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Abstract 

A Thesis on the Arsenic Removal from Drinking Water by Electrocoagulation 
by 

Wei Wan 
Master of Science in Energy, Environmental, and Chemical Engineering 

Washington University in St. Louis, 2010 
Research Advisor: Dr. Daniel E. Giammar 

 

Exposure to arsenic through drinking water poses a threat to human health. 

Electrocoagulation is an emerging water treatment technology that involves electrolytic 

oxidation of anode materials and in-situ generation of coagulant.  Electrocoagulation is 

an alternative to using chemical coagulants for arsenic removal and thus is beneficial for 

communities with better access to electricity than to chemicals.  

Batch electrocoagulation experiments were performed in the laboratory using iron 

electrodes.  The experiments quantified the effects of pH, initial arsenic concentration 

and oxidization state, and concentrations of dissolved phosphate, silica and sulfate on the 

rate and extent of arsenic removal.  The effect of water chemistry and treatment time 

were interpreted using adsorption modeling and a rate model for coagulant production 

and arsenic adsorption.  The iron generated during electrocoagulation precipitated as 

lepidocrocite (γ-FeOOH), except when dissolved silica was present. Arsenic was 

removed by adsorption to the lepidocrocite.  Arsenic removal was slower at higher pH.  

When solutions initially contained As(III), a portion of  the As(III) was oxidized to As(V) 

during electrocoagulation.  As(V) removal was faster than As(III) removal.  The presence 

of 1 and 4 mg P/L of phosphate inhibited arsenic removal, while the presence of 5 and 20 

mg SiO2/L of silica or 10 and 50 mg SO4
2-/L of sulfate had no significant effect on 
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arsenic removal.  The rate model simulated the overall arsenic removal by 

electrocoagulation well by using Faraday’s law to predict coagulant production and a rate 

expression for As adsorption.   

Equilibrium As(V) adsorption was investigated in batch experiments as a function 

of dissolved As(V) concentration, pH, and phosphate using lepidocrocite generated by 

electrocoagulation.  A surface complexation model was then developed that successfully   

simulated equilibrium As(V) adsorption.  As(V) adsorption onto the lepidocrocite  

generally decreased with increasing pH from 4 to 10.  The presence of 1-4 mg P/L of 

phosphate inhibited As(V) adsorption.  A maximum arsenic removal efficiency of over 

99 % was achieved during both electrocoagulation and equilibrium adsorption 

experiments. 
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Chapter 1 

Introduction 

1.1 Background 

Arsenic occurs in groundwater primarily as the result of natural weathering of arsenic-

containing rocks, although in certain areas, high arsenic concentrations are caused by 

industrial waste discharges and application of arsenical herbicides and pesticides (Jain 

and Ali, 2000).  Arsenic contamination of groundwater is found in both the developed 

and developing countries.  Arsenic is a carcinogen and its consumption can negatively 

affect the gastrointestinal tract and cardiac, vascular and central nervous systems.  

Exposure to arsenic through drinking water is a great threat to human health.  

Considering the high toxicity of arsenic, the World Health Organization (WHO) and 

USEPA set a maximum acceptable level of arsenic in drinking water at 10 µg/L (USEPA, 

2002; WHO, 1993).  

Iron oxides have been widely used as sorbents for arsenic removal. They usually 

have strong adsorption affinities for arsenic and they can have large specific surface areas 

(Dixit and Hering, 2003).  Iron oxides have been used in different forms for arsenic 

removal. It have been reported for arsenic removal either in the form of iron oxide 

suspensions (Dixit and Hering, 2003), packed beds of iron oxides (Zeng et al., 2008a), 

conventional chemical coagulation (Meng et al., 2000) or electrocoagulation using iron 

electrdes (Kumar et al., 2004).   
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Arsenic is present in water and wastewater mainly in the forms of arsenate 

(As(V)) and arsenite (As(III)).  In the environmentally relevant pH range of 4-10, the 

dominant As(V) species are negatively charged (H2AsO4
- and HAsO4

2-), while the 

dominant As(III) species are neutrally charged (H3AsO3).  The negatively charged As(V) 

species are more likely to be adsorbed and are generally more easily removed.  In 

treatment systems As(V) is removed more efficiently than As(III) (Balasubramanian and 

Madhavan, 2001; Kumar et al., 2004; Parga et al., 2005).  

The adsorption of arsenate to iron oxides is affected by pH because of the 

variation in the surface charge of the iron oxides and the speciation of arsenate with pH.  

In the environmentally relevant pH range of 4-10, the dominant As(V) species are 

negatively charged.  The surface potential of the iron oxides, as measured by zeta 

potential, is positive below about pH 7 and negative above this pH.  For an interfacial 

double layer, the zeta potential is the electric potential between the slipping plane and the 

bulk fluid away from the interface.  A zero zeta potential is interpreted as the point of 

zero net charge at a surface.  This is referred to as the isoelectric point (IEP).  In other 

words, the IEP is the pH at which a surface shows no net electrical charge.  The point of 

zero charge (PZC) is often used to approximate the IEP (Maurice, 2009).   Below the IEP 

the surfaces of the iron oxides are positively charged and electrostatic contributions as 

well as chemical contributions contribute to As(V) adsorption.  Above the IEP, both the 

As(V) species and the surface of iron oxide is negatively charged and adsorption is less 

favorable due to electrostatic repulsion.   

Electrocoagulation is an emerging water and wastewater treatment technology 

that involves electrolytic oxidation of an anode material and in situ generation of 
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coagulant (Kumar et al., 2004; Lakshmanan et al., 2009).  When a current is applied 

between two electrodes, metal ions such as Fe2+ and Al3+ that can contribute to coagulant 

formation are released by anode oxidation.  The Fe2+ can subsequently be oxidized in 

solution to produce an Fe(III) hydroxide or oxyhydroxide (Lakshmanan et al., 2009).  

Electrocoagulation  is an alternative to using chemical coagulants for arsenic removal; 

thus it can be beneficial for communities with better access to electricity than to 

chemicals.  So far, several studies have reported arsenic removal from water and 

wastewater by electrocoagulation (Balasubramanian and Madhavan, 2001; Kumar et al., 

2004; Parga et al., 2005).  During such processes, arsenic removal by electrocoagulation 

involved metal oxide formation followed by arsenic removal (Balasubramanian and 

Madhavan, 2001).  In addition, electrocoagulation may also control oxidation-reduction 

reactions; species such as As(III) may be oxidized on the anode and other species may be 

reduced  on the cathode.  

Several water chemistry factors may affect arsenic removal by electrocoagulation. 

The pH of the water influences arsenic removal by electrocoagulation by affecting 

arsenic species distribution, the surface charge of the metal oxides formed during 

electrocoagulation, and the rate of Fe(III) production from the Fe(II) released from the 

iron anode (Kumar et al., 2004; Lakshmanan et al., 2009).  As(V) adsorption decreases 

with increasing  pH, and Fe(II) oxidation is faster at high pH (Lakshmanan et al., 2009).  

Surface complexation models (SCM) have been used successfully to describe the pH 

dependence of As(V) adsorption onto iron oxides (Dixit and Hering, 2003; Wilkie and 

Hering, 1996; Zeng et al., 2008b).  Because phosphate and arsenic are in the same group 

and  arsenate and phosphate have similar chemical properties, they may have similar 
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affinity to the iron oxides and can compete for the surface sites on the iron oxides.  The 

competition of As(V) and phosphate for adsorption onto iron oxide-based sorbent by the 

presence of phosphate were also simulated successfully by surface complexation models 

(Holm, 2002; Zeng et al., 2008b). Silica can be present at high concentrations in 

groundwater, and in studies with iron-oxide based sorbents has been observed to inhibit 

arsenic removal (Davis et al., 2001; Zeng et al.,2008a).   

 During surface complexation modeling, the ion distribution can be computed as 

follows.   First, the equilibrium speciation of the surface is determined using mole 

balance equations and the surface complexation and aqueous phase reactions.  From the 

surface speciation, the surface charge density at the surface is calculated. In the diffuse 

double layer model, the surface potential is then calculated from the surface charge 

density using Gouy-Chapman theory.  The surface potential is then used to modify the 

effective equilibrium surface complexation constants from the intrinsic equilibrium 

constants.    The adsorption of ions can be recomputed using the modified equilibrium 

constants.  By iterating this whole computation process, the optimal conditions that can 

simultaneously satisfy all the equations governing the system can eventually be identified 

(Benjamin, 2002).  

