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ABSTRACT

We have proposed a new architecture called Axon that meets the challenges of delivering high performance network
bandwidth directly to applications. Its pipelined network interface must perform critical per packet processing in hardware
as packets flow through the pipeline, without imposing any store-and-forward buffering of packets. This requires the
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ABSTRACT

We have proposed a new architecture called Axon that
meets the challenges of delivering high performance net-
work bandwidth directly to applications. Its pipelined
nelwork interface must perform critical per packet pro-
cessing in hardware as packets flow through the pipeline,
without imposing any store-and-forward buffering of
packets. This requires the design of error and flow con-
trol mechanisms to be simple enough for implementation
in the network interface hardware, while providing func-
tionalily required by applications.

This paper describes the implementation of the Axon
host-network interface, and in particular the hardware
design of the critical per packel processing with empha-
sis on ervor and flow control. An extensive simulation
model of the network interface hardware has been used
to determine the feasibility and performance of hardware
implementation of these functions.

1 Introduction

A new communication architecture called Axon [9]
has been proposed for distributed systems. The pri-
mary goal of the Axon architecture is to support a
high performance data path delivering high network
bandwidth directly to applications. The significant
features of Axon are: (1) an integrated design of
host. and network interface archilecture, operating
systems, and communication protocols; (2) a net-
work virtual storage facility which includes support
for virtual shared memory on loosely coupled sys-
tems {10]; (3) a high performance, lightweight object
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transport facility which can be used by both mes-
sage passing and shared memory mechanisms [11];
(4) a pipelined network interface which can provide
a high bandwidth low latency path directly between
the network and host memory {12).

It is assumed that the underlying very high speed
internetwork (VHsI) [T] is quasi-reliable, i.e. the prob-
ability of errors is low enough that protocols are
success-oriented, designed with errors as the excep-
tional case (but they still must be handled). The
probability of bit errors is extremely low due to
the reliability of fiber optic links and modern fast
packet switches; the probability of packet loss and
missequencing is low due to the connection-oriented
substrate providing resource reservation. These as-
sumptions lead to a number of simplifications in the
transport protocol design and its efficient high per-
formance implementation, as described in this paper.

At the transport level, the vusI model is best
supported by a set of simple application-oriented
lightweight transport protocols for various classes of
applications [8]. These transport protocols can have
thieir critical path functions implemented in the vist
communications processor (CMP). The critical path
consists of the data path and routine per packet pro-
cessing allowing data to flow at vHST rate once a
transport operation has begun. It is thus important
to devise error and flow control mechanisms that are
simple enough to be hardware hased in the network
interface.

The transport protocol that is used by Axon is
designed to support the transfer of data segments,
referred to as application-oriented lightweight trans-
port protocol for object transfer (aLTP-oT) [11].
ALTP-0T uses rate based flow control, and efficient
end-to-end error control, optimised to include only
what is necessary for object transfer.

The underlying internet/network layers of function
are provided by a multipoint congram.oriented high



performance internet protocol™ (McHIP) [5], and net-
work access protocols.

This paper describes the Axon network interface
from the perspective of its simulation, and in partic-
ular the implementation of error and flow control in
hardware. Section 2 provides background on the sim-
ulation package that has been used to explore these
mechanisms, and gives a brief overview of the Axon
architecture as implemented by the simulator. Sec-
tion 3 describes the error control mechanism in de-
tail, presents the hardware design, and shows func-
tional and performance simulation results. Section 4
describes the rate control scheme, along with its im-
plementation and simulation. Section § discusses re-
lated work and gives concluding remarks.

2 Axon Simulation

This section describes the Axon architecture in the
context of its simulation. First, a brief introduction
to the BoNes™ simulation package [1] will be given
to facilitale interpretation of the block diagrams in
this paper. Then, the Axon data structures will be
deseribed. Finally, the Axon maodel will be described
in a top-down manner, beginning with the highest
level.

The simulation of the Axon architecture serves {wo
purposes. [First, il is a verification of design and the
ability to tmplement key mechanisms in hardware. In
particular, the simulation model of the cMP (commu-
nications processor) uses modules that correspond to
functions available in a vLst cell library. Secondly,
the simulation provides a platform to evaluate de-
sign options and tradeofls before a prototype system
is built.

2.1 Simulation Package

The package used for the simulation of the Axon
architecture is BoNes. It is a hierarchical discrete-
event simulator, which provides for the construction
of models through the definition of data structures
and graphical construction of block diagrams. These
data structures flow througlh and are modified by
simulation blocks.

Data structures are defined in a hierarchical fash-
ton, with children inheriting all the fields of the par-
ent structure. The top level structure is of type
TRIGGER, and is frequently used as a typeless signal

*A congram combines the desirable features of a datagram
with those of a {soft) connection. For the puwrposes of this
paper, it can be thought of a connection with the added at-
tributes of rapid setup and survivability in the presence of
network failures.

