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Photon-based quantum logic gate has substantial advantages over conventional atom-based

designs as a result of a longer coherence time and an inherent compatibility with quantum

communication protocol of flying qubits, photons. As a vital logic gate for universal quantum

computing, the two-photon controlled-phase gate demands a few-photon nonlinearity, which

historically suffers from either an indeterministic nature in the linear optics regime, or

a weak nonlinearity within naturally-occurring materials in the nonlinear optics regime.

It is intriguing yet challenging to deliver a logic gate design by exploiting a genuine few-

photon nonlinearity. In this dissertation, we study a particular one-dimensional quantum

nanophotonic system that offers the desired few-photon nonlinearity through light-matter

interactions in the quantum limit (i.e., between light quanta of photons and individual

material formation of atoms). Towards this end, we study the exotic photonic trimer state

generation to first demonstrate few-photon nonlinearity. Then we report the breakdown of

the non-Hermitian Hamiltonian for correlated multi-photon process to unveil the non-trivial

effects of few-photon nonlinearity. Finally by exploiting such a nonlinearity, we present a

deterministic two-photon controlled-phase gate proposal, and further showcase universal

quantum logic gate designs in quantum nanophotonic systems.
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Chapter 1

Introduction

To design quantum logic gate for quantum computing is intriguing yet challenging. On one

hand, it is intriguing because quantum computing algorithm enables striking speedup over

the best known classic one (e.g., exponential speedup for factorizing a large prime number in

Shor’s algorithm [1] and a quadratic speedup for Grover’s search algorithm [2]). On the other

hand, it is yet challenging because designing quantum logic gates that have an adequately

long coherence time and robust entanglement property in a large scale, are fundamentally

difficult.

Conventionally, the quantum logic gate implementations exploit stationary qubits of atoms by

encoding binary information in atomic excited and ground states. Practical platforms include

trapped ions [3], superconducting qubits [4], quantum dots [5], nuclear magnetic resonance [6,

7], nuclear spin [8], nitrogen-vacancy center in diamond [9], etc. Albeit the atom-based

technique is rather mature, photon-based implementations may be advantageous [10] because

photons (1) have a longer coherence time; (2) do not require extra carriers; and (3) are readily

compatible with quantum communication protocol [11].
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To perform a universal quantum computing task, it suffices to employ a complete set of four

logic gates at minimum, which is constituted by three single-qubit gates and one two-qubit

gate [12]. The single-qubit gate falls into the linear regime entirely while the two-qubit

one requires a genuine quantum nonlinearity. For the two-qubit gate, the implementation

can be further categorized into linear and nonlinear optical ones. In the linear optics

regime (e.g., KLM [13], boson sampling [14], cluster-state scheme [15, 16], and quantum

teleportation [17]), as a result of lack of nonlinearity devices, the measurement has to be

conducted to introduce the effective nonlinearity through wave function collapses. Thus, the

linear scheme is indeterministic in nature. In the nonlinear optics scheme (e.g., cross-Kerr

χ(3) nonlinearity scheme [18]), naturally-occurring materials scarcely offer the desired strong

nonlinearity, thus significantly compromising practical feasibility. For example, the nonlinear

phase can be estimated by ~ω2∆tχ(3)/4εoV for a typical χ(3) material of silicon at infrared [19],

where ω is the light frequency, χ(3) is the third-order susceptibility coefficient, ∆t denotes the

interaction time, V is the interaction volume, and εo is vacuum permittivity. By plugging in

the numerical value of ω ∼ 1014Hz, χ(3) ∼ 10−19m2V −2, ∆t ∼ 10ps, and V ∼ 0.1cm3, it can

be shown that the phase has the order of magnitude of 10−18 � π, which is almost infeasible

in practice. A scheme that takes advantage of a genuine few-photon nonlinearity is yet to be

proposed.

Photons are electrical neutral and typically have weak interactions, thus rarely manifesting a

few-photon nonlinearity. To introduce the desired nonlinearity, light-matter interactions in the

quantum limit have to come into play. Specifically, down to the quantum level, interactions

between light quanta (photons) and individual matter formation of dipole emitters (atoms) are

taken into account. As a result of the fermionic nature, an atom can absorb or spontaneously

emit only one photon at the same time to be saturated. Then the atom behaves seemingly

differently to a second photon, thereby introducing the few-photon nonlinearity [20, 21].

2



The resulting nonlinearity manifests as photon correlations, where the collective few-photon

behavior can not be predicted by that of an individual photon. The associated nonlinear

phase may potentially provide desired ingredient for quantum logic gate designs. Towards

this end, my doctoral work focuses on generations and applications of photon correlation in a

particular one-dimensional quantum nanophotonic system [22–34], where photonic mode in

the continuum is coupled to individual emitters. Specifically, I am motivated by the following

questions: (1) how photon correlations are generated; (2) what unknown quantum effects

are driven by photon correlations; and (3) how the resulting photon correlations facilitate

photon-based logic gate designs.

In Chapter 2, we answer the first question by studying the photonic trimer generation

mechanism through a coherent nonlinear three-photon scattering process. We confirm the

trimer signature by exploiting the wave function representation and correlation function

metrics. Moreover, we show that our formalism agrees with a recent experimental observation.

In Chapters 3, 4, and 5, we answer the second question by investigating the effects of

dissipations on photon correlations. Specifically, in Chapters 3 and 4, we develop the

dissipation theory of correlated multi-photon transport for scattering loss and material loss

scenarios, respectively, Our work, for the first time, unearths the breakdown of the widely-

adopted non-Hermitian Hamiltonian description for correlated multi-photon process. In

Chapter 5, we report a novel dissipation-induced photonic correlation transition phenomenon.

In Chapters 6 and 7, we answer the third question by presenting deterministic two-photon

controlled-phase gate proposal by exploiting photonic dimer generations. Furthermore, we

showcase the design of a complete set of four quantum logic gates for universal quantum

computing.

3



Chapter 2

Generation of Photonic Trimer

2.1 Introduction

Bound states are a class of quantum mechanical states where wave functions of constituent

particles are localized. Typically, they are formed due to interactions between constituent

particles, which is described by the binding energy. For example, molecules are bound states

of atoms due to electrostatic interactions. Nonetheless, photons are electrical neutral and

rarely interact, thus making it difficult to form photonic bound states. Recently, it has been

shown that photons can form bound states due to inherent entanglement mediated by a

saturated two-level system [20]. Different from conventional bound states, such states are

entanglement-driven as no binding energy concept is demanded. Photonic bound states that

involve the least photon number, i.e., photonic dimer has been both theoretically [20, 35–37],

experimentally [38], and numerically confirmed [39].

Recently, the bound state of three photons, called a photonic trimer, has also been theoretically

predicted in a particular quantum nanophotonic system, waveguide quantum electrodynamics

4



(waveguide QED) system [24, 40–52], and was recently experimentally confirmed in Rydberg

atomic gas [53]. Such a photonic trimer has three salient features. First, in real space, three

photons are collocated where the probability amplitude decays exponentially as the distance

between any two photons increases. Once generated in the quantum nonlinear medium (i.e.,

one-dimensional waveguide of continuum modes coupled to two-level systems (e.g., Rydberg

atom [38], quantum dot [25], superconducting qubit [27], or N-V center [9]), it can propagate in

a linear medium or even in the vacuum, without the assistance of nonlinear medium anymore.

Secondly, in the frequency space, three photons are anti-correlated as the total energy of three

constituent photons is a specified constant regardless of the frequency-space profile. Such a

feature may tremendously enable applications in three-photon fluorescence microscopy [54,

55], entanglement-assisted deep-subwavelength lithography [56], multi-photon-driven super

resolution in quantum imaging [57, 58]. Thirdly, generated trimer is imprinted on a phase

shift at the order of π, which provides the essential ingredient in designing photon-based

quantum logic gates [59].

In this chapter, we present a computational formalism to study photonic trimer generations

through coherent three-photon scattering process in waveguide QED system. We confirm the

trimer signatures by examining wave functions and correlation function metrics. Our results

unveil the substantial role of three-photon hybrid state in three-photon scattering process.

Moreover, we show that our formalism can readily describe the recent experimental results.

2.2 System and Hamiltonian

The waveguide QED system, as depicted in Fig. 2.1, consists of a two-level atom coupled to

a one-dimensional single-mode waveguide. Consider a three-photon Fock state |3〉 incident

5



Figure 2.1: Schematics of the waveguide QED system. A two-level atom (represented by a
red sphere) is coupled to a one-dimensional single-mode photonic waveguide. A three-photon
Fock state |3〉 is incoming from the left.

from the left. The Hamiltonian of the system is

H

~
=

∫
dxc†R(x)(−ivg∂x)cR(x) +

∫
dxc†L(x)(ivg∂x)cL(x)

+
∑
j=R,L

∫
dxV̄ δ(x)

[
c†j(x)σ− + σ+cj(x)

]
+ (ωe − iγ)a†eae + ωga

†
gag,

(2.1)

where c†R(x) (cR(x)) denotes the creation (annihilation) operator for a right-propagating

photon at position x. c†L(x) and cL(x) are similarly defined for a left-propagating photon.

a†e (ae) is the creation (annihilation) operator for the atomic excited state. a†g and ag are

similarly defined for the atomic ground state. σ+ = a†eag (σ− = a†gae) represents the atomic

raising (lowering) operator. ~ωe (~ωg) is the energy of the atomic excited (ground) state.

Ω ≡ ωe − ωg is the atomic transition frequency. vg is group velocity of photons and V̄ is

atom-photon coupling. Γ ≡ V̄ 2/vg and γ are the atomic decay rate into the waveguided and

non-waveguided modes, respectively [60]. The general form of the three-photon state is given

by

|Φ(t)〉 =
( ∑

i,j=R,L

∫
dx1dx2 eij(x1, x2, t)

1√
2!
c†i (x1)c

†
j(x2)σ+e

−iωet

+
∑

i,j,k=R,L

∫
dx1dx2dx3 φijk(x1, x2, x3, t)

1√
3!
c†i (x1)c

†
j(x2)c

†
k(x3)e

−iωgt
)
|∅〉,

(2.2)

6



where |∅〉 is the vacuum state that has no waveguided photon and the atom is at the

ground state. φijk denotes the wave function for three waveguided photons in the ijk branch

(i, j, k = R,L). eij represents the amplitude wherein the atom is excited and two waveguided

photons are in the ij branch. By applying the Schrödinger equation H|Φ(t)〉 = i~∂t|Φ(t)〉,

one obtains the following equations of motion

∂tφRRR = −vg (∂x1 + ∂x2 + ∂x3)φRRR − iV̄√
3

[
δ(x1)eRR(x2, x3) + δ(x2)eRR(x1, x3) + δ(x3)eRR(x1, x2)

]
e−iΩt,

∂tφRRL = −vg (∂x1 + ∂x2 − ∂x3)φRRL − iV̄√
3

[
δ(x1)eRL(x2, x3) + δ(x2)eRL(x1, x3) + δ(x3)eRR(x1, x2)

]
e−iΩt,

∂tφRLR = −vg (∂x1 − ∂x2 + ∂x3)φRLR − iV̄√
3

[
δ(x1)eLR(x2, x3) + δ(x2)eRR(x1, x3) + δ(x3)eRL(x1, x2)

]
e−iΩt,

∂tφRLL = −vg (∂x1 − ∂x2 − ∂x3)φRLL − iV̄√
3

[
δ(x1)eLL(x2, x3) + δ(x2)eRL(x1, x3) + δ(x3)eRL(x1, x2)

]
e−iΩt,

∂tφLRR = vg (∂x1 − ∂x2 − ∂x3)φLRR − iV̄√
3

[
δ(x1)eRR(x2, x3) + δ(x2)eLR(x1, x3) + δ(x3)eLR(x1, x2)

]
e−iΩt,

∂tφLRL = vg (∂x1 − ∂x2 + ∂x3)φLRL − iV̄√
3

[
δ(x1)eRL(x2, x3) + δ(x2)eLL(x1, x3) + δ(x3)eLR(x1, x2)

]
e−iΩt,

∂tφLLR = vg (∂x1 + ∂x2 − ∂x3)φLLR − iV̄√
3

[
δ(x1)eLR(x2, x3) + δ(x2)eLR(x1, x3) + δ(x3)eLL(x1, x2)

]
e−iΩt,

∂tφLLL = vg (∂x1 + ∂x2 + ∂x3)φLLL − iV̄√
3

[
δ(x1)eLL(x2, x3) + δ(x2)eLL(x1, x3) + δ(x3)eLL(x1, x2)

]
e−iΩt,

∂teRR = −γeRR − vg (∂x1 + ∂x2) eRR − i
V̄√
3

[
φRRR(0, x1, x2) + φRRR(x1, 0, x2)

+ φRRR(x1, x2, 0) + φRRL(x1, x2, 0) + φRLR(x1, 0, x2) + φLRR(0, x1, x2)
]
eiΩt,

∂teRL = −γeRL − vg (∂x1 − ∂x2) eRL − i
V̄√
3

[
φRRL(0, x1, x2) + φRRL(x1, 0, x2)

+ φRLR(x1, x2, 0) + φRLL(x1, 0, x2) + φRLL(x1, x2, 0) + φLRL(0, x1, x2)
]
eiΩt,

∂teLR = −γeLR + vg (∂x1 − ∂x2) eLR − i
V̄√
3

[
φRLR(0, x1, x2) + φLRR(x1, 0, x2)

+ φLRR(x1, x2, 0) + φLRL(x1, x2, 0) + φLLR(x1, 0, x2) + φLLR(0, x1, x2)
]
eiΩt,

(2.3)
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∂teLL = −γaeLL + vg (∂x1 + ∂x2) eLL − i
V̄√
3

[
φRLL(0, x1, x2) + φLRL(x1, 0, x2)

+ φLLR(x1, x2, 0) + φLLL(0, x1, x2) + φLLL(x1, 0, x2) + φLLL(x1, x2, 0)
]
eiΩt.

(2.4)

To investigate photon correlations after scattering, an uncorrelated three-photon pulse,

described by a product state φin(x1, x2, x3) = φ(x1)φ(x2)φ(x3), is injected into the waveguide

from the left, i.e., φRRR(t = 0) = φin. In particular, each photon has a Gaussian profile,

described by φ(x) = 1/(2πσ2)1/4e−(x−xo)2/4σ2+iωox/vg where ωo, σ, and xo = −3.76σ are center

frequency, spatial width, and initial position, respectively. Each photon is resonant with

the non-dissipative atom (δ ≡ ωo − Ω = 0, γ = 0), and has a narrow bandwidth vg/2σ

(= Γ/10), thereby leading to a stronger atomic response, and thus a coherent three-photon

scattering. Notably, correlation signatures are only relevant to the atom-photon interaction

bandwidth Γ as long as photon bandwidth is adequately small (i.e., vg/2σ � Γ). In real-space

representation, |φin|2 is represented by a gray sphere in Fig. 2.2(a). Since the atom is of

a fermionic nature, it can only interact with one photon at the same time and become

saturated, thus leading to photon entanglement (i.e., photon correlation). To investigate

photon correlations, we evolve the spatio-temporal three-photon dynamics by adopting an

ab-initio momentum-space numerical methods as discussed in Appendix A, and record the

wave function after scattering.

2.3 Three-photon Wave Function

After scattering, scattered wave function is plotted in Fig. 2.2(b) from the perspective

of x1 = −x2 = x3 to provide an overall view, and in Fig. 2.2(c) from the perspective of

x1 = x2 = x3 to aid the visualization of particular geometric characteristics. For three

transmitted photons in the RRR branch, |φRRR|2 forms a spindle-shaped object that is

longitudinally localized along the diagonal line (described by x1 = x2 = x3, see the cyan
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Figure 2.2: Three-photon wave function density plot in real space. (a) Incoming three-
photon Gaussian pulse. Scattered state from the perspective of x1 = −x2 = x3 in (b), and
x1 = x2 = x3 in (c). Density plots and axes are in units of Γ3/v3g and vg/Γ, respectively.

object in Fig. 2.2(b)). Transversely, |φRRR|2 is restricted in an hexagonal area whose dimension

is roughly the spatial size of the spontaneous emission process (≈ vg/Γ, see Fig. 2.2(c)). That

is, three transmitted photons are strongly collocated as they are indistinguishably interacting

with the atom within one time window of spontaneous emission. Such a prominent collocated

behavior may be direct evidence that three transmitted photons form a trimer.

For three reflected photons in the LLL branch, |φLLL|2 is represented by the red object

in the octant of x1, x2, x3 < 0. Its general envelope remains the same spherical profile as

the incoming pulse while |φLLL|2 is depleted along three diagonal planes (i.e., x1 = x2,

x2 = x3, and x1 = x3). Three depletions lead to a six-lobed shape transversely in Fig. 2.2(c).

Particularly, each depletion has a thickness ≈ vg/Γ, indicating that any two photons can not

be reflected within one spontaneous emission time window. That is, three reflected photons

are antibunched.

For one-transmitted-two-reflected photons in the LRL, RLL, and LLR branches, only

|φLRL|2 is presented because the other two can be analyzed by invoking bosonic sym-

metry φLRL(x1, x2, x3) = φRLL(x2, x1, x3) = φLLR(x1, x3, x2). Specifically, in octant of

x1, x3 < 0, x2 > 0, |φLRL|2 consists of two back-to-back seashell-shaped objects (green),

9



Figure 2.3: Frequency-space wave function density plot |φRRR(ω1, ω2, ω3)|2 in units of 1/Γ3.
Pc (Ω,Ω,Ω) is the geometric center. ωlen and ωthick denote the side length and thickness of
the extended object at which the wave function decays to 0.015 of the maximal value (a
suitable value for visualization).

which has two characteristics. First, |φLRL|2 is depleted along the plane (x1 = x3) as two

photons (position described by x1,3) can not be reflected within one spontaneous emission

window. Secondly, |φLRL|2 is restricted on x2 = −x1 + 0.15vg/Γ or x2 = −x3 + 0.15vg/Γ

as the transmitted photon (position described by x2) propagates 0.15vg/Γ ahead of two

reflected photons. Such a time lag can be accounted for that reflected photons undergo

absorptions and spontaneous emissions while the transmitted photon does not. Similarly, for

two-transmitted-one-reflected photons in the RRL, RLR, and LRR branches, only |φRRL|2 is

analyzed. In octant of x1, x2 > 0, x3 < 0, |φRRL|2 consists of a spindle-shaped object in the

middle and two disconnected semicircle plates on the side (purple). Middle and side parts

represent that transmitted photons interact with the atom within the same, and in different

spontaneous emission window, respectively.

In addition to wave function density information, we further examine the phase shift to

evaluate the acquired phase of scattering photons by using three freely-propagating photons

as phase references. First, one obtains the reference phase information by invoking the

condition that the atom is decoupled from the waveguide (i.e., V̄ = 0), and then recording

the reference wave function φRRR,ref (x1, x2, x3, tf ) at a final time tf . Secondly, one records
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the scattered wave function φRRR(x1, x2, x3, tf ) at the same final time tf when the atom is

coupled to the waveguide (i.e., V̄ 6= 0). The phase shift, ∆(x1, x2, x3), can be evaluated by

∆(x1, x2, x3) = arg[φRRR(x1, x2, x3, tf )]−arg[φRRR,ref (x1, x2, x3, tf )] (tf � 1/Γ). Remarkably,

we observe a precise ∆ = π phase (relative error < 10−4) imprinted on the trimer (φRRR),

which may facilitate designs of photon-based quantum logic gate.

We then examine the anti-correlation signature in frequency space. Specifically, by ap-

plying Fourier transform, |φRRR(ω1, ω2, ω3)|2 is plotted in Fig. 2.3. It resembles a hexag-

onal plate that leans against the plane described by ω1 + ω2 + ω3 = E/~, to confirm

the anti-correlation signature. Moreover, the plate is centered at Pc (Ω,Ω,Ω) with a

side length ωlen ≈ 2.79Γ and a thickness ωthick ≈ 3.46vg/σ (see caption for definitions

of the extended object), determined by atom-photon interaction and incident photon band-

widths, respectively. By adopting frequency-space trimer wave function φ(ω1, ω2, ω3) =√
128
3vg

κ3

π
δ(ω1+ω2+ω3−E

~ )
(ω1− E

3~ )
2+(ω1− E

3~ )(ω2− E
3~ )+(ω2− E

3~ )
2+12κ2

[(ω1− E
3~ )

2+4κ2][(ω2− E
3~ )

2+4κ2][( 2E
3~ −ω1−ω2)2+4κ2]

as a fitting metric, κ ≈ Γ/2

is obtained.

