Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-92-04

1992

Seeking Concurrency in Rule-based Programming

Gruia-Catalin Roman, Rose F. Gamble, and William E. Ball

This paper describes a formal approach for developing concurrent rule-based programs.
Specification of refinement is used to generate an initial version of the program. Program
refinement is then applied to produce a highly concurrent and efficient version of the same
program. Techniques for deriving concurrent programs through either specification or program
refinement have been described in previous literature. The main contribution of this paper
consists of extending the applicability of these techniques to a broad class of rule-based
programs. To the best of our knowledge, this is the first time formal derivation is employed in
the context of rule-based... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin; Gamble, Rose F.; and Ball, William E., "Seeking Concurrency in Rule-based
Programming" Report Number: WUCS-92-04 (1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/516

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/516?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/516

Seeking Concurrency in Rule-based Programming

Gruia-Catalin Roman, Rose F. Gamble, and William E. Ball

Complete Abstract:

This paper describes a formal approach for developing concurrent rule-based programs. Specification of
refinement is used to generate an initial version of the program. Program refinement is then applied to
produce a highly concurrent and efficient version of the same program. Techniques for deriving
concurrent programs through either specification or program refinement have been described in previous
literature. The main contribution of this paper consists of extending the applicability of these techniques
to a broad class of rule-based programs. To the best of our knowledge, this is the first time formal
derivation is employed in the context of rule-based programming.

https://openscholarship.wustl.edu/cse_research/516?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/516?utm_source=openscholarship.wustl.edu%2Fcse_research%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages

& Washington

WASHINGTON « UNIVERSITY+IN +ST+LOUIS

School of Engineering & Applied Science

Seeking Concurrency in
Rule-based Programming

Gruia-Catalin Roman
Rose F. Gamble
William E. Ball

WUCS-92-4

January 1992

This paper appeared in Proceedings of the 14th International Conference
on Software Engineering, May 1992, pp. 225-234.

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

1/25/93

Seeking Concurrency in Rule-based Programming

Gruia-Catalin Roman' Rose F. Gamblet William E. Ball?

Department of Computer Science
‘Washington University
St. Louis, Missouri, USA

Abstract

This paper describes a formal approach for developing
concurrent Tule-based programs, Specification refinement is
used to generate an initial version of the program. Program
refinement is then applied to produce a highly concurrent and
efficient version of the same program. Techniques for deriving
concurrent programs through either specification or program
refinement have been described in previous literature, The
main coniribution of this paper consists of extending the
applicability of these techniques to a broad class of rule-based
programs. To the best of our knowledge, this is the first time
formal derivation is employed in the context of rule-based
programming.

1 Introduction

Program derivation refers to a systematic formal process
of constructing comect programs from their specifications,
typically through some form of stepwise refinement. Chandy
and Misra's work on UNITY [4] advocates an approach in which
a formal specification of the problem is gradually refined to the
point where the specification is restrictive enough to suggest a
translation into a concurrent program. An alternate approach
is offered by work on action systems. Back and Sere [1] start
with an initia]l (mostly sequential) program and refine it into an
efficient concurrent one. In this paper we show that a
combination of specification and program refinement may be
spplied to deriving efficient concurrent rule-based programs.
The approach is targeted toward rule-based programs that
terminate, but may be easily extended to non-terminating
programs.

Rule-based programming is a common programming
paradigm in the artificial intelligence community. To date,
most efforts toward concurrency in this area start with existing
sequential rule-based programs and attempt to identify parallel
algorithms for key functions of the run-time system such as the
matching and firing of rules [7,8,9,14]. In contrast, we are
concerned with generating programs that exhibit a high
potential for parallel execution, i.e., they are less likely to

t Supguncd in part by the Natonal Science Foundation under the Grant CCR-
9015677. The government has certain rights in this materjal,

¥ Supported by the Center for Intelligent Computer Systems at Washington
University, whose primary sponsors are McDonnell Douglas Corporstion and
Southwestern Bell Corporation.

impose sequential dependencies that could undermine parallel
implementations. The program notation and preof logic used
in this paper are those of Swarm [12], a concurrency model in
which all the entities that make up the program state have a
tuple-like representation and state transitions, called
transactions, are described using a rule-like notation.

The remainder of the paper consists of four main parts
followed by conclusions. Section 2 introduces Swarm and the
programming notation used throughout the paper. Section 3
summarizes the proof logic for Swarm. The use of assertions to
specify rule-based programs is illustrated in Section 4 on a
typical artificial intelligence textbook problem, grocery
bagging. The published programming solution [15] relies on
conflict resolution for tasking and rule-ordering, and no speed-
up would be gained if it were executed on available parallel
production system models, such as those proposed by Ishida
and Stolfo [8], and Schmolze [14]. Section 5 presents a
systematic formal derivation of a highly concurrent version of
this program without reliance on traditional conflict
resolution.

2. Notation

Swarm [12] belongs to a class of languages and meodels
that use tuple-based communication. Other languages and
models in this class are Linda {3], Associons [}1], and
GAMMA [2]. In this section we review briefly the Swarm
notation and its relation to traditional rule-based programming
notation.

The dataspace. In Swarm, the entire computation state
is captured by a set of tuple-like entities called the dataspace.
For the purposes of this paper, the dataspace is partitioned into
a tuple space, which corresponds 10 working memory, and a
transaction space, which corresponds to the knowledge base.

Working memory. The tuple space consists of a set of
data tuples (elsewhere called working memory elements). A
data tuple assumes the form:

class_name(sequence_of_attribute_values).

For example, item(l,w,B,n} may be a tuple representing a
grocery item vuniquely identified by J, of weight w, and packed
in bag B after (n-1) other items. Data tuples may be queried,
deleted, and imserted. To query for the existence of a data tuple

in the dataspace one simply treats tuple descriptions as
predicates over the dataspace. Insertions are specified by fully
instantiated tuples and deletions are specified by tagging a
fully instantiated taple with a dagger (). An example will be
given next.

