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Figure 4.4: Single-task learning for detecting finger movements.
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Figure 4.5: Multi-task learning for detecting finger movements. The green circle is
the shared representation w0 of all fingers’ movements, and the red circles wi, i =
1, 2, ..., k are the specific representation of finger i. The prediction at time t for finger
k is defined as yt = (w0 +wk)

⊤~xt.
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4.7.2 SVM-MTL and LR-MTL

In this section, we will demonstrate the SVM-MTL algorithm. Given K classification

tasks, let us define w0 as the shared weight of the K classifier. wk>0 is the specific

weight of classifier k. yki is the label of the task k, where k = 1, 2, · · · , K, i =

1, 2, · · · , N . Based on Equation 4.13, we adapt multitask learning and rewrite the

SVM-MTL setting as the following:

Minimize: λ0 ‖w0‖q +

K
∑

k=1

λk ‖wk>0‖q +

K
∑

k=1

N
∑

i=1

ξki

Subject to: ∀k, i, yki((w0 +wk)
⊤~xi + b0 + bk) ≥ 1− ξki, ξki ≥ 0 (4.37)

Similarly, we have the MTL adaptation for logistic regression.

Minimize:
N
∑

i=1

log(1+exp(−yki((w0+wk)
T~xi+b0+bk)))+λ0 ‖w0‖q+

K
∑

k=1

λk ‖wk>0‖q

(4.38)

In both Equation 4.37 and Equation 4.38, λ0 is the regularization constant for shared

weight, and λk is the regularization constant for classifier k. Note that the parameter

λ0 regulates how much of the learning is shared. If λ0 → +∞, then w0 = 0 and

we reduce our setting to the original binary classification mentioned above. On the

other hand, setting λ0 = 0 and λk>0 ≫ 0 will result in weight vectors wk>0 = 0. As a

result, one would learn only a single classifier with weight vector w0 for generic finger

movement.
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Chapter 5

Results

5.1 Evaluation Metric

In this work, we are using AUC as our evaluation metric. This is the area under the

receiver operating characteristic curve, which is a plot of sensitivity (true positive

rate) with respect to 1− specificity (false positive rate) (in Figure 5.1). This is widely

used for binary classification since it allows user to specify a discrimination threshold

for decision making. It is a better evaluation metric than accuracy when the number

of the positive examples is much less than that of the negative examples. Note that

the AUC of a random classifier (red dotted line) is 0.5, the AUC of a perfect classifier

(green solid line) is 1, and a good classifier (blue solid line) should have an AUC

between 0.5− 1.

5.2 Time Lag

There is a characteristic delay between brain activity and resulting movement. In the

first place, we studied the effect of this delay between the ECoG signal and the actual

movements. A set of decoding accuracy is obtained by shifting the feature dataset ~xt

and the target label yt by a presumed time-lag (i.e. we evaluated the performance of

decoder: h : h(~xt) = yt+δT , by increasing the value of δT .)

In Figure 5.2, we show the decoding accuracy as a function of time-lag for individual

finger movement. The bolded line is the average decoding performance of individual
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Figure 5.1: Receiver Operating Characteristics. X-axis is the false positive rate, and
y-axis is the true positive rate.

fingers with respect to different time-lags. Time-lag is selected from 0 to 800 mil-

liseconds and the best decoding time-lag is selected as the value of δT that leads to

the best decoding performance. In this case, the average time lag for the ipsilateral

finger movement is around 158 ms. This is in accordance with previous studies by

our group which show that the ipsilateral cortical activity precedes actual movement

on an average by 160 ms [30]. We have fixed the decoding time lag for the ipsilateral

finger movement decoding throughout the paper. The longer time-lag also confirms

that we are using the signals from the ipsilateral cortex directly, rather than using

the signals bypassed from the contralateral cortex.
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Figure 5.2: Different time-lag and its corresponding decoding performance. X-axis is
the value of time-lag (seconds), and y-axis is the AUC.
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5.3 Detecting Finger Movement