2.4 Correlation Functions

The essential correlation signatures of transmitted (φRRR) and reflected (φLLL) photons

are of practical interest, which are further compactly encoded in experimentally observable

correlation function metrics, g(3) and g(2). Specifically, such metrics recast the wave function

Photon 1 Photon 1Photon 1,2Photon 2 Photon 2Photon 3 Photon 3 Photon 3

(a) (b) (c)

Figure 2.4: Illustration of correlation functions. (a) g(3)(τ1, τ2), (b) g(3)(τ, 0), and (c) g(2)(τ).
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Figure 2.5: (a) Numerical result of g(3)(τ1, τ2) for φRRR. (b) Trimer correlation function
g(3)(τ1, τ2) ∝ e−2κ(|τ1|+|τ2|+|τ1−τ2|) for κ = Γ/2 with the center value scaled by 7.34. (b) has
the same colorbar as (a). (c) Numerical results of g(3)(τ, 0) (blue) and g(2)(τ) (red) for φRRR.
Curves and dots denote numerical and fitting results, respectively. (d) g(3)(τ1, τ2) for φLLL.

to the joint probability for the following photon coincident measurement: g(3)(τ1, τ2), detect a

second and a third photon after τ1 and τ2 units of time of detecting a first photon, respectively

(Fig. 2.4(a)); g(3)(τ, 0), detect a third photon after τ units of time of detecting two coincident

photons (Fig. 2.4(b)); and g(2)(τ), detect a second photon after τ units of time of detecting a

first photon while information of the rest photon is not of interest and traced over (Fig. 2.4(c)).

For a trimer, its functional form is defined by φ(x1, x2, x3) =
√

4κ2

3πv2g
e
i E
3~vg

(x1+x2+x3)e
− κ

vg
(|x1−x2|+|x1−x3|+|x2−x3|),

where 1/κ denotes the temporal correlation width. By applying real-space formalisms of

12



trimer [21], it can be shown that

g(3)(τ1, τ2) ∝ e−2κ(|τ1|+|τ2|+|τ1−τ2|), g(3)(τ, 0) ∝ e−4κ|τ |,

g(2)(τ) ∝ e−4κ(|τ |)(|τ |+ 1

2κ
),

(2.5)

which are used to confirm the collocated signature of φRRR. Figure 2.5(a) plots the numerically

obtained g(3)(τ1, τ2), which resembles a hexagon that is elongated along τ1 = τ2 while squeezed

in the transversal direction. A peak shows up at the origin, i.e., g(3)(0, 0) ≈ 7.34, which states

that the joint probability to detect three collocated photons is thirty-three times as large as

detecting them independently (compared with g(3)(0, 0) = 2/9 in the uncorrelated scenario).

The full-width-at-half-maximum (FWHM) is roughly 1/Γ, indicating that three photons

get transmitted within the same spontaneous emission window. By exploiting g(3)(τ1, τ2) in

Eq. (2.5) as fitting metrics, one obtains κ ≈ Γ/2 with a good coincidence. Figure 2.5(b) plots

the g(3)(τ1, τ2) of κ = Γ/2 as a benchmark of the correlation signature of trimer.

Figure 2.5(c) plots g(3)(τ, 0) and g(2)(τ), both of which exhibit a cusp around τ = 0 and

monotonically decrease as |τ | increases. Such cusps are fingerprints of a trimer because both

metrics are asymptotically described by e−4κ|τ | as τ → 0. g(2)(0) ≈ 3.34, which implies that

the joint probability to detect two photons together is five times as large as that to detect

them independently (compared with g(2)(0) = 2/3 in the uncorrelated scenario). Notably,

FWHM of g(3)(τ, 0) is 0.88/Γ, which is smaller than that of g(2)(τ), 1.14/Γ, implying that

one photon is correlated more strongly to other two photons collectively than to one of them

solely. To quantify the correlation signature, we apply g(3)(τ, 0) and g(2)(τ) in Eq. (2.5) to fit

the results, both of which yield approximately κ ≈ Γ/2.

For three reflected photons, g(3)LLL (Fig. 2.5(d)) is depleted along two axes (τ1,2 = 0) and

diagonal line (τ1 = τ2), indicating an essentially vanishing probability to detect any two
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collocated photons to confirm photon antibunching (g(3)(0, 0) ≈ 1.37 × 10−4 � 2/9 for

uncorrelated state |3〉).

2.5 Theoretical Explanation

So far, we have confirmed that φRRR manifests as a trimer of κ ≈ Γ/2. Note that the

three-photon bound state (wave function ∝ eiE(x1+x2+x3)/3~vg−Γ(|x1−x2|+|x1−x3|+|x2−x3|)/vg for a

particular system in Fig. 2.1) is a trimer of κ = Γ. Consequently, φRRR does not result from

the bound state contribution solely.

Here we present a physical argument that, in the resonant narrow-bandwidth case, the hybrid

state contributes a trimer of κ = Γ/2. Particularly, the hybrid state is a product state of

dimer and an unbounded single photon. It can be shown that, in the even mode, for the

hybrid state (see functional form in Eq. (15) in Ref. [21]), when the energy of unbounded

single photon is resonant with the average energy of the dimer, the hybrid state |H〉e(3)

manifests as a Γ/2 trimer and a direct-product basis of dimer and single photon as follows

|H〉e(3) = β1|BΓ
2
〉e(3) + β2|BΓ〉e(2)|P 〉e(1) , (2.6)

where β1 =
√

3vg
2πΓ

and β2 = −1. The subscript of e(n) represents a n-photon Hilbert space in

the even mode (n = 1, 2, 3). |BΓ
2
〉e(3) is a trimer state of κ = Γ/2 and |BΓ〉e(2) is a dimer state

of κ = Γ. An incident state |χin〉 can be decomposed into a linear superposition of orthogonal

three-photon sub-Hilbert space e(k)o(3−k), where k photons in the even mode and remaining

3 − k photons in the odd mode (k = 0, 1, · · · , 3), i.e., |χin〉 = |χin〉e(3) + |χin〉e(2)o(1) + · · · .

To obtain the information of the out-state |χout〉 = S|χin〉 (S is the scattering matrix), we

now need to project the in-state to all eigen-states in three-photon Hilbert space. Notably,

only four states may affect photon correlation information, those are, state 1, trimer state
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of κ = Γ, |BΓ〉e(3) ; state 2, hybrid state contributions of β1|BΓ
2
〉e(3) ; state 3, hybrid state

contributions of β2|BΓ〉e(2)|P 〉e(1) ; and state 4, direct-product basis of even-mode dimer and

odd-mode single photon, |BΓ〉e(2) |P 〉o(1) .

Here we show that the RRR branch is a mixture of trimer of κ = Γ/2 (state 2) and trimer of

κ = Γ (state 1) because states 3 and 4 destructively interfere to be canceled out. To begin

with, the in-state can be projected onto eigenstates (of particular interest is the projection

onto states 3 and 4 as explicitly shown in the following)

|χin〉 = β∗
2〈BΓ|e(2)〈P |e(1)|χin〉e(3)β2|BΓ〉e(2)|P 〉e(1) + 〈BΓ|e(2)〈P |o(1)|χin〉e(3)|BΓ〉e(2) |P 〉o(1) + · · · .

(2.7)

By applying S-matrix to map the in-state to the out-state, it follows that

|χout〉 =S|χin〉

=|β2|2〈BΓ|e(2)〈P |e(1) |χin〉e(3)S|BΓ〉e(2)|P 〉e(1) + 〈BΓ|e(2)〈P |o(1)|χin〉e(2)o(1)S|BΓ〉e(2)|P 〉o(1) + · · ·

=〈BΓ|e(2)〈P |e(1)|χin〉e(3)|BΓ〉e(2)|P 〉e(1) − 〈BΓ|e(2)〈P |o(1)|χin〉e(2)o(1)|BΓ〉e(2)|P 〉o(1) + · · ·

=c(|BΓ〉e(2)|P 〉e(1) − |BΓ〉e(2)|P 〉o(1)),
(2.8)

where we have used S|BΓ〉e(2)|P 〉e(1) = |BΓ〉e(2)|P 〉e(1) , S|BΓ〉e(2) |P 〉o(1) = −|BΓ〉e(2) |P 〉o(1) , and

|β2|2〈BΓ|e(2)〈P |e(1)|χin〉e(3)|BΓ〉e(2) |P 〉e(1) = 〈BΓ|e(2)〈P |o(1)|χin〉e(2)o(1) . Then by transforming

the even/odd mode back to the right/left mode via c†e(x) = 1√
2
(c†R(x) + c†L(−x)), c†o(x) =

1√
2
(c†R(x)− c†L(−x)), it can be shown that, in the RRR branch, contributions from states 3

and 4 cancel out. As a result, the RRR branch is a mixture of trimer of κ = Γ/2 and trimer

of κ = Γ with their weights determined by the hybrid and trimer weights, respectively. From

Table V in Ref. [21], it is speculated that for a long Gaussian wave, the hybrid state component

dominates over that from the trimer state. Consequently, the RRR branch manifests as a

trimer state of κ ≈ Γ/2.
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2.6 Weak-coherent Input

Table 2.1: g(2) and g(3) metrics for dimer and trimer, forward scattered light of incoming
Fock states |2〉, |3〉, and weak-coherent state |α〉.

State g(2)(τ) g(3)(τ1, τ2)

dimer e−2κ|τ | 0
trimer e−4κ|τ |( 1

2κ
+ |τ |) e−2κ(|τ1|+|τ2|+|τ1−τ2|)

|2〉 e−2Γ|τ | 0
|3〉 ≈ e−2Γ|τ |( 1

Γ
+ |τ |) ≈ e−Γ(|τ1|+|τ2|+|τ1−τ2|)

|α〉 e−2Γ|τ | ≈ e−Γ(|τ1|+|τ2|+|τ1−τ2|)

In practice, instead of a genuine Fock state input, an alternative weak-coherent input that

consists of linear superpositions of truncated Fock states, |α〉 ∝
∑N

n=0 e
− |α|2

2
αn
√
n!
|n〉, is typically

adopted, e.g., N = 3 in cold atomic gas [53] and N = 6 on solid state platform [61]. Due

to the linearity of Schrödinger equation in terms of different Fock state sectors, and a small

average photon number (|α|2 � 1), g(2) and g(3) of scattered photon field for incident |α〉 are

determined by its |2〉 and |3〉 Fock state scattering process, respectively [39]. Note that for

resonantly incident |2〉 and |3〉 states, transmitted photons form a dimer of κ = Γ [20] and a

trimer of κ ≈ Γ/2, respectively, whose correlation metrics are summarized in Table 2.1. As a

result, in the practical 3D geometry, considering that forward scattered light can be mapped

into transmitted photon field in the presented 1D geometry [39], g(2) and g(3) of transmitted

photons for incident |2〉, |3〉, and |α〉 states are derived in Table 2.1.

2.7 Experimental Validation

Finally, we apply our formalism to study photon correlations for a recent experiment [53].

Specifically, a weak coherent probe is coupled to a highly-excited Rydberg atomic state,

through a strong control laser (Rabi frequency Ωc = 2π× 10MHz) coupled to an intermediate
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Figure 2.6: Photonic Correlations of forward scattered light for a weak-coherent input |α〉
under experimental condition [53]. Transmitted (a) three- and (b) two- photon wave functions.
Density plots are in units of Γ3/v3g in (a) and Γ2/v2g in (b).

state. Here we argue that the experimental geometry is effectively one-dimensional because

the beam waist (≈ 4.5µm) is much smaller than the Rydberg blockade diameter (≈ 40µm) so

that the photons can not travel side by side to walk around the blockade. It can be shown that,

in the dispersive regime (probe detuning ∆p = 2π × 30MHz much larger than intermediate

state linewidth 2γo = 2π × 6.1MHz), the intermediate state can be adiabatically eliminated

so that the three-level ladder system is mapped to an effective two-level system (Fig. 2.1) of

detuning δ = −Ω2
c∆p/4(∆

2
p+γ2

o) and dissipation rate γ = Ω2
cγo/4(∆

2
p+γ2

o) (see Appendix B).

Furthermore, by adopting optical depth per blockade ODB ≈ 5.3 in a one-way setup (omitting

c†L in Eq. (2.1) due to insignificant backscattered light in the dispersive regime) [62], we send in

uncorrelated states |2〉 and |3〉, both of which have a long Gaussian profile (temporal duration

6.8µs � spontaneous lifetime 0.23µs). After scattering, we investigate wave functions,

correlation functions, and conditional phases of forward scattered photons. For incoming |3〉

state, Fig. 2.6(a) plots the transmitted three-photon wave function, which has a C6 symmetry

and exhibits a center diagonal-line part, six side-lobes, and six disconnected dots, representing

three-photon bound, hybrid, and unbounded states, respectively. For incoming |2〉 state,

Fig. 2.6(b) plots transmitted two-photon wave function, which exhibits a diagonal-line part

and two side-lobes to represent two-photon bound and unbounded states, respectively.
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Figure 2.7: Photonic Correlations of forward scattered light for a weak-coherent input
|α〉 under experimental condition [53]. (a) 9

2
g(3)(τ1, τ2). (b) 9

2
g(3)(τ, 0) and 2g(2)(τ). (c)

θ(3)(xm, xm+vgτ1, xm+vgτ2). xm = 4.38σ is a reference point that is irrelevant to results. (d)
θ(3)(xm, xm, xm + vgτ) and θ(2)(xm, xm + vgτ). Experimental data in (c) and (d) are adapted
from Fig. 2B and 3B in Ref. [53], respectively.
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To validate our formalism, we compare numerically obtained correlation functions and

conditional phases with experimental results: 9
2
g(3), θ(3) for |3〉 scattering; and 2g(2), θ(2) (two-

photon conditional phase, defined similar to θ(3)) for |2〉 scattering (note that experimental

measured correlation functions for weak-coherent inputs are normalized to 9
2
g(3) for |3〉 and

2g(2) for |2〉 [39]). Figure 2.7(a) plots 9
2
g(3), which exhibits a center hexagon, on-axis diagonal

strips, and off-axis off-diagonal background to represent bound, hybrid, and unbounded state

contributions, respectively. Apparently, Fig. 2.7(c) agrees well with Fig. 2A in Ref. [53].

Figure 2.7(b) plots numerically obtained 9
2
g(3)(τ, 0) (blue curve) and 2g(2)(τ) (red curve),

where 9
2
g(3)(0, 0) ≈ 5 and 2g(2)(0) ≈ 2 are consistent with experiments. The full-width-at-1/e

of g(3) is half of that of g(2), which is also confirmed in experiments. Notably, numerical results

(curves) are slightly inconsistent with experimental ones (dots) due to the multiple Rydberg

blockade effect in practice. Specifically, experimentally measured correlation functions may

contain the information of uncorrelated photons interacting with different Rydberg blockade

so that correlation functions flatten out in contrast to predictions from our single-atom model.

θ(3) in Fig. 2.7(c) echoes Fig. 2.7(a) to indicate different conditional phases due to different

state contributions, which agrees with Fig. 3A in Ref. [53]. Figure 2.7(d) plots both numerical

(curves) and experimental (dots) results of θ(3) and θ(2). Quantitatively, θ(3)|τ=0 ≈ −0.84 rad,

and θ(2)|τ=0 ≈ −0.27 rad agree with experiment results, and can be approximated using

first-principle results in Ref. [20, 21]. For instance, θ(2)|τ=0 can be approximated by the angle

of two-photon bound state transmission amplitude t
(2)
B substracted by that of single-photon

transmission amplitude t(1), i.e., θ(2)|τ=0 ≈ arg t(2)B − 2 arg t(1). Due to the aforementioned

multiple Rydberg blockade effect, dips at τ ≈ 0.1µs and overshootings at τ ≈ 0.5µs predicted

from our formalism are smeared out in experimental observations.
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2.8 Summary and Outlook

In this chapter, we present a computational study of coherent three-photon scattering off a

single two-level atom in waveguide QED systems. Our results confirm the trimer signatures

by examining the wave function representations and correlation function metrics. Moreover,

we show that the correlation metrics obtained from the three- and two- photon Fock state

scattering also apply to a weak-coherent input, and describe well the recent experimental

discovery of photonic trimers.

Our work opens up a new research direction of computational study for correlated three-

photon scattering and transport, which may be generalized to more complicated waveguide

QED architectures [63–65]. Exotic photonic trimer state may tremendously enhance three-

photon fluorescence efficiency due to collocated behavior and anti-correlation properties [66,

67]. Observed strong antibunching statistics can be exploited to realize faithful single-photon

source for secure quantum communication protocol [68–70]. Moreover, the imprinted π phase

shift may be exploited to implement deterministic quantum logic gates for universal quantum

computing.
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Chapter 3

Correlated Multi-photon Dissipation

Theory: Scattering Loss

3.1 Introduction

Dissipations are ubiquitous in any physical system. However, from a perspective of the global

universe (Fig. 3.1), there are no dissipations because particle and energy are conserved globally.

Every process is coherent and reversible, which is described by a Hermitian Hamiltonian.

Nonetheless, only the degrees of freedom nearby are of interest that are referred to as the

system of interest while all other degrees of freedom are treated as the external reservoir. Due

to inevitable coupling between them, photons may leak out of the system to the reservoir,

thereby manifesting as irreversible dissipations. The reservoir, in general, can be characterized

into two different types of nature. On one hand, the reservoir can be non-excitable and is

modeled as photonic scattering channels [71]. The model describes the photon leakages out

of the QED system of interest as photonic scattering loss. On the other hand, the reservoir
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system of interest

global universe

coupling

photon leakage

external reservoir 

Figure 3.1: Illustration of the emerging concept of dissipations from a perspective of global
universe. Due to the coupling between the system of interest and the external reservoir, the
photon leakages manifest as dissipations.

can be excitable, which contains infinitely many excitation oscillators to be discussed in next

chapter. In the presence of dissipation, the dynamics of the system is typically described by a

reduced non-Hermitian Hamiltonian (i.e., adding an imaginary part in the atomic transition

frequency) and a reduced eigenstate (i.e., omitting the scattering channels of the reservoir

in the wave function) which are restricted to the Hilbert space of interest only [72]. It is

not clear, a priori, whether the correlated multi-photon transport properties can still be

described by the non-Hermitian Hamiltonian.

In this chapter, we develop a correlated multi-photon dissipation theory to describe the

photonic scattering loss for an arbitrary Fock state process. The presented approach preserves

the system-reservoir entanglement throughout the procedure, which does not rely on any

uncontrolled approximations. By examining equations of motion and restricted scattering

matrix, we rigorously validate the non-Hermitian Hamiltonian description for single-, two-,

and an arbitrary N -photon Fock state process.

3.2 Model and Hamiltonian

Figure 3.2 schematically shows a general waveguide QED system in a non-excitable reservoir.

An N -photon Fock state |N〉 is launched from the left and interacts with the atom. Each

photon can escape the waveguide to the reservoir or remain waveguided. The reservoir is
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z
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y

x

Figure 3.2: Schematic of the dissipation model of scattering channels (indicated by purple
lines) in a waveguide QED system. A two-level atom (transition frequency Ω = ωe − ωg)
is side-coupled to a single-mode waveguide (along the x-axis). The atom sits at the origin.
n = (sin θ sinϕ, cos θ, sin θ cosϕ) is the direction of the scattering channel. The orientation
within n is further specified by nR = n and nL = −n. s denotes the polarization. θ ∈ [0, π)
and ϕ ∈ [0, π).

characterized by infinitely many three-dimensional scattering channels, each of which is

uniquely specified by the direction of photon momentum, n, and the polarization, s. The

infinitely many degrees of freedom of the scattering channels give rise to an irreversible process

macroscopically. To begin with, we first discretize the photonic phase space as follows: the

polar angle, θ, and the azimuthal angle, ϕ, are discretized uniformly so that now each scattering

channel is uniquely specified by a doublet {θi, ϕj} = { π
M1

i, π
M2

j}, where i = 0, 1, · · · ,M1;

j = 0, 1, · · · ,M2; and
∑

n =
∑

i,j M1M2∆θi∆ϕj/π
2. The system Hamiltonian is described

by

HS

~
=

∫
dx

[
c†R(x)(−ivg∂x)cR(x) + c†L(x)(ivg∂x)cL(x)

]

+

∫
dxV̄ δ(x)

[
c†R(x)σ− + σ+cR(x) + c†L(x)σ− + σ+cL(x)

]
+ ωea

†
eae + ωga

†
gag,

(3.1)
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where notations are defined the same as in Eq. (2.1). Notably, V̄ ∝ −~d · ~E(xa) denotes

the atom-waveguide coupling strength, encoding the angular information of guided-mode

polarizations, atomic quantization axes, and atomic states (~d is the atomic dipole moment,

~E is the electric field, and xa is the atomic location, which is taken to be the origin in our

configuration). The coupling varies inside the waveguide, but is uniquely determined once

the atom location is fixed. The Hamiltonian of the reservoir scattering channels, HC , is [71]

HC

~
=
∑
n,s

∫
dξ
[
c†nsR(ξ)(−iv∂ξ)cnsR(ξ) + c†nsL(ξ)(iv∂ξ)cnsL(ξ)

]
, (3.2)

where c†nsR denotes the creation operator of the right-moving photon of the ns channel, and

c†nsL is analogously defined. v is the speed of light in the homogeneous environment. Here,

the coordinate variables x and ξ are used for the waveguided and channel modes, respectively.

