Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-92-03

1992

Inversion Laws for Specifications and Recursive Procedures

Wei Chen

In this paper, we continue the work on the formal approach to program inversion by presenting
programming laws for specifying the inverse program according to the specification of its
forward program, and for inverting recursive procedues. The formal establishment of these
laws, once more, convinces us that program inversion has nice mathematical properties that
can be used in formal program development. Some examples are included to illustrate the
usage of the laws developed in this paper.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Chen, Wei, "Inversion Laws for Specifications and Recursive Procedures" Report Number: WUCS-92-03
(1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/515

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/515?utm_source=openscholarship.wustl.edu%2Fcse_research%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Inversion Laws for Specifications
and Recursive Procedures

Wei Chen

WUCS-92-03

January 1992

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Inversion Laws for Specifications and Recursive
Procedures

Wei Chen

Department of Computer Science
Washington University
Campus Box 1045
St. Louis, MO 63130

January 2, 1992

Abstract

In tlis paper, we continue the work on the formal approach to
program inversion by presenting programming laws for specifying the
inverse program according to the specification of its forward program,
and for inverting recursive procedures. The formal establishment of
these laws, once more, convinces us that program inversion has nice
mathematical properties that can be used in formal program develop-
ment. Some examples are included to illustrate the usage of the laws

developed in this paper.

1 Introduction

The concept of program inversion can be traced back to Dijkstra and Feijen
[6]. Subsequently, it was somewhat explored by Gries in [7]. Since then, the
concept has popped up every so often. In [4] and [2], a formal approach to
program inversion was proposed and applied in developing some programs
that are otherwise hard to prove. Later, Von Wright [13] incorporated this
formal concept of program inversion into a general programming calculus
called refinment calculus. In this paper we continue in this direction by for-
mally establishing laws for specifying the inverse program and for inverting
procedures.

In the next section, we introduce some notions and notations we will need
in the rest of the paper. In section 3, we present laws to specify the inveise

program. When applying program inversion in program construction, we
aim at the inverse program. If we did not know what it would achieve, then
the whole approach of program inversion to program construction would be
questionable. To our best knowledge, most programs developed by program
inversion are specified informally. Our contribution is to formally establish
three specification laws that can be used to derive a specification for al-
most every interesting inverse program from the specification of its forward
program. In this sense, we will have proved that program inversion is a
correctness-preserving transformation.

In section 4, we give laws to invert a so-called specification statement.
Although such laws are rarely needed, the symmetry between them and the
laws in section 2 strikes us as interesting enough for the inclusion.

In section 5, an inversion law is supplied for the program substitution
that is used to define the parameter mechanism of procedures. In section 6,
we extend the definition of program inversion to the procedure declaration
and discuss inversion laws for procedures that contain recursion.

Finally, for the purpose of illustration, we take an example reported in
[12]. Small examples are also given throughout. A set of inversion laws is
collected in an appendix.

2 Notions and notations

We consider programs in Dijkstra’s guarded programming language. They
satisfy the following healthiness conditions:

Law of the Excluded Miracle: [-wp(S,F)].
Law of (Finite) Conjunctivity: [wp(S, R A Q) = wp(S, R) A wp(S, Q)]

Law of A-Independence: [wp(S,R A Q)= wp(S,R)A (Q V wp(§,)]
when no program variable of S appears free in Q.

We also extend our program constructs by a specification stalement of
the form =z : [pre, post], which is defined in [9] as

wp(z:[pre,post],R) = pre A(Vz :post: R).

We say that a program Sp refines to S, written So C 51, if [wp(So, R) =
wp(S1, R)] holds for all R. We say that a program S is totally correct with
respect to a pre/postcondition pair pre and post, if [pre = wp(S, post)].

The specification statement does not necessarily satisfy the Law of the
Excluded Miracle, thus a potential miraculous statement, We use a specifi-
cation statement to specify a programming task and then refines it until we
reach a program that contains no specification statements. The suitability
of this approach is expressed in the following theorem.

Suitability Theorem

A program 5 is totally correct with respect to a pre/postcondition pair
pre and post if and only if 2 :[pre, post] T S where z is the sole program
variable of 5.

We refer the reader to [1, 11, 9] for more details about the specification
statement and refinement. We will abbreviate ¢ : [P,T] as {P}, the usual
assert statement. Note that wp({P}, R) = P A R.

