metric is computed between the template signal,

and the scaled and interpolated non-stationary segment of the gyroscope signal in the

sagittal plane. If the similarity metric is less than a fixed threshold γON−DTW, then the

non-statioanry segment represents a valid gait cycle. In our work, we set γON−DTW as

two standard deviations from the mean value of the similarity measure obtained across

all valid gait segments of the second trial of the treadmill walking experiment, i.e., we

use a fixed threshold of γON−DTW = 4.0 in all our simulations.
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We did not include the MLBS in our analysis because the proprietary software supports

sensor data from APDM Opal sensors only. However, the MLBS uses OFF-PDT to validate

and segment a gait cycle.

6.5.1 Fixed Sampling Rate (Excluding Turns)

Data Collection, Tasks, and Manual Segmentation

We evaluate the proposed and existing methods using a publicly available inertial sensor

database [113, 144]. The database consists of 45 participants, equally divided into three

groups, namely control participants, participants with Parkinson disease, and geriatric par-

ticipants. More details about the participants included in the study can be found in [113,

Table I]. Inertial measurement units manufactured by Shimmer Sennsing were mounted lat-

erally to the heel of the participant’s right and left shoe to acquire inertial sensor data from

both feet simultaneously [51]. The data was recorded at a sampling rate of 102.4 Hz. The

participants were asked to perform two tasks:

• 40 meter walk: In this task, the participant walks along a 10 meter straight path at

a comfortable self-selected speed, turns, walks back, returns to the starting position,

and repeats this routine two times.

• Free walk: In this task, the participant walks for two minutes at a comfortable self-

selected speed around the University Erlangen Hospital where the study was conducted.
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Only strides from straight walking were identified and labeled as ground truth. Turning

movements with more than 45◦ per stride were excluded in the free walk protocol. We refer

to the video data as gold standard data.

Metrics

To evaluate the proposed and existing gait cycle validation and segmentation algorithms, we

define three variables. The definition of each variable is as follows:

• Detection positives : The number of strides identified by the selected gait cycle valida-

tion and segmentation algorithm.

• True positives : The number of strides identified by the selected gait cycle validation

and segmentation algorithm, and also labeled as valid stride in the gold standard data.

• False negatives : The number of strides not identified by the selected gait cycle valida-

tion and segmentation algorithm.

Based on these variables, we define three performance metrics namely precision, recall, and

F1 score. Precision is defined as the ratio of the number of true positives to the number

of detection positives. Precision is equal to one if all the strides identified by the selected

algorithm are labeled in the gold standard data. Recall is defined as the ratio of the number

of true positives to the sum of the number of true positives and false negatives. Recall is

equal to one if no false negatives are identified, i.e., no stride is missed. F1 score is the

harmonic mean of precision and recall, and takes into account missing strides and wrongly

detected strides.
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Data Analysis

In Table 6.4 and 6.5, we present the average value of the performance metrics for the proposed

and existing methods. The best results are obtained for the OFF-SDTW algorithm [113].

However, the OFF-SDTW algorithm cannot be implemented in real time because the accu-

mulated cost matrix requires access to the entire input sequence. Furthermore, the OFF-

SDTW algorithm is also computationally expensive because identifying the warping path

requires a grid search operation of complexity O(PQ), where P and Q are the lengths of the

template and input sequence, respectively. In contrast, the OFF-PDT algorithm is computa-

tionally inexpensive, but the performance varies depending on the task selected. In addition,

the precision values of the OFF-PDT algorithm are lower than the OFF-SDTW method be-

cause turns were neglected in the gold standard. The ON-DTW algorithm performs poorly

for geriatric participants because there is a significant mismatch between the template of a

valid gait cycle of a healthy and geriatric participant. The proposed ON-GCVS algorithm

demonstrates high recall values across control participants and participants with Parkinson

disease. However, the precision is slightly lower because our proposed method can also detect

gait cycles during turns which were not included in the gold standard for database in [113].

In the case of geriatric participants, our proposed method performs significantly better than

the ON-DTW algorithm even when there is a mismatch between the template of a valid gait

cycle of a healthy and geriatric participant.
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Table 6.4: Performance of the proposed and existing methods for the 40 meter walk task.

Method

40 Meters WALK

Controls PD Patients Geriatric Patients Average

Precision Recall F1 Score Time Precision Recall F1 Score Time Precision Recall F1 Score Time F1 Score

OFF-PDT 79.91% 97.57% 87.78% 0.036 80.07% 98.61% 88.32% 0.035 80.23% 100.0% 88.93% 0.050 88.34%
OFF-SDTW 83.66% 100.0% 90.98% 0.611 81.85% 100.0% 89.98% 0.628 92.01% 97.40% 94.56% 1.506 91.84%
ON-DTW 84.71% 93.14% 88.20% 0.001 82.69% 86.41% 83.16% 0.001 93.59% 62.49% 68.23% 0.002 79.86%
ON-GCVS 79.12% 100.0% 88.25% 0.020 79.10% 100.0% 88.28% 0.018 84.72% 91.40% 86.34% 0.017 87.62%
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Table 6.5: Performance of the proposed and existing methods for the free walk task.

Method

Free WALK

Controls PD Patients Geriatric Patients Average

Precision Recall F1 Score Time Precision Recall F1 Score Time Precision Recall F1 Score Time F1 score

OFF-PDT 73.46% 100.0% 84.68% 0.219 76.43% 100.0% 86.57% 0.190 76.13% 99.47% 86.13% 0.178 85.79%
OFF-SDTW 79.00% 99.83% 88.13% 4.161 84.04% 99.81% 91.18% 5.250 86.86% 97.42% 91.76% 6.571 90.35%
ON-DTW 90.00% 98.08% 93.86% 0.003 81.85% 80.32% 80.08% 0.003 93.65% 66.67% 70.22% 0.002 81.38%
ON-GCVS 77.65% 100.0% 87.39% 0.019 80.08% 98.70% 88.17% 0.019 82.91% 95.30% 88.27% 0.020 87.94%
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6.5.2 Variable Sampling Rate (Including Turns)

Data Collection, Tasks, and Manual Segmentation

We evaluate the threshold invariance property of the proposed and existing methods using

real data collected from 16 participants with Parkinson disease [1], given in Appendix A.1.

To assess gait, we assigned the participants several tasks one of which was the 12 meter walk

task. In the 12 meter walk task, the participant was asked to walk forward along a full 6

meter straight path. On reaching the end, the participant made a 180◦ turn and returned to

the starting point. The ground truth or gold standard was obtained using video data. For

the database in Appendix A.1, turning movements were also included in the gold standard.

Template Generation

Generating a template is essential in both the ON-DWT and ON-GCVS algorithms especially

when the sampling rate varies. To select training data for template generation, we used two

criteria: a) the participant did not exhibit freezing of gait or any abnormal gait pattern during

the trial, and b) the number of valid gait segments was maximum across all participants.

Only participant TT022 matched the criteria for data selection, and the sensor data from

valid gait cycle segments was used to generate the DWT coefficient template kT and DTW

template sequence.
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Table 6.6: Performance of the existing and proposed methods for the free walk task [1].

Method

12 Meters WALK

Fs = 125 Hz Fs = 250 Hz Fs = 500 Hz Average

Precision Recall F1-Score Time Precision Recall F1-Score Time Precision Recall F1-Score Time F1 Score

OFF-PDT 86.88% 98.80% 92.26% 0.112 86.94% 99.52% 92.75% 0.107 86.16% 99.52% 92.25% 0.196 92.42%
OFF-SDTW 88.89% 90.69% 89.93% 0.754 84.58% 88.38% 86.25% 1.421 77.32% 81.86% 79.43% 2.982 85.20%
ON-DTW 92.53% 90.14% 91.48% 0.001 64.58% 26.00% 36.64% 0.001 00.00% 00.00% 00.00% 0.001 42.70%
ON-GCVS 90.87% 100.0% 95.19% 0.020 88.77% 99.28% 93.65% 0.128 79.53% 100.0% 88.48% 0.054 92.44%
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Data Analysis

In Table 6.6, we present the results of the average values of precision, recall, and F1 score

for the 12 meters walk task, for the proposed and existing methods. The thresholds of

the proposed and existing methods are held constant and only the sampling rate of the

sensors are varied. We used the same performance metrics as defined in Section V-A. As

can be seen in Table 6.6, the performance of the OFF-SDTW algorithm decreases as the

sampling rate of the sensors increases because the entries of the accumulated cost matrix

vary based on the sampling rate. Further, the computational cost of identifying the warping

path also increases with the sampling rate. A like trend in the computational cost is also

observed for the OFF-PDT algorithm. However, the performance of the OFF-PDT algorithm

remains consistent across varying sampling rate because the amplitude of the signal remains

unaffected by changing the sampling rate. The ON-DTW performs poorly on increasing

the sampling rate because the similarity metric value between the template and the input

sequence increases on increasing the sampling rate. In contrast, the proposed ON-GCVS

method is computationally inexpensive and takes approximately 0.067 seconds on an average

per dataset. Furthermore, the F1 score of the proposed method is as good as the offline

implementation of the PDT algorithm and significantly better than the existing real time

method.

6.6 Chapter Summary

We developed a robust and computationally efficient framework to validate and segment a

gait cycle in real time. We first used the physical models of sensor data from a foot-mounted

inertial system to detect the stationary and moving segments in the sensor data. Thereafter,
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to validate a moving segment of sensor data as a gait cycle, we developed an optimization

routine called sparsity-assisted wavelet denoising. In SAWD, we combined low-pass filtering,

wavelets, and sparsity-based methods to extract a sparse template of a valid gait cycle in the

form of DWT coefficients with minimum RMSE. Finally, we detected midstance, toe-off, and

heel-strike by finding the local minima of the stationary and non-stationary regions of a valid

gait cycle. We demonstrated the robustness of our proposed approach by extracting a DWT

coefficient template from a healthy participant, and applying it to sensor data obtained

from control participants, participants with Parkinson disease, and geriatric participants.

Our results showed a consistent performance, with an average F1 score of 87.78% across all

groups for a fixed sampling rate. In addition, we also demonstrated the threshold invariance

property of our proposed method by keeping the threshold fixed and varying the sampling

rate. Our proposed method yielded an average F1 score of 92.44% across all Parkinson

disease participants for a variable sampling rate.

In the next chapter, we integrate the gait cycle validation and segmentation module with our

existing system design to detect and track freezing of gait in Parkinson disease, and improve

the accuracy of detecting and/or predicting freezing of gait.
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Chapter 7

System Integration: A Modular

Approach

In this chapter, we develop a modular approach to track freezing of gait (FOG). The proposed

method adapts to individual gait patterns and automatically detects FOG patterns explicitly

in real time. Our modular approach consists of four modules, namely detection, navigation,

validation, and filtering. We begin by detecting gait patterns associated with FOG, such as

alternating trembling and no movements, by using the physical models of the inertial sensor

data that describe these gait patterns during the FOG events. Thereafter, to filter falsely

detected FOG events, we use the navigation and validation module to extract information

about the gait. In the navigation module, we use a zero-velocity aided inertial navigation

system to estimate the position, velocity, and orientation angles of the foot. In the validation

module, we identify non-stationary segments of the inertial sensor data as valid gait cycles.

