
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2015-004 

2015-09-29 

Maximizing Network Lifetime of Wireless Sensor-Actuator Maximizing Network Lifetime of Wireless Sensor-Actuator 

Networks under Graph Routing Networks under Graph Routing 

Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah, Mo Sha, Paras Tiwari, Chenyang Lu, and 

Yixin Chen 

Process industries are adopting wireless sensor-actuator networks (WSANs) as the 

communication infrastructure. The dynamics of industrial environments and stringent reliability 

requirements necessitate high degrees of fault tolerance in routing. WirelessHART is an open 

industrial standard for WSANs that have seen world-wide deployments. WirelessHART employs 

graph routing schemes to achieve network reliability through multiple paths. Since many 

industrial devices operate on batteries in harsh environments where changing batteries are 

prohibitively labor-intensive, WSANs need to achieve long network lifetime. To meet industrial 

demand for long-term reliable communication, this paper studies the problem of maximizing 

network lifetime for WSANs under graph routing.... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Wu, Chengjie; Gunatilaka, Dolvara; Saifullah, Abusayeed; Sha, Mo; Tiwari, Paras; Lu, Chenyang; and Chen, 
Yixin, "Maximizing Network Lifetime of Wireless Sensor-Actuator Networks under Graph Routing" Report 
Number: WUCSE-2015-004 (2015). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/508 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/508?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/508 

Maximizing Network Lifetime of Wireless Sensor-Actuator Networks under Graph Maximizing Network Lifetime of Wireless Sensor-Actuator Networks under Graph 
Routing Routing 

Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah, Mo Sha, Paras Tiwari, Chenyang Lu, and Yixin Chen 

Complete Abstract: Complete Abstract: 

Process industries are adopting wireless sensor-actuator networks (WSANs) as the communication 
infrastructure. The dynamics of industrial environments and stringent reliability requirements necessitate 
high degrees of fault tolerance in routing. WirelessHART is an open industrial standard for WSANs that 
have seen world-wide deployments. WirelessHART employs graph routing schemes to achieve network 
reliability through multiple paths. Since many industrial devices operate on batteries in harsh 
environments where changing batteries are prohibitively labor-intensive, WSANs need to achieve long 
network lifetime. To meet industrial demand for long-term reliable communication, this paper studies the 
problem of maximizing network lifetime for WSANs under graph routing. We formulate the network 
lifetime maximization problem for WirelessHART networks under graph routing. Then, we propose the 
optimal algorithm and two more efficient algorithms to prolong the network lifetime of WSANs. 
Experiments in a physical testbed and simulations show our linear programming relaxation and greedy 
heuristics can improve the network lifetime by up to 50% while preserving the reliability benefits of graph 
routing. 

https://openscholarship.wustl.edu/cse_research/508?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/508?utm_source=openscholarship.wustl.edu%2Fcse_research%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages


Maximizing Network Lifetime of WirelessHART
Networks under Graph Routing
Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah∗, Mo Sha†,

Paras Babu Tiwari, Chenyang Lu, Yixin Chen
Department of Computer Science & Engineering, Washington University in St. Louis
∗ Department of Computer Science, Missouri University of Science & Technology
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Abstract—Industrial Wireless Sensor-Actuator Networks
(WSANs) enable Internet of Things (IoT) to be incorporated in
industrial plants. The dynamics of industrial environments and
stringent reliability requirements necessitate high degrees of fault
tolerance. WirelessHART is an important industrial standard for
WSANs that have seen world-wide deployments. WirelessHART
employs graph routing to enhance network reliability through
multiple paths. Since many industrial devices operate on
batteries in harsh environments where changing batteries is
prohibitively labor-intensive, WirelessHART networks need to
achieve a long network lifetime. To meet industrial demand
for long-term reliable communication, this paper studies the
problem of maximizing network lifetime for WirelessHART
networks under graph routing. We first formulate the network
lifetime maximization problem and prove it is NP-hard. Then, we
propose an optimal algorithm based on integer programming, a
linear programming relaxation algorithm and a greedy heuristic
algorithm to prolong the network lifetime of WirelessHART
networks. Experiments in a physical testbed and simulations
show our algorithms can improve the network lifetime by up to
60% while preserving the reliability benefits of graph routing.