Production memory. The transaction space consists
of a set of transactions. A simple transaction is analogous to a
rule found in rule-based programming languages, and is defined
in terms of a query followed by an action list consisting of
deletions and insertions. The query is the LHS of the simple
transaction and the action list is the RHS. For instance,

B.Il,wl,nl.lz,wz.nz :
item(l,w,B.ny) A item(T,,w,,B.ny) A
(w; >wy) A (D, >ny)
-
item(l;,w,,B,n))1, item(l;,w,,B,n,)1t,
item(I},w,,B.n,), item(I,,w,,B,n,)

states that twe groceries items thar have been packed in the
same bag with the heavier one on top of the lighter one are
subject to a position exchange. The exchange is done by
deleting the old instances of the two item descriptions and by
inserting new cnes. This example illustrates that the query of a
transaction is a predicate that may involve testing for the
presence or absence of data tuples. A successful query binds the
variables listed before the query (implicitly these are
existeniial quantified) to values that can be used to compute the
dataspace deletions and insertions. All deletions and
insertions must contain only bound variables. Deletions
always precede insertions, and it is acceptable for a transaction
to attempt to delete an instantiated tuple that does not exist in
working memory. Such deletions have no effect and do not
represent semantic errors. If the query is unsuccessful (ie., it
evaluates to false), no explicit deletions or insertions are
performed. For convenience, commas may be used inside the
query as shorthand for the logical and (A), the order in which
deletions and insertions are listed is immaterial, and when the
tuples being deleted are present in the query part, their deletion
can be marked by daggers inside the query.

Naming transaction instances and classes. In
Swarm the simple transaction above can be parameterized with
respect to B and can be given a name:

Swap(B) =
L,wyng I, wo,n,
item(Il,wl,B,nl)T, item(IZ,wz,B,nz)’i',
{wy >w,), (ny >n,)
—3
item(l;,w;,B,n,), item(ly, wq,B,ny)

This becomes a transaction type or transaction class
definition, whose parameters (if any) are attribute values. The
transaction space contains transaction instances (henceforth
simply called transactions) that can be executed by the program
at a particular point in the computation, Since transaction
names in the transaction space are superficially

indistinguishable from data tuples in the tuple space, Swarm
allows queries and actions to refer to both data tuples and
transactions, except that for technical reasons the action list
may not include deletions of transactions.

Transaction selection and executior. The
transaction space of a Swarm program consists of a set of
transactions. Fairness requires that each transaction in the
transaction space is eventually selected and executed
(atomiczlly). The transaction selection is done prior to the
evaluation of its query and is based simply on the fact that the
transaction exists in the transaction space. A transaction
executes any time it is selected. If the query does not succeed,
the transaction is deleted from the transaction space. If its
query is successful the deletions and insertions in its action list
are performed. The transaction is deleted implicitly unless its
reinsertion into the transaction space is one of its actions.

Composition of simple transactions. In Swarm,
the ll-operator, borrowed from UNITY, may be used to combine
several simple transactions into a single complex transaction.
For instance, a transaction that swaps out-of-order items in a
bag B can be composed with a transaction that simultaneously
counts the number of swaps and reinserts the transaction:

Swap_and_Count(B) =
Il.wl,nl,Iz,v-rz,n2 :
item(I;,w;,B,n))t, item(l,,w,,B,n,)1,
(w) > wy), (n; > ny)
-—)
item(1;,w;,B.n,), item(l,,w,,B.1,)
Il k:
OR, swapcount(k)+
-y
swapcount(k+1), Swap_and_Count(B)

The simple transactions making up a complex transaction
are called subtransactions. When an instance of a complex
transaction is chosen from the transaction space, all the
subtransaction queries are applied together but only those
subtransactions whose queries are successful contribute
deletions and insertions. All deletions associated with
successful subtransactions are performed simultaneously,
foliowed by the combined insertions of the same
subtransactions.

The special predicate OR succeeds, whenever some other
query appearing in the same transaction is successful, and this
query makes no reference to any special built-in predicates.
Such queries are called regular, while those that utilize special
predicates are called special queries. Besides OR, other special
predicates are AND, NAND, NOR, and TRUE with the
respective meanings all, nor all, none, and no matter how
many of the regular queries appearing in the same transaction
succeed,

Initialization section. Each program in Swarm must
have a section that defines the initial configuration of the
dataspace. For instance, one initial configuration of a program
using Swap_and_Count(B) may involve M items and a
transaction that reorders the items in bag number 3:

[1:1<I<M = item{],weight(I),bag(I),position(I}),
Swap_and Count(3), swapcount(0)]

Here, weight(I) , bag(I}, and position() are functions that map 7
to a weight value, bag number, and position, respectively. The
three-part construct used above is called an object generator. [
is a dummy variable that is restricted to ranging between 1 and
some constant value M. For each valid value of J the generator
contributes two data tuples item(I,weight(I),bag(I),position(I})
and swapcouni(0} and a transaction Swap_and_Count(3). Since
the net product is a set, object duplication is harmless.

3 Proof Logic Overview

Our program derivation methodology presupposes the
ability to specify the operational details and formal properties
of the program under development and to formalize the
functional requirements imposed by the application. Section 2
gave an overview of the Swarm notation that is used to describe
the structure and behavior of rule-based programs resulting
from the application of our method. Safety and progress
properties of programs are specified and verified using the
Swarm proof logic [5] summarized in this section. The same
proof logic is used to define an initial program specification.
This is accomplished, as shown in Section 4, by constructing a
sufficiently complete assertional-style characterization of the
class of programs that represent acceptable realizations of the
particular application.