Finally, the filtering module combines the output of the detection module with the weights

generated using a participant-specific tunable parameter, the extracted gait parameters, and

the information from the valid gait cycles, and computes the probability of FOG (pFOG). We

develop two novel methods to automatically adjust the participant-specific tunable parameter
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based on the foot motion dynamics. We validate the performance of the proposed system

design using real data obtained from people with Parkinson disease who performed a set

of gait tasks. The results indicate improved performance, with an average accuracy greater

than 85% and an average false positive rate of less than 14%.

7.1 Introduction

Parkinson disease is the second most common neurodegenerative disorder, affecting 1-1.5

million people in the United States alone. The main pathological process in Parkinson disease

is a loss of dopaminergic subcortical neurons, which leads to various motor impairments [2].

Approximately 50% of people with Parkinson disease experience freezing of gait [3,4] (FOG),

a brief, episodic absence or marked reduction of forward progression of the feet despite the

intention to walk. FOG causes falls and is resistant to medication in more than 50% of

cases [5,6]. FOG episodes can often be interrupted by mechanical interventions or strategies

(e.g., a verbal reminder to march), but it is often not practical to apply these interventions

on demand (e.g., there is not usually another person to detect an FOG episode and provide

the reminder). Wearable sensors offer the possibility of detecting FOG episodes in real time

and thus developing a “closed-loop” approach to treatment: real-time detection could be

coupled with on-demand interventions to reduce the duration of FOG episodes.

The gold standard of FOG assessment involves evaluation of video recordings of ambulating

participants by expert raters of FOG [25], with a variable inter-rater reliability, ranging from

low to good [26]. However, this approach offers limited information about the frequency and

patterns of FOG away from the laboratory environment and requires substantial training of

raters and time-consuming off-line data analysis [27]. In the last decade, objective evaluation
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methods using wearable sensor technology to monitor and assess FOG have been developed

with varying success [7–9]. Experiments have primarily been conducted for understanding

the bilateral coordination [10–13] of steps during gait, using force resistive sensors embedded

in the sole of the shoe. They have also employed analysis of the spectral characteristics of

the accelerometry signal [14–16] from devices attached to the lower extremities, or have used

methods from machine learning [17–21] to classify features extracted from inertial sensor

data. For example, researchers extracted spectral characteristics of the accelerometer signal

and demonstrated that the power of the signal belongs to two non-overlapping spectral

bands during FOG and normal gait [14]. The use of machine learning methods to classify

features extracted from the accelerometer signal that capture the uncoordinated nature of

the gait, such as trembling of the feet, short stride lengths, and unstable walking, is explored

in [17–21, 145]. However, these methods do not present a signal model that captures the

FOG patterns explicitly, and they provide limited utility for understanding the potential

underlying mechanisms revealed by the structure of the sensor data during FOG. Further,

methods based on spectral characteristics of the accelerometry signal completely ignore the

effect of various sources of error in the sensor [29]. Finally, the use of long window lengths

to extract features from the sensor data often lead to delays in determining the onset of the

FOG event, thus hindering use in a real-time framework.

To address these shortcomings, we developed physically-based signal models for the sensor

data associated with the FOG patterns. Based on these models, we designed statistical

signal processing methods that detect the onset and duration of the FOG events. The three

modules of our system are detection, tracking, and filtering. The detection module contains

two fixed-threshold detectors to determine instances of alternating trembling intervals and

no-movement (zero-velocity) intervals. We considered these thresholds as fixed because they

are not sensitive to the individual gait patterns. To identify FOG gait patterns involving
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Figure 7.1: Overview of the proposed system design to detect and track FOG in Parkinson
disease.

alternating trembling in the lower extremities, and quickening steps on the toes and ball of the

feet in festinating gait, we exploited the fact that these events are associated with alternating

trembling motions of the sensor about a fixed axis and modeled them as trembling event

intervals (TREI). Similarly, to identify FOG gait patterns such as no movement of limbs,

we used the fact that these events are associated with zero-velocity and modeled them as

zero-velocity event intervals (ZVEI). In Chapter 3, we modeled the inertial sensor data for

the gait patterns observed during FOG, and detected ZVEI and TREI. However, not all

trembling and zero-velocity event intervals detected are associated with FOG. For example,

trembling intervals are associated with the heel lift-off and heel strike phases of a gait cycle,

and zero-velocity event intervals are associated with the flat foot phase of a gait cycle.

Therefore, to filter out gait events not associated with FOG, we considered the fact that FOG

is associated with small foot speeds [78]. We used a zero-velocity aided inertial navigation
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system and estimated the speed of the foot. In Chapter 4, we briefly described the navigation

mechanization equations of a zero-velocity aided foot-mounted inertial navigation system

(ZV-INS), which estimated the position, velocity, and orientation angles of the foot during

gait. To detect the onset and duration of the FOG events, we developed a point-process filter

which computed the probability of FOG (pFOG). We first modeled the edges of the TREI as

point-process, and assigned weights to the edges, which depended on the average value of the

speed of the foot at the edge and a participant-specific tunable parameter. The participant-

specific tunable parameter determined the weight, which was inversely proportional to the

average value of the speed of the foot. Then, we integrated these weights over a time

window, using a Bayesian recursive filter. In Chapter 5, we derived a point-process filter

which combined the TREI with the weights assigned, and computed pFOG. Note that, in our

previous work, the participant-specific tunable parameter was adjusted manually for every

participant based on their gait patterns. This adjustment required a thorough grid search

operation, which was a tedious and computationally expensive task. In addition, a value

of the tunable parameter that was participant-specific but fixed over time was unlikely to

be adequate. Ideally, the parameter should be adapted to specific gait patterns, which are

subject to change depending on the participant’s gait, symptoms, and treatment strategy.

To overcome the need to manually tune the participant-specific parameter, here we propose a

modular approach to detect and track FOG in Parkinson disease. In our previous work, our

system design comprised of three modules: detection, navigation, and filtering [1]. Our main

contribution in this works involves incorporating a gait cycle validation module, and using

the information from the gait cycle validation module to adaptively tune the participant-

specific parameter. In particular, we use the output of the validation module and modify

the point-process filter in the filtering module. In Chapter 6, we developed the gait cycle

validation and segmentation algorithm. We propose two new methods to automatically adapt
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the participant-specific tunable parameter, using the gait information extracted from the last

valid gait cycle. In the first approach, we extend our previous method [1] by automatically

tuning the participant-specific tunable parameter based on the average value of the foot

speed observed in the last valid gait cycle. We modify the weights assigned to the edges of

the trembling event intervals dynamically using the average value of the speed of the foot

in the last valid gait cycle. In the second approach, to automatically select the participant-

specific tunable parameter, we first evaluate three gait parameters, namely speed, pitch

angle, and freeze index [14] of the foot, by computing their average values during valid gait

cycles and FOG events. The weight assigned to the edge of the trembling event interval is a

weighted average of the selected gait parameters. In addition, we also modify the conditional

intensity function of the point-process filter by dynamically adapting the background spiking

rate, based on the density of the spikes due to the edges of the trembling event intervals.

Finally, we use the output of the gait cycle validation module to reset the point-process filter

and also filter those edges of the trembling event intervals that do not belong to a FOG

event. In other words, if the trembling event interval belongs to a valid gait cycle, then

the weights assigned to the edges of the trembling event intervals that belong to the valid

gait cycle event are set to zero because they do not contribute to FOG. To demonstrate

the capabilities of the proposed modular approach, we will present an illustrative example

using real data. We evaluate the method’s performance on data obtained from participants

with Parkinson disease. The proposed method promises to speed the development of a

personalized healthcare gait analysis system using inertial sensors.

Sections 7.2.1 and 7.2.2 propose two novel methods to automatically select the participant-

specific tunable parameter, based on the foot motion dynamics. With the help of an illustra-

tive example, in Section 7.3 we demonstrate the output of each system module. In Section

7.4, we present the experimental results. Our conclusions are presented in Section 7.5.
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7.2 Adaptive Approach

In this section, we propose two novel methods to automatically select the participant-specific

tunable parameter. Developing a closed-loop system design involves dynamically adjusting

the weights assigned to the edges of the trembling event intervals based on the information

extracted from the gait in the last valid gait cycle and the gait parameters observed at the

edges of the trembling event intervals at the current time.

7.2.1 Average Foot Speed

In the first approach, we assign weights to the edges of the trembling event intervals based on

the average value of the foot speed observed in the last valid gait cycle. Because degradation

of gait occurs prior to a FOG episode [146] and FOG is associated with small foot speeds [78],

we use the average value of the speed of the foot in the last valid gait cycle.

In Chapter 5, we modeled the edges of TREI as a point-process. We assigned weights to

the edges of the trembling event intervals by computing the average value of the speed of

the foot in the bin intervals ((k − 1)∆, k∆], where k ∈ N is the bin number and ∆ is the

bin width in seconds or samples [1]. Here, to assign weights to bins, we used a Gaussian

kernel with zero mean and σs standard deviation, defined as the participant-specific tunable

parameter, and given as

wk = (1/
√

2πσ2
s ) exp

(
−x2/(2σ2

s )
)
, (7.1)

where wk is the weight assigned and x is the average value of the speed of the foot observed

in a bin containing a rising or falling edge of the trembling event interval. The main purpose
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of using a Gaussian kernel was to bound the weights assigned to the edges of the trembling

event intervals. Bins with small foot speeds were assigned large weights, and vice versa. The

participant-specific tunable parameter was adjusted manually for every participant, based on

their gait patterns, so that the number of FOG events detected was maximized. However,

a value of the tunable parameter that was fixed is unlikely to be adequate because gait

patterns change with the participant’s gait symptoms and treatment intervention strategies.

To overcome the need for manual tuning, we use the average value of the speed of the

foot from the last valid gait cycle and automatically tune the participant-specific tunable

parameter. We use the same Gaussian kernel as before. If v̄ denotes the average value of the

speed of the foot in the last valid gait cycle, then the participant-specific tunable parameter

σs is adjusted as shown in Fig. 7.2. In other words, the algorithm dynamically selects

one Gaussian probability density function among those shown in Fig. 7.2 and generates

weights using equation (7.1) for the edges of the trembling event intervals in the current

bin. We initialize the participant-specific tunable parameter σs to 0.40 because a unit weight

is assigned to the edge of the trembling event interval if the average speed of the foot in

the current bin is close to zero. Further, if σs = 0.40, then the average foot speeds belong

to (1.00, 1.25] m/sec. This range of average foot speeds overlaps with the walking speeds

of the healthy controls who belong to the same age group as participants selected in this

experiment [147]. Starting at an initial value of σs = 0.40, the participant-specific tunable

parameter automatically adjusts itself based on the average value of the speed of the foot in

the last valid gait cycle. We call our proposed method as “pFOG via average foot speed”

(pFOG-AFS). The details of implementing the pFOG-AFS algorithm are same as Algorithm

2 in Chapter 5, except that the weights assigned to the TREI are updated every time the bin

interval ((k− 1)∆, k∆] belongs to the trailing edge of a valid gait cycle event. Furthermore,

we use the information about the validity of the gait cycle to reset the point-process filter,
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Figure 7.2: Gaussian kernel functions with zero mean and standard deviation equal to the
participant-specific tunable parameter σs. The parameter σs is initialized to 0.40.

i.e., when the bin ((k− 1)∆, k∆] contains information about the trailing edge of a valid gait

cycle event, then

θk|k = θ0|0, (7.2)

Jk|k = J0|0. (7.3)

7.2.2 Weighted Average of Gait Parameters

In the second approach, we modify the conditional intensity function in (5.6) by dynamically

adapting the background spiking rate. We also use a multi parameter model to assign weights

to the bins containing edges of the trembling event intervals. To modify the conditional

intensity function, we first consider a variable background spiking rate of the trembling

event intervals, i.e., α is not longer fixed and it varies with k, where k denotes the index of

the bin interval ((k − 1)∆, k∆]. Let ηk = [αk, θ
T

k ]
T denote the latent parameter, then the

modified conditional intensity function is given as

λk(ηk,Hk) = αk + β(θT
k Wkθk), (7.4)
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where θk = [θk,0, · · · , θk,ℓ−1]
T ∈ R

ℓ×1 is the latent parameter vector, Wk = diag{wkδBk, . . . ,

wk−ℓ+1δBk−ℓ+1} ∈ R
ℓ×ℓ denotes the matrix containing the weights observed in ((k − ℓ −

1)∆, (k−1)∆], Hk = [δBk−ℓ−1:k−1, bk−ℓ−1:k−1,wk−ℓ−1:k−1] is the history of the activity of the

spikes modeled as the edges of the trembling event intervals observed in ((k − ℓ− 1)∆, (k −

1)∆], and ℓ is the length of the history. The parameters δBk−ℓ−1:k−1 = [δBk−ℓ−1, · · · , δBk−1],

bk−ℓ−1:k−1 = [bk−ℓ−1, · · · , bk−1], and wk−ℓ−1:k−1 = [wk−ℓ−1, · · · , wk−1] denote the activity

of observable parameters of TREI up to time k∆, where δBk and bk denote an indicator

variable4 and the number of spikes in the interval ((k − ℓ− 1)∆, (k − 1)∆], respectively.