The system-reservoir coupling is characterized by the Hamiltonian, HSC ,

HSC

~
=
∑
n,s

∫
dξV̄nsδ(ξ)

[
c†nsR(ξ)σ− + σ+cnsR(ξ) + c†nsL(ξ)σ− + σ+cnsL(ξ)

]
, (3.3)

where V̄ns denotes the coupling strength between the atom and the channel ns. The complete

Hamiltonian is given by H = HS +HC +HSC .

3.3 Single-photon Case

In the single-photon case, the general state involving both the system and the reservoir is

given by

|Φ1〉 =
(∫

dx
[
φR(x)c

†
R(x) + φL(x)c

†
L(x)

]
+ eσ+ +

∑
n,s

∫
dξ
[
φnsR(ξ)c

†
nsR(ξ) + φnsL(ξ)c

†
nsL(ξ)

] )
|∅〉,

(3.4)
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where φR denotes the single-photon wave function for the right-moving waveguided photon,

and φL, φnsR , and φnsL can be analogously defined. e is the atomic excitation amplitude. |∅〉

is the photonic vaccum state with the atom at the ground state. By imposing the condition

H|Φ1〉 = ~ε|Φ1〉 (~ε is the eigen-energy of the combined system), we obtain the equations of

motion

εφR(x) = −ivg∂xφR(x) + V̄ δ(x)e+ ωgφR(x), (3.5a)

εφL(x) = ivg∂xφL(x) + V̄ δ(x)e+ ωgφL(x), (3.5b)

εφnsR(ξ) = −iv∂ξφnsR(ξ) + V̄nsδ(ξ)e+ ωgφnsR(ξ), (3.5c)

εφnsL(ξ) = iv∂ξφnsL(ξ) + V̄nsδ(ξ)e+ ωgφnsL(ξ), (3.5d)

εe = ωee+ V̄ [φR(0) + φL(0)] +
∑
n,s

V̄ns [φnsR(0) + φnsL(0)] . (3.5e)

We note that Eqs. (3.5a) and (3.5b) involve only the variables of the system while Eqs. (3.5c)

and (3.5d) involve variables of the reservoir. Both sets are coupled by Eq. (3.5e), which

involves the photonic wave function at the atom location.

By expressing φnsR(0) and φnsL(0) in terms of e, Eqs. (3.5a), (3.5b), and (3.5e) become

self-consistent involving only the system variables. As the photon is initially injected into the

waveguide and is scattered into the channels by the atom, the single-photon wave function

in the scattering channel, φnsR and φnsL , must take the forms of φnsR(ξ) = pnsθ(ξ)e
ikξ,

and φnsL(ξ) = qnsθ(−ξ)e−ikξ where θ is Heaviside function. One now plugs φnsR and φnsL

into Eqs. (3.5c) and (3.5d) to obtain pns = qns = −i V̄ns

v
e. One also has that φnsR(0) =

pns/2, φnsL(0) = qns/2, where we have employed θ(0) = 1/2. Thus, Eq. (3.5e) now reads as

εe =(ωe − i
∑
n,s

V̄ 2
ns
v

)e+ V̄ [φR(0) + φL(0)] , (3.6)
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which now does not involve the wave functions of the scattering channels. Eqs. (3.5a), (3.5b),

and (3.6) now form a set of self-consistent equations which only involve the system variables

φR, φL, and e. Eq. (3.6) states that such an approach is equivalent to adding an imaginary part

−iγS to ωe in HS, where γS =
∑

n,s V̄
2

ns/v is identified as the atomic dissipation rate due to scat-

tering loss. This set of self-consistent equations can be derived from a reduced non-Hermitian

Hamiltonian and a restricted eigen-state (|Φ1〉 = (
∫
dx
[
φR(x)c

†
R(x) + φL(x)c

†
L(x)

]
+eσ+)|∅〉)

that only involves the variables of the system. The dissipative process is described by the

added imaginary part −iγS.

3.4 Multi-photon Case

3.4.1 Two-photon Case

We now generalize the approach for the two-photon case. To facilitate the mathematical

description, we transform H to the even (He) and odd (Ho) modes (H = He +Ho) such that

He and Ho are decoupled ([He, Ho] = 0, see Ref. [20]). Since the photon-atom interaction is

present in the even mode, but not in the odd one, only the even mode is taken into account

from now on. He takes the following form,

He

~
=

∫
dxc†e(x)(−ivg∂x)ce(x) +

∫
dxV δ(x)

[
c†e(x)σ− + σ+ce(x)

]
+
∑
n,s

(∫
dξc†nse(ξ)(−iv∂ξ)cnse(ξ)

)
+ ωea

†
eae + ωga

†
gag +

∑
n,s

∫
dξVnsδ(ξ)

[
c†nse(ξ)σ− + σ+cnse(ξ)

]
,

(3.7)

where V =
√
2V̄ , Vns =

√
2V̄ns. He describes that photons propagate unidirection-

ally to the +x or +ξ direction. We have used the operator transformations c†e(x) =[
c†R(x) + c†L(−x)

]
/
√
2, c†o(x) =

[
c†R(x)− c†L(−x)

]
/
√
2, c†nse(ξ) =

[
c†nsR(ξ) + c†nsL(−ξ)

]
/
√
2,

and c†nso(ξ) =
[
c†nsR(ξ)− c†nsL(−ξ)

]
/
√
2. The corresponding even-mode two-photon state is
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given by

|Φ2〉 =

(∫
dx1dx2

1√
2
φ(x1, x2)c

†
e(x1)c

†
e(x2)

+
∑
n,s

∫
dxdξ

1√
2

[
φens(x, ξ)c

†
e(x)c

†
nse(ξ) + φnse(ξ, x)c

†
nse(ξ)c

†
e(x)

]
+

∫
dxe(x)c†e(x)σ+ +

∑
n,s

∫
dξens(ξ)c

†
nse(ξ)σ+ + · · ·

)
|∅〉,

(3.8)

where φ denotes the two-photon wave function in the even waveguided mode. φens (φnse)

denotes the wave function where the first (second) photon is in the even waveguided mode

and the other photon in the even mode of channel ns. e and ens denote the atomic excitation

wave functions where the photon is in the even waveguided mode and ns channel, respectively.

In Eq. (3.8), we omit the terms involving both photons in the scattering channels as it turns

out that such terms do not directly affect the following results. The equations of motion

relevant to the analysis are

εφ(x1, x2) = −ivg (∂x1 + ∂x2)φ(x1, x2)

+
1√
2
[V e(x1)δ(x2) + V e(x2)δ(x1)] + ωgφ(x1, x2),

(3.9a)

εφens(x, ξ) = −i (vg∂x + v∂ξ)φens(x, ξ)

+
1√
2
[Vnse(x)δ(ξ) + V ens(ξ)δ(x)] + ωgφens(x, ξ),

(3.9b)

εφnse(ξ, x) = −i (v∂ξ + vg∂x)φnse(ξ, x)

+
1√
2
[V ens(ξ)δ(x) + Vnse(x)δ(ξ)] + ωgφnse(ξ, x),

(3.9c)

εe(x) = ωee(x)− ivg∂xe(x) +
V√
2
[φ(x, 0) + φ(0, x)]

+
∑
n,s

Vns√
2
[φens(x, 0) + φnse(0, x)] .

(3.9d)

Similar to the single-photon case, we now express φens(x, 0) and φnse(0, x) in terms of e in

Eq. (3.9d). From continuous boundary condition near x = 0 in Eqs. (3.9b) and (3.9c), one
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obtains
φens(x, 0

+)− φens(x, 0
−) = −i

Vns√
2v

e(x),

φnse(0
+, x)− φnse(0

−, x) = −i
Vns√
2v

e(x).

(3.10)

Plugging Eq. (3.10) into Eq. (3.9d), one obtains

εe(x) =(ωe − i
∑
n,s

V̄ 2
ns
v

)e(x)− ivg∂xe(x) +
V√
2
[φ(x, 0) + φ(0, x)] , (3.11)

where we have used φens(x, 0) = [φens(x, 0
+) + φens(x, 0

−)]/2. In Eq. (3.11), we have also

employed the condition φens(x, 0
−) = 0. φens(x, 0

−) is the probability amplitude when one

photon is at x in the even waveguided mode and the other photon is at ξ = 0− in the even

mode of channel ns. Since the photon leaks from the atom to the scattering channels at

ξ = 0, and the photon can only propagate in the +ξ direction, φens(x, 0
−) vanishes.

Eqs. (3.9a) and (3.11) now form a set of self-consistent equations that describe two-photon

transport, which can also be derived by a reduced non-Hermitian Hamiltonian and a restricted

eigenstate. This procedure validates the approach in the two-photon case.
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3.4.2 N-photon Case

Subject to the same even-mode scenario in Eq. (3.7), the N -photon general state is given by

|ΦN〉 =

(∫
dx1 · · · dxN

1√
N !

φ(x1, · · · , xN)c
†
e(x1) · · · c†e(xN)

+
∑
n,s

∫
dx1 · · · dxN

1√
N !

∑
j

φnsj(x1, · · · , xj, · · · , xN)c
†
e(x1) · · · c†e(xj−1)c

†
nse(ξ)c

†
e(xj+1) · · · c†e(xN)

+

∫
dx1 · · · dxN−1

1√
(N − 1)!

e(x1, · · · , xN−1)c
†
e(x1) · · · c†e(xN−1)σ+

+
∑
n,s

∫
dx1 · · · dxN−1

1√
(N − 1)!∑

j

ensj(x1, · · · , xN−1)c
†
e(x1) · · · c†e(xj−1)c

†
nse(ξ)c

†
e(xj+1) · · · c†e(xN−1)σ+ + · · ·

)
|∅〉,

(3.12)

where φ denotes the N -photon wave function in the even waveguided mode. φnsj denotes the

N -photon wave function wherein the j-th photon is in the even mode of channel ns, while

all others are in the even waveguided mode (j = 1, 2, 3, · · · , N). e denotes the atomic

excitation amplitude when N − 1 photons are in the even waveguided mode. ensj denotes

the atomic excitation where the photon arrangement is the same as φnsj . The equations of
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motion of relevant variables are given by

εφ(x1, · · · , xN) = ωgφ− ivg (∂x1 + · · ·+ ∂xN
)φ

+
V√
N

∑
i

e(x1, · · · , xi−1, xi+1, · · · , xN)δ(xi),
(3.13a)

εφnsj(x1, · · · , xj−1, ξ, xj, · · · , xN−1) = ωgφnsj

− ivg

(
∂x1 + · · ·+ v

vg
∂ξ + · · ·+ ∂xN−1

)
φnsj

+
1√
N

[
Vnse(x1, · · · , xj−1, xj, · · · , xN−1)δ(ξ)

+
∑
i,i 6=j

V ensi(x1, · · · , xi−1, xi+1, · · · , xN−1)δ(xi)
]
,

(3.13b)

εe(x1, · · · , xN−1) = ωee− ivg

(
∂x1 + · · ·+ ∂xN−1

)
e

+
V√
N

[φ(0, x1, · · · , xN−1) + · · ·+ φ(x1, · · · , xN−1, 0)]

+
∑
n,s

Vns√
N

∑
j

φnsj(x1, · · · , xj−1, 0, xj, · · · , xN−1).

(3.13c)

Similar to Eq. (3.10), for the N -photon case, now we have

φnsj(x1, · · · , xj−1, 0
+, xj, · · · , xN−1) =

φnsj(x1, · · · , xj−1, 0
−, xj, · · · , xN−1)− i

Vns√
Nv

e(x1, · · · , xN−1).
(3.14)

Plugging Eq. (3.14) into Eq. (3.13c), one obtains

εe(x1, · · · , xN−1) =

(
ωe − i

∑
n,s

V̄ 2
ns
v

)
e− ivg

(
∂x1 + · · ·+ ∂xN−1

)
e

+
V√
N

[φ(0, x1, · · · , xN−1) + · · ·+ φ(x1, · · · , xN−1, 0)] .

(3.15)
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Eqs. (3.13a) and (3.15) are now self-consistent to describe the N -photon correlated transport,

which can be derived from a reduced non-Hermitian Hamiltonian and a restricted eigen-state,

thereby validating the approach in the N -photon case. We have laid out an exact dissipation

model for arbitrary photonic Fock states. As a coherent state is a linear superposition of

Fock states, our dissipation model also applies when the input is a coherent state. We also

note that the conclusion remains valid regardless of the explicit form of V̄ns.

One now converts the expression of γS from the discrete phase space to the continuum. Writing

that
∑

n,s V̄
2

n,s/v =
∑

s

∑
i,j V̄

2
s (θi, ϕj)∆θi∆ϕj/π

2v and taking the limit M1,M2 → ∞, one

obtains

γS =
∑
s

1

π2

∫ π

0

dθ

∫ π

0

dϕ
V̄ 2
s (θ, ϕ)

v
. (3.16)

We also note that different discretization schemes only differ in a Jacobian and should lead

to the same continuum limit. When the discretization scheme is to discretize the solid angle,

then γS takes the form
∑

s 1/2π
∫ π

0
sin θdθ

∫ π

0
dϕV̄ 2

s (θ, ϕ)/v.

3.5 Validity of Non-Hermitian Hamiltonian from Scat-

tering Matrix

The information of the scattering eigenstates of the system dictates the scattering matrix.

The scattering matrix S maps an arbitrary in-state (the prepared photonic state injected into

the waveguide) into the out-state: S|in〉 = |out〉 [20]. In reality, however, only the waveguided

photonic states are measurable but not those leaked into the reservoir. Consequently, a

restricted scattering matrix which maps the in-state into the waveguided photonic states

solely is of practical importance. Without loss of generality, we take the two-photon case as

an example while an arbitrary N -photon case can be examined in a similar manner.
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In the reservoir-free case, |Wk,p〉 and |BK〉 are orthogonal eigenstates of the scattering

matrix so that the scattering matrix is diagonal, given by Se(2) =
∑

k≤p tktp|Wk,p〉〈Wk,p| +∑
K tK |BK〉〈BK | [20]. By construction, in the non-excitable reservoir scenario, e.g., the

restricted scattering matrix is Sr
e(2)

=
∑

k≤p t̄
′
k t̄

′
p|Wk,p〉〈Wk,p| +

∑
K t̄′

(2)
K |BK〉〈BK | , where

t̄′k,p = (ωk,p − Ω̄′ − iΓ/2)/(ωk,p − Ω̄′ + iΓ/2), t̄′(2)K = (Kvg − 2Ω̄′ − 2iΓ)/(Kvg − 2Ω̄′ + 2iΓ),

and the renormalized frequency Ω̄′ = Ω − iγS, where γS is the photonic scattering loss

rate [60]. Apparently, by examining the restricted scattering matrix, the non-Hermitian

Hamiltonian description is valid by adding a purely imaginary part −iγS in the original

Hermitian Hamiltonian.

3.6 Summary and Outlook

The atomic dissipation given rise from the photonic scattering channels has been discussed

in the literature. Conventionally, photonic scattering channels are alternatively labeled

by folded scattering channel modes nsu and nsd (see Ref. [73]). By invoking analogous

transformations of c†nse(ξ) =
[
c†nsu(ξ) + c†nsd(ξ)

]
/
√
2 and c†nso(ξ) =

[
c†nsu(ξ)− c†nsd(ξ)

]
/
√
2, it

is straightforward to show that the two labeling schemes are mathematically equivalent.

Finally, we comment on the cavity dissipations. By employing the explicit photon-cavity

interaction [72] and using the same approach outlined above, one can also show that the

photonic scattering channels also result in a reduced non-Hermitian Hamiltonian (by adding

an imaginary part to the eigen-frequency of cavity modes) and a restricted eigenstate (omitting

the scattering channels of the reservoir in the wave function). Thus, our approach provides

a computationally feasible yet numerically exact platform for studying correlated photon

transport in waveguide QED systems in the presence of both atomic and cavity dissipations.
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Chapter 4

Correlated Multi-photon Dissipation

Theory: Material Loss

4.1 Introduction

Apart from the non-excitation reservoir scenario as presented in Chap. 3, on one hand, the

environment contains an excitable medium, and is conventionally treated as a reservoir

of oscillators [72, 74]. Conventionally, a very fruitful approach to studying the effects of

dissipation is the density matrix approach. Such an approach traces over the reservoir

degrees of freedom and phenomenologically parametrizes the system-reservoir interaction as

damping terms in the Lindblad superoperators in the resultant quantum master equation for

a dissipative system [75, 76]. The detailed information of the system-reservoir entanglement

is eliminated at the very beginning in the density matrix approach. As a result, the density

matrix approach provides a probabilistic measure for the system evolutions in terms of mixed

states. Another aspect is that, as the density matrix approach does not include the wave
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function of the photon field, the photon-atom entanglement can not be directly described.

Other successful approaches include the quantum Langevin approach, which is also widely

used to investigate the dissipation-driven fluctuation and temporally-correlated statistics [77];

and the quantum jump approach which has been developed for statistical single-photon loss

processes [78] and can be numerically simulated using the Monte-Carlo techniques [79]. The

limitations of the density matrix approach with regard to the entanglement also apply to the

quantum Langevin and the quantum jump approaches.

In this chapter, we apply an entanglement-preserving approach to investigate the waveguide

QED system of the same configuration as that in Chap. 3, but now instead with an excitable

reservoir that consists of infinitely many quantum oscillators. Such a scenario is ubiquitous

in practical photonic systems (e.g., free-carrier absorption in highly-doped semiconductor

waveguide [80], absorption-driven cladding loss in photonic crystal fiber [81], and generic

material absorption in other silica-based photonic devices [82, 83]), and has been of great

theoretical and experimental interest to the studies of waveguide QED systems. We rigorously

confirm that the reduced non-Hermitian Hamiltonian description breaks down for correlated

multi-photon process. We also carry out the calculation using the density matrix approach

and show that the result obtained from the Markovian density matrix approach is the lowest

order of α obtained using the entanglement-preserving approach. Furthermore, we identify a

weak-reservoir limit where the non-Hermitian Hamiltonian is still valid.

4.2 Model and Hamiltonian

The waveguide QED system considered is shown schematically in Fig. 4.1. The system (S)

consists of a two-level atom coupled to a single-mode photonic waveguide, and an N -photon

Fock state, |N〉, is injected into the waveguide from the left. The incoming photons interact
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Figure 4.1: Schematics of the waveguide QED system with an excitable reservoir. A two-level
atom (represented by a red sphere) is coupled to the one-dimensional single-mode photonic
waveguide. The atom is further coupled to a reservoir that consists of infinitely many
excitable oscillators (represented by yellow dots). j and l are indices of any two oscillators
(j, l = 1, 2, · · · ). Ω and ωa denote transition frequencies for the atom and the oscillators,
respectively. V̄ , η, and β are the atom-photon, atom-oscillator, and the inter-oscillator
coupling strengths, respectively. |N〉 denotes the incoming N -photon Fock state.

with the atom through absorptions, spontaneous, and stimulated emission processes. On the

other hand, due to the coupling between the atom and the external excitable oscillators, the

photon may leak out to the reservoir and undergo secondary scattering processes between

the oscillators. The Hamiltonian describing the waveguide QED system in Fig. 4.1, HS, is

HS

~
=

∫
dx
{
c†R(x)(−ivg∂x)cR(x) + c†L(x)(ivg∂x)cL(x)

+V̄ δ(x)[(c†R(x) + c†L(x))σ− + σ+(cR(x) + cL(x))]
}

+ωea
†
eae + ωga

†
gag,

(4.1)

where the linear dispersion approximation and the rotating-wave approximation are em-

ployed [72]. Notations are defined the same as Eq. (2.1). The Hamiltonian describing the
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reservoir, HR, is given by

HR

~
=
∑
j

[
(ωej − iε)a†ejaej + ωgja

†
gj
agj

]
+
∑
j,l,j 6=l

βjl

2
(σj+σl− + σl+σj−) ,

(4.2)

where a†gj (agj) denotes the creation (annihilation) operator for the ground state of the j-th

oscillator with energy ~ωgj (j = 1, 2, · · · ); a†ej , aej , and ωej are similarly defined for its excited

state; and ωaj ≡ ωej − ωgj is the transition frequency of the j-th oscillator. σj+ = a†ejagj

(σj− = a†gjaej ) denotes the raising (lowering) operator for the j-th oscillator. βjl represents the

inter-oscillator coupling strength between the j-th and the l-th oscillators. In the following,

a general description is provided without imposing special constraints on the functional

form of βjl’s, thus allowing the incorporation of various scenarios. For example, the value

of βjl can decrease as the separation between the the j-th and the l-th oscillators increases

according to a specified fashion so that only short-ranged hops make contributions. Each

oscillator has an intrinsic scattering loss rate ε, which is taken to be 0+ at the end of the

calculation to ensure the causality condition. It is worth noting that albeit only frequency and

inter-oscillator coupling of the reservoir are considered, our approach can readily incorporate

more reservoir degrees of freedom (e.g., mode, polarization, spin, intrinsic scattering loss,

etc). The Hamiltonian describing the system-reservoir coupling, HSR, is

HSR

~
=
∑
j

ηj (σj+σ− + σ+σj−) , (4.3)

where ηj is the coupling strength between the atom and the j-th oscillator. The Hamiltonian

describing the combined system S ⊕R (waveguide QED system + reservoir), H, is given by

HS +HR +HSR.
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4.3 Single-photon Case

For the single-photon case, the general single-photon eigenstate of the combined system, |Φ1〉,

is

|Φ1〉 =
(∫

dx
[
φR(x)c

†
R(x) + φL(x)c

†
L(x)

]
+ eσ+ +

∑
j

φjσj+

)
|∅〉, (4.4)

where φR (φL) denotes the right- (left-) moving single-photon wave function. e and φj denote

the excitation amplitude for the atom and the j-th oscillator, respectively. |∅〉 is the photonic

vacuum state that has no waveguided photons; the atom is in the ground state; and none

of the oscillators are excited. By applying Schrödinger Equation H|Φ1〉 = ~ε̃|Φ1〉, where

~ε̃ = ~(ωk + ωg +
∑

j ωgj) is the total energy of the combined system with ~ωk being the

energy of the incident photon, and equating the coefficients for each basis, the equations of

motion are obtained as follows,

ωkφR(x) = −ivg∂xφR(x) + V δ(x)e, (4.5a)

ωkφL(x) = ivg∂xφL(x) + V δ(x)e, (4.5b)

ωke = V [φR(0) + φL(0)] + Ωe+
∑
j

ηjφj, (4.5c)

ωkφj = (ωaj − iε)φj + ηje+
∑
l,l 6=j

βjlφl. (4.5d)

By substituting Eq. (4.5d) into Eq. (4.5c) (see Ref. [84]), Eq. (4.5c) now reads as

ωke = V [φR(0) + φL(0)] + (Ω + α)e, where

α =
∞∑
n=1

αn, α1 =
∑
i1

η2i1
ωk − ωai1

+ iε
,

αn =
∑
i1

∑
i2,i2 6=i1

· · ·
∑

in,in 6=in−1

ηi1βi1i2 · · · βin−1inηin∏n
l=1(ωk − ωail

+ iε)
, n = 2, 3, · · · .