Now the formalization of program inversion in [4] can be expressed as
follows. Program Sw inverts to program Sv under precondition P if

{P} C Sw; Sv.

A necessary condition of this is [P = wp(Sw,T)]. Taking the weakest
possible P, we define an inversion relation T~ by

Sw C7! Sy = {wp(Sw,T)} C Sw;Sv.

This observation is due to Von Wright [13]. Note that every program has at
least one inverse, executable or not. In fact, £:[true, false] is an inverse for
any program.

3 Specifying the inverse program

Using program inversion in programn construction, we not only need toinvert
a program, but also need to guarantee that the inverse obtained refines the
specification statement that specifies the programming task we set out to
resolve. The inverse specification is not simply the one that exchanges the
precondition and postcondition of the forward specification.

Example 1 Wehavez:[z=1lL2>0Cz:=2z+landz:=z+1C"1
zi=g—1,butnot 2:fz >0,z =1Cz:=0-1

The formalization of program inversion suggests that if a program ter-
minates under a certain precondition, then its inverse takes its strongest
postcondition as precondition and its precondition as postcondition.

The strongest postcondition of 2 := 2--1 with respect to the precondition
x=1is ¢ =2; thus,wehave 2:[z = 2,2 = 1| C ¢ =2 - 1. O

From the above example, we see that the key to specify the inverse
program is to find the strongest postcondition of the forward program. In
general, it is hard to formulate a strongest postcondition in a closed form.
But, there are special cases frequently seen, in which a closed form can easily
be formulated. For example, when a program takes a one-point predicate as
postcondition, this predicate specifies exactly what a program can achieve
and forms the core of its strongest postcondition. Specifically, we have the
following specification laws for program inversion.

Law of Inversion Specification
For non-miraculous program Sw, i.e. wp(Sw, F') = F, we have
(1) (one-point)
Sw C~1 Sv, z:[P,z=FE] C Sw
g:lz=EA(Fz=:P),P]C Sv

(2) (universal to existential)

SwC™ Sv, z:[P,(Vi:B;:z=E)] C Sw
z:[(3i:Bj:e=E)A(Jz:: P), P C Sv

(3) (existential to universal)

SwC™ Sy, z:[P,(3i:B;:2=E)] C Sw
z:[(Vi:Bi:a=E)A(3zuP), Pl C Sv

where 2 is the sole program variable for Sw and Sv, and © does not occur
free in E, and B; and E; for any 1.

Proof Obviously, (1) can be obtained by taking empty 7 and true B; in (2)
and (3). The proofs of (2) and (3) are similar, although (2} can be actually
derived from (1) with a formal concept [5] of the logical constant. We will
prove (3) in the following.

First, it should be clear that for any predicate we introduce can be
considered as containing no free ¢, since we can always rename ¢ to achieve
this. Now we derive

irue
= { rewriting premises }
(VR : [R Awp(Sw,T) = wp(Sw; Sv,R)]) A [P = wp(Sw,(Fi: B; :
z = E;))]
= { instantiate R and monotonicity of wp }
[P = wp(Sw, wp(Sv, P A wp(Sw, (31 B; 1 2 = E;))]
= { conjunctivity of wp }
[P = wp(Sw,wp(Sv, P)A(3i: B; 1z = E;))]
= { wp(Sv, P) contains no free ¢ }
[P = wp(Sw,(Fi: B; : wp(Sv, P)g. Az = E;))]
= { calculus }
[P = wp(Sw,(34: B : wp(Sv, P)§,) A(3i: Bi i a = E;))]
= { A-independence of wp, using no free z in B; and F; }
[P = wp(Sw,(3i : Bi : x = E))A((Ii: B+ wp(Sv,P)g,) vV
wpl(Sw,)
= { second premise, and Sw is non-miraculous }
[P=(3i:B;: wp(Sv,P)%l.)]
= { no free 2 in the consequent }
{(da = P)y=(di: B;: wp(Sv,P)%i)]
= { one-point rule }
[(Bz=P)y=>(3i:B;: (Va2 = E; : wp(Sv, P)))]
= {nofreez in B; }
[(BzuP)=> @i (Va: By = 5 = F; : wp(Sv, P)))]
= {@AV)=>(v3)}
(Az = P)=(Fiu(Bi =z = L) = wp(Sv, P))]
= { no free ¢ in wp(Sv, P) }
[(Fz = PyA(Vi:B;:z = E;) = wp(Sv, P)]
= { the suitability of the specification statement }
z:[(Vi:Bi:e=FE)An(Fa:: P), PIC Sv
(|

Note that Sw is non-miraculous if all specification statements it contains
are non-miraculous. The checking is straightforward from the definition.