Index Terms—WirelessHART, industrial wireless sensor-
actuator networks, graph routing, network lifetime maximization.

I. INTRODUCTION

With the emergence of industrial standards such as Wire-
lessHART [1] and ISA100 [2], process industries are em-
bracing IoT technology based on low-power wireless mesh
networks for process automation [3]. The process industry
has installed more than 24 thousand WirelessHART networks
around the world, with more than 5 billion operating hours in
the field [4].

The limited energy supply of IoT devices necessitates the
efficient utilization of battery power. Energy consumption is
closely coupled with route selection. Selecting a routing path
that optimizes energy efficiency can lead to a longer network
lifetime. In industrial environments, changing batteries can be
dramatically expensive and difficult, e.g., oil fields spanning
large areas under harsh environmental conditions. Thus, max-
imizing the lifetime of the network is an important problem
that needs to be tackled.

Although the problem of energy efficient routing has been
extensively studied for traditional wireless networks, the strict
reliability requirements in industrial WSANs bring new chal-
lenges. To support reliable communication over wireless mesh

networks, the WirelessHART standard adopts a graph routing
approach. A graph route consists of a primary path and
multiple backup paths. For each intermediate node on the
primary path, a backup path is generated to handle link or node
failure on the primary path. Moreover, the energy consumption
of network nodes is highly coupled with the (re)transmission
scheduling policy adopted by industrial standards. Graph rout-
ing introduces unique challenges in energy-efficient routing
that has not been investigated in earlier research on energy-
efficient routing for wireless sensor networks.

This paper addresses the network lifetime maximization
problem of WirelessHART networks under graph routing.
Specifically, our contributions are five-fold:
• Formulation of the network lifetime maximization prob-

lem under graph routing and proof of its NP-hardness.
• An optimal network lifetime maximization algorithm

based on integer programming.
• An approximation algorithm through linear programming

relaxation of the integer programming algorithm.
• An efficient greedy heuristic with lower computational

complexity.
• Implementation and evaluation of the proposed algo-

rithms on a physical WSAN testbed, as well as in
simulations.

Our evaluation shows that our algorithms can improve the
network lifetime by up to 60%, and the greedy heuristic is
more efficient than the linear programming relaxation ap-
proach.

The rest of the paper is organized as follows. Section II re-
views related works. Section III describes the network model.
Section IV formulates the lifetime maximization problem
and proves its NP-hardness. Section V presents our lifetime
maximization graph routing algorithms. Section VI evaluates
the graph routing algorithms in experiments and simulations.
Section VII concludes the paper.

II. RELATED WORK

Energy-aware routing for wireless sensor and ad hoc net-
works has received significant attention [5]. Stojmenovic and
Lin [6] proposed a protocol to minimize total power consump-
tion and extend network lifetime. Chang and Tassiulas max-
imized network lifetime by balancing network traffic among
the nodes in proportion to their residual energy [7], [8]. Wu et



al. [9] proposed a routing algorithm to improve the lifetime and
reliability of the network based on local topology information.
Li et al. [10] proposed a routing protocol that combines the
benefits of selecting the path with minimum power consump-
tion and the path that maximizes residual power in the nodes.
Doshi et at. [11] implemented a minimum energy routing
version of the DSR protocol in a network simulator. Kalpakis
et al. [12] studied the lifetime maximization problem for
tree topology networks. Despite considerable results on the
general problem of network lifetime optimization, none of
the aforementioned works address graph routing. Note the
path diversity provided by graph routing is a key technique
that the WirelessHART standard used to achieve reliable
communication in industrial settings [13].

WirelessHART networks have attracted a lot of attention in
the research community [14]–[23]. Previous literature studied
real-time transmission scheduling [15], [16], [22], communi-
cation delay analysis [19], [21], rate selection [20], and system
performance optimization [23]. All these works assumed that
routes of the flows are already given, and did not provide any
routing protocol.