(4.6)
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Figure 4.2: Graphic representation of the complex frequency renormalization α ≡
∑

n αn:
for each αn, the numerator describes a closed path of the photon, staring from the two-level
atom (η) and hopping n− 1 times between the oscillators in the reservoir (β’s), and finally
ending with the two-level atom (η).

Note that for each αn, the numerator describes a closed path of the photon, starting from the

two-level atom (the ηi1 term) and hopping n− 1 times between the oscillators in the reservoir

(the β’s terms), and eventually ending with the two-level atom (the ηin term). The real part

and the imaginary part of the complex frequency renormalization α = ∆M − iγM describe the

shift of the transition frequency of the two-level atom and the dissipation rate, respectively,

due to coupling to the excitable reservoir. Figure 4.2 provides a graphic representation of

the numerators of αn. The returning nature of the single-photon paths has a far-reaching

consequence for the correlated multi-photon transport, as the returning times are statistical

and generally breaks down the photonic temporal entanglement within the waveguide.

Together, Eqs. (4.5a), (4.5b), and (4.6) now form a set of self-consistent equations which

only involve the system amplitudes φR, φL, and e. Such a result states that after taking into

account the statistical fluctuations of the system-reservoir coupling (i.e., η) and the secondary

scattering characteristic of the reservoir (i.e., β), the wave function information of φj can

be traced over and incorporated in the renormalized frequency Ω̄ ≡ Ω + α (α ≡
∑∞

n=1 αn).

That is, the combined system can be described by a reduced Hamiltonian (substituting

Ω with the renormalized transition frequency Ω̄ in the system Hamiltonian HS), and a
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restricted eigenstate |Φ1〉 = (
∫
dx
[
φR(x)c

†
R(x) + φL(x)c

†
L(x)

]
+ eσ+)|∅〉 which contains only

the degrees of freedom of the system.

4.4 Multi-photon Case

4.4.1 Two-photon Case

For the dissipationless two-photon case when no reservoir is present, it has been shown

that the two-photon plane-wave states alone do not form a complete set of two-photon

eigenstates of the scattering matrix, and a two-photon bound state must be included for the

completeness [20]. We now examine the effects of the reservoir for the plane-wave states and

the bound state solutions separately.

Following the same even-odd mode decomposition technique in Chap. 3 one obtains the

following even-mode Hamiltonian He describing the combined system,

He

~
=

∫
dx
{
c†e(x)(−ivg∂x)ce(x) + V δ(x)

[
c†e(x)σ− + σ+ce(x)

]}
+ωea

†
eae + ωga

†
gag +

∑
j

ηj (σj+σ− + σ+σj−)

+
∑
j

(
(ωej − iε)a†ejaej + ωgja

†
gj
agj

)
+
∑
j,l,j 6=l

βjl

2
(σj+σl− + σl+σj−) ,

(4.7)

where c†e(x) (ce(x)) is the operator to create (annihilate) a photon at position x in the

even mode. V =
√
2V̄ and Γ ≡ V 2/vg are the atom-photon coupling strength and atomic

spontaneous emission rate into the waveguide in the even mode. The general form of the
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two-photon interacting eigenstate of the combined system, |Φ2〉, is given by

|Φ2〉 =
(∫∫

dx1dx2φ(x1, x2)
1√
2
c†e(x1)c

†
e(x2)

+

∫
dxe(x)c†e(x)σ+ +

∑
j

∫
dxφj(x)c

†
e(x)σj+

+
∑
j

ejσ+σj+ +
∑
j,l,j<l

ejlσj+σl+

)
|∅〉,

(4.8)

where φ(x1, x2) denotes the wave function for two waveguided photons in the even mode. Due

to the boson statistics, the wave function satisfies φ(x1, x2) = +φ(x2, x1), and is continuous

on the line x1 = x2. e(x) is the probability amplitude distribution of one waveguided photon

while the atom in the excited state. φj(x) denotes the probability amplitude distribution

of one waveguided photon while the j-th oscillator in the excited state. ej represents the

excitation amplitude wherein two photons are absorbed by the atom and the j-th oscillator,

respectively. ejl is the excitation amplitude wherein two photons are absorbed by the j-th and

the l-th oscillators, respectively. By applying the Schrödinger Equation, He|Φ2〉 = ~ε̃|Φ2〉,
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one obtains the following equations of motion,

εφ(x1, x2) =− ivg (∂x1 + ∂x2)φ(x1, x2)

+
V√
2
[δ(x1)e(x2) + δ(x2)e(x1)] ,

(4.9a)

εe(x) =− ivg∂xe(x) +
V√
2
[φ(0, x) + φ(x, 0)]

+Ωe(x) +
∑
j

ηjφj(x),
(4.9b)

εφj(x) =− ivg∂xφj(x) + V δ(x)ej + (ωaj − iε)φj(x)

+ηje(x) +
∑
l,l 6=j

βjlφl(x),
(4.9c)

εej =V φj(0) +
∑
l,l<j

ηlelj +
∑
l,l>j

ηlejl

+
(
ωa + ωaj − iε

)
ej +

∑
l,l 6=j

βjlel,

(4.9d)

εejl =ηjel + ηlej +
(
ωaj + ωal − 2iε

)
ejl +

∑
m,m 6=l,m<j

βlmemj

+
∑

m,m 6=l,m>j

βmlejm +
∑

m,m 6=j,m<l

βjmeml +
∑

m,m 6=j,m>l

βmjelm,

(4.9e)

where ~ε = ~(ε̃− ωg −
∑

j ωgj) gives the total energy of two photons.

Our computational strategy is as follows. We will solve Eqs. (4.9a), (4.9b), and (4.9c) to

obtain the solution of the interacting eigenstate of He for the variables restricted in the

system of interest (i.e., φ(x1, x2) and e(x)). In particular, we will show that the wavefunctions

of the reservoir degrees of freedom (i.e., φj(x), ej, and ejl) can be traced over, and have

no direct relevance to our results, which is similar to the single-photon case. Thus, in the

end, Eqs. (4.9d) and (4.9e) are not directly involved in the calculation. The two-photon

in- and out- states can be constructed based upon the interacting eigenstates for restricted
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Figure 4.3: Interacting eigenstate solution of the restricted system variables φ(x1, x2) and
e(x) to Eqs. (4.8) for the two-photon plane-wave state case. φ(x1, x2) is specified in Region
1, 2, and 3. e(x) is specified for both x > 0 and x < 0.

system variables (i.e., |Φ2〉 =
( ∫∫

dx1dx2φ(x1, x2)c
†
e(x1)c

†
e(x2)/

√
2 +

∫
dxe(x)c†e(x)σ+

)
|∅〉),

and further normalized to obtain eigenstates of the restricted scattering matrix.

Plane-wave Solution. By adopting the divide and conquer scheme, eigen wave functions of the

restricted system variables (i.e., φ(x1, x2) and e(x)) for the two-photon plane-wave solution is

obtained, as summarized in Fig. 4.3. Interestingly, the solutions follow the same form as that

in the reservoir-free case (see Fig. 7 in Ref. [85]), yet with a frequency renormalization Ω → Ω̄

that is the same as the single-photon case. By applying Lippmann-Schwinger formalism, one

can construct the normalized eigenstate |Wk,p〉 of the restricted even-mode S-matrix, Sr
e(2)

, in

the following form,

|Wk,p〉 =
∫∫

dx1dx2Wk,p(x1, x2)
1√
2
c†e(x1)c

†
e(x2)|∅〉, where

Wk,p(x1, x2) =

√
2eiKxc [2∆ cos∆xd − κsgn(xd) sin∆xd]

2π
√

[4∆2 + κ2]
,

(4.10)
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Figure 4.4: Density plot for the wavefunction of the two-photon plane-wave state. (a) |Wk,p|2
when ∆ = κ. (b) Gaussian-modulated two-photon plane-wave state |WG

k,p|2 when ∆ = κ.
|WG

k,p|2 is centered at x1 = x2 = xo = 0. (c) |WG
k,p|2 when ∆ = 0.2κ. (d) |WG

k,p|2 when ∆ = 5κ.
For the density plot, the numerical values for one unit scale are (a) 0.25, (b) 0.23, (c) 0.027,
and (d) 5 in units of Γ2/v2g (which has a unit of 1/Length2).

where K = ε/vg, xd = x1 − x2, xc = (x1 + x2)/2, κ = Γ/vg, ∆ = (ωk − ωp)/2vg and sgn is

the sign function. It can be immediately obtained from the analysis outlined above that

Sr
e(2)

|Wk,p〉 = t̄k t̄p|Wk,p〉. Here, we note that |Wk,p〉 follows exactly the same functional form

as that in the reservoir-free case.

To visualize the real-space representation of the two-photon plane-wave state, here we

plot the wave function density |Wk,p(x1, x2)|2 in Fig. 4.4. Figure. 4.4(a) plots the case of

∆ = κ, wherein the interference fringes are extended along the diagonal (x1 = x2), and

periodically modulated in the transverse direction (x1 = −x2). Such a periodic structure

results from the fact that given a fixed ∆, |Wk,p|2 only depends on the distance between

two individual photons, i.e., x1 − x2, and is modulated by the sinusoidal functions. The

spatial period is π/
√
2∆, and the corresponding spatial frequency is 2

√
2∆. The maximal
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Figure 4.5: Interacting eigenstate solution of the restricted system variables φ(x1, x2) and
e(x) to Eqs. (4.8) for the reservoir-modified two-photon bound state case.

density is |Wk,p|2max = 1/2π2, which is attained when ∆xd = mπ − arccos(2∆/
√
4∆2 + κ2)

(m = 0,±1,±2, · · · ). Nonetheless, the density on the x1 = x2 line does not attain the

maximal density, which is equal to only 4∆2/(4∆2 + κ2) of |Wk,p|2max.

In practice, the two-photon states exist as wavepackets (pulses), which have a finite spatial size

and a finite frequency bandwidth. Figure 4.4(b) plots the density of the Gaussian-modulated

plane-wave state WG
k,p ≡ Wk,p ×M, where M ≡ exp[−(x1 − xo)

2/4σ2
x − (x2 − xo)

2/4σ2
x] is

the modulation function. xo is the center position of the wave packet. The spatial width of

the modulation σx is chosen to be 5vg/Γ such that the pulse has a narrow bandwidth Γ/10.

|WG
k,p|2 decreases as |x1 − x2| increases. Figure 4.4(c) and (d) plot |WG

k,p|2 for ∆ = 0.2κ and

∆ = 5κ, respectively, wherein the number of fringes reflects the spatial beating frequencies of

the two photons.
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Reservoir-modified Bound State Solution. After some algebra, it is found that |BK〉 fails to be

an eigenstate in the presence of the reservoir. Instead, we identify the interacting eigenstate

solution for a reservoir-modified bound state |DK〉, shown in Fig. 4.5. Specifically, |DK〉 takes

the following form,

|DK〉 =
∫∫

dx1dx2DK(x1, x2)
1√
2
c†e(x1)c

†
e(x2), where

DK(x1, x2) =

√
κν

4π
eiK

ξ1x1+ξ2x2
2

−κν
2
|x1−x2|.

(4.11)

ν and ξ1/2 are dimensionless constants that characterize the reservoir-modified correlation

width and re-distributed photon energy, respectively. Note that in the reservoir-free case, the

transmission coefficient for the bound state is t
(2)
K = (Kvg/2− Ω− iΓ)/(Kvg/2− Ω+ iΓ). It

can be shown that, in the absence of the reservoir (i.e., η = β = 0), t̃(2)K reduces to t
(2)
K in

the absence of the reservoir. Nonetheless, when the reservoir is present, the renormalized

transmission coefficient for the reservoir-modified bound state t̃
(2)
K can not be obtained by

simply using a frequency renormalization in t
(2)
K .

To illustrate the reservoir-induced effect on the bound state, we now plot the wave function

density for the bound state |BK〉 and the reservoir-modified bound state |DK〉 in Fig. 4.6.

Figure 4.6(a) plots |BK |2 wherein the bound state is unmodulated and thus extends along

the diagonal (x1 = x2); the state has a correlation width of 1/κ along the transverse direction

(x1 = −x2). That is, two photons propagate in a collocated manner within a spatial range of

1/κ. To represent a practical pulse of finite spatial size, we plot the density for a Gaussian-

modulated bound state |BKM|2 in Fig. 4.6(b) using the same parameter set of M as the

preceding plane-wave case. For the modulated state, the spatial size of the modulation is

the coherence length, which also determines the coherence time of the pulse. Specifically,

the coherence length of |BKM|2 is determined by the Gaussian modulation parameter σx

while the correlation width remains the same as |BK |2. We further plot the wave function
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Figure 4.6: Wave function density plot for the reservoir-free two-photon bound state |BK〉
and the reservoir-modified two-photon bound state |DK〉. (a) Two-photon bound state
|BK |2. (b) Gaussian-modulated two-photon bound state |BKM|2. The correlation length
and the coherence width are given by 1/κ and σx, respectively. |BKM|2 is centered at
x1 = x2 = xo = 0. (c) Gaussian-modulated reservoir-modified bound state |DKM|2 when
ν = 0.5. (d) |DKM|2 when ν = 2. For the density plot, the numerical values of one unit
scale is (a) 0.4, (b) 0.0025, (c) 0.00012, and (d) 0.005 in units of Γ2/v2g (which has a unit of
1/Length2).
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density of the Gaussian-modulated reservoir-modified bound state |DKM|2 to visualize the

effect of the reservoir on the bound state. Figure 4.6(c) and (d) plot |DKM|2 for ν = 0.5 and

ν = 2, respectively, wherein the correlation width is doubled and halved, respectively. That

is, the correlation width of |DKM|2 now becomes 1/κν where varying ν values depends on

the system-reservoir coupling (i.e., described by η) and the secondary scattering strength

in the reservoir (i.e., described by β). Unmodulated reservoir-modified bound state |DK |2

is not plotted because all entanglement information is already provided in the plots for the

modulated case in Fig. 4.6(c) and (d).

4.4.2 N-photon Case

Having studied the single-photon and the two-photon cases, we now examine the case for

an arbitrary N -photon Fock state transport. It has been rigorously confirmed that, in the

reservoir-free case, a complete set of N -photon in-states can be classified into three categories,

i.e., the N -photon extended state, N -photon bound state, and N -photon hybrid states [21].

Specifically, the N -photon extended state is a generalization of two-photon plane-wave state

to the N -photon case, wherein all N photons are uncorrelated. For the N -photon bound

state, all photons are entangled. In particular, any two-photon pair is spatially characterized

by a correlation width vg/Γ. The N -photon hybrid states are product states of plane-wave

and bound states. Hereafter we will focus on the extended and bound state solutions. The

hybrid state case can be examined through a similar procedure.

By applying the divide and conquer scheme, the interacting eigenstates of N -photon extended

state remains the same form as that in the reservoir-free case whereas the transmission

amplitudes are renormalized. The form of the extended state solution indicates that the N

photons interact with the lossy atom independently. Similar to the two-photon case, it can be

shown that the N -photon bound state |BK〉 fails to be an eigenstate of restricted scattering
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matrix Sr
e(N) in the presence of the reservoir, as it would give rise to a discontinuity of the

atomic excitation wave function (i.e., e(x1, · · · , xN−1) is not continuous at the boundary

between any two adjacent Region j+1 and j for j = 1, · · · , N). Note for the reservoir-modified

bound state solution, neither the interacting eigenstates for the restricted system variables

nor the transmission coefficient can be described by a simple frequency renormalization of the

results in the reservoir-free case (see Eqs. (19), (A28), and (A29) in Ref. [21]). Furthermore,

the reservoir-modified N -photon hybrid states can be determined through a similar procedure,

and it is also found that the hybrid states can not be obtained by a frequency renormalization

of the results in the reservoir-free case. Thus, the existence of the reservoir-modified bound

state and the hybrid states make the reduced Hamiltonian approach invalid in the N -photon

case.

4.5 Breakdown of Non-Hermitian Hamiltonian from Scat-

tering Matrix

Here we examine the restricted scattering matrix to check the validity of non-Hermitian

Hamiltonian description using the two-photon case as an example. By construction, |DK〉 is a

scattering eigenstate of the restricted scattering matrix Sr
e(2)

such that Sr
e(2)

|DK〉 = t̃
(2)
K |DK〉.

One can directly check the orthogonality relation 〈DK′|DK〉 = δ(K − K ′)2
√
νν ′/(ν + ν ′),

where ν and ν ′ are determined by K and K ′, respectively. In Ref. [85], it has been confirmed

that the reservoir-free two-photon bound state |BK〉 is orthogonal to the two-photon plane-

wave state |Wk,p〉, i.e., 〈Wk,p|BK〉 = 0 ∀k, p, and K. In contrast, when the excitable reservoir

is present, we find that

〈Wk,p|DK〉 =
√

κ3ν

2π

(ν − 1)∆√
∆2 + κ2

4

(
∆2 + κ2ν2

4

)δ(K − (k + p)). (4.12)
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(Note that |Wk,p〉 has the same form for both the reservoir-free case and the excitable-reservoir

case, as described above.) That is, the reservoir-modified bound state |DK〉 and the plane-

wave state |Wk,p〉 are degenerate and not orthogonal when the two states have the same energy

i.e., 〈Wk,p|DK〉 6= 0 when K = k+ p. The fact that the two states have a non-zero overlap at

the same energy indicates the two states can transform to each other. The physical reason

is that, due to the existence of the scatterers in the excitable reservoir, when a waveguided

photon in either state leaks into the reservoir, the photon has a non-zero amplitude to scatter

back to the waveguide. The re-entrant photon can form a different state with the remaining

photon.

Thus, the restricted out-state of an arbitrary in-state can be straightforwardly obtained

by decomposing the in-state into linear superposition of |Wk,p〉 and |DK〉, and followed by

operating the scattering matrix on each eigenstate. To this end, we investigate the explicit

form of Sr
e(2)

under the bases of its eigenstates, |Wk,p〉 and |DK〉, which, by imposing eigen-

relations Sr
e(2)

|Wk,p〉 = t̄k t̄p|Wk,p〉 and Sr
e(2)

|DK〉 = t̃
(2)
K |DK〉, after some algebra, can be shown

to have the following form

Sr
e(2) =

∑
k≤p

t̄k t̄p|Wk,p〉〈Wk,p|+
∑
K

t̃
(2)
K |BK〉〈BK |

+
∑
k≤p

∑
K

√
κ3

8π

(ν2 − 1)∆√
∆2 + κ2

4

(
∆2 + κ2ν2

4

)(t̃(2)K − t̄k t̄p)δ(K − k − p)|Wk,p〉〈BK |,
(4.13)

where ∆1,2 = (k1,2 − p1,2)/2. The first term describes the transmission of uncorrelated

two-photon states, while second and third terms describe the transmission of correlated states.

