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waves do not contribute to the displacement field for this case. (H) The normalized component of 

displacement in the fast polarization direction, 𝑈̂𝑓, masked by displacement amplitude. All the 

displacement for this simulation case is due to fast shear waves. (I) Demonstration of the 

separation of vector 𝑼̂ into slow (𝑈̂𝑠) and fast (𝑈̂𝑓) shear wave components. .............................. 75 

Figure 4.9: The angle between the propagation direction and fiber direction, 𝜃, and the apparent 

shear modulus, 𝜇𝑎𝑝𝑝 for all NITI cube simulations. (A-C) Cubes with fibers along the x-axis. As 
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were classified as slow based on the criteria (𝜃𝑠) are shown. All voxels that were not classified as 

slow are masked out (shown as dark blue). (B) The apparent shear modulus (𝜇𝑎𝑝𝑝) estimated 

using isotropic viscoelastic LDI. (C) Estimates of 𝜇𝑎𝑝𝑝 in voxels that were classified as slow 

(𝜇𝑠). All voxels not classified as slow were masked out (shown as dark blue). (D-F) Cube with 

fibers along the y-axis. As shown in Figure 4.8, these cases only have fast shear waves. (A) 

Estimates of 𝜃 in voxels that were classified as fast based on the criteria (𝜃𝑓) are shown. All 

voxels that were not classified as fast are masked out (shown as dark blue). (B) The apparent 

shear modulus (𝜇𝑎𝑝𝑝) estimated using isotropic viscoelastic LDI. (C) Estimates of 𝜇𝑎𝑝𝑝 in voxels 

that were classified as fast (𝜇𝑓). All voxels not classified as fast were masked out (shown as dark 

blue). ............................................................................................................................................. 77 

Figure 4.10: Apparent shear modulus of all voxels classified as “slow” (A) and “fast” (B) for all 

cases of the NITI cube. Each dot represents one voxel that met slow (A) or fast (B) criteria for 

DF-LDI analysis. The black solid line represents the linear relationship expected for the input 

parameters: 𝜇 = 1 kPa, 𝜙 = 1, 𝜁 = 2. The black dashed line represents the linear regression 

model for the estimated material parameters found using DF-LDI. (A) Apparent shear modulus 

in slow voxels for all simulation cases of the NITI cube. (B) Apparent shear modulus in fast 

voxels for all simulation cases of the NITI cube. ......................................................................... 78 

Figure 4.11: Shear wave displacement component in the x-direction (𝑈̂)  and normalized 

displacement component of slow and fast shear waves (𝑈̂𝑠 and 𝑈̂𝑓) along planes for the three 
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actuation directions of the 45° fiber X-Box case. (A) Actuation along the y-direction on the y-z 

face. (B) Actuation along the z-direction on the y-z face. (C) Actuation along the x-direction on 

the x-y top face.  The top row shows the actuation directions on the 45° fiber X-Box simulation 

schematic. The second row shows the shear wave displacements (w-component) on 

perpendicular planes through the center of the cubes. The third row shows the normalized 

component of displacement in the slow polarization direction, 𝑈̂𝑠, masked by displacement 

amplitude. The slice shown is the center slice along the z-axis. Voxels that do not meet the 

inclusion and categorization criteria (Table 4.1 and Table 4.2) are shown in black. The fourth 

row shows the normalized component of displacement in the fast polarization direction, 𝑈̂𝑓, 

masked by displacement amplitude. The slice shown is the center slice along the z-axis. Voxels 

that do not meet the inclusion and categorization criteria (Table 4.1 and Table 4.2) are shown in 

black. ............................................................................................................................................ 81 

Figure 4.12: Angle and apparent shear modulus on central slice for the three actuation directions 

of the 45° fiber X-Box case. (A) Actuation along the y-direction on the y-z face. (B) Actuation 

along the z-direction on the y-z face. (C) Actuation along the x-direction on the x-y top face. The 

top row shows the actuation directions on the 45° fiber X-Box simulation schematic. The second 

row shows the angle between the propagation direction and fiber direction (θ). Voxels that do 

not meet the inclusion (Table 4.1) are shown in black. The third row shows estimates of θ in 

voxels that were classified as slow based on the criteria (θs). All voxels that were not classified 

as slow are masked out (shown as black). The fourth row shows estimates of θ in voxels that 

were classified as fast (θf). All voxels that were not classified as slow are masked out (shown as 

black). The fifth row shows the apparent shear modulus (μapp) estimated using isotropic 

viscoelastic LDI. The sixth row shows the estimates of μapp in voxels that were classified as 

slow (μs). All voxels not classified as slow were masked out (shown as black). The seventh row 

shows the estimates of μapp in voxels that were classified as fast based on the inclusion criteria 

(μf). All voxels not classified as slow were masked out (shown as black). .................................. 83 

Figure 4.13: Apparent shear modulus of all voxels classified as “slow” (A) and “fast” (B) for all 

cases of the X-Box cube anisotropic material. Each dot represents one voxel that met slow (A) or 

fast (B) criteria for DF-LDI analysis. The black solid line represents the linear relationship 

expected for the input parameters: 𝜇 = 1 kPa, 𝜙 = 1, 𝜁 = 2. The black dashed line represents the 

linear regression model for the estimated material parameters found using DF-LDI. (A) Apparent 

shear modulus in slow voxels for all simulation cases of the NITI cube. (B) Apparent shear 

modulus in fast voxels for all simulation cases of the NITI cube. ................................................ 84 

Figure 4.14: Experimental measurements of fiber direction, propagation direction and slow / fast 

shear wave polarization directions from mini-pig data. In panels (C-I) colors represent directions, 

where red = left-right (LR); green = anterior-posterior (AP); blue = inferior-superior (IS). (A) 

Sagittal anatomical slice of a porcine head that underwent MRE at 50 Hz and 100 Hz. The red 
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line depicts the location of the coronal brain slice used in B-I and Figure 4.15. (B) MRE 

magnitude coronal slice of the mini-pig brain. (C) Fiber direction (𝒂) calculated using DTI. (D) 

Amplitude-weighted propagation direction (𝒏) at 50 Hz for coronal slice.). (E) Slow wave 

polarization direction at 50 Hz for coronal slice. (F) Fast wave polarization direction at 50 Hz for 

coronal slice. (G) Amplitude-weighted propagation direction (𝒏) at 100 Hz for coronal slice. (H) 

Slow wave polarization direction at 100 Hz for coronal slice.). (I) Fast wave polarization 

direction at 100 Hz for coronal slice. ........................................................................................... 88 

Figure 4.15: Experimental estimates of slow and fast shear wave participation, and apparent 

shear modulus, from mini-pig data, analyzed using DF-LDI. The coronal slice corresponds to the 

red line in Figure 4.14 A. Voxels that do not meet the inclusion criteria (Table 4.1) were 

removed during masking (black). (A) The normalized component of displacement in the slow 

polarization direction, 𝑈̂𝑠 for 50 Hz MRE.  (B) The normalized component of displacement in 

the fast polarization direction, 𝑈̂𝑓 for 50 Hz MRE. (C) The apparent shear modulus (𝜇𝑎𝑝𝑝) 

calculated by isotropic viscoelastic LDI using 50 Hz MRE data. (D) The normalized component 

of displacement in the slow polarization direction, 𝑈̂𝑠 for 100 Hz MRE.  (E) The normalized 

component of displacement in the fast polarization direction, 𝑈̂𝑓  for 100 Hz MRE. (F) The 

apparent shear modulus (𝜇𝑎𝑝𝑝) calculated by isotropic viscoelastic LDI using 100 Hz MRE data.
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Figure 4.16: Results of DF- LDI anisotropic parameter estimation for all porcine brains. (A) 

Estimates of 𝜇 for MRE data performed at different frequencies. Gray lines connect the data 

from the MRE scans of one mini-pig on the same day. (B) Estimates of 𝜙 for the porcine brain 
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Estimates of 𝜁 for the porcine brain from each scan days (n=13) with 95% confidence intervals. 
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Figure 5.1: (A) Schematic of the gelatin sample for MR-HUM. The sample was placed in a tube 

with a cutout window to allow for US penetration. (B) Schematic diagram of the gelatin sample 
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sample can be rotated while still maintaining the connection between the US transducer and the 
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Figure 5.7: MR-HUM chicken breast results for sample with actuation direction 87° to the fiber 

direction for directional filtering analysis. (A-C) Shear wave displacement in three directions 
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Figure 6.1: Simulation of MR-HUM. (A-B) A body load is applied to the small spherical region 
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of the 𝛽 = 90° case of the simulation shown by colormap where red is in the direction of the x-

axis, green is in the direction of the y-axis, and blue is in the direction of the z-axis. All voxels 

greater than 10 mm from the center (actuation) are removed from analysis using a mask. (D) 

Fiber direction (𝒂) is strictly along the y-axis. (E) The shear wave propagation direction (𝒏) is 

outwards from the center. Black arrows emphasize the direction of the wave. (F) Slow shear 

wave polarization direction (𝒎𝒔) is mainly along the z-axis and (G) fast shear wave polarization 

direction (𝒎𝒇) is mainly along the y-axis. .................................................................................. 112 

Figure 6.2: Flow chart outlining the steps of shear wave separation and anisotropic parameter 

estimation using PG.................................................................................................................... 119 

Figure 6.3: Simulation and DF-LDI analysis of NITI cylinder with actuation 90° to fiber 

direction for the muscle-like simulation case at 400 Hz actuation frequency. (A) Cylinder with 

fibers along the y-axis. The small sphere outlines the actuation source, which was centered in the 

cylinder and experienced oscillatory force in the z-direction. (B) Shear wave displacements (w-

component) on two perpendicular planes through the center of the cylinder. The black lines 

represent the fiber direction. (C) The normalized component of displacement in the slow 

polarization direction, 𝑈̂𝑠, masked by displacement amplitude. The slice shown is the center slice 

normal to z-axis. Voxels farther than 10 mm from the center were masked out. Most of the 

displacement for this simulation case is due to slow shear waves.  (D) The normalized 

component of displacement in the fast polarization direction, 𝑈̂𝑓, masked by displacement 

amplitude. Fast shear waves do not contribute much to the displacement field. Even voxels that 

apparently exhibit fast shear waves also have a large slow shear wave component (see panel C), 

so they will not be classified as “fast” voxels for the regression analysis. ................................. 121 

Figure 6.4: Angle and apparent shear modulus on central slice for the simulation case with 

actuation 90° to fibers for the muscle-like sample excited at 400 Hz. (A) The angle between the 

propagation direction and fiber direction (𝜃) for all voxels within 10 mm of center. (B) Estimates 

of 𝜃 in voxels that were classified as slow based on the criteria (𝜃𝑠). All voxels that were not 

classified as slow are masked out (shown as black). (C) Estimates of 𝜃 in voxels that were 

classified as fast (𝜃𝑓). No voxels for this case of the simulation were classified as fast. (D) The 

apparent shear modulus (𝜇𝑎𝑝𝑝) estimated using isotropic viscoelastic LDI. (E) Estimates of 𝜇𝑎𝑝𝑝 

in voxels that were classified as slow (𝜇𝑠). All voxels not classified as slow were masked out 

(shown as black). The images are further masked so that only voxels within 10 mm are included. 

(F) Estimates of 𝜇𝑎𝑝𝑝 in voxels that were classified as fast based on the inclusion criteria (𝜇𝑓). 

No voxels for this case of the simulation were classified as fast. (G) Schematic diagram of 𝜃 with 

𝒏 and 𝒂. ...................................................................................................................................... 122 

Figure 6.5: Results from all NITI cylinder simulations for all cases for DF-LDI method. Each 

dot represents one voxel that met slow (A and C) or fast (B and D) criteria for DF-LDI analysis. 
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The black solid line represents the linear relationship expected for the input parameters for brain-

like tissue (A -B): 𝜇 = 2 kPa, 𝜙 = 1, 𝜁 = 2 and muscle like tissue (C-D): 𝜇 = 7.5 kPa, 𝜙 =

1, 𝜁 = 1. The black dashed line represents the linear regression model for the estimated material 

parameters found using DF-LDI. (A) Apparent shear modulus in slow voxels for all simulation 

cases of the NITI cylinder for brain-like tissue. (B) Apparent shear modulus in fast voxels for all 

simulation cases of the NITI cylinder for brain-like tissue. (C) Apparent shear modulus in slow 

voxels for all simulation cases of the NITI cylinder for muscle-like tissue. (D) Apparent shear 

modulus in fast voxels for all simulation cases of the NITI cylinder for muscle-like tissue. ..... 123 

Figure 6.6: Simulation and phase gradient (PG) analysis of NITI cylinder with actuation 90° to 

fiber direction at 400 Hz. Voxels were masked based on inclusion criteria from Table 6.1. 

Images are from the center slice normal to the z-axis. (A) Displacement field component (𝑈𝑠) 

contributed by shear waves with slow polarization. (B) Displacement field component (𝑈𝑓) due 

to shear waves with fast polarization. (C) Curl field component (Γ𝑠) due to shear waves with 

slow polarization. (D) Curl field component (Γ𝑓) due to shear waves with fast polarization. (E) 

Phase angle (𝜓) of slow shear wave curl field, 𝑈𝑠. Black arrows represent the propagation 

direction. Arrows only appear over voxels that meet the classification criteria for inclusion in the 

analysis (Table 6.3). (F) Phase angle (𝜓) of fast shear wave curl field, 𝑈𝑓. There are no black 

arrows that represent the propagation direction because no fast voxels for this case meet the 

criteria for inclusion in the analysis (Table 6.3). (G) Angle between propagation direction and 

fiber direction (𝜃) for slow voxels. Voxels that did not meet classification criteria were masked 

out (Table 6.3). (H) Angle between propagation direction and fiber direction (𝜃) for fast voxels. 

No fast voxels met the classification criteria (Table 6.3). I) Apparent shear modulus (𝜇𝑎𝑝𝑝) in 

slow voxels. Voxels that did not meet classification criteria were masked out (Table 6.3). (J) 

Apparent shear modulus (𝜇𝑎𝑝𝑝) categorized by fast polarization. No fast voxels met the 

classification criteria (Table 6.3). ............................................................................................... 126 

Figure 6.7: Apparent shear modulus from all NITI cylinder simulations for all cases, estimated 

by the PG method. Each dot represents one voxel that met slow (A and C) or fast (B and D) 

criteria for PG analysis. The black solid line represents the linear relationship expected for the 

input parameters for brain-like tissue (A -B): 𝜇 = 2 kPa, 𝜙 = 1, 𝜁 = 2 and muscle like tissue (C-

D): 𝜇 = 7.5 kPa, 𝜙 = 1, 𝜁 = 1 . The black dashed line represents the linear regression model for 

the estimated material parameters found using PG.  (A) Apparent shear modulus in slow voxels 

for all simulation cases of the NITI cylinder for brain-like tissue. B) Apparent shear modulus in 

fast voxels for all simulation cases of the NITI cylinder for brain-like tissue. (C) Apparent shear 

modulus in slow voxels for all simulation cases of the NITI cylinder for muscle-like tissue. (D) 

Apparent shear modulus in fast voxels for all simulation cases of the NITI cylinder for muscle-
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xvii 

 

Figure 6.8: Experimental results from MR-HUM in muscle tissue (chicken breast) sample with 

actuation direction 51° to the fiber direction, analyzed using DF-LDI. These images correspond 

to chicken breast sample shear wave displacements and wave results in Figure 5.8. The slice is 

near the center of actuation, with voxels that do not meet the inclusion criteria (Table 6.1) 

removed during masking (black). (A) The normalized component of displacement in the slow 

polarization direction, 𝑈̂𝑠.  (B) The normalized component of displacement in the fast 

polarization direction, 𝑈̂𝑠. (C) The angle between the propagation direction and fiber direction 

(𝜃). (D) The angle 𝜃 in slow voxels, masked by slow shear wave polarization classification 

(Table 6.2). This slice shows very few slow voxels that meet classification criteria (these voxels 

correspond to simultaneous “hot spots” in the 𝑈̂𝑠 field in panel A and “cold spots” in the 𝑈̂𝑓 field 

in panel B). (E) The angle 𝜃 in fast voxels, masked by shear wave polarization classification 

(Table 6.2). This slice shows very few fast voxels that meet classification criteria (these voxels 

correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field 

in panel A). (F) The apparent shear modulus (𝜇𝑎𝑝𝑝) calculated by isotropic viscoelastic LDI. (G) 

The apparent shear modulus in slow voxels, masked by shear wave polarization classification 

(Table 6.2). This slice shows slow voxels that meet classification criteria (these voxels 

correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field 

in panel A). (H) The apparent shear modulus in fast voxels, masked by shear wave polarization 

classification (Table 6.2). This slice shows very few fast voxels that meet classification criteria 

(these voxels correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” 

in the 𝑈̂𝑠 field in panel A). Scale bar in (B) is 2mm. .................................................................. 131 

Figure 6.9: Experimental results from MR-HUM in muscle tissue (chicken breast) sample with 

actuation direction 87° to the fiber direction, analyzed using DF-LDI. These images correspond 

to chicken breast sample shear wave displacements and wave results in Figure 5.9. The slice is 

near the center of actuation, with voxels that do not meet the inclusion criteria (Table 6.1) 

removed during masking (black). (A) The normalized component of displacement in the slow 

polarization direction, 𝑈̂𝑠.  (B) The normalized component of displacement in the fast 

polarization direction, 𝑈̂𝑠. (C) The angle between the propagation direction and fiber direction 

(𝜃). (D) The angle 𝜃 in slow voxels, masked by slow shear wave polarization classification 

(Table 6.2). This slice shows slow voxels that meet classification criteria (these voxels 

correspond to simultaneous “hot spots” in the 𝑈̂𝑠 field in panel A and “cold spots” in the 𝑈̂𝑓 field 

in panel B). (E) The angle 𝜃 in fast voxels, masked by shear wave polarization classification 

(Table 6.2). This slice shows very few fast voxels that meet classification criteria (these voxels 

correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field 

in panel A). (F) The apparent shear modulus (𝜇𝑎𝑝𝑝) calculated by isotropic viscoelastic LDI. (G) 

The apparent shear modulus in slow voxels, masked by shear wave polarization classification 

(Table 6.2). This slice shows slow voxels that meet classification criteria (these voxels 
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correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field 

in panel A). (H) The apparent shear modulus in fast voxels, masked by shear wave polarization 

classification (Table 6.2). This slice shows very few fast voxels that meet classification criteria 

(these voxels correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” 

in the 𝑈̂𝑠 field in panel A). Scale bar in (B) is 2mm. .................................................................. 132 

Figure 6.10: Apparent shear modulus, 𝜇𝑎𝑝𝑝, of all slow and fast voxels from one chicken sample 

(two MR-HUM experiments, (A-B) and all (n=4) samples (C-D) using DF-LDI. Each dot 

represents one voxel that met the slow (A and C) or fast (B and D) criteria for DF-LDI analysis. 

The black dashed line represents the multiple linear regression model for the estimated material 

parameters found using DF-LDI. (A) Apparent shear modulus in slow voxels for one chicken 

sample. (B) Apparent shear modulus in fast voxels for one chicken sample. ............................ 133 

Figure 6.11: Results of DF- LDI anisotropic parameter estimation for all four chicken breast 

samples used in the analysis. (A) Estimates of 𝜇, 𝜇𝜙, and 𝜇𝜁 for each of the four samples (dots) 

are plotted with their 95% confidence intervals. Black diamonds show the parameter estimates 

from all four samples are included together in the multiple linear regression model. A total of 

5,572 voxels were used in the linear model fit of the four samples (R2 = 0.0394). .................... 134 

Figure 6.12: Results from PG analysis of MR-HUM data from chicken breast sample with 

actuation at 𝛽 = 51° to fiber direction at 400 Hz. Voxels were masked based on inclusion criteria 

from Table 6.1. Images are from the slice near the center of actuation normal to the z-axis. (A) 

Displacement field component (𝑈𝑠) contributed by shear waves with slow polarization. (B) 

Displacement field component (𝑈𝑓) due to shear waves with fast polarization. (C) Curl field 

component (Γ𝑠) due to shear waves with slow polarization. (D) Curl field component (Γ𝑓) due to 

shear waves with fast polarization. (E) Phase angle (𝜓) of slow shear wave curl field, 𝑈𝑠. Black 

arrows represent the propagation direction. (F) Phase angle (𝜓) of fast shear wave curl field, 𝑈𝑓. 

Black arrows represent the propagation direction. (G) Angle between propagation direction and 

fiber direction (𝜃) for slow voxels. Voxels that did not meet classification criteria were masked 

out (Table 6.3). (H) Angle between propagation direction and fiber direction (𝜃) for fast voxels. 

Voxels that did not meet classification criteria were masked out (Table 6.3). I) Apparent shear 

modulus (𝜇𝑎𝑝𝑝) in slow voxels. Voxels that did not meet classification criteria were masked out 

(Table 6.3). (J) Apparent shear modulus (𝜇𝑎𝑝𝑝) categorized by fast polarization. Voxels that did 

not meet classification criteria were masked out (Table 6.3). .................................................... 136 

Figure 6.13: Results from PG analysis of MR-HUM data from chicken breast sample with 

actuation at 𝛽 = 87° to fiber direction at 400 Hz. Voxels were masked based on inclusion criteria 

from Table 6.1. Images are from the slice near the center of actuation normal to the z-axis. (A) 

Displacement field component (𝑈𝑠) contributed by shear waves with slow polarization. (B) 

Displacement field component (𝑈𝑓) due to shear waves with fast polarization. (C) Curl field 
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component (Γ𝑠) due to shear waves with slow polarization. (D) Curl field component (Γ𝑓) due to 

shear waves with fast polarization. (E) Phase angle (𝜓) of slow shear wave curl field, 𝑈𝑠. Black 
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Accurate mechanical properties of the intact, living brain are essential for modeling traumatic brain 

injury (TBI). However, the properties of brain tissue in vivo have traditionally been measured in 

ex vivo samples. Magnetic resonance elastography (MRE) can be used to measure motion and 

estimate material properties of soft tissues in vivo, but MRE typically assumes tissue isotropy and 

homogeneity. The objective of this thesis is to improve MRE of soft tissue, like the brain, by 

developing and evaluating methods for in vivo estimation of heterogeneous, anisotropic properties. 

This was achieved through pursuit of the following aims: (1) quantifying the differences between 

in vivo and ex vivo brain tissue, thereby clarifying the need for in vivo measurements; (2) 

introducing and applying a new approach to anisotropic MRE, using data obtained during external 

actuation of the porcine brain in vivo, which highlighted the need for new actuation methods; and 

(3) developing and evaluating a method for anisotropic property estimation using MRE with 

actuation by harmonic focused ultrasound (FUS). This research has led to new methods for 

anisotropic MRE, and improved material property estimates of the brain and other soft tissues.  
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Chapter 1: Mechanical Characterization of 

Brain Tissue: Magnetic Resonance 

Elastography, Mechanical Anisotropy, and 

Focused Ultrasound 

1.1 Overview  

Accurate mechanical characterization of biological soft tissues, like the brain, is important for the 

understanding of injury and disease. Simulations are useful in describing and understanding injury 

biomechanics, but they require accurate material properties. Unfortunately, knowledge of brain 

tissue material properties is still limited due to its inaccessibility for direct, in vivo characterization. 

Most biological tissues are viscoelastic and mechanically anisotropic, yet they are often modeled 

in simulations as elastic and isotropic due to the lack of experimental data on anisotropic 

properties. To improve the estimation of material properties and improve simulations, more 

experimental data and better methods for anisotropic parameter estimation are needed. This 

chapter reviews current and past efforts to characterize and simulate soft tissues, with a focus on 

elastography techniques. 

1.2 Motivation and Significance 

1.2.1 Traumatic brain injury (TBI) modeling  

Traumatic brain injury (TBI) occurs when sudden head acceleration leads to shearing and 

stretching of brain tissue [2, 3]. In 2014, over 2.87 million people were diagnosed with a TBI based 
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on records from emergency department visits, hospitalizations, and deaths [4]. Figure 1.1 shows 

the trends of TBIs from emergency department visits, hospitalizations, and deaths from 2006 to 

2014 (EDHD). 

 

Figure 1.1: Trends of TBI from 2006 to 2014 of emergency department visits, hospitalizations, and deaths from 2006 to 2014 

(EDHD) in the United States. Over this time period, the total number of TBI EDHDs increased by 53%. By 2014, there were over 

2.87 million TBI EDHDs in the United States, with over 837,000 of those among children. Figure reproduced from [4]. 

TBI can result in physical, cognitive, behavioral, and/or emotional impairments. These effects can 

last for a few days to a person’s entire life [4]. Severe TBI is considered one of the most disabling 

injuries [5]. Despite the prevalence and potential severity of TBI, the mechanisms by which head 

impact leads to neural injury are still unknown [6]. Computer models can be used to simulate TBI, 

particularly the mechanics of fast brain deformation. Simulations can, in principle, be used to 

improve methods for injury prevention, diagnosis, and treatment of TBI. To make relevant 



3 

 

computer models of TBI, accurate representations of the material properties for brain tissue are 

necessary [7]. The mechanical behavior of the brain tissue remains incompletely characterized [8]. 

Characterizing the mechanical properties of brain tissue is challenging in part due to the inability 

to directly test the brain, and in part due to the inherent structural and mechanical complexity of 

its tissue. 

Since the brain is completely enclosed by the skull, direct mechanical testing of the brain in vivo 

is not possible. Therefore, most models are based on mechanical properties for brain tissue that 

has been obtained from human cadavers or animals ex vivo [9-17]. However, ex vivo measurements 

may not necessarily reflect in vivo behavior [18, 19]. A small number of tests have been performed 

using indentation of the intact brain in situ and in vivo in animals [18, 20]. Magnetic resonance 

elastography (MRE) has also been performed on both animals and humans [21-25]. Sizable 

differences have been found between estimates of material parameters from different studies, 

likely due to differences in methodology, frequency range, or time scale. Comparison between in 

vivo and ex vivo results [26] are limited and more research is necessary to better characterize the 

differences.  

1.2.1 Mechanical anisotropy   

In addition to the lack of data on the differences between in vivo and ex vivo measurements, there 

is a dearth of experimental data and simulations that account for the mechanical complexity of the 

brain. Brain tissue, specifically white matter, is structurally anisotropic (Figure 1.2), which likely 

causes the tissue’s mechanical properties to be directionally dependent (i.e., different for loading 

parallel or perpendicular to axonal fibers) [27, 28]. Anisotropy may have an impact in injury and 

disease mechanisms, so understanding its effects is important for the study of biological tissues. 
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Characterizing anisotropic properties is important for developing more accurate and reliable 

computer models that can improve our understanding, diagnosis, and treatment of injury and 

diseases [29]. However, despite the potential importance of anisotropy in mechanical behavior, 

direction-dependent mechanical properties are often ignored, and simpler, isotropic material 

models are used [28, 29]. This is largely due to the complexity of more accurate models. 

Anisotropic properties of soft materials are difficult to test and analyze. MRE can be used to 

measure the anisotropic shear and tensile properties of transversely isotropic soft tissue like brain 

tissue by analyzing shear wave propagation at different angles relative to the fiber orientation and 

polarization direction [30, 31]. Accurate and comprehensive characterization requires the same 

sample to be analyzed with multiple shear wave propagation and polarization directions. There is 

a need for more experimental data investigating the anisotropic material properties of biological 

tissues using multiple propagation directions.   
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Figure 1.2: Diffusion tensor images (DTI) of structural anisotropy in the ferret brain. Diffusion, measured by MR imaging 

sequences, is faster along the dominant fiber direction. (A-B) The direction of maximum diffusivity is indicated by color (red  =  
left-right; green = front-back; blue = up-down). Brightness indicates the magnitude of diffusion anisotropy. (C) Vector field of 

dominant fiber direction inferred from the direction of maximum diffusivity for the zoomed-in area outlined in (A). Figure 

reproduced from proposal CMMI-1332433 (PI: PV Bayly). 

Novel actuation methods are necessary for improved anisotropic property estimation. To acquire 

shear wave propagation at multiple different angles relative to fiber orientation, the actuator that 

generates shear waves should ideally be non-invasive and be able to produce waves with controlled 

propagation and polarization directions. Current MRE methods in vivo typically use actuators 

either on the surface of a tissue or body part [23, 32-34] while ex vivo methods may utilize a thin 

rod inside the tissue [30] for excitation. Another ex vivo method involves surface actuators, which 

noninvasively vibrate the surface of the sample. However, since small shear waves dissipate 

rapidly, excitation from surface actuators may be unable to reach the area of interest in the tissue. 

In addition, the propagation direction is difficult to control as waves typically propagate inwards 

from the surface. Internal excitation with a thin rod or needle directly applies displacement to the 

center of the tissue, so dissipation is less of an issue. However, this method is destructive to the 

tissue, so only one wave and propagation direction can be observed per sample. These limitations 
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underscore the need for a non-invasive, localized, direct, and nondestructive MRE actuator to 

study anisotropy. 

1.3 Modeling the Mechanics of the Brain  

Since the 1970s, researchers have been developing finite element head models to understand the 

brain mechanics of head impacts and injury [28]. These models investigate head impact [35-41], 

brain injuries [36, 42-45], and types of accelerations [46]. Figure 1.3 shows an example finite 

element model of the human head used in head impact and TBI research [41]. 