The Swarm proof logic follows the notational
conventions for UNITY [4]). The three-part notation
[op quantified_variables : range :: expression] used throughout
the text is defined as follows: The variables from
guantified_variables take on all possible values permitted by
range. If range is missing, the first colon is omitted and the
domain of the variables is restricted by context. Each such
instantiation of the variables is substituted in expression
producing a multiset of values to which ep is applied, yielding
the value of the three-part expression. If no instantiation of
the variables satisfies range, the value of the three-part
expression is the identity element for op, e.g., true when op is
V, —o when op is max, zero when op is 3. We use Hoare-style
assertions of the form { p } ¢ { ¢ } where p and g are predicates
over the combined tuple space and transaction space and fis a
transaction. When properties and inference rules are written
without explicit quantification, they are universally quantified
over all the values of the free variables occurring in them. The
proof rules for the subset of Swarm used in this paper are

summarized in Figure 1. The notation [f]] denotes that the
“transaction {is in the transaction space,” TRS denotes the set
of all possible transactions, and INJT denotes the initial state
of the program. The first use of these concepts appears in the
next section, where we claborate the specifications of a sample
problem.

4 Formal Specification

In this section we introduce and give a formal
specification of the problem used to illustrate our approach to
formal derivation of rule-based programs. Bagger is a rule-

! Elsewhere in the paper we simply use 1 in place of [t] in predicates dealing with
the existence of transaction v

based program described by Winston [15] that expresses the
degired way in which grocery items should be packed into bags.
The universe of grocery items forms & class whose members
assume the form item(I,w.B,n), where item is the class name, f
is the unique jdentifier of the item, w is the weight of the item,
B is the unique identifier of the bag in which the item is packed,
and n is the position of the item in its bag. If B is zero, then
the item is considered unbagged. Furthermore, both bags and
items are restricted in weight to a maximum value . Given
this representation, we develop a formal specification from
which the Bagger program will be derived.

(a) Items are distinguishable by using unique identifiers and
they do not change weight along the way:

inv [£ w,Bn :item(I,w,Bn) 1 1]1<1 [633)
const [A B,n :: item(I,w,B,n)] (52)

(b} Bags are not permiited to exceed a maximum weight
capacity H and must have contiguous identifiers:

inv WgBag(B) < H (S3)
inv (WgBag(B,) > 0) A (B, > B, > 0)

=> WgBag(B,)>0 (84)
where
WgBag(B) = [Lw.n : item(I,w,B,n) :: w] (D1

(¢} Once an item is placed in the bag, it cannot be removed
nor change positions within the bag,

stable item(I,w,B.n) AB>0AB =B,
Aan>0an=n, (835)

(@) Bagged items must have non-zero positions and no two
items occupy the same position in the same bag. Items in
the same bag are ordered according to their weights, with
heavier itemns packed before lighter ones. If one item is in
the first position of some bag, then all bags created prior
to this bag (as determined by the identification numbers of
the bags) cannot hold the item, guaranteeing that bags are
created as needed.

inv [V I,.Lw,,wy,B,Bynn, (56)
: item(I;,w,Byng) A itemn(Iy, wy B, niy)
AB>DAB,>0)
2l >0 A {n, > Q)
A (=1 & (By=By) A (ny=1,))
A (I =) A (wy > wy) A (By=By) = (1,< n,))
A #L) A (B;< By) A (n,=1)
= (WgBag(B,) + w,) > H)]

1. {pit{q)

The *Hoare triple” means that, whenever the
precondition p is true and ¢ is a transaction in the
transaction space, all dataspaces that can result
from executing ¢ satisfy postcondition 4.

(Vi:re TRS {pa=qgltipvgl)
) p unless g
If p is true at some point in the computation and g
is not, then executing any single wansaction either
maintains p or establishes q.

2

3. stable p = p unless false

If p becomes true, it remains true forever,

4. inv p={INIT = p) A (stable p)

The property p is true at all points in the
computation, i.e., Invariant.

3. const p = (stable p) A (stable —p)

The property p is either true or false throughout the
computation, i.e., constant.

6. p unless g A
[Ft:teTRS::(pA—g=2[D A

({pr—-g)t{q]})]
p ensures g
If p A —q is true, there exists a transaction ¢ in the
transaction space that will establish g when it is
executed. The faimess assumption guarantees that ¢
will eventually be selected. Its execution
establishes q.

7. prrq
This, read p leads-to ¢, means that once p
becomes frue, 4 will eventually become trite, butp is
not guaranteed to remain frue until g becomes true.
The assertion p —» q istrue if and only if it can be
derived by a finite number of applications of the
following inference rules:

p ensures g
P Py
Pr>2qg A g S
P P—Ss
(Vm:me Wipm)-qg)

for any set W
Am:me Wupm))isyg

8. TERM=[V:t:te TRS :: -f]].

Swarm programs terminate when the transaction
space is empty.

Figure 1: A subset of the Swarm proof logic.

Given these integrity and policy statements, the problem to be
solved is stated very simply: given a finite set of unbagged
grocery items with identifiers in the range 1 to N and weights
in the range 1 to H, the program terminates with all items
packed. This is captured by the following set of conditions:

GINIT > GPOST (P1)

GINIT = (D2)
[V Lw.B.a : item({I,w,B,n}
S(1EwsH)AQSIEN)AB=0DAan=0)

GPOST =[V Lw,B,n : item{I,w,B,n) :: B > 0] {D3)

where GINIT, the initial state of the data, requires that all items
start unbagged and have weight less than H and GPOST, the
desired outcome of the computation, requires that all items are
bagged. Of course, GINIT must be established initially in the
program, and once the desired outcome of the computation is
reached the program must eventually terminate. Therefore

INIT = GINIT (C1y
stable GPOST (&7
GPOST 3 TERM (P2)

INIT is the initial state of the program including the input data
and TERM is the termination condition of all Swarm programs
as defined in Figure 1. The property (57) is implied by the
stronger requirement (S85). Termination, however, is an
additional requiremnent independent of all others listed so far.