In most cases, we won’t stop refining Sw until it contains no specification

statement.

There are many programming examples that can apply the one-point
specification to specify the inverse program such as inversion count in [6],
binary tree construction from traversals in [4], LU-multiplication in [2], and
list compression in [13]. To illustrate the use of these laws, let us take a

trivial example.
Example 2 Consider the following Sw and Sv.

Sw 2 ife=0—2:=5lz=1— 2z:=0fi

Sv =2 fea=5—2:=0z=0— z:=14
Clearly, Sw C~! Sv, and

z:f0<e=X<L(X=0=>2=5)AX=1=z=0})C Sw.
Then by the Law of Inversion Specification(2),
z:f(X=0A2=5)V(X=1A2=0),0€2=X <1]C S
which is exactly the same as
zifz=XA{z=0ve=5,(X=0=2=)AX=5=2=0)]C 5%

when taking X for a logical constant. O

The above three specification laws also suggest a general programming
strategy. When the precondition of a specification statement that specifies
a programming task we are to fulfill contains the one-point predicate of the
above kinds, we can try first to solve a new problem that is specified by
essentially exchanging the pre/postcondition of the original specification,
and then to invert the program for the new problem. The result of the
inversion yields a program that satisfies the original specification.

4 Inverting the specification statement

To specily an inverse, we look for the strongest postcondition of the forward
specification. We have found that if the postcondition contains a one-point
predicate of some kind, then the strongest postcondition can be easily for-
mulated. But when we invert a program, we are looking for its initial value.

This indicates that if the precondition of a specification statement contains
a one-point predicate, we may easily invert this specification statement.

Law of Specification Inversion
(1) z:[xr =EAP,R| C! 2:[RAPz = F]
(2) z:[(Vi: Bi:ze = E)AP,RIC 2:[RAP(3i: B;:z = E;)] and
(3) 2:[(3t:Bi:a=E)AP,RIC Y 2:[RAP,(Vi: B; : 2 = E;)]

where no free z occurs in P, F, and B; and E; for any 7.

Obviously, (1) is a corollary of (2) and (3). The proofs of (2) and (3) are
similar, although (3) can be actually derived from (1) with a formal concept
[5] of the logical constant. We will prove (2) in the following, but first we
give two lemmas.

Lemma 1
Vit Bira=E)APYCw:[Vi:Bi:z=E)AP,(3i: B; :a = E;)]
where no free ¢ occurs in P, and B; and E; for any 1.

Proof We can assume that no free 7 appears in the predicates we introduce.
For any predicate @, assume (Vi: B; 12 = EJ)APAQ, ie. wp({(Vi:B;:
z = FE;) AP} Q). Then
wp(z:[(Vi: Biro=E)AP,(3i: By : 2= Ep)], Q)
= { semantics }
(Vi:Bi:e=FE)APANz:(Fi:B;:2=E): Q)
= { assumption }
(Va:{(Fi:B;:a=5E):Q)
= {nofreezin @}
(Ve (Vi:Binze=FE;: Q)
= {}
(Viz(Vz:Binz=FE;:Q))
= { one point rule, using no free z in B; and E; }
(Yi:Bi:QF,)

<= {1}
(Vi:Bi:x=EAQ)

< {nofreeiin @}
(Vi:B;:ax=E)AQ

= { assumption }

irue

Hence, by the refinement definition, the lemma holds. (]

Lemma 2 z:[pre A P,post] = z:[pre A P,post A P] where P contains
no free 2.

Proof Thisisimmediate from the definition of the specification statement;
thus, omitted. |

Proof of Law of Specification Inversion(2)

{wp(e:[PA(Vi: B;:z = E;),R],T)}
= { semantics }
{PA(Vi:B;:z = E;)}
C { Lemma 1 }
z:[PANVi: Bz =E5),(3i: B2 = E))

C { introduce sequential composition }
w:{PA(Vi:Bi:a=E),PARLz:[PAR,(3i: B;:a = E;))
= { Lemma 2 }

v [PANVi:Bira = E),Rlj2:[PAR,(3i:B;: ¢ = E;)]
Hence, by the definition of program inversion, the law holds. a

When applying program inversion in program construction, we first de-
velop a forward program and then invert it to a program we need. In
this sense, the forward program is an intermediate program and need not
executable. We may choose to leave some simple specification statements
unrefined in the forward program, expecting their inverses to be easily im-
plemented, aithough such cases should be rare.