We use the same approach as described in Appendix D.1 and derive the point-process filter.

The equations of the point-process filter are same as (5.11a)-(5.11d), however, we replace θk

with ηk. In addition, the first and second derivative of λk(ηk,Hk), denoted by λ′k(ηk,Hk)

and λ′′k(ηk,Hk), respectively are given as [1, 2βθT
k W

T
k ]

T and diag{0, 2βWk}. Note that by

including the background spiking rate in the latent parameter vector ηk, the size of the

system evolution matrix Ak, noise covariance Nk, state prediction matrix Jk|k−1, and state

update matrix Jk|k all increase by one. Furthermore, we use the information about the

validity of the gait cycle to reset the point-process filter, i.e., when the bin ((k − 1)∆, k∆]

contains information about the trailing edge of a valid gait cycle event, then

ηk|k = η0|0, (7.5)

Jk|k = J0|0. (7.6)

Note that resetting the point-process filter also resets the background spiking rate αk to its

initial value.

4δBk = 1, if bk 6= 0 and δBk = 0, if bk = 0.
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Figure 7.3: Boxplots of average values of the gait parameters during valid gait cycles (VGC)
and freezing of gait (FOG) events.

Next, we assign weight to an edge of the trembling event interval, based on the weighted

average of the observable gait parameters in the bin containing the edge of the trembling

event interval. In our approach we consider three different gait parameters: a) speed, b)

pitch, and c) freeze index [14]. Both speed and pitch are extracted from the navigation

module. To calculate the “freeze index”, we compute the ratio of the square of the area

of the power spectrum in the ‘freeze-band’ and ‘loco-band’, using a moving window of 4

seconds. Fig. 7.3 shows the boxplot of the average values of the foot speed, pitch angle,

and freeze index, for valid gait cycles (VGC) detected using the validation module and FOG

events in the inertial sensor data marked by a trained gait analysis expert for the tasks listed

in Appendix A.2. As can be seen, FOG is associated with small foot speeds, low pitch angles,

and high freeze indices. Further, among all the selected gait parameters, the average value

of the speed of the foot demonstrates less overlap between VGC and FOG events.
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Figure 7.4: Exponential kernel function used in generating weights based on the average
value of the pitch angle and freeze index of the foot.

Let w
(i)
k denote the generated weight based on the selected gait parameter i ∈ {s, p, f}, where

the superscripts s, p, f, respectively denote the speed, pitch, and freeze-index of the foot. To

generate a weight w
(s)
k corresponding to the speed of the foot, we follow the same approach

as discussed in Section 7.2.1; i.e., the weights assigned to the edges of the trembling event

intervals depend on the speed of the foot in the last valid gait cycle. To generate weights for

the pitch angle and freeze index of the foot, we use a squared exponential kernel function,

which is defined as

w
(i)
k = exp

(
−(x− µ)2/τ 2

)
, (7.7)

where µ and τ respectively are the mean and characteristic length scales. Our main purpose

in using the kernel function is to bound the value of the gait parameters. In Fig. 7.4, we

plot the kernel functions that are mapped to the pitch angle and freeze-index of the foot.

The values of µ and τ for the exponential kernel functions are determined from the boxplots

in Fig. 7.3. For instance, the weights generated for pitch angles greater than zero are set

to zero. Note that the weights generated are inversely proportional to the average value of

the speed and pitch angle of the foot, and directly proportional to the freeze index of the

foot. Finally, the weight assigned to the edge of the trembling event interval is computed as
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the weighted average of the weights obtained from the selected gait parameters mapped to

a corresponding kernel function, i.e., if wk is the weight assigned to the edge of a trembling

event interval, then

wk =

3∑

i∈{s,p,f}

ciw
(i)
k , where

3∑

i∈{s,p,f}

ci = 1, (7.8)

and 0 ≤ ci ≤ 1. In our work, we set ci = 1/3 ∀i ∈ {s, p, f}. We call our proposed method

“pFOG via weighted average” (pFOG-WA). The details of implementing pFOG-WA is listed

in Algorithm 4.

Algorithm 4 TREI Aided Point-Process Filter

1: procedure pFOG WA(v, p, f , t)
2: initialize:
3: k ← 0, ∆← bin size, ℓ← length of history process
4: η0|0,J0|0 ← initialize point-process filter
5: MAX← ⌈len(t)/∆⌉,
6: repeat:
7: k ← k + 1
8: bk−ℓ−1:k−1,∆Bk−ℓ−1:k−1 ← generate point-process(t)
9: Wk ← generates weights(v,p, f , σs)
10: ηk|k−1 ← Akηk−1|k−1

11: Jk|k−1 ← AkJk−1|k−1A
T
k +Nk

12: pk ← 1/(1 + exp(−λk(ηk,Hk)))
13: θk|k ← θk|k−1 + Jk|k [(bk −Bpk)λ′k(ηk,Hk)]ηk|k−1

14: J−1
k|k ← J−1

k|k−1+
[
(Bpk − bk)λ′′k(ηk,Hk) +Bpk(1− pk)λ′k(ηk,Hk)(λ

′
k(ηk,Hk))

T
]

ηk|k−1

15: p′k = (1/l)
∑ℓ−1

i=0 pk−i

16: if ((k − 1)∆, k∆] contains trailing edge of valid gait cycle then
17: updates weights(v,p, f , σs)
18: reset point-process filter
19: end if
20: until k = MAX
21: end procedure
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7.3 Illustrative Example

In this section, with the help of an illustrative example, we demonstrate the output of

each module of the proposed system, shown in Fig. 7.1. We use the inertial sensor data

from participant identity (PID) 08, performing a two-minute WALK task (see Table A.2 for

details). During this task, the participant takes seven turns in total, and experiences turning

freeze in five of the seven turns. The true instance of FOG events detected in the video data

are indicated with a red background in all the figures. In Fig. 7.5(a) and 7.5(b), we plot

the outputs of the three-axis accelerometer and three-axis gyroscope obtained from the right

foot IMU of PID 08 for the two-minute WALK trial. Recall that the goal of Detector-I

is to detect no movement or trembling motion intervals, which are modeled as ZVEI and

TREI, respectively. The goal of Detector-II is to distinguish ZVEI from TREI based on the

output of Detector-II. In Fig. 7.6(a) and 7.6(b), we plot those outputs of the Detector-II

that are either ZVEI or TREI. The system parameters of the detection module are given

in Table E.1 of the Appendix E.1. As can be seen, the density of ZVEI and TREI during

FOG events increases because of the alternating trembling motion of the foot. However,

Detector-II also detects TREI during straight walk. Therefore, to detect the FOG region,

which is a reflection of both ZVEI and TREI, we use the fact that FOG is characterized by

small foot speeds, low pitch angles, and high freeze indices.

To extract the gait parameters, such as the speed and pitch angle of the foot, we use the

navigation module. The goal of the navigation module is to estimate the position, velocity,

and orientation angles of the foot. In Fig. 7.7(a) and 7.7(b), we plot the speed and pitch

angle of the foot, respectively. The parameters of the navigation module used to compute

the speed and pitch angle of the foot are given in Table E.2 of Appendix E.1. The speed of

the foot goes to zero at ZVEI. Furthermore, from Fig. 7.7(a) and 7.7(b), we can verify that
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Figure 7.5: Sensor module. (a) Three-axis accelerometer measurements. (b) Three-axis
gyroscope measurements.
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Figure 7.6: Detection module. (a) Zero-velocity event intervals (ZVEI). (b) Trembling event
intervals (TREI).

FOG is indeed associated with small foot speeds and low pitch angles. We also compute

the freeze index as one of the gait parameters to predict FOG. Note that the freeze index

is not an output of the navigation module, but it is computed separately, using the z-axis

measurements of the accelerometer signal. To calculate the freeze index, we compute the

ratio of the square of the area of the power spectrum in the ‘freeze-band’ (3-8 Hz) and ‘loco-

band’ (0.5-3 Hz), using a moving window of 4 seconds. The freeze index is normalized by

multiplying by 100 and taking the natural logarithm [14]. In Fig. 7.7(c), we plot the freeze

index value of the right foot, during FOG events, the foot demonstrates high freeze index

values.
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Figure 7.7: Navigation module and freeze index. (a) Speed of the foot. (b) Pitch angle of
the foot. (c) Freeze index of the foot.
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Figure 7.8: Validation module. (a) Gyroscope signal in the sagittal plane with an overlay of
the valid gait cycles detected using the validation module.
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Figure 7.9: Filtering module. (a) pFOG computed using a point-process filter with a fixed
participant-specific tunable parameter, σs = 0.40.

To filter TREI associated with valid gait cycles, we use the validation module to identify

non-stationary segments of the gyroscope signal in the sagittal plane that are associated with

gait cycles. In Fig. 7.8(a), we plot the gyroscope signal in the sagittal plane with an overlay

of the valid gait cycles detected using the validation module. The non-stationary segments
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Figure 7.10: Filtering module. (a) The value of σs changes based on the average value of
the speed of the foot in the last valid gait cycle. (b) pFOG computed using a point-process
filter with an adaptive σs
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Figure 7.11: Filtering module. (a) The value of the background spiking rate αk changes
based on the density of the edges of the trembling event intervals. (b) pFOG computed
using a point-process filter with a weighted average function.

of the gait which represent a valid gait cycle are highlighted with a green background. The

parameters used in the validation module are given in Table E.3 of Appendix E.1. We observe

that the validation module detects gait cycles when the participant walks along a straight

path, but not during turns, because the gyroscope signal in the sagittal plane do not contain

typical patterns such as “valleys,” “peaks,” and “plateaus” during turning movements.