These models have provided insight into impacts and injury, but models are only as good as their 

assumptions and inputs. Most models are either unvalidated or validated using data from a sparse 

set of radio-opaque markers in cadaver brain [36, 37, 39, 45]. Validation of models is limited due 

to the lack of experimental data [45]. All the simulations cited above use isotropic material models, 

despite the potential anisotropy of brain tissue, due the lack of knowledge of anisotropic 

parameters [28, 45]. Majority of the finite element head models assume linear elasticity, with only 

a few models incorporating viscoelasticity or hyperelasticity [28].  
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Figure 1.3: Example finite element model of the human head used in brain injury prediction. Top row shows the human head 

model with the open skull and exposed brain. The bottom row shows the details of the skull base, brain membranes, and bridging 

veins that are included in the model. This figure was reprinted from [41] 

1.4  Elastography Imaging for Mechanical Property 

Estimation 

Elastography imaging techniques provide a non-invasive quantitative evaluation of soft tissue 

mechanical properties. Material properties can be estimated from induced shear waves based on 

their propagation properties [47]. The mechanical excitation of the shear waves can be provided 

by external actuation, acoustic radiation force, or internal physiologic motion [48]. The 

displacement and velocity of the shear waves are imaged using either ultrasound-based techniques 
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or MRI based techniques. Examples of ultrasound-based elastography imaging are transient 

elastography (TE) [49], acoustic radiation force impulse imaging (ARFI) [50], and harmonic 

motion imaging (HMI) [47, 48]. Examples of MR-based elastography imaging are Magnetic 

Resonance Elastography (MRE) [51] and MR acoustic radiation force impulse imaging (MR-

ARFI) [52]. MRI based techniques provide better resolution than ultrasound imaging based 

techniques, but ultrasound elastography is cheaper and more compact. This thesis focuses on MRI 

based techniques, specifically MRE. 

1.4.1  Magnetic Resonance Elastography (MRE)  

Magnetic resonance elastography (MRE) is an imaging technique for measuring the mechanical 

properties of soft tissue [51]. In MRE, shear waves are induced in tissue by harmonic external 

mechanical actuation; these waves are then imaged with a modified MR imaging sequence that 

includes harmonic, motion-sensitizing gradients. The material properties of tissue can be 

calculated using local wavelength estimation, direct inversion of the viscoelastic shear wave 

equation, phase gradient analysis, or finite element methods [53]. Deformations are typically very 

small (<0.1% strain) so only the linear, viscoelastic properties that govern behavior in this regime 

can be estimated. However, these parameters are important and complementary to parameters that 

describe large-amplitude, quasi-static response.  
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Figure 1.4: MRE in a container of gelatin with a soft inclusion. (A) Schematic of MRE actuation of sample with inclusion along 

the y-z plane. Shear waves are actuated using a harmonic actuator on the bottom surface. Red and blue sinusoid represents the peaks 

and valleys of the shear wave traveling through the sample. The stiffer gelatin is shown in light blue and the softer gelatin is shown 

in dark blue. Arrows denote the shear wave propagation and displacement axes. (B) Schematic of gelatin sample with inclusion 

along the x-y plane. (C) MRE images of shear wave displacements in the gelatin sample along a x-y plane. Waves travel faster in 

stiffer materials (longer wavelength) and slower in softer materials (shorter wavelength). (Original figure created by Erik Clayton.) 

MRE has been used as a research and clinical tool to characterize tissues, like brain, liver, and 

muscle, in vivo and to study changes in stiffness due to aging, disease, or injury [33, 34, 54, 55]. 

However, estimates of brain properties obtained by MRE [17, 26, 33, 56, 57] tend to differ from 

estimates of properties measured ex vivo by direct mechanical tests [17, 58-60]. It is not clear 

whether methodological differences or actual differences in properties explain these conflicting 

results. 

1.4.2  Acoustic radiation force-based elastography  

Acoustic radiation force can be used as a method of remote shear wave actuation for elastography. 

In this approach, an ultrasound beam is concentrated into a focal region, which creates localized 

tissue displacement from acoustic radiation force [48, 61]. The shear waves in the tissue are formed 

by generating impulsive radiation force or harmonic radiation force [61]. Examples of shear waves 

generated from impulsive forces include acoustic radiation force imaging (ARFI, MR-ARFI, 
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mpARFI) [50, 52, 62-64], transient MRE (t-MRE) [65], spatially modulated ultrasound radiation 

force (SMURF) [66], shear wave elasticity imaging (SWEI) [67], supersonic shear imaging (SSI) 

[68], shear wave spectroscopy (SWS) [69]. Examples of shear waves generated from harmonic 

radiation force include harmonic motion imaging (HMI) [48, 70], vibro-acoustography [71, 72], 

shear wave dispersion ultrasound vibrometry (SDUV) [73], and crawling wave spectroscopy 

(CWS) [74]. Several of these techniques (MR-ARFI, t-MRE, mpARFI, MR-HUM) combine 

ultrasound-generated pulses with MRI imaging, but majority of the acoustic radiation-based 

elastography, including all harmonic radiation force methods, use ultrasound for both harmonic 

actuation and data recording. 

1.5  Current Methods for Estimating Anisotropic 

Parameters 

Anisotropic elastography has most commonly been used to try to estimate two elastic parameters 

of a transversely isotropic (TI) material model: the shear moduli governing shear in planes parallel 

and perpendicular to the fiber direction. These 2-parameter models are incomplete, as TI materials 

can have different tensile moduli as well [31] (see Chapter 2). Such studies have been performed 

on breast tissue [75], muscle tissue [29, 76-79], anisotropic phantoms [29], and aligned fibrin gels 

[80]. MRE can also be used to estimate three parameters (such as shear modulus, shear anisotropy, 

and tensile anisotropy) for incompressible TI (ITI) material models [58, 78, 81]. It is also possible 

to try to estimate five parameters for general TI material models, or more for general orthotropic 

models [82]. For the 3-parameter model, Tweten et al. [31] showed by simulation that two types 

of shear waves must exist, with propagation of both waves in different directions, to estimate 
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accurately the three material parameters. In the human brain, Anderson et al. [83] used multiple 

excitation methods and showed that estimates of isotropic material parameters depended on the 

directional properties of the wave field. Schmidt et al. [30] actuated tissue in two different 

directions to image displacements from the two types of shear waves described by Tweten et al. 

[31]. Theoretical studies include ITI finite element models [84], an approach for ITI using 

ultrasound elastography [85], and a finite element model that incorporates axonal anisotropy [27]. 

Gennisson et al. [86] used ultrasound elastography to study transversely isotropic phantoms and 

measured shear moduli parallel and perpendicular to the fibers. Other recent ultrasound studies 

[87, 88] describe two different shear-wave speeds in transversely isotropic phantoms, but 

anisotropy is not fully addressed. 

1.7 Summary  

The mechanical properties of biological tissue are needed to help predict, prevent, diagnose, and 

develop treatments for disease and injury, including TBI. Using the correct mechanical properties 

is essential to accurately simulate brain biomechanics. It is important to characterize the 

differences in brain tissue in vivo and ex vivo, model anisotropic behavior, and improve actuation 

methods to probe the material response.   

1.8 Specific Aims and Dissertation Outline 

The goal of this thesis is to address some of the limitations of material property estimation in MRE 

with the following aims:  
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Aim 1: Determine if differences exist between material properties of brain tissue measured in vivo 

and ex vivo, and, if so, quantify them.  

Aim 2: Estimate the contributions of shear and tensile anisotropic mechanical properties estimated 

by MR elastography in simulations and experiments with external (boundary) excitation of shear 

waves. 

Aim 3: Estimate anisotropic material parameters in soft tissue by MRI of ultrasound-induced shear 

waves. 

 

Chapter 2 provides an overview of the mathematical theory required to perform this work. Basic 

principles of continuum mechanics and wave motion are reviewed. Principles underlying imaging 

and analysis procedures are also briefly summarized in this chapter.  

 

Chapter 3 describes experimental work performed to estimate and compare material properties of 

the porcine brain in vivo and ex vivo (Aim 1). Data was collected using MRI and MRE for 6 

Yucatan mini-pigs. Local direct inversion (LDI) was performed on all data to estimate the material 

properties of the brain tissue in vivo and ex vivo. 

 

Chapter 4 presents data from simulations of in vivo porcine brain, and analysis of the effects of 

shear and tensile anisotropy on shear waves excited by boundary actuation (Aim 2). Wave fields 

were separated into slow and fast shear waves and analyzed using directional-filtered, local direct 

inversion (DF-LDI).  
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Chapter 5 describes MR imaging of shear waves induced by acoustic radiation force of focused 

ultrasound. MR imaging of harmonic ultrasound-induced motion (MR-HUM) can noninvasively 

excite shear waves in soft tissues for the purpose of material property estimation. A benefit of this 

method is that a sample can be sequentially tested in multiple orientations to produce a variety of 

propagation and polarization directions for analysis of anisotropic behavior. 

 

Chapter 6 describes the estimation of anisotropic parameters from MR-HUM. Two methods of 

analysis, directional filtered local direct inversion (DF-LDI) and phase gradient (PG), are applied 

to simulated and experimental data and the results are compared.   

 

Chapter 7 concludes the thesis and discusses experimental limitations and future work. 

1.9 Statement of Contributions 

This thesis is a culmination of my work in the Bayly Lab at Washington University in St. Louis 

from May 2015 through June 2019. All aspects of the research presented in the thesis were advised 

by Philip Bayly and Ruth Okamoto. The following paragraphs describe my contributions in more 

detail. 

The work described in chapter 3 is reproduced from Guertler et al. 2018 [89]. This journal 

publication was a collaboration with the other co-authors. I designed the in vivo actuation device, 

performed all in vivo experiments with the help of Ruth Okamoto, analyzed the data, and wrote 

the paper. Curtis Johnson developed all of the MRE sequences for in vivo experiments; MRE 

sequences for ex vivo studies were adapted by Philip Bayly from standard spin-echo sequences. 
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John Schmidt performed all ex vivo experiments. Andrew Badachhape assisted with brain sample 

preparation.  

The work described in chapter 4 is based on a collaboration with Philip Bayly to develop 

anisotropic parameter estimation through separation of slow and fast waves. The finite element 

models represent a significant extension of work by Dennis Tweten, who built a finite element 

model of an isotropic cube with two fiber tracts at 45˚. I created finite element models with multiple 

fiber and actuation directions. I performed the analysis of the simulations and applied it to data 

from the mini-pig in vivo (from scans described in chapter 3).  

The work described in chapters 5 and 6 is based on a collaboration with Philip Bayly, Hong Chen, 

and Joel Garbow. The three collaborators worked with Image Guided Therapy to design the 

focused ultrasound system for MR-HUM. I performed all initial testing for generation of harmonic 

shear waves in phantoms. I did all sample preparation, experiments, and data analysis. Jake Ireland 

and Ryan Castile helped perform the dynamic shear testing and biaxial testing, respectively. I 

worked with Philip Bayly on the development and refinement of the anisotropic parameter 

estimation analysis. 
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Chapter 2: Theoretical Background and 

Imaging Methods 

2.1 Overview  

This chapter reviews the basic theory of elasticity. Constitutive relationships for isotropic and 

transversely isotropic, linear, elastic material models are introduced. Next, the theory of plane 

wave propagation is presented for harmonic shear waves in isotropic and transversely isotropic 

materials. Finally, this chapter summarizes the theory and application of the imaging techniques, 

like magnetic resonance elastography (MRE), and diffusion tensor imaging (DTI). 

2.2 Theory 

2.2.1 Equilibrium  

Mechanical equilibrium is the state where the sum of all forces acting on a body are in balance. 

This is defined by Newton’s second law, where the sum of forces acting on a body are equal to the 

body’s mass multiplied with its acceleration. This law can be applied to a material element of an 

arbitrary solid to relate the components of the stress tensor (𝝈) and the displacement vector (𝒖): 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
=  𝜌

𝜕2𝑢𝑗

𝜕𝑡2       (2.1) 

where 𝜌 is the density, 𝒙 is spatial vector (expressed in Cartesian coordinate system as 𝒙 = 𝑥𝑖𝒆𝒊), 

𝑡 is time, and 𝑖, 𝑗 are indices representing tensor components (also known as index or Einstein 

notation) where 𝑖, 𝑗 = 1, 2, 3 for the three dimensions (𝑥, 𝑦, 𝑧).  
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2.2.2 Constitutive Laws for Linear Elastic Materials 

2.2.2.1 General stress/strain relationships 

Stress (𝜎) is the measure of forces on an element. For a simple, 2D material, stress is equivalent to 

force over area. Strain (𝜀) is the measure of deformation of an element. For a simple, 2D material, 

strain is equivalent to the change in length over the original length. In three dimensions, the 

infinitesimal strain tensor can be defined as  

𝜀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑢𝑖
)      (2.2) 

For a linear elastic material under small deformations, the generalized Hooke’s law can be used to 

relate stress and strain 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙,      (2.3) 

where 𝐶𝑖𝑗𝑘𝑙 is the rank-four elasticity, or stiffness, tensor. This tensor can be represented 

compactly as a matrix using Voigt notation to produce the elasticity (or stiffness) matrix: 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15 𝑐16

𝑐22 𝑐23 𝑐24 𝑐25 𝑐26

𝑐33 𝑐34 𝑐35 𝑐36

𝑐44 𝑐45 𝑐46

sym. 𝑐55 𝑐56

𝑐66]
 
 
 
 
 

 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

    (2.4) 

where 𝑐𝑚𝑛 = 𝐶𝑖𝑗𝑘𝑙 where {𝑖𝑗} → 𝑚 and {𝑘𝑙} → 𝑛 according to Voigt notation which maps the 

index pairs of a tensor into a single index: {11} → 1, {22} → 2, {33} → 3, {23} → 4, {31} →

5, {12} → 6. 
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The inverse of this gives the compliance tensor (𝑆𝑖𝑗𝑘𝑙), which expresses strain in terms of stress: 

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙,     (2.5) 

Represented in Voigt notation gives: 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

 =

[
 
 
 
 
 
𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 𝑠16

𝑠22 𝑠23 𝑠24 𝑠25 𝑠26

𝑠33 𝑠34 𝑠35 𝑠36

𝑠44 𝑠45 𝑠46

sym. 𝑠55 𝑠56

𝑠66]
 
 
 
 
 

 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

   (2.6) 

where 𝑠𝑚𝑛 = 𝑆𝑖𝑗𝑘𝑙 where {𝑖𝑗} → 𝑚 and {𝑘𝑙} → 𝑛 according to Voigt notation. Both the elasticity 

and compliance matrices have 21 independent elastic constants for the most generalized case.  

2.2.2.2 Isotropic case 

An isotropic elastic has no mechanical directional dependence. Therefore, the elasticity matrix can 

be simplified using these material symmetries. The 21 independent constants can be reduced to 

two elastic constants:  

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

 =

[
 
 
 
 
 
 
𝑐11 𝑐12 𝑐12 0 0 0

𝑐11 𝑐12 0 0 0

𝑐11 0 0 0

𝑐11 − 𝑐12 0 0

sym. 𝑐11 − 𝑐12 0

𝑐11 − 𝑐12]
 
 
 
 
 
 

 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

   (2.7) 

Equation 2.4 can be written in terms of the Lamé constants, 𝜆 and 𝜇, or the engineering constants 

Young’s modulus (𝐸) and Poisson’s ratio (𝜈) as: 
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[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

 =

[
 
 
 
 
 
 
𝜆 + 2𝜇 𝜆 𝜆 0 0 0

𝜆 + 2𝜇 𝜆 0 0 0

𝜆 + 2𝜇 0 0 0

2𝜇 0 0

sym. 2𝜇 0

2𝜇]
 
 
 
 
 
 

 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

  (2.8) 

where 

𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
, 𝜇 =

𝐸

2(1+𝜈)
     (2.9) 

The compliance matrix for an isotropic material is 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 
 
 

𝜆+ 𝜇

𝜇(3𝜆+2𝜇)

𝜆+ 𝜇

𝜇(3𝜆+2𝜇)

−𝜆

2(𝜆+ 𝜇)

𝜆+ 𝜇

𝜇(3𝜆+2𝜇)

−𝜆

2(𝜆+ 𝜇)
0 0 0

𝜆+ 𝜇

𝜇(3𝜆+2𝜇)

𝜆+ 𝜇

𝜇(3𝜆+2𝜇)

−𝜆

2(𝜆+ 𝜇)
0 0 0

𝜆+ 𝜇

𝜇(3𝜆+2𝜇)
0 0 0

(𝜆+ 𝜇)(1+𝜈)

𝜇(3𝜆+2𝜇)
0 0

sym.
(𝜆+ 𝜇)(1+𝜈)

𝜇(3𝜆+2𝜇)
0

(𝜆+ 𝜇)(1+𝜈)

𝜇(3𝜆+2𝜇) ]
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

 (2.10) 

which simplifies to  

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 
 

1

𝐸
−

𝜈

𝐸
−

𝜈

𝐸
0 0 0

1

𝐸
−

𝜈

𝐸
0 0 0

1

𝐸
0 0 0

1

2𝜇
0 0

sym.
1

2𝜇
0

1

2𝜇]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

   (2.11) 
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2.2.2.3 Transversely Isotropic case 

The simplest anisotropic material is a transversely isotropic (TI) material model. A TI material has 

one fiber direction but is isotropic in the plane orthogonal to the fiber direction. Figure 2.1 shows 

an example of a transversely isotropic cube, where fibers are along the x-axis and the plane of 

isotropy is in the y-z plane. This material is defined by the unit vector, 𝒂, which represents the fiber 

direction. 

 

Figure 2.1: Transversely isotropic cube with fiber direction (𝒂) along x-axis.  

This model assumes linear elasticity and is therefore only valid for small deformations that remain 

in the elastic region. It is a time independent model, so it does not take viscoelasticity into account.  

For a linear, elastic TI model, the stiffness matrix can be written as 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0

𝑐22 𝑐23 0 0 0

𝑐33 0 0 0

𝑐44 0 0

sym. 𝑐55 0

𝑐66]
 
 
 
 
 
 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

   (2.12) 

where 𝒂 = 𝒆𝟏 = [1 0 0]𝑇   is the fiber direction (Figure 2.1). A nearly incompressible TI (NITI) 

material can be characterized by only four parameters: minimum shear modulus (𝜇), shear 
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anisotropy (𝜙), tensile anisotropy (𝜁), and bulk modulus (𝜅) [58]. The components of the stiffness 

matrix for this case are given by 

𝑐11 = 𝜅 +
4

3
𝜇 (1 +

4

3
𝜁)      (2.13) 

 𝑐22 = 𝑐33 = 𝜅 +
4

3
𝜇 (1 +

1

3
𝜁)    (2.14) 

𝑐12 = 𝑐13 = 𝜅 −
2

3
𝜇 (1 +

4

3
𝜁)     (2.15) 

 𝑐23 = 𝜅 −
2

3
𝜇 (1 −

2

3
𝜁)     (2.16) 

𝑐44 = 2𝜇      (2.17) 

𝑐55 = 𝑐66 = 2𝜇(1 + 𝜙)     (2.18) 

The compliance matrix for a TI material can also be written in terms of shear modulus, shear 

anisotropy, tensile anisotropy, and bulk modulus by 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

1

𝜇(4𝜁+3)
 +

1

9𝜅

−1

2𝜇(4𝜁+3)
+

1

9𝜅

−1

2𝜇(4𝜁+3)
+

1

9𝜅
0 0 0

−1

2𝜇(4𝜁+3)
+

1

9𝜅

1+𝜁

𝜇(4𝜁+3)
+

1

9𝜅

−(1+2𝜁)

2𝜇(4𝜁+3)
+

1

9𝜅
0 0 0

−1

2𝜇(4𝜁+3)
+

1

9𝜅

−(1+2𝜁)

2𝜇(4𝜁+3)
+

1

9𝜅

1+𝜁

𝜇(4𝜁+3)
 +

1

9𝜅
0 0 0

0 0 0
1

2𝜇
0 0

0 0 0 0
1

2𝜇(1+𝜙)
0

0 0 0 0 0
1

2𝜇(1+𝜙)]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

 (2.19) 

In a near-incompressible material the bulk modulus 𝜅 → ∞, so the effect of the bulk modulus on 

the compliance tensor becomes negligible. This means the material is most likely to deform in 
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shear when loaded [9, 31]. The compliance matrix can then be simplified so that it only depends 

on three parameters: 𝜇, 𝜙, and 𝜁.  

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

1

𝜇(4𝜁+3)
 

−1

2𝜇(4𝜁+3)

−1

2𝜇(4𝜁+3)
0 0 0

−1

2𝜇(4𝜁+3)

1+𝜁

𝜇(4𝜁+3)

−(1+2𝜁)

2𝜇(4𝜁+3)
0 0 0

−1

2𝜇(4𝜁+3)

−(1+2𝜁)

2𝜇(4𝜁+3)

1+𝜁

𝜇(4𝜁+3)
 0 0 0

0 0 0
1

2𝜇
0 0

0 0 0 0
1

2𝜇(1+𝜙)
0

0 0 0 0 0
1

2𝜇(1+𝜙)]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

  (2.20) 

The compliance matrix of a general TI material is classically written in terms of two Young’s 

moduli (𝐸1 & 𝐸2), two shear moduli (𝜇1 & 𝜇2), and three Poisson’s ratios (𝜐12, 𝜐21, & 𝜐2) by 

[
 
 
 
 
 
𝜀11

𝜀22

𝜀33

𝜀23

𝜀13

𝜀12]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

1

𝐸1
 −

𝜐21

𝐸2
−

𝜐21

𝐸2
0 0 0

−
𝜐12

𝐸1

1

𝐸2
−

𝜐2

𝐸2
0 0 0

−
𝜐12

𝐸1
−

𝜐2

𝐸2

1

𝐸2
 0 0 0

0 0 0
1

2𝜇2
0 0

0 0 0 0
1

2𝜇1
0

0 0 0 0 0
1

2𝜇1]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

   (2.21) 

The Young’s moduli describe the stresses from the uniaxial stretch parallel (𝐸1) and perpendicular 

(𝐸2) to the fiber direction. The two shear moduli govern the shear stresses during shear in the 

planes parallel to (𝜇1) and perpendicular to (𝜇2) the fiber direction. The NITI material parameters, 

baseline shear modulus (𝜇), shear anisotropy (𝜙), tensile anisotropy (𝜁), can thus be defined in 

terms of the Young’s moduli (𝐸1 & 𝐸2), two shear moduli (𝜇1 & 𝜇2) as: 
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𝜇 = 𝜇2,          (2.22) 

   𝜙 =
𝜇1

𝜇2
− 1,       (2.23) 

𝜁 =
𝐸1

𝐸2
− 1.      (2.24) 

The Poisson’s ratios 𝜐𝑖𝑗 describe the strain in the 𝑗-direction from the stretch in the 𝑖-direction.  

For the perfectly incompressible (ITI) material: 𝜐12 = 1/2, 𝜐21 =
𝐸2

𝐸1
𝜐12, and 𝜐2 = 1 − 𝜐21. 

2.2.3 Viscoelasticity  

Most biological materials exhibit viscoelastic behavior, which means they display mechanical 

properties associated with both elastic solids and viscous fluids. In viscoelastic materials, the 

relationship between stress and strain is time-dependent. The response of a viscoelastic material 

harmonic loading can be described according to the "correspondence principle" [90] simply by 

replacing the real (elastic) moduli (𝜇) with a complex (viscoelastic) moduli (𝜇∗ = 𝜇′ + 𝑖𝜇′′), in 

which the real part captures the elastic behavior and the imaginary part captures the viscous effects 

of the material. These complex moduli are the ratios of the Fourier coefficients of stress and strain 

components [90].  In an isotropic material the real part of the shear modulus is called the storage 

modulus and the imaginary part the loss modulus. In anisotropic materials, it is common to assume 

anisotropic elastic moduli, 𝜇, and an isotropic loss factor, 𝜂, so that the imaginary part of each 

viscoelastic parameter is the real part multiplied by 𝜂.  
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2.2.4 Wave Propagation 

To investigate how plane waves travel in a nearly incompressible transversely isotropic (NITI) 

material, a harmonic displacement field solution is assumed (Figure 2.2)  

𝒖(𝒙, 𝒕) =  𝑢0𝒎exp[𝑖(𝑘𝒏 ∙ 𝒙 − 𝜔𝑡)] =  𝑢0𝒎exp[𝑖𝑘(𝒏 ∙ 𝒙 − 𝑐𝑡)]   (2.25) 

where 𝒖 is the shear wave displacement, 𝑡 is time,  𝑢0 is the amplitude of displacement, 𝒎 is the 

polarization of the displacement, 𝑘 is the wave number, 𝒏 is the propagation direction, 𝜔 is the 

excitation frequency, and 𝑐 is the wave speed. 
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Figure 2.2: Shear waves propagating through a transversely isotropic material with fiber direction along the x-axis, 𝒂 =
[1 0 0]; [9, 31]. Propagation direction (𝒏) is shown in red; polarization direction (𝒎) is shown in green.  (A) Shear wave 

propagating along the fiber direction: 𝒏 = [1 0 0];  𝒎 = [0 0 1]; (B) Shear wave propagating transverse to fibers in the plane of 

isotropy: 𝒏 = [0 1 0];  𝒎 = [0 0 1]; (C) Shear wave propagating in an arbitrary direction relative to the fiber axis: 𝒏 = [𝑛1 𝑛2 𝑛3];  
𝒎 = [𝑚1 𝑚2 𝑚3]; [58].  

This equation is substituted into the equation of motion in general tensor notation  

div 𝝈 =   𝜌
𝜕2𝒖

𝜕𝑡2       (2.26) 

where 𝜌 is the density. Substitute equation 2.25 into equation 2.26 and apply the linear elastic 

constitutive law, 𝝈 = 𝐶𝜺, to produce 

𝐶𝑖𝑗𝑘𝑙𝑛𝑖𝑛𝑘𝑚𝑙 = 𝜌𝑐2𝑚𝑗,    𝑗 = 1,2,3    (2.27) 

If we define the acoustic tensor as 

𝑄𝑗𝑙 = 𝐶𝑖𝑗𝑘𝑙𝑛𝑖𝑛𝑘     (2.28) 

we obtain the eigenvalue problem 

𝑸(𝒏) ∙ 𝒎 = 𝜌𝑐2𝒎     (2.29) 

The solution to this eigenvalue problem is three eigenvalues 𝜆 = 𝜌𝑐2 and eigenvectors 𝒎.  
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By substituting in the above elastic tensor terms and defining the 1-2 plane so that 𝒏 = 𝑐𝑜𝑠𝜃𝒆𝟏 +

𝑠𝑖𝑛𝜃𝒆𝟐, the acoustic tensor becomes 

𝑸 = 𝜇

[
 
 
 
 (1 + 𝜙)𝑠𝑖𝑛 (𝜃)2 + (

𝜅

𝜇
+

4

3
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     (2.30) 

With this form and a given set of material properties, the eigenvalue problem can be solved 

numerically. For an NITI material, where 𝜅 →  ∞, the eigenvalues are 

𝜆1 = 𝜌𝑐𝑠
2 = 𝜇(1 + 𝜙 cos2 𝜃)     (2.31) 

𝜆2 = 𝜌𝑐𝑓
2 = 𝜇(1 + 𝜙 𝑐𝑜𝑠2 2𝜃 + 𝜁 𝑠𝑖𝑛2 2𝜃)    (2.32) 

𝜆3 = 𝜌𝑐𝑝
2 → ∞     (2.33) 

where 𝑐𝑠 is referred to as the “slow” (or pure) shear wave speed, 𝑐𝑓 is referred to as the “fast” (or 

quasi) shear wave speed, 𝑐𝑝 is the pressure (or longitudinal) wave speed, 𝜌 is the material density, 

𝜃 is the angle between the propagation direction and the fiber direction, and 𝜇, 𝜙, 𝜁 are the material 

properties (baseline shear modulus, 𝜇, shear anisotropy,  𝜙, and tensile anisotropy,  ζ). 

The eigenvectors are  

𝝊𝟏 = [0  0  1]𝑇     (2.34) 

     𝝊𝟐 = [−𝑠𝑖𝑛𝜃  𝑐𝑜𝑠𝜃  0]𝑇    (2.35) 

𝝊𝟑 = [𝑐𝑜𝑠𝜃  𝑠𝑖𝑛𝜃  0]𝑇     (2.36) 
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The fiber direction (𝒂) and propagation direction (𝒏) are often in arbitrary directions. The slow 

and fast shear wave polarizations (𝒎𝒔 and 𝒎𝒇, respectively) are defined as (Figure 2.3) 

𝝊𝟏 = −𝒎𝒔 = −
𝒏×𝒂

|𝒏×𝒂|
     (2.37) 

𝝊𝟐 = 𝒎𝒇 = 𝐧 × 𝒎𝒔     (2.38) 

𝝊𝟑 = 𝐧      (2.39) 

 

Figure 2.3: The propagation direction (𝒏) and polarization directions (𝒎𝒔 and 𝒎𝒇) of slow (A) and fast (B) shear waves, 

respectively, in an incompressible, transversely isotropic, elastic material with a fiber direction (𝒂) along the x-axis. Reprinted from 

[31]. 



27 

 

2.3 Imaging Methods 

2.3.1 MRE  

Magnetic resonance elastography (MRE) is a 

non-invasive imaging technique for measuring 

the mechanical properties of soft tissue [51]. In 

MRE, shear waves are induced in tissue by 

harmonic mechanical actuation; these waves 

are then imaged with a modified MR imaging 

sequence that includes harmonic, motion-

sensitizing gradients (Figure 2.4). The material 

properties of the tissue can be calculated using 

an inversion method to estimate parameters that are consistent with observed wave fields (Figure 

2.5).  

There are many ways to induce harmonic shear waves in a material. Typical MRE methods include 

using actuators either on the surface of a tissue or body part [23, 32-34] or a thin rod inside the 

tissue [30] to create shear waves in the tissue.  

Figure 2.4: Experimental MRE displacement data acquired 

in isotropic gelatin/glycerol at 200 Hz mechanical actuation 

from a thin rod embedded in the center of the sample [1]. 
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Figure 2.5: (A) Image of shear waves in a heterogeneous gelatin cube with two different shear moduli. Waves were induced by 

horizontal oscillatory loading of the lower surface. (B) Shear moduli were estimated by fitting the displacement field to equations 

of wave propagation in locally homogeneous, isotropic, linear elastic media. Longer wavelength shear waves correspond to stiffer 

materials. (Images courtesy P.V. Bayly).   

The shear wave displacements from harmonic actuation are measured using MRE imaging 

sequences with motion-encoding gradients. These gradients oscillate at the same frequency as the 

actuation and produce phase contrast images along the period that are proportional to the 

displacement of the tissue [51, 91]. 2D spiral sequences (Figure 2.6) are run using motion encoding 

gradients in three orthogonal direction to completely measure the 3D motion field.   