*TMBONeS (Block Oriented Network Simulator) is a trade-
mark of Comdisco Systems, Inc.

for triggering the operation of blocks. A number of
conventional data structures are provided with the
package, such as ARRAYs, VECTORs, and SCALARs, all
of which can be of type INTEGER or REAL. The Axon
model has defined the additional data structures nec-
essary to represent the different packet Lypes.

Data Structure Tnput
Data Strusture output

> [»BONeS
Block  Dofrmrrmmmsssnsmn {5
(W

a

Trigger Input

Figure 1: BoNes block

A block can either be a primitive module consist-
ing of ¢ source code or be constructed from other
blocks. Blocks are represented by rectangles contain-
ing the name of the block (or other assigned label for
clarity), as shown in Figure 1. Inputs and outputs
are represented by triangles that point into or out of
the block, to which signal connections are made. All
inputs and outputs have an associated type, which
must match (or be a child of) the type of data struc-
tures flowing through.

2.2 Data Structures

The Axon simulation requires the addition of packet
data structures to the conventional structures pro-
vided in the BoNes library. The Axon data struc-
tures will be described and presented in a format
similar to that used by the data structure editor of
the BoNes package. Data structures always inherit
all fields of their parent structure type, but these are
not fully enumerated in the following tables. The
packet structure contains the fields common to both
control and data packets, as well as auxiliary simu-
lation fields. Note that simulation fields do not af
fect the performance results of the simulations, since
parameters specifying the actual packet header and
data lengths are used by the simulator for computa-
tions of latency and throughput.

"The packet fields (Table 1) correspond to the
standard ALTP-OT packet fields [11], except for time

Table 1: Packet Structure

Field Type | Documentation
time stamp | REAL time stamp
ALTP c¢/d INT type
c INT | conmection id

q INT
corrupt INT

request id
corrupt data




stamp and corrupt. Time stamp is used to carry in-
formation on packet creation necessary for the simu-
lator to compute latencies. Corrupt is set to indicate
that the vist has introduced bit errors to the packet.
The control packet and data packet data siruc-
tures are children of type packet. The control
packet data structure models the ALTP-0T control
packets, including the operation type and segment id
requested.

Table 2: Data Packet Structure

Field Type | Documentation
(packet) | PKT
gl INT group size
k INT segment #
Is| INT | segment size
j INT page #
i INT packet #
lpi- @l | INT data length
rexmit INT rexmited pkt

The data packet data structure is shown in Ta-
ble 2. Note that all fields in the pavent packet strue-
ture are inherited; these are indicated by the first
fine (packet) and not Tully listed in the table. The
standard data packet fields are present, as is a field
indicating the data length to be used by some of
the statistics gathering simulation probes. Tach data
packet is part of a larger structure, called a super-
packet. While the host is involved with per super-
packet operations (such as the transfer of a data seg-
ment), only the nelwork interface is concerned with
per packet processing (such as the handling of data
packets within the superpacket). Tach data packet
is self-describing, consisting of information indicating
the packet id within a segment group (i7k), as well as
information on the length of variable size structure
(Ig] [s]). This results in significant savings in cMP
hardware complexity, allowing decisions on destina-
tion to be made based only on the header of each
incoming packet, regardless of the sequence or mul-
tiplexing. Additionally, a bit indicates il the packet
is an original or a retransmission.

2.3 Axon Model

‘The Axon system level simulation consists of two
hosts connected by the visi, as shown in Figure 2.

The entire system model consists of 7 levels of
hierarchy, which when fully flattened contains 1018
blocks. The upper levels of the Axon model will now
be described.

Host B—P> 0
SR VIS

O <12

Figure 2: Axon System Level Simulation

VHSIL The vHsI is modeled at a high level of ab-
straction for the purpose of simulating the Axon
host—network interface. The model includes end-to-
end latency (and its variance), packet loss (including
burst errors), missequencing, duplication, and bit er-
rors. These are used as parameters into the behav-
ioral simulation of paths connecting hosts through
the vHsI.
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Figure 3: Axon Host

Hosts. In a real Axon implementation, there would
be a number of symmeiric hosts scattered through-
out the internet. The simulation model consists of
two hosts, which will be referred to as the local
and remote hosts depending on where a request has
been initiated. The characteristics of load are impor-
tant rather than the routing of traffic between hosts.
Thus it is necessary to ensure that local host making
requests has load induced by another host, and sim-
ilarly that a remote host satisfying requests is also
loaded by request issuance,

The Axon host model is presented in Figure 3.
Bach host contains a CPU, CAP (CMP assist proces-
sor), CMP (communications processor — the network
interface chip), and CMM (communications memory
module). The local host is responsible for generating
requests based on the address reference trace model.
The remote host receives requests and returns seg-
ments based on the request.