We characterize the movement detection task as a binary classification. We first

set a threshold thresh, and label the targets yt as 1 if the velocity at time t vt ≥

thresh, and -1 otherwise. Then, we use ℓ1-regularized logistic regression for the

binary classification. We use receiver operating characteristic (ROC) curve to evaluate

the performance of the binary classification. ROC curve is widely used in signal

estimation and detection theory, and is a graphical plot of true positive rate versus

the false positive rate. ROC analysis allows user to pick the optimal discrimination

threshold for the binary classifier. We pick regularizer λ from validation dataset.

Figure 5.1 shows the result of ROC curve for three subjects. This demonstrates that

ℓ1-regularized logistic regression is a powerful tool in detecting finger movement.

5.4 Learning Commonality of the Brain Activity

In this section, we present how multitask learning improves the performance of the

classifier. Although multitask learning has been employed in the context of brain

signal decoding [1], we are the first to decode ECoG signals in humans. We group

all the individual finger movement together, such that each task has similarity with

others. First of all, we evaluate the performance of single-task learning using SVM.

Then, we study the SVM-based multitask learning. As we show in Equation 4.37

and in Equation 4.38, we make trade-off between modeling joint component and and

modeling class-specific components by adjusting parameters λ0 and λk>0. We search

a number of regularization constant (λ0, λk>0), and pick up the parameters that

lead to highest average AUC for all tasks. We compare the ℓ1/ℓ2-regularized logis-

tic regression-based multitask learning (LR-MTL) with ℓ1/ℓ2-regularized SVM-based

multitask learning (SVM-MTL). Table 5.1, Table 5.2, and Table 5.3 shows the mul-

titask learning versus single-task learning with different classifiers (ℓ1/ℓ2-regularized

logistic regression-based multitask learning, and ℓ1/ℓ2-regularized SVM-based mul-

titask learning). In most cases, multitask learning helps classification performance.

This confirms our assumption that there exists brain activity that controls the finger

movement, irrespective of any particular finger. By carefully searching the best pa-

rameters that regulates the trade-off between learning commonality among all finger
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movement and specificity of exact finger movement, the classification algorithm can

be significantly improved. Again, it illustrates that multitask learning is particularly

helpful in learning similar tasks that are controlled by the brain.

Classifier Thumb Index Middle Ring Little Average Improvement

STL-SVM1 N/A 0.8505 0.8282 0.7581 0.6953 0.7830
16.05%

MTL-SVM1 N/A 0.8322 0.8346 0.8044 0.8002 0.8179
STL-SVM2 N/A 0.8477 0.8284 0.7479 0.7017 0.7814

25.53%
MTL-SVM2 N/A 0.8494 0.8569 0.8561 0.7865 0.8372
STL-LR1 N/A 0.8403 0.8276 0.7396 0.6956 0.7758

14.59%
MTL-LR1 N/A 0.8444 0.8325 0.7964 0.7607 0.8085
STL-LR2 N/A 0.8467 0.8281 0.7403 0.6974 0.7781

1.44%
MTL-LR2 N/A 0.8382 0.8238 0.7472 0.7161 0.7813

Table 5.1: Multitask learning vs single-task learning for Subject 1.

Classifier Thumb Index Middle Ring Little Average Improvement

STL-SVM1 0.7710 0.9016 0.9021 0.8888 0.7124 0.8316
9.35%

MTL-SVM1 0.7641 0.8956 0.8998 0.8968 0.8007 0.8514
STL-SVM2 0.7710 0.9061 0.9021 0.8888 0.7124 0.8316

5.60%
MTL-SVM2 0.7845 0.8948 0.8990 0.8894 0.7586 0.8453
STL-LR1 0.7537 0.9060 0.8542 0.8809 0.5795 0.7949

8.84%
MTL-LR1 0.6619 0.8931 0.8893 0.8906 0.7301 0.8130
STL-LR2 0.7685 0.9060 0.8560 0.8862 0.5968 0.8027

5.71%
MTL-LR2 0.6644 0.8932 0.8896 0.8907 0.7319 0.8140

Table 5.2: Multitask learning vs single-task learning for Subject 2.