Example 3 Let I be a logical constant, i.e. it cannot appear in the final
program.

z:fz = f(D),z=1]
- { Law of Specification Inversion(1) }
vife =1z = f(1)]

= { introducing assignment }

z = f(z)

5 Inversion of program substitutions

In order to give inversion laws for the recursive procedure, we need first dis-
cuss the inversion of the program substitutions used to define the parameter
mechanism of the procedure. For a program prog, prog|f\a] is another pro-
gram obtained by substituting a for f in prog. Semantically, we distinguish
two types of substitutions in this paper, namely, value and value resulf. We
will separate one type from the other by a semicolon in the above order.
Formally, we define

wp(proglfo; f1\4;a], B) = wp(prog, RY).
where fp and f; are mutually disjoint and do not occur free in R, and A is
al expression.
This definition is taken from [10]. The requirement that R contain no free
f's is a convenience, rather than a real limitation. We refer the inferested
reader to [10] for a detailed discussion.

Definition 1 We say that g is globalin prog(fo; fi\4;a] if g appears free
in prog but is different from f’s, and that ¢ is a global program variable of
proglfo; fi\A;a] if ¢ is global in prog[fo; f1\4;e] and a program variable in
prog. 0

Law of Substitution Inversion
Sw C-1 Sy
Sw(fo; L\A;a] T~ Sv|fo; f1\A4; a

where « is not global in Sv(fo; fi\4;¢], fo is not a program variable of Sw,
and no global program vaziables of Sw[fo; f1\4;a] occur free in A.

Proof We can assume that no free f’s occur in A. For a predicate R that
contains no free f’s, we derive

10

wp(Swlfo; fi\A;a]; Sv[fo; fi\A4;a], R)
= { definitions, let @ = R% }
wp(Swlfo; fi\A;al, wp(Se, @) 5:)
= { definition and no free ¢ in wp(Sv,Q) }
'wp(Sw,wp(Sv,Q)ff fﬁ;f‘
< {nofree fypin A}
wp(Sw,wp(Sv,Q) A fo = AYS"
= { independence of wp }
(wp(Sw,wp(Sv,QN A (fo=AV wp(Sw,false)))ﬁ”fl
= { substitution, no free f’sin A }
wp(Sw, wp(Sv, Q))jrf,;h
< { premise }
(wp(Sw, true) A Q)ﬁ’?;ﬁ
= { definition of @, no f’sin R }
wp(Sw, true) O A R
= { definition of program substitution }
wp(Sw(fo; f1\A;a], true) A R
Hence, by the definition of program inversion, the law holds. O

Note that the free f’s in A are different in nature from the free f’s in Sw
and Sv. We can rename f’s in Sw and Sv but not in 4. This is why we allow
f’s to occur free in A while in the proof we can assume no f’s are free in
A. The additional requirement that fp is not a program variable guarantees
that when the inverse substitution starts, fo assumes the same value as the
one when the forward substitution terminates. There are programs that take
fo as a program variable. We can avoid it by introducing a local variable
as fo’s proxy. We require that a should not be global in order to avoid the
problem caused by aliasing or side effects, as the following example shows.

Example 4 We do not have
(f = f+a)es Aesa] 7' (f = f - a)le; f\e;]

although in general we have f:= f+a C~! f := f — a. This is because f
is actually an alias of ¢ and the normal inversion laws cannot apply. |

We have not mentioned the result substitution because we have no need
nor capacity to recover the initial value of a result parameter.

11

6 Inversion of recursive procedures

We consider the following syntax for a procedure declaration.

proc P(fo; f) o
Body(P(4; a))

end

where Body is a sequence of statements and may contain recursive calls to
P, and fy specifies the value parameter while f; specifies the value result
parameter. If the Body part is not important, we abbreviate a procedure
declaration to its head proc P().

Semantically, a procedure declaration specifies a parametrized predicate
transformer. It is given as the least fixed point of Body(P[fo; fi\A4;a]) in
P, written (P 1 Body(P[fo; fi\A;a])). And every procedure call P(B;b)
is a predicate transformer of (uP :: Body(P fo; fi\4;e]))[fo; f1\B;b].