There has been increasing interest in developing new routing
approaches for WirelessHART networks. Zhao et al. proposed
a routing algorithm called ELHFR [24]. Gao et al. proposed
a multipath graph routing algorithm with subgraphs called
ORMGR [25]. Han et al. proposed routing algorithms [26] to
construct reliable routing graphs. However, in the aforemen-
tioned works, hop count is the only criterion when choosing
the links. Network lifetime is not considered when making
the routing decision. Wu et al. [27] studied real-time routing
for WirelessHART networks, which did not consider network
lifetime. Our work is motivated by an earlier experimental
study of WirelessHART routing protocols [13] that showed
graph routing achieved higher reliability at higher energy cost,
and hence it is essential to develop energy-efficient graph
routing protocols.

To improve energy efficiency in WirelessHART networks,
Wang et al. proposed a routing algorithm called DHEIRP
[28], which chooses the next hop node by comparing the
residual energy of neighbors. Memon et al. proposed a load-
balanced routing algorithm [29] that chooses the next-hop
node by comparing the communication loads of neighbors.
The JRMNL algorithm [30] chooses the next hop according
to node communication load, node residual energy and link
transmission energy consumption. Zhang et al. proposed a
routing algorithm [31] to select next hop by taking into account
the remaining energy, the quality of the link and the number
of hops. However, all works above take an approach sitting
between the source routing and graph routing. After building
a graph, a source route is used to deliver a single packet, al-
though different packets may use different source routes. As a
result, a packet will not benefit from path diversity to improve
reliability. As path diversity and graph routing are crucial for
industrial applications (especially control applications) to meet
their stringent reliability requirements, we investigate the open
problem of network lifetime maximization under graph routing
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Fig. 1: Source and Graph Routing

in WirelessHART networks in this paper.

III. NETWORK MODELS

A WirelessHART network [1] consists of a gateway, mul-
tiple access points, and a set of field devices (sensors and
actuators). The access points and field devices are equipped
with half-duplex radio transceivers compatible with the IEEE
802.15.4 standard [32], and form a wireless mesh network. The
access points are wired to the gateway and serve as bridges
between the gateway and field devices.

WirelessHART adopts a centralized network management
architecture. The network manager (a software module running
on the gateway or a host connected to the gateway) manages
all devices in the network. The network manager gathers the
network topology information, generates and disseminates the
routes and transmission schedule to all network devices. This
centralized network management architecture enhances the
predictability and visibility of network operations at the cost
of scalability.

WirelessHART adopts a Time Division Multiple Access
(TDMA) MAC layer protocol on top of the IEEE 802.15.4
physical layer. All devices in the network are time synchro-
nized. Time is divided into 10 ms slots, and each slot can
accommodate one data packet transmission and its acknowl-
edgment. WirelessHART supports multi-channel communica-
tion using up to 16 channels specified in the IEEE 802.15.4
standard. In a slot, only one transmission is scheduled on each
channel across the entire network to avoid collision.

A. Routing Model

WirelessHART supports both source routing and graph
routing. Under source routing, a single path from the source
to the destination is generated for each data flow as shown in
Figure 1(a).

Under graph routing, redundant paths are provided to handle
link failures. As shown in Figure 1(b), a single path is
generated as a primary path (solid arrows) and a backup path
is generated for each device along the primary path except
the destination d. For instance, a backup path u→ w → d is



generated for node u and it is used when the transmission on
u→ v fails.

A WirelessHART network can be defined as G = (V,E),
where V denotes a set of devices and E denotes a set of
bidirectional links1 between devices. A link in E can be a
link between two field devices or a link between an access
point and a field device. We define a graph route as below:

Definition 1. Given a source device s and a destination device
d, a graph route R = {φ0, φ1, · · · , φ|φ0|} is a set of paths
from s to d, where φ0 is the primary path and |φ0| denotes
the number of links in φ0. Each device vi on the primary path
φ0, except the destination d, has a backup path φi from itself
to the destination, which does not include vi’s outgoing link
on the primary path.

A WirelessHART network can support multiple data flows
in the network. Two graph routes are generated for each data
flow: an uplink graph route and a downlink graph route. The
uplink graph route starts from the sensor and ends at the
access points. A downlink route starts from an access point and
ends at the actuator. As the data flows are usually generated
by process monitoring or control applications, they usually
generate packets periodically.