 

Figure 2.6: Example pulse sequence diagram for spiral 2D MRE sequence. Motion encoding gradients (X, Y, Z) are applied 

separately to visualize the motion in 3 orthogonal directions. The gradient is at the same frequency as the actuation (Mechanical 

Actuator Signal). Reprinted from [21] 
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During MRE imaging sequence, motion-induced phase (𝝋) is obtained for every voxel, which is 

proportional to the oscillating displacement (𝒖) [51, 56]. The position of a material element with 

a nuclear spin, also known as spin packet, in a 3D sample can be defined as 

𝒙 = 𝑿 + 𝒖      (2.40) 

where 𝑿 is the initial position of the material element. The harmonic displacement of the element 

is defined as 

𝒖 = 𝒖𝟎  cos (𝜔𝑡 − 𝒌 ∙ 𝑿 + 𝜃)    (2.41)  

where 𝒖𝟎 is the vibration amplitude (m), 𝜔 is the vibration frequency (rad/s), 𝒌 is the spatial 

frequency vector (rad/m), and 𝜃 is the vibration phase (rad). The component of the phase vector 

for this material element in the direction of the gradient (𝜑𝐺(𝑿, 𝜃)) is 

𝜑𝐺(𝑿, 𝜃) = 𝛾 ∫ (𝑮 ∙ 𝒙)𝑑𝑡
2𝜋𝑁 𝜔⁄

0
=

𝛾𝜋𝑁(𝑮𝟎∙𝒖𝟎)

𝜔
cos (𝜃 − 𝒌 ∙ 𝑿)  (2.42) 

 where 𝛾 is the gyro-magnetic ratio of water (rad/s/T), 𝑁 is the number of motion-encoding 

gradient cycles for the sequence, and 𝑮 = 𝑮𝟎cos (𝜔𝑡) is the motion-encoding magnetic field 

gradient (T/m) [51, 56]. This equation can be simplified to 

𝒖(𝑿, 𝜃) = 𝐶𝝋(𝑿, 𝜃).     (2.43) 

Where 𝐶 is a proportional constant that relates the MR phase to displacement equal to  

𝐶𝑖 = 
𝑢max,𝑖

𝜑max,𝑖
=

𝜔

𝛾𝜋𝑁𝐺0,𝑖
,     (2.44) 

for the 𝑖𝑡ℎ direction where 𝐺𝑜,𝑖 is the gradient amplitude in the respective direction. 
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2.3.2 Inversion: Estimating material properties in MRE  

A method of inversion is used to estimate the mechanical properties of a material. Three types of 

inversion are local frequency estimation (LFE), local direct inversion (LDI), and phase gradient 

(PG). All methods rely on specific assumptions in their analysis. For a more accurate estimate of 

mechanical properties, ideally all assumptions for inversion are correct, however that is not often 

the case.  

2.3.2.1 Local frequency estimation 

For a shear wave traveling through an infinite isotropic domain, the shear wavelength (𝜆) is directly 

related to the material’s shear modulus (𝜇) 

𝜆 =
1

𝑓
√

𝜇

𝜌
      (2.45) 

where 𝑓 is the frequency of the shear wave and 𝜌 is the material density. This equation can be 

rearranged to give 

𝜇 =  𝜌(𝑓𝜆)2,       (2.46) 

In local frequency estimation (LFE),  the local spatial frequency of shear wave propagation is 

estimated by applying a series of spatial filters of radial and directional components [92] (Figure 

2.7). The shear wavelength is calculated from the dominant wave number (𝑘) in the imaging 

domain (𝐿) 

𝜆 =
2𝜋

𝒌
.      (2.47) 
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The method assumes the material is isotropic, with only shear waves traveling through an infinite 

domain. LFE is a robust technique since it uses multi-scale data averaging for the estimation, 

providing local estimates for isotropic materials that are insensitive to noise [93]. LFE does not 

approximate material properties well near boundaries. 

 

Figure 2.7: Flow chart for LFE method. 

2.3.2.2 Local direct inversion 

MRE shear wave displacement fields can be fitted to elastic wave equations in local direct 

inversion (LDI) [1]. LDI estimates the material properties with the assumption that the material is 

isotropic, linear, locally homogeneous, and viscoelastic.  

The shear modulus of the material, 𝜇, is assumed to be the complex shear modulus, 𝜇∗ 

𝜇 = 𝜇∗(𝑖𝜔) = 𝜇′(𝜔) + 𝑖𝜇′′(𝜔),    (2.48)  



32 

 

where 𝜔 is the frequency of the shear wave, 𝜇′ is the shear storage modulus (real part of 𝜇∗), and 

𝜇′′ is the shear loss modulus (imaginary part of 𝜇∗). Using this, the linear, isotropic, locally 

homogenous, viscoelastic Navier equation can be expressed as 

(𝜇′ + 𝑖𝜇′′)∇2𝑼(𝒙, 𝜔) =  −𝜌𝜔2𝑼(𝒙, 𝜔),   (2.49) 

where 𝑼(𝒙, 𝜔) is the MRE shear wave displacement field [1]. The inversion is done using a total-

least squares fitting method, fitting data within a kernel size, like 5 × 5 × 5 voxels.   

 

Figure 2.8: Example of LDI. Wave images are analyzed using a total-least squares fitting method, fitting data within a kernel size 

(white boxes). Shorter wavelengths correspond to a small shear modulus. Longer wavelengths correspond to a large shear modulus. 

(Figure credit E.H. Clayton) 

2.3.2.3 Phase Gradient 

Material properties can be calculated from the phase of harmonic shear waves at every voxel [53]. 

The phase angle of the shear wave (Ψ) can be calculated by taking the angle of any displacement 
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component (𝑢𝑗). Phase angle can also be calculated using a component of curl of the displacement 

(Γ𝑗). 

Ψ = ∠𝑢𝑗      (2.50) 

The wave number (𝒌) can then be calculated from the gradient of phase. 

𝒌 = 𝛁Ψ     (2.51) 

Wavelength (𝜆) is proportional to the magnitude of the wave number vector, which is ideally the 

same as its radial component. 

𝜆 =
2𝜋

|𝒌|
      (2.52) 

 Apparent shear modulus is then estimated from wavelength, using the frequency of the actuation 

(𝑓).  

𝜇 = 𝜌(𝜆𝑓)2     (2.53) 

The phase gradient method (PG) is very high resolution, but it is sensitive to noise [53]. This 

method is only accurate when there is only one simple shear wave, with no reflections [53]. 

2.3.3 Anisotropic Parameter Estimation   

Anisotropic material properties can be estimated using slow and fast shear waves for an elastic, 

nearly incompressible, transversely isotropic (NITI) material. As shown in Section 2.2.2.3, a NITI 

material can be described by the three independent parameters: shear modulus (𝜇), shear 
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anisotropy (𝜙), and tensile anisotropy (𝜁). These three parameters can be estimated using shear 

wave speed, propagation direction, polarization direction, and fiber direction. Using displacement 

data from the phase measurements, slow and fast shear waves are isolated by directional filtering 

with respect to the propagation and polarization directions [30, 31], defined in equations 2.37 and 

2.38.  

Slow shear waves do not stretch the fibers in the ITI material. Therefore, the slow shear wave 

speed (𝑐𝑠) depends only on the baseline shear modulus (𝜇), density (𝜌), shear anisotropy (𝜙) and 

the angle between the fiber direction and the propagation direction (𝜃).  

𝜌𝑐𝑠
2 = 𝜇(1 + 𝜙 cos2 𝜃)     (2.54) 

Fast shear waves stretch the fibers in the material, so the fast shear wave speed (𝑐𝑓) is also 

dependent on tensile anisotropy (𝜁). 

𝜌𝑐𝑓
2 = 𝜇(1 + 𝜙 cos2 2𝜃 + 𝜁 sin2 2𝜃)    (2.55a) 

𝜌𝑐𝑓
2 = 𝜇(1 + 𝜙) + (𝜁 − 𝜙) sin2 2𝜃    (2.55b) 

Multiple shear wave speeds (𝑐𝑠 , 𝑐𝑓) can be measured using a variety of actuation frequencies. To 

define these three unknown material parameters, different angles of propagation (𝜃) and multiple 

shear wave speeds (𝑐𝑠 , 𝑐𝑓) provide independent sets of equations: 

[
 
 
 
 
 
1      cos2 𝜃1              0        
⋮ ⋮ ⋮
1 cos2 𝜃𝑛 0

1 cos2 2𝜃𝑛+1 sin2 2𝜃𝑛+1

⋮ ⋮ ⋮
1 cos2 2𝜃𝑛+𝑚 sin2 2𝜃𝑛+𝑚]

 
 
 
 
 

[

𝜇
𝜇𝜙
𝜇𝜁

] = 𝜌

[
 
 
 
 
 
 

𝑐1,1
2

⋮
𝑐1,𝑛

2

𝑐2,𝑛+1
2

⋮
𝑐2,𝑛+𝑚

2 ]
 
 
 
 
 
 

    (2.56) 
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where 𝑛 is the number of slow shear waves and 𝑚 is the number of fast shear waves. The system 

is solved in the least-squares sense to find the material properties 𝜇, 𝜙, and ζ. 

2.3.4 Directional Filtering   

Propagation directions of harmonic wave fields can be estimated using directional filtering [6]. 

First, the Fourier coefficient, 𝑈(𝑿), of a scalar component of the wave field is extracted by Fourier 

transform in time. This coefficient is decomposed into harmonic functions of space, where each 

voxel has a 3D wavenumber vector. A directional filter is used to eliminate wave components 

outside a specific range about a vector, 𝒏𝒎. This result is then inverse-Fourier transformed to 

obtain the filtered displacement component 𝑈𝑚(𝑿) for waves described by the vector 𝒏𝒎. The 

propagation direction field at each voxel location is estimated by 𝑀 unit vector directions 

distributed evenly along the unit sphere  

𝒏(𝒖)(𝑿) =  ∑ 𝒏𝑚|𝑼𝑚(𝑿)|𝑀
𝑚=1                               (2.57) 

An example of a wave field directionally filtered in each of two perpendicular directions is 

shown in Figure 2.9. 

 

Figure 2.9: Wave propagation in a cylindrically aligned fibrin gel sample at 200 Hz actuation, illustrating analysis by directional 

filtering. (a) Elliptical waves exhibiting direction dependent propagation with different wave speeds in different directions. (b–c) 
Displacement field after directional filtering in each of two propagation directions specified by angle, θ, from the dominant fiber 

direction. (b) θ = 0° and (c) θ = 90°. Figure from [30]. 
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2.3.5 Diffusion tensor imaging 

Diffusion tensor imaging (DTI) is a noninvasive MR imaging method used to determine the 

magnitude and directional dependence of water diffusion in a material. This method can be used 

to investigate fiber orientation in tissues because diffusion in fibrous tissues is often anisotropic, 

with water diffusing faster along the fiber axis and slower perpendicular to the fibers [94, 95]. 

Diffusion-sensitizing magnetic field gradients are applied in a chosen number of directions to 

estimate the elements of the diffusion tensor for those directions. The diffusion tensor has three 

eigenvalues and eigenvectors, with the major principal axis corresponding to the direction of the 

tissue fibers (Figure 2.10).  

 

Figure 2.10: (a) Diffusion-sensitizing magnetic field gradients are applied in at least 6 directions to estimate the 6 elements of the 

diffusion tensor. The tensor has three eigenvalues (diffusivities 𝜆1, 𝜆2, 𝜆3) and associated eigenvectors, The major principal axis 

corresponds to fiber direction (b). 

 

The degree of anisotropy of diffusion of a tissue is defined by the tissue’s fractional anisotropy 

(FA). FA is a normalized measure of the differences between eigenvalues of the diffusion tensor, 

defined as 

𝐹𝐴 = √
1

2

√(𝜆1−𝜆2)2+(𝜆2−𝜆3)2+(𝜆3−𝜆1)2

√𝜆1
2+𝜆2

2+𝜆3
2

    (2.58) 

An isotropic material will have a FA close to 0, while a highly anisotropic material will have a FA 

close to 1.  
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Figure 2.11: Directionally-encoded DTI color map of human brain. Colors indicate direction of maximum diffusivity (red = right-

left, green = anterior-posterior, blue = superior-inferior) and brightness indicates strength of anisotropy (FA). Scale bar equals 4 

cm in all images. Reprinted from [6]. 

2.3.6 Acoustic radiation force from focused ultrasound  

Ultrasound is a mechanical sound wave with a frequency greater than 20 kHz. The ultrasound 

waves from a transducer can be noninvasively focused to a focal region of 0.5-3 mm3 [65, 96] deep 

inside of a tissue (Figure 2.12). This focal region exerts a force called acoustic radiation force 

which is defined as   

𝐹(𝑡) =
2𝛼𝐼(𝑡)

𝑐
      (2.59) 

where F(t) is the volumetric radiation force (𝑘𝑔/(𝑠2𝑚2)), α is the tissue absorption coefficient 

(𝑚−1), I(t) is the average acoustic intensity (𝑊/𝑚2), and c is the speed of sound in the material 

(𝑚/𝑠).  Acoustic radiation force can be used as a method of remote shear wave actuation for 

elastography [48, 61]. 
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Figure 2.12: Focused ultrasound (FUS) diagram. Focusing of ultrasound waves creates focal region of increased acoustic radiation 

force (𝑭). This force causes motion and creates a shear wave originating at the focus. 

An acoustic radiation force causes motion using impulses [50, 52, 62-69] or harmonic modulation 

[48, 70-74] to create a shear wave in a tissue that originates from the ultrasound focus. Harmonic 

tissue motion can be induced by amplitude modulation of the FUS beam [96, 97]. The resulting 

harmonic shear waves are at the frequency of the amplitude modulation. Shear wave displacement 

and velocity from acoustic radiation force can be imaged by ultrasound [61] or MRI [52, 98, 99].  

2.4 Summary  

This chapter provides the background and fundamental theory underlying the studies described in 

Chapters 3-6. The following chapters will build on and apply these concepts to illuminate the 

mechanical properties of brain tissue. 
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Chapter 3:Mechanical Properties of Porcine 

Brain Tissue In Vivo and Ex Vivo Estimated 

by MR Elastography1 

3.1 Overview  

The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull 

acceleration. These properties are thus of great interest to the developers of mathematical models 

of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable 

insight that can improve TBI modeling. Most direct measurements of brain mechanical properties 

have been performed using samples of brain tissue ex vivo. It has been observed that direct 

estimates of brain mechanical properties depend on the frequency and amplitude of loading, as 

well as the time post-mortem and condition of the sample. In this study we compare estimates of 

mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance 

elastography (MRE) at multiple frequencies. We observe that porcine brain tissue in vivo appears 

stiffer than brain tissue samples ex vivo. 

3.2 Objective and Significance 

The mechanical behavior of the brain remains incompletely characterized [8]. Most mechanical 

testing of brain tissue is performed using animal tissue ex vivo [9-11, 14, 15, 17, 59, 100, 101]. 

                                                 
1 This chapter and its associated appendix is reproduced from [89] C. A. Guertler, R. J. Okamoto, J. L. Schmidt, 

A. A. Badachhape, C. L. Johnson, and P. V. Bayly, "Mechanical properties of porcine brain tissue in vivo and ex vivo 

estimated by MR elastography," Journal of Biomechanics, vol. 69, pp. 10-18, 2018/03/01/ 2018. Journal of 

Biomechanics. Author contributions are listed in Chapter 1. 

The shear modulus (𝐺) has been changed to 𝜇 for this adaptation to be consistent with the rest of the document.  
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However, ex vivo measurements may not necessarily reflect in vivo behavior [18, 19]. In situ and 

in vivo tests have also been performed using indentation on animals [18, 20] and magnetic 

resonance elastography (MRE) on both animals and humans [21-25]. Substantial differences have 

been found between estimates of material parameters, likely due to differences in methodology, 

frequency range, or time scale. 

The relationship between in vivo and ex vivo properties of brain tissue remains a topic of active 

research [20]. Bilston et al. hypothesized that brain tissue properties in vivo would be stiffer than 

properties ex vivo [102]. Miller et al. performed one in vivo indentation test on exposed porcine 

brain and found stiffness measurements on the same order of magnitude as in vitro data [18]. Gefen 

and Margulies compared mechanical properties in the porcine brain in vivo to corresponding 

properties post-mortem, in situ (i.e., after death, but in the intact head), and ex vivo (in the extracted 

brain), also using indentation [20]. These studies found in vivo shear moduli stiffer than moduli 

measured post-mortem on preconditioned tissue (either in situ or ex vivo). Although these results 

offer insight into the relationship between in vivo and ex vivo tissue mechanical properties, the 

methods have important limitations. Indentation of the intact brain only measures properties near 

the surface. Also, indentation is sensitive to the detection of contact, and, unless performed at 

multiple speeds, provides limited information on frequency/strain-rate dependence. Dynamic 

shear testing of thin tissue samples [9, 58, 59] has been widely used for material characterization. 

Shear testing assumes flat samples, constant normal force, no slip, and affine deformations; 

conditions which are rarely satisfied. Furthermore, dynamic shear testing is impractical for in vivo 

tissue.   
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Still lacking are direct comparisons between dynamic mechanical properties estimated throughout 

the brain by the same method at similar frequencies and amplitudes, both in vivo and ex vivo. In 

this study, we address this need by performing MRE on porcine brain tissue over a range of 

frequencies, obtaining stiffness estimates both in vivo and ex vivo within the same tissue volume. 

3.3 Methods  

In vivo and ex vivo anatomical MRI and MRE scans were performed on six Yucatan mini-pigs 

(age range: 4 to 8 months; weight range: 23 to 50 kg). The experimental protocol was approved by 

the Washington University in St. Louis Animal Studies Committee, and all studies were supervised 

by veterinary staff. 

3.3.1 In vivo Scanning 

All scans were performed on a Siemens Prisma® 3T MRI scanner at Washington University in St. 

Louis. The mini-pigs were anesthetized with Telazol Ketamine Xylazine (TKX). An IV catheter 

and endotracheal tube were placed prior to scanning. Anesthesia was maintained with isoflurane 

via endotracheal tube. Temperature, pulse, respiration, and SPO2 were monitored. Mini-pigs were 

scanned in either ventral or dorsal recumbency. For dorsal recumbency (4 animals), the animal 

was positioned with its back on the scanner table (Figure 3.1A), and its head was placed in the 

base of the Siemens Head/Neck 20 coil. A combination of padding and VelcroTM straps was used 

to secure the head. For ventral recumbency (2 animals), the animal was positioned with its stomach 

on the scanner table. Its head was placed under a custom half-dome Plexiglas frame (Figure 3.1C); 

a combination of padding and VelcroTM straps was used to secure the head. The Siemens 18-
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channel Body Matrix Coil was fastened on the Plexiglas frame and MR table using VelcroTM 

straps.  

A custom multi-directional jaw actuator was designed to transmit harmonic motion from a 

pneumatic driver into the porcine brain while minimizing dissipation from muscle and fat. The 

actuator was fabricated from two small, empty plastic bottles (Figure 3.1A.1). A custom Delrin 

(Acetal) holder fit around the tube/bottle neck connections of each bottle. Two holes on each side 

of the Delrin holder secured an elastic VelcroTM nose strap. Two rubber timing belts encircling 

each bottle provided traction between the bottles and mini-pig molars (Figure 3.1A and Figure 

3.1C). After positioning the mini-pig head in the coil, the custom actuator was placed inside the 

jaw, with the bottles between the rear molars. The nose strap was tightened around the upper and 

lower jaws to minimize slippage between the teeth and actuator. 
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Figure 3.1: (A-D) Experimental set-up for MRE in vivo. A custom actuator (A.1) driven by the Resoundant™ system is placed 

between the back molars of the mini-pig jaw to induce vibrations in the skull and shear waves in brain at 50, 80, 100, and 125 Hz 

while the mini-pig is positioned in dorsal recumbency or ventral recumbency. (A) Mini-pig scanned in dorsal recumbency with its 

head placed in the lower part of the Seimens Head/Neck20 coil. Padding and VelcroTM secured the head from excess motion. (B) 

T2-weighted anatomical image (sagittal view, 0.8 mm3 voxels) of the mini-pig in dorsal recumbency, with MRE slices highlighted. 

Yellow rectangle shows the approximate location of the ex vivo brain tissue disk. (C) Mini-pig scanned in ventral recumbency with 

its head placed under a custom, half-dome, Plexiglas frame which supported the Siemens 18-Channel Body Matrix Coil. Padding 

and VelcroTM secured the head from excess motion. (D) T2-weighted anatomical image (sagittal view, 0.8 mm3 voxels) of mini-
pig in ventral recumbency, with MRE slices highlighted. Yellow rectangle shows approximate location of ex vivo brain tissue disk. 

(E-F) Experimental set-up for MRE ex vivo. (E) The cylindrical brain tissue sample is embedded in gelatin and excited by a central 

actuation rod at 80, 100, 125, 200, and 300 Hz using a piezoelectric actuator. (F) Anatomical image (1 mm3 voxels) of the ex vivo 

brain tissue sample and gelatin, TE = 60 ms and TR = 1000 ms. 

T1-weighted (“MP-RAGE”) and T2-weighted MR images were taken at the beginning of every in 

vivo MR scanning session (Figure 3.1B, Figure 3.1D; Figure 3.2A). Image volumes were acquired 

at 0.8 mm3 or 0.9 mm3 isotropic resolution for an in-plane field of view of 205 mm x 205 mm (0.8 

mm3 res) or 230 mm x 230 mm (0.9 mm3 res). A total of 192 (0.8 mm3 res) or 96 (0.9 mm3 res) 

slices were taken for each scan. Two averages were done for each image set. The anterior-posterior 

direction of the image volumes was aligned with the genu-splenium axis of the corpus callosum. 

The total scan time for the two anatomical acquisitions was 21 minutes. 
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Figure 3.2: Comparison of experimental data from the porcine brain in vivo (A) and ex vivo (B). (A) T2-weighted MR images of 

four non-contiguous (7.5 mm spacing) coronal slices of the brain in vivo at 1.5 mm resolution. Yellow rectangle shows approximate 

location of ex vivo brain tissue disk. Red line denotes approximate slice location pictured in B. (B) T2-weighted image of ex vivo 

cylindrical sample from the same animal at 1 mm resolution. 

For MRE, the skull was vibrated at frequencies of 50 Hz, 80 Hz, 100 Hz, or 125 Hz using a 

commercially available pneumatic driver (Resoundant™ Rochester, MN) connected to the custom 

jaw actuator (Table 1). MRE data with 3D displacement components, each encoded by image 

phase, were acquired with a 2D multi-shot spiral sequence [103] with 1.5 mm isotropic voxels 

covering a volume of 180 x 180 x 60 mm3. One vibration frequency was used per acquisition. 

Multiple sinusoidal motion-encoding cycles of gradient strength 30 mT/m were synchronized with 

motion to induce phase contrast proportional to displacement (2.45 microns/rad at 50 Hz and 100 

Hz, 3.91 microns/rad at 80 Hz, and 3.06 microns/rad at 125 Hz) [56]. Data for each mini-pig were 

collected over 2-3 scanning sessions using 1-3 actuation frequencies per session.  

Table 3.1: Numbers of anatomical and MRE scans performed in vivo and ex vivo in the 6 mini-pigs. 

 T1/T2 
MRE  

50 Hz 

MRE  

80 Hz 

MRE 

100 Hz 

MRE 

125 Hz 

MRE 

200 Hz 

MRE 

300 Hz 

In vivo 19 11 2 10 3 - - 

Ex vivo 6 - 1 5 2 6 6 
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MRE data were phase-unwrapped using open-source software FSL Prelude [104]. Voxels in the 

MRE volume were fitted to a model of rigid-body displacement and these rigid-body effects were 

removed to isolate displacements due to wave motion [32].  

3.3.2 Ex vivo Scanning 

Ex vivo scanning of tissue from the same six Yucatan mini-pig brains was performed on an 

Agilent/Varian DirectDrive 4.7T small-bore animal MRI scanner at room temperature (~21C). 

Once all in vivo scanning was complete, the mini-pigs (aged 6-9 months) were euthanized by 

barbiturate overdose. (Note: ages differ from in vivo scans because multiple in vivo scans were 

performed on each mini-pig over 2-4 months; 0-2 weeks elapsed between the last in vivo scan and 

the ex vivo scan). The brain was immediately extracted following euthanasia and dissected to 

expose the inferior section of the corpus callosum. A cylindrical sample containing the corpus 

callosum and superior gray matter, 42 mm in diameter, was extracted from the brain using a 

cylindrical punch. The sample was embedded in gelatin made with 2:1:1 glycerol, water, and pre-

buffered saline (PBS) in a 45 mm cylindrical container [30] (Figure 3.1E). Ex vivo scans began 

within 2 hours post-mortem. 

Ex vivo samples were vibrated at frequencies of 80 Hz, 100 Hz, 125 Hz, 200 Hz, and 300 Hz (Table 

1). Shear waves were excited by a central actuation rod of 3 mm diameter that punctured the center 

of the sample (Figure 3.1E). This rod was driven harmonically by an MR-compatible piezoelectric 

actuator (APA150M, Cedrat Technologies, Meylan, France). Anatomical images were taken at 1 

mm isotropic resolution with a field of view of 48 x 48 x 25 mm3 (Figure 3.1F, Figure 3.2B). 

Images were obtained at TE of 60 ms. MRE data were acquired with a modified 2D multi-slice 

spin-echo sequence with 1 mm isotropic voxels, TR = 1000-1200 ms, and TE = 28-40 ms covering 
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a volume of 48 x 48 x 25 mm3 (Figure 3.1F). Sinusoidal motion-encoding gradients (1-3 cycles) 

of amplitude 100-120 mT/m were synchronized with motion to induce phase contrast proportional 

to displacement (7.48 microns/rad at 80 Hz (n=1), 100 Hz (n=2), 200 Hz (n=5), and 300 Hz (n=5) 

and 9.35 microns/rad at 100 Hz (n=3), 125 Hz (n=2), 200 Hz (n=1), and 300 Hz (n=1)). MRE data 

were phase-unwrapped and rigid-body motion effects were removed using the methods detailed in 

section 2.1. 

3.3.3 Local Direct Inversion  

Local direct inversion (LDI) was performed on both the in vivo and ex vivo MRE displacement 

fields to estimate the mean complex shear modulus of the mini-pig brain sample at each of the 

measured frequencies using the viscoelastic analog to the Navier equation [1]: 

(𝜇′ + 𝑖𝜇")∇2𝑼(𝑥, 𝑦, 𝑧) = −𝜌𝜔2𝑼(𝑥, 𝑦, 𝑧) ,    (1) 

where the complex vector 𝑼(𝑥, 𝑦, 𝑧) contains the Fourier coefficients of the fundamental harmonic 

of the 3D displacement field, 𝒖(𝑥, 𝑦, 𝑧, 𝑡). The parameter 𝜇′ is the storage modulus, and 𝜇" is the 

loss modulus. This equation assumes that the material is linear, isotropic, and locally 

homogeneous.  

Estimates of storage and loss moduli were obtained for the entire brain in vivo and the entire sample 

of ex vivo brain and gelatin. Voxel-wise estimates were averaged over a region of interest (ROI) 

corresponding to the location and dimensions of the ex vivo brain samples. Storage modulus maps 

were further eroded using a 7x7x7 kernel to remove the possible effects of neighboring gelatin on 

the averaged storage modulus estimates in the ex vivo tissue.  
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3.4  Results 

3.4.1 In vivo 

Figure 3.3 shows examples of wave displacement, shear strain, and curl for one axial slice of the 

porcine brain in vivo. Although displacement components exist in all three directions, the out-of-

plane, anterior-posterior (AP, 𝑧) component of motion (𝑢𝑧) is the dominant component excited by 

the custom actuator. The displacement amplitude is ~1.5 µm. The curl of the wave field, which 

isolates the contribution of shear waves, is dominated by the component along the right-left (RL, 

𝑥) axis, Γ𝑥 =
𝜕𝑢𝑦

𝜕𝑧
−

𝜕𝑢𝑧

𝜕𝑦
. Shear strain and curl have similar magnitude (~2 × 10−4); the most 

prominent component of the strain tensor is ε𝑧𝑦 =
𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
. 
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Figure 3.3: In vivo MRE results for one axial slice of mini-pig brain at 100 Hz imaged while positioned in dorsal recumbency. (A) 

Image slice location. (B) Three components of displacement. (C) Three components of shear strain. (D) Three components of curl. 

Figure 3.4 shows examples of displacement, shear strain, and curl maps for one coronal slice of 

porcine brain tissue ex vivo. The dominant displacement component (~15 µm amplitude) during 

shear wave propagation is in the out-of-plane (𝑢𝑧) direction, which is the inferior-superior (IS) 

direction with respect to the brain. The curl of the wave field shows that the propagation of the 

waves occurs radially outward in the xy-plane. The largest components of curl and strain are ~2 ×

10−3 mm/mm, which are well within the small-deformation regime. 
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Figure 3.4: Ex vivo MRE results for one axial slice of brain tissue at 100 Hz. A) Image slice location. Images are from the same 

mini-pig shown in Figure 3.3. B) Three components of displacement. C) Three components of shear strain. D) Three components 

of curl. Note orientations and scale bars are different from Figure 3.3. 

Figure 3.5 displays storage modulus estimates for four representative in vivo axial slices spaced 

7.5 mm apart and one representative ex vivo coronal slice estimated using LDI for the data taken 

at 100 Hz. The ex vivo sample is surrounded by the gelatin, which is represented by the less stiff 

(~1 kPa) estimates in the image.  
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Figure 3.5: A) Storage modulus (𝜇′) at 100 Hz in vivo estimated using LDI. The AP component of motion is shown for the same 

image slices as in Figure 3.3 A and B. 𝜇′ was only estimated for voxels where >50% of the 7x7x7 fitting kernel was inside the 

brain. B) Storage modulus (𝜇′) at 100 Hz ex vivo estimated using LDI. The SI component of motion is shown for the same image 

slice as in Figure 3.3 C and D. 𝜇′ was only estimated for voxels where >50% of the 7x7x7 fitting kernel was inside the sample. 