Definition 2 We say that proc Pw() inverts to proc Pv(), written
proc Pw() T~! proc Pv()

if the parametrized predicate transformer denoted by proc Pw() inverts to
the parametrized predicate transformer denoted by proe Pu() 0

Law of Procedure Declaration Inversion

(V Xw, Xv : Xw C~! Xv : Body,,(Xw) C~! Body,(Xv))
proc Pw(fo; f1) proc Pu(fo; f1)
Body, (Pw(4;a)) E7! Body, (Pv(4;a))
end end

where ¢ is not global of the procedure declaration Pv, A contains no global
program variables of the procedure declaration Pw, and f is not a program
variable of the procedure declaration Pw.

Proof Tirst we define

Sw(Xw) = Body,(Xw[fo; f1\4;a])
Sv(Xv) = Body,(Xv{fo; fi\A4;a])

Then our proof obligation is to show that

(pPw i Sw(Pw)) T~ (uPv :: Su(Pv))

12

Since the least fixed point can be approximated from abort on ordinal num-
bers, it suffices to show Sw? C~! Sv* for any ordinal A.
We use induction to show this. The base case is trivial, since abort C-1

abort.

Step Case:

S+l

= { definition of approximation }
Sw(Sw)

= { definition of Sw }
Body,,(Sw*[fo; fi\A;a])

=~' { LH., Substitution Inversion, premise }
Bady,(5v*[fo; f1\A;a])

= { definitions }
S,U)«-E-l

Limit Case:

{wp(Suw?, true)}

= { approximation, using A is a limit }
{(38:8 < X:wp(Sw?, true))}

= {}
(UB: B < A : {wp(Sw?, true)})

C { inductive hypothesis }
(LB : B < A: SwP; SvP)

c { approximations are ascending }
(LB =8 < A Sw'@;Sv’\)

= {}
(UB: B8 < A:Sw?); Svh

= { approximation, using A is a limit }

Swh; Spt

Hence, Sw* C~1 Sv* for any ordinal A, then the law holds. 0

13

This law tells us that in inverting a procedure declaration, we need to
find another so-called inverse procedure declaration, and that such an inverse
declaration can be obtained by inverting the body of the forward procedure
declaration. During inversion, each recursive call in the forward procedure
is simply renamed to a call to the inverse procedure declaration with the
same parameters.

Usually, a specification statement is attached to a procedure declaration
for the purpose of facilitating the (re)use of the procedure. Semantically, this
specification statement refines to the parametrized predicate transformer
denoted by the procedure declaration. Syntactically, we write

proce P(fo; f1)
— 2, f1:[pre,post] e
Body
end

where & contains all global program variables of P. Note that we have
assumed that the value parameter fy is not a program variable.

To introduce a call to it in program development, we refine a specification
substitution x, f1:[pre, post][fo; fi\4;a] to P(4;a). For example, given the
following procedure declaration

Proc add(fo; fl)
~fiisli=Ffi=fot+ Fle
fhi=Jfo+h

end

then we can have the derivation

zifz =X, =X +1]

= { rename the initial value }
i = Fle = F41]

C {introduce substitution }
fitlfi = F, L = F + follfo; A\L 2]

C { introduce procedure call }
add(1;z)

By applying the Law of Inversion Specification, we can also derive a
specification statement for an inverse procedure declaration.

14

Example 5 Consider inverting

proc Pu(e; f)
—ff=F>0,7=2"
Ff=0—fo=1
1f#£0— fi=f—~1LPu(e, [l f=2+f
fi

end

We choose Pu for the name of an inverse declaration we will end with. So
by the Law of Procedure Declaration Inversion, we need to invert the body
of Pw under the assumption that Pw(e; f) £~ Pu(e; f). In order to invert
the if statement, we need to find mutually exclusive postconditions for the
two guarded commands, which will be taken as the guards in the inverse
program we are looking for. Obviously, the first guarded command ends
with f = 1 while the second ends with f # 1.

We also need to invert the three assignments. We do not know how to
directly invert f := I to an executable program, but this statement has a
precondition of f = 0. It is straightforward that {f = 0}f =1 C~? f:= 0.