1.2 Objectives 

The primary objective of this study was to assess the impact of important water chemistry 

factors on arsenic removal by electrocoagulation.  Factors studied were the pH, arsenic 

oxidization state, initial arsenic concentration, and presence of dissolved phosphate, silica 

and sulfate. In pursuing this objective, additional objectives were to: investigate the 
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effects of water chemistry on As(V) adsorption to the iron oxides generated by 

electrocoagulation, and develop a surface complexation model to simulate As(V) 

equilibrium adsorption. A secondary objective of this study was to prepare an overall 

model for the performance of an electrocoagulation system for As(V) removal. 
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Chapter 2 

Effects of Water Chemistry on Arsenic Removal from 

Drinking Water by Electrocoagulation 

(The field work presented in this chapter was done by collaborators at Indian Institute of 
Technology Bombay) 
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Abstract: Exposure to arsenic through drinking water poses a threat to human health.  

Electrocoagulation is an emerging water treatment technology that involves electrolytic 

oxidation of anode materials and in-situ generation of coagulant.  The electrochemical 

generation of coagulant is an alternative to using chemical coagulants, and the process 

can also oxidize As(III) to As(V).  Batch electrocoagulation experiments were performed 

in the laboratory using iron electrodes.  The experiments quantified the effects of pH, 

initial arsenic concentration and oxidization state, and concentrations of dissolved 

phosphate, silica and sulfate on the rate and extent of arsenic removal.  The iron 

generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except 

when dissolved silica was present, and arsenic was removed by adsorption to the 

lepidocrocite. Arsenic removal was slower at higher pH.  When solutions initially 

contained As(III), a portion of  the As(III) was oxidized to As(V) during 

electrocoagulation.  As(V) removal was faster than As(III) removal. The presence of 1 

and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L 

silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal.  For most  

conditions examined in this study, over 99% arsenic removal efficiency was achieved.  

Effective arsenic removal was also demonstrated in a field deployment of household 

electrocoagulation systems in Eastern India.   

Keywords: Arsenic, water treatment, electrocoagulation, phosphate, adsorption, 

lepidocrocite 
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2.1 Introduction 

Exposure to arsenic through drinking water is a great threat to human health (Jain and 

Ali, 2000). Arsenic is a carcinogen and its consumption can negatively affect the 

gastrointestinal tract and cardiac, vascular and central nervous systems.  Considering the 

high toxicity of arsenic, the World Health Organization (WHO) and USEPA set the 

maximum acceptable level of arsenic in drinking water at 10 µg/L (USEPA, 2002; WHO, 

1993).  Arsenic occurs in groundwater primarily as the result of natural weathering of 

arsenic containing rocks, although in certain areas, high arsenic concentrations are caused 

by industrial waste discharges and application of arsenical herbicides and pesticides (Jain 

and Ali, 2000).   

Iron oxides have been widely used as sorbents for arsenic removal.  They usually 

have strong adsorption affinities for arsenic and they can have large specific surface areas 

(Dixit and Hering, 2003).  Arsenic is present in water and wastewater mainly in the forms 

of arsenate (As(V)) and arsenite (As(III)).  In the environmentally relevant pH range of 4-

10, the dominant As(V) species are negatively charged (H2AsO4
- and HAsO4

2-), while the 

dominant As(III) species is neutrally charged (H3AsO3).  The negatively charged As(V) 

species are more likely to be adsorbed and are generally more easily removed than 

As(III) in treatment systems (Balasubramanian and Madhavan, 2001; Kumar et al., 2004; 

Parga et al., 2005).  

Electrocoagulation is an emerging water and wastewater treatment technology 

that involves electrolytic oxidation of an appropriate anode material and in-situ 

generation of coagulant (Kumar et al., 2004; Lakshmanan et al., 2009).  When a direct 
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current is applied between two electrodes, metal ions such as Fe2+ and Al3+ that can 

contribute to coagulant formation are released by anode oxidation.  With iron electrodes, 

the  Fe2+ released can subsequently be oxidized in solution to produce an Fe(III) 

hydroxide or oxyhydroxide (Lakshmanan et al., 2009).  Electrocoagulation is an 

alternative to using chemical coagulants for arsenic removal and thus is beneficial for 

communities with better access to electricity than to chemicals.  Several previous studies 

have reported arsenic removal from water and wastewater by electrocoagulation 

(Balasubramanian and Madhavan, 2001; Kumar et al., 2004; Parga et al., 2005; Thella et 

al., 2008).  During such processes, arsenic removal by electrocoagulation involved metal 

oxide formation followed by arsenic removal (Balasubramanian and Madhavan, 2001).  

Electrocoagulation may also control oxidation-reduction reactions; species such as 

As(III) may be oxidized on the anode and other species may be reduced  on the cathode.  

Several water chemistry factors may affect arsenic removal by electrocoagulation. 

The pH can affect arsenic species distribution and the surface charge of the metal oxides 

formed. Arsenic oxidization state can affect arsenic removal, with As(V) being more 

easily removed than As(III) (Kumar et al.,2004).  Phosphate may compete with arsenic 

for adsorption sites (Meng et al., 2002).  Silica can be present at high concentration in 

groundwater, and in studies with iron oxide-based sorbents has been observed to inhibit 

arsenic removal (Davis et al., 2001; Zeng et al., 2008a).   

The objectives of this study were to assess the impact of important water 

chemistry factors on arsenic removal by electrocoagulation and to examine the 

performance of electrocoagulation for arsenic removal in laboratory and field settings.  
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Factors studied were the pH, arsenic oxidization state, initial arsenic concentration, and 

the concentrations of dissolved phosphate, silica, and sulfate.   

2.2 Materials and Methods  

2.2.1 Laboratory-scale Electrocoagulation Experiments 

The electrocoagulation reactor consisted of a 1 L glass beaker with two iron rods 

immersed in the aqueous solution.  The rods had diameters of 1.75 cm, lengths of 20 cm, 

and were placed 2 cm apart in the arsenic containing solution.  The total submerged 

surface area of each electrode was 57 cm2.  Before each experiment, the electrodes were 

abraded with sand paper to remove scales and then cleaned with 1 M HNO3 and ultrapure 

water.  A direct current was applied at 22 mA to the terminal electrodes from a direct 

current power supply set at a voltage of 12 V.  The electric current was monitored over 

the course of each two hour experiment.  To provide enough oxygen for the formation of 

Fe(III) precipitates, the solution was sparged with air at a flow rate of 60 mL/min.  The 

arsenic containing solution was magnetically-stirred (200 rpm).  Duplicate runs were 

carried out for each set of experimental conditions.   

The water compositions evaluated are  listed in Table 2.1.  All solutions were 

prepared with ultrapure water.  To prepare each solution for electrocoagulation 

experiments, desired volumes of stock solutions were added to the 1 L glass beaker.  An 

As(V)  stock solution was made from Na2HAsO4·7H2O.  The As(III)  stock solution was 

made from NaAsO2.  Tests indicated that the stock As(III) solution contained about 15% 

As(V).  The phosphate, silica, and sulfate stock solutions were made from 

Na2HPO4·7H2O,  Na2SiO3·9H2O, and  Na2SO4·10H2O, respectively.  In order to provide 
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pH buffering, NaHCO3 was added to achieve a concentration of 1 mM.  The pH of the 

As-containing solution in each beaker was periodically readjusted to the target value by 

adding aliquots of 1 M HNO3 or 1 M NaOH.  

Table 2. 1. Experimental variables evaluated in the electrocoagulation experiments   

Parameters Range of values 
Initial arsenic concentration  100 and 1000 µg/L 
Arsenic oxidization state As(III)  and As(V)   
pH 5, 6, 7, 8 and 9 
Phosphate 0, 1 and 4 mg/L as P 
Silica 0, 5 and 20 mg/L as SiO2 
Sulfate 0, 10 and 50 mg/L as SO4

2- 
 

For the experiments using As(V), every 5, 15 or 30 min, 15 mL of solution was 

collected from the beaker.  Of this amount, 7.5 mL was filtered using a 0.45 µm filter 

membrane (polyethersulfone), and the filtrate was acidified to 1% HNO3.  Another 7.5 

mL of unfiltered suspension was acidified to 1% HNO3 by addition of concentrated 

HNO3, which completely dissolved the suspended solids.  For the experiments using 

As(III), an additional sample was collected for arsenic redox speciation (i.e. separation of 

As(III) and  As(V) ) using an anion-exchange method (Wilkie,1997).  Before separation, 

the pH of a 10 mL aliquot of filtered solution was adjusted to around 3.5 and then passed 

through a column containing anion exchange resin.  During As separation, the first 5 mL 

of solution were wasted and the remaining 5 mL were collected.  In this method, As(III) 

eluted through the column and As(V) was retained on the resin in the column.  At the end 

of each experiment, 15 mL of unfiltered suspension was collected for zeta potential 

measurement. The remaining settleable solids were collected and freeze-dried in 

preparation for solid-phase characterization.  
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The pH of the solution in the beaker was measured with a pH electrode when the 

current was not applied because the current interfered with the pH measurement.  It took 

approximately 1 min to adjust the pH to the desired value.  Considering the time used to 

adjust the pH, each experiment lasted about 130 min, although current was only applied 

during 120 minutes of the experiment.  