5 Program Derivation

In this section we outline the development of a concurrent
version of Bagger. The full formal derivation is available in
[13]. We stari with the formal specification given in Section 4
and apply a series of refinements. The basic strategy behind
the specification refinement steps of Section 5.1 is as follows.
First, we introduce a way of measuring global progress toward
the desired outcome of the computation. Second, we express
the global measure in terms of simpler measures dealing with
subproblems suggested by a proposed solution strategy. Third,
we seek ways of accomplishing progress toward solving the
individual subproblems. Finally, we generate a program that
can be easily shown to meet the refined specification. The
resulting program exhibits a significant degree of concurrency,
has a static set of rules, is correct (except that it is non-
terminating), and makes indiscriminate use of highly complex
queries.

Program refinement, detailed in Section 5.2, starts with
this program and attempts to generate a new program that
offers greater opportunities for efficient parallel execution.
Pirst, we attempt to maximize the degree of concurrency
achievable by the program. This involves replacing single
transactions with groups that can perform the same
computational task but possibly in parallel. Second, we
address the issue of termination. Third, we apply a series of
heuristics to decrease the complexity of the queries employed
by the program. Finally, we take advantage of dynamic
Iransaction creation and attempt to continually update the
contents of the transaction space to ensure that transactions are

present only when they can contribute to reaching the
computational goals at hand.

5.1 Specification Refinement

Having given a formal specification for the Bagger
problem, this section is concerned with refining the
specification to the point that an initial Swarm program can be
constructed directly from the refined specification. Successive
refinements of the main progress property (P1) are performed
by gradually factoring in elements of an emerging solution
strategy, The discovery of the solution strategy is generally
accepted to be a creative step. Verifying that the original
specification is satisfied by the refinement is & formal step
involving an application of the Swarm proof logic.

5.1.1 Refinement 1:
Measuring progress

We view refinement as a reversal of the verification
process. In other words, given a property that needs to be
refined we consider how one might prove such a property. For
instance, proving a progress property such as

GINIT - GPOST (P1)

usually requires the introduction of a variant function needed to
construct an inductive proof. For Bagger, the number of
unbagged grocery items

NrOut = {Z Lw.n : item(I,w,0,n) :: 1] (D4)

is the most obvicus way to measure progress. From its
definition and from properties (S1), (52) and (85) stating
respectively that items are unique, that no new items (different
from the initial set) can be inserted and that bagged items are
stable, we can establish that NrOut is non-increasing and well-
founded. The progress property (P1) is provable if we require
NrOut to eventually decrease.

5.1.2 Refinement 2:
Introducing local measures

The variant function NrOut is 2 good choice for a
sequential program, since items could be bagged one at a time.
However, when secking concurrency one generally needs to
discover areas of localized progress that together contribute
toward achieving global progress. In the case of the Bagger
problem we observe that NrOut can be replaced by an equivalent
measure consisting of a vector whose components are the
number of unbagged items cormresponding to each weight w:

NirWg(w) = [ZIn: item({T,w,0,n) :: 1] (D3}

A1l proof obligations relating to NrQut are easily reformulated
in terms of Nri¥g.

5.1.3 Refinement 3:
Shaping local progress

Our next task is to make explicit the way in which packing
is carried out. Two plausible solution strategies are: (i) pack
the heaviest items before considering unpacked items in the

lower weight categories, and (ii) pack in each bag the heaviest
item the bap can hold. Both solutions are consistent with the
problem specification but the latter strategy provides more
opportunities for exploiting concurrency by packing items of
differing weights at the same time. Under this strategy,
NrWg(w) is expected to decrease whenever w is the weight of
the largest unbagged item that fits in a particular bag B orw is
the largest weight among all unbagged items. For a given w,
these cases reduce to two disjoint situations: either there are
bags that need items of weight w and as a result some of them
get packed, or there are no bags that can hold items of weight w
and some new bag must be created for this purpose.

At this point the progress property (P1) has been reshaped
several times yielding two progress properties. First,

Nrwg(w) =k A MaxFitWg(w) — Nrwg(w) <k (P3)

where MaxFitWg(w) is true if w is the maximum weight of an
unbagged item that can fit in an existing bag, as determined by
Fit(B,w).

MaxFitWg(w) = (D7)
[3Buw=fmaxI'w : item(I’,w",0,0) A Fit(B,w) : w']]

Fu(B,w) = (D6)
{(w < H—WgBag(®))
A[3Dw' . item(I’,w' B,n") :: B > 0]

The second progress property is

Nrwg(w) =k a NoFit(w) A MaxWg(w) A NextBag(B)
>
Nrwg(w) < k A NexiBag(B + 1) (P4)

where NoFit(w) is true when weight w cannot fit in any existing
bag. If this weight is maximum among all unbagged items then
MaxWg(w) is true. NextBag(B) holds when B is the next bag in
the sequence to be created.

MaxWy(w) = (w = [max I, w’ : item(I,w’,0,0) :: w']) (D8)

NoFit(w}= (D9
[3 Lwn i item{Iw,Bn)] A B > 0:: H< WgBag(B) + w]

NextBag(B) = (D10)
(B =[max Lw, B'n: item(I,w,B’,n) 1 B’ + 1)

5.1.4 Refinement 4:
Generating an initial program

By now the specification has acquired sufficient detail to
consider transforming it into a concrete program. Towards this
aim, we can strengthen the progress conditions {P3) and (P4)
by replacing the leads-to relations with ensures relations
and we can try to discover transactions that preserve all the
safey conditions accumulated so far and help prove (P3) and
(P4). For (P3), one possible design choice is to have 2
transaction Bag(w) that selects some unbagged item J of weight

w and some bag B that can hold items of weight at most w and
pack the item [in the next available position in B.
Bag(w) = (T1)
LBn:
BestFit(B,w), NextPos(B,n), item{I,w,0,0)%
—
item(I,w,B,n)
li: TRUE — Bag(w)

where BestFit(B,w), which implies MaxFitWg({w), determines
the weight of the item that could be packed next in B and
NextPos{B,n) determines the next available packing position
in bag B.