We will carry out the inversion process in a “calculational” style. For a
program Sw, (Sw)™! denotes the set of its inverse programs. The similar
notation is also used for the procedure declaration. An inversion process is
to reduce such a set to a single program. (A formal treatment of this style
will be reported elsewhere.)
proc Pw(e; f) -
—fif=F>0,f=2e

iff=0— fi=1

1F#0— fi=f—1;Pule, fi f =24]

fi

end
= { add assertions }
proc Pu(e; f)
~ ff=F20,f=2F
Hf=0- {f=0}f:=1 {f=1}
gfﬂqf:: f=LPule,f)f =2+ F{f#1}

end
i { introduce the name Pv, Inversion Specification(1) }

15

proc Pu(e; f)
—Fif=2FAF20,f=F]e
iff=0— {f=0}f:=1 {f=1}
0f #0— fi=f =L Pule, £ f = 2% f {f # 1}
fi
end
{ Alternative Inversion }
proc Pule; f)
—fif=2FAF20,f=F]e
iff =1~ ({f=0}f:=1)"
gf# 1= (f:=f=1Pu(e, f);fi=2=f)""

e

end
{{f=0}f:=1C"1 f:= 0, Semicolon Inversion }
proc Pv(e; f)
—fif=2FAF>0,f=F|e
iff=1— f:=0
gm 1= (f=2%f) 5 (Po(e, N (fi=f- D)7

I

end
{ Assignment Inversion, assumption }
proc Pu(e; f)
—f:[f=2F/\F20,f=F]o
=1 fi=0
gf F L1~ fi=f/2Po(e,f) f=f4+1

1;

end
Hence, proe Pu() ' proc Pu().]

By applying the Law of Substitution Inversion, we have

Law of Procedure Call Inversion
proc Pw() C~! proc Po()
Pw(A;a) C-1 Py(4;a)
where ¢ is not global of the procedure declaration Py, A contains no global

program variables of the procedure declaration Pw, and the value parameter
fo is not a program variable of the procedure declaration Pw.

16

Example 6 Given the following procedure declaration

proc addy(fo; f1)
—fitlh=Ffi=fo+ Fle
f=hA+fo

end

then one inverse declaration of it is

proc sub,(fo; fi)
—fihi=fo+ Ffi=Floe
hi=h-fo

end

By the Law of Procedure Call Inversion, add,,(1;2) C=1 sub,(1;2).
Since z:{z = X,z = X + 1] C add,(1;z), by the Law of Specification
Inversion(1), we obtain z:[z = X + 1, = X] C sub,(1;2). 0

7 Inversion of recursive tree traversals

In this section, we invert a recursive procedure that generates the pre- and
inorder traversals for a given labeled binary tree to yield another recursive
procedure of constructing a labeled binary tree. Qur main purpose is to
illustrate applying the inversion laws in the development of a more inter-
esting program, rather than the novelty of the program per se. Actually,
the problem is first addressed by van de Snepscheut in [12]. In our opinion,
there are some gaps that remain in the correctness arguments of his inverse
program, since there is no inversion law given for procedures. In contrast,
our derivation will be fully justified by a set of formally established inversion
laws, together with the standard programming laws.

A labeled binary tree is either empty L or a triple {{,d,r) with label d
and lelt and right subtrees { and r. For a nonempty tree t, t.d, t.0, t.r, in(¢)
and pre(t) denote its label, left subtree, right subtree, inorder traversal and
preorder traversal, respectively. We use - for catenating sequences.

Then for d of label type, ¢ of tree and = and y of sequence, the following
tree traversal procedure is given by van de Snepscheut in [12].

17

proc traverse(d,t;€)
- z,y:[z,y = X,Y, 5,y = in(t)-hhd-X, pre(t) HY] o
ift =1 —a:=dHz
It #L— traverse(d,t.r); traverse(t.d,1.0);
y = t.d-Hy
fi

end

Simply from the specification of this procedure, we observe that apply-
ing the Law of Specification Inversion does not yield a specification that
describes a computation of constructing a labeled binary tree. So we change
t into a value result parameter, and the procedure becomes

proc traverse{d;t)
-zt (z,y,t=X,Y,T,
z,y,t = n{T)Hd+-X,pre(T)4+Y, L] o
ift=01— 2 :=dH=z
I #L— traverse(d,t.r); traverse(t.d,t.l);
yi=tdHy ti=1
fi

end

As usual, to invert the above procedure, we need to add some assertions.
Note that a tree can be uniquely constructed only if all its labels are distinct,
so by assuming this we annotate the above procedure as follows.