This organisation allows a direct connection
through the cMp between the cMM and vusi. Thus,
packets can be transmilied and received without any
host interaction, with the ¢MP performing all criti-
cal per packet processing. The CAP serves to perform
functions that do not need to be implemented in ¢CMP
hardware, but involve protocol processing that may
be officaded from the cpru.

It is important to note the nature of the inter-
faces among the various components of an Axon host.



Data packets pass belween the vHSI and the oM,
through the cmp. Connections between the cPu and
CAP as well as between the CAP and cMP are used for
control only. In particular, control packets pass be-
tween the vHsI and the caP, through the cMmp, with
some other control signals connecting the cMmp and
cap. Connections between the ¢PU and CAP consist
only of control synchronisation for CPU requests and
CAP interrupts.

CrU. The cru simulation model generates requests
from a process model consisting of a dispatching
queue served by the CPU instruction processor. Pro-
cesses receive service for a specified burst length (in
number of instructions), and are returned to the dis-
patching queue. The program execution model as-
sumes that process execution can be divided into
phases during which a set of segments is in the lo-
cality set. This phase behavior is a common way
of modeling program locality. In the Axon environ-
ment, segments may be located on other hosts across
the vnsl. Thus, with a given probability, a remote
segment fault will take place. This results in trans-
fer of control to ALTP-0T which issues a get-segment
request, which is then passed to the cap.

When pages within the segment return, the cpu
is notified of their arrtval by the caP. The cru can
{hen mark them present in the corresponding page
table and recover from a page fault if necessary.

CAP. A high performance microprocessor, the cmp
assist processor (CAP), performs functions that are
not part of the critical path, but require high per-
formance that would be inadequately provided by
the host cPU and would adversely impact the perfor-
mance of other host processes. The CAP is responsi-
ble for building control packets and passing them to
the cMP for transmission and checksumming. Simi-
larly, contrel packets received by the cMmp are passed
to the cap for full decoding and subsequent action,
which may involve interaction with the hosl cpu.
The caP is involved in the timer management for
request retransmission, and notifies the host when
pages have been completely received.

Since the CcAP is a microprocessor running soft-
ware processes to perform its function, operations
are modeled as processing delays with parameters in-
dicating the number of instruction cycles. The sim-
ulator insures the serialisation of processing delays.
Additionally, there is some overhead modeled in task
switching between operations.

The cru sends requests to the cap, such as for a
remote segment fault. The caP then builds the ap-
propriale control packet and passes this to the cMP.
The ¢AP also decodes incoming control packets from
the cmp and takes the appropriate action. This may

involve interrupting the cpu, for example when a link
faunlt is required in response to a get-segment control
packet received. Each of the ¢AP functions will now
be described (with instruction cycle count given).

Request issuance (94 cycles): The cAP builds
all control packets to be passed through the cmp to
the vusi, A get-segment control packet is built in
response to the CPU issuing a remote segment fault.
This request control packet is then passed to the cMp
to be sent to the destination host. Note that other
requests would be modeled in a similar manner.

In response to missing packets detected by the
CMPa retransmit-packets control packet is built for
the corresponding page, which is passed fo the cmp
for transmission.

Request retransmission timer (17 cycles): A
request from the cPU also causes the initiation of
the Request Retransmit Timer. If the ¢MP does
not detect an assoclated return packet within the
timeout interval, the request will be reissued and the
timer restarted.

Page presence (2 cycles): In response to page
presence detected by the cMP, the CPU is interrupted
and passed the page number and connection id.

Control packet decode {33 cycles): All control
packets received by the CMP are passed immediately
to the cap. In the case of an incoming get-segment
request, the segment name and authentication are
stripped from the control packet body and passed to
the ¢pU for normal link fault resolution.

In the case that a retransmit-packets control packet
has been received, the information to retransmit the
necessary pages is passed to the oMP.

Return segment (19 cycles): When the link fault
lias been resolved, the CAP sets up the necessary
state. The cMP is then passed the control informa-
tion to begin the segment return.

CMM. The method for providing direct access be-
tween host memory and the network interface with-
out any store-and-forward hops is through the use
of a special multi-ported communications memory
module (cMM), similar in concept to vram {video-
RAM) design. The cuM has a conventional random
access port which appears like any other memory
bank to the processor-memory interconnect, out of
which the cPU may execute code and access data.
The other ports are high speed sequential access in-
terfaces to the cMp (transmit and receive), and rnust
operate at a rate of the vHs! optical links scaled by
the cMP datapath width.