BestFit(B,w) = (D11)
(w = [max I',w’ : item(I",w’,0,0) A Fit(B,w") :: w'])

NextPos(B,n) = (D12)
(n=[max I',w’,n’ : item(P’, W' Bn’) = n’] + 1)

The first subtransaction of Bag(w) does the packing while the
second guarantees that, once created, the transaction continues
to exist in the dataspace indefinitely. We handle the creation
by requiring the existence of Bag(w) transactions at the start of
the program, i.e.,

INIT = [V w:1<wsH:: Bag(w)] C2)
For (P4) we introduce the transaction class
Make_Bag(B,w) = (T2}
I:
MaxWg(w), NoFit(w), NextBag(B), item(I,w,0,0)+
._)
item({I,w,B,1)

: TRUE — Make_Bag(B,w)
and the requirement

INIT = (C3)
[VwB:(1<£w<H)A(1<B<N):: Make_Bag{B,w)]

The resulting program consists of A transactions of type
Bag and H*N transactions of type Make_Bag with transaction
deflinitions (T1) and (T2). The set of transactions is finite and
constant. ‘This first version of Bagger differs from a
corresponding UNITY program only with respect to the fact
that transactions are nondeterministic, while UNITY’s
conditional assignment statements are deterministic. This
version is correct with respect to the specifications from
Section 4 (for brevity, proofs are omitted), except that we
ignored the termination requirement—we will return to it in a
later section.

5.2 Program Refinement

The program generated in Section 5.1 is the result of a
series of specification refinements motivated by logical
arguments that did not take into account the costs associated
with executing individual transactions and the amount of
concurrency ultimately achievable under the adopted solution
strategy. Qur experience strongly suggests that these concerns
are more readily addressed through a program refinement

process whose goals are to maximize concurrency and o
increase efficiency. Successive program refinements alter the
program while preserving its correctness with respect to the
specification. For example, concurrency is enhanced by
increasing the number of transactions that can perform useful
work. Individual transactions are replaced by groups of
transactions that carry out the same computational task
possibly in parallel. Efficiency is improved by eliminating
queries that examine large portions of the dataspace and by
ensuring that transactions are present in the dataspace only
when needed.

5.2.1 Refinement 1:
Splitting transactions

Our first refinement is concerned with ensuring that later
optimizations are applied to a program that exhibits the
maximum possible potential for concurrent execution, under
the constraints of the solution strategy that we adopted in the
previous section. The refinement involves only the
transaction space which, for the time being, continues to be
static, i.e., it contains all the transactions the program will
ever need. The idea is to increase the number of transactions in
the transaction space through a technique called splitting.
Splitting takes advantage of the nondeterminism present in
query satisfaction by replacing a single transaction with
several transactions whose queries are satisfied by disjoint
instantiations of the original query.

The simplest form of splitting entails the replacement of a
variable bound by the query with a constant, which appears as a
new parameler of the corresponding transaction class. The
replaced variable must range over a finite set and the
ransaction space must comtain a new transaction for each
possible instantiation of the variable. The technique is similar
to constrained copying of rules used in some parallel
implementations of rule-based programs [10] to improve run-
time performance. [Iis use in program derivation shares the
same general goal but in a very distinct context. The resulling
program automatically satisfies the specification: the
assertions that are part of the specification make no exphicit
references to the transaction space; any program property
preserved by the original transaction is also preserved by the
transactions generated by splitting, since they perform only
state transitions that were possible originally; finallu, fairness
is not affected because the number of new transactions is finite.

In order to increase the concurrency exhibited by the
Bagger program we must be able to pack more than one item of
weight w at a time. Maximal concurrency can be accomplished
by splitting Bag(w) across bags:

Bag InB,w) =
In:
BestFit(B,w), NextPos(B,n), item(I,w,0,0)t
_.)
item{I,w,B,n)
I': TRUE -» Bag_In(B,w)

For each possible value of w (1 through H) and of B (1 through
N), we create an instance of Bag_In(B,w) to teplace Bag(w).
Now multiple bags can pack items having the same weight w.
Splitting Make_Bag cannot improve concurrency because of

the sequential creation of bags. Therefore, we leave it
unchanged.
5.2.2 Refinement 2:
Addressing termination

The goal of this step is to address the termination
requirement (P2) by eliminating transactions whenever they are
no longer needed (i.e., can no longer be executed), and by
showing that eventually all wansactions become unnecessary.
This portion of the derivation process is the first to take
advantage of the dynamic nature of the Swarm transaction
space. Up to now all transactions were created initially and
existed forever. Since each transaction introduced so far is
active only when items of some weight w are present, we can

replace TRUE by item(f,w,0,0) and note that —item({I,w,0,0) is
stable for a given w. The transaction definitions become

Bag In(B,w) = (T1.1)
In:
BestFit(B,w), NextPos(B,n), item({,w,0,0)t
-
item(I,w,B,n)
II: item{dw,0,0) — Bag In(B,w)
Mazke_Bag(B,w) = (T2.1)
I:
MaxWg(w), NoFit{w)}, NextBag(B), item(I,w,0,0)+
—.}

item(I,w,B,1)
T: item(l,w,0,0) » Make_Bag(B,w)

To prove the termination condition (P2), we can simply
observe that

GPOST = [V Lw ;1 —item(I,w,0,0)]

5.2.3 Refinement 3:
Reducing query complexity

It is well-known within the expert system community that
the pattern matching phase of query evaluation consumes a
large portion of the total time needed to execute one cycle in a
rule-based program [7]. Our program currently uses complex
queries, whose evaluation is likely to burden even the fastest
matching algorithm. The goal of this refinement step is to
reduce the complexity of these queries, thus yielding a more
efficient program. The basic mechanism we employ
throughout this section is to create new, continuously-updated
wuples that hold the values otherwise computed by complex
queries. New safety properties involving these tuples are added
to the specification in order to formalize processing
obligations relating to the maintenance of such tuples. The
same safety properties are used to prove that transactions, in
which complex queries are replaced by references to these
tuples, preserve the original specifications.