We note that the off-diagonal term that maps the correlated state |BK〉 to uncorrelated

state |Wk,p〉. Furthermore, it can be straightforwardly shown that Sr
e(2)

Sr †
e(2)

6= 1, indicating

that Sr
e(2)

is not unitary. When the external reservoir is present, the resulting photon loss

leads to a non-unitary property as the total photonic flux in the waveguide is not conserved
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and decreased (i.e., transmission coefficients, |t̄′k t̄′p|2, |t̄k t̄p|2, |t̄′(2)K |2, and |t̃(2)K |2 < 1). The

properties of the restricted scattering matrix for each scenario are summarized in Table 4.1.

Table 4.1: Properties of restricted scattering matrix Sr
e(2)

in the {|Wk,p〉, |BK〉} bases.

Scenarios Diagonal Unitary
reservoir-free

√ √

non-excitable
√

×
excitable × ×

To gain deeper insights, we further apply the Markovian and non-Markovian density matrix

approach to the presented material loss, and summarize the results in Appendix C.

4.6 Weak-reservoir Condition

For scenarios wherein the material loss is weak, we derive the condition such that the reduced

Hamiltonian approach is approximately valid for the multi-photon case. This is called the

weak-reservoir condition.

The weak-reservoir condition requires: the system-reservoir coupling η̄ and the secondary

scattering strength β̄ are both weak enough, i.e., η̄, β̄ � Ω,Γ; and the photon-reservoir

detuning δ̄ is much larger than the photon-atom interaction strength, i.e., δ̄ � Γ/2. When

such a condition is fulfilled, two-photon case as an example, the interacting eigenstates for

the restricted system variables for the reservoir-modified bound state solution (Fig. 4.5)

reduces to the functional forms with a frequency renormalization Ω → Ω̄ = Ω +∆M − iγM

in the reservoir-free case. Thus, the solutions for both the plane-wave state (Fig. 4.3) and

the bound state are renormalized by a frequency renormalization (Ω → Ω̄). As a result, the

reduced Hamiltonian approach remains valid for the two-photon case when the weak-reservoir
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condition is satisfied. The same conclusions apply to the two-photon and arbitrary N -photon

two-mode cases.

4.7 Summary and Outlook

In essentially all quantum optical scenarios, photonic dissipation results from both photonic

scattering loss (coupling with a non-excitable reservoir) and material loss (coupling with

an excitable reservoir). For photonic scattering loss, it has been shown that, for all input

states, the effects can be incorporated by adding an imaginary part −iγS in the renormalized

transition frequency (γS is the photonic scattering loss rate) [60]. Thus, when the weak-

reservoir condition is satisfied, to take into account the effects of both scattering loss and

material loss, the reduced Hamiltonian approach is valid via the frequency renormalization

Ω → Ω +∆M − i(γM + γS). As a coherent state is a linear superposition of Fock states, the

reduced Hamiltonian approach is also valid when the input is a coherent state under the

weak-reservoir condition. Moreover, by employing the explicit photon-cavity interactions, and

applying the same approach outlined above, it can be shown that the reduced Hamiltonian

approach is also valid in the presence of cavity dissipations. That is, the dissipation rate

γM due to the reservoir can be measured by a single-photon scattering experiment (e.g., a

transmission measurement); the resulting reduced Hamiltonian is then valid for all quantized

optical input.
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Chapter 5

Dissipation-induced Photonic

Correlation Transition

5.1 Introduction

One of the central goals in quantum nanophotonics is to generate photonic entanglement

via atom-mediated photon-photon interactions [20, 21, 38, 86]. In general, dissipations are

considered deleterious that undermine photonic entanglement and impair photon transport

(e.g., total transmissions and reflections in one-dimensional systems). On the other hand,

from the perspective of microscopic scattering, photonic dissipations are manifestations

of photon leakages from the system of interest to the external environment. For initially

entangled photons in the system, the entanglement should persist even after some of the

photons are scattered out of the system (perhaps shared with other degrees of freedom in

the environment). Conventionally, it is convenient to discuss the dynamics of the states that

are restricted to the system only, and phenomenologically parametrize the effects of photon
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leakages by a set of few parameters. By doing so, it is obvious that photon transport is

degraded by the dissipations. However, it is not clear, as a priori, how photonic entanglement

is affected by dissipations. In this article, we computationally study the effects of dissipations

on the photonic entanglement and the photon transport in waveguide QED systems. We

confirm that when the dissipation increases, the transport metrics quickly degrade and exhibit

no correlation signatures. Nonetheless, our results also reveal that even in this dissipative

regime, the photons are still correlated (bunched or antibunched). That is, the correlation

persists even when the transport metrics are described by a single-photon picture. Moreover,

by varying the dissipations, the photon correlation can have a crossover from bunching to

antibunching.

5.2 System and Hamiltonian

To begin with, we describe the waveguide QED systems of interest. We focus on the

configuration that is one fundamentally building block for more complicated systems: Fig. 5.1,

a single two-level atom coupled to a single-mode photonic waveguide. A two-photon Fock

state |2〉 is injected into the waveguide from the left and, after scattering, the photonic

Figure 5.1: Schematics of the waveguide QED system. A two-level atom (represented by a
red sphere) is coupled to a one-dimensional single-mode photonic waveguide. A two-photon
Fock state |2〉 is incoming from the left.
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correlation is numerically determined. The Hamiltonian is described by

H

~
=

∫
dx
(
c†R(x)(−ivg∂x)cR(x) + c†L(x)(ivg∂x)cL(x)

+V̄ δ(x)
[
(c†R(x) + c†L(x))a

†
gae + a†eag(cR(x) + cL(x))

] )
+(ωe − iγ)a†eae + ωga

†
gag,

(5.1)

where notations are defined the same as in Eq. (2.1). γ is the atomic dissipation rate,

where only the effects of photonic scattering loss is considered [60] while the material loss is

neglected [84]. Such a scenario applies to a common setup in cold Rydberg atomic gas [38,

87, 88] where photons are scattered off the Rydberg blockade into the three-dimensional free

space. Notably, such a scenario can be further applied whenever the dissipation mechanism

from first-principle is aligned with that describe by Weisskopf Wigner theory [76]. The

two-photon state is

|Φ(t)〉 =
(∫

dx
∑
j=R,L

ej(x, t)c
†
j(x)e

−iωeta†eag

+

∫∫
dx1dx2

∑
j,l=R,L

φjl(x1, x2, t)e
−iωgt

c†j(x1)c
†
l (x2)√
2

)
|∅〉.

(5.2)

|∅〉 is the vacuum state that has no waveguided photons, and the atom is in the ground state.

eR(L) denotes the single-photon probability amplitude wherein one photon is absorbed by

the atom and the other waveguided photon is moving to the right (left). φRL denotes the

two-photon probability amplitude for the RL branch wherein one photon is moving to the

right and the other to the left. φRR, φLR, and φLL are similarly defined.

To numerically determine the two-photon transport and the correlations, a two-photon Fock

state is injected from the left. The incoming Fock state is an uncorrelated two-photon

product state wherein each photon is resonant with the atom, and has a Gaussian waveform

54



φ(x) = 1/(2πσ2)1/4 exp[−(x − xo)
2/4σ2 + iωox/vg] (ωo = Ω is the center frequency). The

numerical initial condition is φRR = φin = φ(x1)φ(x2) at t = 0. Here, σΓ/vg = 15 so that the

photon has a narrow bandwidth Γ/30 (xo ≈ −3.6σ is the initial position of the photon, and

has no direct relevance of numerical results). The equations of motion are obtained from

the Schrödinger equation i~∂t|Φ〉 = H|Φ〉, which are numerically evolved to obtain the full

spatiotemporal dynamics of the system [39]. In particular, such a numerical procedure yields,

after scattering, the two-photon transmitted (φRR), two-photon reflected (φLL), and one-

transmitted-one-reflected (φRL and φLR) wave functions, which provide complete information

on the two-photon transport and correlations. We note that such an approach is also

applicable to a weak coherent state input [39].

5.3 Transport Metrics

After scattering, the photon transport properties are characterized by three quantities,

T2 (both photons are transmitted), R2 (both reflected), and TR (one transmitted, the

other reflected), respectively. T2 is numerically evaluated by the two-photon transmitted

flux
∫∫

dx1dx2|φRR(x1, x2)|2. R2 and TR are similarly defined. We visualize the transport

properties by representing the triplet (T2, R2, TR) as a point in a three-dimensional plot

(Fig. 5.2(a)). When γ varies, the triplet traces out a curve C (blue curve, the arrow indicates the

direction of the increasing γ). To obtain deeper insight on the photon correlation, we also plot

the trace of the triplet based upon the single-photon picture. From the single-photon picture,

the two-photon transport is the joint probability of the transports of two independent photons.

Specifically, the uncorrelated two-photon transport is given by T2 = T 2
1 , R2 = R2

1, TR = 2T1R1,

where T1 and R1 are single-photon transmission and reflection coefficients, respectively

(T1, R1) = ((γ/Γ)2/(1+γ/Γ)2, 1/(1+γ/Γ)2). When varying γ, the triplet of the uncorrelated

two-photon transport traces out a curve C ′ (red curve). It can be shown that C ′ lies on a
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Figure 5.2: Visualization of the two-photon transport metrics in the dissipative single-atom
case. (a) Trajectory for correlated (C) and uncorrelated (C ′) transport properties when varying
γ. The points P1, P2, P3, and P4 on C represent the cases when γ/Γ = 0, 0.62, 0.85, and 1.5,
respectively. The primed points denote the corresponding points on C ′. (b) ζ, ζT , ζR and ζTR

as a function of γ.

surface because the constraint
√
T2 +

√
R2 +

√
2TR = 1 holds ∀ γ/Γ (noting that C does not

lie on this surface). By definition, any point representing a scattering process that does not

lie on C ′ indicates a two-photon correlation.

For a given γ, the transport properties of the correlated and uncorrelated systems are

represented by P and P ′, respectively. For example, P1 and P ′
1 describe the case for γ = 0.

We now define the distance ζ between the two curves as the distance of two corresponding

point for the same γ, ζ ≡
√

ζ2T + ζ2R + ζ2TR, where ζT = T2,cor − T2,uncor, and ζR, ζTR are

similarly defined. Fig. 5.2(b) plots ζ as a function of γ. As expected, ζ monotonically

decreases and approaches to zero rapidly when γ increases. For example, when γ = 1.5Γ, ζ

degrades to only 2.7× 10−3. Thus, for large dissipations, the two-photon transport metrics

essentially exhibit no correlation signatures, and indeed can be predicted from a single-photon

picture.
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Figure 5.3: Numerical results of the photonic correlations in the dissipative single-atom case.
(a) Upper: probability density of the scattered photons for γ = 0. (a) Lower: g(2)(τ) of the
RR (red curve, right) and the LL (black curve, left) branches for γ = 0. (b) γ = 0.62Γ. (c)
γ = 0.85Γ. (d) γ = 1.5Γ. (e) g

(2)
RR(0) (red curve, right) and g

(2)
LL(0) (black curve, left) for

varying γ. The P points correspond to the cases in (a)-(d), respectively, which are the same
as in Fig. 5.2.
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5.4 Correlation Transition

Here, we study the effects of dissipations on photonic correlation by examining the second-order

correlation function g(2)(τ). Numerically, g(2)(τ) = |φ(xm, xm+vgτ)|2/
∫
dx′|φ(x′, xm)|2

∫
dx′|φ(x′, xm+

vgτ)|2, where xm is a reference position [39]. In Fig. 5.3(a), we plot the probability density

(|φ|2) of the scattered photons for the γ = 0 case. |φRR|2 for two transmitted photons in

Quadrant I (RR branch) is localized along x1 = x2, indicating photonic bunching because

two photons tend to be collocated at the same spatial point. We find numerically that

T2,cor ≈ 1.6% while the single-photon picture gives T2,uncor = 0. The numerically computed

g
(2)
RR(τ) (red curve in Fig. 5.3(a)) is peaked at τ = 0 (g(2)RR(0) ≈ 85 � 1), confirming the

bunching behavior. In Quadrant III, |φLL|2 for two reflected photons (LL branch) is depleted

along x1 = x2, and g
(2)
LL(τ) has a dip at τ = 0 (black curve, g(2)LL(0) ≈ 0.025 � 1), both of

which confirm the antibunching phenomenon.

Table 5.1: Numerical metrics of scattered photons in RR and LL branches in the dissipative
single-atom case. Abbreviations represent, S: photon statistics; A: antibunching; and B:
bunching.

γ
Γ

ζ(γ) T2,cor(%) g
(2)
RR(0) SRR R2,cor(%) g

(2)
LL(0) SLL

0 0.062 1.6 85 B 95 0.025 A
0.62 0.011 2.1 0.98 B 14 0.062 A
0.85 0.0071 4.3 0.0039 A 8.3 0.08 A
1.5 0.0027 12.7 0.51 A 2.5 0.13 A

We now examine the effects of dissipations by scanning γ in the range of [0, 1.5Γ]. We first

focus on the RR branch. When γ increases, the two transmitted photons remain bunched

while the bunching quality degrades as g
(2)
RR(0) decreases. For example, when γ ≈ 0.62Γ,

g
(2)
RR(τ) still exhibits a peak at τ = 0 and g

(2)
RR(0) ≈ 1 (Fig. 5.3(b)). When γ is further

increased to ≈ 0.85Γ, the peak of g(2)RR(τ) at τ = 0 disappears and a dip emerges, indicating
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that the photon statistics has a crossover, and now exhibits a strong antibunching signature

(g(2)RR(0) ≈ 0, Fig. 5.3(c)). Two transmitted photons remain antibunched when γ is further

increased throughout the scanning range while the antibunching quality degrades as g
(2)
RR(0)

elevates and approaches to 1. Figure 5.3(d) plots the results for the γ = 1.5Γ case. For the

LL branch, we find that two reflected photons remain antibunched throughout the scanning

range so that no crossover occurs. Figure 5.3(e) plots g
(2)
RR(0) and g

(2)
LL(0) as a function of

γ, and Table 5.1 provides further numerical metrics. Here, we emphasize that when the

correlation transition occurs (Fig. 5.3(c)), the transport metric ζ already significantly degrades

to 7.1× 10−3, essentially agreeing with the single-photon picture. Thus, the information of

photonic correlation is beyond that of the transport metric. In addition, we note that in

the dissipative regime (Fig. 5.3(b)-(d)), |φRR|2, |φRL|2, and |φLR|2 spread out to off-diagonal

regions. Such a photonic halo effect has been reported in Ref. [68, 69].

5.5 Theoretical Explanation

Here we present a physical argument to account for the dissipation-induced correlation

transition phenomenon. To demonstrate the physics, without loss of generality, we restrict the

discussions in the even mode, where closed-form analytical results are readily established [85].

Figure 5.4: (a) g(2)(τ) signatures for two-photon plane-wave (red, left) and bound states
(blue, right). (b) Two-photon transmission for plane-wave and bound states.
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It has been shown that a complete set of eigenstates in two-photon Hilbert space consists

of two states, uncorrelated two-photon plane-wave state |Wk,p〉 and correlated two-photon

bound state |BK〉 [20]. Photon correlations are sharply manifest in second-order correlation

function g(2)(τ). As plotted in Fig. 5.4(a), g(2)(τ) for |Wk,p〉 (red line, left) remains a constant

cross the entire coherence range of interest, indicating that to detect one is independent from

to detect the other. In contrast, g(2)(τ) for |BK〉 exhibits a sharp cusp near the origin (blue

curve, right).

Notably, any two-photon state can be decomposed into such two states. Henceforth, the

g(2)(τ) behavior results from a combined one from two states. Specifically, when bound state

contribution dominates, g(2)(τ) should exhibit a center peak to manifest bunching statistics.

When plane-wave contribution dominates, g(2)(τ) may exhibit a dip to manifest antibunching

statistics. Such a contribution can be inferred from the transmission amplitude metrics. In

particular, for the resonant condition, given a dissipation rate γ, single-photon transmission

amplitude is (γ − Γ/2)/(γ + Γ/2) while the two-photon bound state transmission amplitude

is (γ − Γ)/(γ + Γ). The weight can be approximated by the two-photon transmission for

plane-wave (γ − Γ/2)4/(γ + Γ/2)4 and that for bound state (γ − Γ)2/(γ + Γ)2, respectively.

As plotted in Fig. 5.4(b), the bound state transmission dominates when γ . 0.87Γ while the

plane-wave transmission dominates when γ & 0.87Γ. As a result, the photon statistics for

transmitted photons undergoes a crossover from bunching to antibunching around γ ≈ 0.87Γ,

which qualitatively explains our numerical observations. The inconsistency here attributes

to a finite-bandwidth effect of practical wave packets as the analysis is performed for single-

frequency component. In conclusion, the induced correlation transition phenomenon can

be explained by, varying dissipations can alter the weight of uncorrelated and correlated

components to effectively change the photon correlations.
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5.6 Summary and Outlook

In this chapter, we computationally study the dissipation-induced correlation transition in

waveguide QED systems. The observation unveils a non-trivial quantum many-body effect

driven by photon correlations. Such a phenomenon may provide a recipe for the design of

fundamental nodes of quantum-optical networks in the presence of dissipations [34, 89], and

could tremendously enable the manipulation of photon entanglement [90] via dissipation-

engineering techniques [91, 92]. Moreover, our results may also provide significant insights

for studies on the effects of dissipations on quantum many-body systems [93, 94].
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Chapter 6

Deterministic Two-photon

Controlled-phase Gate Proposal

6.1 Introduction

The crucial importance of a deterministic two-photon logic gate designing has been introduced

in Chap. 1. Of particular interest is the two-photon controlled-phase gate (referred to as

a CZ gate throughout this chapter [12]), which introduces a nonlinear π-phase shift only

when both control and target qubits are one. There have been quite a few proposals in the

literature. On one hand, the gate can be implemented in linear optics. Three representative

schemes are: (1) the KLM scheme exploits a Mach-Zehnder interferometer (MZI) with an

NS gate on each arm [13]. By performing measurement on an ancilla port of NS gate in a

probabilistic manner, the two-photon Fock state is sign-flipped to give rise to the desired

phase shift; (2) the cluster-state scheme initiates a multi-qubit entangled state through local

in-neighbor interactions described by the Ising model [15, 16]. Then, by performing sequential
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measurements, the cluster-state collapses to the desired two-qubit state in a probabilistic

fashion as well; and (3) the quantum teleportation scheme transports the in-state through well-

crafted quantum circuits. With proper single-qubit operations based on heralded information,

a desired state can be obtained [17]. As a result of linear nature of instrument and a inherent

nonlinear requirement of gate operation, linear optical implementations are doomed to be

indeterministic. The accumulated faults become intractable when being integrated in a large

scale.

On the other hand, a variety of schemes are proposed to take advantage of the inherent

quantum nonlinearity to enable the desired π phase. For instance, Zheng et al. exploits the

dipole transition in N -type four-level system to enable the operation [95]. Nonetheless, it

requires a perfect quantum memory that is by far infeasible. Duan et al. decomposes the

sign-flip step by properly injecting two extra strong laser pulses, which is barely scalable [96].

Gorshkov et al. maps the photonic state to spin wave and enable the π-phase shift using

electron-electron interactions [97]. The scheme is yet too complicated to be controllable.

Ralph et al. exploits the π phase of photonic molecule generations to enable a deterministic

NS gate in KLM scheme while the scheme is too complicated to have practical significance [98].

Biswas et al. adopts the ab-initio system evolution using a hybrid photonic and atomic

degrees of freedom. Nonetheless, the scheme may not be feasible due to a requirement of

precise truncated control at a final evolution time [99].

To sum it up, a faithful, deterministic, and scalable CZ scheme is yet to be proposed. To

this end, in this chapter, we present a CZ gate proposal by exploiting genuine few-photon

nonlinearity in waveguide QED system.
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Figure 6.1: Schematic diagram of the CZ gate proposal, which is characterized by an
MZI with chiral waveguide QED systems on both arms. Qubits |0〉 and |1〉 are different
propagating modes supported in the waveguide. The two-level atom of transition frequency
Ω is coupled to only the state |0〉. Γ and γ are atomic decay rates into the waveguided and
non-waveguided modes, respectively. Photodetectors perform frequency-domain quantum
tomography measurement.