2.2.2 Materials and Methods of the Field Study 

EC setup used for the field studies consist of a bucket of volume 50L, a 12V D.C. source 

of rating 2A, iron plates of size 10cm by 15cm with a submerged depth of 10cm and an 

aquarium pump with diffuser. The electrodes are separated by a distance of 0.5cm and are 

connected to the support by a non conducting PVC screw. This setup is followed by a 

common candle filter assembly (Figure 2.1). 

 
 

 

Figure 2.1. Domestic EC setup used for the field study 

 
Field trials for the EC setup were carried out in locations in the Nadia district of 

West Bengal. We carried out the field trials in two villages in this district. The first 

village, Lalmath, falls under the Krishnanagar II Block. It has a population of 500 
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families and all the families have at least one or two family members suffering from 

arsenicois or other related health effects. Average concentration of Arsenic in the 

groundwater was reported to be 700ppb. The second village was Ghetugachi, which falls 

under Chakdaha block. This village has more than 650 families. The average arsenic 

levels in this village were reported to be 400ppb. But here it was mostly As(III) form of 

arsenic. Also the phosphate levels in the groundwater were substantially higher. So the 

waters of these villages can be termed as difficult waters. 17 EC setups were distributed 

in Ghetugachi and one was set up in Lalmath. 50L water was collected in the bucket from 

the handpumps located close to the house where the EC setups had been installed. The 

aquarium pump is switched on for 15 minutes to allow the DO in the water to increase to 

over 3mg/L, to ensure the formation of Hydrous Ferric Oxide (HFO), which forms only 

in high DO conditions. The electrode assembly is then immersed in the water and EC is 

carried out for 3 hrs. After this the water is allowed to settle for 4 hrs. The supernatant of 

this stagnant water is collected and filtered through a local ceramic candle filter. Water 

samples collected are as follows:  

• from the raw water before the aquarium pump is switched on 

• from the supernatant of the treated water after 4hrs of settling  

• and after candle filtration. 

After collection the water samples were preserved in acidic condition. Then the 

samples were brought to the lab and analyzed for arsenic, iron and phosphate 

concentrations.  
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2.2.3 Analysis Methods 

The filtered and acid-treated samples were analyzed for dissolved and total 

concentrations of constituents, respectively.  The concentrations of As, Fe, P and Si were 

determined by inductively coupled plasma mass spectrometry (ICP-MS) (7500ce, Agilent 

Technologies, Santa Clara, CA).  The instrument detection limits for As, Fe, P and Si 

were 0.1 µg/L, 0.05 mg/L, 0.01 mg/L,  and 0.03 mg/L, respectively.  The specific surface 

areas (SSA) of the solids were measured by the BET (Brunauer-Emmett-Teller) N2-

adsorption method (Autosorb-1-C, Quantachrome, U.S.A.).  X-ray powder diffraction 

(XRD) patterns were collected using Cu Kα radiation (D-MAX/A, Rigaku, Japan).  Zeta 

potential was measured by a nanoparticle characterization instrument with zeta potential 

capability (Nanoseries ZS, Malvern Instruments, U.K.).  Dissolved oxygen for selected 

samples was measured using a Hach Surface Water Test Kit (Fondriest Environmental, 

Inc.).   

The analysis of the field samples were carried out by spectroscopic methods. 

Arsenic concentration in the field samples was determined using a rapid colorimetric 

method (Dhar et al., 2004). The iron concentration in the field samples was determined 

using phenanthroline method [APHA]. Random samples were then analysed with an 

AAS (AA 400-FIAS, Perkin Elmer, USA) to verify the iron and arsenic concentrations. 

Error of the spectrophotometric method was seen to be ±2.0%, which is considered 

negligible. The phosphate concentration in the field samples was determined using 

ascorbic acid method [APHA].  
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2.3 Results and discussion 

2.3.1 Production of Iron Oxide Coagulant 

During the electrocoagulation process, the solutions changed from colorless to reddish 

brown.  The concentrations of the total iron generated during electrocoagulation 

increased linearly with reaction time (Figure 2.2).  In this study, the reported values are 

the average plus the standard deviation.  For all the electrocoagulation experiments, about 

50 mg/L (average value was 50.5 mg/L) total iron was produced over the 2 hour 

experiment duration.  The reactor was operated with a current of 22 mA, and the total 

iron produced was consistent with a value of 52.2 mg/L predicted by Faraday’s Law for 

the oxidation of the iron electrode to dissolved Fe(II).  Fe was released to solution as 

Fe(II) and was then oxidized to Fe(III) by the dissolved oxygen.  The Fe(III)  then 

precipitated in the formation of iron oxides (Reactions 2.1 and 2.2).  At the cathode 

hydrogen gas is generated from the reduction of water (Reaction 2.3).  

Fe(s) → Fe2+ + 2e-                                                                                              (2.1) 

Fe2+ + 1.5H2O+ 0.25O2 → γ-FeOOH(s) + 2H+                                                  (2.2) 

2H2O + 2e- → H2 + 2OH-          (2.3) 

For the experiment using 100 µg/L As(V) at pH 7, samples were collected at 30, 

60 and 90 min, and the dissolved oxygen (DO) was around 10 mg/L, which indicated that 

the solution was saturated with dissolved oxygen. The DO at 25oC predicted from 

Henry's law is 8.7 mg/L. The dissolved iron concentrations were very low compared with 
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the total iron concentrations in each experiment, which indicated that nearly all of the 

iron was present in the solid phases. 
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Figure 2.2. Concentrations  of total and dissolved (a) As(V) and (b)  iron during 

electrocoagulation of  a solution  initially containing 100 µg/L As(V) at pH 7.0. The 

dash line  in (b) represents the total iron concentration predicted by the Faraday’s 

law at I=0.022 A. 

The Fe(III) solid was identified as lepidocrocite (γ-FeOOH)  by its XRD 

pattern(Figure 2.3).  The identity of the iron oxyhydroxides formed was not affected by 

As(III) and As(V) or by the presence of sulfate or phosphate.  The XRD pattern at pH 5 

had no clear XRD peaks, probably resulting from the insufficient solids collected for 

XRD characterization.  The specific surface area of the solids was 200.5 m2/g and was 

independent of the solution compositions.  The formation of lepidocrocite is consistent 

with published synthesis methods involving oxidation of Fe(II) solutions using dissolved 

oxygen at ambient temperature (Schwertmann and Cornell,2000).  The rate of Fe(II) 
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oxidation increases with increasing pH (Stumm and Morgan, 1996), and a previous 

electrocoagulation study confirmed that Fe(II) oxidation by dissolved oxygen was slower 

at lower pH (Lakshmanan et al., 2009).  The presence of silica significantly affected the 

iron oxides formed during electrocoagulation (Figure 2.3).  Less crystalline iron oxides 

were formed in the presence of silica.  A previous study found that silica influenced the 

type of iron oxides formed in aerated Fe(II)- and As(III)-containing water by decreasing 

the degree of corner-sharing linkages of Fe(III)-octahedra during Fe(III) polymerization 

(Voegelin et al., 2010).  Equilibrium calculations indicate that Fe(III) oxyhydroxides 

should precipitate at the experimental conditions and that no arsenic-Fe(III) precipitates 

(e.g. FeAsO4(s)) were expected to form.   
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Figure 2.3. X-ray diffraction patterns of solids generated during electrocoagulation.  

The reference pattern for lepidocrocite is included for comparison.  
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2.3.2 Effect of pH on As Removal 

The removal rate of arsenic was affected by the pH.  For experiments using 100 µg/L 

As(V),  it took less than 30 min for the dissolved As(V) concentrations to drop below 1 

µg/L at pH 5, 6 and 7 (Table 2.2).   