In Section 3.2.1, we split the Bag_In transaction across
bags, allowing individual bags to be in control of the items
packed in them. Intuitively, it is reasonable to expect that
complex queries that change with respect to bags are easier to
reduce than complex queries that involve changes to the set of

items. This is exactly the case, For instance, the satisfaction
of the queries NextPos(B,n), WgBag(B), NextBag(B), Fit(B,w)
and NoFit(w} changes only when the state of a bag changes.
References to these complex queries can be replaced by
references to tuples that maintain the values of the original
query. On the other hand, the values returned by the queries
BestFit(B,w) and MaxWg(w) may change each time the state of
the items changes. We therefore use wmples to approximate the
respective values of these queries. Maintaining the actual
values would be unnecessarily difficult, requiring each
transaction to re-calculate the values each time the state of the
items changes.

Replacing queries by single tuples. To clarify
the reduction process, we will first expand BestFit(B,w), make
an initial set of simplifications, and later return to the
reduction. The expanded Bag_In(B,w) transaction is

Bag In(B,w) =
In:
w = [max I','w' : item(T',w',0,0) A Fit(B,w') :: w'],
NextPos(B,n), item(Lw,0,0}}
N
itemn(l,w,B,n)
NI: item(Iw0,0)— Bag_In(B,w)

We can redefine Bag In(B,w) using a tuple capacity(B,c), where
¢ represents the spare capacity of the bag, and z tuple
next_pos{B,n) that maintains the next position n available in
bag B. The tuple capacity(B,c) must be inserted into the mple
space the first time an item is packed in any bag. This is done
by Make_Bag(B,w). The tuple must be updated whenever the
spare capacity changes. Thus, Bag_In(B,w) is responsible for
updating capacity{B,c). When bag B is created by filling its
first position, Make_Bag(B,w) also creates next_pos(B,2) and
whenever an unbagged ilem of weight w is placed in bag B,
Bag_ In(B,w) replaces next_pos(B,n} with next_pos(B,n+1),
We now show the changes to Bag In(B,w) caused by
introducing capacity(B,c) and next_pos{(B,n). The changes to
Make_Bag{B,w) are presented later when reduction of its
queries is performed.

Bag In(B,w)=
Inc:
w=[max I',w’ :item(I",w",0,0) A W S c 2: W],
capacity(B,c)t, next_pos(B,n)t, item(L,w,0,0)t
ﬁ
item(I,w,B,n), capacity(B,c-w), nexi_pos(B,n+1)
I'T: item(I,w,0,0) —» Bag_In(B,w)

We turn our attention to Make Bag(B,w) to reduce the
queries NoFit(w) and NextBag(B). The reduction of the query
MaxWg{w) will be discussed Ister. The only reduction that can
be performed on NoFit{w) is to redefine the predicate using
eapacity(B,c), but all existing bags must still be checked. To
reduce NextBag(B), the tuple next_bag(B) can be introduced to
keep track of the next bag to be created. Because initially the
next bag to be created is the first bag, we require that

INIT = next_bag(l). Whenever Make Bag(B,w) places the
first item of weight w in a bag B, it must also insert
next_bag(B+1). The resulting definition of Make_Bag(B,w),

including the changes from introducing tuples required by
Bag_In{B,w), is as follows.

Make_Bag(B,w) =
I:
MaxWg(w), [V B¢ : capacity(B’,¢") :: c’< w],
next_bag(B)t, item(l,w,0,0)}
_)
item(l,w,B,1), next_bag(B+1), capecity(B,H-w),
next_pos(B,2)
HI: item(f,w,0,0) — Make Bag(B,w)

Approximating queries by single tuples. We
desire to replace the computation of the “max” function in
Bag_In{B,w} by introducing a tuple called best_fit(B,w) that
tracks changes in the set of items. (Note that this function
computes the maximum weight w among unbagged items that
can still fit in bag B.) This is not easily done because bagging
elsewhere may use up all the items with weight w. Updating
best_fit{B,w) in Bag_In is too complicated. Our solution is to
make w in best_fit{B,w) approximate and gradually converge to
the maximum w returned by the function. The definition of
convergence restricts the tuple space to at most one
best_fit(B,w) tuple per bag and w to be no greater than the
capacity of the bag and at least the actual maximum weight
value. The weight values of the tuple and the query it
approximates must eventually converge to the same value.
Convergence is detected when an unbagged item exists with the
weight value of the mple best_fit{B,w). To ensure convergence
we add to Bag_In{B,w} a subtransaction of the form

Il:
[V Iz —item(I,w,0,0)], best_fit(B,w}f, w > 0

—
best_{fit(B,w-1)

Making the appropriate substitutions in the Bag In
transaction, however, poses a problem because we can no
longer use an ensures property to prove (P3), the original
leads-to property on which Bag In(B,w) was based. The
reason is that we used the set of Bag_Jn transactions to prove
(P3) and now we are altering their meaning. We need to prove
(P3} differently by examining the global effect of the local
convergence of Dbest fit{B,w). Such a proof splits (P3) into
two leads-toproperties to which transitivity can be applied:

Nrwg(w) = k A MaxFitWg(w) (P5)
=
NrWg(w) = k A MaxFitWg(w) A NearFit(w)

and
Nrwg(w) =k A MaxFitWg(w) A NearFit(w) (P6)
Y
Nrwg(w)<k

where

NearFit{w) = [3 B :: best_{it(B,w)] (D13)

The new subtransaction is used to prove (P5) through
inducticn, and the first subtransaction of Bag In(B,w) (below)
is wsed to prove (P6).