proc traverse(d;t)
- z,y,t:[(z,y,t = X,Y,T) A distinet(d, 1) ,
z,y,t = (D) Hd++X, pre(T)HY, L] o
ift =L— 2z :=dHz {d=hd(z)}
|t #L— traverse(d,t.r); traverse(t.d,t.l); y := t.d4-+y;
ft= (L, hd(y),)}t =L {d # hd(s)}
fi

end

which obviously inverts to

18

proc tree(d;t)
—z,y,t: (=, y,t = in(T)+HdH-X, pre(T)HY, 1)
Adistinet(d, T}, z,y,t=X,Y,T)e
ifd = hd(z) — 2 := (=)
[d# hd(z) — ¢ := (L, hd(y), L}; y:= ti(y);
tree(t.d,t.l); tree(d,t.r)
fi

end

This procedure can be used to develop a program of constructing a la-
beled binary tree from its pre- and inorder traversals. But note that the
initial condition of { =1 is not needed in the second guarded command
and retained at the end of the first guarded command, so we can further
transform the above procedure by removing the initial condition of ¢t =1:

proc tree(d;t)
~z,y,t:[(z,y = n(T)HdHX, pre(T)+Y)
Adistinet(d,T), z,y,t = X,Y,T] e
ifd = hd(2) — z :=tl{z); t:=1
{ld# hd(z) — t.d == hd(y); y:= ti(y);
tree(t.d,t.0); tree(d,t.r)
fi

end

The above procedure is given in [12] as an inverse of the procedure at the
beginning of this section. Clearly, this is not the case with our formalismm.

8 Conclusion

We have presented laws to specify the inverse program. These laws indi-
cate that program inversion is a correctness-preserving transformation. The
correctness of the inverse program can be derived from that of its forward
program. We have also established some laws fo invert procedures that can
contain recursion. Since a recursive solution usually contains fewer explicit
states than its repetitive counterpart while the process of program inversion
is essentially to recover the changes on the state space, it is very likely that
a recursive solution is easier to invert. This is confirmed by the problem
of constructing a tree from its traversals. We invite the reader to compare

19

the inversion process of this paper with the one in [4] that gives a repeti-
tive solution. It is our hope that the formal establishment of the procedure
inversion laws will expand the application domain of program inversion.

In general, programming is a hard task; anything that makes it easter
should be welcome. In [8], nearly one hundred laws of programming are
given. Although these laws are claimed to constitute a complete set in the
sense that some clearly defined subset of truths about programming can be
deduced, it is also mentioned that we are still a long way from knowing how
to apply them in program construction on the scale required by modern
technology and that deeper and more specific techniques are desperately
needed. We believe that program inversion is becoming one of such needed
techniques.

9 Appendix: inversion laws"
9.1 Definition
Sw ™! S = {wp(Sw,T)} C Sw; Sv.

9.2 Primitives

Law of Assignment Inversion
P = def(EvYg, Az = Evg,
{P}z:=FEw C-1 z:= FEv

Law of Assertion Inversion

(P} ! (P}

Law of Specification Inversion
(1) 2:[a=EAP,R C! 2:[RAP,z = E]
(2) 2:{(Vi: Bi:e=E)AP,RIC' 2:[RAP,(3i:B;:z = E;)] and
(3) 2:((3i:Bi:a=E)AP,RIC Y 2:[RAP,(Vi: B;:2 = E)]

where no free @ occurs in P, E, and B; and E; for any i. O

20

9.3 Program constructors

Law of Semicolon Inversion

S’UJQ [;_1 S?Jo, Swy E"l Suy
Swo; Swy C-1 Swy; Sug

0
Law of Alternation Inversion
(Vé,j:i#j:BviABv;=F), (Viu Sw; C71 Sv;)
ifi :: Bw; — Sw; {Bv;}fi C-1 ifi:: Bv; — Sv; fi
a

Law of Block Inversion

Sw C~' Sv
|[varl; 555w {{ = E}])] C-1 |[varl;l:= E;Sv]|

provided that ! is the sole program variable of § and no [appearsin E. O

Law of Iteration Inversion

Sw T~ Sv
{-~Bv}do Bw — Sw{Bv}od C-1 do Bv — Svod

Law of Substitution Inversion
Sw ™ Sv
Sw(fo; fi\A;a] E-1 Su[fo; f1\A;a]

where a is not global in Sv{fq; f1\4;4a], fo is not a program variable of Sw,
and no global program variables of Sw[fo; f1\4;a] occur free in A. O