Table 2.2. Water compositions in electrocoagulation experiments and the time to 

achieve dissolved arsenic concentrations below 10 µg/L and  1.0 µg/L  

Arsenic 
oxidation 

state 

Arsenic 
(µg/L) 

pH Phosphate
as P 

(mg/L) 

Silica  
as SiO2 
(mg/L) 

Sulfate as  
SO4

2- 
(mg/L) 

Time to 
dissolved 
As < 10 

µg/L (min) 

Time to 
dissolved 

As  
< 1.0 µg/L 

(min) 
As(III) 100 5 0 0 0 30 90 
As(III) 100 6 0 0 0 30 90 
As(III) 100 7 0 0 0 30 90 
As(III) 100 8 0 0 0 30 90 
As(III) 100 9 0 0 0 45 90 
As(III) 1000 7 0 0 0 90 120 
As(V)  1000 7 0 0 0 45 >120 

As(V) * 100 5 0 0 0 15 15 
As(V) * 100 6 0 0 0 15 30 
As(V) 100 7 0 0 0 5 15 

As(V) * 100 8 0 0 0 75 75 
As(V) * 100 9 0 0 0 75 >120 
As(V) 100 7 1 0 0 60 >120 
As(V) 100 7 4 0 0 90 >120 
As(V) 100 7 0 5 0 5 60 
As(V) 100 7 0 20 0 5 60 
As(V) 100 7 0 0 10 5 30 
As(V) 100 7 0 0 50 5 45 
As(III) 100 7 1 0 0 45 90 
As(III) 100 7 0 5 0 30 90 
As(III) 100 7 0 0 10 30 90 

 

*The first sample was collected after 15 min in these experiments but after 5 min in all 

other experiments. 
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At pH 8, the dissolved As(V) concentration only reached this value after 75 min, 

and at pH 9 the dissolved As(V) concentrations remained at 4 µg/L after 120 min (Figure 

2.4).  For experiments using 100 µg/L As(III),  it took 90 min for the dissolved As 

concentrations to drop below 1 µg/L at pH 5-8, and at pH 9 it took 120 min (Figure 2.5 

and Table 2.2).  Although As removal was slower at higher pH, the final removal 

efficiency was independent of pH from 5 to 8.  Once sufficient lepidocrocite was 

produced to provide adsorption sites for As, low dissolved As concentrations could  be 

obtained.  Kumar et al. (2004) also reported that the final As removal efficiency was 

independent of pH with increasing pH from 6 to 8 during electrocoagulation.  
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Figure 2.4. Dissolved As(V) concentrations during electrocoagulation of solutions 

initially containing 100 µg/L As(V). The data points for pH 5 are partially obscured 

by those for pH 6. 



 

21 
 

The influence of pH on adsorption can explain the slower rate of As(V) removal 

with increasing pH.  The pH-dependence of  As(V)  and As(III) adsorption to 

lepidocrocite formed during electrocoagulation is in agreement with the effect of pH on 

As adsorption to hydrous ferric oxide and goethite (Dixit and Hering, 2003; Meng et al., 

2000).  The lepidocrocite produced in the electrocoagulation reactor had a measured 

point-of-zero-charge pH (PZC) of about 7.0 (Figure 2.6), which is comparable with that 

reported by Peacock and Sherman (2004) using a potentiometric titration method.  Below 

this pH the surfaces of the particles are positively charged and electrostatic contributions 

as well as chemical contributions contribute to As(V) adsorption.  Above the PZC, both 

the As(V) species and the lepidocrocite surface are negatively charged and adsorption is 

less favorable.   
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Figure 2.5. Dissolved concentrations of total As and As(V) during electrocoagulation 

of  solutions initially containing 100 µg/L As(III) at pH 5, 7, and 9.  
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At pH 9, the removal of As(V) was slower than As(III)  (Figures 2.4 and 2.5).  

One possible reason for this observation was that at pH 9 the lepidocrocite surface is 

negatively charged and part of the As(III) species are neutrally charged, but the As(V) 

species were negatively charged; thus, electrostatic repulsion cannot hinder  As(III) 

adsorption to lepidocrocite as much as it can As(V) adsorption. 
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Figure 2.6. Effect of pH on zeta potential of the lepidocrocite suspension generated 

by electrocoagulation.  Measurements were made in the absence of dissolved As, but 

zeta potential was not affected by As at the concentration studied. 

 
2.3.3 Effect of Oxidization State on As Removal  

As(V) removal was usually faster than As(III) removal (Figures 2.4 and 2.5).  This was in 

agreement with the results reported by Kumar et al. (2004) for electrocoagulation and the 

results reported by Meng et al. (2004) for arsenic adsorption to iron hydroxides.  In all the 

experiments using As(III), the dissolved As(V) concentration increased first and then 
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decreased with increasing reaction time.  The increase in As(V) when treating As(III) 

solutions indicated that at least 25% As(III) was oxidized to As(V) during 

electrocoagulation (Figure 2.5).   
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Figure 2.7. Relative change in dissolved arsenic during electrocoagulation of 

solutions initially containing 100 µg/L and 1000 µg/L (a) As(III)  and (b) As(V) at 

pH 7.  Panel (a) also shows the concentration of dissolved As(V). 

The removal mechanism for As(III) by electrocoagulation was proposed to  be the 

oxidation of As(III) to As(V) followed  by adsorption onto the iron oxides generated 

(Kumar et al., 2004).  As(III) oxidation to As(V) has previously been proposed to occur 

with dissolved oxygen as the oxidant and intermediate iron-containing species as rate-

enhancing species (Ciardelli et al., 2008; Sahai et al., 2007).  As(III) oxidation can also 

occur when Fe(II) is present with Fe(III) oxyhydroxides, and the mechanism has been 
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proposed to involve  the formation of an Fe(IV) intermediate (Amstaetter et al., 2010; 

Bisceglia et al., 2005). 

2.3.4 Effect of Initial As Concentrations on As Removal  

As(V) and As(III) removal to below 1 µg/L took more time when the solutions had 

higher initial As concentrations (Figure 2.7 and Table 2.2). When the initial arsenic 

concentrations were higher, more iron oxides were needed to decrease the dissolved 

arsenic concentrations. Arsenic removal is consequently limited by the production rate of 

lepidocrocite.  However, the final As removal efficiencies were independent of the initial 

As(III) concentration and were over 99%.  This was in agreement with the results of 

Kumar et al. (2004).  

2.3.5 Effect of Phosphate on As Removal  

The presence of  1 mg/L  and 4 mg/L  phosphate as P inhibited the removal of As 

(Figures 2.8 and 2.9). The inhibitory effect was more significant at higher phosphate 

concentrations.  Considerable phosphate was also removed during the electrocoagulation 

(Figures 2.8 and 2.9).  These results indicate that phosphate can compete with As species 

for the surface sites of lepidocrocite and decrease As adsorption.  A competition 

adsorption effect of phosphate on As removal agreed with the results of previous studies 

(Meng et al., 2002; Zeng et al., 2008b).  The inhibitory effect of phosphate on As 

removal by electrocoagulation may also be caused by the slower oxidization of Fe(II) to 

Fe(III) in the presence of phosphate, which can decrease the rate at which the sorbent is 

formed (Figure 2.8c).   
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Figure 2.8. Dissolved (a) phosphate, (b)  dissolved As(V), and (c) total and dissolved 

iron  concentrations during electrocoagulation of solutions initially containing 100 

µg/L As(V) at pH 7. 

Recent work has observed formation of Fe(III)-phosphate solids during the 

oxidation of Fe(II) in phosphate-rich solids (Figure 2.8c) (Voegelin et al., 2010); 

however, in the present study phosphate did not affect the identity of the iron oxide 

formed during electrocoagulation (Figure 2.3).  Lepodocrocite was the only phase 

indicated in XRD patterns, and there were no peaks for Fe(II) or Fe(III) phosphate solids. 
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Figure 2.9. Dissolved (a) phosphate and (b) As concentrations during 

electrocoagulation treatment of solutions initially containing 100 µg/L As(III) at pH 

7.  

2.3.6 Effect of Silica on As Removal 

The presence of 5 and 20 mg/L dissolved SiO2 had no significant effects on As removal, 

even though considerable silica was also removed during the electrocoagulation  process 

(Figure 2.10) and silica prevented the formation of lepidocrocite (Figure 2.3).  Meng et 

al. (2002) also observed no significant effects of  SiO2 on As(V) adsorption to iron 

hydroxides when SiO2 was present at concentrations as high as 36 mg/L.  In a separate 

study, Davis et al. (2001) observed dissolved SiO2 inhibition of As(V) adsorption to ferric 

hydroxide, but only when silica and ferric hydroxide had been prequilibrated for 50 days; 

at shorter contact times, there was much less inhibition.  In contrast to the lack of 
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inhibitory effects of silica in the present study, Zeng et al.(2008a) observed inhibitory 

effects of  20 mg/L  SiO2 on As(V) removal in column experiments at pH 7.5 using an 

iron oxide-based sorbent.   
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Figure 2.10. Concentrations of (a) dissolved SiO2, (b)  dissolved As(V) and (c)  total 

and dissolved iron  concentrations during electrocoagulation of solutions initially 

containing 100 µg/L As(V) at pH 7. 