To detect the onset and duration of FOG, we use the point-process filter. The edges in the

TREI contain information about both ZVEI and TREI, a combination which represents FOG

144



patterns. In Fig. 7.9(a), we plot the pFOG, computed using a fixed value of the participant-

specific tunable parameter σs = 0.40, which represents (1.25, 1.50] m/sec range of the average

value of the foot speed. The parameters of the filtering module used to compute pFOG of

the foot are given in Table E.4 of Appendix E.1. We set the pFOG threshold as 0.7, so that

the binomial distribution in (5.4) approximate a Gaussian distribution. Note that a binomial

distribution can be approximated as a Gaussian distribution if B is sufficiently large, such

that Bp ≥ 5 and B(1− p) ≥ 5, where p is the probability of an event. In our work, B = 16

and p = 0.7 (minimum probability to detect FOG), which implies Bp ≥ 5 and B(1− p) ≈ 5.

When the pFOG is greater than 0.7, we determine the local minimum of the pFOG curve and

denote it as the onset time of FOG. The duration of freezing is determined by subtracting

the instant when the pFOG curve goes below 0.7 from the onset time, as indicated with

gray background in Fig. 7.9(a). As can be seen in Fig. 7.9(a), the point-process filter with

a fixed participant-specific tunable parameter detects all episodes of FOG. In addition, the

algorithm also falsely detects an FOG event.

In Fig. 7.10, we plot the output of the point-process filter, using the adaptive pFOG-AFS

algorithm. In this case, the participant-specific tunable parameter σs is tuned based on the

average value of the speed of the foot observed in the last valid gait cycle. In Fig. 7.10(a), we

plot the value of σs, which changes based on the average value of the speed of the foot in the

last valid gait cycle, according to the Gaussian kernel function in Fig. 7.2. As can be seen

in Fig. 7.10(a), the participant-specific tunable parameter demonstrates variation under two

scenarios: a) at the beginning of the gait when the participant slowly begins to accelerate to

reach a comfortable pace, and b) prior to the 180◦, turn when the participant decelerates to

maintain balance and complete the turning movement. In Fig. 7.10(b), we plot the output of

the point-process filter for the adaptive participant-specific tunable parameter. We observe

that the FOG events detected by the experts and the adaptive pFOG-AFS algorithm match.
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Table 7.1: Performance of existing and proposed methods.

Method Adaptive
Gait Parameters Accuracy of False Positive Number of Number of

of Interest Events Detected Rate Events Detected False Detections

Freeze Index
No

Ratio of
65.70% 39.63% 36/60 (60.00%) 75

(window = 4 sec, threshold = 5.5) spectral powers

Freeze Index
No

Ratio of
72.59% 31.11% 33/60 (55.00%) 67

(window = 4 sec, threshold = 6.0) spectral powers

pFOG
No Speed 87.99% 11.16% 49/60 (81.66%) 38

(σs = 0.35, threshold = 0.7)

pFOG
No Speed 90.13% 7.79% 47/60 (78.33%) 37

(σs = 0.40, threshold = 0.7)

pFOG-AFS
Yes Speed 87.81% 11.01% 49/60 (81.66%) 40

(threshold = 0.7)

pFOG-WA
Yes

Speed, pitch, and
85.12% 14.14% 53/60 (88.33%) 40

(threshold = 0.7) ratio of spectral power
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In Fig. 7.11, we plot the output of the point-process filter by using the adaptive pFOG-WA

algorithm. The weights assigned to the edges of the trembling event intervals are obtained

from the gait parameters mapped to the corresponding kernel function, as shown in Figs.

7.2 and 7.4. Further, the background spiking rate of the conditional intensity function is no

longer fixed. The parameters of the filtering module used to compute pFOG by employing

pFOG-WA are given in Table E.5 of Appendix E.1. In Fig. 7.11(a), we plot the background

spiking rate αk for the point-process generated using the edges of the TREI in Fig. 7.6(b).

As can be seen, the background spiking rate varies depending on the density of the edges of

the TREI, and demonstrates variation during turns. Because the point-process filter is reset

at every valid gait cycle event, the background spiking rate also resets at these events. In Fig.

7.11(b), we plot the output of the point-process filter for the multi-parameter adaptive point-

process filter. We observe that the FOG events detected by the experts and the adaptive

pFOG-WA algorithm again match closely.

7.4 Experimental Results

In this section, we analyze the performance of the different modules of the proposed system

shown in Fig. 7.1, using real data from seven people with Parkinson disease. The details of

our sample size and data collection, and a list of tasks performed by the participants, can

be found in Appendix A.2.

We compare our proposed method with existing open-loop methods based on either the

freeze index method [14] or the fixed participant-specific tunable parameter [1]. To evaluate

the performance of the existing and proposed methods, we define four metric variables.
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• Accuracy is the ratio of the true positives and true negatives to the total length (in

samples) of the dataset.

• False positive rate is the ratio of the false positives to the sum of false positives and

true negatives.

• A detected event occurs if the regions detected using both the inertial sensor based

method and video data overlap.

• A falsely detected event occurs if the region detected using the inertial sensor based

method does not overlap with the region detected using the video data.

In Table 7.1, we present the results of the proposed and existing methods. For the inertial

sensor based methods, we take the union of the binary vectors representing the detected

events for each foot and compute the metric variables. While the existing methods use fixed

thresholds and participant-specific tunable parameters, the proposed methods are adaptive.

A total of 60 FOG events were identified in the gold standard video data for the tasks listed in

Table A.2. The minimum and maximum durations of the FOG events detected in the video

data are 1 and 8 seconds, respectively. A fixed threshold scheme for the freeze index method

demonstrates few events and has low accuracy, with a high false positive rate. Further,

the number of false detections increases when the threshold is decreased. In contrast, the

pFOG method with a fixed participant-specific tunable parameter demonstrates improved

performance over the freeze index method. For example, the pFOG method demonstrates a

fourfold decrease in the false positive rate. A similar trend was also observed in [1]. Further,

increasing the participant-specific tunable parameter from σs = 0.35 to σs = 0.40 decreases

the number of events detected and the false positive rate. Comparing the proposed adaptive

methods with the existing methods, we see that the adaptive methods perform as well as
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or better than the existing methods. For the adaptive pFOG-AFS and pFOG-WA, the

participant-specific tunable parameter is adjusted automatically. As can be seen in Table

7.1, the performance of the pFOG-AFS method matches closely with the performance of

the pFOG method with a fixed participant-specific tunable parameter σs = 0.35. However,

the number of false detections is lower for the adaptive pFOG-AFS method, as seen in Fig.

7.9(a) and 7.10(b). The pFOG-WA method detects the highest number of FOG events.

However, the accuracy and false positive rate, respectively, are slightly lower and higher,

than for the adaptive pFOG-AFS method. Note that the weight assigned to the edge of

a trembling event interval in the pFOG-WA method is a weighted average of the weights

generated using the speed, pitch angle, and freeze index of the foot in the bin containing the

trembling event interval. Because the freeze index demonstrates poor accuracy and a high

false positive rate, it also affects the performance of the pFOG-WA method.

7.5 Chapter Summary

We developed an adaptive modular approach to track FOG in Parkinson disease participants

in real time. In the detection module, we first used the physical models of sensor data

from a foot-mounted inertial system to detect two FOG-related gait patterns, ZVEI and

TREI. The detector could not filter out those gait patterns identified as TREI, which are

not associated with FOG. To filter out TREI, in the navigation module, we first extracted

gait parameters, such as the speed and pitch angle of the foot using zero-velocity aided

inertial navigation system. Next, in the validation module, we identified the non-stationary

segments of the sensor data that represent valid gait cycles. Finally, in the filtering module,

we combined the output of the detectors with weights generated from the extracted gait

149



parameters and information from the valid gait cycles, and computed pFOG. We developed

two novel methods to automatically tune the participant-specific tunable parameter used

to generate the weights of the point-process filter. We validated the modular system using

data from experimental gait assessment in a group of people with Parkinson disease. Our

proposed methods yielded an average accuracy of greater than 85%, with an average false

positive rate of less than 14%.
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Chapter 8

Conclusions and Future Work

8.1 Summary

In this dissertation, we developed a modular approach to model, detect, and track freezing

of gait (FOG) in Parkinson disease. Our system design consisted of four modules, namely

the detection, navigation, validation, and filtering modules. To capture the gait motion, in

the sensor module we used a MEMS-based inertial measurement unit (IMU), which consists

of a three-axis accelerometer and a three-axis gyroscope. The IMU is strapped to the heel

or instep region of the foot of the participant. Based on broad clinical observations, FOG

patterns included alternating trembling in the lower extremities (including the hip, knee, and

ankle joints, and the bones of the thigh, leg, and foot), and no movement of the limbs and

trunk. We modeled stationary FOG gait patterns, such as no limb movement, as zero-velocity

event intervals (ZVEI). These events are associated with the midstance phase of a gait cycle.

Further, we modeled non-stationary FOG gait patterns, such as alternating trembling in

FOG, and short, quickening steps on the toes and forepart of the feet in festinating gait,

as trembling event intervals (TREI). These events are associated with the heel lift-off and

heel strike phases of a gait cycle. TREI are modeled as the motion of the IMU about an
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unknown fixed axis and are of an unknown magnitude which depends on the severity of the

trembling. In the detection module, we developed a two-step detection algorithm to identify

ZVEI and TREI. The goal of the first detector was to filter out gait patterns that cannot

be classified as ZVEI or TREI. To distinguish ZVEI from TREI, we used information from

the gyroscope and developed the second detector. The second detector detected only ZVEI

and could not filter out those gait patterns identified as TREI, which are not associated

with FOG. To filter out gait patterns not associated with FOG, we considered the fact that

FOG events are associated with small foot speeds and low pitch angles, which are caused by

the alternating trembling motion. To extract gait parameters, such as the speed and pitch

angle of the foot, we employed a navigation module. In the navigation module, we estimated

the position, velocity, and orientation angles of the foot, using the navigation mechanization

equations. We used the ZVEI as pseudo measurements to correct the estimates of the

navigation parameters and contain the error growth. We also validated our implementation

of the zero-velocity aided inertial navigation system by computing the gait parameters for

the valid gait cycles and comparing the estimated parameters with an existing method.

To filter out TREI related to valid gait cycles, we used the gait cycle validation module. We

first identified the non-stationary segments of the gyroscope signal in the sagittal plane, using

ZVEI. Gyroscope measurements in the sagittal plane were considered as the best choice for

gait segmentation because these measurements contained typical time-series patterns such as

“valleys,” “peaks,” and “plateaus.” Next, we preprocessed the non-stationary segments by

scaling and interpolating the signal. Finally, we validated any preprocessed non-stationary

segment of the gyroscope signal in the sagittal plane as a valid gait cycle, using an optimiza-

tion framework called sparsity-assisted wavelet denoising (SAWD). In the SAWD algorithm,

we simultaneously combined low-pass filtering, multiresolution representations (wavelets),

and a sparsity-inducing norm to obtain a sparse representation of the gyroscope signal in
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the sagittal plane for valid gait cycles, in the form of a discrete wavelet transform coefficient

vector. We computed the root-mean-square error between the generated template and the

sparse representation of the moving segment of the gyroscope data in the sagittal plane,

obtained using the SAWD algorithm. If the root-mean-square error was less than a fixed

threshold, then the gait cycle was valid.