5.5 Feature Analysis

An important part of decoding finger movements from cortical activity is to map the

features back to cortical domain. Physiologically, it is important to understand the

features which contribute most to the decoding algorithms i.e. the features with the

highest weights. As shown in Table 5.4 below, the decoding accuracy, indicated by

AUC, does not change much as we increase the number of features used for clas-

sification. This signifies that from the large feature set used for decoding, a few
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Classifier Thumb Index Middle Ring Little Average Improvement

STL-SVM1 0.8260 0.8044 0.9369 0.6398 0.7635 0.7941
6.68%

MTL-SVM1 0.7592 0.8303 0.9445 0.6663 0.8391 0.8079
STL-SVM2 0.7680 0.7454 0.9459 0.7404 0.7705 0.7940

18.67%
MTL-SVM2 0.8611 0.8242 0.9481 0.7479 0.7801 0.8323
STL-LR1 0.8032 0.7986 0.9443 0.7611 0.7832 0.8181

-4.96%
MTL-LR1 0.7306 0.8424 0.9490 0.6873 0.8360 0.8091
STL-LR2 0.7872 0.8125 0.9487 0.7570 0.7748 0.8160

-4.88%
MTL-LR2 0.7361 0.8385 0.9459 0.6799 0.8349 0.8071

Table 5.3: Multitask learning vs single-task learning for Subject 3.

features form the core and are the most important. To visualize these core features,

we mapped the top 30 features back to the brain. Figure 5.6 shows the normalized

weights from the features used to classify finger movements from non-movements.

It is apparent from the figure that the features with the highest weights fall in the

DLPFC and premotor areas. This is what we would expect since these two areas are

the one’s most involved in the planning of motor movements. As previously reported,

the frequency range with the highest weights falls in the lower frequencies in ipsilateral

movements [30]. In our case, the frequencies fall in the delta-alpha range. As noted

by Tallon-Baudry, attention networks of the brain affect the oscillatory synchrony as

low as theta-alpha range frequencies [28].

Another important conclusion inferred from Figure 5.6 is that the potential appli-

cation of µ-ECoG implanted in humans. (Figure 5.52). Since the top features are

located on a small region of the brain, micro-electrode will replace the large 8× 8, or

8 × 10 electrode array. This will significantly reduce the potential health hazard in

developing brain machine interfaces.

5.6 Kinematic Decoding

It is also of interest to decode the kinematic parameters such as position, velocity,

and acceleration of fingers for a robust BCI system. In the contralateral experiment

2The micro-electrode gird image is permitted by courtesy of Professor Justin Williams, University
of Wisconsin at Madison.
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setups, a few research groups have studied the fidelity of the trajectory of arms and

fingers, but so far there is few research studying the kinematic decoding using signals

from ipsilateral cortex. Figure 5.7 shows the selected examples of actual finger move-

ment (shown in thin traces) and predicted finger movement (shown in bold traces)

for the three subjects. The correlation coefficients are listed in Table 5.4. Though the

kinematic decoding has a relatively low fidelity compared to the contralateral exper-

iment setup, it is shown that there is potential to decode the finger movements using

ECoG signals from the ipsilateral cortex. The relatively low correlation coefficients

lie in two aspects: first, the signals we are using to decode movements is from the

ipsilateral cortex; second, the classifiers for each finger are too sensitive, resulting in

ambiguity in differentiating individual fingers.