Possible reasons for the different effects are the differences in the inhibitory 

mechanisms.  In this study, since silica did not have as strong an affinity to the iron 

oxides as phosphate or arsenic did, it did not significantly inhibit As removal.  Although 

the presence of silica did affect the identity of the iron oxides formed and prevented 

lepidocrocite formation (Figure 2.3), the other iron oxides that formed (potentially 
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ferrihydrite) could also serve as sorbents for arsenic removal. However, in the study by 

Zeng et al. (2008a), silica may have polymerized and physically blocked  access to 

adsorption  sites within internal pores of the iron oxide-based sorbent.  

2.3.7 Effect of Sulfate on As Removal 

The presence of   10 and 50 mg/L SO4
2- (Figure 2.11) did not affect  the removal of As.   
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Figure 2.11. Dissolved concentrations of arsenic during electrocoagulation of 

solutions initially containing (a)100 µg/L As(V)  and (b)  100 µg/L  As(III)  at pH 7.  

Panel (b) also shows the concentration of dissolved As(V). 

Meng et al.(2000) also reported that the presence of  6.8-204 mg/L SO4
2- had no 

significant effects on  the final removal efficiency of As(III) during equilibrium 

adsorption experiments. Because sulfate did not affect lepidocrocite formation, and does 
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not adsorb as strongly as As(V) and phosphate, it is not surprising that sulfate did not 

affect the performance of the electrocoagulation process.  

2.3.8 Results of the Field Study 

The treated water from the field units was collected and analyzed in the lab for arsenic, 

phosphate and iron. Table 2.3 shows the performance of the EC units installed in the 

field. Barring a few, all the units were able to reduce arsenic to less than 10ppb levels 

after candle filtration. These units were not being operated properly as per the 

instructions.  

Table 2.3. Arsenic removal by the domestic EC units installed at the field sites 

Sl. 
no. 

User’s Name pH initial (ppb) settled (ppb) filtered (ppb) 
As tot As (V) P As tot P As tot  P 

1 Pravin Bag 7.1 526 124.5 203 13.3 n.d. 0.4 n.d. 
2 Sanjay Bag 7.1 526 124.5 203 9.4 n.d. 0.2 n.d. 
3 Arobindo 

Chakraborty 
 483.5  198 12.7 n.d. n.d. n.d. 

4 Kamal Bisas 6.8 448.5 92 182 13.6 n.d. n.d. n.d. 
5 Kalidas Bag 6.8 448.5 92 182 8.2 n.d. n.d. n.d. 
6 Prosun Bag  482.5  192 12.1 n.d. n.d. n.d. 
7 Gauri Sarkar 7 676.5 102.5 253 16.9 n.d. n.d. n.d. 
8 Madan Barik  526  198 24.1 n.d. n.d. n.d. 
9 Uttam Bag  675  753 11.8 n.d. 3.9 n.d. 
10 Dr. Krishna Pal 7 676.5 102.5 753 11.9 n.d. 0.5 n.d. 
11 Nirbhada Mondal  487.5  144 7.9 n.d. 4.5 n.d. 
12 Manik Mondal  448.5  156 12.6 3 n.d. n.d. 
13 Bimal Bisas  526.5  193 14.7 3 n.d. n.d. 
14 Promotho Bag  482.5  178 30.7 5 5.8 n.d. 
15 Vivek Bisas 

(Lalmath) 
6.2 710 29 781 52.3 12 52.3 12 

16 Sanatan Barik  526.5  198 48.5 21 10.3 2 
17 Batu Bag  481.5  219 50.4 33 26.4 5 
18 Sachin 7 676.5 102.5 753 50.9 31 25.8 4 
*n.d.- not detectable 
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It can be clearly seen from the table 2.3 and Figure 2.12 that the untreated water 

arsenic concentrations are very high, in the range of 400-700ppb. Most of the samples 

also have very high phosphate concentrations. In the final filtered water samples the 

arsenic concentration is seen to reduce to less than 10ppb in most samples and the 

phosphate concentrations also went to below detectable limits in these. But samples 15, 

16, 17 and 18 were seen to have higher arsenic concentration in the filtered water. On 

further investigation it was found that the users of these units were not following the 

instructions for use of the domestic EC setup by either not aerating the water (i.e. the 

aquarium pump was not switched on) or were carrying EC for less time duration (less 

than the 3hrs. as suggested by us). 

 

Figure 2.12. Domestic EC setup results from the field study. The red arrows indicate 

the WHO guideline value for arsenic in drinking water (10ppb) and the Indian 

standards for arsenic in drinking water (50ppb) 
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Also to be noted here is the arsenic concentration achieved after just EC followed 

by settling before the filtration step. There is significant arsenic reduction in the 

supernatant. But to achieve the drinking water standards the filtration step is found to be 

essential. 

2.4 Conclusions 

The iron generated during electrocoagulation was present in solid phases as lepidocrocite.  

Arsenic removal by electrocoagulation involved lepidocrocite formation followed by 

arsenic adsorption.  As removal was slower at higher pH and higher initial arsenic 

concentrations.  As(III) was partially oxidized to As(V) during electrocoagulation.  As(V) 

removal was faster than As(III) removal.  Phosphate inhibited As removal by acting as a 

competing adsorbate and possibly by delaying the oxidation of Fe(II) to produce 

lepidocrocite.  Although silica prevented the formation of lepidocrocite, arsenic removal 

was still very rapid and extensive by adsorption to the more amorphous iron oxides that 

formed.  Sulfate had no significant effect on As removal or coagulant formation.  Over 99 

% arsenic removal efficiency could be achieved  in both the laboratory and the field 

study. 
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Abstract 

Electrocoagulation is a water treatment technology that involves electrolytic oxidation of 

anode materials to produce a coagulant in situ.  Electrocoagulation experiments for 

arsenic removal were performed using iron electrodes at pH 5, 7 and 9.  The effect of 

water chemistry and treatment time were interpreted using adsorption modeling and a rate 

model for coagulant production and arsenic adsorption.  The iron generated during 

electrocoagulation was released as Fe(II) and then oxidized to Fe(III) and precipitated as 

lepidocrocite (γ-FeOOH).  Arsenic removal by electrocoagulation involved arsenic 

adsorption to lepidocrocite.  Equilibrium As(V) adsorption was investigated in batch 

experiments as a function of dissolved As(V) concentration, pH, and phosphate using 

lepidocrocite generated by electrocoagulation.  A surface complexation model was then 

developed that successfully simulated equilibrium As(V) adsorption.  As(V) adsorption 

generally decreased with increasing pH from 4 to 10.  The presence of 1-4 mg P/L of 

phosphate inhibited As(V) adsorption, and the competitive adsorption was interpreted 

using a surface complexation model. The rate model simulated overall arsenic removal 

well by using Faraday’s law to predict coagulant production and a rate expression for As 

adsorption.  A maximum arsenic removal efficiency of over 99 % was achieved during 

both electrocoagulation and equilibrium adsorption experiments.  
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3.1 Introduction 

Arsenic occurs in groundwater through both natural and anthropogenic process (1).  

Arsenic is toxic and exposure to arsenic through drinking water is a great threat to human 

health (1).  Considering the high toxicity of arsenic, the World Health Organization 

(WHO) and USEPA set a maximum acceptable level of arsenic in drinking water to be 10 

µg/L (2-3).  Arsenic contamination of groundwater is found in both developed and 

developing countries (4-7).  Methods for arsenic removal are widely needed.  

Electrocoagulation involves electrolytic oxidation of a metal anode to generate 

metal oxide and oxyhydroxide coagulants in situ (8-10).  Electrocoagulation is an 

alternative to using chemical coagulants for arsenic removal and thus is beneficial for 

communities with better access to electricity than to chemicals.  When iron electrodes are 

used and sufficient dissolved oxygen is present, an iron oxyhydroxide precipitate forms 

(11).  Previous studies have demonstrated arsenic removal from water and wastewater by 

electrocoagulation and found that removal involved metal oxide formation followed by 

arsenic adsorption to the metal oxide (8-10).  

The pH of the water influences arsenic removal by electrocoagulation by affecting 

arsenic species distribution, the surface charge of the metal oxides, and the rate of Fe(III) 

production from the Fe(II) released from the iron anode (8,11).  As(V) adsorption 

decreases with increasing  pH and Fe(II) oxidation is faster at high pH (11-12).  

Iron oxides have been widely used as sorbents for arsenic removal because they 

have strong affinities for arsenic and can have large specific surface areas (4-7).  Surface 

complexation models (SCM) have successfully described the pH-dependence of As(V) 
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adsorption (4-7, 12).  The competition of As(V) and phosphate adsorption onto iron 

oxide-based sorbents was also simulated successfully by surface complexation models 

(7,12). 

The objectives of this study were to: (1) investigate the effects of dissolved As(V) 

concentration, pH and  phosphate  on As(V) adsorption to the iron oxides generated by 

electrocoagulation, (2) develop a surface complexation model to simulate equilibrium 

As(V) adsorption, and (3) prepare an overall model for the performance of an 

electrocoagulation system for As(V) removal. 