Bag In(B,w)=
Inc:
best_fit(B,w)f, capacity(B,c)}, next_pos(B,n}{,
item(I,w, 0,001
—
itemn(I,w,B,n), capacity(B,c-w), next_pos(B,n+1),
best_fit(B,min{w,c-w))
Ir: [V I:: —item(T,w,0,0)], best_fit(B,w)}, w > 0
-
best_fit(B,w-1}
HI: item(f,w,0,0) » Bag In(B,w)

(T1.2)

The insertion of best_fit(B,min(w,c-w}) is necessary to
maintain w < ¢ for capacity(B,c).

The same process can be applied to Make_Bag(B,w) to
reduce the complex query MaxWg(w). This leads to the
introduction of an approximating tuple max wg(w} and a
related definition of convergence. A subtransaction is added to
Make Bag(B,w) to guarantee convergence and MaxWg(w) is
replaced in the first subtransaction to detect convergence, as
was done with best_fit{B,w). The tuple max_swg(H) must be
present initially in the dataspace.

Make_Bag(B,w) = (T2.2)

I:

max_wg(w), [V B',¢’ : capacity(B',¢’) :: ¢’< w],
next_bag(B)f, item(I,w,0,0)+

_)

item(I,w,B,1), next_bag(B+1), capacity(B,H-w),
next_pos(B,2), best_fit(B,min{w, H-w))
I [V 1:: —item(I,w,0,0)], max_wg(w)}, w >0
._..)
max_wg({w-1}
#I: item(lw,0,0) — Make_Bag(B,w)

Note that Make_Bag creates the tuple best_fit(B,min{w,H-w)),
setting its weight in accordance with the earlier constraints. At
this point the initialization requirements become

INIT = (C4)
[VwB:(1<wsH)A (1 £B <N):: Make_Bag(B,w)]
AlVwB:(1swsHYA (1<B<N): Bag_ In(B,w)]
~max_wg(H) A next_bag(1)

§.2.4 Refinement 4:
Eliminating unnecessary transactions

Our final goal is to restrict the number of transactions
present in the fransaction space at any one time in order to
reduce the time and space complexity. To do so we take
advantage of Swarm’s ability to dynamically create new
transactions. Ideally, we want a {ransaction to exist only in
those states in which it can perform some useful work, ie.,
alter the current state. This is not always possible. In some

cases, transactions must perform unavoidable waiting, In other
cases, a state change may render some transactions useless but
the elimination of the transaction cammot take place until it is
selected for execution. This latter case does not occur in this
example.

Given a transaction T, we analyze its queries and seek to
discover a predicate P that provides & reasonable
characterization for the set of states in which T can make a
useful contribution. In addition, we want to select P in such a
way that (1) any transaction that establishes P can also create T
without much added complexity; and (2) the only transaction
that invalidates P is T itself. Upon finding such a P, we attempt

to alter the program in order to achieve inv P > T.

In the case of Make_Bag(B,w) it is clear that no useful
work can be performed unless the next empty bag is B and the
largest weight among all items is approximated by w, (ie., P =
max_wg(w) A next_bag(B)). Based on this cbservation, it is
reasonable to attempt to modify the program $0 as to enforce

inv {max_wg(w) A next_bag(B)) < Make_Bag(B,w) (88)
and after some additional simplifications we obtain
Make_Bag(B,w) =
I:

[V B’.¢’ : capacity(B’,¢") :: ¢'< w], item({{,w,0,0)F
Y
item(I,w,B,1), Make_Bag(B+1,w), capacity(B,H-w),
best_{it(B,min{w,H-w)), next_pos(B,2)
N [VI:x—item{d,w,00)], w>0
._)
Make_Bag(B,w-1)
LB ¢ :
item(I,w,0,0), capacity(B',.c’), w £ ¢’
-
Make_Bag(B,w)

The additional predicates in the third subtransaction query
restrict the transaction to recreating itself (in 2 wait loop) only
if the largest unbagged item can still fit into an existing bag.
None of these transformations have any impact on the other
properties of the program.

For Bag_In(B,w}, one way to accomplish the same task is
1o require

inv best_fit(B,w) & Bag In(B,w) (C15))

{i.e., P = best _fii(B,w)). This time the changes are not limited
to 2 single definition because Make_Bag(B,w) can create tuples
of type best_fit. To satisfy ($9), Make Bag must create a
transaction Bag_In whenever it creates a tuple of type best_fit.
Also, having established the invariant relation between
best_fit(B,w) and Bag In(B,w), we can eliminate the former
throughout the program.

Moreover, if we allow Bag_In({B,w) to carry two extra
parameters, the capacity ¢ and the bag position n, the result is

the simpler transaction definition below (with some related
changes in Make Bag(B,w)).

Bag_In(B,w,c,n) =
I:
item(l,w,0,0)}
—
item(I,w,B.n), Bag In(B,min(w,c-w),c-w,n+1)
t: [VI:z-item(l,w,000], w>0
_)
Bag_In(B,w-1,c,n)

The special query NOR can be used in place of
[V I 2 —item{Iw,0,0)] to further reduce query complexity. The
final Swarm program is given in its entirety in Figure 2.