Note: Image scales are the same in each panel (scale bars = 2 cm), but image slice orientations differ between panels A and B. 

To compare property estimates in vivo and ex vivo, an ROI was defined in the in vivo image volume 

to match the dissected sample used in ex vivo scanning. The ROI (Figure 3.6) is a 42 mm cylinder 

that includes the corpus callosum and superior regions. To remove the effects of the gelatin 

surrounding the ex vivo sample and the estimates near the actuator rod, the ROI for the ex vivo 

stiffness data was eroded using the MATLAB imerode command (2014a, MathWorks, Natick, 

MA) with a 7x7x7 kernel. 

 

Figure 3.6: LDI-estimated storage modulus (𝜇′) for one in vivo (A) and one ex vivo (B) mini-pig coronal brain slice using 7x7x7 

kernel for LDI. Black outlines denote the area used in the comparison between in vivo and ex vivo samples.  The ex vivo sample 

was eroded using a 7x7x7 kernel to remove the influence of gelatin on 𝜇′ estimates. 

Figure 3.7 displays histograms of LDI estimates of storage modulus (𝜇′) values for all voxels from 

the ROI of the in vivo image volume and from the eroded ROI of the ex vivo sample from all scans 
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performed at 100 Hz and 125 Hz. The mean for each data set is depicted by the dashed line. These 

histograms show (i) higher stiffness at the higher frequency, and (ii) in vivo tissue is stiffer than ex 

vivo tissue. The effect of orientation (dorsal or ventral) in vivo on brain stiffness was checked, and 

found to be small (voxelwise mean ± std.: 0.779 ± 0.347 kPa dorsal vs. 0.777 ± 0.468 kPa ventral 

for 50 Hz; 2.264 ± 0.649 kPa vs. 2.381 ± 0.820 kPa for 100 Hz). 

 

Figure 3.7: Histogram of LDI-estimated storage modulus (𝜇′) values of all pixels for in vivo (orange and red) and ex vivo (blue and 

purple) calculated at 100 and 125 Hz using a 7x7x7 kernel for all of the scanned mini-pigs. Dotted lines represent the mean 𝜇′ 
value. In vivo voxels are from the cylindrical ROI shown in Figure 3.6A. Ex vivo voxels are from the eroded ROI shown in Figure 

3.6B. 

At each frequency, the mean storage and loss moduli from the ROI of the in vivo image volume 

were estimated, along with the corresponding mean storage and loss moduli in the eroded ROI of 

the ex vivo image volume. The means and standard deviations of these parameters are plotted 

versus frequency in Figure 3.8.  Both in vivo and ex vivo estimates of storage modulus increase 
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with frequency. Notably, estimates of storage modulus are higher for the in vivo data than for the 

ex vivo data at all common frequencies. Multivariate regressions of storage and loss moduli were 

performed using a linear mixed-effects model with random subject effects. Group (in vivo vs. ex 

vivo), frequency, and their interaction were the independent predictors (Appendix B). For storage 

modulus, the slopes between in vivo and ex vivo were significantly different (p < 0.0001) and 

frequency was a good predictor of the data (p < 0.0001). No significant differences were observed 

between loss moduli in vivo and ex vivo over this frequency range (p = 0.285). The linear mixed-

effects model is included with mean storage and loss modulus estimates, in Figure 3.8. Storage 

and loss modulus estimate were also fitted to several candidate rheological models (Appendix C).  
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Figure 3.8: Mean storage modulus (𝜇′) and loss modulus (𝜇′′) of in vivo (red) and ex vivo (blue) mini-pig brain tissue estimated by 

LDI at frequencies from 50-300 Hz for N=6 animals. Each small asterisk (*) represents the mean 𝜇′ or 𝜇′′ for one mini-pig scanned 

at the specified frequency. Each larger marker (blue □ and red ◊) represents the mean 𝜇′ or 𝜇′′ for all mini-pigs scanned at the 
specified frequency. Notations above/below markers provide the number of scans represented by the mean value. Standard 

deviations were only provided for data sets with n  3. For in vivo data, each marker shows the average modulus estimate in a 

cylindrical ROI of dimensions matching that of the ex vivo cylindrical sample (Figure 3.1B). Multivariate linear regressions of 𝜇′ 
and 𝜇′′ were performed using a linear mixed-effects model with subject as a random effect (dashed lines; see Appendix B). In vivo: 

𝜇′ =  0.85 + 0.0283(𝑓 − 50); 𝜇′′ =  0.041 + 0.00916(𝑓 − 50).  Ex vivo: 𝜇′ =  1.48 + 0.0140(𝑓 − 80); 𝜇′′ =  0.164 +
0.00592(𝑓 − 80) . (A) Estimates of 𝜇′ increase with frequency due to viscoelasticity. At the common frequencies, 80, 100, and 

125 Hz, 𝜇′ estimates are higher for brain tissue in vivo than for brain tissue samples ex vivo. (B) Estimates of 𝜇′′ increase with 

frequency due to viscoelasticity.   
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3.5 Discussion and Conclusions 

This study provides the first comparison of in vivo and ex vivo material properties throughout a 

volume of brain tissue in the same large animal using MRE. MRE was performed on brain tissue 

both in vivo and ex vivo at multiple frequencies, illuminating the viscoelastic behavior of brain 

tissue under both conditions. MRE estimates of storage modulus suggest that tissue in the intact, 

living brain is stiffer than in ex vivo samples. Direct comparison was possible at overlapping 

frequencies of 80 Hz, 100 Hz, and 125 Hz. Estimates in ex vivo tissue at other frequencies (200 

Hz, and 300 Hz) support this general observation.  

MRE in pigs is quantitatively similar to MRE in humans. In Figure 3.3 the magnitude of wave 

displacement in vivo is on the order of 1-2 microns, similar to magnitudes observed in human 

studies in vivo using a “pillow” actuator [32] or “paddle” actuator [105]. The largest component 

of wave motion in the current in vivo studies is in the AP direction. Larger amplitudes are achieved 

in the ex vivo sample since waves are excited by direct vibration of the tissue; the largest 

component of wave motion is in the SI direction. 

Our estimates of storage modulus ex vivo at 80 Hz are within 15% of several estimates from the 

literature on the porcine brain taken using MRE [17] or oscillatory shear strain at 2.5% [101, 106]. 

At higher frequencies, the current ex vivo estimates of storage modulus are greater than prior 

estimates in porcine brain and exhibit a steeper dependence on frequency [17, 101, 106]. Current 

estimates of loss modulus for ex vivo are lower than prior estimates [17, 101, 106].  

What might explain the observed mechanical differences between in vivo and ex vivo brain tissue? 

Ex vivo tissue experiences neither perfusion nor metabolic activity, and any residual stress in ex 
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vivo tissue is relieved by dissection. More comprehensive studies are needed to determine which 

factors might explain observed stiffness differences.  

It is possible that anisotropy of white matter might have contributed to differences between in vivo 

and ex vivo parameter estimates [30, 31, 83]. Anderson et al. found ~20% differences in estimated 

storage modulus of white matter between areas where displacements were primarily parallel vs. 

perpendicular to the dominant fiber direction [83]. In the current study, although the dominant 

tissue motions were in different anatomical directions in vivo and ex vivo, in both cases tissue 

displacements were perpendicular to the dominant (right-left) fiber direction. Tissue motion in 

vivo was primarily anterior-posterior (Figure 3.3) and tissue motion ex vivo was primarily superior-

inferior (Figure 3.4); both are perpendicular to the fiber axis. Also, differences between in vivo 

and ex vivo estimates diminish at low frequencies. Thus, anisotropy is unlikely to explain the 

observed differences.  

Temperature affects tissue properties. We did not monitor the sample temperature in the current 

ex vivo studies, but in prior studies with gelatin samples [1] sample temperature during MRE was 

~21°C, which is substantially lower than in vivo (~37°C). However, in viscoelastic tissue lower 

temperatures are typically associated with higher storage modulus [13], which would tend to mask 

observed differences. 

The pig brain in vivo is surrounded by CSF and skull; ex vivo tissue was encased in gelatin in a 

plastic container. Boundaries should have minimal effects in both cases because we analyzed only 

interior ROIs removed from the boundaries. Also, differences in estimated properties are greater 
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at higher frequencies, at which the effects of boundaries are likely less important, due to shorter 

wavelengths. 

Future studies could investigate ex vivo brain tissue in situ (i.e., in the intact head post mortem) to 

account for factors related to tissue extraction. However, the logistical challenges of doing in vivo, 

in situ, and in vitro MRE in the same animal are substantial. 

Other limitations exist for both in vivo and ex vivo experiments. Since the porcine brain is small 

(~100 g), images are at a lower resolution, relative to brain anatomical structures, than typical 

human scans. Due to differences in actuation and sample geometry, the frequency ranges for in 

vivo and ex vivo studies did not overlap completely. The mini-pig head in vivo has thick layers of 

bone, fat and muscle, so that frequencies above 125 Hz dissipated before reaching the brain. In the 

ex vivo sample, below 80 Hz, insufficient wavelengths were obtained for accurate parameter 

estimation. Strain amplitudes were higher in ex vivo experiments, though in both in vivo and ex 

vivo samples strains were < 0.2%, well within the small-strain (linear) regime. Differences between 

in vivo and ex vivo studies and data characteristics are summarized in Appendix A. 

3.6 Summary  

This study shows notable differences between material properties estimated by MRE in vivo and 

ex vivo in similar volumes of brain tissue from the same animal, over multiple frequencies. 

Although many ex vivo measurements of brain tissue mechanical properties are available, only 

limited data have been obtained in vivo. Thus, most TBI simulations incorporate material 

parameters measured ex vivo. The current results thus represent progress toward accurate 

simulation of TBI in the intact, living brain.  
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Although this study provided insight into the differences between in vivo and ex vivo mechanical 

properties of the brain, the approach is fundamentally limited by the assumptions of conventional 

MRE. MRE assumes that the material is locally homogeneous and isotropic, while brain tissue is 

heterogeneous (with dimensions of heterogeneous structures shorter than the wavelength of shear 

waves in MRE) and white matter in the brain is anisotropic. Therefore, as described in the 

following chapters, I explored how MRE could be used to estimate parameters of an anisotropic 

material model. 
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Chapter 4:Contributions of shear and tensile 

anisotropy to mechanical properties estimated 

by MRE with boundary excitation 

4.1 Overview  

Accurate mechanical properties are essential for modeling traumatic brain injury. White matter 

(WM) in the brain is structurally anisotropic, consisting of variably aligned, myelinated, axons, 

but there is limited data on whether it is also mechanically anisotropic [107]. In MRE, shear waves 

are imaged with MRI and fitted to a material model; however, most models used in MRE are 

isotropic. The simplest anisotropic model for fibrous tissue is the incompressible, transversely 

isotropic (ITI) material, parameterized by baseline shear modulus (𝜇), shear anisotropy (𝜙 =

 𝜇1/𝜇 − 1), and tensile anisotropy (𝜁 = 𝐸1/𝐸2 − 1). To assess shear and tensile anisotropy, shear 

wave propagation and polarization directions, relative to fiber direction, must be considered [108]. 

In this chapter, the WM of the minipig brain is mechanically characterized using the ITI material 

model; data from simulations of shear waves in a cube of ITI material are used to demonstrate and 

evaluate the estimation approach. 

4.2 Objective 

MRE is an important imaging tool used to noninvasively estimate material properties of tissue 

[51]. However, its estimates are dependent on the assumptions used for the material model. Brain 

tissue is a complex material, composed of gray and white matter. Gray matter, which contains 

neuronal and glial cell bodies, is considered mainly isotropic, however white matter is composed 
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of aligned axonal fibers, resulting in structural anisotropy. This anisotropy may be important in 

the understanding and diagnosis of the numerous brain injuries and neurological diseases 

associated with axons [25, 109-115]. Specifically, traumatic brain injury (TBI) is often the result 

of diffuse axonal injury caused by the shearing of white matter, and multiple sclerosis (MS) is 

associated with loss of myelin from axons.  

Despite the importance of white matter, brain tissue has commonly been modeled as an isotropic 

material. A few recent studies have begun to consider anisotropy of soft tissue. The anisotropic 

material models vary in the number of parameters estimated. One anisotropic model includes two 

parameters, accounting only for the shear anisotropy of breast tissue [75] and skeletal muscle [76]. 

Others [82] include five or more material parameters to model brain tissue as either a transversely 

isotropic (TI) or orthotropic, linear, elastic material. Another anisotropic model used considers 

white matter to be an incompressible transversely isotropic (ITI) material containing both shear 

and tensile anisotropy [30, 58, 81, 116].  

 

Figure 4.1: (A,B) MRE magnitude images of mini-pig brain (coronal and axial planes). (C,D) Principal eigenvectors of the 

diffusion tensor, encoded by color, showing regions of anisotropy in the white matter for an coronal and axial slice.  Red = left-

right (LR); Green = anterior-posterior (AP); Blue = inferior-superior (IS). 

For this study, the ITI model was used to investigate brain anisotropy. As shown in Chapter 2 and 

references [30, 31] the ITI material can be described by 3 parameters: baseline shear modulus (𝜇), 
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shear anisotropy (𝜙), and tensile anisotropy (𝜁). These parameters are based on the shear and 

tensile moduli of the material parallel (𝜇1 and 𝐸1) and perpendicular (𝜇2 and 𝐸2) to the fiber 

direction of the material. The parameters are defined as 

𝜇 = 𝜇2       (4.1) 

𝜙 =
𝜇1

𝜇2
− 1      (4.2) 

𝜁 =
𝐸1

𝐸2
− 1      (4.3) 

The three parameters of this model can be estimated using shear wave speed, propagation direction, 

polarization direction, and fiber direction (see Chapter 2 and references [30, 31] for details). Shear 

waves traveling through an ITI material can be characterized as either slow shear waves (𝒎𝑠) or 

fast shear waves (𝒎𝑓). The polarization directions are determined by the cross product of the shear 

wave propagation direction (𝒏) and the material fiber direction (𝒂), as shown in the following 

equations. 

𝒎𝒔 = 𝒏 × 𝒂/|𝒏 × 𝒂|      (4.4) 

𝒎𝒇 = 𝒏 × 𝒎𝒔       (4.5) 

Slow shear waves do not stretch the fibers in the ITI material. Therefore, the slow shear wave 

speed (𝑐𝑠) depends only on 𝜇, density (𝜌), 𝜙, and the angle between the fiber direction and the 

propagation direction (𝜃).  

𝑐𝑠
2 =

𝜇

𝜌
[1 + 𝜙 cos2(𝜃)]     (4.6) 
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Fast shear waves stretch the fibers in the material, so the fast shear wave speed (𝑐𝑓) is also 

dependent on 𝜁. 

𝑐𝑓
2 =

𝜇

𝜌
[1 + 𝜙 cos2(2𝜃) + 𝜁𝑠𝑖𝑛2(2𝜃)]    (4.7) 

These equations can be multiplied by density to give the apparent shear modulus for slow and fast 

waves. 

𝜌𝑐𝑠
2 = 𝜇[1 + 𝜙 cos2(𝜃)] = 𝜇𝑠     (4.8) 

𝜌𝑐𝑓
2 = 𝜇[1 + 𝜙 cos2(2𝜃) + 𝜁𝑠𝑖𝑛2(2𝜃)] = 𝜇𝑓    (4.9) 

Apparent shear modulus can be estimated using shear waves. This chapter will introduce a three-

parameter anisotropic analysis using surface-generated shear waves. This method will be used to 

estimate material properties in two fibrous cube simulations and the mini-pig brain. 

4.3 Methods 

4.3.1 Simulation 

Finite element model (COMSOL Multiphysics; v. 5.3a, Stockholm, Sweden) of a nearly-

incompressible transversely isotropic (NITI) cube and a cube with two main fiber directions that 

cross in the center (referred to as “X-Box”) were used to represent MRE in anisotropic tissues of 

varying complexity. The data from these ideal situations were used to validate and assess methods 

for anisotropic parameter estimation.  
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The simulation domain was a linear, elastic, nearly incompressible cube of 0.05 m side length. The 

solution for the steady state frequency response was found using COMSOL’s frequency domain 

solver. The boundaries of the cube were rigid. Displacement data from the simulation were 

exported into MATLAB and interpolated onto a 3D grid with 1 mm3 voxel resolution for analysis 

using the LiveLink feature of COMSOL (“mphinterp” command).  

4.3.1.1 Cube Domains 

The given material parameters for the NITI cube model were 𝜇 = 1000 Pa, 𝜙 = 1, ζ = 2, with a 

bulk modulus, 𝜅 = 1000 𝑘𝑃𝑎. A harmonic (sinusoidal) boundary load of 5 N/m2 at 100 Hz was 

applied to the top surface of the cube (surface normal to the z-axis) along the y-direction. For each 

simulation, the cube material was homogenous with one fiber direction at an angle of 𝛼 =

0°, 15°, 30°, 45°, or 90° to either the x-axis or y-axis, creating a total of 10 models. The simulation 

domain consisted of 16,250 quadratic Lagrange elements, corresponding to 431811 degrees of 

freedom. 

Figure 4.2 shows the ten cubes used in the simulation. The fiber direction of each cube is shown 

by the colormap. While the fiber direction varies from 0° to 90°, all ten cases have the same shear 

wave propagation direction (𝒏). The shear wave polarization directions depend on the orientation 

of the fiber direction and propagation direction, calculated using equations 4.4 and 4.5. All cases 

with fibers along the x-axis (Figure 4.2 A) have a slow polarization direction (𝒎𝒔) along the y-axis 

and a fast polarization direction (𝒎𝒇) along the x-axis. All cases with fibers along the y-axis (Figure 

4.2 B) have the opposite slow and fast polarization directions, with a slow polarization direction 

(𝒎𝒔) along the x-axis and a fast polarization direction (𝒎𝒇) along the y-axis. 
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Figure 4.2: Ten NITI cubes of various fiber directions were vibrated at 100 Hz on the top surface along the y-axis. (A) Five cubes 

with fibers at 𝛼 = 0°, 15°, 30°, 45°, or 90° (left to right) to the x-axis. Black lines represent the fibers of the material. Black dots 
represent the fiber ends. A boundary load of 5 N/m2 was applied to the top surface in the y-direction at 100 Hz. The fiber directions 

(𝒂) of the five cubes are shown below by color, where red is along the x-axis, green is along the y-axis, and blue is along the z-axis. 

The third row depicts the propagation direction (𝒏), slow polarization direction (𝒎𝒔), and fast polarization direction (𝒎𝒇) for all 

five cases by color. (B) Five cubes with fibers at 𝛼 = 0°, 15°, 30°, 45°, or 90° (left to right) to the y-axis. Black lines represent the 
fibers of the material. Black dots represent the fiber ends. A boundary load of 5 N/m2 was applied to the top surface in the y-

direction at 100 Hz. The fiber directions (𝒂) of the five cubes are shown below by color, where red is along the x-axis, green is 

along the y-axis, and blue is along the z-axis. The third row depicts the propagation direction (𝒏), slow polarization direction (𝒎𝒔), 

and fast polarization direction (𝒎𝒇) for all five cases by color. 
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4.3.1.2 X-Box Domains 

The given parameters for the two NITI fiber tracks of the “X-Box” cube were 𝜇 = 1000 Pa, 𝜙 =

1, and ζ = 2. The fiber tracts were at 𝛼 = 0°, ±15°, ±30°, or ± 45° to the y-axis. The cube 

section that did not contain fibers is an isotropic material with 𝜇 = 1000 Pa. A harmonic 

(sinusoidal) boundary load of 5 N/m2 at 100 Hz was applied to either the x-y plane, y-z plane, or 

x-z plane surface in different directions to create a variety of shear waves through the cube. The 

domain consisted of 45,671-83,811 quadratic Lagrange elements, corresponding to 329,062-

371,160 degrees of freedom. Figure 4.3 shows the four different cubes with all the actuation 

directions, making a total of 18 different simulation cases.  

 

Figure 4.3: Four cube layouts with fiber tracts at 𝛼 = 0°,±15°, ±30°, or ± 45° (left to right) to the y-axis. One boundary load 
was applied to either the x, y, or z plane to produce a variety of shear waves through the cubes. The white arrows demonstrate all 

the different possible actuation directions for each cube, resulting in a total of 18 different models. Black lines represent the fibers 

of the material. Black dots represent the fiber ends. 

For simplicity, all further images for the NITI cube will reference only the 45° cube and its three 

different actuation directions. Figure 4.4 shows this case and the three directions of displacement 

(𝑅𝑒(𝑢), 𝑅𝑒(𝑣), and 𝑅𝑒(𝑤)) along an x-y plane in the center of the 45° cube.  
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Figure 4.4: Shear wave displacement components in three directions, imaged on the center x-y plane of the cube for the 45° cube 

and its three actuation cases. The red dotted line shows the position of the slice in the cube. (A) 45° cube with actuation along the 

y-axis on the face perpendicular to the x-axis. The greatest displacement component is 𝑅𝑒(𝑣).  (B) 45° cube with actuation along 

the z-axis on the face perpendicular to the x-axis. The greatest displacement component is 𝑅𝑒(𝑤).  (C) 45° cube with actuation 

along the x-axis on the face perpendicular to the z-axis. The greatest displacement component is 𝑅𝑒(𝑢), but no waves can be seen 

along the x-y central plane due to dissipation.   

Figure 4.5 shows the three 45° X-Box cases and their fiber direction (𝒂), shear wave propagation 

direction (𝒏), and polarization directions (𝒎𝒔 and 𝒎𝒇). The shear waves propagate in the x-

direction for the two cases with actuation on the y-z face (Figure 4.5 A and B). The shear waves 

propagate in the z-direction when the actuation is on the x-y face (Figure 4.5 C). The shear wave 

polarization directions depend on the orientation of the fiber direction and propagation direction, 
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calculated using equations 4.4 and 4.5. The cases actuated on the y-z face (Figure 4.5 A and B) 

have a slow polarization direction (𝒎𝒔) along the z-axis and a fast polarization direction (𝒎𝒇) 

along the y-axis. The case actuated on the x-y face (Figure 4.5 C) has a slow polarization direction 

(𝒎𝒔) and a fast polarization direction (𝒎𝒇) along the fiber direction. 

  



67 

 

 

 

Figure 4.5: Shear wave displacements in three directions, imaged on the center x-y plane of the cube for the 45° cube and its three 

actuation cases. Black lines represent the fibers of the material. Black dots represent the fiber ends. The second row is the fiber 

direction (𝒂) of the cubes shown below by color, where red is along the x-axis, green is along the y-axis, and blue is along the z-

axis. The third row depicts the shear wave propagation direction (𝒏). The fourth and fifth row depict slow polarization direction 

(𝒎𝒔), and fast polarization direction (𝒎𝒇) for the cases by color. (A) 45° cube with actuation along the y-axis on the face 

perpendicular to the x-axis. 𝒏 is in the x-direction, 𝒎𝒔 is in the z-direction, and 𝒎𝒇 is in the y-direction. (B) 45° cube with actuation 

along the z-axis on the face perpendicular to the x-axis. 𝒏 is in the x-direction, 𝒎𝒔 is in the z-direction, and 𝒎𝒇 is in the y-direction. 

(A) 45° cube with actuation along the x-axis on the face perpendicular to the z-axis. 𝒏 is in the z-direction, 𝒎𝒔 is in the fiber 

direction, and 𝒎𝒇 is in the fiber-direction. 
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4.3.2 Experimental  

MRE and diffusion tensor imaging (DTI) were performed on six (6) healthy Yucatan mini-pigs in 

vivo on a Siemens Prisma® 3T MRI scanner. Mini-pigs ranged between 4 and 8 months. Animals 

were anesthetized during scanning with isoflurane 1-2% in air. A total of 13 scans (13 DTI and 26 

MRE) were used for this study. (The MRE data were also used for the in vivo / ex vivo study of 

Chapter 3). 

Mini-pigs were scanned positioned in either ventral or dorsal recumbency using a Siemens 18-

Channel Body Matrix Coil or an open Siemens Head/Neck 20 coil. A combination of bean bags, 

rolled towels, and Velcro straps were used to secure the head of the mini-pig to limit bulk (“rigid-

body”) motion.  

4.3.2.1 MRE 

Shear waves were excited at 50 (n=11), 80 (n=2), 100 (n=10), and 125 (n=3) Hz using a multi-

directional jaw actuator driven by the Resoundant™, a commercially available pneumatic diver 

[89]. The layout can be seen in Figure 4.6. 

 

Figure 4.6: Schematic of setup for MRE scans. Acoustic actuator pneumatically drives multidirectional jaw actuator. They are 

connected by flexible plastic tubing. Jaw actuator is securely between the back molars of the mini-pig jaw. It vibrates the teeth and 

skull of the mini-pig, which vibrates the brain. The right image shows the shear wave displacements of the coronal slice (red line) 

at 50 Hz actuation. 
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MRE data with 3D displacements encoded as phase were acquired using a 2D multi-shot sequence 

[103]. The scan used 1.5 mm isotropic voxels that covered a volume of 180 x 180 x 60 mm3. Each 

scanning session collected MRE data for 1-3 different actuation frequencies. Shear wave 

displacements (𝒖) were calculated after removing bulk motion from the MRE data. Amplitude-

weighted propagation direction (n) was determined by directionally filtering the MRE 

displacement field in 92 directions (Chapter 2.3.4 [6]).  

4.3.2.2 DTI 

Diffusion tensors were estimated using 20 (n=1) or 30 (n=12) diffusion-weighted directions, with 

2-4 scan averages. The DTI scan used the same 1.5 mm isotropic voxel resolution and center of 

slice groups as the MRE scan but imaged a larger imaging volume of 192 x 192 x 72 mm3. 

Fractional anisotropy (FA) was estimated from diffusion tensor eigenvalues, and fiber direction 

(a) from the first principal eigenvector (Eq. 2.58). 

4.3.3 Approach to Anisotropic Property Estimation  

4.3.3.1 Overview of Approach to Anisotropic Property Estimation  

Directional filtering with local direct inversion (DF-LDI) was used to estimate the material 

properties of the samples. This approach separated the waves by their polarization direction and 

classified as either “slow” or “fast” shear waves and approximated the apparent shear modulus 

(𝜌𝑐2) for both wave types. The three unknown parameters of the NITI material were estimated 

from the equations for slow and fast shear waves using a multiple linear regression model.   
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4.3.3.2 Classification of Voxels as “Slow” or “Fast” 

To be included in the analysis, voxels had to meet multiple conditions to ensure they matched the 

approximations and assumptions for the analysis. A voxel was only included if (i) it experienced 

a wave amplitude above a threshold and (ii) the voxel had a fractional anisotropy above a threshold. 

Table 4.1 outlines the inclusion criteria for the analysis.  

Table 4.1: Inclusion criteria for analysis of anisotropic parameter estimation for both simulations and experiments. Parameters 

were chosen based on brain data, which had lower wave amplitude and FA.  

Inclusion Criteria Equation Parameter 

Amplitude |𝑢| > 𝐴 |𝑼|𝑚𝑒𝑑𝑖𝑎𝑛 𝐴 = 1 

Fraction Anisotropy 𝐹𝐴 > 𝐹𝐴𝑡ℎ𝑟𝑒𝑠ℎ 𝐹𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 0.6 

After voxels are masked out based on the inclusion criteria, they were then sorted and further 

masked by the classification criteria used to sort them as either a “slow” or “fast” voxel. To be 

included in the analysis, the voxel must have a dominant shear wave polarization (be dominated 

by either a slow or fast shear wave – not both). A voxel was classified as a fast or slow shear wave 

voxel if the normalized displacement in the fast or slow polarization direction exceeded a 

minimum “polarization threshold” (𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ) and the other component was below a 

corresponding maximum value (1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ). The normalized fast and slow shear wave 

displacement components are: 

𝑼̂𝒇 =
𝑼 ∙ 𝒎𝒇

|𝑼|
,      (4.10) 

𝑼̂𝒔 =
𝑼 ∙ 𝒎𝒔

|𝑼|
.      (4.11) 
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Thus a voxel would be designated as “fast” if  𝑈̂𝑓 > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ and  𝑈̂𝑠 < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ, and a  

voxel is classified as “slow” if  𝑈̂𝑠 > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ and 𝑈̂𝑓 < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ.  

Voxels that did not meet either of these criteria were excluded from the anisotropic analysis. Table 

4.2 outlines the classification criteria used for DF-LDI. 

Table 4.2: Classification criteria for DF-LDI analysis 

Classification Criteria for 

DF-LDI 
Equation Parameter 

Polarization direction - slow 

|𝑈̂𝑠| > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ 

|𝑈̂𝑓| < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ 

𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.7 

Polarization direction - fast 

|𝑈̂𝑓| > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ 

|𝑈̂𝑠| < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ 

𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.7 

4.3.3.3 Directional Filtering with LDI (DF-LDI) 

The apparent shear modulus (𝜇𝑎𝑝𝑝 = 𝜌𝑐2) was calculated using local direct inversion (LDI). The 

mean complex shear modulus (𝜇′ + 𝑖𝜇′′) for the simulations and mini-pig brain was estimated 

from the shear wave displacements using a viscoelastic analog of the Navier equation [1]. 

(𝜇′ + 𝑖𝜇′′)∇2𝑼(𝑥, 𝑦, 𝑧) = −𝜌𝜔2𝑼(𝑥, 𝑦, 𝑧)    (4.12; cf 2.63) 

This equation assumes that the material is linear, isotropic, and locally homogenous. The inversion 

was performed using a total-least squares fitting method where data was fit using a kernel size of 

5 × 5 × 5 voxels. Apparent shear modulus 𝜇 = |𝜇′ + 𝑖𝜇′′| was found at each voxel throughout the 

entire data set, and then classified as either slow (𝜇 = 𝜇𝑠) or fast (𝜇 = 𝜇𝑓) based on the slow and 

fast shear wave classification criteria for that voxel.  
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After LDI analysis, shear wave data were characterized by shear wave polarization, with each 

voxel classified as either slow or fast based on the slow and fast shear wave criteria. Directional 

filtering (using 192 filter directions) was used to identify average propagation direction, 𝒏. Fiber 

direction, 𝒂, was obtained from DTI and the angle 𝜃 between 𝒏 and 𝒂 was found. Polarization 

directions 𝒎𝑠 = (𝒏 × 𝒂)/|𝒏 × 𝒂|  and 𝒎𝑓 = 𝒏 × 𝒎𝒔 were calculated, and the normalized slow 

and fast displacement (𝑈̂𝑠 and 𝑈̂𝑓) components were used to classify voxels as either “slow” or 

“fast.” The apparent shear moduli, 𝜇𝑎𝑝𝑝, and angle, 𝜃, can then be used in the multiple linear 

regression to estimate 𝜇, 𝜇𝜙  and 𝜇𝜁.   