6.2 Schematics

The system is schematically shown in Fig. 5.1, which is characterized by an MZI with chiral

waveguide QED systems on both arms. Chiral represents that the atom only emits photons to

the right. In particular, control and target qubits are frequency-bin and are injected from two

respective input ports. Then two channels are interfered through a 50:50 beam splitter BS1,

and are both coupled to chiral waveguide QED systems. Two parameters are of particular

interest: atom-photon coupling strength Γ, and atomic transition frequency Ω. Here, binary

qubits are encoded by photon frequency degrees of freedom, i.e., |0〉 = |ω0〉, |1〉 = |ω1〉.

Specifically, ω0 = Ω and ω1 is arbitrary as long as |ω1 − Ω| � Γ. Both qubits are both

propagating modes supported in the waveguide. Thus, only qubit |0〉 is resonantly coupled

to the atom while |1〉 is essentially decoupled. Notably, desired operations are performed

through resonant atom-photon interactions. Next, outputs are mixed through another 50:50

beam splitter BS2, thereby giving rise to output ports of qubits 1 and 2, respectively.
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The Hamiltonian to describe motion of |0〉 is given by

H|0〉

~
=

∫
dxc†(x)(−ivg∂x)c(x) +

∫
dxV δ(x)

[
c†(x)σ− + σ+c(x)

]
+ωga

†
gag + (ωe − iγ)a†eae,

(6.1)

where c†(x) (c(x)) is the operation to create (annihilate) a photon at position x in the chiral

mode. Other notations are defined the same as in Eq. (2.1). The Hamiltonian to describe

dynamics of |1〉 is given by

H|1〉

~
=

∫
dxc†(x)(−ivg∂x)c(x). (6.2)

6.3 Operation Mechanism

CZ gate demands four operations on qubits, which are shown to be viable in the presented

scheme. To begin with, BS1 and BS2 perform the following operator transformations.

a†1 =
b†2 − b†1√

2
, a†2 =

b†2 + b†1√
2

,

c†1 =
a†4 − a†3√

2
, c†2 =

a†4 + a†3√
2

.

(6.3)

Here, it is worth noting that beam splitter operation bandwidth readily covers both frequency

modes of qubit. Nonetheless, we show that the same beam splitter operation is performed on

both |ω0〉 and |ω1〉. The reason is |λ0 − λ1| can be adequately small so that both qubits are

within the same operating bandwidth of beam splitter. Typically, the beam splitter operating

bandwidth is ∼ 100 nm. Note that |ω0 − ω1| � Γ is required to fulfill the Hamiltonian

requirement. Then we estimate |λ0 − λ1| under practical condition v = 108m · s−1, λ =
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1.5µm,Γ = 1GHz, |ω0 − ω1| = 10Γ. One has

∆λ = |λ0 − λ1| ≈ 0.225nm � 100nm,

which apparently falls into the same operating bandwidth.

1. |1〉a1|1〉a2 → |1〉a3|1〉a4

For the in-state |in〉 = |1〉a1 |1〉a2 = a†1,ω1
a†2,ω1

|∅〉, where |∅〉 is photonic vacuum state.

After BS1, the state turns into 1
2

(
b† 2
2,ω1

− b† 2
1,ω1

)
|∅〉. Note that both photons undergo

free propagations and do not interact with the atom so that b†1,ω1
→ c†1,ω1

, b†2,ω1
→ c†2,ω1

.

Thus, out-state is |out〉 = 1
2

(
c† 2
2,ω2

− c† 2
1,ω1

)
|∅〉 = a†3,ω1

a†4,ω1
|∅〉 = |1〉a3 |1〉a4 , which

remains the same as the in-state.

2. |0〉a1|1〉a2 → −|0〉a3|1〉a4

For the in-state |in〉 = |0〉a1|1〉a2 = a†1,ω0
a†2,ω1

|∅〉. After BS1, the state turns into
1
2

(
b†2,ω0

− b†1,ω0

)(
b†2,ω1

+ b†1,ω1

)
|∅〉. Note that |ω1〉 undergoes free propagations and do

not interact with the atom so that b†1,ω1
→ c†1,ω1

, b†2,ω1
→ c†2,ω1

. In contrast, |ω0〉 interacts

with the atom, which is characterized by the even-mode single-photon transmission

amplitude [85]

tk =
kvg − Ω− iΓ/2

kvg − Ω + iΓ/2
. (6.4)

Thus, the resonant photon at kvg = ω0 on both arms results in a transmission am-

plitude of −1. Thus, b†1,ω0
→ −c†1,ω0

, b†2,ω0
→ −c†2,ω0

. Thus, out-state is |out〉 =

−1
2

(
c†2,ω0

− c†1,ω0

)(
c†2,ω1

+ c†1,ω1

)
|∅〉 = −a†3,ω0

a†4,ω1
|∅〉 = −|0〉a3 |1〉a4 , which acquires a

π phase.

This operation is referred to Operation 1 (O1) throughout this note because it is in

nature a single-photon process.
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3. |1〉a1|0〉a2 → −|1〉a3|0〉a4

Similar to case 2.

4. |0〉a1|0〉a2 → −|0〉a3|0〉a4

For the in-state |in〉 = |0〉a1|0〉a2 = a†1,ω0
a†2,ω0

|∅〉. After BS1, the state turns into
1
2

(
b† 2
2,ω0

− b† 2
1,ω0

)
|∅〉. When both photons are involved in the interactions, the transmis-

sion process should be analyzed in the two-photon Hilbert space, wherein a complete

set includes two eigenstates, i.e., plane-wave state |Wk,p〉 and bound state |BK〉. Any

incoming states can be orthogonally decomposed into such two states and the trans-

mission of two states are fully described by transmission amplitudes. In particular,

transmission of |Wk,p〉 is described by a product of two single-photon transmission

amplitudes. When both photons are resonant with the atom, the plane-wave component

has a transmission amplitude tktk = (−1)2 = 1, which does not give birth to any phase

shift. The transmission amplitude of bound state component is described by

t
(2)
K =

Kvg − 2Ω− i2Γ

Kvg − 2Ω + i2Γ
, (6.5)

which is equal to −1 when both photons are resonant with the atom (i.e., Kvg = 2Ω) so

that b† 2
1,ω0

→ −c† 2
1,ω0

, b† 2
2,ω0

→ −c† 2
2,ω0

. Thus, out-state is |out〉 = −1
2

(
c† 2
2,ω0

− c† 2
1,ω0

)
|∅〉 =

−a†3,ω0
a†4,ω0

|∅〉 = −|0〉a3|0〉a4 , which acquires a π phase.

This operation is referred to Operation 2 (O2) throughout as it is a genuine two-photon

process.
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As a result, the system passively performs the following unitary transformation on four

two-qubit bases, |00〉, |01〉, |10〉, and |11〉,

U =



−1

−1

−1

1


= (−1)×



1

1

1

−1


. (6.6)

Obviously, the CZ gate is realized subject a trivial global phase π, which can be readily

rectified using linear optical instruments.

6.4 Gate Demonstration

Here we demonstrate the π-phase in O1 and O2 by fully tracing out the spatio-temporal

photon dynamics of an injected finite-bandwidth pulse. For O1, the incoming state is

|χin〉 =
∫

dxφ(x, t = 0)c†(x)|∅〉, where

φ(x, t = 0) =
1

(2πσ)1/4
e−

(x−xo)
2

4σ2 +ikox,

(6.7)

-45 45-30 30-15 150
0

0.04

0.08

Figure 6.2: Analytical results of narrow-bandwidth (σΓ/vg = 5) Gaussian pulse evolution for
O1 in the ideal case (δ = γ = 0). In particular, a long Gaussian pulse (σ = 5vg/Γ) is injected
from left. The out-state wave function and phase shift are recorded.
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where σ and xo is the spatial width and initial position of the Gaussian pulse. ko is the center

wave vector that is resonant with the atom here (δ ≡ kovg − Ω = 0). Here, we select a long

Gaussian pulse (σ = 5vg/Γ) with a narrow bandwidth Γ/10 because: first, Gaussian pulse of

a long coherence time is typically adopted experimentally; and a narrow-bandwidth photon

behavior mimics the single-frequency behavior, which may be well described by analytical

results. By applying the ab-initio time evolution techniques in Ref. [100], the transmitted

wave function in the out-state |χout〉 is recorded. To acquire the phase shift, one performs the

evolution twice, first obtaining the reference phase information φref(x) in the absence of the

atom (i.e., Γ = 0), and the wave function φ(x) after interacting with the atom (i.e., Γ 6= 0).

The phase shift can be evaluated using

θ ≡ phase shift(x) = arg[ φ(x)

φref(x)
]. (6.8)

By doing so, the analytical result is obtained in Fig. 6.2. Apparently, the general envelope

of transmitted wave (wave density represented by solid black curve) remains the same as

the incoming wave (dashed black curve) while uniformly acquires a phase shift π (phase

represented by green line, relative error < 10−4). We further employ numerical tools to

confirm the same result (not shown).

Here we investigate the O2 operation. The incoming state is an uncorrelated two-photon

product state, described by

|χin〉 =
∫∫

dx1dx2φ(x1, x2, t = 0)
1√
2
c†(x1)c

†(x2)|∅〉, where

φ(x1, x2, t = 0) =φ(x1, t = 0)φ(x2, t = 0)
1

(2πσ)1/2
e−

(x1−xo)
2

4σ2 − (x2−xo)
2

4σ2 +iko(x1+x2).

(6.9)

The parameter set of the pulse remains the same as O1. Following similar procedures as the

single-photon case, the out-state and phase shift can obtained in Fig. 6.3. Specifically, the
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Figure 6.3: Analytical and numerical results of a narrow-bandwidth (σΓ/vg = 5) Gaussian
pulse evolution for O2 in the ideal case (δ = γ = 0). (a) Analytical results of the out-state
wave function density. (b) Analytical results of the phase shift. (c) Numerical results of
the phase shift. For instance, if the atomic spontaneous emission time is 1/Γ ≈ 0.1ns, the
coherence length of the Gaussian pulse is 2σ/vg ≈ 1ns.

wave function density and phase shift profile are shown in Fig. 6.3(a) and (b), respectively.

As can be observed, the out-state wave function consists of two parts. The first part is the

bound state part that is restricted along the diagonal line, which exhibits a clear phase shift

π while the plane-wave component in the off-diagonal region exhibits zero phase shift. Both

observations are consistent with our analysis in the previous section. Further numerical

results in Fig. 6.3(c) confirm the analytical ones.

6.5 Gate Performance

6.5.1 Performance Metrics: Fidelity and Transmission

To quantitatively evaluate the gate performance, we now introduce two metrics, fidelity

and transmission. Fidelity refers to the probability of success to detect a π phase of

transmitted photon wave function in a single measurement. We now derive expression of

fidelity and transmission for the two-photon process and the single-photon case can be defined
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in a similar fashion. We assume the region D at which a π phase shift is measured, i.e.,

D = {(x1, x2)
∣∣∣|phase shift(x1, x2)− π| < ε}. ε is the error tolerance, e.g., ε = 0.01π. Such a

number does not affect the result because the numerically obtained π phase can be extremely

precise (relative error < 10−4 so that ε = 0.01π is a proper choice that does not affect the

region of D. Consider a two-photon out-state |χout〉 =
∫
dx1dx2φ(x1, x2)

1√
2
c†(x1)c

†(x2)|∅〉,

the fidelity should be equal to the integral of the probability density over D

F ≡
∫∫
D

dx1dx2|φ(x1, x2)|2. (6.10)

The fidelity shown in Fig. 6.2 and Fig. 6.3 is > 99.99% and ≈ 56.32%, respectively. On the

other hand, in the presence of dissipations, photons may be scattered out of the system to the

non-waveguided mode such that no photons trigger the photodetectors at all. The probability

of a successful probing event can be described by the transmission T in the following

T =

∫∫
dx1dx2|φ(x1, x2)|2. (6.11)

It is worth noting that T is dependent on the dissipation rate γ solely. For the case shown in

Fig. 6.2 and Fig. 6.3, transmission remains unity. To knock out the void detecting events,

one can further define the normalized fidelity

Fnorm ≡

∫∫
D

dx1dx2|φ(x1, x2)|2∫∫
dx1dx2|φ(x1, x2)|2

. (6.12)

It is worth noting that Fnorm is only examined in the presence of dissipations because

Fnorm = F when γ = 0.
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6.5.2 Necessary Condition

Necessary condition demands that a non-vanishing probability to detect π phase shift, that

is, F > 0. We first present the necessary condition for O2, and O1 can be examined through

a similar procedure. The acquired π phase shift is induced by bound state transmission

amplitude t
(2)
K in Eq. (6.5), on which discussions will be based. By taking into account the

frequency detuning, δ ≡ Kvg/2− Ω, analytical prediction of phase shift is approximated by

θ = arg[t(2)K (δ)] = −2 arctan[Γ
δ
], (6.13)

as indicated by green dots in Fig. 6.4(a). Apparently, θ = π only when δ = 0. To validate

the analytical result, we send in the two-photon Gaussian pulse using the same parameter set

in Eq. (6.9) and scan θ as a function of δ in a wide range of [0, 3Γ]. Here θ is evaluated at

which the wave function attains the maximal. As represented by the green curve, θ essentially

agrees with the analytical prediction. The slight inconsistency results from the interference of

uncorrelated two-photon plane-wave states. As a result, the first necessary condition demands

that δ = 0.

Secondly, we investigate the requirement on γ. When the first necessary condition is fulfilled,

the acquired phase is given by

θ = arg[t(2)K (γ)] =


π, γ < Γ

0, γ ≥ Γ

(6.14)

Consequently, to observe a π phase shift, the necessary condition demands that γ < Γ.

Then, to validate such a requirement, we numerically scan F , T , and Fnorm as a function

of γ in the range of [0, 1.5Γ] using the same aforementioned two-photon Gaussian pulse,
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Figure 6.4: Gate performance for O2. (a) Phase shift as a function of δ when γ = 0. (b)
Fidelity and transmission as a function of γ when δ = 0. A narrow-bandwidth Gaussian
modulation (σΓ/vg = 5) is adopted for (a) and (b). For example, if the atom has a spontaneous
emission time 1/Γ ≈ 0.1ns, coherence time of the molecule is 2σ/vg ≈ 1ns. (c) Fidelity as a
function of σ. (d) Fidelity as a function of two-photon offset d.
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represented by curves in Fig. 6.4(b). T (blue) significantly decreases as γ increases (when

γ < Γ), and gradually increase as γ further increases (when γ > Γ) as a result of dissipation-

induced transparency effect [101]. F (red curve) drops rapidly to almost zero as γ increases.

Nonetheless, Fnorm first elevates to almost unity and then remains unity when γ < Γ. As

γ further increases, Fnorm (orange curve) drops dramatically and approaches to zero when

γ ≈ Γ.

To understand the numerical result, we now perform analytical predictions. Note that the

transmission can be orthogonally decomposed into the plane-wave and bound state parts

separately, with component approximated by F (0) and 1−F (0), respectively. In the presence

of dissipations, the bound state transmission is TK(γ) = |t(2)K (γ)|2 =
(

γ−Γ
γ+Γ

)2
while that for

the plane-wave state is TP (γ) = |tk(γ)|4 =
(

γ−Γ/2
γ+Γ/2

)4
. The overall transmission can thus be

approximated by the linear superpositions of two parts

T (γ) ≈F (0)TK(γ) + [1− F (0)]TP (γ)

=F (0)

(
γ − Γ

γ + Γ

)2

+ [1− F (0)]

(
γ − Γ/2

γ + Γ/2

)4

.
(6.15)

The fidelity can be further approximated by the bound state weight

F (γ) ≈F (0)TK(γ)

=F (0)

(
γ − Γ

γ + Γ

)2

,
(6.16)

and normalized fidelity can be further approximated

Fnorm(γ) =
F (γ)

T (γ)

=
F (0)

(
γ−Γ
γ+Γ

)2
F (0)

(
γ−Γ
γ+Γ

)2
+ [1− F (0)]

(
γ−Γ/2
γ+Γ/2

)4 . (6.17)
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The analytical results are represented by dots in Fig. 6.4(b). T and F agree with numerical

results very well (blue and red dots). Fnorm (orange dots), however, is slightly inconsistent

with numerical results around the threshold γ ≈ Γ due to edge effect.

Likewise, by performing a similar analysis, the necessary condition for O1 demands. δ =

0, γ < Γ/2. To summarize the necessary condition for O1 and O2, one demands

δ =0,

γ <Γ/2.

(6.18)

6.5.3 Effects of Finite Bandwidth and Two-photon Offset

Any practical pulse has a finite bandwidth and may affect the gate performance. Also,

when two photons are not well synchronized due to imperfections of photon synchronizing

techniques, the emerging two-photon offset may also degrade gate performance.

Here we perform numerical investigations of fidelity as a function of varying photon width σ

in a wide range of [0.05vg/Γ, 30vg/Γ]. As shown in Fig. 6.4(c), F asymptotically approaches

0 in both the long- and short- Gaussian limit. In the long-Gaussian limit, the two-photon

component is dominated by the plane-wave state to yield a vanishing fidelity. In the

short-Gaussian limit, the off-resonance component dominates to yield a vanishing fidelity.

Nonetheless, a high fidelity (F & 0.99) is achieved when σ ∈ [0.5vg/Γ, 1.5vg/Γ]. That is, the

optimal fidelity is achieved when the photon bandwidth matches the atom-photon interaction

bandwidth.

Next we scan the fidelity by scanning two-photon offset d in a wide range of [0, 3σ], wherein

the choice 3σ guarantees that two Gaussian wave packet is utterly distinguishable based
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on the Rayleigh criterion in diffraction limit analysis. The investigation is performed in

the ideal case (δ = 0, γ = 0) for long (σ = 5vg/Γ) and middle (σ = 1.5vg/Γ) Gaussian

pulses, respectively, as plotted in Fig. 6.4(d). Specifically, F monotonically decreases when d

increases due to an increasing off-diagonal plane-wave component contribution. Nonetheless,

the middle pulse yields a high fidelity even in the presence of d. In particular, when d = 3σ,

F ≈ 79.19% for the middle Gaussian pulse while F ≈ 29.18% for the long Gaussian pulse.

6.6 Chiral-coupling Technique

Here, we introduce possible implementations of phase gate by embedding a single quantum

emitter (e.g., a quantum dot) at the chiral point in a photonic crystal waveguide. That is, the

atom only emits to the right-propagating electrical field so that the incoming photon can not

be backscattered at the chiral point. Such a chiral coupling can be realized by two underlying

mechanisms. First, at the boundary of two materials of different topological number, edge

mode must exist in the photonic bandgap as a result of topology protection. One essential

feature of the edge mode is that unidirectional propagating mode is supported solely where

light automatically contours the impurities without backscattering [102]. Designing and

implementing topological systems are technically challenging in general.

Henceforth, we seek for an alternative implementation through chiral coupling techniques [103,

104]. That is, at special locations in the photonic crystal waveguide, local transversal

polarization of EM field is locked to its propagating direction (transversal spin-momentum

lock, here transversal spin is the same as helicity degree of freedom in particle physics [105]).

The dipole transition is also required to be polarization-selective (transversal spin-emission

lock). Thus, by combining two locking mechanisms, the propagation-direction-dependent

emission can be achieved, thus laying out the underlying mechanism of chiral coupling.
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Figure 6.5: Schematic diagram of one possible experimental implementation, which includes
three parts. The first part is the implementation of CZ gate. A polarization-dependent
dipole emitter is embedded at the chiral point in a two-way (no chirality is required) photonic
crystal waveguide. σ± denote the helicity of circular polarization. ω− and ω+ denote photon
frequency of |0〉 and |1〉, respectively. Γ and γ are atomic decay rates into waveguided
and non-waveguided modes, respectively. y is quantization axis. dx and dz is the dipole
moment amplitude (omit the common phase factor of dipole oscillation e−iω−t information,
but includes the relative phase difference between z and x directions). Ex and Ez are the
electrical field amplitude (omit the common phase factor of wave propagation ei(±kzz−ωt)

information, but includes the relative phase difference between z and x directions) at which
the dipole emitter is embedded. Photons are injected from −z direction.
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Here we elaborate the requirement of EM field at the chiral embedded point, as schematically

shown in Fig. 6.5. The photon frequency degree of freedom is exploited as qubit. The

notations are clarified in the caption. E-field has continuous translational symmetry along

y-axis, that is, y is the quantization axis. E-field ~ER denotes the amplitude for the right-

propagating mode from −z to +z. If Ez carries an oscillator factor e−iωt, Ex should advance

a π/2 phase (corresponds to the phase e−i(ωt+π/2)) so that Ex = iEz. That is

~ER = Ez~ez + Ex~ex = Eo~ez − iEo~ex, (6.19)

where Eo is the magnitude of amplitude for both directions. ~ex and ~ez denote unit vectors

along x- and z- directions, respectively. Here, right-propagating E-field is σ+-polarized. By

invoking the time-reversal symmetry ( ~ER = ~E∗
L where ∗ denotes the complex conjugate), one

can write down other E-fields for the left-propagating mode

~EL =Eo~ez + iEo~ex. (6.20)

That is, the left-moving photon has an opposite σ+ transversal polarization. The phenomenon

that counterpropagating photons have different polarization is called spin-momentum lock.