A delay models the access time to start up the read
from the sequential output port. The data packet
length field is inserted in the packet for use by sim-
ulator probes in computing throughput. Individual
read operations take place for a sequence of packets



in a given page, given the page base address. A page
transmisston request from the cMP Rate Control re-
sults in 2 page burst of packets at Tull vust link rate.

Incoming data packets are sinked, since it is the
processing of the cMP, and not the actual destination
of the data that is of concern for this paper.

CMP. The goals for the design of the ¢MP include
the ability to perform critical path functions in real
time with no packet buflering and to incorporate the
necessary {unction in vLSI. This may be realised by
organising the cMP as a dynamically reconfigurable
pipeline, based on the ALTP type and options for a
particular connection. The pipeline organisation al-
lows packets to be processed at the vHSI dala rate.

It is important to note that the simulation model is
constructed to reflect the actual hardware design of
the Axon cMP. Since a major thrust of this research
1s Lo investigate the tmplementation of critical path
function in hardware, simulation blocks are chosen
carefully to represent function easily implementable
in vLsl. Thus, high levels of simulation abstraction
are not used within the cMP model.

In general, low level simulation primitives accu-
rately reflect the functionality to be expected in a
VLSl design library. There are a couple of notable ex-
ceptions, and thus the justification for their use and
the ability to implement these functions in hardware
must be discussed.

The simulation package provides convenient vector
data structures which have been used to model the
Cshts (congram state registers). State variables that
are connection id dependent are modeled as vectors
indexed by the connection id ¢. This is equivalent
to associatively addressing a CSr register set by ¢,
but with a model oriented to the simulation package.
The operations used on simulation vector elements
correspond exactly to hardware register operations
in a CMP implementation.

The sitmulation package also provides timers,
which are used by the rate control modules and
provide a simple way to model the hardware based
timers. These are actually implemented as fields in
the csrs, which are incremented periodically and
compared to a terminal value. Thus the timer ab-
straction replaces an incrementing register Aeld and
comparalor in each case.

The cmp simulalion model is shown in Figure 4.
The Datapath Pipeline consisis of a model of de-
lay based on the number of stages of the pipeline
and the oMp clock cycle. Since the current effort is
not concerned with the investigation of the datapath
functions (such as encryption/decryption and format
conversion}, these pipelines model only delay. It is
merely important to impose a realistic stage length,
to allow time [or the control functions to take place.

Note that the critical per packet processing outside
of the datapath (error and flow control) ¢s of prime
concerin.

The transmit control blocks consist of Header
Build and Rate Comtrol. The receive control
blocks consist of Header Decode, Error/Presence,
and Request Satisfied. The Init Request block
initialises some of the csr fields related to Rate
Control and Errer/Presence when a new request is
made for a particular connection. These blocks will
now be discussed in greater detail.

Connection/congram multiplexing.  Con-
gram state registers (GSRs) hold all of the state in-
formation for each active connection, to allow rapid
control and pipeline configuration changes for mul-
tiplexed connections using the ¢MP. There Is a set
of ©sRrs for both the transmitting and receiving side
of the cMr. The multiplexing conirol logic uses
the connection and request ids {e, g) to associatively
address the appropriate €sR whenever an incoming
data packet is received for processing, or when out-
going data packets are constructed. This results in
a fast hardware context switch mechanism. Some of
the csr fields have the capability to increment or
decrement, providing the functionality for hardware
based timers on a per connection basis. As men-
tioned before, the csRs are modeled by vectors ad-
dressed by connection id in the Axon simulation.

Rate Control. The Rate Control block gener-
ates events that will trigger the transmission of a
page of packets for active connections in accordance
with the rate parameters, and will be discussed in
detail in Section 4.

Header Build. The Header Build block is re-
sponsible for building and inserting the necessary
fields into data packet headers. The connection id
¢ and segment size ls| are passed through from the
CAP when the segment transfler is initiated (through
Command Decede and Rate Control). The page
number j and packet number ¢ is computed by a
counter within Header Build as the packets flow
through for each page.

Header Decode. The Header Decode block is
responsible for exiracting and decoding the appro-
priate fields from packet headers. The type of the
packet is first determined from the corresponding
header bit. Control packets are passed to the cap
for further processing. Data packet headers have the
connection id ¢ extracted to perform the csr switch,
simulated by using ¢ as the index to corresponding
vectors. The packet id (j, &) and segment length |[s]
are extracted for use by the Page Presence block of
the cMP. The base page address field in the ¢sR is
then used in conjunction with the packet id to form
the target ¢MM address, where the packet is written.
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Error Control. The Error/Presence block de-
termines when all of the packets have arrived for a
page, signaling the arrival of a complete page or the
need to request a retransmission. Error/Presence
will be described in detail in Section 3.