Law of Procedure Declaration Inversion

(V Xw, Xv : Xw C~1 Xv: Body,,(Xw) C~! Body,(Xv))

proc Pw(fo; fi) e proc Pu(fo; f1) *
Body,(Pw(4;a)) C™! Body,(Pv(A;a))

end end

21

where ¢ is not global of the procedure declaration Pv, A contains no global
program variables of the procedure declaration Pw, and fp is not a program
variable of the procedure declaration Pw. o

Law of Procedure Call Inversion

proc Pw() C~! proc Pv()
Pw(A;a) T Pv(4;a)

where @ is not global of the procedure declaration Pv, A contains no global
program variables of the procedure declaration Pw, and the value parameter
fo is not a program variable of the procedure declaration Pw. O

9.4 Miscellaneous
Law of Straightforward Inversion
{t=E}Sw C™" z:=F

where 2 is the sole program variable of Sw and F contains no free z. W]

Law of Inverse Simplification

Sw T~ Svy, Svp C Svy
Sw !;_1 S‘Ul

9.5 Specification

Law of Inversion Specification
For non-miraculous program Sw, i.e. wp(Sw, F') = F', we have

(1) (one-point)
Sw E7! Sv, z:[P,ze=FE]C Sw
z:fz=FEA(3z:P), P]C Sv

(2) (universal to existential)

SwCt 8v, z:[P(Vi:B;i:z=E)] C Sw
z:{(3i:Bire=E)A(Jz = P), P]C Sv

22

(3) (existential to universal)

Sw T S, z:{P,(Fi:B;:z=E)C Sw
z:[Vi:Birz=E)A(Tz: P), P] C Sv

where z is the sole program variable for Sw and Sv, and 2 does not occur
free in F, and B; and E; for any 1. O

9.6 Notes
1 All the proofs of the above laws can be found in either [3] or this paper.

2 All the above laws except probably the Law of Inverse Simplification
can be written in the calculational style, e.g. the Law of Semicolon
Inversion can be written as (Sp; $1)™' 2 (S1)7%; (So) 7t

References

[1] Back, R.J.R.: “A calculus of refinements for program derivations”, Acta
Informalica 25, 593-624, 1988.

[2] Chen, W.: “A formal approach to program inversion”, in: Proc. of 1990
ACM 18th Ann. Comp. Sci. Conf., Washington, DC, 398-403, 1990.

[3] Chen, W.: “Programming by transformation — theory and methods?,
D.Sc. Dissertation, Washington University (St. Louis). May 1991.

[4] Chen, W.and Udding, J.T.: “Program inversion: more than fun!”, Se.
of Comp. Prog. 15, 1-13, 1990.

[5] Chen, W. and Udding, J.T.: “The specification statement refined”,
WUCS-89-37, Washington University (St. Louis), 1989. Under revision.

[6] Dijkstra, E.W. and Feijen, W.H.J.: A Method of Programming,
Addison-Wesley Publishing Company, Reading, MA, 1988.

[7) Gries, D.: The Science of Programming, Springer-Verlag, New York,
NY, 1981.

(8] Hoare, C.AR., Hayes, 1.J., He, J., Morgan, C.C., Roscoe, A.W.,
Sanders, J.W., Sorensen, LH., Spivey, J.M. and Sufrin, B.A.: “Laws
of programming”, CACM 30, 672-686, 1987.

23

[9] Morgan, C.C.: “The specification statement”, ACM TOPLAS 10, 403-
419, 1988.

[10] Morgan, C.C.: “Procedures, parameters, and abstraction: separate
concerns”, Sci. of Comp. Prog. 11, 17-27, 1988.

[11}] Morris, J.M.: “A theoretical basis for stepwise refinement and the pro-
gramming calculus”, Sci. of Comp. Prog. 9, 287-306, 1987.

{12] Snepscheut, J.L.A. van de: “Inversion of a recursive tree traversal”,
IPL 39, 265-267, 1991.

[13] Wright, J. von: “Program inversion in the refinement calculus”, to
appear in IPL.

	Inversion Laws for Specifications and Recursive Procedures
	Recommended Citation

	tmp.1453823647.pdf.Vfjvd