4.3.3.4 Parameter Estimation Using Multiple Linear Regression 

Data from each classified voxel should satisfy either the slow or fast shear wave equation, which 

relates the apparent shear modulus for the slow or fast voxel to the material parameters of the NITI 

model. 

𝜌𝑐𝑠
2 = 𝜇𝑠 = 𝜇(1 + 𝜙 cos2 𝜃)     (4.13) 

𝜌𝑐𝑓
2 = 𝜇𝑓 = 𝜇 + 𝜇𝜙 cos2 2𝜃 + 𝜇𝜁 sin2 2𝜃    (4.14) 

The three unknown material parameters of an NITI model were estimated with the above equations 

for slow and fast shear waves using a multiple linear regression model of the form: 
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𝑦 =  𝛽0  +  𝛽1𝑥1   + 𝛽2𝑥2.      (4.15) 

The unknown parameters are  𝛽0 = 𝜇, 𝛽1 = 𝜇𝜙  and 𝛽2 = 𝜇𝜁. The dependent variable is the 

apparent shear modulus: 𝑦 = 𝜇𝑎𝑝𝑝 (𝜇𝑎𝑝𝑝 = 𝜇𝑠 for slow waves and 𝜇𝑎𝑝𝑝 = 𝜇𝑓 for fast shear 

waves). The independent variables in the multiple regression are defined in terms of the angle 𝜃 

as follows: 

𝑥1 = {
cos2𝜃 ("slow" voxels)

cos2 2𝜃 ("fast" voxels)
   and 𝑥2 = {

0 ("slow" voxels)

sin2 2𝜃 ("fast" voxels)
.  (4.16) 

For the two simulations (NITI Cube and X-Box), all slow and fast voxels from all the cases in that 

simulation group were used to solve for the three unknowns. For the mini-pig data, each MRE 

dataset (one frequency in one animal) was used to estimate the baseline shear modulus (𝜇) for that 

set. The apparent shear modulus equations (Eq. 4.13 and 4.14) were divided by the baseline shear 

modulus and all data from one scan date (1-3 MRE datasets) were combined to solve for the shear 

anisotropy (𝜙) and tensile anisotropy (𝜁). Final values for the anisotropic parameters were 

averaged between all cases. Because the brain displays viscoelastic behavior, appearing stiffer at 

higher strain rates, the shear modulus had to be estimated separately at each excitation frequency. 

A flow chart in Figure 4.7 outlines the main steps of DF-LDI.  
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Figure 4.7: Flow chart outlining the steps of shear wave separation and anisotropic parameter estimation using DF-LDI. 

4.4 Results 

4.4.1 NITI Cube Results 

The NITI Cube simulation output was shear wave displacement, which is like the output from an 

MRE scan. The fiber direction, 𝒂, was treated as a known parameter.  Figure 4.8 B and F depict 

the shear wave displacements of two cases where the fibers are at a 0° angle to the x-axis or y-axis. 

The classification of shear waves by polarization direction is also shown in Figure 4.8 C-D (x-

axis) and G-H (y-axis). For all cases where the fiber direction is in the x-z plane and the actuation 

of the cube surface is along the y-axis, the resulting waves will be only slow shear waves (Figure 

4.8 A-D). The opposite is true for all cases where the fiber direction is in the y-z plane and the 

actuation of the cube surface is along the y-axis, which results in only fast shear waves (Figure 4.8 

E-H). 
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Figure 4.8: Simulation of NITI cube with fibers along the x-axis (A-D) and y-axis (E-H) at 100 Hz actuation. (A) Cube with fibers 

along the x-axis. Black lines represent the fiber direction. Actuation is along the y-direction on the top surface. (B) Shear wave 

displacements (w-component) on two perpendicular planes through the center of the cube. The black lines represent the fiber 

direction. (C) The normalized component of displacement in the slow polarization direction, 𝑈̂𝑠, masked by displacement 
amplitude. The slice shown is the center slice along the z-axis. All the displacement for this simulation case is due to slow shear 

waves. (D) The normalized component of displacement in the fast polarization direction, 𝑈̂𝑓, masked by displacement amplitude. 

Fast shear waves do not contribute much to the displacement field. (E) Cube with fibers along the y-axis. Black lines represent the 

fiber direction. Actuation is along the y-direction on the top surface. (F) Shear wave displacements (w-component) on two 

perpendicular planes through the center of the cube. The black lines represent the fiber direction. (G) The normalized component 

of displacement in the slow polarization direction, 𝑈̂𝑠, masked by displacement amplitude. The slice shown is the center slice along 
the z-axis. Slow shear waves do not contribute to the displacement field for this case. (H) The normalized component of 

displacement in the fast polarization direction, 𝑈̂𝑓, masked by displacement amplitude. All the displacement for this simulation 

case is due to fast shear waves. (I) Demonstration of the separation of vector 𝑼̂ into slow (𝑈̂𝑠) and fast (𝑈̂𝑓) shear wave components.  

The angle between the propagation direction and the fiber direction, 𝜃, was calculated for the 

simulation sets. Apparent shear modulus, 𝜇𝑎𝑝𝑝, was calculated for the entire volume using LDI. 

All voxels were categorized as slow or fast (or neither) based on the criteria stated in Section 4.3.3 

(Table 4.1 and Table 4.2). Figure 4.9 depicts 𝜃 and 𝜇𝑎𝑝𝑝 for all cases for either slow or fast waves. 

Since the case with fibers along the x-axis only has slow shear waves (shown in Figure 4.8 C-D) 

and the case with fibers along the y-axis only has fast shear waves (shown in Figure 4.8 G-H), only 



76 

 

the slow or fast components are shown for 𝜃 and 𝜇𝑎𝑝𝑝 for the cases in Figure 4.9. 𝜃 is consistent 

between the two groups (fibers in x-z plane and fibers in y-z plane) because all simulation cases 

have the same propagation direction. The weighting of  𝜃 for fibers in the x-z plane shows the 

effects of lower amplitude waves that did not match the inclusion criteria. The apparent shear 

modulus is larger for the cases where the fibers are in the y-z plane because the fibers (which are 

stiffer than the matrix) are being stretched by the wave motion.  
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Figure 4.9: The angle between the propagation direction and fiber direction, 𝜃, and the apparent shear modulus, 𝜇𝑎𝑝𝑝 for all NITI 

cube simulations. (A-C) Cubes with fibers along the x-axis. As shown in Figure 4.8, these cases only have slow shear waves. (A) 

Estimates of 𝜃 in voxels that were classified as slow based on the criteria (𝜃𝑠) are shown. All voxels that were not classified as 

slow are masked out (shown as dark blue). (B) The apparent shear modulus (𝜇𝑎𝑝𝑝) estimated using isotropic viscoelastic LDI. (C) 

Estimates of 𝜇𝑎𝑝𝑝 in voxels that were classified as slow (𝜇𝑠). All voxels not classified as slow were masked out (shown as dark 

blue). (D-F) Cube with fibers along the y-axis. As shown in Figure 4.8, these cases only have fast shear waves. (A) Estimates of 𝜃 

in voxels that were classified as fast based on the criteria (𝜃𝑓) are shown. All voxels that were not classified as fast are masked out 

(shown as dark blue). (B) The apparent shear modulus (𝜇𝑎𝑝𝑝) estimated using isotropic viscoelastic LDI. (C) Estimates of 𝜇𝑎𝑝𝑝 in 

voxels that were classified as fast (𝜇𝑓). All voxels not classified as fast were masked out (shown as dark blue). 
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Once the voxels were classified as slow, fast, or eliminated, they were used to estimate the material 

properties using the linear regression model (Eq. 4.15) and statistics were performed using 

MATLAB’s built-in linear regression model (“fitlm”). Figure 4.10 A depicts the apparent shear 

modulus in voxels classified as slow for all cases and Figure 4.10 B depicts apparent shear modulus 

in the voxels classified as fast for all cases.  

 

Figure 4.10: Apparent shear modulus of all voxels classified as “slow” (A) and “fast” (B) for all cases of the NITI cube. Each dot 

represents one voxel that met slow (A) or fast (B) criteria for DF-LDI analysis. The black solid line represents the linear relationship 

expected for the input parameters: 𝜇 = 1 kPa,𝜙 = 1, 𝜁 = 2. The black dashed line represents the linear regression model for the 
estimated material parameters found using DF-LDI. (A) Apparent shear modulus in slow voxels for all simulation cases of the NITI 

cube. (B) Apparent shear modulus in fast voxels for all simulation cases of the NITI cube.  
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Table 4.3 shows the DF-LDI results of the anisotropic parameter estimation method for the cube. 

The input values are the simulation material parameter inputs. The estimated value is from the 

anisotropic estimation method.  
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Table 4.3: Comparison between exact values of the simulation parameters and the values estimated by DF-LDI for the NITI cubes 

using multiple linear regression. 367,635 voxels were used in the linear model fit (R2=0.945). The p-value was less than machine 

precision. 𝜇, 𝜇𝜙, and 𝜇𝜁 are in units of kPa; 𝜙 and 𝜁 are unitless. All standard errors were less than 0.08%.   

 Input Estimated % Error 

𝜇 1.00 1.03 3 

𝜇𝜙 1.00 0.90 10 

𝜇𝜁 2.00 1.75 13 

𝜙 1.00 0.87 13 

𝜁 2.00 1.69 15 

 

4.4.2 X-Box Results 

The X-Box Cube simulation output was shear wave displacement, which is like the output from 

an MRE scan. The fiber direction, 𝒂, was treated as a known parameter. Figure 4.11 depicts the 

shear wave displacements of the three cases where the fibers are at a 45° angle. For X-Box all 

cases where the fibers undergo stretching during the actuation of the cube face, the resulting shear 

waves will be fast. This is seen in Figure 4.11 for the 45° case where the side face is actuated in 

the y-direction. For all X-Box cases where the fibers are unstretched during actuation, the resulting 

shear waves will be slow. This is seen in Figure 4.11 for the 45° case where the side face is actuated 

in the x-direction. When the top face is actuated in either the x- or y-direction, fibers in the X-Box 

cube will be both stretched and unstretched, resulting in a combination of slow and fast shear 

waves.  
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Figure 4.11: Shear wave displacement component in the x-direction (𝑈)  and normalized displacement component of slow and fast 

shear waves (𝑈̂𝑠  and 𝑈̂𝑓) along planes for the three actuation directions of the 45° fiber X-Box case. (A) Actuation along the y-

direction on the y-z face. (B) Actuation along the z-direction on the y-z face. (C) Actuation along the x-direction on the x-y top face.  

The top row shows the actuation directions on the 45° fiber X-Box simulation schematic. The second row shows the shear wave 

displacements (w-component) on perpendicular planes through the center of the cubes. The third row shows the normalized 

component of displacement in the slow polarization direction, 𝑈̂𝑠, masked by displacement amplitude. The slice shown is the center 
slice along the z-axis. Voxels that do not meet the inclusion and categorization criteria (Table 4.1 and Table 4.2) are shown in 

black. The fourth row shows the normalized component of displacement in the fast polarization direction, 𝑈̂𝑓, masked by 

displacement amplitude. The slice shown is the center slice along the z-axis. Voxels that do not meet the inclusion and 

categorization criteria (Table 4.1 and Table 4.2) are shown in black.  

 

Figure 4.12 shows the angle between the propagation direction and fiber direction, 𝜃, and the 

apparent shear modulus, 𝜇𝑎𝑝𝑝, for the 45° case of the X-Box. Both the angle and apparent shear 
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modulus are also shown classified by shear wave polarization and masked by the inclusion criteria 

from Table 4.1. For this simulation, waves were only able to penetrate approximately half way 

through the cube before the amplitude was attenuated below the amplitude threshold. The two 

side-actuation cases produced either only slow or only fast shear waves, as shown in Figure 4.11.  

The top actuation causes a combination of slow and fast shear waves, so no voxels in that case met 

the classification criteria (Table 4.2).  
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Figure 4.12: Angle and apparent shear modulus on central slice for the three actuation directions of the 45° fiber X-Box case. (A) 

Actuation along the y-direction on the y-z face. (B) Actuation along the z-direction on the y-z face. (C) Actuation along the x-

direction on the x-y top face. The top row shows the actuation directions on the 45° fiber X-Box simulation schematic. The second 

row shows the angle between the propagation direction and fiber direction (θ). Voxels that do not meet the inclusion (Table 4.1) 

are shown in black. The third row shows estimates of θ in voxels that were classified as slow based on the criteria (θs). All voxels 

that were not classified as slow are masked out (shown as black). The fourth row shows estimates of θ in voxels that were classified 

as fast (θf). All voxels that were not classified as slow are masked out (shown as black). The fifth row shows the apparent shear 

modulus (μapp) estimated using isotropic viscoelastic LDI. The sixth row shows the estimates of μapp in voxels that were classified 

as slow (μs). All voxels not classified as slow were masked out (shown as black). The seventh row shows the estimates of μapp in 

voxels that were classified as fast based on the inclusion criteria (μf). All voxels not classified as slow were masked out (shown as 
black).  
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Figure 4.13 depicts the apparent shear modulus in voxels classified as slow (A) and fast (B) for all 

X-Box cases. The black solid line represents the linear relationship expected for the input 

parameters: 𝜇 = 1 kPa, 𝜙 = 1, 𝜁 = 2. The black dashed line represents the linear regression model 

for the estimated material parameters found using DF-LDI. 

 

Figure 4.13: Apparent shear modulus of all voxels classified as “slow” (A) and “fast” (B) for all cases of the X-Box cube 

anisotropic material. Each dot represents one voxel that met slow (A) or fast (B) criteria for DF-LDI analysis. The black solid line 

represents the linear relationship expected for the input parameters: 𝜇 = 1 kPa, 𝜙 = 1, 𝜁 = 2. The black dashed line represents the 
linear regression model for the estimated material parameters found using DF-LDI. (A) Apparent shear modulus in slow voxels for 

all simulation cases of the NITI cube. (B) Apparent shear modulus in fast voxels for all simulation cases of the NITI cube.  
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Table 4.4 shows the results of the anisotropic parameter estimation method for the X-Box cube. 

The input values are the simulation material parameter inputs. The estimated value is from DF-

LDI anisotropic estimation method.   
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Table 4.4: Comparison between exact values of the simulation parameters and the values estimated by DF-LDI for the X-Box 

using multiple linear regression. 629,269 voxels were used in the linear model fit (R2=0.89). The p-value was less than machine 

precision. 𝜇, 𝜇𝜙, and 𝜇𝜁 are in units of kPa; 𝜙 and 𝜁 are unitless. All standard errors were less than 0.075%.   

 Input Estimated % Error 

𝜇 1.00 1.18 18 

𝜇𝜙 1.00 0.91 8 

𝜇𝜁 2.00 1.77 11 

𝜙 1.00  0.77 23 

𝜁 2.00 1.50 25 

 

4.4.3 Mini-pig Results 

Shear wave displacement fields were calculated from the phase images from the MR-HUM scan 

(Chapter 2.3.1). Eigenvalues and eigenvectors of the diffusion tensor, which correspond principal 

diffusivity values and directions, were obtained from the DTI scan and used to estimate the 

fractional anisotropy (FA) (Eq. 2.58) and fiber direction (𝒂) in each voxel of the brain. Voxels 

were excluded from the estimation if they did not meet the inclusion criteria (Table 4.1). Voxels 

were classified as slow or fast, using the criteria defined in Table 4.2. Figure 4.14 A shows a 

sagittal anatomical slice of a porcine head that underwent MRE at 50 Hz and 100 Hz. The red line 

depicts the location of the coronal brain slice used in Figure 4.14 B-I and Figure 4.15. Figure 4.14 

B shows the anatomical coronal slice and Figure 4.14 C depicts the fiber direction (𝒂) of the brain. 

Figure 4.14 D and G depict the amplitude-weighted propagation direction (𝒏) at 50 and 100 Hz. 

Figure 4.14 E-F show the slow (E) and fast (F) polarization directions at 50 Hz. Figure 4.14 H-I 

show the slow H) and fast (I) polarization directions at 100 Hz. All the waves are propagating from 

the skull to the inner part of the brain. There is a slight difference in propagation direction between 
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the 50 Hz and 100 Hz cases. This is slightly more pronounced in the slow and fast polarization 

directions. The different shear wave directions among the different frequencies enabled the 

anisotropic estimation. 
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Figure 4.14: Experimental measurements of fiber direction, propagation direction and slow / fast shear wave polarization directions 

from mini-pig data. In panels (C-I) colors represent directions, where red = left-right (LR); green = anterior-posterior (AP); blue = 

inferior-superior (IS). (A) Sagittal anatomical slice of a porcine head that underwent MRE at 50 Hz and 100 Hz. The red line depicts 

the location of the coronal brain slice used in B-I and Figure 4.15. (B) MRE magnitude coronal slice of the mini-pig brain. (C) 

Fiber direction (𝒂) calculated using DTI. (D) Amplitude-weighted propagation direction (𝒏) at 50 Hz for coronal slice.). (E) Slow 
wave polarization direction at 50 Hz for coronal slice. (F) Fast wave polarization direction at 50 Hz for coronal slice. (G) Amplitude-

weighted propagation direction (𝒏) at 100 Hz for coronal slice. (H) Slow wave polarization direction at 100 Hz for coronal slice.). 

(I) Fast wave polarization direction at 100 Hz for coronal slice.  
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Figure 4.15 A-B and D-E show the contributions of slow versus fast shear waves for one coronal 

slice of a mini-pig brain at 50 and 100 Hz. For this slice, there are more voxels classified as slow 

shear wave voxels at 100 Hz and more voxels classified as fast shear wave voxels at 50 Hz. Figure 

4.15 C and F show the apparent shear modulus (𝜇𝑎𝑝𝑝) for the same coronal slice calculated using 

LDI from the 50 and 100 Hz data. The brain appears to be stiffer at 100 Hz. 

 

Figure 4.15: Experimental estimates of slow and fast shear wave participation, and apparent shear modulus, from mini-pig data, 
analyzed using DF-LDI. The coronal slice corresponds to the red line in Figure 4.14 A. Voxels that do not meet the inclusion 

criteria (Table 4.1) were removed during masking (black). (A) The normalized component of displacement in the slow polarization 

direction, 𝑈̂𝑠 for 50 Hz MRE.  (B) The normalized component of displacement in the fast polarization direction, 𝑈̂𝑓 for 50 Hz MRE. 

(C) The apparent shear modulus (𝜇𝑎𝑝𝑝) calculated by isotropic viscoelastic LDI using 50 Hz MRE data. (D) The normalized 

component of displacement in the slow polarization direction, 𝑈̂𝑠 for 100 Hz MRE.  (E) The normalized component of displacement 

in the fast polarization direction, 𝑈̂𝑓 for 100 Hz MRE. (F) The apparent shear modulus (𝜇𝑎𝑝𝑝) calculated by isotropic viscoelastic 

LDI using 100 Hz MRE data. 

Mean values for the baseline shear modulus increased with increasing frequency (Figure 4.16 A). 

Mean values (± 𝑠𝑡𝑑) of shear anisotropy (𝜙 = 0.12 ± 0.38) and tensile anisotropy (𝜁 = 0.17 ±

0.27) were positive, which means that the brain tissue appeared slightly stiffer, on average, in 
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shear in planes containing the fiber axis (vs the plane normal to the fiber axis) and stiffer in tension 

along the fiber axis (relative to tension normal to the fiber axis) (Figure 4.16 B-C). The apparent 

modulus of the white matter of the mini-pig brain could be described by the uniform ITI model 

with an RMS error of 19 ± 12%. The fraction of variance in white matter modulus explained by 

directional dependence (non-zero 𝜙 and 𝜁) was 4.5 ± 3.5%. 

 

Figure 4.16: Results of DF- LDI anisotropic parameter estimation for all porcine brains. (A) Estimates of 𝜇 for MRE data 
performed at different frequencies. Gray lines connect the data from the MRE scans of one mini-pig on the same day. (B) Estimates 

of 𝜙 for the porcine brain from each scan days (n=13) with 95% confidence intervals. MRE data taken at different frequencies was 

normalized and combined to find 𝜙. A black square shows the mean value. (C) Estimates of 𝜁 for the porcine brain from each scan 

days (n=13) with 95% confidence intervals. MRE data taken at different frequencies was normalized and combined to find 𝜁. A 

black square shows the mean value. 

4.5 Discussion and Conclusions 

In this chapter I introduce a method to estimate parameters of the ITI material model and applied 

it to numerical data from simulations of waves in two domains (a uniform NITI Cube and a 

heterogeneous X-Box) and to experimental data from MRE in the mini-pig. This method is based 

on the theory of waves in a uniform, infinite domain. Application of the method to the NITI cube 

led to the best estimates because it was the only uniform domain. By adding heterogeneity 
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(crossing fiber tracts) to the X-Box simulation, the assumption of uniformity was directly violated. 

With increasing spatial complexity of fiber tracts, the accuracy of this method will decrease. 

The implementation of this method in this Chapter also assumes that all fibers have identical 

properties, in order to include data from all voxels in the fitting process. Although this is true for 

the simulations, this is not necessarily true for the white matter in the mini-pig brain. To better 

model the mini-pig brain, a more accurate inversion method is necessary. The LDI inversion used 

does not account for anisotropy or heterogeneity. For example, an anisotropic, inverse finite 

element method, in which the parameters are updated until simulation matches experiment, could 

provide improved anisotropic parameter estimation.  

The resolution of the mini-pig data was limited by the resolution of the wavelength estimates, 

which in turn depend on the wavelength itself. To improve the resolution and accuracy of MRE 

estimates, it would be helpful to produce shear waves with shorter wavelengths in larger, aligned 

white matter tracts. 

All waves were induced by external excitation. Waves induced by boundary excitation generally 

travel inwards. It is difficult to control the generation of slow and fast shear waves to optimize the 

mix of wave types and angles for improved data analysis. A method to excite waves from inside 

the sample could provide experimental data that are better suited to estimation of anisotropic 

material parameters. 

Mild anisotropy (small positive values of  𝜙 and 𝜁) may explain some variations in apparent 

modulus of WM in the mini-pig.  Other factors that contribute to variations probably include true 
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heterogeneity of WM properties. Future work should investigate both anisotropy and heterogeneity 

of WM, using more sophisticated actuation strategies and inversion techniques.  

4.6 Summary 

This chapter introduces an anisotropic parameter estimation method and describes its application 

to two simulation sets of different complexity and MRE data from the mini-pig brain. Although 

this method shows promise in its ability to find anisotropic parameters, the approach and/or 

analysis could be improved. Enhanced control over the direction of wave propagation would 

enable control over resulting shear wave types. Localizing the wave field (exciting waves in a 

small region) could improve the local estimates in smaller areas of white matter or other 

anisotropic, heterogeneous tissues. The next chapter describes an alternative approach to 

anisotropic MRE that meets some of these objectives.  
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Chapter 5: Magnetic resonance imaging of 

harmonic shear waves induced by focused 

ultrasound 

5.1 Overview  

As noted in previous chapters, estimation of anisotropic material parameters is important, but 

challenging. While the results of anisotropic MRE in Chapter 4 are promising, a few key 

challenges remain. Accurate estimation of anisotropic parameters requires shear waves with 

multiple propagation and polarization directions [31]. Also, shear wavelengths need to be short 

relative to the tissue sample size. Both requirements are difficult to achieve using conventional 

actuation methods. The approach presented in this chapter solves some of the challenges of 

anisotropic parameter estimation by using focused ultrasound (FUS) to generate harmonic shear 

waves for anisotropic MRE.  

Acoustic radiation force at the focus of the ultrasound beam can be varied harmonically to induce 

shear waves. These shear waves can be imaged using standard MRE pulse sequences. MR imaging 

of harmonic, ultrasound-induced motion (MR-HUM) enables excitation of shear waves with 

multiple propagation and polarization directions and excitation of short wavelengths so small areas 

of interest can be investigated. This chapter summarizes the development and application of MR-

HUM methods, which will provide the platform for future analysis of anisotropic materials using 

this approach. 
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5.2 Objective and Significance 

Despite the prevalence of anisotropy in soft tissues like brain and muscle, anisotropic mechanical 

properties of soft materials are still an active area of research due to the challenges of anisotropic 

property estimation. Anisotropic material models have been explored in theoretical studies [84], 

ultrasound elastography [85-88], and anisotropic MRE [29, 58, 75-82]. However, most of these 

studies either lack experimental data or do not consider the effects of tensile anisotropy [30].  

According to prior work, to accurately estimate the three material properties for an ITI material, 

both slow and fast shear waves must be present with significant amplitudes and multiple directions 

[31]. However, obtaining both slow and fast shear waves in soft tissues and in multiple directions 

at reasonable amplitude is challenging. Previous experiments investigating anisotropy using slow 

and fast shear waves require multiple experimental setups and samples to estimate all three 

parameters [30]. To perform anisotropic MRE using only one sample, multiple shear waves 

directions can be induced by varying frequency (as seen in the previous chapter) or actuator 

placement [83]. However, these methods may not provide a large variety of different shear waves 

due to the lack of control of tissue motion provided by boundary actuation. Boundary actuation is 

noninvasive but produces shear waves that are generally uncontrolled in direction and vulnerable 

to attenuation. Direct (invasive) actuation, which uses an embedded needle or rod (“stinger”) to 

produce shear waves, can produce higher amplitude waves in the tissue, but it is destructive, so 

actuating in multiple directions is not possible due to cumulative damage to the sample [30]. In 

principle, ultrasound elastography is noninvasive and incorporates the ability to actuate in multiple 

directions, but it does not provide the 3D displacement fields necessary to fully characterize 

material behavior. 
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In addition to the requirement for multiple propagation directions, it may be beneficial to perform 

anisotropic parameter estimation locally (within a small sample volume) and avoid issues related 

to heterogeneity. In some biological tissues, like white matter in the brain, the dimensions of the 

heterogeneous tissues are relatively small. For anisotropic MRE, accurate parameter estimation 

requires a small wavelength (high frequency). Boundary actuation, especially at high frequencies, 

is susceptible to attenuation, so tissue far from the boundary will not be vibrated at high amplitudes 

(as seen in the previous chapter). Ultrasound elastography, which has low resolution, is also not 

ideal for small sample volumes.  

In summary, the problems with existing actuation methods for anisotropic parameter estimation 

are: (i) Boundary actuation is noninvasive, but it has uncontrolled propagation and polarization 

directions and high attenuation, especially at high frequencies. (ii) Direct internal actuation is 

invasive and does not allow for multiple propagation directions per sample. (iii) Ultrasound 

elastography is low resolution and does not provide a 3D displacement field. To meet the 

requirements of anisotropic estimation, another method of actuation is necessary. 

Focused ultrasound (FUS) can be used to produce shear waves in a tissue for elastography. It can 

be used for acoustic radiation force imaging (MR-ARFI) [52, 62], transient MRE (t-MRE) [65], 

harmonic motion imaging (HMI) [48, 96], mpARFI [63], and MR imaging of harmonic 

ultrasound-induced motion (MR-HUM). Several of these techniques (MR-ARFI, t-MRE, 

mpARFI, MR-HUM) combine ultrasound-generated pulses with MRI imaging. HMI uses only 

ultrasound for both amplitude-modulated harmonic actuation and data recording. MR-HUM uses 

amplitude-modulated (AM) harmonic ultrasound for actuation and MRE sequences for data 

recording. AM waveforms are created from the multiplication of a carrier frequency (of the 
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ultrasound transducer) and modulation frequency (desired tissue harmonic motion). This time-

varying, unidirectional force causes tissue displacement; force can be varied in magnitude by 

adjusting the power of the ultrasound device. 

MR-HUM can overcome several challenges of anisotropic MRE by noninvasively producing and 

imaging shear waves with multiple propagation and polarization directions, with small enough 

wavelengths to produce local estimates of material parameters.  

5.3 Methods  

MR-HUM was performed on two sample types: gelatin-glycerol gel and chicken breast. The 

gelatin sample was used for an isotropic MRE inversion comparison between two actuation 

methods: conventional direct (piezoelectrically-driven) actuation [30] and MR-HUM. Chicken 

breast samples were used to test the ability to create multiple propagation and polarization 

directions in one sample. Scans were performed on an Agilent/Varian DirectDrive 4.7T small-bore 

animal MRI scanner at room temperature (~21C) using a custom high intensity focused 

ultrasound (HIFU) system (Image Guided Therapy, Pessac, France).  

5.3.1 Gelatin Sample Preparation 

MR-HUM samples: Gelatin mixture, consisting of food grade gelatin (Knox) and 50:50 

water:glycerol [1] was solidified in a 50 mL tube lubricated with canola oil. The sample was 

refrigerated between fabrication and testing. The sample was removed from the refrigerator at least 

2 hours before testing to allow it to reach room temperature. Prior to imaging, the sample was 

removed from the 50 mL tube and inserted into a modified 50 mL tube with a cut window to allow 

for ultrasound penetration. A water-filled bladder provided an air-free connection between the US 
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transducer and the surface of the gelatin. The tube and sample were then placed in a 30 mm 

diameter coil for scanning. Figure 5.1A shows the schematic of the gelatin sample for MR-HUM. 

 Directly-excited samples: A gelatin mixture of the same proportions was solidified in a 48 mm 

cylinder container. The sample was refrigerated between fabrication and testing. Before testing, it 

was removed from the refrigerator so that it could reach room temperature. A piezoelectric actuator 

(Model APA100M-NM, CEDRAT Technologies, Meylan, France) powered by an amplifier (EPA 

105, Piezo Systems Inc.) was used to harmonically actuate the gelatin [30] via a 1 mm diameter 

titanium rod, inserted in the center of the sample (axial excitation). Figure 5.1B shows the 

schematic of the gelatin sample for piezoelectric actuation. 