Request Satisfied. The Request Satisfied
block determines when any packet has arrived in re-
sponse to arequest. A bii in the CSR is used to record
if any packet corresponding to the request has re-
turned. When the first packet is recognised, the car
is notified to cancel the request timer, and the csn
bit is set so that further cap interrupts will not be
made for a given request.

3 Error Control

This section describes the error control strategy and
its implementation in detail.

In the vHSI environment, error control is per-
formed, as much as possible, on an end-to-end ba-
sis, and is decoupled from flow (rate) control. This
is justified given the assumption of quasi-refiability.
To aliow for simple error control which can be ef-
ficiently implemented in vLsI hardware, the error
control scheme is designed for the particular ALTP
{application-oriented lightweight transport protocol)
using a quasi-reliable connection. The bmplication
to the ¢MP design is that the error control modules
are either designed for a particular ALTP, or when
practical built from a generic set of control modules
connected and configured appropriately.

The avTr-ot packel handling for various error
conditions are:

s duplicate packets are discarded

e corrupted packets arve discarded, and selective re-
Lransmnission requests are made

» missing packets are detected and selective retrans-
mission requests are made (if the original then ai-
rives, the retransmitled packet is treated as a dupli-

cate and discarded at the receiving end)

» packet arrival sequence is irrelevant (within a given
page); packets do not need to be resequenced since
they are placed directly into the proper target loca-
tion — referred to as sequence by placement

Note that due to the orientation of ALTP-0T to
object transfer, the handling of duplicate and out-
of-sequence packets is considerably simpler and more
efficient than would be the case for a general purpose
transport protocol. In particular, the latency and
buffer space associated with packet resequencing are
not present with ALTP-0T since packets are placed
directly into the correct location of application ad-
dress space with zero store-and-forward operations.

3.1 Strategy and Implementation

Two conditions indicate that a packet retransmission
request should be made: a received packet is deter-
mined to be corrupted (invalid header or checksum
mismatch) or an expected packet is missing. Sev-
eral policy choices in the error control mechanism
can be considered. A detailed investigation of rel-
ative merits of various application ortented retrans-
mission strategies is beyond the scope of this paper;
a more detailed description of policy choices and re-
lated tradeofls is provided in {11].

The policy implemented is as follows: Retransmis-
sion requests are based on receiving timers, since the
local end is best able to estimate when packets should
arrive. The granularity of selective retransmission is
a page of packets, since this is the unit of of data
that will cause CPU execution to block, but is still
a fraction of an entire segment transmitted. Pages
containing a corrupt or missing packet are always
fetched, anticipating that they will eventually be ref-
erenced by the cru. TFinally, retransmitted packets
preempt the primary data stream on the connection,
since the local process may be blocked waiting for



the corresponding page. The algorithm for missing
packet and page presence detection follows:

do finitial state]
V(i)1leqi 0  [packet presence vector]
Jeg 10 [current page index]
They —0 [page interval counter]
count-mode«— 1 [count ¥} up]
od
recei ve(T) [receive packet]
cq—T.cq [extract connection/request id]
i—m.i [extract packet number]
je—mj [extract page number]
if §=Jg [page match]
do
write(m) [store packet in cMM]
legri—1 [set packet presence]
[=[—1
if H Ieqi = 1 [all packets received]
i=0
do

present(cq, j} [indicate page presence]

deqt-rt [increment page index]
V(i)Ieqi —0 [reset packet presence]
Ty —0 [reset page interval count)
od

od

if j>Jg Ipackel from new page]
do
write(w) [store packel in GaM]

for x=jto J.,—1 [current to new page]
rexmit{cq, ) [request retransmit]

Jeg—1 [set index to new page]
Y{(i)l.: —0 [reset packet presence vector]
Tegri—1 [set presence of new packet]
Ty =0 [reset page interval counter]
od

if § < Joy [packet form previous page]
skip [discard packet]

if Jop = |s[—1I[last page in segment]
do
Ty, —2T, Iset estimate for last page)
count-mode— 0 [count down)
od

if T,=0 [expire page inlerval estimaie]
do
rexmit(eq, Jog)  [request retransmit]
od

The Exror / Presence block in the CHP performs
per packet error control. Packets that have been cor-
rupted (bad checksum) are dropped. All other data
packets are passed into the Page Presence logic
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(within Exrror / Presence), which is shown in Fig-
ure 5. The simulation model is constructed with the
same type of low level blocks as in this logic diagram.
‘This is the implernentation of the missing packet and
page presence detection algorithm, which was specif-
ically designed to result in simple hardware. The
logic determines when all of the packets have arrived
for a page, signaling the arrival of a complete page or
the need fo request a retransmission. A very simple
mechanism is used to allow easy hardware implemen-
tation. The local page index J and packet presence
I are maintained in the csRrs (congram state regis-
ters) as fields I and J, corresponding to the packet
id (4, 7) for each connection/request id combination.
When a packet arrives the conneciion and request
ids (e, q) are extracted by Header Decode fo select
the appropriate CSR, as is the packet id (¢, 7). This
is modeled by simulation vectors I and J indexed by
a single connection id.