B. Transmission Scheduling Model

In WirelessHART networks, a time slot can be a dedicated
slot or a shared slot. In each channel, only one transmission
is scheduled in a dedicated slot, while multiple transmissions
may compete for a shared slot in a CSMA/CA fashion.

Only dedicated slots are used for source routing. A trans-
mission and a retransmission are scheduled in dedicated slots
for each link under the source routing.

Both dedicated slots and shared slots are used for graph
routing. For each device on the primary path, the network
manager allocates two dedicated slots for a transmission and
a retransmission on its outgoing link along the primary path,
and also assigns a third shared slot on its outgoing link along
its backup path. Therefore, each link on the primary path is
assigned two dedicated slots and each link on backup paths is
assigned a shared slot. Since WirelessHART networks usually
only employ high-quality links, shared slots are assigned to
backup paths to reduce delay and enhance bandwidth.

C. Energy Consumption Model

We model the energy consumption under graph routing in
this subsection. We only consider the energy consumption of
the radio which is related to packet transmission and reception.
The energy consumption of microprocessors, sensors, and
other parts is out of the scope of this paper. For a single
packet, we calculate the energy consumption of each device
on both the primary and backup paths. Since the scheduling
policies for transmissions on the primary path and backup path
are different, we calculate the energy consumption for them
separately. For each transmission along the primary path, two

1WirelessHART only uses bidirectional links for packet transmission and
acknowledgement.

dedicated slots are assigned. If the first transmission succeeds,
the retransmission will not occur and both sender and receiver
will turn off their radios at the second slot. Otherwise, a
retransmission will occur in the second time slot. If both the
transmission and retransmission along the primary path fail,
there will be a second retransmission along the backup path.

Figure 2 shows the timing of a transmission in a time
slot. The top of the timing diagram shows the operation
of the sender and the bottom shows that of the receiver.
When a shared slot is assigned, the sender will perform Clear
Channel Assessment (CCA) before transmitting the packet.
We use TsMaxPacket to denote the maximum time to transmit
a packet. When scheduled as the transmission’s receiver, the
receiver must enter receive mode. The receiver must keep
the radio on to listen to potential packet transmission. We
denote the minimum time to wait for the start of a message
as TsRxWait. If a transmission is detected, the receiver keeps
receiving until it receives the entire packet. Otherwise, the
receiver will turn off the radio after the receive window
expires. We denote the power of transmitting and receiving
a packet as Pt and Pr respectively.

Assume vi is a device on the primary path, which is
scheduled to send one packet to device vj . We use α to
denote the Packet Reception Ratio (PRR) for this link. Then
the probability that it successfully transmits a packet to its
receiver vj on the first try is α. The probability that it fails
in the first attempt and needs to retransmit the packet to vj is
1 − α. So the expected time length that the sender keeps its
radio on is

α×TsMaxPacket+2(1−α)TsMaxPacket = (2−α)TsMaxPacket

In the case of checksum error, the receiver needs to keep
the radio on for TsMaxPacket, so the receiver on the primary
path has the same expected time length keeping its radio on as
the sender. By incorporating the power, we get the expected
energy consumption of a device as a sender or a receiver for
delivering one packet on the primary path. We denote Et as
the expected energy consumption of device vi to transmit a
packet to vj on a primary path, thus

Et = (2− α)Pt × TsMaxPacket (1)

The expected energy consumption of device j to receive a
packet from i on a primary path is:

Er = (2− α)Pr × TsMaxPacket (2)

Since transmission on a backup path only happens when the
two previous attempts fail, the chance that there is an actual
packet transmission on a backup path is (1 − α)2, e.g., less
than 0.01 if we use a PRR threshold of 0.9. However, as long
as a transmission is scheduled on a link, the receiver needs
to turn on the radio and listen for TsRxWait time to check
whether there is an incoming packet. Then the expected energy
consumption of device i on a backup path to transmit a packet
is