3.2 Materials and Methods  

3.2.1 Electrocoagulation Experiments 

The electrocoagulation reactor consisted of a 1 L glass beaker with two iron rods 

immersed in the aqueous solution.  The rods had diameters of 1.75 cm, lengths of 20 cm, 

and were placed 2 cm apart in the arsenic containing solution.  The total submerged 

surface area of each electrode was 57 cm2.  Before each experiment, the electrodes were 

abraded with sand paper to remove scales and then cleaned with 1 M HNO3 and ultrapure 

water.  A direct current was applied at 12 V to the terminal electrodes from a direct 

current power supply.  The electric current was monitored over the course of each two 

hour experiment.  To provide enough oxygen for the formation of Fe(III) precipitates, the 

solution was sparged with air at a flow rate of 60 mL/min.  The arsenic-containing 

solution was magnetically-stirred (200 rpm).  Duplicate runs were carried out for each  

experimental condition.   
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All solutions were prepared with ultrapure water.  To prepare each solution, 

desired volumes of stock solutions were added to the 1 L glass beaker. An As(V)  stock 

solution was made from Na2HAsO4·7H2O, and a phosphate stock solution was made 

from Na2HPO4·7H2O.  In order to provide pH buffering, NaHCO3 was added to achieve a 

concentration of 1 mM.  The pH of the As-containing solution in each beaker was 

periodically readjusted to the target value by adding aliquots of 1 M HNO3 or 1 M 

NaOH.  

The pH of the solution in the beaker was measured with a pH electrode when the 

current was not applied. It took about 1 min to adjust the pH to the desired values.  

Considering the time used to adjust pH, each experiment lasted about 130 min, although 

current was only applied during 120 minutes of the experiment.  

3.2.2 Equilibrium Adsorption Experiments 

Equilibrium adsorption of As(V) to the solids generated during electrocoagulation was 

investigated in batch experiments as a function of dissolved As(V) concentration, pH, and 

phosphate concentration.  Since As(V) adsorption may be far from equilibrium during 

electrocoagulation, the iron oxides for batch experiments were first generated by 

electrocoagulation in the absence of arsenic and then they were equilibrated with arsenic 

in batch suspensions.  The electrocoagulation reactor was operated without As at pH 7 for 

2 hours to generate enough iron oxide for adsorption experiments.  The iron oxide 

suspension was allowed to settle overnight, the supernatant was decanted, and the 

resulting concentrated suspension was used as the sorbent stock suspension for the 

equilibrium adsorption experiments.  The concentration of this stock suspension was 
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determined to be 0.4 g/L by measuring its total iron concentration and assuming that all 

of the iron was present as lepidocrocite.  The solid phase collected from a parallel 

experiment was freeze-dried for characterization. 

Experiments to develop data for an adsorption isotherm at pH 4 used 10 mL concentrated  

iron oxide suspension, aliquots of  As(V) stock solution to provide a wide range of total 

As(V) concentration, and sufficient ultrapure water to have  50 mL suspensions.  The 

lepidocrocite solid concentration in the suspensions was 0.079 g/L, and the ionic strength 

was fixed by addition of NaHCO3 to 1 mM.  The pH dependence of As(V) adsorption 

was determined in similar experiments with a fixed 100 µg/L (1.3 µM) or 1000 µg/L 

(13.3 µM) As(V) concentration over a pH range from 4 to 10.  These experiments to 

study the pH-dependence of adsorption were performed in the absence and in the 

presence of 1 mg P/L (32.2 µM) or 4 mg P/L (129 µM) of phosphate.  Separate 

experiments were conducted to determine phosphate adsorption as a function of pH at 1 

mg P/L of phosphate both with and without 100 µg/L (13.3 µM) As(V).  The pH of the 

series of suspensions was adjusted to the desired value in the range of 4-10 by addition of 

1 M NaOH and 1 M HNO3.  All batch reactors were equilibrated for 24 h with mixing 

provided by a platform shaker (New Brunswick Scientific, NJ) at 50 rpm. 

3.2.3 Sampling Methods 

For the electrocoagulation experiments using As(V), 15 mL samples of solution were 

periodically collected from the beaker.  For the equilibrium adsorption experiments using 

As(V) and phosphate, 15 mL was collected from each batch reactor after the 24 h 

equilibration period.  For both the electrocoagulation and adsorption experiments, 7.5 mL 
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of each 15 mL sample were filtered using 0.45 µm filter membranes (polyethersulfone, 

Fisher Scientific), and the filtrate were acidified to 1% HNO3.  The remaining 7.5 mL of 

unfiltered suspension was acidified to 1% HNO3 by addition of concentrated HNO3, 

which completely dissolved the suspended solids.  

3.2.4 Analysis Methods 

The filtered and acid-treated samples were analyzed for dissolved and total 

concentrations of constituents, respectively.  The concentrations of As, Fe and P were 

determined by inductively coupled plasma mass spectrometry (ICP-MS) (7500ce, Agilent 

Technologies, Santa Clara, CA).  The instrument detection limits for As, Fe, and P were 

0.1 µg/L, 0.05 mg/L and 0.01 mg/L, respectively.  Selected filtered samples were 

analyzed for Fe(II) using the ferrozine method. The specific surface areas (SSA) of  the 

freeze-dried solids were measured by the BET (Brunauer-Emmett-Teller) N2-adsorption 

method (Autosorb-1-C, Quantachrome, U.S.A.).  X-ray powder diffraction (XRD) 

patterns were collected using Cu Kα radiation (D-MAX/A, Rigaku, Japan).  The size and 

morphology of the iron oxide particles were determined using transmission electron 

microscopy (TEM) (JEOL 2100F, Japan).  Dissolved oxygen for selected samples was 

measured using a Hach Surface Water Test Kit (Fondriest Environmental, Inc.). 

3.3 Results and Discussion 

3.3.1 Production of Iron Oxide Coagulants by Electrocoagulation  

During the experiment, the solution changed from colorless to reddish brown.  The total 

iron concentrations increased linearly with reaction time (Figure 3.1b).  In this study, the 
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reported values are the average plus the standard deviation.  For all the electrocoagulation 

experiments, about 50 mg/L (average value was 50.5 mg/L) of total iron was produced in  

2 hours.  The reactor was operated with a current of 22 mA, and the total iron produced 

was consistent with a value of 52.2 mg/L predicted by Faraday’s Law for the oxidation of 

the iron electrode to dissolved Fe(II).  Fe is released to solution as Fe(II) and is then 

oxidized to Fe(III) by the dissolved oxygen (11). The Fe(III) precipitated to form iron 

oxides or oxyhydroxides (Reactions 3.1 and 3.2). At the cathode hydrogen gas is 

generated.  

Fe(s) → Fe2+ + 2e-                                                                                               (3.1) 

Fe2+ + 1.5H2O + 0.25O2 → γ-FeOOH(s) + 2H+                                                  (3.2) 

During one set of experiments, the dissolved oxygen (DO) was measured and the 

value was near 10 mg/L for all samples collected (30, 60 and 90 min), which indicated 

that the solution was saturated with dissolved oxygen.  The dissolved iron concentrations 

were very low when compared with the total iron concentrations in each experiment, 

which indicated that nearly all of the iron was present in the solid phases. 

The solids were identified as lepidocrocite (γ-FeOOH) by their XRD patterns both 

in  the presence and absence of phosphate (Figure A1 in the Appendix).  The 

lepidocrocite particles were 100-200 nm long and about 5-20 nm wide (Figure A2 in the 

Appendix).  The specific surface area of the solids was 200.5 m2/g and was independent 

of the solution composition.  It is well documented that lepidocrocite can be synthesized 

by oxidizing Fe(II) solutions using dissolved oxygen at ambient temperature (13).  The 

rate of Fe(II) oxidation is known to increase with increasing pH (11,14). 
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Figure 3.1. Concentrations  of total and dissolved (a) As(V) at pH 7.0 and (b)  iron 

during electrocoagulation of  a solution  initially containing 100 µg/L As(V) at pH 

5.0 and 7.0. The dashed line  in (b) represents the total iron concentration predicted 

by the Faraday’s law at the measured current of 22 mA. 