For each packet, the Page Presence block is re-
sponsible for checking that the expected page num-
ber matches § = J, and that all bits in the packet
vector are one: ;I = 1. If the page number in-
creases belore all the packets within the page have
arrived, a retransmission request is made for the pre-
vious page (and any additional pages Lo catch up to
the newly arriving page using the counter J.). The
detailed state table follows, and corresponds to the
cases In the algorithm above.

state action output
L i=0ij=J | L1 - [pkt pres]
ii=1}i=J | I—0 | J++ | page pres
- J<J — - [discard]
- i>J || I+0 ) Jej rexmit

Packet sequence is irrelevant within a page, since
the appropriate bit in the vector I is set for each
packet. If packets are missequenced across page
boundaries, however, an unnecessary retransmission
request is made, This is because the CSR requires
a fixed size field for maintaining state on incom-
ing pages. Due to the quasi-reliability of congrams
aitd spacing of pages multiplexed with other con-
nections by Rate Control (§4), the probability of
packet missequencing across page boundaries is much
lower than within a page. It is possible to maintain
state for a fixed number of pages. In particular if n
page index fields are present in the csR, false retrans-
mits will not occur unless packets are missequenced
across n page boundaries in a given connection. The
logic is simpler, however, if only a single page index
is maintained, and simulations have justified this ap-
proach.

Note that the need for relransmission is detected
when the nezt page begins to arrive for a given con-
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nection. This 1s done to allow for some delay in the
network (either due to interleaving of packets in vHSI
switches or due to statistical delays) before a packet
is assumed lost. Special treatment is then required
for the last packet in a segment.

This is accomplished by running a count for the
last page. This is an estimate of the length of the
time interval between pages. A value T} is main-
tained as a csR field T, and incremented with each
cMP counter clock cycle. Each time a new page ar-
rives Lhe value is reset to zero, except for the last page
in the segment. The last page is detected by com-
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paring the segment length field |s| from the packet
header with the current page index J. When the
comparison succeeds, it is an indication that some
packet in the last page has arrived. In this case the
high order bit is set and T}, is then decremented with
each clock cycle, until 7, = 0. This indicates that
twice the time between the previous two pages has
expired, and the vector [ is checked to see if a re-
transmission request should be made,

The functioning of the Error control logic is intro-
duced in Figure 6. In this case, three connections are
shown The z-axis indicates the time of the events 1.
The y-axis indicates the packet id. Note that there
are no errors in this case,

Figure §: Page Presence — Error Free

Consider one of the three connections, ¢ = 0. A
request is made by the local host at t = 0, and passed
through the visi. The remote hosts then returns the
packets for a segment. Packets are plotted as dots,
with the packet id ¢ offset by the page number j.
The page size is |p| = 8 packets and the segment
size |s| = 10 pages. Thus the first ramp of packets
beginning around 20us shows packets 0 through 7 for
page 0. When all of the packets have been received,
the logic indicates page presence, shown by the large
circle. DBach successive page is shown as a ramp of



packets, offset by the page number. The segment
size is |s| = 10 pages, and a longer ramp consisting
of the entire segment can be seen.

The segment sizes for connections 0, 1, and 2 are
ls| = 10, 16, and 4 pages, respectively. Each ramp of
pages corresponds to a segment on a unique connec-
tion. Note that since pages are always transmitted in
single multi-packet bursts, the interleaving between
connections is at the page level, rather than at the
packet level.
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Figure 7: Page Presence and Packet Retransmission

Muttiple conneclions with errors are shown in Fig-
ure 7. Three connections are used, with the same
segment sizes as in the previous example. The net-
work delay has been increased so that the retrans-
missions can be clearly seen at the right of the plot;
this is why the z-axis begins at 200us. Each connec-
tion has had a different type of error induced by the
vist model. This plot is similar to Figure 6, except
that the packets in pages suffering errors have been
emphasised by larger squares.

Connection 0 {|s| = 10) contains a single packet
loss 1n the first page. This is indicated by EO where
the fourth packet is missing. Note that a circle indi-
cabing page presence ts missing. Instead, when the
receipl of the next page begins a retransmission re-
quest is made, indicated by the solid dot labeled RO.
Aflter a network round trip delay, the retransmitted
packets are received and page presence marked, in-
dicated by PO.

Connection 1 (|s| = 16) conlains a single burst er-
ror of 4 packets dropped in the last page, indicated
by E1. This causes a single retransmission request
to be made for this page, indicated by Ri. Note
that since this is the last page in the segment, it was
the last page timer 7}, thatl triggered the retransmis-
sion, rather than the arrival of another page. After a
round trip network delay, the page returns, indicated
by P1.