Etb = (1− α)2Pt × TsMaxPacket (3)
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10.1 Slot Timing 
All transactions occur in slots following specific timing requirements.  Figure 12 shows one 
slot and provides an overview of transaction timing.  The top of the timing diagram shows the 
operation of the source neighbor and the bottom shows the destination neighbor.  In the 
figure, the destination's perception of the slot start time is slightly retarded when compared to 
the source's.  All of the timing symbols are depicted even though they may not be applicable 
to every type of transaction.  Table 7 defines the timing symbols. 
Each slot begins by allowing a time interval to prepare the packet being conveyed for 
transmission.  This includes formatting of the packet and calculation of the MIC and CRC.  Of 
course these calculations are only performed if the source has a packet to propagate to the 
destination.  The source will perform the CCA (when required) and transmit the packet.  
Depending on the type of transaction an ACK may be transmitted by the destination device. 
When scheduled as the link's destination, the device must enter receive mode.  The device 
must be listening for communication, starting TsRxOffset from the start of its slot, before and 
after the device's estimation of the ideal transmit start time. The receive window (specified by 
TsRxWait) allows device timing to drift while still permitting devices to communicate and 
resynchronize their slot timers.  Sources of drift include temperature, aging, and other effects. 

TsRxWait TsTxAckDelay

TsRxAckDelay
TsMaxPacket

TsAck

TsCCA

TsError

TsAckWait
TsTxOffset

TsRxOffset

TsCCAOffset

TsRxTx

Source

Destination

 
Figure 12.  Slot Timing 
If the destination device detects a message, it captures the time when the start of message 
(i.e., the end of reception of the Physical Layer Delimiter) occurs and calculates TsError as 
the difference between the device's ideal start time and the actual start time of the packet. 
If a specific destination address is specified, the source packet will result in the destination 
device generating and transmitting an ACK packet.  If the destination address is the broadcast 
address no ACK packet is generated.  Finally, time is allocated at the end of the slot for 
processing the propagated packet and preparing for the next slot, (e.g., assessing and 
prioritizing the packets now queued up in each device).  If one of the neighbors was the time 
source for the other then the end of the slot time will be aligned after successful 
communication. 

10.1.1.1.1 Acknowledged Transactions 
Most communications consists of the source device propagating a message by transmitting a 
packet and the destination device acknowledging the reception of that packet.  For 
acknowledged communication the source and destination address in the DLPDU must contain 
a specific device address (i.e. not a broadcast address). 
The source device must begin its transmission such that the Start of Message (SOM) occurs 
exactly TsTxOffset after its start of slot.  SOM occurs upon completing the reception of the 
Physical Layer Delimiter. When performed, the CCA is performed beginning at TsCCAOffset 
after the start of the slot.  The CCA is performed (TsCCA) and, if the channel is occupied, the 
transaction attempt is rescheduled for a later slot.  Otherwise the transceiver is switched from 
receive to transmit (TsRxTx) and the packet is transmitted. 
The destination device must enter receive mode and be listening for communication by 
TsRxOffset from its start of the slot.  The destination must listen for the SOM for a duration of 
TsRxWait.  If the destination device detects the SOM then it must receive and validate the 
message.  Any message that cannot be validated must not be acknowledged.   

Fig. 2: Transaction timing in one time slot [1]

The expected energy consumption of device i to receive a
packet on backup path is:

Erb = (1−α)2Pr×TsMaxPacket+(1−(1−α)2)Pr×TsRxWait
(4)

Table I summarizes the transmission and reception power
of the CC2420 radio chip [33], which is compatible with the
IEEE 802.15.4 standard. Table I also shows the timing param-
eters of packet transmission specified in the WirelessHART
standard [1]. Based on Table I, we obtain the expected
energy consumptions in Table II, assuming a PRR of 90%, a
typical threshold used for blacklisting links in WirelessHART
networks.

Parameter Value Unit
Pt 52.2 mW
Pr 59.1 mW

TsMaxPacket 4256 µs
TsRxWait 2200 µs

TABLE I: Representative Radio Parameters

Variable Value Unit
Et 277 µJ
Er 244 µJ
Etb 2.2 µJ
Erb 131 µJ

TABLE II: Expected energy consumption of devices to
transmit or receive a packet

Since the expected energy consumption of transmitting a
packet through a link along a backup path is two order mag-
nitude less than the other three expected energy consumptions,
we ignore Etb in the routing algorithm for simplicity.