To detect the onset and duration of freezing of gait FOG, we developed a point-process filter

that computed the probability of FOG (pFOG). We first modeled the edges of the TREI as

a point-process, then assigned weights to the edges, which depended on the average value

of the gait parameters observed in the bin containing the edge and a participant-specific

tunable parameter. Then, we integrated these weights over a time window, using a Bayesian

recursive filter, and computed pFOG. We considered three different approaches to generate

the weights assigned to the edges of the TREI. In the first approach, we considered a fixed

value of the participant-specific tunable parameter and assigned weights based on the average

value of the speed of the foot in the bin containing an edge of the TREI. We used a Gaussian

kernel function with a zero mean and standard deviation equal to the participant-specific

tunable parameter. In the second approach, we automatically adjusted the participant-

specific tunable parameter based on the average value of the foot speed observed in the last

valid gait cycle. As a result, we modified the weights assigned to the edges of the TREI

dynamically, using the average value of the speed of the foot in the last valid gait cycle. In

the third approach, the weight assigned to the edge of the TREI was a weighted average

of the selected gait parameters. We considered three gait parameters, namely speed, pitch

angle, and the freeze index of the foot, and a corresponding kernel function to dynamically

assign weights. In addition, we also modified the conditional intensity function of the point-

process filter by dynamically adapting the background spiking rate, based on the density of

the spikes caused by the edges of the TREI. We used the output of the gait cycle validation
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module to reset the point-process filter and also filter those edges of the TREI that did not

belong to a FOG event.

We validated the performance of the proposed system design using real data obtained from

people with Parkinson disease who performed a battery of gait tasks known to trigger FOG.

The results indicated improved performance, with an average accuracy greater than 85%

and an average false positive rate of less than 14%.

8.2 Future Directions

In the future, we can potentially extend our research in the following directions:

Improving the detection module with adaptive thresholds: In this dissertation, we

considered the thresholds of the detectors in the detection module to be fixed. Ideally, the

optimal value of these thresholds varies with the participant’s walking speed, i.e., lower

thresholds are required to detect ZVEI when the participant is jogging or running. We plan

to develop an adaptive framework to dynamically adjust the threshold of the ZVEI detector

so that the edges of the ZVEI correspond to the heel-off and flat-foot events. As a result, we

can increase the granularity of the gait cycle validation and segmentation algorithm, which

can provide an improved understanding of the affected phases of the gait cycle.

Generating a valid gait cycle template online: In this dissertation, to validate a gait

cycle, we used a fixed template obtained from a healthy participant. The fixed template

contained inertial sensor data with variable walking speeds. If the same template were used

on other patients, such as patients with limited knee and ankle movement, then it would

be difficult to identify valid gait cycles because there would be a mismatch between the
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templates generated by the two groups. We plan to design a system which can use the

first S strides to dynamically generate the template signal in real-time, and then use the

online generated template along with a fixed threshold to validate and segment the remaining

strides.

Integrating physical models with machine learning: In this dissertation, we developed

physically-based signal models for the sensor data associated with the FOG patterns and

designed statistical signal processing methods to detect the onset and duration of the FOG

events in real-time. We employed a point-process filter to compute the probability of FOG.

We plan to combine the physical models of the sensor data with data driven techniques, such

as neural networks, to compute the probability of FOG.

Mitigating FOG using a closed-loop approach: In this dissertation, we developed

a modular approach to model, detect, and track FOG in real time. Clinicians have also

developed non-pharmaceutical and non-surgical intervention strategies for FOG, such as

cueing, which involves using external auditory or visual stimuli to avert FOG episodes. For

cueing to be effective, the external stimulus should ideally be carefully delivered to match

an actual or impending FOG event. In addition, the choice of modality selected to deliver

the external stimuli also plays a prominent role. We plan to explore different modalities that

can deliver external cues, andthen integrate the best intervention strategy with our existing

method.
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tracking using inertial sensors,” 2009-01.

[129] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet repre-
sentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11,
no. 7, pp. 674–693, July 1989.

[130] C. S. Burrus, R. A. Gopinath, H. Guo, J. E. Odegard, and I. W. Selesnick, Introduction
to wavelets and wavelet transforms: A primer. Prentice hall New Jersey, 1998, vol. 1.

[131] S. Mallat, A wavelet tour of signal processing: The sparse way. Academic press, 2008.

[132] I. W. Selesnick, H. L. Graber, D. S. Pfeil, and R. L. Barbour, “Simultaneous low-
pass filtering and total variation denoising,” IEEE Transactions on Signal Processing,
vol. 62, no. 5, pp. 1109–1124, March 2014.

[133] I. Selesnick, “Sparsity-assisted signal smoothing (revisited),” in 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2017,
pp. 4546–4550.

[134] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and
statistical learning via the alternating direction method of multipliers,” Foundations
and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[135] J. Eckstein and D. P. Bertsekas, “On the Douglas—Rachford splitting method and the
proximal point algorithm for maximal monotone operators,” Mathematical Program-
ming, vol. 55, no. 1-3, pp. 293–318, 1992.

167



[136] D. A. Harville, Matrix algebra from a statistician’s perspective. Springer, 1997, vol. 1.

[137] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet
shrinkage,” Journal of the American Statistical Association, vol. 90, no. 432, pp. 1200–
1224, 1995.

[138] I. W. Selesnick, Sparsity-Assisted Signal Smoothing. Cham: Springer International
Publishing, 2015, pp. 149–176.

[139] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, “A general analysis
of the convergence of ADMM,” in Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume 37, ser. ICML’15. JMLR.org,
2015, pp. 343–352.

[140] B. Mariani, H. Rouhani, X. Crevoisier, and K. Aminian, “Quantitative estimation of
foot-flat and stance phase of gait using foot-worn inertial sensors,” Gait & Posture,
vol. 37, no. 2, pp. 229 – 234, 2013.

[141] D. S. Colomar, J. O. Nilsson, and P. Händel, “Smoothing for ZUPT-aided INSs,” in
2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN),
Nov 2012, pp. 1–5.
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Appendix A

A.1 Openshoe Database

In this database, we collected real data from 16 people with Parkinson disease. For our

sample, there were seven females, the mean age was 70.3 ± 7.9 years, the mean disease

duration was 5.0 ± 3.6 years, and the median off medication Movement Disorders Society

Unified Parkinson Disease Rating Scale Motor Subsection (MDS UPDRS III) Score was 35.5

(first and third quartiles: 30.5, 41.5). The IMU data and video data for all the participants

were recorded for the list of gait tasks in Table A.1, with the only exceptions being TT006–

NARROW and TT006–EIGHT, which were not recorded due to network issues. The true

instances of FOG events detected in the video data are manually marked by a trained gait

analysis experts.

We used the Openshoe module to collect the accelerometer and gyroscope sensor data [49].

The sensors operated at a sampling frequency of Fs = 1000 Hz. We taped the sensor module

to the heel of each shoe firmly, as shown in Fig. 3.2. The choice of the sensor location [15]

enabled us to compute gait parameters such as speed of the foot which can be useful in

understanding the underlying mechanism of FOG. The sensors were powered by micro-USB

cords whose other ends are plugged into a USB-port of a laptop. The laptop, which weighs

less than 1.2 kilograms, was placed in a backpack carried by the participant. Cords were
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Table A.1: Experiment 1: Balance assessment tasks and their descriptions.

Task Description of the task

BACK
The participant was asked to walk backwards at a comfortable pace along a 3 meter straight
path. On reaching the end, the participant made a 180◦ turn and re-traversed the path in
the next trial.

BLOCK

A wood block 6 inches high, 24 inches wide, and 14.5 inches deep was placed between two
cones. The total distance between the center of each cone and the nearest edge of the
block was 22.5 inches. The participant was asked to start between one of the cones and
the block, step up onto the block and step down between the block and the second cone.
The participant made a 180◦ turn in the small space between the block and the cone, and
repeated the trial.

EIGHT

The participant was asked to follow a figure-eight trajectory around two cones placed
1.5 meters apart (cone center to cone center). Two chairs were placed with the backs
inward, approximately shoulder width apart at the center of the figure-eight loop to create
a narrow space. The participants started next to a cone at one end of the figure-eight loop,
completed the figure-eight (traveling through the narrow space), and positioned themselves
on the other side of the first cone for the next figure-eight.

NARROW
The participant was asked to walk along a path 3 meters long, with three sets of chairs
placed with the backs inward, about shoulder width apart in the middle 1.5 meters of the
path. At the end of the 3 meter path, the participant made a 180◦ turn and re-traversed
the path in the next trial.

TURN
The participant was asked to do an in-place 180◦ turn. The participant began by standing
stationary and was told to turn either right or left to face the wall behind them.

firmly strapped around each leg, so that they did not interfere with gait and there are

minimal cord movements captured by the sensors.

To assess gait, we assigned five different tasks that are likely to trigger a FOG event. The

list of the tasks and their descriptions are given in Table A.1. As a reference system, we use

video-based technology to determine the time instances of FOG. With the help of trained

gait analysis experts, we mark the instances of FOG observed in the videos with a temporal

resolution of one second. The experts watched each video together and came to consensus

on the presence and timing of definite or potential freezing episodes. The synchronization of

the video and IMU data is done manually.
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Table A.2: Experiment 2: Balance assessment tasks and their descriptions.

Task Description of the task

TUG1
The participant stands up from the chair, walks 3 meters, turns, walks back, and returns
to a sitting position.

TUG2
The participant stands up from the chair, walks 3 meters, turns, walks back, and returns
to a sitting position, while counting numbers backwards from a starting point given by the
instructor in fixed step size.

TURN
The participant is asked to do an in-place 360◦ turn. The participant begins by standing
stationary and is told to turn either right or left. The TURN task is repeated in sets of
three or five.

SAW

The participant stands at one end of the walkway, with their feet comfortably apart and
their hands on their hips, for 30 seconds, when a tone sounds. Then the participant walks
7 meters, turns, walks back, and stops, now facing the opposite direction of their starting
position.

WALK
The participant walks 7 meters at a comfortable pace, turns, walks back, turns again, and
repeats this routine until the end of two minutes.

TUG: Timed up and go; SAW: Stand and walk.

A.2 Opal APDM Database

In this database, we collected real data from seven Parkinson disease participants. The mean

age 70.57 ± 5.65 years, the mean disease duration was 4.71 ± 4.54 years, and the mean on-

medication score on the motor section of the Movement Disorders Society Unified Parkinson

Disease Rating Scale (MDS-UPDRS III) [168] was 28.71 ± 11.69. Four of the participants

were women. We used APDM Opal sensors [50] to collect accelerometer and gyroscope sensor

data. The sensors operated at a sampling frequency of Fs = 128 Hz and were firmly attached

to the instep region of the foot with the help of elastic Velcro straps. Data from the sensors

was transmitted in wireless mode to a laptop and stored in HDF5 format. To assess gait,

we assigned five different tasks that are likely to trigger a FOG event. The tasks and their

descriptions are listed in Table A.2. As a gold standard, we used video-based technology

to determine the time instances of FOG. With the help of trained gait analysis experts, we

mark the instances of FOG in the videos with a temporal resolution of one second. The

video and IMU data were manually synchronized.
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Appendix B

B.1 Derivation of Detector-I

Let ya, ua, va, and αa denote the concatenation of the observed accelerometer signal vector,

direction of the accelerometer vector without the gravity vector, direction of the gravity

vector, and magnitude of the accelerometer vector, respectively. Then,

ya = [(ya
k)

T, . . . , (ya
k+N−1)

T]T ∈ R
3N×1,

ua = [(ua
k)

T, . . . , (ua
k+N−1)

T]T ∈ R
3N×1,

va = [(va
k)

T, . . . , (va
k+N−1)

T]T ∈ R
3N×1,

αa = [αa
k, . . . , α

a
k+N−1]

T ∈ R
N×1.