Finally, connection 2 is subjected to enough delay
variance that packet missequencing occurs. Insiead

of the linear ramps of packets elsewhere in the plot,
the packets (connected by lines for clarity) can be
seen to suffer considerable variance. The sequence
within a page does not matter, however, and thus
all of the pages are marked present, as shown by the
usual page presence circles next to P2.

3.2 Performance Implications

A metric of primary concern is the time that a pro-
cess is blocked waiting for the return of a data seg-
ment. The time interval between the process refer-
encing the segment and its complete return to the
local host is defined as T5. More important is the
time a process is blocked. This is measured by the
interval between reference and the return of the first
page in the segment, since execution can begin when
this page is marked present; this is defined as 7.
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Figure 8: Latency ws. Packet Loss

A number of simulation experiments have been run
to indicate the performance of the Axon system with
respect to errors. An example is shown in Figure 8.
In this case 3 connections on each host share 90% of
a 1Gbps link. The packet size is 32 bytes of data with
16 bytes of header. The page size is 1 Kbyte, with an
average segment size of 8 pages. Results are shown
for both a2 wan latency of 30ms and an internetwork
(1aN) latency of 50ms.

Packets are lost with a probability varying from
107% to 10~2. Note that artificially high error rates
with very small packet sizes are simulated to push
the error control mechanisms to extreme limits. The
VHSI environment is expected to be much more reli-
able than this.

The latency performance is quite flat, even up to
extremely high error rates, which can be attributed
to the use of selective retransmission. The Ts (up-
per) curves indicate the blocking that would occur
if a process would have to wait for an entire seg-
ment to arrive (as is the case with common general
purpose protocols). The T, (lower) curves indicate
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the advantage of knowledge by ALTP-0T of the page
structure of segments, allowing processes to resume
execution more quickly (the height of T; related to
the page size). Note that while the segments simu-
lated are rather smail, 7 is independent of segment
size. This is the case since T, is only dependent on
the correct arrival of the first page in the segment,
and retransmitled pages preempt the primary seg-
ment transmission in progress. As segment sizes in-
crease, so wil] the difference between T, and T, and
thus the performance benefits of ALTP-0T.

4 Flow Control

This section describes the {low control strategy and
its implementation in detail.

When ALTP-OT opens a connection, it specifies at-
tributes of the connection in iterms of a rale specifi-
cation » consisting of parameters average bandwidth
Aa, peak bandwidth Ay, and a burst factor B. These
parameters can be trapslated into bandwidih and
resource requirements based on a rate belween the
average and peak specifications. Since the connec-
tion is set up end-to-end, all the intermediate sys-
temns {packet swiiches and gateways) can make ap-
propriate buffer and resource reservations [7]. The
rate specification is negotiated between ALTP-07T and
MCHIP {internetwork/network layers) to ensure that
the requested rate does not exceed the capacity of
internal network nodes (packet switches, gateways,
and subnetworks). As a result, as long as both ends
transmit subject to the rate specification, the proba-
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bility of packet loss due to buffer overruns is very low,
Due to the high bandwidth-x-latency product in the
VHSI environment, dynamic adjustiments to Lhe rate
specification should be at most infrequent, reflecting
long term changes in application behavior.
DR A—— -

7 % Al /2
e b ety

Figure 10: Rate Specification Parameters
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The connection attributes can be transformed into
time intervals (by the caP) indicating when packets
should be clocked out of memory by the cMP onto
the network links: active period ¢, idle period #;, and
interpage generation time ¢,, as shown in Figure 10,
using the relationships [6]:7

_ B8l _ BSIxllpl , _ 8|mlip|

t i= 1,
T = A Ao YT

The three time fields are specified for the Rate
Control logic. The active time is the length of a
burst of page transmissions. The interpage gener-
ation time is the interval between the initiation of
page transmissions, i.e. the inverse of the burst rate
during the active time. The idle time is the interval
between active states. The hardware implementa-
tion is to have fields for these three rate specification

Inormalised by the page size 8|7||p} for per page rate rather
than bit rate



parameters in the CSR (ta, ti, tg), as well as count
fields to which they can be compared (Ta, Ti, Tg).
This is modeled in the Axon simulation by the use
of 3 corresponding timers.

The Rate Control block (Figure 9) generates
events that will trigger the transmission of a page
of packets in accordance with the rate parameters.
The request FIFO serves to smooth traffic among all
connections, so that requests to read a page from the
CMP are not made faster then they can be serviced.