IV. GRAPH ROUTE LIFETIME MAXIMIZATION PROBLEM

In this section, we formulate the Graph Route Lifetime
Maximization (GRLM) problem. Our objective is to maximize
the network lifetime, which is the time interval before the

first field device exhausts its battery. This definition is well
accepted by previous literatures.

In terms of lifetime optimization, the most significant differ-
ence between WirelessHART networks and traditional wireless
sensor networks is path diversity. Instead of scheduling trans-
missions on only one path, WirelessHART networks schedule
transmissions on both the primary path and backup paths.

Definition 2. In a GRLM problem, we are given a graph G =
(V,E) with battery capacity Bi for each device vi, and a set
of flows F = {f1, f2, · · · , fN}. Each flow fk has a source
sk, a destination dk, and a data rate rk. The GRLM problem
is to find graph routes for all flows to maximize the network
lifetime.

The GRLM problem is NP-hard because even the source
routing version of the problem is NP-hard as shown below.

Proof. To prove the SRLM problem is NP-hard, we prove
its decision version is NP-complete. The decision version of
SRLM is: given a network lifetime T for a network, can this
lifetime be satisfied by the network?

Clearly, the decision problem of SRLM is NP. Given a
solution with source routes, we can verify whether the network
can satisfy the lifetime T by checking the lifetime of each
device. We calculate the expected energy consumption rate of
each device by taking account of data rates of flows which pass
this device and expected energy consumption per packet shown
in equations (1) and (2). The time complexity is O(|V |N).

To prove the decision problem of SRLM is NP-complete,
we use a well known NP-complete problem. Fortune et al. [34]
proved the Maximum Edge-Disjoint Paths problem (MEDP) is
NP-hard. In MEDP, we are given a graph G = (V,E), and
a set of N device pairs Θ = {(sk, tk) : k = 1, · · · , N}. The
goal is to find the maximum subset of pairs from Θ , along
with a path for each chosen pair, so that no two paths share the
same link. The decision problem of MEDP is whether a given
set of device pairs Θ have link-disjoint paths. The decision
problem of MEDP is NP-complete.

We reduce the decision problem of MEDP to the decision
problem of SRLM. The reduction algorithm takes an instance
of the decision problem of MEDP problem as input. Given a
graph G, we construct an auxiliary graph G′ in the following
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manner. For each link e in G (i.e., a → c in Figure 3), we
break it into two links (a→ f and f → c) and add a new link-
device (f ) to connect these two links (Figure 2). All devices
in the original graph are assigned battery capacity as +∞, and
all newly added link-devices are assigned unit battery capacity
1. For each device pair (sk, tk) in Θ, we create a flow Fi in
G′ with source sk, destination tk, and unit rate 1. The targeted
lifetime of the network is T = 1

Et+Er
. Note that 1

Et+Er
is the

lifetime of a link-device if only one flow goes through it. To
complete the proof, we show that all pairs in Θ have link-
disjoint paths if and only if the network lifetime of G′ is no
less than T .
← If all device pairs have link-disjoint paths in G, then the

reduced paths in G′ can have a network lifetime no less than T .
Since at most one reduced flow goes though each link-device,
the lifetime of each link-device is no less than the network
lifetime target T . We prove that the network lifetime of G′ is
no less than T .
→ If the network lifetime of G′ is no less than T , then

there are link-disjoint paths for all device pairs in Θ. Since the
battery of each link-device can support exactly one flow, only
one path will go through each link-device, which indicates
those paths are edge-disjoint paths. Then we get link-disjoint
paths in the original graph G.

Because the reduction takes polynomial time and an in-
stance of the decision problem of MEDP is true if and only
if the reduced instance of the decision problem of SRML is
true, the decision problem of SRML is NP-complete.

V. LIFETIME MAXIMIZATION GRAPH ROUTING
ALGORITHMS

In this section, we propose an optimal solution based on
integer programming, followed by more efficient solutions
based on linear programming relaxation and greedy heuristic.
The efficiency of the routing algorithms are important because
the network manager needs to recompute routes as network
topology and channel condition change in real-world environ-
ments.