Under H0, the conditional probability density function of ya, denoted as f0 (y
a|αa,ua, va)

factors as

f0 (y
a|αa,ua, va) =

∏

k∈ΩN

N (αa
ku

a
k + gva

k, σ
2
aI3)
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Under H1,2, the conditional probability density function of y, denoted as f1,2 (y|αa,ua, va)

factors as

f1,2 (y
a|αa,ua, va) =

∏

k∈ΩN

N (αa
ku

a + gva, σ2
aI3)

The GLRT based detector replaces the unknown parameters with their maximum likelihood

estimates (MLEs). Let L0(α
a,ua, va|ya) and L1,2(α

a,ua, va|ya) denote the loglikelihood of

the probability distribution functions under H0 and H1,2, respectively. If LD1(y
a) is the

likelihood ratio, and α̂a, ûa, and v̂a, are the maximum likelihood estimates of the unknown

parameters, then the GLRT based detector can be written as

lnLD1(y
a) = max

αa,ua,va
L0(α

a,ua, va|ya)− max
αa,ua,va

L1,2(α
a,ua, va|ya)

H0

≷
H1,2

ln γD1 . (B.1)

The loglikelihood function, L0(α
a,ua, va|ya), under the hypothesis H0, is

L0(α
a,ua, va|ya) = c−

∑

k∈ΩN

[
1

2σ2
a

‖ya
k − α

a
ku

a
k − gv

a
k‖

2

]

,

where c is the normalizing constant. However, the parameters αa
k, u

a
k, and va

k that define

the accelerometer signal are unknown. Hence, the maximum of the L0(α
a,ua, va|ya) is,

max
αa,ua,va

L0(α
a,ua, va|ya) = c. (B.2)

The loglikelihood function, L1,2(α
a,ua, va|y), under the hypothesis H1,2 is given as:

L1,2(α
a,ua, va|ya) = c−

∑

k∈ΩN

[
1

2σ2
a

‖ya
k − α

a
ku

a − gva‖2
]

. (B.3)
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Let α̂a
k be the MLE of αa

k that minimizes (B.3). Taking the partial derivative with respect

to αa
k and equating it to zero, we get

α̂a
k =

(ua)T(ya
k − gv

a)

‖ua‖2
= (ua)T(ya

k − gv
a). (B.4)

Substituting (B.4) in (B.3) gives

L1,2(α̂
a,ua, va|ya) = c−

1

2σ2
a

∑

k∈ΩN

∥
∥ya

k − (ua)T(ya
k − gv

a)− gva
∥
∥
2
. (B.5)

Maximizing (B.5) is equivalent solving the following minimization problem:

min
ua,va

∑

k∈ΩN

‖ya
k − gv

a‖2P⊥
u
a
, (B.6)

where P⊥
ua = I − ua(ua)T. Note that P⊥

ua is idempotent and symmetric, which makes it an

orthogonal projection matrix. The weighted optimization problem in (B.6) is bi-quadratic,

i.e., it is quadratic with respect to both ua and va. Further, the optimization problem

in (B.6) does not have a closed form expression. Here, we use alternative minimization

technique to solve (B.6). In alternative minimization, one of the two variables ua and va is

fixed, and minimizing the function with respect to the other variable is of low-complexity

and high stability. We begin solving the optimization problem by first fixing va in (B.6).

The minimization problem is formulated as

min
ua

∑

k∈ΩN

{
‖ya

k − gv
a‖2 − (ya

k − gv
a)Tua(ua)T(ya

k − gv
a)
}

= max
ua

{

(ua)T
∑

k∈ΩN

[
(ya

k − gv
a)(ya

k − gv
a)T
]
ua

}

. (B.7)
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Let Ga =
∑

k∈ΩN

[
(ya

k − gv
a)(ya

k − gv
a)T
]
. The matrix Ga is positive definite and symmet-

ric. Let ûa denote the eigenvector corresponding to the maximum eigenvalue of Ga. Equa-

tion (B.7) is maximized when ua is equal to the eigenvector corresponding to the maximum

eigenvalue of Ga. For any symmetric and positive semi-definite matrix, Ga, the maximum

eigenvector represents the direction of the semi-major axis, and its eigenvalue represents

the length of the semi-major axis. Clearly, the eigenvector corresponding to the maximum

eigenvalue of the outer product term in (B.7) captures the direction of the trembling be-

cause it subtracts the constant magnitude and direction representing the gravitational force

from the accelerometer readings, and computes the outer product. If λmax(·) denotes the the

maximum eigenvalue and ũa denotes the optimal value of ua, then

ũa = eigenvector corresponding to λmax(G
a). (B.8)

Next, we fix ua in (B.6) and minimize the objective function with respect to va. The

minimization problem is formulated as

min
va

∑

k∈ΩN

‖ya
k − gv

a‖2P⊥
u
a
. (B.9)

Taking the partial derivative of (B.9) with respect to va and equating to zero we get

−2g
∑

k∈ΩN

P⊥
ua(ya

k − gv
a) = 0. (B.10)

If Pua represents the projection matrix that is orthogonal to P⊥
ua , then based on the or-

thogonality of projection matrices, we get
∑

k∈ΩN
(ya

k − gva) ∈ Pua. This implies that
∑

k∈ΩN
(ya

k− gv
a) = ηua, where η > 0 is the magnitude of the unit vector in the direction of

ua. The choice of η > 0 can be arbitrary since we are only concerned with the direction of
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Algorithm 5 Alternating Minimization

1: procedure AM

2: initialize:
3: i← 0, C(0) ← 0, ǫ, and MAXITER
4: va

(0) ← ȳa
k/ ‖ȳ

a
k‖, where ȳa

k = (1/N)
∑

k∈ΩN
ya
k

5: while do(i ≤ MAXITER) and (|C(i) − C(i−1)| < ǫ)

6: Ga
(i) ←

∑

k∈ΩN

[

(ya
k − gv

a
(i−1))(y

a
k − gv

a
(i−1))

T

]

7: ũa
(i) ← eigenvector corresponding to λmax(G

a
(i))

8: (ȳa
k − ūa

(i))←
1
N

∑

k∈ΩN
(ya

k − ua
(i))

9: ṽa
(i) ← (ȳa

k − ūa
(i))/

∥
∥
∥ȳa

k − ūa
(i)

∥
∥
∥

10: C(i) ←
∑

k∈ΩN
(ya

k − gṽ
a
(i))

TP⊥
ũa
(i)
(ya

k − gṽ
a
(i))

11: i← i+ 1
12: end while
13: return ûa = ũa

(i) and v̂a = ṽa
(i)

14: end procedure

the unit vector va. Here, we choose η = 1. Therefore, we get

∑

k∈ΩN

(ya
k − gv

a) = ua. (B.11)

Solving for va and ignoring the scale parameter, we get

va =
1

N

∑

k∈ΩN

(ya
k − ua) = (ȳa

k − ūa). (B.12)

In (B.12), the trembling axis is subtracted from every sample of the accelerometer to obtain

the direction of the gravitational vector. Let ṽa denote the unit norm vector in the direction

of va. In Algorithm 5, we summarize the steps of the alternating minimization approach to

find the MLE of ua and va. Substituting ûa and v̂a in (B.5), we get

L1,2(α̂
a, ûa, v̂a|ya) = c−

1

2σ2
a

∑

k∈ΩN

‖ya
k − gv̂

a‖2P⊥
û
a
. (B.13)
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Substituting (B.2) and (B.13) in (B.1), we get

lnLD1(y
a
k) =

1

2σ2
a

∑

k∈ΩN

‖ya
k − gv̂

a‖2P⊥
û
a
. (B.14)

The test statistic, TD1(y
a) = (2/N) lnLD1(y

a), is given as

TD1(y
a) =

1

N

∑

k∈ΩN

{
1

σ2
a

‖ya
k − gv̂

a‖2P⊥
û
a

}
H1,2

< γ′D1
, (B.15)

where γ′D1
= (2/N) ln γD1 .

B.2 Derivation of Detector-II

Let yω, uω, and βω denote the concatenation of the observed gyroscope signal vector,

direction of the gyroscope vector, and magnitude of the gyroscope vector, respectively. Then,

yω = [(yω

k )
T, . . . , (yω

k+N−1)
T]T ∈ R

3N×1,

uω = [(uω

k )
T, . . . , (uω

k+N−1)
T]T ∈ R

3N×1,

βω = [βω

k , . . . , β
ω

k+N−1]
T ∈ R

N×1.

where sωk = βω

k u
ω

k , β
ω

k is the magnitude of the angular velocity vector, and uω

k is a unit

vector in the direction of the angular velocity vector. Let y = [(ya)T, (yω)T]T denote the con-

catenation of the accelerometer and gyrocope signal. Under H1, the conditional probability
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density function of y, denoted as f1 (y|va) factors as

f1 (y|v
a) =

∏

k∈ΩN

N (gva, σ2
aI3)×N (0, σ2

ω
I3).

UnderH2, the conditional probability density function of y, denoted as f2 (y|αa,ua, va,βω,uω)

factors as

f2 (y|α
a,ua, va,βω,uω) =

∏

k∈ΩN

N (αa
ku

a + gva, σ2
aI3)×N (βk

ω
uω

k , σ
2
ω
I3).

Let L2(α
a,ua, va,βω,uω|y) and L1(v

a|y) denote the loglikelihood of the probability distri-

bution functions under H2 and H1, respectively. Let LD2(y) denote the likelihood ratio, and

α̂a, ûa, v̂a, β̂a, and ûω are the maximum likelihood estimates of the unknown parameters,

then the GLRT based detector can be written as

lnLD2(y) = max
αa,ua,va,βω,uω

L2(α
a,ua, va,βω,uω|y)−max

va
L1(v

a|y)
H2

≷
H1

ln γD2. (B.16)

The loglikelihood function, L2(α
a,ua, va,βω,uω|y), under the hypothesis H2, is

L2(α
a,ua, va,βω,uω|y) = c′ −

∑

k∈ΩN

[
1

2σ2
a

‖ya
k − α

a
ku

a − gva‖2 +
1

2σ2
ω

‖yω

k − β
ω

k u
ω

k ‖
2

]

.

where c′ is a normalizing constant. The minimization of the third term with respect to αa
k,

ua, and va follows the same steps as in Appendix B.1. In the fourth term, the parameters,

βω

k and uω

k , that describe the gyroscope vector are unknown and goes to the minimum value

when the norm in the fourth term of (B.16) goes to zero. Hence, the maximum of the
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L2(α
a,ua, va,βω,uω|y) is,

max
αa,ua,va,βω,uω

L2(α
a,ua, va,βω,uω|y) = c′ −

1

2σ2
a

∑

k∈ΩN

‖ya
k − gv̂

a‖2P⊥
û
a
. (B.17)

The loglikelihood function, L1(v
a|y), under the hypothesis H1, is

L1(v
a|y) = c′ −

∑

k∈ΩN

[
1

2σ2
a

‖ya
k − gv

a‖2 +
1

2σ2
ω

‖yω

k ‖
2

]

.