The emitter is polarization-selective (e.g., by imposing B-field in the quantization axis to

induce the Zeeman split), whose dipole moment expressed as

~d− =dz~ez + idx~ex = do~ez + ido~ex, (6.21)

where do is the magnitude of dipole moment. Note that ~d− is σ−-polarized and the transition

frequency for ~d− is ω−. Here we examine the coupling for the ω− E-field with admissible
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dipole transitions in the following

VR ∝ ~ER · ~d− = 2Eo1do 6= 0,

VL ∝ ~EL · ~d− = 0.

(6.22)

Here, VR/L denotes the coupling strength for the right/left-moving photon, and other notations

are similarly defined. By defining the frequency-bin qubit as follows

|0〉 =|ω−〉,

|1〉 =|ω+〉,
(6.23)

the chiral coupling condition is enabled.

6.7 Summary and Outlook

As a final remark, we now compare our proposal with those discussed in the introduction part.

To gain deeper insights, we adopt seven metrics to evaluate gate performance: deterministic

nature, fidelity, architecture complexity, requirement of additional pumping or driving,

feasibility, requirement of sequential control, one-way property. Specifically, the deterministic

nature describes whether measurement needs to be performed. The fidelity describes how

reliable a single operation can yield a correct result. The architecture complexity characterizes

the apparatus variety and accessibility. Generally speaking, schemes can be passive or active

depending on whether the operation requires additional pumping or driving techniques. A

passive device is of course preferred. Moreover, some schemes do require sequential control of

optical pulses in distinct time windows, which may aggravate the difficulty of implementations.

The one-way property is also preferred for photon-based designing because it may facilitate the
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cascading of devices. Last but not least, feasibility characterizes the overall implementation

difficulty using the current available techniques.

Table 6.1: Comparison of nine photon-based controlled-phase gate schemes.

Metrics Baranger Kimble Lodahl Lukin Agarwal KLM Cluster χ(3) Shen
Deterministic

√ √ √ √ √
× ×

√ √

Faithful
√ √

×
√ √ √ √ √ √

Low-complexity
√ √

× ×
√

×
√ √ √

No-pumping/driving
√

× × ×
√ √ √

×
√

Feasible ×
√

× × ×
√ √

×
√

No sequential control × ×
√

× ×
√ √ √ √

One-way × ×
√

× ×
√ √ √ √
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Chapter 7

Universal Quantum Computing

Proposal

7.1 Introduction

In principle, a classic computer can be built up using a set of few logic gates only, e.g., NAND

or NOR gates. Analogously, for universal quantum computing task, three-qubit gate Toffoli

gate solely suffices [12]. Nonetheless, it is even more technically challenging to introduce a

three-qubit nonlinearity in a deterministic, faithful, and scalable manner than a two-qubit one.

An alternative set typically includes three single-qubit logic gates, Hadamard, S (π/4 gate),

and T (π/8 gate) gates, and one two-qubit gate (e.g., CNOT or CZ). Interestingly, the S-gate

is seemingly unnecessary because the same functionality can be realized by cascading two T

gates. Nonetheless, for fault-tolerant quantum computing designing, it is an indispensible

choice.
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Figure 7.1: Schematic diagram of quantum internet blueprint, which is constituted by
quantum nodes and quantum channels. (a) Global perspective. (b) Individual quantum node
schematics, which processes photon qubits with functionalities characterized by the emitter
architecture, photon-emitter coupling strength Γ, and photon loss rate γ.

For conventional atom-based implementations, desired operation can be performed by sending

well-designed electromagnetic pulses in different frequency range (e.g., optical pulse for

quantum dots, N-V center, tapped ion, microwave pulse for superconducting qubit, and

radiowave pulse for NMR systems). For photon-based one, as a result of linear nature, all

three gates can be easily implemented using linear optical instruments (i.e., beam splitters

and phase shifters).

In the recent decade, the quantum internet blueprint is proposed [89]. As sketched in

Fig. 7.1(a), information is encoded in flying qubits of individual photons, transported through

quantum photonic channels, and processed by quantum atomic nodes. To this end, a complete

set to perform quantum computing using atomic nodes has yet to be developed. As outlined

in Fig. 7.1(b), each node is constituted by one photonic channel and a dipole emitter whose

performance is characterized by the emitter architecture to determine the gate functionality,

and effective Purcell factor (i.e., atomic spontaneous emission rate into the waveguide Γ over

that into the non-waveguided modes γ, Γ/γ) to determine the gate performance (e.g., fidelity,

transmission, efficiency, etc). As demonstrated by the CZ gate proposal presented in Chap. 6,

the one-way chiral waveguide QED system may be a good platform. In this chapter, we

82



present the architecture of atomic nodes for the rest of the complete set, i.e., Hadamard, S,

and T gates.

7.2 Hadamard Gate Proposal

We propose a novel Hadamard gate scheme wherein binary qubits encoded by frequency

degrees of freedom are accommodated in the same photonic channel to effectively increase

spatial utility. In particular, the underlying mechanism is described by photonic frequency

conversion in single-photon Raman scattering mediated by a Λ-type atom. To demonstrate its

deterministic, high-fidelity, and high-efficiency nature, we showcase the gate operation using

practical pulses of a finite bandwidth. We further quantitatively analyze the gate fidelity and

efficiency metrics. Moreover, our results reveal that by tuning photon-emitter coupling and

frequency detuning in a proper manner, an arbitrary unitary single-qubit rotation can be

achieved. Finally, we further generalize the scheme to an N-type hyperfine atomic structure,

which is more experimentally feasible. Detailed results are presented in Ref. [106].

7.2.1 Schematics

As schematically shown in Fig. 7.2, the system consists of a single-mode chiral waveguide

coupled to two collocated and identical Λ-type atoms, and an incident single-photon Fock

state from the left. Each Λ-type atom admits two dipole transitions, 1 ↔ 3 and 2 ↔ 3, of

transition frequency Ω1, Ω2, and spontaneous decay rate into waveguided modes, Γ1, Γ2,

respectively. Transition 1 ↔ 2 is forbidden due to symmetry considerations. Two atoms

are initialized at different ground states 1 and 2, respectively. γ denotes the spontaneous

decay rate of atomic excited state 3 into non-waveguided modes, which manifests as intrinsic

dissipations [60]. To realize a Hadamard gate (H-gate), it is required that the frequency
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Figure 7.2: Schematics of Hadamard gate implementation. Two collocated Λ-type atoms
(represented by red spheres) are coupled to a one-dimensional chiral photonic waveguide,
which are initialized at different ground states. A single-photon Fock state is incoming from
the left. Ω, γ, and Γ denote the atomic transition frequency, atomic dissipation rate, and
atom-photon coupling, respectively. The subscript 1,2 represent transition 1 (1 ↔ 3) and 2
(2 ↔ 3), respectively.

difference of two dipole transitions is much larger than the atom-photon coupling strength,

i.e., |Ω1 − Ω2| � Γ1,Γ2, to be explained later. The injected optical pulse is near resonance

with one dipole transition but far detuned with the other such that any incident photon

only interacts with exactly one atom. To illustrate the physics, no dipole-dipole interactions

between two atoms are taken into account.

The system Hamiltonian is described by

H

~
=

∫
dxc†(x)(−ivg∂x)c(x) +

∫
dxV1

[
c†(x)σ31 + σ13c(x)

]
+

∫
dxV2

[
c†(x)σ32 + σ23c(x)

]
+(ω3 − iγ)a†3a3 + ω2a

†
2a2 + ω1a

†
1a1,

(7.1)

where c†(x) (c(x)) denotes the creation (annihilation) operator for a right-propagating photon

at position x. a†j (aj) is the creation (annihilation) operator for the atomic state j (j = 1, 2, 3),

which has a state energy of ~ωj . σij = a†jai denotes the atomic transition operation from state

i to state j. Ω1 ≡ ω3 − ω1 and Ω2 ≡ ω3 − ω2 are atomic transition frequencies of transitions 1

and 2, respectively. V1 and V2 represent the dipole-field coupling strength of transitions 1 and
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2, respectively. In principle, V1 and V2 can be complex numbers while they are assumed to

be real to facilitate the notations. The complex case can be readily generalized. Γ1 ≡ V 2
1 /vg

and Γ2 ≡ V 2
2 /vg are dipole transition decay rate into the waveguided modes for transition 1

and 2, respectively. The general single-photon state only includes one atom. The general

single-photon Fock state is described by

|Φ〉 =
(∫

dx
[
φ1(x)c

†(x)a†1 + φ2(x)c
†(x)a†2

]
+ ea†3

)
|∅〉, (7.2)

where |∅〉 is the photonic vacuum state that has no waveguided photon with no atomic state.

φ1 (φ2) denotes the single-photon wave function when the atom is at the state 1 (2). e denotes

the atomic excitation amplitude at state 3. By applying Schrödinger equation, H|Φ〉 = ~ε|Φ〉

(~ε denotes single-photon energy), one obtains the following equations of motion

εφ1(x) =− ivg∂xφ1(x) + V1δ(x)e+ ω1φ1(x),

εφ2(x) =− ivg∂xφ2(x) + V2δ(x)e+ ω2φ2(x),

εe =V1φ1(0) + V2φ2(0) + (ω3 − iγ)e.

(7.3)

7.2.2 Operation Mechanism

Binary qubit information is encoded by photon frequency degree of freedom. For instance,

a single photon of frequency kvg is explicitly defined in the single-photon Hilbert space

|k〉 = 1√
2π

∫
dxeikxc†(x)|∅〉. The orthonormal relation is described by 〈k1|k2〉 = δ(k1 − k2).

Now consider the case when a single photon is injected into the waveguide. Its frequency

k1vg is near resonance with the dipole transition 1, i.e., |k1vg −Ω1| ∼ Γ1 yet far detuned with

the atom initially at state 2 because |k1vg − Ω2| � max(Γ1,Γ2). Consequently, the incident

photon merely interacts with the atom that is initially at ground state 1. The reason is that
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the photon is far detuned with the atom initially at state 2 because |k1vg−Ω2| � max(Γ1,Γ2).

In such a scenario, the incoming state can be expressed as

φ1(x) =eik1x [θ(−x) + t1θ(x)] ,

φ2(x) =eik2xt2θ(x),

(7.4)

where k1vg and k2vg denote the frequency of emitted photons when the atom is relaxed to

state 1 and 2, respectively. t1 and t2 represent the transmission amplitude for the single

photon conversion |k1〉 → |k1〉 and |k1〉 → |k2〉, respectively. By solving the eigenstate

involving Eqs. (7.3) and (7.4), the following frequency conversion is achieved

|k1〉 →
k1vg − Ω1 + iγ − i

2
(Γ1 − Γ2)

k1vg − Ω1 + iγ + i
2
(Γ1 + Γ2)

|k1〉+
−i

√
Γ1Γ2

k1vg − Ω1 + iγ + i
2
(Γ1 + Γ2)

|k2〉, (7.5)

which is referred to as Operation 1 (O1) throughout this chapter. Similarly, for another

photon of frequency k2vg, which is near resonant with Ω2 (i.e., |k2vg − Ω2| ∼ Γ2) to excite

the atom that is initially at ground state 2 only, it can be shown that

|k2〉 →
−i

√
Γ1Γ2

k2vg − Ω2 + iγ + i
2
(Γ1 + Γ2)

|k1〉+
k2vg − Ω2 + iγ + i

2
(Γ1 − Γ2)

k2vg − Ω2 + iγ + i
2
(Γ1 + Γ2)

|k2〉, (7.6)

referred to as Operation 2 (O2) throughout. The underlying physics here is the frequency

conversion through Raman scattering process (i.e., |k1〉 → |k2〉 during which ground state 1

is converted to ground state 2, or vice versa) that is mediated by the atomic excited state.

When a combined condition of k1vg = Ω1, k2vg = Ω2,Γ2/Γ1 = (
√
2− 1)2, γ = 0 is fulfilled,

and by defining binary qubit definition of |0〉 = |k1〉, |1〉 = |k2〉, it follows that

|0〉 → − 1√
2
(|0〉+ |1〉) ,

|1〉 → − 1√
2
(|0〉 − |1〉) .

(7.7)
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Figure 7.3: Demonstration of Hadamard gate operations. (a) Frequency-domain binary qubit
wave function plot using finite bandwidth Gaussian pulse. Wave function density of in/out-
states and acquired phase of out-state for (b) O1 and (c) O2.

7.2.3 Gate Demonstration

To demonstrate the gate operations (Eq. (7.1)), we investigate the single-photon Raman scat-

tering process for a practical Gaussian pulse of a narrow bandwidth of Γ2/10, as represented

by frequency-domain wave function density (solid curves in Fig. 7.3(a)).

By employing the time-evolution operator approach on an in-state |χin〉 (see Ref. [100] for

detailed procedures), the out-state |χout〉 = e−iHt/~|χin〉 can be obtained. Note that |χout〉

should contain complete information of emitted single-photon wave function φ1 (when atom

relaxed to state 1, corresponding to |k1〉) and φ2 (when atom relaxed to state 2, corresponding

to |k2〉). Incident pulse is represented by the translucently red curve in Fig. 7.3(b). Emitted

wave function density |φ1|2 and |φ2|2 are represented by red and blue curves in Fig. 7.3(c),

respectively. Apparently, |φ1|2 and |φ2|2 essentially follow the same shape as the incoming

pulse while density drops to only half, which confirms coefficient amplitude relation of 1/
√
2

in Eq. (7.7). On the other hand, a precise π-phase shift is observed to confirm the amplitude

phase −1 in Eq. (7.7). By quantitative examinations of the transmission amplitude and

phase information, O1 (|0〉 → − 1√
2
(|0〉+ |1〉)) is now confirmed.

Following similar procedures, we investigate O2 using the same aforementioned incident

Gaussian pulse (translucently blue curve in Fig. 7.3(c)). As can be observed, |φ1|2 and
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Figure 7.4: Hadamard gate performance of fidelity F and efficiency η as a function of system
parameters. (a) Effects of γ on F and η. (b) Effects of ∆ on F . (c) Effects of photon
bandwidth on combined fidelity F and combined efficiency η for varying γ = 0, 0.2Γ2, and
2Γ2.)

|φ2|2 decrease to one half of that of the incoming pulse to confirm the amplitude relation.

Moreover, φ1 and φ2 acquire phase shift of π and 0, respectively. Consequently, O2 (|1〉 →

− 1√
2
(|0〉 − |1〉)) is now confirmed.

7.2.4 Gate Performance

To quantify gate performances, we define two metrics, fidelity (F1(2)), and efficiency (η1(2))

for O1 (O2). Specifically, F characterizes the similarity of out-state |χout〉 to the expected

state |χexpect〉, i.e., F = |〈χexpect|χout〉|2. Note that |χexpect〉 = − 1√
2
(|0〉+ |1〉) for O1 and

|χexpect〉 = − 1√
2
(|0〉 − |1〉) for O2. By invoking such a metric in Fig. 7.3(b)(c), F1 ≈ 99.67%

and F2 ≈ 99.91% are obtained, respectively, implying that H-gate operates in a highly faithful

manner. On the other hand, coupling between the system of interest and the environment

results in irreversible photon leakages, which manifest as dissipations. Dissipations lead

to photonic flux loss, thus degrading detecting efficiency. Efficiency η can be evaluated by

photonic flux remained in the system of interest, i.e., η = 〈χout|χout〉. η1 = η2 = 1 are

obtained in Fig. 7.3(b)(c).

By adopting two metrics, we study effects of atomic dissipations (γ) and photon frequency

detuning (∆), respectively. When dissipations are present solely (γ 6= 0,∆ = 0), by defining
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λ = Γ1−Γ2

2
, µ =

√
Γ1Γ2, ν = Γ1+Γ2

2
, gate operations (Eqs. (7.5) and (7.6)) now turn into

|0〉 →γ − λ

γ + ν
|0〉+ −µ

γ + ν
|1〉,

|1〉 → −µ

γ + ν
|0〉+ γ + λ

γ + ν
|1〉.

(7.8)

Considering that |χexpect〉 remains unchanged as Eq. (7.7), fidelity and efficiency are obtained

by F1(γ) =
1
2

(
γ−λ−µ
γ+ν

)2
, F2(γ) =

1
2

(
γ+λ+µ
γ+ν

)2
, η1(γ) = 1− 2γ(ν+λ)

γ2+ν2+2γν
, and η2(γ) = 1− 2γ(ν−λ)

γ2+ν2+2γν
.

Results are plotted in Fig. 7.4(a): firstly, when γ increases, both F1,2 and η1,2 monotonically

decrease, indicating that dissipations degrade the fidelity and efficiency for both operations;

secondly, the decreasing rate of F as a function of γ is slightly shorter than that of η for

both operations, which indicates that the fidelity has an upper limit of efficiency; and thirdly,

the decreasing rate for O2 is much smaller than that of O1, which implies that O2 is more

robust to the effects of dissipations. We further numerically confirm the results using the

same aforementioned Gaussian pulses, as denoted by stars and circles in Fig. 7.4(a).

On the other hand, when only frequency detuning is present (γ = 0,∆ 6= 0), the incident

photon for O1 and O2 are of frequency k1vg = Ω1 +∆ and k2vg = Ω2 +∆, respectively. By

redefining |0〉 = |k1〉, |1〉 = |k2〉, gate operations (Eqs. (7.5) and (7.6)) now yield

|0〉 → ∆− iλ

∆+ iν
|0〉+ −iµ

∆+ iν
|1〉,

|1〉 → −iµ

∆+ iν
|0〉+ ∆+ iλ

∆+ iν
|1〉,

(7.9)

thereby giving rise to ungraded efficiency (η1(∆) = η2(∆) ≡ 1) and degraded fidelity

F1(∆) = 1
2

(
1 + 2λµ

∆2+ν2

)
and F2(∆) = 1

2

(
1 + 2λµ

∆2+ν2

)
. As observed in Fig. 7.4(b), first, fidelity

as a function of detuning is the same for both operations; secondly, fidelity decreases as |∆|

increases and has an lower limit 1/2 as |∆| → ∞; and thirdly, fidelity only depends on the
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magnitude of detuning (∆) whereas irrelevant to the red- or blue- shift base (sign of ∆). All

three observations are further numerically confirmed, as represented by circles in Fig. 7.4(b).

In practice, the practical pulse of finite photon bandwidth may contain substantial off-

resonance frequency component to compromise the fidelity and efficiency. Here we numerically

investigate F and η as a function of photon bandwidth σω (noting that σΓ2/vg = Γ2/2σω) for

varying dissipation cases γ = 0, 0.2Γ2, 2Γ2. Specifically, to describe the overall performance for

both operations, we adopt the combined fidelity F = F1F2 and combined efficiency η = η1η2

as evaluation metrics. As shown in Fig. 7.4(c), when σΓ2/vg increases (i.e., decreasing

photon bandwidth σω), fidelity monotonically increases due to increasing resonance frequency

component. Nonetheless, the efficiency monotonically decreases because more photon leakages

emerge in the resonance case than that in the off-resonant case. When σΓ2/vg → ∞ (i.e.,

σω → 0 to exhibit asymptotic single-frequency behavior), both F and η can be asymptotically

predicted by the single-frequency analytical results.

7.2.5 Universal Single-qubit Operation

The presented configuration is not restricted to H-gate solely. Remarkably, by properly tuning

free parameters, it provides versatile utilities to achieve an arbitrary unitary single-qubit

operation. Particularly, to fulfill the versatile utilities, photon-emitter interaction Γ2/Γ1 and

frequency detuning ∆/Γ1 need to be properly manipulated. The atom is assumed to be

non-dissipative (γ = 0). Under such requirement, the gate operations can be summarized

by transformation matrix in a more compact way described by U =

∆−iλ
∆+iν

−iµ
∆+iν

−iµ
∆+iν

∆+iλ
∆+iν

. It has

been shown that arbitrary single-qubit operation can be decomposed into three rotations on

Bloch sphere: (1) rotate ζ w.r.t. the z-axis; (2) rotate θ w.r.t. the y-axis; and (3) rotate β

w.r.t. the z-axis, subject to a trivial global phase α [12]. Correspondingly, the transformation
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matrix is described by U = eiαRz(β)Ry(θ)Rz(ζ) = eiα

e− i
2
(ζ+β) cos θ

2
−e

i
2
(ζ−β) sin θ

2

e−
i
2
(ζ−β) sin θ

2
e

i
2
(ζ+β) cos θ

2

. By

relating two transformation matrices, it can be shown that when a combined condition of

∆

Γ1

=
tan ζ

2

[(√
c2 + 1− c

)2
− 1

]
,
Γ2

Γ1

=
(√

c2 + 1− c
)2

, c =
∣∣∣ cos ζ
tan θ

2

∣∣∣, (7.10)

is fulfilled, a universal single-qubit operation can be achieved with rotation angles specified

by
ζ, θ arbitrary, β = ζ + (2m1 + 1)π,m1 ∈ Z,

α = arctan

tan ζ

[(√
c2 + 1− c

)2 − 1
]

[(√
c2 + 1− c

)2
+ 1
]
+ (m2 +

1

2
)π,m2 ∈ Z.