A. Integer Programming

In this subsection, we formulate the GRLM problem as an
integer program based on our energy consumption model. All
the field devices are powered by batteries, while the access

points and the gateway are connected to wired power sources.
We define the load of a field device as its expected energy
consumption rate, which depends on the rates of flows passing
it. Then the lifetime of a field device is modeled as the initial
battery divided by load. Here we denote the initial battery
capacity of a device vi as Bi, and the load as Li. We use γi
to denote the normalized load of vi, defined as Li

Bi
. For access

points and the gateway, batteries are set to be infinity. Our
goal is to maximize the minimum lifetime among all devices,
which is expressed as max mini

Bi

Li
. This objective function

can be transformed to minimize the maximum normalized load
γi = Li

Bi
. Hence the GRLM problem can be formulated as

min maxi γi. We use Γ to denote the upper bound of γi in
(5f) below, and the objective function becomes min Γ.

Objective: minimize Γ∑
−→
skj∈E

xksk,j = 1 (5a)

∑
−→
ji∈E

xkj,i + δi,sk =
∑
−→
ij∈E

xki,j + δi,dk ,∀i ∈ V (5b)

∑
−→
ji∈E

ykj,i +
∑
−→
ij∈E

xki,j =
∑
−→
ij∈E

yki,j ,∀i ∈ V \ {dk} (5c)

∑
−→
ip∈E and p!=j

yki,p >= xki,j , ∀−→ij ∈ E (5d)

γi =
∑
k

rk
Bi

(
∑
−→
ij∈E

xki,jEt +
∑
−→
ji∈E

xkj,iEr +
∑
−→
ji∈E

ykj,iErb)

(5e)
γi ≤ Γ,∀i ∈ V (5f)

xki,j ∈ {0, 1}, yki,j ∈ Z≥0,∀
−→
ij ∈ E (5g)

We formulate the integer program as follows. The primary
path variable xki,j is a binary variable. If a link

−→
ij is used in

the primary path for flow k, then xki,j equals 1, otherwise, it
equals 0. The same rule is applied to backup path variable
yki,j . However, since multiple backup paths may share a same
link, the backup path variable yki,j is an non-negative integer
variable, which could be larger than 1.

First, there is only one link used in the primary path among
all outgoing links of the source sk (5a). Then the conservation
constraint (5b) says the sum of outgoing primary path variables



equals the sum of incoming primary path variables at every
device except the source sk and the destination dk, where δi,j
is the Kronecker delta function [35]. Here δi,j equals 1 if i
and j are the same, and 0 otherwise.

The conservation constraint for backup path variables is
different from the constraint for primary path variables because
the backup paths do not start from the source of the flow. They
start from devices on the primary path. For backup paths, there
are two cases. For a device on a backup path but not on the
primary path (e.g. network device z in Figure 1(b)), it follows
the same conservation constraint as the primary path variables,
which means the sum of outgoing backup path variables equals
the sum of incoming backup path variables. For a network
device which is on both the backup path and primary path
(e.g. u in Figure 1(b)), it does not have any incoming backup
path. However, it still has an outgoing backup path, and
the amount of backup path variables equals the amount of
outgoing primary path variables. To incorporate both cases, we
formulate this requirement in constraint (5c), which specifies
that the sum of outgoing backup path variables from a device
equals the sum of incoming backup path variables plus the
sum of outgoing primary path variables.

Since the backup link should not coincide with the primary
link for the same packet, constraint (5d) is added to make
sure that the backup path of a link on the primary path does
not use this link. Constraint (5e) calculates the normalized
load γi of each device i. And constraint (5f) guarantees that
normalized loads of all network devices are no larger than Γ.
The objective is to minimize the maximum normalized load,
which is equivalent to minimizing Γ.

B. Linear Programming Relaxation

For large scale networks, an integer programming based
solution does not scale well. We use a linear programming
relaxation approach to speed up the route calculation. We solve
the problem in two phases. In the first phase we focus on
the primary path variables. In the beginning, we relax each
primary path variables xki,j from binary to real number within
[0, 1], and relax each backup path variable yki,j from non-
negative integer to non-negative real number. Then we solve
the problem and obtain the solution. We round the variables
to 1 if they are above a threshold θ, otherwise round it to 0.
For each flow fk, we want to find the highest threshold θk for
primary path variables such that there exists a path from the
source to the destination. We use a gradient based algorithm to
find this threshold. The step size is 0.05. The initial threshold
is 0.5. If a path is found, then we increase the threshold by
one step. Otherwise, we decrease the threshold by one step.
The algorithm terminates if no higher threshold can be found.
We repeat this algorithm for each flow and will get a primary
path for each flow.