If v̂a represents the maximum likelihood estimate of va, then,

v̂a =
ȳa

‖ȳa‖
, where ȳa =

1

N

∑

k∈ΩN

ya
k. (B.18)

Hence, the maximum of L1(v
a|y) is given as

max
va

L1(v
a|y) = c′ −

∑

k∈ΩN

[

1

2σ2
a

∥
∥
∥
∥
ya
k − g

ȳa

‖ȳa‖

∥
∥
∥
∥

2

+
1

2σ2
ω

‖yω

k ‖
2

]

. (B.19)

Substituting (B.17) and (B.19) into (B.16), we get

lnLD2(y) =
∑

k∈ΩN

[

1

2σ2
a

∥
∥
∥
∥
ya
k − g

ȳa

‖ȳa‖

∥
∥
∥
∥

2

−
1

2σ2
a

‖ya
k − gv̂

a‖2P⊥
û
a
+

1

2σ2
ω

‖yω

k ‖
2

]

. (B.20)

If loglikelihood ratio is denoted as LD2(y), then the test statistic, TD2(y) = (2/N) lnLD2(y),

is given as

TD2(y) =
1

N

∑

k∈ΩN

{

1

σ2
ω

‖yω

k ‖
2 +

1

σa
2

[∥
∥
∥
∥
ya
k − g

ȳa

‖ȳa‖

∥
∥
∥
∥

2

− ‖ya
k − gv̂

a‖2P⊥
û
a

]}

H1

<γ′D2
, (B.21)

where γ′D2
= (2/N) ln γD2.
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Appendix C

C.1 Derivation of Navigation Mechanization Equations

Let ra ∈ R
3×1 denote a position vector in the a-frame, ri ∈ R

3×1 denote a position vector in

the i-frame, and ui ∈ R
3×1 be a vector pointing from origin in the i-frame to the origin of

the a-frame. Then,

ri = Ri
a · r

a + ui. (C.1)

Taking the first derivative we get

xi

yi

zi

xa

ya
za

ui

Figure C.1: Transformation of ri to ra.
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ṙi =
dri

dt
= Ri

aṙ
a + Ṙi

ar
a + u̇i.

Taking the second derivative with respect to time, we get

r̈i =
d2ri

dt2
= Ri

ar̈
a + 2Ṙi

aṙ
a + R̈i

ar
a + üi,

where

Ṙi
a = Ri

aΩ
a
ia, and

R̈i
a = Ri

aΩ̇
a
ia + Ṙi

aΩ
a
ia = Ri

a

(

Ωa
iaΩ

a
ia + Ω̇a

ia

)

.

Thus,

r̈i = Ri
ar̈

a + 2Ri
aΩ

a
iaṙ

a +Ri
a

(

Ωa
iaΩ

a
ia + Ω̇a

ia

)

ra + üi.

Using r̈i = si + gi from (2.1) and multiply with Ra
i on both sides, we get

sa + ga = r̈a + 2Ωa
iaṙ

a +
(

Ωa
iaΩ

a
ia + Ω̇a

ia

)

ra + üa.

If we assume that we navigate over small area with low speed, and denote the navigation

frame the with superscript n, then

sn + gn = r̈n + 2Ωn
inṙ

n +
(

Ωn
inΩ

n
in + Ω̇n

in

)

rn + ün.

We assume earth’s rotation to be constant angular velocity, and thus, the navigation plane

moves with at a constant speed. Therefore, ün ≈ 0, and the above equation can be simplified
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as:

sn + gn = r̈n + 2Ωn
inṙ

n +
(

Ωn
inΩ

n
in + Ω̇n

in

)

rn,

= r̈n + 2ωn
in × vn + ωn

in × ωn
in × rn.

Because the navigation plane is attached to the surface of the earth and is also stationary,

ωn
in = ωn

ie. Substituting ωn
in = ωn

ie in the above equation, we get

sn + gn = r̈n + 2ωn
ie × vn

︸ ︷︷ ︸

Coriolis acceleration

+ ωn
ie × ωn

ie × rn

︸ ︷︷ ︸

Centrifugal acceleration

.

The centrifugal acceleration depends on the location of the point on earth. The magnitude

of the centrifugal acceleration, which is the cross-product term in the above equation can be

approximated as

‖ωn
ie × ωn

ie × rn‖ ≤ ‖ωn
ie‖ ‖ω

n
ie‖ ‖r

n‖ .

The magnitude of ωie is 7.29×10−5rad/s and the average radius of the earth is 6371km. The

overall magnitude of the centrifugal acceleration is less than or equal to 3.39 × 10−2m/s2.

If the experiment takes place at the equator, then the error introduced by neglecting the

centrifugal acceleration for pedestrian navigation systems is minimal, i.e., 0.5% of the total

distance traveled. Further, the Coriolis acceleration also depends on the speed of the sensor.

For example, if we consider a person walking at a speed of 5km/h, then the magnitude

of the Coriolis acceleration is approximately 2.04 × 10−4m/s2. In addition, in some cases,

the Coriolis acceleration gets canceled out when the pedestrian changes direction. The

overall impact of the Coriolis acceleration is relatively small when compared with the inertial

acceleration. Thus, neglecting the centrifugal acceleration and Coriolis acceleration, the
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specific force measured for pedestrian navigation systems in the navigation frame can be

approximated as

sn + gn ≈ r̈n.

If sb represents the specific force measurements in the body frame, then

ṗn = vn, (C.2)

v̇n = Rn
bs

b + gn, (C.3)

where vn and pn are the position and velocity estimates, respectively, Rn
b is the rotation

matrix from body frame to navigation frame, and gn is the gravitational acceleration.

C.2 Perturbation Analysis

Let δsb and δωb
ib denote the errors in specific force and angular velocity measurements,

respectively, then

s̃b = sb − δsb,

ω̃b
ib = ωb

ib − δω
b
ib.

Let ǫ ∈ R
3×1 be the small angles that aligns the true and computed rotation matrix, then

R̂n
b = (I −Ωǫ)R

n
b, (C.4)
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where R̂n
b is the rotation matrix with error measurements and Rn

b is the rotation matrix with

ideal measurements. Equation (C.4) follows from the discretization of the time-derivative

property. If Ω̃b
nb and δΩb

nb denote skew-symmetric matrices with perturbed angular velocity

measurements and perturbations in the angular velocities, respectively, then
˙̂
Rn

b is given as

˙̂
Rn

b = R̂n
bΩ̃

b
nb

=⇒
d

dt
(I −Ωǫ)R

n
b = (I −Ωǫ)R

n
bΩ̃

b
nb

=⇒ −Ω̇ǫR
n
b + (I −Ωǫ)Ṙ

n
b = (I −Ωǫ)R

n
b(Ω

b
nb + δΩb

nb)

=⇒ −Ω̇ǫR
n
b + (I −Ωǫ)Ṙ

n
b = (I −Ωǫ)R

n
bΩ

b
nb + (I −Ωǫ)R

n
bδΩ

b
nb

=⇒ Ω̇ǫR
n
b = −Rn

bδΩ
b
nb +ΩǫR

n
bδΩ

b
nb

The second term in the above equation, i.e., ΩǫR
n
bδΩ

b
nb, is a second-order term. Neglecting

the higher-order terms, we get

Ω̇ǫR
n
b ≈ −R

n
bδΩ

b
nb. (C.5)

To estimate the perturbed orientation angles, equation (C.5) is a matrix with three-degrees

of freedom, nonlinear, and cannot be directly substituted into the Kalman filter. To further

simplify, let a ∈ R
3×1. Post-multiplying (C.5) with Rn

ba on both sides. Then,

Ω̇ǫa = Rn
bδΩ

b
nbR

n
ba (C.6)

=⇒ ǫ̇× a = Rn
b(δω

n
nb × (Rn

ba)). (C.7)

Rewriting the above equation, we get

ǫ̇× a = |Rn
b|(R

n
b)

−T (δωb
nb × (Rn

ba)). (C.8)

186



Using the following identity: Ma×Mb = |M |M−T (a× b), equation (C.8) can be further

simplified as

ǫ̇× a = (Rn
bδω

b
nb)× a =⇒ ǫ̇ = Rn

bδω
b
nb. (C.9)

Let v̂n and p̂n denote the perturbed velocity and position estimates, where the perturbations

are denoted with δvn and δpn, respectively. Based on the navigation equations, the perturbed

inertial acceleration estimate is given as:

˙̂vn = R̂n
bs̃

b + gn

=⇒ v̇n − δv̇n = (I −Ωǫ)R
n
b(s

b − δsb) + gn

=⇒ v̇n − δv̇n = Rn
bs

b + gn −Rn
bδs

b −ΩǫR
n
bs

b +ΩǫR
n
bδs

b.

Neglecting the second-order terms, we get

δv̇n ≈ Rn
bδs

b +ΩǫR
n
bs

b.

The second term in the above equation can be further simplified as

ΩǫR
n
bs

b = Ωǫs
n = ǫ× sn = −sn × ǫ = −Ωsnǫ,

where Ωsn is the skew-symmetric matrix containing specific forces, sn. The perturbation

equation for inertial acceleration can be written as

δv̇n = Rn
bδs

b −Ωsnǫ.
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Therefore, the perturbation equations or error model for the navigation equations in (4.8)-

(4.10) can be written as

δṗn = δvn,

δv̇n = Rn
bδs

b −Ωsnǫ,

ǫ̇ = Rn
bδω

b
nb.
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Appendix D

D.1 Derivation of Point-Process Filter

In this section, we derive the stochastic state point process filter when the observation model

follows a binomial distribution. The derivation follows similar steps to those stated in [96].

We approximate the posterior distribution in (5.9) to a Gaussian distribution. Under this

approximation, the mean and variance of the one-step predication density in (5.10) are

computed from the posterior density in the previous time interval as

θk|k−1 = Fkθk−1|k−1,

Jk|k−1 = FkJk−1|k−1F
T
k +Qk.

The posterior distribution in the time interval ((k−1)∆, k∆] is approximated as a Gaussian

distribution with parameters θk|k and Jk|k as the mean and variance, respectively. Let L(θk)

denote the loglikelihood of the posterior distribution without the normalizing constant, i.e.,

L(θk) = ln (P (bk|θk,Hk)P (θk|Hk)). The second order expansion of the logarithm about a
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point θ̂k gives

L(θk) ≈ L(θ̂k) + L′(θ̂k)(θk − θ̂k) +
1

2
(θk − θ̂k)

TL′′(θ̂k)(θk − θ̂k) (D.1)

= c′′ +
1

2

[

θk −
{

θ̂k − [L′′(θ̂k)]
−1L′(θ̂k)

}]T

× L′′(θ̂k)
[

θk −
{

θ̂k − [L′′(θ̂k)]
−1L′(θ̂k)

}]

.

(D.2)

The posterior is approximated as a Gaussian, distributed with θk|k and Jk|k as the mean and

variance, respectively, and is given as

θk|k = θ̂k − [L′′(θ̂k)]
−1L′(θ̂k)

Jk|k = −[L
′′(θ̂k)]

−1.