(7.11)

Note that β is not free because we have assumed that V1, V2 are real numbers. In principle,

when V1, V2 are complex numbers, arbitrary β can be realized, thus enabling a genuinely

arbitrary single-qubit rotation.

In addition, we report five representative single-qubit gates that can be realized by properly

tuning Γ2/Γ1 and ∆/Γ1 in Table 7.1. It is worth noting that the condition of Γ2/Γ1 = 0

represents the situation that Λ-type atom reduces to a two-level atom whereby only a single

atom rather than two is needed in the configuration (Fig. 7.2).

Table 7.1: Five representative single-qubit gates realized by manipulating Γ2/Γ1 and ∆/Γ1

in the presented configuration (Fig. 7.2).

Gate Hadamard X Z S T
∆/Γ1 0 0 0 1

2

√
2+1
2

Γ2/Γ1 (
√
2− 1)2 1 0 0 0

U (−1) 1√
2

[
1 1
1 −1

]
(−1)

[
0 1
1 0

]
(−1)

[
1 0
0 −1

]
e−iπ

2

[
1 0
0 i

]
e−iπ

4

[
1 0
0 ei

π
4

]
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Figure 7.5: Alternative Hadamard gate scheme using N-type four-level system. Dipole
transition 2 ↔ 4 of transition frequency Ω4 and photon-emitter coupling strength Γ4. ∆2 ≡
Ω2 − Ω4. Dipole transition 1 ↔ 3 and 2 ↔ 3 have photon-emitter coupling strengths of Γ1

and Γ2, respectively.

7.2.6 Alternative N-type Four-level System Scheme

So far, we have laid out an analysis of H-gate proposal using Λ-type atom architectures.

Moreover, such a scheme requires a significantly different photon-emitter coupling of transitions

1 and 2, Γ2/Γ1 ≈ 0.17. Notably, for practical Λ-type atoms, it follows that Γ2/Γ1 ≈ 1. Thus,

an experimentally accessible scheme requires Γ1 ≈ Γ2.

Here we show that by introducing an extra state 4 to form an N-type atomic state, H-gate

operations are still fulfilled subject to the requirement of Γ1 = Γ2. Figure 7.5 plots the

schematic diagram wherein a new state 4 enables another dipole transition 2 ↔ 4 of transition

frequency Ω4 and photon-emitter coupling strength Γ4. ∆2 ≡ Ω4 − Ω2 denotes transition

frequency difference. To yield desired H-gate operations, we found two resonance conditions.

1. Resonant Condition 1
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Firstly, when ∆ = Γ/
√
2,
√
2∆2 + Γ4/4 = −Γ, the transformation described by U =

− i√
2

1 1

1 −1

 is realized, which connects to H-gate operation subject to a global phase

of −π/2. Apparently, when such resonance condition holds, ∆ and Γ are in the same

order of magnitude. Note that an N-type atom is typically enabled by a hyperfine

structure, which is of a typical energy shift ∆2 at an order of magnitude, 10GHz [107].

Due to the advent of strong coupling techniques, atom-photon coupling of 10GHz is

readily applicable [30], thereby consolidating the experimental feasibility.

2. Resonant Condition 2

Analogously, the second resonance condition requires ∆ = −Γ/
√
2,−

√
2∆2+Γ4/4 = −Γ,

thus leading to desired H-gate operations described by U = i√
2

1 1

1 −1

 subject to a

global phase π/2.

7.3 S Gate Proposal

The single-qubit S gate introduces a π/4 phase shift for one particular qubit, described by the

unitary matrix

1 0

0 i

. As schematically shown in Fig. 7.6(a), a single two-level system is

chirally coupled to a photonic waveguide. By exploiting photon frequency degree of freedom

and defining |0〉 = |Ω+ Γ
2
〉 and |1〉 = |Ω+∆〉 (|∆| � Γ), it can be shown that |0〉 → e−iπ/2|0〉

and |1〉 → |1〉 to fulfill a S-gate operation subject to a global phase π/2.
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Figure 7.6: Schematics of (a) S and (b) T gate proposals.

7.4 T Gate Proposal

Similar to S gate, the schematics for T gate is shown in Fig. 7.6(b), which performs the

operation of

1 0

0 ei
π
4

. By defining |0〉 = |Ω +
√
2+1
2

Γ〉 and |1〉 = |Ω +∆〉 (|∆| � Γ), it can

be shown that |0〉 → e−iπ/4|0〉 and |1〉 → |1〉 to fulfill a S-gate operation subject to a global

phase π/4.

7.5 Summary and Outlook

In this chapter, we present proposals of three single-qubit quantum logic gates using chiral

waveguide QED systems. Our proposals are of a deterministic nature and a high scalability.

Due to the advent of directional emissions, the required chiral coupling condition is readily

available. Our work provides recipe in designing quantum logic gates by exploiting photon-

emitter interactions, and unearth possibility of implementing frequency-based quantum logic

gates in quantum nanophotonics [108, 109].
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Appendix A

Computational Approach of Ab-initio

Three-photon Dynamics

Here we present the ab-initio computational approach to study the spatio-temporal three-

photon dynamics in Eqs. (2.3) and (2.4). Notably, they fall into the category of hyperbolic

differential equations, which have first-order derivatives in both space and time. Given

the initial condition of an injected wave packet, and a suitable boundary condition (e.g.,

periodic boundary condition, hard-wall boundary condition, etc), the hyperbolic problem

is well-posed and widely studied [110]. Nonetheless, the emergence of Dirac-δ functions

are quite annoying as they may introduce singularities on the numerical mesh to cause

the computational approach blow up. It is worth noting that the Fourier image of Dirac-δ

function is a trivial constant over the entire momentum space. Consequently, to study the

equations alternatively in the reciprocal momentum space might be a proper option to work

around the singularity in the real space methods.
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To begin with, we adopt the following Fourier transform for a single variable as follows

φk(k) =
1√
2π

∫
dxe−ikxφ(x),

φ(x) =
1√
2π

∫
dkeikxφk(k),

(A.1)

where φ(x) is the single-particle wave function in real space with φk(k) is its Fourier image

in the momentum space. With this in mind, the Fourier image of Dirac-δ function is mapped

to a constant of 1/
√
2π. In Eqs. (2.3) and (2.4), there are three types of wave functions

subject to Fourier transforms, that is, three-photon wave function (e.g., φRRR(x1, x2, x3)),

atomic excitation wave function (e.g., eRR(x1, x2)), and three-photon wave function with one

variable evaluated at a constant (e.g., φRRR(x1, x2, 0)). By defining the three-dimensional

Fourier transform for the three-photon wave function (without loss of generality, use φRRR as

an example) as follows

φkRRR
(k1, k2, k3) =

1

(2π)3/2

∫∫∫
dx1dx2dx3φRRR(x1, x2, x3)e

−i(k1x1+k2x2+k3x3), (A.2)

two-dimensional Fourier transform for the two-photon wave function (without loss of generality,

use eRR as an example) as follows

ekRR
(k1, k2) =

1

2π

∫∫
dx1dx2φRR(x1, x2)e

−i(k1x1+k2x2), (A.3)

and two-dimensional Fourier transform for φRRR(x1, x2, 0) as follows

φkRRR(k1, k2, x3 = 0) =
1

2π

∫∫
dx1dx2φRRR(x1, x2, x3 = 0)e−i(k1x1+k2x2)

=
1√
2π

∫
dk3e

ik3x3|x3=0φkRRR
(k1, k2, k3)

=
1√
2π

∫
dk3φkRRR

(k1, k2, k3),

(A.4)
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Eqs. (2.3) and (2.4) can be transformed into fully momentum-space representation

∂tφkRRR
=− ivg (k1 + k2 + k3)φkRRR

− iV̄√
6π

[
ekRR

(k2, k3) + ekRR
(k1, k3) + ekRR

(k1, k2)
]
e−iΩt,

∂tφkRRL
=− ivg (k1 + k2 − k3)φkRRL

− iV̄√
6π

[
ekRL

(k2, k3) + ekRL
(k1, k3) + ekRR

(k1, k2)
]
e−iΩt,

∂tφkRLR
=− ivg (k1 − k2 + k3)φkRLR

− iV̄√
6π

[
ekLR

(k2, k3) + ekRR
(k1, k3) + ekRL

(k1, k2)
]
e−iΩt,

∂tφkRLL
=− ivg (k1 − k2 − k3)φkRLL

− iV̄√
6π

[
ekLL

(k2, k3) + ekRL
(k1, k3) + ekRL

(k1, k2)
]
e−iΩt,

∂tφkLRR
=ivg (k1 − k2 − k3)φkLRR

− iV̄√
6π

[
ekRR

(k2, k3) + ekLR
(k1, k3) + ekLR

(k1, k2)
]
e−iΩt,

∂tφkLRL
=ivg (k1 − k2 + k3)φkLRL

− iV̄√
6π

[
ekRL

(k2, k3) + ekLL
(k1, k3) + ekLR

(k1, k2)
]
e−iΩt,

∂tφkLLR
=ivg (k1 + k2 − k3)φkLLR

− iV̄√
6π

[
ekLR

(k2, k3) + ekLR
(k1, k3) + ekLL

(k1, k2)
]
e−iΩt,

∂tφkLLL
=ivg (k1 + k2 + k3)φkLLL

− iV̄√
6π

[
ekLL

(k2, k3) + ekLL
(k1, k3) + ekLL

(k1, k2)
]
e−iΩt,

∂tekRR
=− γekRR

− ivg (k1 + k2) ekRR
− i

V̄√
6π

{∫
dk1

[
φkRRR

+ φkLRR

]
+

∫
dk2

[
φkRRR

+ φkRLR

]
+

∫
dk3

[
φkRRR

+ φkRRL

]}
eiΩt,

∂tekRL
=− γekRL

− ivg (k1 − k2) ekRL
− i

V̄√
6π

{∫
dk1

[
φkRRL

+ φkLRL

]
+

∫
dk2

[
φkRRL

+ φkRLL

]
+

∫
dk3

[
φkRLR

+ φkRLL

]}
eiΩt,

∂tekLR
=− γekLR

+ ivg (k1 − k2) ekLR
− i

V̄√
6π

{∫
dk1

[
φkRLR

+ φkLLR

]
+

∫
dk2

[
φkLRR

+ φkLLR

]
+

∫
dk3

[
φkLRR

+ φkLRL

]}
eiΩt,

∂tekLL
=− γekLL

+ ivg (k1 + k2) ekLL
− i

V̄√
6π

{∫
dk1

[
φkRLL

+ φkLLL

]
+

∫
dk2

[
φkLRL

+ φkLLL

]
+

∫
dk3

[
φkLLR

+ φkLLL

]}
eiΩt,

(A.5)

which are now converted to ordinary differential equations (ODE) because no partial deriva-

tives show up any longer. Simulation methods of ODE are well studied in the textbook [111].
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We adopt the numerical approach of a second-order accuracy in time, in which a paradigm to

illustrate the essential spirit is shown as follows

ḟ(t) =af(t) + g(t),

⇒ f(t+∆t) =f(t)ea∆t + g(t+
∆t

2
)ea

∆t
2 ∆t.

(A.6)

To fully trace out the spatial-temporal three-photon dynamics, we initiate the momentum-

space wave functions as follows

φkRRR
(k1, k2, k3, t = 0) =

(
2σ2

π

)3/4

e−σ2(k1−ko)2−σ2(k2−ko)2−σ2(k3−ko)2e−i(k1−ko)xo−i(k2−ko)xo−i(k3−ko)xo ,

(A.7)

where ko, xo, and σ are photon center frequency, initial position, and pulse width. Typically,

assuming the pulse is incident from the left, xo < −3.3σ to guarantee that > 99.9% pulse

energy is involved in the scattering process. ko and σ may vary depending on particular

physical situation of interest. For instance, the most common scenario of interest is a narrow-

bandwidth resonant pulse injected to the waveguide, in which ko = Ω/vg and σ = 5vg/Γ

(corresponding to photon bandwidth vg/2σ=Γ/10). The initialization equivalent to inject an

uncorrelated three-photon pulse of the Gaussian profile described by

φRRR(x1, x2, x3, t = 0) =
1

(2πσ2)3/4
e−

(x1−xo)
2

4σ2 − (x2−xo)
2

4σ2 − (x3−xo)
2

4σ2 e
iωo
vg

x1+iωo
vg

x2+iωo
vg

x3 . (A.8)

At the final time tf , we apply inverse Fourier transform on the momentum-space wave function

to end up with the real-space wave function φ(x1, x2, x3, tf ), which are visualized and further

processed.
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Appendix B

Effective Mapping from Three-level to

Two-level System

Here we present the analytical procedures to show that in the far-detuned regime, the

intermediate state of the three-level ladder system can be adiabatically eliminated so that

the three-level system can be effectively mapped to a two-level system with renormalized

system parameters. To illustrate the physics, the calculation is performed in the single-photon

picture. The Hamiltonian of the effective two-level system in Fig. B.1(a) is

H

~
=

∫
dxc†(x)(ωa +∆o − ivg∂x)c(x) +

∫
dxVoδ(x)

[
c†(x)σ− + σ+c(x)

]
+ ωaa

†
eae

=

∫
dx(ωa +∆o)c

†(x)c(x) + ωaa
†
eae︸ ︷︷ ︸

Ho

+

∫
dxc†(x)(−ivg∂x)c(x) +

∫
dxVoδ(x)

[
c†(x)σ− + σ+c(x)

]
︸ ︷︷ ︸

H1

,

(B.1)
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(a) (b)

Figure B.1: Effective mapping from a three-level ladder system (b) to a two-level system
(a). In (a), |e〉 and |g〉 are atomic excited and ground states, respectively, which is weakly
driven by individual photons injected into the waveguide. Parameters are defined by: ωa

is transition frequency; ∆o is single-photon detuning; γo is spontaneous emission rate into
non-waveguided modes that manifest as dissipation rate; and Vo is atom-photon coupling
strength. In (b), |r〉, |e〉, and |g〉 are excited, intermediate, and ground states, respectively.
e ↔ g is weakly driven similar to (a) of coupling strength V while r ↔ e is coupled to a
strong laser of Rabi frequency Ωc. ω1 and ω2 are respective transition frequencies. ∆c and
∆p are respective frequency detunings. γ is spontaneous emission rate into non-waveguided
mode of transition e ↔ g.

where notations are defined in Fig. B.1 caption. Ho and H1 describes the free and interaction

parts, respectively. In the interaction picture, one has that

V1(t) =ei
Ho
~ tH1e

−iHo
~ t

=

∫
dxc†(x)(−ivg∂x)c(x) +

∫
dxVoδ(x)

[
c†(x)σ−e

i∆ot + σ+c(x)e
−i∆ot

]
.

(B.2)

The general state is

|Φ1(t)〉 =
[∫

dxφ(x)c†(x) + e(t)e−i∆ota†e

]
|∅〉, (B.3)

where φ is single-photon wave function and e is atomic excitation amplitude. |∅〉 denotes the

photonic vacuum state. By applying the Schrödinger equation in the interaction picture, we
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end up with the equations of motion

∂tφ =− vg∂xφ− iVoeδ(x),

∂te = i(∆o + iγo)e− iVoφ(0).

(B.4)

The Hamiltonian describing the three-level ladder system of Fig. B.1(b) in the interaction-

picture is

V2(t) =

∫
dxc†(x)(−ivg∂x)c(x) +

∫
dxV δ(x)

[
c†(x)σege

i∆pt + σgec(x)e
−i∆pt

]
+
Ωc

2
(|e〉〈r|ei∆ct + |r〉〈e|e−i∆ct).

(B.5)

The general state is

|Φ2(t)〉 =
[∫

dxφ(x)c†(x) + e1(t)e
−i∆pta†e + e2(t)e

−i(∆p+∆c)ta†r

]
|∅〉, (B.6)

where e1 and e2 denote excitation amplitudes of |e〉 and |r〉, respectively. Other notations

are defined the same as previous. By applying the Schrödinger equation in the interaction

picture, one has that
∂tφ =− vg∂xφ− iV e1δ(x),

∂te1 = i(∆p + iγ)e1 − iV φ(0)− i
Ωc

2
e2,

∂te2 = i(∆p + iγ +∆c)e2 − i
Ωc

2
e1.

(B.7)

It can be shown that in the far-detuned regime |∆p| � Ωc, e1 is approximated by V
(∆p+iγ)

φ(0, t)+

Ωc

2(∆p+iγ)
e2. By substituting it into Eq. (B.7), e1 can be adiabatically eliminated [76]

∂tφ =− vg∂xφ− i
V Ωc

2(∆p + iγ)
e2δ(x),

∂te2 = −i
Ω2

c

4(∆p + iγ)
e2 − i

V Ωc

2(∆p + iγ)
φ(0, t).

(B.8)
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By relating Eqs. (B.4) and (B.8) with the condition V � Ωc, the following effective mapping

relation can be established
∆o =− Ω2

c∆p

4(∆2
p + γ2)

,

γo =
Ω2

cγ

4(∆2
p + γ2)

.

(B.9)
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Appendix C

Material Loss Model Using Density

Matrix Approach

In this appendix, for the material loss scenario presented in Chap. 4, we compare our

entanglement-preserving approach with the conventional density matrix approach. The

density matrix approach provides a probabilistic measure of the system dynamics while does

not directly provide the information of the photonic wave function and the entanglement. By

invoking the Markovian assumptions as in Ref. [76], the dynamics for the reduced density

matrix of the atom is given by

ρ̇A =− γD[σ+σ−ρA − 2σ−ρAσ+ + ρAσ+σ−], (C.1)

where γD = πη2(Ω)D(Ω) is the resulting dissipation rate. The right-hand side of Eq. (C.1) is

exactly the Lindblad superoperator with a damping rate γD. First, the dissipation rate γD is

the same as the lowest-order dissipation rate γ1 in Eq. (4.6) in our entanglement-preserving

approach, as the density matrix approach does not describe the photonic dynamics in the
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reservoir (i.e., the coherent hopping events described by the β’s). That is, for coherent

processes, only in the weak-reservoir limit (β̄D̄∆ω/δ̄ � 1), does the density matrix approach

yields the approximate dissipation rate. Nonetheless, the frequency shift ∆1 is not predicted

by the density matrix approach even in the weak-reservoir limit. Our approach provides a

framework to investigate the photonic loss mechanisms by engineering the excitable reservoir

and beyond the weak-reservoir limit.

As a further comparison, we now apply the non-Markovian density matrix approach to

investigate the same excitable reservoir scenario. After some algebra, it can be shown that

ρA fulfills

ρ̇A(t) = −i∆NM(t) [σ+σ−, ρA(t)]− γNM(t) [σ+σ−ρA(t) + ρA(t)σ+σ− − 2σ−ρA(t)σ+] , (C.2a)

∆NM(t) = −Im
[
ȧ(t)

a(t)

]
, γNM(t) = −Re

[
ȧ(t)

a(t)

]
, (C.2b)

ȧ(t) =(−i)2
∑
i1

η2i1e
−i(ωai1

−Ω−iε)t

∫ t

ti

a(t1)e
i(ωai1

−Ω−iε)t1dt1

+
∞∑
n=2

(−i)n+1
∑
i1

∑
i2 6=i1

· · ·
∑

in 6=in−1

ηi1βi1i2 · · · βin−1inηine
−i(ωai1

−Ω−iε)t×

∫ t

ti

e
i(ωai1

−ωai2
)t1dt1 · · ·

∫ tn−2

ti

e
i(ωain−1

−ωain
)tn−1dtn−1

∫ tn−1

ti

a(tn)e
i(ωain

−Ω−iε)tndtn,

(C.2c)

where ∆NM(t) and γNM(t) are time-dependent frequency shift and dissipation rate for non-

Markovian approach, respectively. Apparently, such a non-Markovian approach can describe

photon hopping processes up to an arbitrary order of accuracy. Nonetheless, it again yields a

mixed state solution to lose the coherence information [112]. Moreover, such a approach does

not apply when multi-photon entanglement is necessarily taken into account, e.g., two-photon
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bound state solution. The comparison of the Markovian, the non-Markovian density matrix

approaches, and the entanglement-preserving approach is summarized in Table C.1.

Table C.1: Comparison of Markovian and non-Markovian density matrix (DM) approach and
the entanglement-preserving approach.

Markovian DM non-Markovian DM Entanglement-Preserving
order of accuracy lowest-order all-order all-order

multi-photon entanglement × ×
√

state description mixed state mixed state pure state
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