 

Figure 5.1: (A) Schematic of the gelatin sample for MR-HUM. The sample was placed in a tube with a cutout window to allow 

for US penetration. (B) Schematic diagram of the gelatin sample for with direct excitation of shear waves with embedded axial rod 

driven by a piezoelectric actuator.  
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5.3.2 Chicken Sample Preparation 

Chicken breast purchased from a local grocery store was frozen within one day of purchase. For 

sample preparation, the chicken breast was removed from the freezer to thaw in room temperature 

for ~1 hour. Once the tissue was partially thawed, a 1” circular hole punch (McMaster Carr, part 

3427A24) was used to cut cylindrical samples from the chicken breast (Figure 5.2A). Samples 

were placed in a gelatin mixture [1] inside a 50 mL tube, lubricated with canola oil (Figure 5.2B). 

The sample was then refrigerated until testing. Prior to testing, the chicken/gel sample was 

removed from the 50 mL tube and inserted into a modified 50 mL tube with a 25 x 25 mm window 

to allow for ultrasound penetration. This tube was then placed in a 30 mm diameter coil for 

scanning (Figure 5.2C). The ultrasound transducer was placed above the surface of the chicken 

(Figure 5.2D). A water-filled bladder attached to the transducer provided an air-free connection.  

The focus of the ultrasound transducer was electronically moved to be 2 mm below the natural 

focus so that actuation could occur deeper into the chicken sample. Figure 5.2E shows the 

schematic of the setup. 
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Figure 5.2: Sample preparation and schematic for MR-HUM scan setup. (A) 1” diameter cylindrical punch of chicken breast. 

Sample was punched after partial thawing for ~1 hour. (B) Sample embedded in gelatin/glycerol mixture for testing. (C) Chicken 

sample in gel is moved to a 50 mL tube with a cutout window for testing. The tube is placed in the 30 mm diameter coil with the 
cutout facing upwards. (D) the ultrasound (US) transducer is placed above the sample. A water bladder covering the US transducer 

provides a good connection to the sample. The sample can be rotated while still maintaining the connection between the US 

transducer and the sample. (E-F) Schematic of MR-HUM at two orientations. Focus is 2 mm down from the natural focus (NF). 

During testing, the sample could be rotated in the coil while the ultrasound transducer remained 

stationary, as long as the water-filled bladder coupling the sample to the transducer remained in 

the tube cutout area (Figure 5.3). The sample rotation controlled the angle between the chicken 

fibers to the ultrasound actuation. For this experiment, each chicken sample underwent two MR-
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HUM scans with actuation at angles approximately 45° and 90° to the fiber direction. A total of 

11 samples of chicken were actuated at 400 Hz at ~1.5 W power from the ultrasound transducer. 

 

Figure 5.3: The sample could be rotated within the coil to change the angle between the fibers and direction of actuation (𝛽). The 

transducer and focal region of the US beam remained stationary. Samples underwent actuation at angles approximately 𝛽 = 90° 

and 𝛽 = 45° to the chicken fibers. 

5.3.3 Imaging 

5.3.3.1 MR-HUM 

Shear waves were excited at 300 Hz (gelatin) or 400 Hz (chicken) using magnetic resonance 

imaging of ultrasound-induced motion (MR-HUM). The tissue was harmonically oscillated by 

acoustic radiation force of the focused ultrasound beam. The ultrasound transducer produced a 

signal at 1500 kHz. This signal was modulated by a square wave at 300 Hz (gelatin) or 400 Hz 

(chicken) to generate amplitude modulated focused ultrasound, which produced shear waves at the 

frequency of the modulation signal. Figure 5.4 outlines the amplitude modulation used in MR-

HUM. 
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Gelatin: MRE data were acquired with a modified 2D multi-slice spin-echo sequence [117] with 

1 mm isotropic voxels, TR = 1000 ms, and TE = 36 ms covering a volume of 32 x 32 x 27 mm3. 

Sinusoidal motion encoding gradients (1-3 cycles) of amplitude 20 G/cm were synchronized with 

motion to induce phase contrast proportional to displacement.  

Chicken: MRE data were acquired with a modified 2D multi-slice spin-echo sequence [117]  with 

1 mm isotropic voxels, TR = 1000 ms, and TE = 33-34 ms covering a volume of 32 x 32 x 12 mm3 

or 24 x 24 x 12 mm3. Sinusoidal motion encoding gradients (1-3 cycles) of amplitude 20 G/cm 

were synchronized with motion to induce phase contrast proportional to displacement.  

MRE data were phase-unwrapped and rigid body motion effects were removed. During analysis, 

imaging data was masked at 10 mm radius from the center of actuation because MR-HUM shear 

waves dissipate quickly from the focal region.  

5.3.3.2 Direct actuation MRE 

Shear waves are excited at 300 Hz using a piezo electric actuator. MRE data were acquired with a 

modified 2D multi-slice spin-echo sequence with 1 mm isotropic voxels, TR of 1000 ms, and TE 

of 36 ms covering a volume of 48 x 48 x 21 mm3. Sinusoidal motion encoding gradients (1-3 

Modulation Frequency 

(frequency of desired tissue 
motion = 400 Hz) 

Transducer Frequency 

(frequency of ultrasound 

= 1500 kHz) 

Amplitude-Modulation 
Frequency 

(frequency of shear wave  
≈ 400 Hz) 

Figure 5.4: Amplitude modulation of focused ultrasound at 400 Hz. High frequency of ultrasound is modulated by low frequency 

to produce amplitude modulation, resulting in shear waves at the low frequency.  
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cycles) of amplitude 8 G/cm were synchronized with motion to induce phase contrast proportional 

to displacement. MRE data were phase-unwrapped and rigid body motion effects were removed. 

5.3.3.3 Diffusion Tensor Imaging 

DTI was performed for all chicken samples at all orientations tested. Diffusion tensors were 

estimated using 30 diffusion-weighted directions and 2 averages. The scan used 2 mm isotropic 

voxel resolution over an imaging volume of 48 x 48 x 15 mm3. Fractional anisotropy (FA) was 

estimated from diffusion tensor eigenvalues, and fiber direction (a) was estimated from the first 

principal eigenvector.  

5.4  Results 

5.4.1 Gelatin Samples 

Wave patterns in the two gelatin samples for both methods of actuation were consistent with 

isotropic material model. Waves in sample imaged using MR-HUM had a spherical pattern, while 

waves from the piezoelectric actuator were cylindrical. Figure 5.5 (A and C) shows the shear waves 

(w-component) for both actuation methods. 

Shear modulus was estimated using an isotropic viscoelastic material model for LDI with a kernel 

size of 5 mm [1]. Figure 5.5 (B and D) shows the shear moduli for both actuation methods. The 

mean storage modulus for the entire masked regions of two samples were 3.6 ± 0.3 kPa for piezo 

actuation and 3.4 ± 0.3 kPa for MR-HUM. 
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Figure 5.5: Shear waves and shear moduli of gelatin using MR-HUM (A-B) and piezoelectric actuation (C-D) at 300 Hz. (A) Shear 

waves (w-component) for one slice near the focus. (B) Shear modulus in a region within 8 mm radius of the center (surrounding 

material has been masked out). White scale bar represents 3mm. (C) Wave field for piezoelectric actuation.  Note the higher 
amplitude of motion for shear waved excited using piezoelectric actuation. (D) Shear modulus estimates in piezoelectically-excited 

sample. White line represents 3mm. 

5.4.2 Chicken Sample 

Fiber direction was estimated using DTI as described above. The data was masked to show only 

the region of chicken that was within 10 mm radius of the focal region. Figure 5.6 shows the 

sample area in the dotted line and fiber directions from one sample with fibers at 51° and 87° to 

the actuation direction. Fiber direction in the samples show fibers with a consistent, clear 

orientation.  
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Figure 5.6: DTI results from one sample at two different angles. (A) Schematic diagram. The region of the sample outlined by 
dotted lines (top) is the partial sphere of 10 mm radius centered about the focal region that was used in the analysis. The sample 

was rotated 36° between the two experiments. (B-C) DTI estimates of fiber direction are displayed for multiple views for the two 

orientations: (B) 𝛽 = 51° and (C) 𝛽 = 87°. 

Shear wave patterns in chicken breast are consistent with an ITI material model. Non-circular 

waves are observed for all samples; typically wavefronts are elliptical with the major semi-axis 

aligned with the fiber direction from DTI. Propagation direction was estimated from the wave 

fields using an array of directional filters [6, 21]. Slow and fast polarization directions were 

calculated from propagation direction and fiber direction. Figure 5.7 and Figure 5.8 show the 

results from the directional filtering analysis for a chicken breast sample where actuation was 51° 

and 87°, respectively, to the fiber direction at 400 Hz on a slice near the center of actuation. The 

fiber direction (𝒂), propagation direction (𝒏), slow polarization direction (𝒎𝑠), and fast 

polarization direction (𝒎𝑓) are shown for the chicken breast sample. The shear wave displacement 
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is shown for three directions (𝑈, 𝑉,𝑊). All samples were masked by distance from focus and DTI 

fractional anisotropy (FA>0.01).  

 

Figure 5.7: MR-HUM chicken breast results for sample with actuation direction 87° to the fiber direction for directional filtering 

analysis. (A-C) Shear wave displacement in three directions (𝑈,𝑉,𝑊) for a slice near the center of actuation. (D-G) Fiber direction 

(𝒂), propagation direction (𝒏), slow polarization direction (𝒎𝒔), and fast polarization direction (𝒎𝒇) are shown for the chicken 

breast sample. Samples were masked at 10 mm radius from focus. Scale bar in (C) is 2mm.  
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Figure 5.8: MR-HUM chicken breast results for sample with actuation direction 51° to the fiber direction for directional filtering 

analysis. (A-C) Shear wave displacement in three directions (𝑈,𝑉,𝑊) for a slice near the center of actuation. (D-G) Fiber direction 

(𝒂), propagation direction (𝒏), slow polarization direction (𝒎𝒔), and fast polarization direction (𝒎𝒇) are shown for the chicken 

breast sample. Samples were masked at 10 mm radius from focus. Scale bar in (C) is 2mm.  

5.5  Discussion and Conclusions 

In this experimental study, MR-HUM was used as a new method for shear wave excitation and 

imaging of gelatin and ex vivo chicken breast. Gelatin samples were used to compare wave fields 

and shear modulus estimates between MR-HUM and piezo actuation for an isotropic medium.  

Both wave fields appeared to match the isotropic material model. Waves in MR-HUM propagated 

from the center of the actuation with approximately spherical wavefronts. While shear waves 

emanate from the center of actuation in all directions, the SNR decreases significantly with 

distance. Although wave amplitudes were low, even within 8-10 mm of the US focus, amplitudes 

within that region had sufficiently high octahedral shear strain (OSS) signal to noise ratio (SNR) 

material property estimation. For that reason, MR-HUM analysis only included voxels within 6 
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mm of the ultrasound focus. This local estimation enables property estimation within smaller 

regions of tissue, like white matter tracts, with less influence from surrounding tissues. 

The experimental setup for MR-HUM allowed for simple sample rotation, which enabled multiple 

experiments to be performed within one sample. One experimental sample could thus be imaged 

with multiple directions of actuation, allowing the sample to experience both slow and fast shear 

waves, which is necessary for improved anisotropic parameter estimation [31].  

MR-HUM has several advantages over conventional actuation with respect to anisotropic 

parameter estimation. MR-HUM provides much greater control over the direction of shear wave 

propagation and polarization compared to boundary excitation (previous chapter). Rather than 

waves only traveling inwards from the surface of the material, in both simulations and experiment, 

actuation could easily be varied with respect to fiber direction. MR-HUM is non-destructive, 

allowing multiple tests to be performed within the same sample. In direct actuation, for example 

by the titanium rod driven by a piezoelectric actuator, the sample is punctured, which disrupts its 

integrity before other directions of actuation can be performed. 

One of the potential drawbacks of MR-HUM is sample heating. MR-HUM uses focused ultrasound 

waves, which at high power or prolonged exposure, can produce heating in the focal region. To 

minimize heating, MR-HUM utilized square waves for amplitude modulation. MRE sequences 

were optimized to run quickly and ample time was given between scans to ensure low heating of 

the sample. MRI can be used to estimate temperature changes, but due to the lack of a ground-

truth temperature measurement, detailed investigation of sample heating was postponed. All 

studies were done at power levels that did not cause detectable changes (color, stiffness, warmth) 
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in the sample. Preliminary investigation of MR-HUM-driven temperature changes is described in 

Appendix D. 

5.6  Summary 

This chapter showed that MR-HUM is feasible; FUS can create shear waves with multiple 

propagation and polarization directions that can be imaged by MRE sequences. Wave fields are 

limited to the focal region so properties estimated from method are localized. MR-HUM provides 

enhanced control over wave direction and placement within an anisotropic sample. This method 

thus addresses some of the challenges of anisotropic material property estimation. The next step, 

described in the following chapter, is to use date from MR-HUM for anisotropic parameter 

estimation.  
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Chapter 6:Estimation of anisotropic material 

parameters from MR-HUM 

6.1 Overview  

Leveraging the experimental methods presented in the previous chapter, MR-HUM data will be 

analyzed by an extension to the anisotropic inversion introduced in chapter 4 to estimate the 

material properties of ex vivo tissue. The inversion approach will be confirmed for MR-HUM using 

simulations and then applied to the experimental MR-HUM data introduced in the previous 

chapter.  

This study is the first to use MR-HUM data to comprehensively and quantitatively characterize 

anisotropic material properties of a soft biological tissue ex vivo. This is also the first study to 

simulate MR-HUM to investigate anisotropic wave propagation and to compare these results to 

experiments.  

6.2 Objective and Significance 

Soft tissue, specifically fibrous biological tissues, are anisotropic structurally and mechanically. 

Muscles, tendons, collagen, white matter of the brain, and cardiac tissue are important examples 

of fibrous tissue. Anisotropy may have an impact in injury mechanisms or reflect tissue health, so 

understanding the effects of these characteristics is important for the study of these materials. 

However, measurements of anisotropic mechanical properties are complicated due to experimental 

and theoretical challenges. The approach presented in this chapter addresses some of the 

challenges by expanding the capabilities of MRE to characterize anisotropic tissue properties 
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noninvasively using MR-HUM, which was presented in the previous chapter.  The goal of this 

chapter is to investigate and apply analysis methods for characterization of anisotropic behavior 

of fibrous materials and soft tissues using MR-HUM. 

Previous work has explored theoretical methods to estimate material properties of linear elastic, 

incompressible, transversely isotropic (ITI) materials using MR elastography [31]. This method 

has undergone preliminary evaluation using experimental imaging data from slow (pure 

transverse) and fast (quasi-transverse) shear waves in ITI materials using one actuation direction 

per MRE scan [30]. To better characterize an ITI material, multiple actuation directions within the 

same sample are necessary. We propose to improve our ability to characterize anisotropic soft 

tissues in the linear regime, by using MR-HUM, which is a localized, variable, harmonic shear 

wave actuation system based on focused ultrasound. Thus, the goal of this chapter is to develop 

and evaluate anisotropic inversion methods that can exploit the advantages, as well as cope with 

the challenges of MR-HUM, like sample heating. 

6.3 Methods  

6.3.1 Simulations 

A finite element model (COMSOL Multiphysics; v. 5.3a, Stockholm, Sweden) of a nearly-

incompressible transversely isotropic (NITI) cylinder was used to simulate MR-HUM in 

anisotropic tissue similar to the experimental methods of chicken breast explained in the previous 

chapter. The data from the ideal situations were used to validate and assess two methods for 

anisotropic parameter estimation.  
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Harmonic forcing at a single location was provided, with the force oriented at five different angles 

of actuation with respect to fiber direction (Figure 6.1A-C). The data from these ideal situations 

were used to validate two forms of anisotropic parameter estimation, directional filtering with local 

direct inversion (DF- LDI) and phase gradient (PG). 

The simulation domain was a linear, elastic, nearly incompressible, homogenous cylinder of 27 

mm diameter and 50 mm length (Figure 6.1A-B; dimensions chosen to match experimental 

samples). A harmonic body load at a single frequency was applied in the z-direction to a small 

spherical region of 1 mm radius, at the center of the cylinder. The solution for the steady state 

frequency response was found using COMSOL’s frequency domain solver. The domain consisted 

of 100,505 quadratic Lagrange elements, corresponding to 432,883 degrees of freedom. The 

boundaries of the cylinder were rigid. Displacement data from the simulation were exported into 

MATLAB and interpolated onto a 3D grid with 1 mm3 voxel resolution for analysis using the 

LiveLink feature of COMSOL (“mphinterp” command). For each simulation, the cylinder material 

had one fiber direction with an angle of 𝛽 = 0°, 30°, 45°, 60°, or 90° relative to the actuation 

direction, creating a total of 5 models (Figure 6.1C). The harmonic body load produced shear 

waves propagating with approximately spherical wave fronts outward from the center of the 

cylinder.  

Analysis of the simulations were performed on data from the spherical region within 10 mm radius 

of the center of the cylinder (location of the harmonic body load) to eliminate effects of wave 

dissipation and reflections from boundaries. All voxels outside of this region were masked out 

(eliminated from the analysis; Figure 6.1D-G, shown in black). Fiber direction (𝒂; Figure 6.1D for 

90° case), shear wave displacement (𝑼), and propagation direction (𝒏; Figure 6.1E for 90° case) 
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were found from the simulation inputs and outputs. Shear wave polarization directions 

(𝒎𝑠 and 𝒎𝑓) were calculated using equations 2.37 and 2.38 (Figure 6.1F-G for 90° case). 

 

Figure 6.1: Simulation of MR-HUM. (A-B) A body load is applied to the small spherical region in the center of the cylinder of 50 

mm length (A, x-z view) and 27 mm diameter (B, y-z view). The 𝛽 = 90° case is shown. (C) Five models for simulation of MR-
HUM, showing the fiber direction at 90°, 60°, 45°, 30°, and 0° to the actuation direction (z-direction). (D-G) Parameters of the 

𝛽 = 90° case of the simulation shown by colormap where red is in the direction of the x-axis, green is in the direction of the y-axis, 
and blue is in the direction of the z-axis. All voxels greater than 10 mm from the center (actuation) are removed from analysis using 

a mask. (D) Fiber direction (𝒂) is strictly along the y-axis. (E) The shear wave propagation direction (𝒏) is outwards from the 

center. Black arrows emphasize the direction of the wave. (F) Slow shear wave polarization direction (𝒎𝒔) is mainly along the z-

axis and (G) fast shear wave polarization direction (𝒎𝒇) is mainly along the y-axis. 

Two sets of material properties were used for the simulations. One simulation set incorporated 

approximately brain-like shear modulus, with parameters of 𝜇 = 2000 Pa, 𝜙 = 1, and ζ =

2. Actuation was created by applying a body force of 50 kN/m3 at 300 Hz. A second simulation 

set incorporated stiffer, approximately muscle-like, shear modulus, with parameters of 𝜇 =

7500 Pa, 𝜙 = 1, and ζ = 1. The actuation was created by applying a body force of 150 kN/m3 at 

400 Hz. This simulation set was chosen to approximate the MR-HUM chicken breast experiment 

explained in the previous chapter. The actuation body forces were chosen to produce micron-level 

displacement in the simulation. 
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Data from these simulations, which are noise-free and thus represent an idealized “best-case” 

scenario, were used to evaluate two approaches for anisotropic property estimation.  

6.3.2 Experimental MR-HUM 

Eleven (11) cylindrical samples of chicken breast of 25 mm (1.0 inch) diameter and varying height 

> 25 mm were imbedded in gelatin-glycerol mixture (described in 5.3.2). The samples were tested 

in a modified 50 mL tube with a 25 × 25 mm window. The ultrasound transducer was placed above 

the surface of the chicken breast sample with a water-filled bladder as an air-free connection. The 

focus of the ultrasound transducer was electronically moved to 2 mm below the natural focus. 

Samples were actuated at 400 Hz with ~1.5 W ultrasound power. Each sample underwent two MR-

HUM scans (described in Chapter 5.3.3.1). The sample was rotated approximately 45° between 

the two scans, with the transducer remaining stationary.  

6.3.3 Approach to Anisotropic Property Estimation  

6.3.3.1 Overview of Estimation Using Multiple Linear Regression  

Two approaches were used to estimate the material properties of the chicken breast samples: (i) 

directional filtering with local direct inversion (DF-LDI) and (ii) phase gradient (PG). These 

approaches were used to separate the waves by polarization direction (“slow” and “fast”) and to 

approximate the apparent shear modulus (𝜌𝑐2) for each type. After those steps, the two analysis 

methods were essentially the same. The three unknown parameters of an NITI material were 

estimated from the equations for slow and fast shear waves (explained in Chapter 4.3.3) using a 

multiple linear regression model of the form: 
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𝑦 =  𝛽0  +  𝛽1𝑥1   + 𝛽2𝑥2.      (6.1) 

The unknown parameters are  𝛽0 = 𝜇, 𝛽1 = 𝜇𝜙  and 𝛽2 = 𝜇𝜁. The dependent variable is the 

apparent shear modulus: 𝑦 = 𝜇𝑎𝑝𝑝 (𝜇𝑎𝑝𝑝 = 𝜇𝑠 for slow waves and 𝜇𝑎𝑝𝑝 = 𝜇𝑓 for fast shear 

waves). The independent variables in the multiple regression are defined in terms of the angle 𝜃 

as follows: 

𝑥1 = {
cos2𝜃 ("slow" voxels)

cos2 2𝜃 ("fast" voxels)
   and 𝑥2 = {

0 ("slow" voxels)

sin2 2𝜃 ("fast" voxels)
.  (6.2) 

6.3.3.2 Classification of Voxels as “Slow” or “Fast” 

For a voxel to be included in the analysis, multiple conditions must be met to ensure that 

approximations and assumptions are reasonably accurate. (i) The voxel must experience a 

minimum wave amplitude; (ii) the voxel must be within a certain radius of the center of actuation; 

(iii) the propagation direction within the voxel must be close to that of radially propagating waves, 

and (iv) the voxel must have a fractional anisotropy above a threshold. Table 6.1 summarizes the 

inclusion criteria for the analysis.  
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Table 6.1: Inclusion criteria for analysis of anisotropic parameter estimation for both simulations and experiments. Parameters 

were chosen to be consistent with experimental studies, which had lower wave amplitude and generally low FA.  

Inclusion Criteria Equation Parameter 

Amplitude |𝑈| > 𝐴 |𝑈|𝑚𝑒𝑑𝑖𝑎𝑛 𝐴 = 0.1 

Propagation direction 𝒏 ∙ 𝒆𝒓 > 𝑝𝑟𝑜𝑝𝑡ℎ𝑟𝑒𝑠ℎ 𝑝𝑟𝑜𝑝𝑡ℎ𝑟𝑒𝑠ℎ = 0.75 

Radial distance 𝑟 < 𝑅𝑚𝑎𝑥 𝑅𝑚𝑎𝑥 = 10 𝑚𝑚 

Fraction Anisotropy 𝐹𝐴 > 𝐹𝐴𝑡ℎ𝑟𝑒𝑠ℎ 𝐹𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 0.01 

After voxels are selected based on these inclusion criteria, they must also meet classification 

criteria to be sorted as either a “slow” or “fast” voxel. The voxel must have a dominant shear wave 

polarization (be dominated by either a slow or fast shear wave – not both). A voxel was classified 

as a fast or slow shear wave voxel if the normalized displacement or curl component in the fast or 

slow polarization direction exceeded a minimum “polarization threshold” (𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ) and the other 

component was below a corresponding maximum value (1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ). The normalized fast and 

slow shear wave displacement components are: 

𝑈̂𝑓 =
𝑼 ∙ 𝒎𝒇

|𝑼|
,      (6.3) 

𝑈̂𝑠 =
𝑼 ∙ 𝒎𝒔

|𝑼|
.      (6.4) 

Thus a voxel would be designated as “fast” if  𝑈̂𝑓 > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ and  𝑈̂𝑠 < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ, and a  

voxel is classified as “slow” if  𝑈̂𝑠 > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ and 𝑈̂𝑓 < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ. Analogous criteria could 

be applied to the curl field, 𝚪; interestingly it can be shown that the curl polarizations are 

orthogonal to the displacement polarization directions, so that the normalized curl components are:  
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Γ̂𝑓 =
𝚪 ∙ 𝒎𝒔

|𝚪|
,      (6.5) 

Γ̂𝑠 =
𝚪 ∙ 𝒎𝒇

|𝚪|
.      (6.6) 

Voxels that did not meet either of these criteria were excluded from the analysis. In this study, DF-

LDI used displacement for classification and PG used curl. Table 6.2 and  

Table 6.3 outline the classification criteria used for DF-LDI and PG methods. 

Table 6.2: Classification criteria for DF-LDI analysis 

Classification Criteria for 

DF-LDI 
Equation Parameter 

Polarization direction - slow 

|𝑈̂𝑠| > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ  

|𝑈̂𝑓| < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ 

𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75 

Polarization direction - fast 

|𝑈̂𝑓| > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ  

|𝑈̂𝑠| < 1 − 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ 

𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75 

 

Table 6.3: Classification criteria for PG analysis 

Classification Criteria for 

PG 
Equation Parameter 

Polarization direction - slow |Γ̂𝑠| > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ |Γ|𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75 

Polarization direction - fast |Γ̂𝑓| > 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ |Γ|𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75 
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A sensitivity analysis of the effects of selection criteria on parameter estimates is shown in 

Appendix E. 

6.3.3.3 Directional Filtering with LDI (DF-LDI) (c.f. Chapter 4.3.3.3) 

The apparent shear modulus (𝜇𝑎𝑝𝑝 = 𝜌𝑐2) was calculated for each voxel using local direct 

inversion (LDI). Shear modulus was estimated from the shear wave displacements using the 

viscoelastic analog of the Navier equation, which assumes the material is linear, isotropic, and 

locally homogenous [1] (see Chapter 2.3.2.2). After LDI analysis, shear wave data were 

characterized by shear wave polarization, with voxels classified as either slow or fast based on the 

slow and fast shear wave criteria (Table 4.2). Directional filtering (using 192 filter directions) was 

used to identify average propagation direction, 𝒏. Fiber direction, 𝒂, was obtained from DTI and 

the angle 𝜃 between 𝒏 and 𝒂 was found. Polarization directions 𝒎𝑠 = (𝒏 × 𝒂)/|𝒏 × 𝒂|  and 𝒎𝑓 =

𝒏 × 𝒎𝒔 were calculated, and the normalized slow and fast displacement (𝑈̂𝑠  and 𝑈̂𝑓) components 

were used to classify voxels as either “slow” or “fast.” These values were then used in the multiple 

linear regression (Eq. 6.1) to estimate 𝜇, 𝜇𝜙  and 𝜇𝜁. A flow chart for this method is shown in 

Figure 4.7.  

6.3.3.4 Phase Gradient (PG) 

The wave propagation direction (𝒏) of the data was assumed to be purely radial, emanating from 

center of actuation. Slow and fast polarization directions (𝒎𝒔 and 𝒎𝒇 respectively) and 

propagation-fiber angle, 𝜃, were calculated using the assumed propagation direction and the fiber 

direction (𝒂) of the sample/simulation. 
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𝒎𝒔 =
𝒏×𝒂

|𝒏×𝒂|
     (6.7, c.f. 2.37) 

𝒎𝒇 = 𝒏 × 𝒎𝒔     (6.8, c.f. 2.37) 

The curl of the displacement was then sorted into slow and fast components. 

Γs = 𝚪 ∙ 𝒎𝒇      (6.9) 

Γ𝑓 = 𝚪 ∙ 𝒎𝒔      (6.10) 

Next, the phase angles of the slow and fast (𝜓𝑠 and 𝜓f) waves were calculated.  

𝜓𝑠 = ∠Γ𝑠      (6.11) 

𝜓𝑠 = ∠Γ𝑓      (6.12) 

The wave numbers (𝒌𝒔 and 𝒌𝒇) were estimated from the gradients of phase. 

𝒌𝒔 = 𝛁𝜓𝑠      (6.13) 

𝒌𝒇 = 𝛁𝜓𝑓       (6.14) 

Wavelength for slow and fast waves (𝜆𝑠 and 𝜆𝑓) were calculated from the radial component of 

the wave number vectors. 

𝜆𝑠 =
2𝜋

𝒌𝒔∙𝒏
      (6.15) 

𝜆𝑓 =
2𝜋

𝒌𝒇∙𝒏
      (6.16) 



119 

 

 Apparent shear modulus was calculated from wavelength, using the density value of 𝜌 =

1000
𝑘𝑔

𝑚3 and the frequency of the actuation (𝑓).  

𝜇𝑎𝑝𝑝 = 𝜇𝑠 = 𝜌(𝜆𝑠𝑓)2,    (6.17) 

𝜇𝑎𝑝𝑝 = 𝜇𝑓 = 𝜌(𝜆𝑓𝑓)2.    (6.18) 

Voxels classified as either slow or fast were masked based on the slow and fast shear wave criteria 

(Table 6.3). These values and the corresponding values of the independent variables for “slow” 

and “fast” voxels were used in the linear regression equation (Eq. 6.1) to estimate values of  𝜇, 𝜇𝜙  

and 𝜇𝜁 . Figure 6.2 outlines the steps of PG. 