In response to a segment transfer request, the ac-
tive state begins for a connection. This causes the
T, field of the csr be cleared, and the a/i bit to be
set to 1 to enable counting. When this field reaches
the value in the t, field, the active state is termi-
nated, and the idle state begins. This causes T; to
be cleared and the a/i bit to be reset to 0 to enable
counting {and disable T, counting). T; is incremented
in the same manner until {; is reached, signaling the
end of the cycle and the beginning of a new active
state. 'This continues uniil the last page has been
transmitted.

During the active state, pages may be transmit-
ted. The csr field t; holds the number of count
cycles belween page generation. Tg is cleared at the
heginning of each active cycle and is incremented un-
til a match occurs. This causes the generation of a
page request, which enters the page FIFo. A the
end of each interpage generate cycle, Ty is cleared
and begins counting again.

4.1 Performance Implications

There are two significant effects of the rate con-
trol scheme to be examined: fairness in through-
put among connections and inter-connection inter-
ference.
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First, interference between connections will be ex-
amined by the effect on the time a process is blocked,
as is shown in Figure 11. In this case a number of

connections on each host share 90% of a 1Gbps link.
The rate specification of each connection is varied so
that each process will get an equal share of band-
width. The network latency is 100us, and as be-
fore packet size is 32 bytes of data with 16 bytes of
header and page size is 1 Kbyte. In this experiment
segments are somewhat larger, averaging 32 pages.

As expected, the delay for a segment to completely
return Ts increases linearly with the number of con-
nections, due to the decreasing fraction of bandwidth
received by processes. In addition to the 90% con-
fidence interval bars, the minimum and maximum
values are plotied in each case as small dots, indicat-
ing that there is little variance among requests.

The T, (lower} curve indicates little increase with
the number of connections, showing little inter-
connection interference due to the rate control {or
other processing). Since pages are transmitted as
a single burst of packets at maximum line rate, in-
creasing the number of connections should minimally
affect the time the process is blocked waiting for the
first page. In particular, the only delay incurred in
the cMP (other than the datapath pipeline) is due to
the smoothing of the page request Firo. Additional
interference is possible in the host system and carp
(cMP assist processor) and is also reflected in this
plot since the entire system is under simulation.
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Figure 12: Rate Fairness

For a rate conirol scheme to be fair, all processes
should receive the specified share of bandwidth, and
in the case where rate specifications are identical
across processes none should receive significantly dif-
ferent service. Tigure 12 compares the through-
put across connections as they are added. A sin-
gle connection ¢y was given a peak bandwidth of
Ap = 0.5Gbps with additional connections evenly
sharing an additional 0.5Gbps as they were added.
The curve for ¢g is flat as desired, and the curves for
the other connections decrease and track one another
closely.

Table 3 indicates the network throughput per con-



Table 3: Network Throughput by Connection [Mbps]

5] I 32 1K

| 1040B 1448 48B
#e 10 | 100 10 [ 100 10
min 3.92 3.93 | 6156 9.99 [ 94.8
max 3.93 3.93 ] 73.0| 10.38 | 99.5
mean 3.93 393 705 10.23| 96.8
1deal 3.93 393 70.8 9961 96.8
total || 39.30 | 392.00 | 708.0 | 996.00 | 968.0

nection for varicus combinations of packet size ||
and segment size |s] {with a 1KB page size), for 10
and 100 active connections per processor, indicating
close correspondence across connections. Note that
since the application is subjected to the rate control
mechanism and has no direct access to flow confrol
once Lhe requested rate has been granted, a firewall
is established preventing applications from harming
one another in terms of bandwidth utilised. Sim-
ulations were also run verilying the insensitivity to
individual connections as the error rates on other
connections were driven extremely high.

5 Conclusions

Several recent efforts have been underway to provide
high performance host—network interface architec-
tures, including the NaB (network adapter board) [4],
the Nectar ¢aAB {communication accelerator board)
{31, and the protocol engine (PE) in support of xTP
(express transport protocol) [2].

Axon is based on underlying assumptions and
tradeolls that are very diflerent than these other ef-
forts. Specifically, these include the quasi-reliability
provided by the underlying congram-oriented inter-
net protoco) (MoHIP) and subnetworks that make re-
source reservations and provide guarantees on delay
and packet loss, and the much higher data rates of
the vusi. Furthermore, there is a greater emphasis
on the integrated design of host architecture, proto-
cols, and operating systems. Finally, the network in-
terface is designed so that no store-and-forward hops
are necessary, providing a direct pipeline between the
vHSI and memory.

We have presented the design of the Axon host—
network interface error and flow control mechanisms.
The simulation model has been carelully designed to
represent {unction that can be easily transferred to
vLsl design. The simulation results show that the er-
ror and flow control have the right performance char-
acleristics. The overhead contributed to latency is
minimal, as is the inter-connection interference. Fur-
thermore, the rate control implementation is fair in
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its delivery of throughput to connections. It should
be noted that these results have occurred even with
extremely small packet sizes.
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