Program Bagger (H, N, weight :
natural(H), natural(N),
weight[1..H] of natural)

tuple types

[Lw,Bn : natural(l), natural{(w), 0 < w< H,
natural(B), natural(n)
iz item(I,w,B,n)]

transaction types

[B,e,nw :
natural(B}, natural(c), 0 < ¢ < H, natural(n),
natural{w), 0<w < H::

Bag In(Bw,c,n}=
I:
item{I,w,0,0)+
__)
item(I,w,B,n),
Bag_In(B,min{w,c-w),c-w,n+1)
[l : NOR, w>0— Bag_In(B,w-1,c,n)

Make Bag(B,w)=
I -

item(I,w,0,0)}t,
[V B ,w'c',n': Bag_Tn(B',w',c',n’) ¢"< w]
-
item(l,w,B,1), Make Bag(B-+1,w),
Bag_In(B,min{w,H-w),H-w,2)
Il NOR, w>0 - Make Bag(B,w-1)
I LB’ w'c')n’ :
item(Lw,0,0), Bag In(B'.w',c'n’), w<c’
_)
Make Bag(B,w)

initialization
[T:0<I<N :: item{I,weight(I),0,0),Make_Bag(1,H)]

Figure 2: Final concurrent version of
the Bagger program.

The final version of the Bagger program is compact,
highly concurrent, and executes efficiently on a parallel
implementation [13]. The strategy used to develop the
program is formal in the sense that every refinement can be
shown to be correct—even though, for the sake of brevity, we
provided only an outline of the derivation steps and omitted all
proofs. The strategy is economical, i.e., most proofs involve
only small parts of the program or the specification. This is
due largely to the use of a UNITY-like proof system, but also
due to the way in which we structured the overall derivation
process. This same careful structuring of the process, we
believe, makes it feasible to use our derivation strategy on
larger problems.

6 Conclusions

The theme of this paper is formal derivation of concurrent
rule-based programs from their specifications. Our program
derivation strategy applies, adapts, and extends techniques
already well established in concurrent programming to the
domain of rule-based programming. Our aim is to apply formal
techniques in a manner which frees the programmer from
considering unnecessary detzils. The emphasis is on clean
formal thinking in a practical setting, Qur program derivation
sirategy is divided into two major tasks. The first task relies
on specification refinement. Techniques similar to those
employed in the derivation of UNITY programs are used to
produce a correct rule-based program having a static knowledge
base, i.e., a fixed set of rules. The approach has direct
applicability to the generation of programs targeted to
currently popular rule-based programming languages, such as
OPS5 [6]. The second task involves program refinement and is
specific to the development of concurrent rule-based programs.
It relies heavily on the availability of a computational model,
such as Swarm, that has the ability to dynamically restructure
the knowledge base. Here, the concern with achieving high
degrees of concurrency and with reducing query complexity
guides the program transformation. Since we made almost no
assumptions about the underlying architecture, we believe the
heuristics employed in this task exhibit a high degree of
generality and we expect them to be applicable to other
emerging parallel rule-based systems.

7 References

[11 R.J. R. Back and K. Sere, "Stepwise Refinement of
Parallel Algorithms,” Science of Computer
Programming, 13, pp. 133-180 (1990).

{21 1. P. Banitre and D. Le Métayer, “The GAMMA mode}l
and its discipline of progremming,” Science of
Computer Programming, 15, pp. 55-77 (1990).

[3] N. Carriero and D. Gelernter, *“Linda in context,”
Communications of the ACM, 32, No 4, pp. 444-458
(1989).

[41 K. M. Chandy and J. Misra, Parallel Program Design: A
Foundation, Addison-Wesley, New York (1988).

[5] H.C. Cunningham and G.-C. Roman, “A UNITY-Style
Programming Logic for a Shared Dataspace Language,”
IEEE Transactions on Parallel and Distributed Systems,
1, No. 3, pp.365-376 (19%0).

[6]

{7

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(15]

C. L. Forgy, “OPS85 User’s Manual,” Technical Report
CMU-CS-81-135, Carnegie-Mellon University (1981).

A. Gupta, Parallelism in Production Systems, Pitman
Publishing, London, England (1987).

T. Ishida and S. J. Stolfo, “Towards the Parallel
Execution of Rules in Production System Programs,”
Proceedings of the IEEE International Conference on
Parallel Processing, pp. 568-575, (1985).

D. P. Miranker, C. M. Kuo, and J. C. Browne, “Parallel
Compilation of Rule-based Programs,” Proceedings of
1990 International Conference on Parallel Processing,
pp. 247-251, (1990)

A, Pasik and 8. J. Stolfo, “Improving Production
System Performance on Parallel Architectures by
Creating Constrained Copies of Rules,” Technical
Report, Columbia University {1987).

M. Rem, “Associons: A Program Notation with Tuples
Instead of Variables,” ACM Transactions on
Programming Languages and Systems, 3, No 3, pp 251-
262 (1981).

G.-C. Romar and H. C. Cunningham, “Mixed
Programming Metaphors in a Shared Dataspace Model
of Concurrency,” IEEE Transactions on Software
Engineering, 16, No. 12,. pp 1361-1373 (1990).

G.-C. Roman, R. F. Gamble and W. E. Ball, “Formal
Derivation of Rule-Based Programs,” Technical Report
WUCS-91-17, Washington University, St. Lounis, MO
(1991).

1. G. Schmolze and §. Goel, “A Parallel Asynchronous
Distributed Production System,” Proceedings of the 8tk

National Conference on Artificial Intelligence, pp. 65-
71 (1990).

P. H. Winston, Artificial Intelligence, 2nd Edition,
Addison-Wesley Publishing Company, Reading, MA
(1984).

	Seeking Concurrency in Rule-based Programming
	Recommended Citation
	Seeking Concurrency in Rule-based Programming

	tmp.1453823647.pdf.A1Nfd