 

Figure 6.2: Flow chart outlining the steps of shear wave separation and anisotropic parameter estimation using PG. 
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6.4  Results 

6.4.1 Simulation – DF-LDI 

The simulation output consisted of the shear wave displacements, mirroring the output of the MRE 

sequence in an MR-HUM experiment. Fiber direction was treated as a known parameter. Figure 

6.3 shows the shear wave displacements and slow and fast shear wave components for one 

simulation case where actuation was 90° to the fiber direction. For this specific case, the majority 

of the waves were classified as slow shear waves. Changing the direction of actuation, relative to 

the fiber direction, produced various different combinations of slow and/or fast shear waves.  
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Figure 6.3: Simulation and DF-LDI analysis of NITI cylinder with actuation 90° to fiber direction for the muscle-like simulation 

case at 400 Hz actuation frequency. (A) Cylinder with fibers along the y-axis. The small sphere outlines the actuation source, which 

was centered in the cylinder and experienced oscillatory force in the z-direction. (B) Shear wave displacements (w-component) on 

two perpendicular planes through the center of the cylinder. The black lines represent the fiber direction. (C) The normalized 

component of displacement in the slow polarization direction, 𝑈̂𝑠, masked by displacement amplitude. The slice shown is the center 
slice normal to z-axis. Voxels farther than 10 mm from the center were masked out. Most of the displacement for this simulation 

case is due to slow shear waves.  (D) The normalized component of displacement in the fast polarization direction, 𝑈̂𝑓, masked by 

displacement amplitude. Fast shear waves do not contribute much to the displacement field. Even voxels that apparently exhibit 
fast shear waves also have a large slow shear wave component (see panel C), so they will not be classified as “fast” voxels for the 

regression analysis. 

The angle between the propagation direction and the fiber direction, 𝜃, was calculated for the 

sample. Apparent shear modulus, 𝜇𝑎𝑝𝑝, was calculated for the entire volume using LDI. All voxels 

were categorized as slow or fast (or neither) based on the criteria stated in Chapter 6.3.3 (Table 6.1 

and Table 4.2). Figure 6.4 shows the 𝜃 and 𝜇𝑎𝑝𝑝and the corresponding slow and fast components 

for the simulation case where the actuation direction is perpendicular to the fiber direction. For 
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this specific case, all voxels used in the analysis were classified as slow shear wave voxels. Some 

voxels were excluded because they had components of both slow and fast shear waves. 

 

 

Figure 6.4: Angle and apparent shear modulus on central slice for the simulation case with actuation 90° to fibers for the muscle-

like sample excited at 400 Hz. (A) The angle between the propagation direction and fiber direction (𝜃) for all voxels within 10 mm 

of center. (B) Estimates of 𝜃 in voxels that were classified as slow based on the criteria (𝜃𝑠). All voxels that were not classified as 

slow are masked out (shown as black). (C) Estimates of 𝜃 in voxels that were classified as fast (𝜃𝑓). No voxels for this case of the 

simulation were classified as fast. (D) The apparent shear modulus (𝜇𝑎𝑝𝑝) estimated using isotropic viscoelastic LDI. (E) Estimates 

of 𝜇𝑎𝑝𝑝 in voxels that were classified as slow (𝜇𝑠). All voxels not classified as slow were masked out (shown as black). The images 

are further masked so that only voxels within 10 mm are included. (F) Estimates of 𝜇𝑎𝑝𝑝 in voxels that were classified as fast based 

on the inclusion criteria (𝜇𝑓). No voxels for this case of the simulation were classified as fast. (G) Schematic diagram of 𝜃 with 𝒏 

and 𝒂.   

After classification, all voxels from the simulation that were classified as either slow or fast were 

used to estimate the three material parameters (𝜇, 𝜇𝜙, 𝜇𝜁) using the linear regression model (Eq. 

6.1). Statistics were performed using MATLAB’s built-in linear regression model (“fitlm”).  Figure 

6.5 shows all the apparent shear modulus voxels classified as slow or fast versus the sine or cosine 

of angle for all cases of the simulation for the brain-like stiffness at 300 Hz (A-slow voxels and B-

fast voxels) and the muscle-like stiffness at 400 Hz (C-slow voxels and D-fast voxels).  
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Figure 6.5: Results from all NITI cylinder simulations for all cases for DF-LDI method. Each dot represents one voxel that met 

slow (A and C) or fast (B and D) criteria for DF-LDI analysis. The black solid line represents the linear relationship expected for 

the input parameters for brain-like tissue (A -B): 𝜇 = 2 kPa, 𝜙 = 1, 𝜁 = 2 and muscle like tissue (C-D): 𝜇 = 7.5 kPa,𝜙 = 1, 𝜁 =
1. The black dashed line represents the linear regression model for the estimated material parameters found using DF-LDI. (A) 
Apparent shear modulus in slow voxels for all simulation cases of the NITI cylinder for brain-like tissue. (B) Apparent shear 

modulus in fast voxels for all simulation cases of the NITI cylinder for brain-like tissue. (C) Apparent shear modulus in slow voxels 

for all simulation cases of the NITI cylinder for muscle-like tissue. (D) Apparent shear modulus in fast voxels for all simulation 

cases of the NITI cylinder for muscle-like tissue. 

Table 6.4 shows the results of the DF-LDI anisotropic parameter estimation for both simulation 

cases: brain-like stiffness and muscle-like stiffness. For both cases shear modulus was over-

estimated and the shear and tensile anisotropy were under-estimated. 
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Table 6.4: Comparison between exact values of the simulation parameters and the values estimated by DF-LDI for brain-like tissue 

and muscle-like tissue, using multiple linear regression. For the brain-like stiffness simulation, 7,734 voxels were used in the linear 

model fit (R2=0.75). The p-value was less than machine precision. For the muscle-like stiffness simulation, 7,304 voxels were used 

in the linear model fit (R2=0.69). The p-value was less than machine precision. 𝜇, 𝜇𝜙, and 𝜇𝜁 are in units of kPa; 𝜙 and 𝜁 are 

unitless.   

  Input Estimated Error (%) 

  B
ra

in
-l

ik
e 

st
if

fn
es

s 

𝜇 [kPa] 2.00 2.37 18.4 

𝜇𝜙 [kPa] 2.00 2.27 13.3 

𝜇𝜁 [kPa] 4.00 2.59 35.2 

𝜙 1.00 0.96 4.31 

𝜁 2.00 1.09 45.3 

  Input Estimated Error 

  M
u
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le

-l
ik

e 
st

if
fn

es
s 

𝜇 [kPa] 7.50 8.39 11.8 

𝜇𝜙 [kPa] 7.50 6.22 17.1 

𝜇𝜁 [kPa] 7.50 6.37 15.1 

𝜙 1.00 0.74 25.8 

𝜁 1.00 0.76 24.0 

6.4.2 Simulation – Phase Gradient Inversion 

Voxels were first separated into slow and fast categories based on the polarization direction (Table 

6.3). Figure 6.6 shows the results of initial voxel classification for displacement (𝑼: panels A-B) 

and curl (𝚪: panels C-D) with amplitude thresholding for the 𝛽 = 90° case at 400 Hz. The phase 

angle (𝝍) of each shear wave component was calculated using the curl. Figure 6.6E-F show the 

phase for the 𝛽 = 90°  case at 400 Hz, with arrows representing the propagation direction for the 

voxels that meet all the criteria for slow or fast waves (note: there are no arrows on voxels 
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categorized as fast because those voxels did not meet criteria for inclusion). After all masking and 

classification was performed, the angle between propagation direction and fiber direction (𝜃) and 

apparent shear modulus (𝜇𝑎𝑝𝑝) are shown for slow and fast voxels. Figure 6.6 G-J shows the 

classification in one slice for the 𝛽 = 90° case at 400 Hz. As shown in the previous section, the 

majority of the voxels for the 𝛽 = 90° case were classified as slow.  
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Figure 6.6: Simulation and phase gradient (PG) analysis of NITI cylinder with actuation 90° to fiber direction at 400 Hz. Voxels 

were masked based on inclusion criteria from Table 6.1. Images are from the center slice normal to the z-axis. (A) Displacement 

field component (𝑈𝑠) contributed by shear waves with slow polarization. (B) Displacement field component (𝑈𝑓) due to shear 

waves with fast polarization. (C) Curl field component (Γ𝑠) due to shear waves with slow polarization. (D) Curl field component 

(Γ𝑓) due to shear waves with fast polarization. (E) Phase angle (𝜓) of slow shear wave curl field, 𝑈𝑠. Black arrows represent the 

propagation direction. Arrows only appear over voxels that meet the classification criteria for inclusion in the analysis (Table 6.3). 

(F) Phase angle (𝜓) of fast shear wave curl field, 𝑈𝑓. There are no black arrows that represent the propagation direction because no 

fast voxels for this case meet the criteria for inclusion in the analysis (Table 6.3). (G) Angle between propagation direction and 

fiber direction (𝜃) for slow voxels. Voxels that did not meet classification criteria were masked out (Table 6.3). (H) Angle between 

propagation direction and fiber direction (𝜃) for fast voxels. No fast voxels met the classification criteria (Table 6.3). I) Apparent 

shear modulus (𝜇𝑎𝑝𝑝) in slow voxels. Voxels that did not meet classification criteria were masked out (Table 6.3). (J) Apparent 

shear modulus (𝜇𝑎𝑝𝑝) categorized by fast polarization. No fast voxels met the classification criteria (Table 6.3). 

As in the previous section, after classification into slow or fast voxels using PG method, all 

remaining voxels were used to estimate the anisotropic material parameters (𝜇, 𝜇𝜙, 𝜇𝜁) using the 
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multiple linear regression model (Eq. 6.1). The multiple linear regression analysis was performed 

using the linear regression function (“fitlm”) in MATLAB Statistics and Machine Learning 

Toolbox.  Figure 6.7 shows all the apparent shear modulus voxels classified as slow or fast versus 

the angle for all cases of the simulation for the brain-like stiffness at 300 Hz (A-slow voxels and 

B-fast voxels) and the muscle-like stiffness at 400 Hz (C-slow voxels and D-fast voxels).  
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Figure 6.7: Apparent shear modulus from all NITI cylinder simulations for all cases, estimated by the PG method. Each dot 

represents one voxel that met slow (A and C) or fast (B and D) criteria for PG analysis. The black solid line represents the linear 

relationship expected for the input parameters for brain-like tissue (A -B): 𝜇 = 2 kPa,𝜙 = 1, 𝜁 = 2 and muscle like tissue (C-D): 

𝜇 = 7.5 kPa,𝜙 = 1, 𝜁 = 1. The black dashed line represents the linear regression model for the estimated material parameters 
found using PG.  (A) Apparent shear modulus in slow voxels for all simulation cases of the NITI cylinder for brain-like tissue. B) 

Apparent shear modulus in fast voxels for all simulation cases of the NITI cylinder for brain-like tissue. (C) Apparent shear modulus 

in slow voxels for all simulation cases of the NITI cylinder for muscle-like tissue. (D) Apparent shear modulus in fast voxels for 

all simulation cases of the NITI cylinder for muscle-like tissue. 

 

Table 6.5 shows the results of the PG anisotropic parameter estimation for both simulation cases: 

brain-like stiffness and muscle-like stiffness. The inputs, estimated values, and error are shown. 
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Table 6.5: Comparison between the simulation parameter input and the values estimated by phase gradient (PG) for brain-like 

tissue and muscle-like tissue stiffness values. The input column shows the material parameters used for the simulation. The 

estimated values are the results of PG estimation, fitted using a linear model regression. For the brain-like stiffness simulation, 

11,825 voxels were used in the linear model fit (R2=0.859). The p-value was less than machine precision. For the muscle-like 

stiffness simulation, 12,501 voxels were used in the linear model fit (R2=0.908). The p-value was less than machine precision. 

𝜇, 𝜇𝜙, and 𝜇𝜁 are in units of kPa; 𝜙 and 𝜁 are unitless.   

  Input Estimated Error (%) 
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𝜇 [kPa] 2 2.46 23.0 

𝜇𝜙 [kPa] 2 2.46 23.0 

𝜇𝜁 [kPa] 4 3.81 4.7 

𝜙 1 1.00 0.0 

𝜁 2 1.55 22.5 

  Input Estimated Error 
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𝜇 [kPa] 7.5 9.38 25.1 

𝜇𝜙 [kPa] 7.5 8.53 13.7 

𝜇𝜁 [kPa] 7.5 9.48 26.4 

𝜙 1 0.91 9.1 

𝜁 1 1.01 1.0 

6.4.3 Experiment – DF-LDI 

Shear wave displacement fields were calculated from the phase images from the MR-HUM scan 

(Chapter 2.3.1). Eigenvalues and eigenvectors of the diffusion tensor, which correspond principal 

diffusivity values and directions, were obtained from the DTI scan and used to estimate fractional 

anisotropy (FA) (Eq. 2.58) and fiber direction (𝑎). Section 5.4.2 shows the results from the MR-
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HUM and DTI scan for one chicken sample actuated at two different angles to the fiber. Voxels 

were excluded from the estimation if they did not meet the inclusion criteria (Table 6.1). Voxels 

were classified as slow or fast, using the criteria defined in Table 6.2. Figure 6.8 A-B and Figure 

6.9 A-B show the contributions of slow versus fast shear waves for a chicken breast sample where 

the actuation direction was 51° and 87° from the fiber direction, respectively. Figure 6.8 C and 

Figure 6.9 C show 𝜃. This can be masked based on the criteria for slow and fast shear waves to 

categorize 𝜃 as slow or fast (Figure 6.8 D-E and Figure 6.9 D-E). LDI was used to calculate the 

shear modulus, 𝜇𝑎𝑝𝑝, shown in Figure 6.8 F and Figure 6.9 F. This was also masked based on the 

criteria for slow and fast shear waves to categorize 𝜇𝑎𝑝𝑝 as slow or fast (Figure 6.8 G-H and Figure 

6.9 G-H). Only voxels that are sufficiently slow or sufficiently fast are included in the analysis 

(Table 6.2). Only a few voxels in the 𝛽 = 51° degrees case are either slow or fast. The 𝛽 = 87° 

case is almost exclusively categorized as slow shear waves. The voxels that remain in the analysis 

match the positions on the polarization maps (Figure 6.8 A-B and Figure 6.9 A-B) where regions 

of high polarization (red) exist. 
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Figure 6.8: Experimental results from MR-HUM in muscle tissue (chicken breast) sample with actuation direction 51° to the fiber 

direction, analyzed using DF-LDI. These images correspond to chicken breast sample shear wave displacements and wave results 

in Figure 5.8. The slice is near the center of actuation, with voxels that do not meet the inclusion criteria (Table 6.1) removed during 

masking (black). (A) The normalized component of displacement in the slow polarization direction, 𝑈̂𝑠.  (B) The normalized 

component of displacement in the fast polarization direction, 𝑈̂𝑠. (C) The angle between the propagation direction and fiber 

direction (𝜃). (D) The angle 𝜃 in slow voxels, masked by slow shear wave polarization classification (Table 6.2). This slice shows 

very few slow voxels that meet classification criteria (these voxels correspond to simultaneous “hot spots” in the 𝑈̂𝑠 field in panel 

A and “cold spots” in the 𝑈̂𝑓 field in panel B). (E) The angle 𝜃 in fast voxels, masked by shear wave polarization classification 

(Table 6.2). This slice shows very few fast voxels that meet classification criteria (these voxels correspond to simultaneous “hot 

spots” in the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field in panel A). (F) The apparent shear modulus (𝜇𝑎𝑝𝑝) calculated by 

isotropic viscoelastic LDI. (G) The apparent shear modulus in slow voxels, masked by shear wave polarization classification (Table 

6.2). This slice shows slow voxels that meet classification criteria (these voxels correspond to simultaneous “hot spots” in the 𝑈̂𝑓 

field in panel B and “cold spots” in the 𝑈̂𝑠 field in panel A). (H) The apparent shear modulus in fast voxels, masked by shear wave 
polarization classification (Table 6.2). This slice shows very few fast voxels that meet classification criteria (these voxels 

correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field in panel A). Scale bar in (B) is 

2mm. 
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Figure 6.9: Experimental results from MR-HUM in muscle tissue (chicken breast) sample with actuation direction 87° to the fiber 

direction, analyzed using DF-LDI. These images correspond to chicken breast sample shear wave displacements and wave results 
in Figure 5.9. The slice is near the center of actuation, with voxels that do not meet the inclusion criteria (Table 6.1) removed during 

masking (black). (A) The normalized component of displacement in the slow polarization direction, 𝑈̂𝑠.  (B) The normalized 

component of displacement in the fast polarization direction, 𝑈̂𝑠. (C) The angle between the propagation direction and fiber 

direction (𝜃). (D) The angle 𝜃 in slow voxels, masked by slow shear wave polarization classification (Table 6.2). This slice shows 

slow voxels that meet classification criteria (these voxels correspond to simultaneous “hot spots” in the 𝑈̂𝑠 field in panel A and 

“cold spots” in the 𝑈̂𝑓 field in panel B). (E) The angle 𝜃 in fast voxels, masked by shear wave polarization classification (Table 

6.2). This slice shows very few fast voxels that meet classification criteria (these voxels correspond to simultaneous “hot spots” in 

the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field in panel A). (F) The apparent shear modulus (𝜇𝑎𝑝𝑝) calculated by isotropic 

viscoelastic LDI. (G) The apparent shear modulus in slow voxels, masked by shear wave polarization classification (Table 6.2). 

This slice shows slow voxels that meet classification criteria (these voxels correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field 

in panel B and “cold spots” in the 𝑈̂𝑠 field in panel A). (H) The apparent shear modulus in fast voxels, masked by shear wave 
polarization classification (Table 6.2). This slice shows very few fast voxels that meet classification criteria (these voxels 

correspond to simultaneous “hot spots” in the 𝑈̂𝑓 field in panel B and “cold spots” in the 𝑈̂𝑠 field in panel A). Scale bar in (B) is 

2mm. 

Similar to the simulations in the previous sections, after classification, all voxels from each sample 

(two MR-HUM experiments) that were classified as either slow or fast were used to estimate the 

three material parameters (𝜇, 𝜇𝜙, 𝜇𝜁) using the multiple linear regression model from MATLAB. 

Figure 6.10 shows the apparent shear modulus for voxels classified as slow or fast versus the 
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relevant functions of angle for one chicken sample (shown in above figures) using DF-LDI. A total 

of four samples were used in the analysis. Samples were excluded if fewer than 150 voxels from 

the two combined MR-HUM experiments met inclusion criteria for the anisotropic parameter 

estimation, or if 𝑝 > 0.05 for any parameter in the multiple linear model regression model.  

 

Figure 6.10: Apparent shear modulus, 𝜇𝑎𝑝𝑝, of all slow and fast voxels from one chicken sample (two MR-HUM experiments, (A-

B) and all (n=4) samples (C-D) using DF-LDI. Each dot represents one voxel that met the slow (A and C) or fast (B and D) criteria 

for DF-LDI analysis. The black dashed line represents the multiple linear regression model for the estimated material parameters 

found using DF-LDI. (A) Apparent shear modulus in slow voxels for one chicken sample. (B) Apparent shear modulus in fast 

voxels for one chicken sample.  

Figure 6.11 shows the results from DF- LDI after the parameter estimation using the multiple linear 

regression function in MATLAB. Each of the estimates is shown with its 95% confidence interval. 

The results from a multiple linear model regression model using slow and fast voxels from all four 

tissue samples are shown by black diamonds. Table 6.6 shows the estimated parameter values, 

together with their standard error, from the multiple linear regression model using data from all 

four samples together (black diamonds from Figure 6.11).  
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Figure 6.11: Results of DF- LDI anisotropic parameter estimation for all four chicken breast samples used in the analysis. (A) 

Estimates of 𝜇, 𝜇𝜙, and 𝜇𝜁 for each of the four samples (dots) are plotted with their 95% confidence intervals. Black diamonds 
show the parameter estimates from all four samples are included together in the multiple linear regression model. A total of 5,572 

voxels were used in the linear model fit of the four samples (R2 = 0.0394). 

Table 6.6: Average estimated parameter values from the DF-LDI analysis of the four chicken samples. Values are shown with the 

standard deviation. 𝜇, 𝜇𝜙, and 𝜇𝜁 are in units of kPa; 𝜙 and 𝜁 are unitless.   

6.4.4 Experiment – Phase Gradient (PG) 

Shear wave displacement and curl fields were calculated from the phase images from the MR-

HUM scan (Chapter 2.3.2.3). Eigenvalues and eigenvectors of the diffusion tensor, which 

correspond to principal diffusivity values and directions, were obtained from the DTI scan and 

used to estimate fractional anisotropy (FA) (Eq. 2.58) and fiber direction (𝒂).  Section 5.4.2 shows 

the displacements, fiber direction, propagation direction, and polarization directions from the MR-
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HUM and DTI scan for one chicken sample actuated at two different angles to the fiber. Voxels 

were excluded from the estimation if they did not meet the inclusion criteria (Table 6.1). The shear 

waves were classified as slow or fast, as explained in 6.3.3.2 (Table 6.3). Figure 6.12 and Figure 

6.13 show the results of the PG analysis for the chicken breast sample in which actuation was 51° 

and 87° to the fiber direction at 400 Hz. Images are from a slice near the center of actuation (same 

samples are shown in 5.4.3 and 6.4.3). Figure 6.12 and Figure 6.13 show the results of initial voxel 

classification for displacement (𝑈:  panels A-B) and curl (Γ: panels C-D), masked with by 

inclusion criteria (Table 6.1) for the 𝛽 =  51° and 𝛽 = 87° cases at 400 Hz. Phase angle (𝜓) was 

calculated from the slow (Γ𝑠) and fast (Γ𝑓) curl components. Figure 6.12E-F and Figure 6.13 E-F 

show the phase of the shear wave for the two cases; arrows represent the propagation direction for 

the voxels that match all inclusion criteria for slow and fast waves. After all masking was 

performed, the angle between propagation direction and fiber direction (𝜃) and apparent shear 

modulus (𝜇0) were found for slow or fast voxels based on the classification criteria (Table 6.3). 

Figure 6.12 and Figure 6.13 G-J show the categorization at one slice for the two cases. The majority 

of the voxels were classified as fast for the 𝛽 =  51° case and slow for the 𝛽 = 87° case.  
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Figure 6.12: Results from PG analysis of MR-HUM data from chicken breast sample with actuation at 𝛽 = 51° to fiber direction 

at 400 Hz. Voxels were masked based on inclusion criteria from Table 6.1. Images are from the slice near the center of actuation 

normal to the z-axis. (A) Displacement field component (𝑈𝑠) contributed by shear waves with slow polarization. (B) Displacement 

field component (𝑈𝑓) due to shear waves with fast polarization. (C) Curl field component (Γ𝑠) due to shear waves with slow 

polarization. (D) Curl field component (Γ𝑓) due to shear waves with fast polarization. (E) Phase angle (𝜓) of slow shear wave curl 

field, 𝑈𝑠. Black arrows represent the propagation direction. (F) Phase angle (𝜓) of fast shear wave curl field, 𝑈𝑓. Black arrows 

represent the propagation direction. (G) Angle between propagation direction and fiber direction (𝜃) for slow voxels. Voxels that 

did not meet classification criteria were masked out (Table 6.3). (H) Angle between propagation direction and fiber direction (𝜃) 

for fast voxels. Voxels that did not meet classification criteria were masked out (Table 6.3). I) Apparent shear modulus (𝜇𝑎𝑝𝑝) in 

slow voxels. Voxels that did not meet classification criteria were masked out (Table 6.3). (J) Apparent shear modulus (𝜇𝑎𝑝𝑝) 

categorized by fast polarization. Voxels that did not meet classification criteria were masked out (Table 6.3). 
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Figure 6.13: Results from PG analysis of MR-HUM data from chicken breast sample with actuation at 𝛽 = 87° to fiber direction 
at 400 Hz. Voxels were masked based on inclusion criteria from Table 6.1. Images are from the slice near the center of actuation 

normal to the z-axis. (A) Displacement field component (𝑈𝑠) contributed by shear waves with slow polarization. (B) Displacement 

field component (𝑈𝑓) due to shear waves with fast polarization. (C) Curl field component (Γ𝑠) due to shear waves with slow 

polarization. (D) Curl field component (Γ𝑓) due to shear waves with fast polarization. (E) Phase angle (𝜓) of slow shear wave curl 

field, 𝑈𝑠. Black arrows represent the propagation direction. (F) Phase angle (𝜓) of fast shear wave curl field, 𝑈𝑓. Black arrows 

represent the propagation direction. (G) Angle between propagation direction and fiber direction (𝜃) for slow voxels. Voxels that 

did not meet classification criteria were masked out (Table 6.3). (H) Angle between propagation direction and fiber direction (𝜃) 

for fast voxels. Voxels that did not meet classification criteria were masked out (Table 6.3). I) Apparent shear modulus (𝜇𝑎𝑝𝑝) in 

slow voxels. Voxels that did not meet classification criteria were masked out (Table 6.3). (J) Apparent shear modulus (𝜇𝑎𝑝𝑝) 

categorized by fast polarization. Voxels that did not meet classification criteria were masked out (Table 6.3). 
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After slow and fast classification, all slow and fast voxels were used in the parameter estimation 

using the multiple linear regression model from MATLAB. Figure 6.14 shows the apparent shear 

modulus voxels classified as slow or fast versus the angle for one chicken sample (shown in above 

figures) using PG.  

A total of six samples were used in the analysis. Samples were excluded if fewer than 150 voxels 

from the two combined MR-HUM experiments met inclusion criteria for the anisotropic parameter 

estimation, or if 𝑝 > 0.05 for any parameter in the multiple linear model regression model.  

 

Figure 6.14: Apparent shear modulus, 𝜇𝑎𝑝𝑝, estimated by PG analysis from one chicken sample (two MR-HUM experiments, 

panels A-B) and all (n=6) samples (panels C-D). Each dot represents one voxel that met the slow (A and C) or fast (B and D) 

criteria for PG analysis. The black dashed line represents the multiple linear regression model for the estimated material parameters 

found using PG. (A) Apparent shear modulus in slow voxels for one chicken sample. (B) Apparent shear modulus in fast voxels 

for one chicken sample.  

Figure 6.15 shows the results from PG method after the parameter estimation for the chicken 

samples using MATLAB’s linear regression model. Each of the sample is plotted with the 95% 

confidence interval. A multiple linear regression analysis was also run using voxels from all six 

chicken samples (shown in black diamonds). 
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Table 6.7 shows the estimated parameters with their standard error from the linear regression 

model using all six samples together (black diamonds from Figure 6.15). 

 

Figure 6.15: Results of PG anisotropic parameter estimation for all six chicken breast samples used in the analysis. (A) Estimates 

of 𝜇, 𝜇𝜙, and 𝜇𝜁 for each of the six samples (dots) are plotted with their 95% confidence intervals. Black diamonds show the 
parameter estimates if voxels from all six samples are included together in the multiple linear regression model. A total of 30,705 

voxels were used in the linear model fit of the four samples (R2 = 0.104). 

Table 6.7: Average estimated parameter values from the PG analysis of the six chicken samples. Values are shown with the 

standard deviation. 𝜇, 𝜇𝜙, and 𝜇𝜁 are in units of kPa; 𝜙 and 𝜁 are unitless.   

6.5 Discussion and Conclusions 

This chapter explored anisotropic parameter estimation using two different analysis methods. The 

two analysis methods, directional filtering with local direct inversion (DF-LDI) and phase gradient 
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(PG) were used to analyze simulated and experimental MR-HUM data. Simulations provide a 

means for rigorous assessment of the ability of each method to estimate parameters in the absence 

of noise or other imperfections of real experimental data. 

Based on results using data from the two simulations, DF-LDI appeared to provide better estimates 

of the baseline shear modulus, 𝜇, however it consistently underestimated the shear and tensile 

anisotropy, 𝜙 and 𝜁. PG provided better estimates of the shear and tensile anisotropy parameters, 

𝜙 and 𝜁, but consistently over-estimated the baseline shear modulus, 𝜇. Figure 6.16 shows a 

comparison of the multiple linear regression results from simulations for DF-LDI (circles), PG 

(squares), to the exact values (simulation inputs; black diamonds) for brain-like tissue (A) and 

muscle-like tissue (B). The 95% confidence intervals for each estimate are also shown for the DF-

LDI and PG results. Thus, even for ideal (simulated) data, anisotropic parameter estimation 

methods remain imperfect.  
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Figure 6.16: Comparison of anisotropic parameter estimates from DF-LDI and PG methods applied to data from simulations. Exact 

(input) parameter values are shown by black diamonds. Estimated parameters and 95% confidence intervals are shown for DF-LDI 

(circles) and PG (squares). (A) Results from simulations with brain-like stiffness. (B) Results from simulations with muscle-like 

stiffness. 

When these methods were applied to experimental data, non-ideal features of the data amplified 

the errors in these two analysis methods. The PG method appeared to be most affected, exhibiting 

a large spread in values for the baseline shear modulus. Part of this was caused by “wrapping” in 

phase estimates, which led to large discontinuities in phase estimates. A better method of 

smoothing or unwrapping might increase the reliability of this method. In addition, the phase 

gradient is computed by numerical differentiation, which has intrinsic error due to discretization, 

and amplifies the effects of noise.  
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DF-LDI is limited by the resolution and accuracy of apparent shear modulus estimates. Currently, 

the use of an isotropic viscoelastic LDI method with large (5 × 5 × 5 mm3) smoothing kernels 

contributes to error in the anisotropic parameters. In addition, directional filters have a finite 

bandwidth, so that estimates of propagation direction have limited precision. 

In the PG method, many more voxels were retained in the analysis compared to DF-LDI. Samples 

analyzed using PG had on average 4,900 voxels for the parameter estimation step, while samples 

analyzed using DF-LDI had only 1,400 voxels on average. This is because the PG method does 

not exclude voxels that have both slow and fast components as long as each component meets the 

criteria for inclusion. 

From this experiment and analysis, chicken breast was observed to be mildly anisotropic (by DF-

LDI) or moderately anisotropic (by PG) in both shear and tensile modulus. The experimental 

results are consistent with previous studies on turkey breast and cardiac muscle, as well as 

preliminary direct testing on chicken breast. Schmidt et al. estimated the anisotropic parameters of 

turkey breast using MRE and dynamic shear testing (DST). For MRE, they estimated 

𝜇 ~ 33 kPa, 𝜙 ~ 1.3, and ζ ~ 9.2 using piezoelectric direct and surface actuation at 800 Hz (the ζ 

estimate is suspected to be unreliable due to challenges in estimating wavelength). For DST, they 

estimated 𝜇 ~ 4 kPa and 𝜙 ~ 0.6 at 20-40 Hz [30]. Preliminary DST testing of chicken breast 

samples (n=7) provided estimates of 𝜇 =  6.19 ± 1.71 kPa and 𝜙 ~ 0.84 ± 0.30 at 25-45 Hz. For 

a viscoelastic tissue, like chicken breast, the shear modulus of the material is expected to increase 

with increased frequency. Riek et al. noted the increase in estimated isotropic shear modulus of 

bovine muscle ex vivo from 𝜇 ~ 12 kPa at 200 Hz to 𝜇 ~ 35 kPa at 800 Hz using MRE [118]. 