Although experiments results did find measurable dissolved iron at pH 5 that was 

not present at pH 7 or 9, the dissolved Fe was not determined to be Fe(II). The measured 

dissolved iron concentrations measured at pH 5 were higher than the equilibrium 

solubility of lepidocrocite, so the dissolved iron may represent colloidal Fe(III) species or 

Fe(II) that, for unknown reasons, was not measureable by the ferrozine method.  
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3.3.2 As(V) Equilibrium Adsorption in the Absence of Phosphate  

The As(V) adsorption density at pH 4 increased with increasing dissolved As(V)  

concentration until the surface sites of the lepidocrocite were saturated (Figure 3.2).  By 

fitting the adsorption data to the Langmuir isotherm (Equation 3.3), the maximum 

adsorption density was obtained as 19.8 µg As(V) /mg FeOOH and KL was found to be 

0.006 L/µg. 

 г ൌ гౣ౮KLC
ଵାKLC

                                                                                                       (3.3) 

In equation 3, г is the amount of As(V)  adsorbed by per unit of lepidocrocite (µg 

As(V) /mg FeOOH),  гmax is the maximum amount of As(V) adsorbed by per unit of 

lepidocrocite (µg As(V)/mg FeOOH),  KL is  the adsorption constant (L/µg), and C is the 

dissolved As(V)  concentration at equilibrium (µg/L). 

As(V) adsorption onto the lepidocrocite  decreased with increasing pH from 4 to 

10 at total As(V) concentrations of 100 and 1000 µg/L (Figure 3.3).  A surface 

complexation model with the diffuse double layer to account for electrostatic 

contributions to adsorption was used to describe the As(V) adsorption edges in this study 

(4).  Reactions and parameters used in the surface complexation model are listed in Table 

1.  The constants for surface protonation of  lepidocrocite were taken from the study by 

Peacock and Sherman (16). They modeled Cu(II) adsorption using bidentate and 

tridentate surface complexes with lepidocrocite and a surface site density of 1.6 sites/nm2. 

The surface site concentration was determined from гmax in the adsorption isotherm to be 

2.09×10-5 M. When considering the specific surface area of the lepidocrocite and 
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assuming that each adsorbed As(V) occupies a single surface site, the maximum 

adsorption density corresponds to a surface site density of 0.8 sites/nm2.  This site is  

lower than those reported by Dixit and Hering (2.6 sites/nm2) (4)  and Zeng et al. (1.5 

sites/nm2) (12).  The difference in the site concentrations between this study and these 

previous studies may result from the different kinds of iron oxides used (lepidocrocite 

versus goethite and amorphous iron oxides).  If adsorption occurs through bidentate 

coordination to two surface sites, then the site density in this study would be 1.6 

sites/nm2.   
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Figure 3.2. As(V) adsorption isotherm onto lepidocrocite at pH 4. Data are shown as 

symbols and simulations are shown as lines. The solid line is the surface 

complexation model and the dashed line is the Langmuir isotherm. 

The surface complexation constants for As(V) adsorption were systematically 

varied using the computer program MINEQL+ 4.6 (16) to obtain the constants that 
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provide the best fit of the model to the experimental data.  The equilibrium constants 

reported by Dixit and Hering for the formation of As(V) surface complexes on hydrous 

ferric oxide were used as the starting points (4).  The optimized constants are listed in 

Table 3.1.  

Table 3.1. Reactions and parameters used for surface complexation modeling  of 

As(V) and phosphate to the lepidocrocite generated from electrocoagulation. 

Reaction LogK Reference 

surface protonation 

≡FeOH + H+ = ≡FeOH2
+ 6.69 

(15) 
≡FeOH = ≡FeO- + H+ -8.69 

arsenate adsorption   

≡FeOH + AsO4
3- + 3H+ = ≡FeH2AsO4 + H2O 30.28* 

This study ≡FeOH + AsO4
3- + 2H+ = ≡FeHAsO4

- + H2O 22.15* 

≡FeOH + AsO4
3- + H+ = ≡FeAsO4

2- + H2O 19.38* 

phosphate adsorption  

≡FeOH + PO4
3- + 3H+ = ≡FeH2PO4 + H2O 30.80 

This study ≡FeOH + PO4
3- + 2H+ = ≡FeHPO4

- + H2O 21.15 

≡FeOH + PO4
3- + H+ = ≡FePO4

2- + H2O 19.80 

arsenate protonation   

AsO4
3- + H+ = HAsO4

2- 11.50 

(16) AsO4
3- + 2H+ = H2AsO4

- 18.46 

AsO4
3- + 3H+ = H3AsO4 20.70 

phosphate protonation  

PO4
3- + H+ = HPO4

2- 12.375

(16) PO4
3- + 2H+ = H2PO4

- 19.573

PO4
3- + 3H+ = H3PO4 21.721

*The constants used by Dixit and Hering (4) are 29.88, 24.43 and 18.10, respectively.  
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 The As(V) adsorption edge on the iron oxides could be described very well for 

both 100 and 1000 µg/L total As(V) using  the surface complexation model (Figure 3.3).  

In addition, the intrinsic As(V) surface complexation constants  obtained in this study 

were very similar to those obtained by Dixit and Hering (4).  The intrinsic As(V) surface 

complexation constants  obtained in this study could also provide a satisfactory 

simulation of the As(V) adsorption isotherm at pH 4 (Figure 3.2). 
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Figure 3.3. As(V) adsorption edges onto lepidocrocite at initial As(V) concentrations 

of 100 (■) and 1000 µg/L (•). Data are shown as symbols and simulations from the 

surface complexation model as lines. 

3.3.3 As(V) Equilibrium Adsorption in the Presence of Phosphate  

The presence of 1-4 mg P/L of phosphate inhibited As(V) adsorption onto the 

lepidocrocite  (Figure 3.4).  Phosphate can compete with As(V) for the surface sites.  To 

obtain constants for phosphate surface complexation reactions, phosphate (1 mg P/L) 
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adsorption was investigated from pH 4-10 in the absence of As(V) and then simulated 

using the surface complexation model (Figure 3.5 and Table 3.1).  The surface 

complexation constants for phosphate adsorption were systematically varied using the 

computer program MINEQL+ 4.6 to obtain the optimal constants for fitting the model to 

the adsorption data.  The values for As(V) adsorption equilibrium constants were used as 

the starting points.  The optimized constants are listed in Table 3.1.  The phosphate (1 mg 

P /L) adsorption edge in the absence of As(V) could be described well using  the surface 

complexation model (Figure 3.5). 
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Figure 3.4.  As(V) adsorption edges onto lepidocrocite for 100 µg/L total As(V) in 

the absence of phosphate (■)  and in the presence of 1 (•)  and 4 (▲) mg P/L of 

phosphate. Data are shown as symbols and simulations from the surface 

complexation model are shown as lines. 
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The reactions and constants in Table 3.1 were then used to simulate the 

concurrent adsorption  of As(V) and phosphate onto lepidocrocite (Figures 3.4-5).   
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Figure 3.5. Phosphate adsorption edges onto lepidocrocite  in the absence of As(V)  

and in the presence of 100 µg/L As(V). Data are shown as symbols and simulations 

from the surface complexation model are shown as lines. 

The surface complexation model simulated As(V) adsorption to lepidocrocite  in 

the presence of 1 mg P/L very well, but the model underestimated As(V) adsorption onto 

lepidocrocite  in the presence of 4 mg P/L. This underestimation of As(V) adsorption 

may be caused by an overestimation of phosphate adsorption. It should be noted  that 

phosphate adsorption was predicted using a model optimized for 1 mg P/L and did not 

use any data for As-free conditions with 4 mg P/L.  The model may overestimate 

phosphate adsorption at the higher phosphate loading, which could happen if the surface 
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sites were actually distributed between strong and weak sites, which would then 

overestimate the inhibition of arsenate caused by the phosphate.   

3.3.4 Overall Reactor Model for As(V) Removal by Electrocoagulation 

In the electrocoagulation process, the rate of As(V)  removal can be assumed to be  

proportional to the difference  between the actual and the equilibrium dissolved 

concentration of As(V) (i.e. the driving force) and the amount of solid lepidocrocite 

present  (Equation 3.4).  

െୢC
ୢ୲
ൌ k൫C െ Cୣ୯൯C୪ୣ୮                     (Initial condition: C = Co  at t =0)      (3.4) 

The dissolved As(V) concentration (C in µg/L) and the solid lepidocrocite 

concentration (Clep in µg/L) are changing with time.  Because the predicted equilibrium 

concentration Ceq is determined by the dissolved As(V) and the amount of solid, it too 

will change with time.  However for this study the final dissolved As(V) concentration in 

the reactor after two hours of treatment was used to represent Ceq.  Co is the initial 

dissolved As(V) concentration in the reactor and k is the reaction constant (L/(µg·min)).   

Faraday's Law (equation 3.5) was used to predict iron formation. 

m ൌ MI
F
t כ 60                                                                                                (3.5)          

In equation 3.5, m is the mass of the iron produced at the anode (g), M is the atomic 

weight of iron (56 g/mol), I is the current applied to an electrode (I=0.022 A), F is the 

Faraday constant (96485 C/mol), z is the valence number of the iron (z=2), t (min) is the 

total time the current was applied, and 60 is the conversion factor between minutes and 
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seconds.  Assuming that all iron is released as Fe(II) and precipitates as the oxyhydroxide 

lepidocrocite, the lepidocrocite generation rate can be expressed as equation 3.6. 