(D.3)

By evaluating (D.3) at θ̂k = θk|k−1, we get the posterior state equations. The first partial

derivative of the loglikelihood function of the posterior distribution is given as:

L′(θk) =
∂

∂θk

[

ln

(
B

bk

)

+ bk ln pk + (B − bk) ln(1− pk)−
1

2
(θk − θk|k−1)

T (Jk|k−1)
−1(θk − θk|k−1)

]

(D.4)

=

[
bk
pk

∂pk
∂θk

+
B − bk
1− pk

∂(1 − pk)

∂θk

]

− (Jk|k−1)
−1(θk − θk|k−1). (D.5)

From the definition of the pk, which represents a sigmoid function, we obtain the following

identities:

1

pk

∂pk
∂θk

= (1− pk)
∂λk(θk)

∂θk

(D.6)

1

1− pk

∂(1 − pk)

∂θk

= −pk
∂λk(θk)

∂θk

. (D.7)
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Substituting (D.6) and (D.7) into (D.5) we get

L′(θk) = (bk −Bpk)
∂λk(θk)

∂θk

− (Jk|k−1)
−1(θk − θk|k−1). (D.8)

Taking the second derivative of (D.8), we get

L′′(θk) = −(Jk|k−1)
−1 + (bk − Bpk)

∂2λk(θk)

∂θk∂θ
T
k

−
∂λk(θk)

∂θk

Bpk(1− pk)
∂λk(θk)

∂θk

T

(D.9)

Therefore, substituting the expressions of the first and second partial derivatives of the

loglikelihood function in (D.8) and (D.9) into (D.3), and evaluating at θk = θk|k−1, we get

θk|k = θk|k−1 + Jk|k

[

(bk −Bpk)
∂λk(θk)

∂θk

]

θk|k−1

,

(Jk|k)
−1 = (Jk|k−1)

−1 +

[

(Bpk − bk)
∂2λk(θk)

∂θk∂θT
k

+Bpk(1− pk)
∂λk(θk)

∂θk

∂λk(θk)

∂θk

T
]

θk|k−1

.

The analysis of the convergence of the point-process filter is presented in [97].

D.2 Summary: PID TT027

In this section, we demonstrate the performance of the FI [66] and pFOG method for PID

TT027, who demonstrated the greatest number of FOG events (24 in total). Because the list

of balance assessment tasks involved in place and sharp 180◦ turns, we overlay the DL, MDL,

and FAL regions detected on the yaw angle plot provided by the inertial navigation system.

The sum of the regions identified as DL and MDL represent the FOG region detected in the

video data.
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Figure D.1: Summary of TT027. (a) TPR, (b) FAR, and (c) FOG events detected.

For PID TT027, we choose the BLOCK task to obtain the FI-threshold and the kernel

parameter because the participant demonstrated the highest number of FOG events (equal

to 8) in this task. We set the FI-threshold to 6.0 and the kernel parameter σs = 0.29 to

maximize the number of FOG events detected. In Fig. D.2-D.6, we plot the yaw angle of the

left foot with an overlay of the DL, MDL, and FAL regions obtained using the video reference

system. We observe that the FI-threshold obtained using the BLOCK task, demonstrates

high FAR in the remaining tasks. However, the proposed pFOG method demonstrates an

improved accuracy with low FAR.

In Fig. D.1, we summarize the results obtained for PID TT027. The FI-method detected

21/24 (or equivalently 87.5% accuracy) FOG events, whereas the pFOG method detected

22/24 (or equivalently 91.66% accuracy) FOG events. The average values of TPR for FI and

pFOG method are respectively 0.67 and 0.65. However, our method demonstrates a lower
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Table D.1: Number of FOG events detected for different participants across the gait tasks.

PID
PARAMETER BACK BLOCK EIGHT NARROW TURN TOTAL
FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG

TT003 6.56 0.30 (0/0) (0/0) (0/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (0/1) (0/1)
TT004 6.56 0.30 (0/2) (1/2) (0/6) (4/6) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (0/8) (5/8)
TT005 6.56 0.30 (0/1) (1/1) (0/0) (0/0) (0/0) (0/0) (0/1) (1/1) (0/0) (0/0) (0/2) (2/2)
TT007 6.56 0.30 (8/8) (4/8) (0/0) (0/0) (0/1) (1/1) (1/1) (0/1) (0/0) (0/0) (9/10) (5/10)
TT013 6.56 0.30 (0/0) (0/0) (1/3) (2/3) (0/0) (0/0) (1/2) (0/2) (0/0) (0/0) (2/5) (2/5)
TT017 6.56 0.30 (0/0) (0/0) (1/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (1/1) (0/1)
TT021 6.56 0.30 (1/1) (1/1) (1/3) (3/3) (0/2) (1/2) (0/0) (0/0) (0/1) (1/1) (2/7) (6/7)
TT027 6.56 0.30 (3/3) (3/3) (5/8) (7/8) (4/4) (3/4) (2/3) (3/3) (5/6) (6/6) (19/24) (22/24)
TOTAL 6.56 0.30 (12/15)(10/15)(8/22)(16/22)(4/7) (5/7) (4/7) (4/7) (5/7) (7/7) (33/58)(42/58)
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Figure D.2: PID TT027–BLOCK. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with
σs = 0.29. (c) and (d) Yaw angle plot with an overlay of DL, MDL, and FAL. FOG region was marked
using video data the following video commentary: Froze when stood up from chair to walk to block. Froze
when turning to go back to cones after second trial. Froze during turn in the fourth, fifth, and sixth trials.
Questionable left foot freeze in turn for seventh and eighth trials. Froze after trials over while walking away.

Figure D.3: PID TT027–BACK. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with
σs = 0.29. (c) and (d) Yaw angle plot with an overlay of DL, MDL, and FAL. FOG region marked using the
following video commentary: Froze turning after first backward trial. Froze turning after second backward
trial. Froze at the end of third backward trial into a turn.

average FAR of 0.09 when compared with the existing method which gives an average FAR

of 0.35, indicating a four-fold reduction in the false alarm rate using the proposed method.
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Figure D.4: PID TT027–EIGHT. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with
σs = 0.29. (c) and (d) Yaw angle plot with an overlay of DL, MDL, and FAL. FOG region was marked using
the following video commentary: Gait initiation freeze when standing up to start figure EIGHT trial, and
first and second figure EIGHT trials. Froze during turn after second figure EIGHT trial. Froze when lining
up for third and fourth figure EIGHT trials. The first two FOG events were not recorded in the IMU data.

Figure D.5: PID TT027–NARROW. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot
with σs = 0.29. (c) and (d) Yaw angle plot with an overlay of DL, MDL, and FAL. FOG region was marked
using the following video commentary: Froze when standing up and initiating gait to measure NARROW
chair width. Froze during turn after first and third NARROW trials. Froze before side-step to line up for
third NARROW trial. The first FOG event was not recorded in the IMU data.

D.3 Experimental Evaluation: Fixed Thresholds

In Table D.1, we analyzed the accuracy of the existing and proposed method across different

datasets for a fixed value of FI-threshold and σs. These fixed values are obtained by taking

the average of the participant-specific FI-threshold and participant-specific kernel parameter

in Table 5.2 of Chapter 5. In our analysis, we fix the FI-threshold to 6.56 and σs = 0.30.
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Figure D.6: PID TT027–TURN. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with
σs = 0.29. (c) and (d) Yaw angle plot with an overlay of DL, MDL, and FAL. FOG region was marked using
the following video commentary: Froze during first turn, twice during second turn, and third TURN trials.
Froze turning wrong way in fourth TURN trial and then froze again turning correct way. Froze in the fifth
and sixth TURN trials.

Figure D.7: PID TT007–BACK. (a) Freeze-Index plot with FI-threshold set to 6.56. (b)
pFOG plot with σs = 0.30. (c) and (d) Yaw angle plot with an overlay of DL, MDL, and
FAL. FOG region marked using the following video commentary: Festination backwards into
freeze in the middle of first trial. Festination backwards into freeze at the end of the second
trial. Six instances of festination backwards into freeze in the third trial.

Overall, the pFOG method obtained an accuracy of 72.41%, i.e., 42/58 FOG events were

detected using a fixed participant-specific kernel parameter (see Table D.1). The FI method

obtained an accuracy of 56.68%, i.e., 33/58 FOG events were detected using a fixed FI-

threshold. In contrast, when the participant-specific parameters were manually adjusted,
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we obtained an accuracy of 70.68% and 81.03% for the FI method and pFOG method,

respectively (see Table 5.2).

Table D.2: Detection performance for different types of FOG events..

Event type (No. of events) (not tuned) FI (not tuned) pFOG
Turn Freeze (38) 47.36% (18) 76.31% (29)
Initiation/Gait Freeze (12) 58.33% (7) 75.00% (9)
Festination with Freeze (8) 100.00% (8) 50.00% (4)
Overall (58) 56.68% (33) 72.41% (42)

In Table D.2, we report the performance of the FI method and proposed approach for a fixed

value of the FI-threshold and participant-specific tunable parameter, respectively, across

different types of freezing of gait. We notice that the proposed method performs better

than the existing approach in detecting all types of freezing, except festination. However,

for this particular type of freezing of gait, the false-alarm length detected in the FI method

is significantly higher than the proposed approach. In Fig. D.7, we overlay the detection

length (DL), missed detection length (MDL), and false alarm length (FAL) regions detected

on the yaw angle plot obtained by the foot-mounted inertial navigation system for PID

TT007–BACK trial (the only participant who demonstrated festinating gait). We notice

that the FI method detects large FAL (represented with blue background) for a fixed value

of FI-threshold.
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Appendix E

E.1 Module Parameters

Table E.1: Detection module parameters.

Parameters of the detection module Assigned value
Length of the window, N 16 samples
Standard deviation of the accelerometer, σa 1.0
Standard deviation of the gyroscope, σω 0.8
Threshold of Detector-I, γ′D1

2.0
Threshold of Detector-II, γ′D2

34.5
Gravity, g 9.8

Table E.2: Navigation module parameters.

Parameters of the navigation module Assigned value
Variance of the errors in the accelerometer, σ̃2

a 0.7
Variance of the errors in the gyroscope, σ̃2

ω
0.017

Variance of the errors in the velocity, σ2
v 0.01

Error covariance matrix, P0 diag{diag{10−5I6}, π/(180)[0.1, 0.1, 0.1]}
Initial position, [x0]1:3 [0, 0, 0]T

Initial heading, [x0]9 0
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Table E.3: Validation module parameters.

Parameters of the validation module Assigned value
Cutoff frequency of the low-pass zero-phase filter, ω0 3.2 Hz
Regularization parameter, λ 0.05
Number of gait cycles used for template generation, M 31
Threshold of the validation module, γG 0.5

Table E.4: Point-process filter parameters for the pFOG and pFOG-AFS.

Parameters of the point-process filter Assigned value
Width of each bin, ∆ 0.125 seconds
Length of each bin, ∆Fs 16 samples
Length of the history of spikes, ℓ 8
Background firing rate, α -15.0
Fixed scaling parameter, β 35.0
State transition matrix, Ak Iℓ
Process noise covariance matrix, Nk 10−14Iℓ
Initial state of the parameter vector, θ0|0 0.351ℓ

Initial covariance matrix, J0|0 10−12Iℓ
Participant-specific tunable parameter, σs 0.35

Table E.5: Point-process filter parameters for the pFOG-WA.

Parameters of the point-process filter Assigned value
Width of each bin, ∆ 0.125 seconds
Length of each bin, ∆Fs 16 samples
Length of the history of spikes, ℓ 8
Initial background firing rate, α0 -5.5
Fixed scaling parameter, β 1.0
State transition matrix, Ak Iℓ+1

Process noise covariance matrix, Nk diag{10−4, 10−6Iℓ}
Initial state of the parameter vector, η0|0 1.551ℓ

Initial covariance matrix, J0|0 10−4Iℓ+1

Kernel parameters for pitch µ = 0.0, τ = 0.10
Kernel parameters for freeze-index µ = 6.0, τ = 1.0
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