Subject 1 Subject 2 Subject 3
Thumb N/A 0.1486 0.0167
Index 0.1154 0.3575 0.2707
Middle 0.0744 0.5502 0.5210
Ring 0.0668 0.3403 0.1838
Little 0.0347 0.0715 0.1841

Average 0.0728 0.2487 0.2353

Table 5.4: Prediction the flexion of finger movements.

35



� 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
r
u
e
 P
o
s
it
iv
e
 R
a
te

 

 

Index

Middle

Ring

Little

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
r
u
e
 P
o
s
it
iv
e
 R
a
te

 

 

Thumb

Index

Middle

Ring

Little

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
r
u
e
 P
o
s
it
iv
e
 R
a
te

 

 

Thumb

Index

Middle

Ring

Little

Figure 5.3: ROC curve for the ipsilateral finger movement decoder. Horizontal axis
shows the false positive rate, and the vertical axis shows the true positive rate. The
dotted line is the accuracy of a random classifier. Classifiers that have higher area
under the ROC curve, or AUC, indicate better classification performance.
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Figure 5.5: µ-ECoG technology: implantation of micro-electrode on human brains.

37



Subject 1 Subject 2 Subject 3

Figure 5.6: Brain map representing the weights of the top 30 features of the three
patients.

Figure 5.7: Selected prediction of the flexion of finger movements.
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Chapter 6

Additional Work

A robust brain computer interface should support many regular movements beyond

finger movements. In the real task, a BCI system should be able to interpret the

patients’ intention to move towards certain directions so as to fetch objects ( [25]).

6.1 Experiment Setup for Directional Movement

Classification

Figure 6.1 shows the experiment setup. The patient was seated in front of a 17-inch

LCD monitor, which gave cues about which direction to move. Once the cue appeared

on the monitor, the patient was instructed to move the joystick to one of the eight

targets. Once the designated target was reached, the corresponding target turned

green and the patient moved the joystick back to the starting point until the next cue

came up the monitor. The patient underwent three trials and the total number of

movements is 280. However since the brain signal pattern varied from trial to trial,

we used the first 225 movements for classification. The ECoG signal was recorded by

the implanted electrode grids on the surface of the brain contralateral to the hand

controlling the joystick.

During each direction movement task, we further divide it into seven stages as shown

in Figure 6.2. State 0 is the resting period between trials. State 1 and State 2 are

the baseline of the experiment. State 3 and State 4 are the target encoding stats,

in which the subject see the cue and is ready to make the movement. State 5 is the

movement state, in which the subject is performing the movement task. State 6 is
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Figure 6.1: The experiment paradigm for directional movement classification.

the reward state, in which the monitor gives a green light if the patient is making

the right movement. We have two problems to solve here: First, can we tell the

difference between the resting state and the movement state? Second, can we classify

the directional movements?

6.2 Classification between Resting and Movement

State

One problem of interest is to classify the resting and movement state in the joystick

movement task. Here State 0 is the resting period between two consecutive trials, and

State 5 is the actual movement period. We use modified ℓ-1 regularized least square

regression to classify these two states. Figure 6.3 shows the ROC curve performance

on the classification result, and Figure 6.4 shows the predicted joystick movement

versus the actual movement. The red line is the prediction on the joystick movement,

and the blue bar is the actual joystick movement. The red lines, in most cases, fall in

the blue bar, which tells us that we can effectively discriminating between the resting

and movement state.
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Figure 6.2: The experiment test state.

6.3 Classification between Directions

Another problem of interest in to classify different directions. To be specific, the

tasks are classification between moving left and moving right, moving up and moving

down, and all of these four directions. In this setting, we perform a feature selection

before hand. 22 channels out of 64 and 56 frequency features out of 74 are selected

as the most relevant features. We are using State 3 and State 4, which are the target

encoding states. Similarly to the scalogram representation in [4], each data point

xi is represented as a vector that contains temporal information, spatial information