Clep = klept                                                                                                       (3.6) 

In equation 6,  klep (µg/(L·min)) is the lepidocrocite generation constant. In this study klep 

is calculated to be 609 µg/(L·min), thus Clep = 609t.  Although not all iron was present in 

the solid phase, especially at pH 5 (Figure 3.1b), and at lower pH the assumption of 

instantaneous oxidation is less valid, the model still worked well. 

Substituting Clep = 609t into equation 3.4 and integrating yields equation 3.7. 

C= Ceq + (Co-Ceq)exp(-304.5kt2)                                                                   (3.7) 

Equation 3.7 was used to simulate As(V) removal by electrocoagulation at pH 5, 7 and 9.  

The optimal value of k for each pH was determined as the one providing the best fit to the 

data.  The results illustrated that the proposed kinetic  model could simulate the As(V) 

removal by electrocoagulation very well (Figure 3.6 and Table 3.2).  The As(V) removal 

rate was slower at higher pH during electrocoagulation.  A similar pH effect was 

observed by Thella et al., who found that arsenic removal rate decreased with increasing 

pH from 2 to 8 (17).  There were no significant differences among the k values optimized 

for pH 5 and 7, but they were significantly larger than the value obtained at pH  9 (Table 

3.2).  At higher pH, the driving force (C-Ceq) was smaller, but even after accounting for 

this driving force using equation 4, the rate constant was still lower at pH 9 than at pH 5 

and 7. The results demonstrated that both the driving force and the rate constant for 

adsorption are lower at higher pH. 
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Table 3.2. Parameters used for simulation of the overall electrocoagulation process 

for treatment of solutions initially containing 100 µg/L As(V). 

pH k (L/(µg·min)) Ceq (µg/L)
5 5.0·10-4 0 
7 4.6·10-4 0 
9 3.7·10-6 4.1 
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Figure 3.6. Electrocoagulation of solutions initially containing 100 µg/L As(V) at pH 

5, 7 and 9. Data are shown as symbols and simulations are shown as lines. Data and 

simulations at pH 5 are partially obscured by those at pH 7. 

The equilibrium dissolved As(V) concentrations predicted using the surface 

complexation model at the end of the experiments at pH 5 and 7 agreed well with the 

value of Ceq from the simulation using the rate model.  However, the equilibrium 

dissolved As(V) concentration predicted using the surface complexation model at pH 9 

(32.3 µg/L) was larger than the value measured at the end of an electrocoagulation 
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experiment (4.1 µg/L) that used in the rate model.  One possible reason for this difference 

is that the lepidocrocite particles grow with the reaction time; thus, the particles during 

electrocoagulation (age ≤2 hours) may be smaller than those (age > 2 hours) used for 

As(V) adsorption experiments. The lepidocrocite during electrocoagulation would then 

have a larger specific surface area than during As(V) adsorption experiments, and 

consequently, more adsorption could occur during electrocoagulation than during batch 

adsorption.  

Another method was also tried for simulating As(V) removal by 

electrocoagulation.  In this method, the equilibrium dissolved As(V) concentration 

predicted using the surface complexation model at each time t was used for the value of 

Ceq in equation 4.  Numerical solutions of this differential equation did not provide better 

fits of the experimental data at pH 5 and 7 than the approach with a fixed Ceq value, and 

at pH 9 the fits were considerably worse because of the disparity between the value of Ceq 

measured in electrocoagulation experiments and predicted by the surface complexation 

model. 

3.4 Environmental Implications 

Electrocoagulation using iron electrodes can produce iron oxyhydroxides in situ as a 

sorbent for As(V) removal.  This technology can potentially be used to remove other 

heavy metals from contaminated drinking water. 

As(V) adsorption onto the iron oxyhydroxide generated by electrocoagulation  

and competitive adsorption of As(V) and phosphate over a wide pH range were predicted 

successfully by a surface complexation model.  The model can be used to predict As(V) 
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adsorption onto an iron oxyhydroxide based on the water chemistry over a wide range of 

conditions.  Application of the surface complexation modeling approach can be used to 

assess potential performance of electrocoagulation for arsenic removal for various waters 

without needing to conduct lengthy experiments. 

As(V) removal by electrocoagulation was simulated successfully using a rate 

model involving simultaneous coagulant production and arsenic adsorption.  Such a 

model can  be used as a design tool for predicting As(V) removal by electrocoagulation 

for different reactor systems. 
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3.7 Appendix 
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Figure A1. X-ray diffraction patterns of solids generated during experiment. The 

reference pattern for lepidocrocite is included for comparison.  

  

Figure A2. TEM image of solids generated during electrocoagulation. 
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Chapter 4 

Conclusions and Recommendations for Future Work 

4.1 Conclusions 

The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), 

except when dissolved silica was present. Arsenic was removed by adsorption to the 

lepidocrocite.  Arsenic removal was slower at higher pH.  When solutions initially 

contained As(III), a portion of  the As(III) was oxidized to As(V) during 

electrocoagulation.  As(V) removal was faster than As(III) removal.  The presence of 1 

and 4 mg P/L of phosphate inhibited arsenic removal, while the presence of 5 and 20 mg 

SiO2/L of silica or 10 and 50 mg SO4
2-/L of sulfate had no significant effect on arsenic 

removal.  For most conditions examined in this study, over 99% arsenic removal 

efficiency was achieved.   

Electrocoagulation experiments for arsenic removal were performed using iron 

electrodes at pH 5, 7 and 9.  The effect of water chemistry and treatment time were 

interpreted using adsorption modeling and a rate model for coagulant production and 

arsenic adsorption.  Equilibrium As(V) adsorption was investigated in batch experiments 

as a function of dissolved As(V) concentration, pH, and phosphate using lepidocrocite 

generated by electrocoagulation.  A surface complexation model was then developed that 

successfully   simulated equilibrium As(V) adsorption.  As(V) adsorption onto the 

lepidocrocite  generally decreased with increasing pH from 4 to 10.  The presence of 1-4 

mg P/L of phosphate inhibited As(V) adsorption.  The rate model simulated the overall 
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arsenic removal by electrocoagulation well by using Faraday’s law to predict coagulant 

production and a rate expression for As adsorption.  A maximum arsenic removal 

efficiency of over 99 % was achieved during both the electrocoagulation and equilibrium 

adsorption experiments. 

4.2 Recommendations for Future Work 

According to the Faraday’s Law, the amount of  metal ion generated from the anode 

during electrocoagulation is proportional to the current applied to the anode, thus the 

current can affect the amount of metal oxides formed and can affect arsenic removal 

efficiency and rate during electrocoagulation accordingly.  Therefore studies on the effect 

of current on arsenic removal  by  electrocoagulation are recommended. 

So far, most of the studies on arsenic removal  by  electrocoagulation were 

conducted in batch mode due to its simple operation and control.  However, large-scale 

arsenic removal by electrocoagulation would require continuous processes for practical 

engineering reasons.  Thus, more studies on continuous arsenic removal by 

electrocoagulation are recommended. 

There is no agreement on how As(III) is oxidized to As(V) during 

electrocoagulation. As(III) oxidation to As(V) has previously been proposed to occur 

with dissolved oxygen as the oxidant and intermediate iron-containing species as rate-

enhancing species.  As(III) oxidation can also occur when Fe(II) is present with Fe(III) 

oxyhydroxides, and the mechanism has been proposed to involve  the formation of an 

Fe(IV) intermediate. During electrocoagulation, As(III) can be oxidized to As(V) by the 
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electrodes. Thus, more studies on how As(III) is oxidized to As(V) during 

electrocoagulation are recommended. 

Because there are limited studies of  adsorption of As(V) and other solutes to 

lepidocrocite, additional research can help identify adsorption mechanisms and refine 

surface complexiation models.  Direct characterization of arsenic adsorbed onto 

lepidocrocite using Fourier transform infrared spectroscopy (FTIR) and extended X-ray 

absorption fine structure (EXAFS) spectroscopy are recommended to determine the 

molecular-scale structure of adsorbed arsenic.  Additional adsorption and potentiometric 

titration experiments with lepidocrocite could generate data to further constrain the 

surface site density used in surface complexation modeling. 

Finally, after arsenic removal by electrocoagulation, the dissolved arsenic is 

adsorbed to the iron oxides.  If handled improperly, these iron oxides with adsorbed 

arsenic can cause secondary contamination.  Thus more studies are recommended on the 

disposal of the arsenic-rich iron oxide residual solids from electrocoagulation treatment.  
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