Humphrey et al. performed biaxial testing of resting cardiac muscle. From the data, we were able 
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to estimate the tensile anisotropy from the elastic stretch region of the equibiaxial test as 𝜁 =

0.61 ± 0.25 [119]. Preliminary biaxial testing of chicken breast (n=4) provided estimates of 𝜁 =

0.93 ± 0.65. Figure 6.17 depicts the anisotropic parameters estimated from the previous work and 

different methods. The large standard deviations and spread of 𝜙 and 𝜁 estimated from traditional 

methods (DST, and biaxial testing) demonstrate the complexity of anisotropic parameter 

estimation. The ground truth is almost impossible to obtain, especially for materials like white 

matter in the brain. Because of this, both (i) verification via simulation and (ii) extensive 

comparison between approaches provide important evidence for viability of the anisotropic 

parameter estimation method.  
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Figure 6.17: Comparison of estimated anisotropic parameters 𝜇, 𝜙, and 𝜁 from various testing methods and muscle types with their 

standard deviations. MR-HUM is the only method that estimated all three parameters from the same sample. (A) Estimated 𝜇 from 

DST (chicken and turkey), DF-LDI (chicken), PG (chicken), and MRE using LFE (turkey [30]). Muscle tissue is viscoelastic, 

which means 𝜇 is expected to increase frequency. (B) Estimated 𝜙 from DST (chicken and turkey [30]), DF-LDI (chicken), PG 

(chicken), and MRE using LFE (turkey [30]). (C) Estimated 𝜁 from biaxial testing (chicken and cardiac muscle [119]), DF-LDI 

(chicken), and PG (chicken). 
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6.6 Summary  

This chapter demonstrated the application of MR-HUM as an alternative approach for anisotropic 

parameter estimation and explored two analysis methods, DF-LDI and PG. Although both analysis 

methods have intrinsic limitations, the two approaches provide estimates of anisotropic parameters 

that are reasonably accurate in MR-HUM simulations. When applied to data from MR-HUM 

experiments, estimates of shear modulus and shear anisotropy are similar to corresponding 

measurements from direct mechanical testing. Combining the analysis approaches, or using 

inverse modeling (the focus of future work), may further improve results. 
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Chapter 7: Summary and Outlook 

7.1 Summary of Thesis 

This thesis focuses on estimation of material property of brain tissue using magnetic resonance 

elastography (MRE) and on work to extend MRE to account for anisotropy in nearly 

incompressible transversely isotropic (NITI) materials.  

Chapter 1 presented the motivation for material property estimation in soft tissue. It also included 

an overview of relevant prior work in modeling, MRE, anisotropic parameter estimation, and 

focused ultrasound (FUS). The specific aims for the thesis are also introduced in Chapter 1. 

Chapter 2 reviewed the theoretical concepts that underlie anisotropic MRE. This theoretical 

overview covers the basic principles of continuum mechanics and wave motion, along with 

underlying principles of imaging and image analysis procedures.  

Chapter 3 established the importance of in vivo material property estimation methods by 

illustrating and quantifying the difference between in vivo and ex vivo estimates (Aim 1). The 

results described in Chapter 3 thus demonstrate that, in order to estimate anisotropic material 

properties for living biological tissues like the brain, it is necessary to develop noninvasive 

methods for in vivo measurement.  

Chapter 4 introduced a method for anisotropic MRE based on directional filtering and local direct 

inversion (DF-LDI) that was used to estimate anisotropic parameters from waves excited by 

external surface actuation (Aim 2). This method was shown to work well for simulated data, but 

when applied to experimental in vivo brain data, the parameter estimates were inconclusive. The 
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data and analysis suggest a degree of tissue anisotropy, but confidence in parameter estimates was 

low. The results from this study motivated the exploration of a new MRE method, MR imaging of 

harmonic ultrasound-induced motion (MR-HUM). 

Chapter 5 described the experimental implementation of MR-HUM, including instrumentation and 

procedures for MR-compatible FUS. Using this implementation, harmonic shear waves produced 

with FUS were successfully measured using MRI.  

Chapter 6 described the application of this approach for estimating anisotropic parameters in a 

NITI material. Two methods, DF-LDI and phase gradient (PG), were evaluated on data from a 

simulation of an MR-HUM experiment in anisotropic soft tissue (Aim 3). Based on the simulation 

results, the methods have complementary strengths. Both methods were applied to MR-HUM 

experimental data of ex vivo chicken breast, a material that appears clearly to be transversely 

isotropic. The DF-LDI and PG methods both yielded estimates of shear modulus of correct order 

along with a moderate shear and tensile anisotropy. 

Despite our work to improve anisotropic MRE, there are still limitations that motivate further 

work. Some of these limitations are from the fundamental assumptions that underlie the 

decomposition of displacement fields into slow and fast shear waves. Strictly speaking, these pure 

wave modes exist only in a uniform infinite domain. No experimental system is an infinite domain.  

In addition, many biological tissues, including brain tissue, are heterogeneous. The X-Box 

simulation showed that the accuracy of the DF-LDI method was degraded by heterogeneity; even 

with noise-free data the method did not provide accurate estimates of material properties of the 

NITI tracts. Heterogeneity was also likely a contributing factor to the inconclusive anisotropic 
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estimates for white matter of porcine brain tissue (Chapter 4). For heterogeneous tissues like brain, 

the difference in material properties between white matter and gray matter appear to be on the 

order of 20-40% [83]. These differences can be obscured by noise, especially if they exist in small 

regions. When heterogeneities are smaller than the wavelength of the shear wave, as seen in vivo 

and some simulations, subtle or moderate differences in properties can difficult to detect with 

certainty.  

The DF-LDI method described in this thesis is limited by the need to separate wave fields into 

regions or voxels that exhibit either slow or fast shear waves, but not both. This reduces the number 

of voxels that can be used in parameter estimation, since voxels that do not exhibit pure slow or 

fast modes are excluded. The PG method uses all voxels in which the displacement contains 

sufficient contributions from slow and fast waves, even when both are present. However, the PG 

method is subject to inaccuracies due to numerical differentiation and phase wrapping. 

Even with these limitations, the studies described in this thesis have clearly identified problems 

specific to MRE of anisotropic tissues and have begun to address them. More work is necessary to 

continue to improve anisotropic parameter estimation.  

7.2 Future Work 

Next steps for this project include the extension of MR-HUM to heterogeneous tissue, like the 

brain. Using the experimental setup described in Chapter 5, anisotropic material properties of ex 

vivo brain tissue white matter (as in Chapter 3) could be estimated. MR-HUM could also be 

extended to in vivo brain tissue. Preliminary MR-HUM testing has been performed on the mouse 

brain in vivo, and FUS has been applied to the brains of domestic pigs in vivo. Finally, modifying 
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our approach to include a more sophisticated inversion method, like inverse finite element method 

[120] (which does not rely on separating slow and fast shear waves) could improve the estimation 

of anisotropic material parameters. 

7.3 Summary of Achievements  

Although there is more work to be done to successfully incorporate anisotropy into MRE, this this 

work successfully led to improvements to anisotropic MRE. During this thesis, I demonstrated 

that, to estimate anisotropic material properties for living biological tissues like the brain, we need 

noninvasive methods for in vivo measurement. I introduced a method for anisotropic MRE based 

on directional filtering and local direct inversion (DF-LDI) and used it to estimate anisotropic 

parameters from waves excited by external actuation. Lastly, I implemented a novel localized, 

noninvasive actuation system, MR-HUM, and used it to estimate anisotropic material parameters 

in soft tissue. 
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Appendix A: Error Analysis 
The table below summarizes differences between in vivo and ex vivo experiments and their possible 

effects. 

Table A.1: Error analysis comparing in vivo and ex vivo experiments 

Potential error 

source 

Comments In vivo Ex vivo 

Wave amplitude 

Shear modulus is estimated from the 

wave length. Differences in wave 

amplitude should not directly affect 

modulus estimates. In both methods, 

waves had enough amplitude to 

produce visible shear waves. In the 

small-strain regime we do not expect 

modulus to depend on amplitude.  

Wave amplitude 

~1.5μm 

 

Strain amplitude 

~2x10-4 

Wave amplitude 

~15μm  

 

Strain amplitude 

~2x10-3 

Dominant wave 

direction 

Both methods produced shear wave 

polarization displacements 

perpendicular to the dominant fiber 

direction, oriented right-left, of the 

corpus callosum. Although the tissue 

is actuated in different anatomical 

directions, the tissue is actuated 

similarly relative to the dominant 

fiber axis in both situations.  

Dominant actuation 

direction: 

anterior-posterior 

(AP) 

Dominant actuation 

direction: 

superior-inferior (SI) 

Temperature 

Temperature difference could cause 

differences in tissue properties. 

However, cooling of viscoelastic 

tissue generally leads to stiffening, 

so the temperature difference is more 

likely to mask differences in stiffness 

between the (apparently stiffer) in 

vivo and softer ex vivo tissue. The 

fact that a difference is still observed 

tends to support the paper’s 

conclusions that in vivo tissue is 

stiffer.  

Body temperature 

~37C 

Room temperature 

~21C 

Excitation 

method 

Excitation differences created 

differences in propagation direction. 

In vivo waves were excited 

externally and propagated inward 

from the skull. Ex vivo waves were 

External actuation of 

skull by vibration of 

jaw 

Axial excitation by 

central rod embedded 

in tissue  
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excited in the center of the tissue and 

propagated outward (the rod created 

an internal boundary which was 

removed through erosion of voxels). 

The direction of wave propagation 

should not have an effect since fiber 

orientation was similar.  

Voxel size 

Voxel size affects the physical size 

of the estimation kernel for LDI, and 

the size of the eroded regions at 

boundaries. Kernel size does affect 

parameter estimates. Estimates 

converge as kernel size increases; 

kernel size is limited by sample size. 

Estimated effect: Results vary 3-7% 

(ex vivo) and 7-10% (in vivo) 

between kernel sizes of 5x5x5 to 

7x7x7 voxels.  

1.5 mm3 isotropic 

voxels 

1 mm3 isotropic 

voxels 

Boundary 

conditions 

Boundary conditions are different, 

but comparable. The in vivo brain is 

surrounded by cerebrospinal fluid 

(CSF) and the skull. The ex vivo 

brain is surrounded in 

gelatin/glycerol and a hard plastic 

case. The boundaries should have 

only small effects on the conclusions 

of the study for two reasons: (1) In 

both cases, we analyzed interior 

ROIs, removed from the boundaries. 

All results are based on these interior 

ROIs. (2) Observed differences in 

estimated properties are greater at 

higher frequencies (with short 

wavelengths) at which the effects of 

boundaries are less likely to be 

important than at lower frequencies 

(longer wavelengths).  

Skull and cerebral 

spinal fluid (CSF) 

Gelatin/glycerol and 

plastic cylinder case 
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Appendix B: Linear Mixed Model 
The multivariate regressions of storage modulus (𝜇′) and loss modulus (𝜇′′) were performed 

(Matlab R2017, Statistics Toolbox) using a linear mixed-effects model with random subject effects 

and fixed effects of group (in vivo vs. ex vivo) and frequency in the form:  

𝑦𝑖 = 𝑎 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + 𝑏3𝑥1𝑖𝑥2𝑖 .     (B.1) 

In this model, 𝑦𝑖 is 𝜇′ or  𝜇′′, 𝑎 is the intercept,  𝑏1 is the slope of the group variable, 𝑥1𝑖  is the 

value of the group variable, 𝑏2 is the slope of the frequency variable, 𝑥2𝑖  is the value of the 

frequency variable, and 𝑏3 is the slope of the interaction between group and frequency. The value 

of the group variable defines whether the tissue is in vivo (𝑥1𝑖 = 1) or ex vivo (𝑥1𝑖 = 0). Tables 

B.1 and B.2 outline the results of the analysis of 𝜇′ and 𝜇′′, respectively. The slopes between 𝜇′ in 

vivo and ex vivo were significantly different (p < 0.0001) and frequency was a good predictor of 

the data (p < 0.0001). No significant differences were observed between 𝜇′′ in vivo and ex vivo 

over this frequency range (p = 0.285). The linear mixed-effects model is plotted with 𝜇′ and 𝜇′′ 

estimates in Figure 8. 
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Table B.1: Results of multivariate regression of storage modulus (𝜇′)  using a linear mixed-effects model with random subject 

effects 

Effect Variable Estimate 
Standard 

Error 

Alpha (lower, 

upper) 
P 

Intercept 𝑎 0.361 0.128 
0.05 (0.102, 

0.620) 
0.007 

Group 𝑏1 -0.926 0.178 
0.05 (-1.283, -

0.568) 
<0.0001 

Frequency (Hz) 𝑏2 0.0140 0.0007 
0.05 

(0.0126,0.0154) 
<0.0001 

Group*Frequency 𝑏3 0.0143 0.0016 
0.05 

(0.0110,0.0176) 
<0.0001 

 

Table B.2: Results of multivariate regression of loss modulus (𝜇′′)  using a linear mixed-effects model with random subject 

effects 

Effect Variable Estimate 
Standard 

Error 

Alpha (lower, 

upper) 
P 

Intercept 𝑎 -0.309 0.070 0.05 (-0.448, 0.167) <0.0001 

Group 𝑏1 -0.108 0.100 
0.05 (-0.310, -

0.093) 
0.285 

Frequency (Hz) 𝑏2 0.00592 0.00035 
0.05 (0.00522,0. 

0.00662) 
<0.0001 

Group*Frequency 𝑏3 0.00324 0.00091 
0.05 

(0.00140,0.00508) 
0.0009 
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Appendix C: Summary of Rheological 

Model Fitting 
Several rheological models were fitted to the complex shear modulus estimates from both in vivo 

and ex vivo data. Classic rheological models do not fit the estimated moduli well (Table C.1), 

possibly due to poroelastic behavior [121]. However, as noted by Testu et al. [122], dual power-

law models fitted separately to 𝜇’ and 𝜇’’ fit the frequency-dependent shear moduli much better 

than the classic (springpot) power-law.  

Table C.1: Summary of rheological data fitting. 

Model In vivo Ex vivo 

 Parameters 𝑅2 Parameters 𝑅2 

Power law (dual) [122] 
𝜇′ = 𝜅1𝜔

𝛼1 

𝜇′′ = 𝜅2𝜔
𝛼2 

 

 

𝜅1 = 2.88 × 10−4 

𝛼1 = 1.39 

𝜅2 = 8.60 × 10−9 

𝛼2 = 2.75 

 

0.924 𝜅1 = 7.93 × 10−3 

𝛼1 = 0.840 

𝜅2 = 2.11 × 10−5 

𝛼2 = 1.48 
 

0.940 

Power law (springpot) 

[123] 
𝜇∗ = 𝜅(𝑖𝜔)𝛼 

𝜅 = 0.490  

𝛼 = 0.214 
 

0.168 𝜅 = 0.563 

𝛼 = 0.253 

0.357 

Zener [124] 

𝜇∗ = 𝜇
∞

1 + 𝑑(𝑖𝜔𝜏)

1 + 𝑖𝜔𝜏
 

𝜇
∞

= 1.09 

𝑑 = 2.38 

𝜏 = 1.77 × 10−3 

 

0.257 𝜇
∞

= 1.93 

𝑑 = 2.58 

𝜏 = 6.61 × 10−4 

 

0.515 

Fractional Zener [124] 

𝜇∗ = 𝜇
∞

1 + 𝑑(𝑖𝜔𝜏)0.5

1 + 𝑖𝜔𝜏
 

𝜇
∞

= 0.473 

𝑑 = 7.88 

𝜏 = 9.64 × 10−4 
 

0.178 𝜇
∞

= 0.722 

𝑑 = 10.89 

𝜏 = 2.60 × 10−4 

0.377 

Generalized Maxwell [90] 

𝜇∗ = 𝜇
∞

+
𝑖𝜔𝜏1𝜇1

1 + 𝑖𝜔𝜏1
+

𝑖𝜔𝜏2𝜇2

1 + 𝑖𝜔𝜏2
 

𝜇
∞

= 1.09 

𝜇
1

= 3.00 × 10−15 

𝜇 = 1.51 

𝜏1 = 2.84 × 10−5 

𝜏2 = 1.77 × 10−3 

0.257 𝜇
∞

= 1.93 

𝜇
1

= 3.15 × 10−14 

𝜇
2

= 3.05 

𝜏1 = 3.48 × 10−5 

𝜏2 = 6.61 × 10−4 

 

0.515 

 

Units:  Power law:  𝜅, 𝜅1, 𝜅2   (kPa-sα), 𝛼 (non-dimensional). Zener, fractional Zener, and 

generalized Maxwell:  𝜇∞, 𝜇1   𝜇2 (kPa);  𝑑 (non-dimensional); 𝜏, 𝜏1, 𝜏2 (s). 
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Appendix D: MR Thermometry for MR-

HUM 
As noted in Chapter 5, one of the drawbacks of MR-HUM is sample heating, which is most 

prevalent at the focus of the ultrasound transducer. MR thermometry can be used to monitor the 

level of heating within a tissue due to focused ultrasound (FUS) [125]. MR thermometry is based 

on using the proton resonant frequency shift (PRF shift) to measure the change in tissue 

temperature [126, 127].  

MRI can detect changes in temperature using phase mapping [125, 127]. Changes in temperature 

are proportional to changes in phase, as described by 

𝛥𝑇 =
𝜙(𝑇)−𝜙(𝑇0)

𝛾𝛼𝐵0 𝑇𝐸
     (D.1) 

where Δ𝑇 is the change in temperature, 𝜙(T) is the current phase map, 𝜙(T0) is the reference 

phase map, 𝛾 is the gyromagnetic ratio (𝛾 = 42.58 MHz/T), 𝛼 is the temperature-dependence 

coefficient (𝛼 = −0.01x10−6  ℃−1), 𝐵0 is the magnetic field strength (𝐵0 = 4.7 𝑇 for this study), 

and 𝑇𝐸 is the echo time (𝑇𝐸 = 0.004 𝑠 for this study). The temperature coefficient of PRF shift is 

almost constant and independent of tissue types and thermal history. The reference map allows for 

the separation of phase changes due to temperature increase versus static spatial variations of 

phase.  

There are several sources of temperature-independent phase changes that can lead to error in the 

estimate of Δ𝑇. These include motion of the subject (or sample), gradual fluctuations of the center 

frequency of the MR scanner due to environmental changes, dynamic temporal and spatial 
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fluctuations of the magnetic field due to magnet heating [125, 126, 128-133]. It has been shown 

that 𝐵0 drift can result in apparent temperature change on the order of 7°C/min and subject motion 

can lead to errors up to 265°C [125, 129, 134].  

MR thermometry for MR-HUM poses some challenges. Typically, an MR thermometry sequence 

is performed during FUS so the temperature can be constantly monitored. However, since MR-

HUM creates motion in the tissue, so that most of the phase change observed is due to the harmonic 

motion, instead of the temperature change.  

Thermometry could also be performed before and after MR-HUM and the change in phase between 

those two scans could be subtracted. However, phase drift during the time delay in this procedure 

may introduce phase variations which may not be solely related to temperature change. One 

potential way to avoid this is to use phantoms that remain at a constant temperature as references. 

However, those references do not undergo the motion of MR-HUM that could lead to phase offset 

after the scan. Figure D.1 shows the heating and cooling cycles through differences in phase taken 

before and after MR-HUM scans. Since the phase maps are acquired with gaps of 5-15 minutes, 

phase drift and other sources of error likely contribute to the change of phase, as well as changes 

of temperature. 
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Figure D.1: Change in phase for one slice of a 48mm diameter PVA disk over two heating and cooling cycles. Negative phase 

change is related to a positive temperature change. Errors in phase have not been sufficiently addressed, so resulting phase changes 

shown above should only be interpreted qualitatively, not quantitatively. If these values of phase change are put into Equation D.1, 

the temperature values range from about ±11. (A) Change in phase after an MR-HUM scan of ~10 minutes. An increase in 
temperature can be seen at the focus (outlined by black dotted circle). (B) Change in phase after waiting post-MR-HUM scan for 

~14 minutes. Cooling is observed in focal region. (C) Change in phase after an MR-HUM scan of ~10 minutes. Increase in 

temperature can be seen at the focus. (D) Change in phase that occurred after waiting post-MR-HUM scan for ~5 minutes. Cooling 

is observed in the focal region. 

Although MR thermometry is a useful tool in quantifying temperature changes in MR samples, 

more work is needed before it can accurately detect changes in temperature from MR-HUM. A 

detailed investigation should be performed with thermocouples and thermal constant phantoms to 

determine accurate measurements. This will need to be studied further as MR-HUM moves to in 

vivo testing. I did not include quantitative MR thermometry in this thesis. Cognizant of the 

potential effects of heating, we used shortened MRE sequences at power levels that did not cause 

externally detectable changes in color or temperature of the sample. 
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Appendix E: Parameter Sensitivity Analysis 

A sensitivity analysis of the effect of polarization threshold for select parameter estimates was 

performed for MR-HUM simulations and experiments using DF-LDI and PG analysis.  

E.1 DF-LDI Simulation 

The sensitivity analysis from DF-LDI is shown in Table E.1. Increasing the polarization threshold 

from 0.5 to 0.9 deceases the error by 10-30% for all parameters. Increasing the polarization 

threshold does severely limit the number of voxels used in the inversion from 14,607 to 2,807 

voxels.  

Table E.1: Sensitivity analysis for polarization threshold for MR-HUM simulation set. A kernel size of 5x5x5 was used for this 

data. Input values are 𝜇 = 7.50 kPa,𝜙 = 1.00, and ζ = 1.00. 

Polarization  

Threshold  

(𝒑𝒐𝒍𝒕𝒉𝒓𝒆𝒔𝒉) 

𝝁 

[kPa]  

% error  
𝝁 

𝝓 
% error  

𝝓 
𝜻 

% error  
𝜻 

Number 

of 

voxels 

0.5 8960 19.5 0.57 43.2 0.56 44.3 14607 

0.6 8720 16.3 0.64 36.0 0.63 36.7 11616 

0.7 8472 13.0 0.71 28.8 0.72 27.6 8624 

0.8 8251 10.0 0.78 22.3 0.81 19.4 5849 

0.9 8167 8.9 0.78 21.9 0.86 13.7 2807 

 

A sensitivity analysis of the effect of amplitude threshold for parameter estimates from DF-LDI is 

shown in Table E.2. Changing the amplitude threshold has no effect on the parameter estimation 

for the simulation with ideal data.   



159 

 

Table E.2: Sensitivity analysis for amplitude threshold for MR-HUM simulation set. Kernel size of 5x5x5 and 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75  
was used for this data. Input values are 𝜇 = 7.50 kPa,𝜙 = 1.00, and ζ = 1.00. 

Amplitude  

Threshold  

(𝑨) 

𝝁 
[kPa] 

% error  
𝝁 

𝝓 
% error  

𝝓 
𝜻 

% error  
𝜻 

Number 

of 

voxels 

0.05 8388 11.8 0.74 25.9 0.76 24.1 7304 

0.1 8388 11.8 0.74 25.9 0.76 24.1 7304 

0.2 8388 11.8 0.74 25.9 0.76 24.1 7304 

 

A sensitivity analysis of the effect of kernel size for parameter estimates from DF-LDI is shown 

in Table E.3. Decreasing the kernel size improves estimations for all parameters. 

Table E.3: Sensitivity analysis for kernel size for MR-HUM simulation set.  𝐴 = .01 and 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75  was used for this data. 

Input values are 𝜇 = 7.50 kPa, 𝜙 = 1.00, and ζ = 1.00. 

Kernel Size 
𝝁 

[kPa] 

% error  
𝝁 

𝝓 
% error  

𝝓 
𝜻 

% error  
𝜻 

Number 

of 

voxels 

3 8124 8.3 0.80 20.1 0.82 18.0 7304 

5 8388 11.8 0.74 25.9 0.76 24.1 7304 

7 8751 16.7 0.67 33.1 0.66 33.8 7304 

 

E.1 PG Simulation 

The sensitivity analysis from PG is shown in Table E.4. Increasing the polarization threshold from 

0.5 to 0.9 slightly increases the error for all parameters. Increasing the polarization threshold does 

severely limit the number of voxels used in the inversion from 17,997 to 7,088 voxels. The lowest 

error appears to be around 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.6 to 0.8. 
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Table E.4: Sensitivity analysis for polarization threshold for MR-HUM simulation set. Input values are 𝜇 = 7.50 kPa, 𝜙 =
1.00, and ζ = 1.00. 

Polarization  

Threshold  

(𝒑𝒐𝒍𝒕𝒉𝒓𝒆𝒔𝒉) 

𝝁 
[kPa]  

% error  
𝝁 

𝝓 
% error  

𝝓 
𝜻 

% error  
𝜻 

Number 

of 

voxels 

0.5 9418 25.6 0.92 8.1 0.99 1.2 17997 

0.6 9389 25.2 0.92 8.1 1.00 0.0 16069 

0.7 9382 25.1 0.91 8.7 1.01 0.8 13791 

0.8 9387 25.2 0.91 9.2 1.01 1.4 10925 

0.9 9528 27.0 0.89 11.1 0.98 1.7 7088 

 

A sensitivity analysis of the effect of amplitude threshold for parameter estimates from PG 

simulations is shown in Table E.5. Changing the amplitude threshold has a very small effect on 

the estimated parameters 

Table E.5: Sensitivity analysis for amplitude threshold for MR-HUM simulation set. 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75  was used for this data. 

Input values are 𝜇 = 7.50 kPa, 𝜙 = 1.00, and ζ = 1.00. 

Amplitude  

Threshold  

(𝑨) 

𝝁 
[kPa] 

% error  
𝝁 

𝝓 
% error  

𝝓 
𝜻 

% error  
𝜻 

Number 

of 

voxels 

0.05 9376 25.0 0.91 9.2 1.01 1.2 12535 

0.1 9383 25.1 0.91 9.1 1.01 1.1 12501 

0.2 9463 26.2 0.89 11.1 1.00 0.1 12400 

E.1 DF-LDI Experiment 

The sensitivity analysis of the MR-HUM experiment for one sample analyzed by DF-LDI is shown 

in Table E.6. Increasing the polarization threshold from 0.5 to 0.9 deceases the estimation of the 
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baseline shear modulus, 𝜇, and increases the estimations for shear and tensile anisotropy, 𝜙 and 𝜁. 

Increasing the polarization threshold does severely limit the number of voxels used in the inversion 

from 1,927 to 52 voxels.  

Table E.6: Sensitivity analysis for polarization threshold for one MR-HUM experiment. A kernel size of 5x5x5 was used for this 

data.  

Polarization  

Threshold  

(𝒑𝒐𝒍𝒕𝒉𝒓𝒆𝒔𝒉) 

𝝁 

[kPa]  
𝝓 𝜻 

Number of 

voxels 

0.5 9033 0.16 0.12 1927 

0.6 8768 0.20 0.17 1134 

0.7 8229 0.29 0.24 580 

0.8 7431 0.45 0.34 223 

0.9 6906 0.58 0.37 52 

 

A sensitivity analysis of the effect of amplitude threshold for parameter estimates from DF-LDI is 

shown in Table E.7. Changing the amplitude threshold has no effect on the parameter estimation 

for the simulation with ideal data.   

Table E.7: Sensitivity analysis for amplitude threshold for one MR-HUM experiment. Kernel size of 5x5x5 and 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75  
was used for this data.  

Amplitude  

Threshold  

(𝑨) 

𝝁 
[kPa] 

𝝓 𝜻 
Number of 

voxels 

0.05 7764 0.39 0.32 365 

0.1 7764 0.39 0.32 365 

0.2 7764 0.39 0.32 365 
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A sensitivity analysis of the effect of kernel size for parameter estimates from DF-LDI is shown 

in Table E.8. Decreasing the kernel size improves estimations for all parameters. 

Table E.8: Sensitivity analysis for kernel size for one MR-HUM experiment.  𝐴 = .01 and 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75  was used for this 

data.  

Kernel Size 
𝝁 

[kPa] 
𝝓 𝜻 

Number of 

voxels 

3 7196 0.41 0.25 400 

5 7764 0.39 0.32 365 

7 8765 0.26 0.27 367 

 

E.1 PG Experiment 

The sensitivity analysis of the MR-HUM experiment for one sample analyzed by PG is shown in 

Table E.9. Increasing the polarization threshold from 0.5 to 0.9 increases the estimates for 𝜙 and 

𝜁. Increasing the polarization threshold does severely limit the number of voxels used in the 

inversion from 11,208 to 1,117 voxels. 
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Table E.9: Sensitivity analysis for polarization threshold for one MR-HUM experiment.  

Polarization  

Threshold  

(𝒑𝒐𝒍𝒕𝒉𝒓𝒆𝒔𝒉) 

𝝁 

[kPa]  
𝝓 𝜻 

Number of 

voxels 

0.5 13674 0.22 0.20 11208 

0.6 14424 0.32 0.29 8949 

0.7 14346 0.49 0.55 6397 

0.8 13530 0.76 0.97 3627 

0.9 15093 0.60 0.96 1117 

 

A sensitivity analysis of the effect of amplitude threshold for parameter estimates from one PG 

MR-HUM experiment is shown in Table E.10. Changing the amplitude threshold has no effect on 

the estimated parameters for the values chosen. 

Table E.10: Sensitivity analysis for amplitude threshold for one MR-HUM experiment. 𝑝𝑜𝑙𝑡ℎ𝑟𝑒𝑠ℎ = 0.75  was used for this data.  

Amplitude  

Threshold  

(𝑨) 

𝝁 
[kPa] 

𝝓 𝜻 
Number of 

voxels 

0.05 13605 0.69 0.78 5018 

0.1 13605 0.69 0.78 5018 

0.2 13605 0.69 0.78 5018 
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