(channels) and frequency information. Kernel support vector machines are applied

here, and we are using a sigmoid kernel. The classification result is shown in Fig-

ure 6.5. The blue bar shows the prediction accuracy, and the red line shows the

baseline of the prediction by chance. P-value is calculate to test the significance.
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Figure 6.4: Predicted movement versus the actual movement.
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Figure 6.5: Classification between directions.
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Chapter 7

Discussion

Few BCI research look into the direct association between ipsilateral cortex and

motor-associated tasks. However, ipsilateral cortex proves to be not only partici-

pating a planning role in motor-associated tasks, but also an effective predictor for

movements. The ipsilateral cortex has a 100 ms longer time-lag than the contralat-

eral cortex in the movement tasks. The work shows promising result on using only

ipsilateral cortex to decode finger movements. The hot spot of ipsilateral cortex in

motor-associated tasks falls in the prefrontal and pre-motor area of the brain, with

the most active frequency bins fall in the low-frequency range. Again, this is different

from the previous findings on the contralateral cortex, whose hot spot falls in the

motor area, and the most active frequency features fall in higher frequency range.

Using ECoG signals from the ipsilateral cortex, we can efficiently detect finger move-

ments, and further more we can improve the performance of detecting finger move-

ments by introducing the idea of multitask learning in it. We also investigate the

large amount of features and extract the sparse representation of features. The result

shows that the most contributing spatial features fall in a small region on the large

electrode grids. This gives researcher promising idea of using micro-electrode grids

to help patients rehabilitate their dysfunction of motor-cortex. Beyond detecting

movement, accurate decoding of kinematic parameters is also of huge interest in the

sense that these parameters are important for patients to control prosthetic devices

with more freedom. In our case, decoding ipsilateral finger position is promising: in a

similar setting in the Berlin Brain Computer Interfaces (BBCI) competition, the win-

ning five teams report an average correlation coefficients of 0.46, 0.42, 0.27, 0.10, 0.05.

Considering in our case we are decoding from ipsilateral cortex, the result in Table 5.4
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shows potential interest for BCI community. The major problem with the kinematic

decoding lies in the fact that the classifier is very sensitive, resulting in the unwanted

false positives. How to further discriminate among these individual classifier is an

open question.

Beyond the finger movement tasks, we also investigate the joystick direction move-

ment tasks. In differentiating between resting and movement state, we see a strong

classification result, with very few false positive points. In classifying different direc-

tion tasks, the classification results are slightly above chance, and it remains a future

research problem.

Machine learning approach is one of the most prominent ways for brain computer

interfaces research. However, since most classification algorithms such as support

vector machines are data-driven approaches and very subject to scale, feature selection

becomes crucial in BCI research. In fMRI research, a number of work on feature

selection is reported, such as [24]. In Chapter 3, we use the power spectrum of the

ECoG signal, leaving out the phase information in the signal. Recent studies show

that the phase information in neurons is very informative in motor-associated tasks.

It is worthwhile to regard phase information of the ECoG signal as features. We still

have to keep in mind that human brain is an extremely complex mechanism and the

patterns are variant to a lot of factors such as time, outside interference, human’s

emotion, attention and other subjective factors.
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Chapter 8

Conclusion

In our work, we have presented a first framework of detecting finger movements from

ipsilateral cortex in humans using ECoG signals. This work includes detection of

finger movements, a joint learning framework using multitask learning algorithms,

and a kinematic decoding framework. The result is inspiring to BCI community, and

suggests that there exists potential information in the ipsilateral cortex in humans to

decode human movements. This is particularly useful for patients who suffer hemi-

spherical damage due to epilepsy or suffer loss of limbs due to accidents. Moreover,

we investigate the directional movement classification tasks and show accurate dis-

crimination between resting and movement state. The future directions of the work

are in further discriminating between finger movements, discriminating between dif-

ferent target direction, and real-time decoding of the kinematic parameters. It is still

of interest to find the inherent features in the brain that are invariant to variance

between the experiment trials and other interference.
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