After the first phase, we obtain primary paths for all flows.
In the second phase, we keep primary path variables fixed
and relax backup path variables to non-negative real numbers.
After we get the results with non-negative backup path vari-
ables, we round them to 1 following a similar approach in the

first phase. For each flow, starting from the first backup path
(whose source is the source of the flow) to the last backup
path (whose source is the last hop of the flow destination in
the primary path), we use the gradient based algorithm to find
the highest threshold that allows a path from the source to the
destination. We use the GNU Linear Programming Kit (GLPK)
[36] to solve the integer program and its linear programming
relaxation.

C. Greedy Heuristic

To further speed up the routing process, we introduce an
efficient greedy heuristic. When selecting a graph route, our
greedy heuristic selects the graph route with small normalized
load, which is the expected energy consumption rate divided
by the initial battery capacity. The basic idea is to let the
devices with higher battery capacity carry more network traffic
under the graph routing setup. To solve this problem more
efficiently, we use an algorithm inspired by Dijkstra’s shortest
path algorithm [37]. For each flow, starting from the destina-
tion, we gradually update each device’s normalized load. Each
time we select a device with the smallest normalized load and
update the normalized loads of its neighbors. The normalized
load is the key concept in our algorithm.

Our greedy heuristic runs iteratively. In each iteration, we
select graph routes for flows from the highest rate to the
lowest rate. For each flow, we pick up a graph route with
minimum normalized load. Our iterative algorithm stops if
the maximum normalized load increases or the decrease of
maximum normalized load is less than a threshold Γth, which
is set to mink rkErb

maxi Bi
in our current implementation. For each

flow, the Minimum Load Graph Route (MLGR) function in
Algorithm 1 is called to find a graph route. We use an
algorithm similar to Dijkstra’s shortest path algorithm, where
normalized load is used like the edge weight in Dijkstra’s
algorithm. Within MLGR, we use λ to denote temporary
normalized loads for devices in the network. After MLGR
return a graph route, the related devices on the graph route
will update their normalized load γ with temporary normalized
load λ. We maintain a queue Q which includes all network
devices with their updated normalized load. We use a map H
to track last hop devices.

At each step, a device u with minimum temporary normal-
ized load λu is picked up from the queue. If its temporary
normalized load λu equals ∞, then the remaining devices
cannot be added to the primary path. Then MLGR function
fails to find a graph route for current flow and returns ∞. If u
is the source, then the MLGR function adds it to the primary
path and returns its temporary normalized load λu. We can
obtain the primary path by tracing back through last hop map
H .

If none of above case is true, we will check u’s neighbors
one by one to see whether they can be added into the primary
path. For each neighbor v, we use the Minimum Load Source
Route (MLSR) function in Algorithm 2 to check whether there
is a path from v to the destination d in the graph G′ = (V,E \
{−→vu}) and return the one with the minimum normalized load.



Algorithm 1: Minimum Load Graph Route

1 Function MLGR(G, s, d, r, γ, B)
Input : A graph G(V,E), source s, destination d,

flow rate r, normalized load vector γ,
battery vector B

Variable: Last hop vector H , Backup Paths P ,
temporary normalized load λ

Output : Normalized load of the graph route picked
up by the algorithm (∞ if no graph route
is found)

2 for each vertex v ∈ V do
3 λv =∞;
4 Hv = NULL;
5 Pv = ∅;
6 add v to Q;

7 λd = γd + rEr

Bd
;

8 while Q is not empty do
9 u = v ∈ Q with minimum λv;

10 remove u from Q;
11 if λu ==∞ then
12 return ∞;

13 if u == source then
14 return λu;

15 for each neighbor v of u within Q do
16 Graph G′ = (V,E \ {−→vu});
17 γbackup = MLSR(G′, v, d, Pv, r, γ, B);
18 if γbackup 6=∞ then
19 alt = max(λu, γv + rEt+rEr

Bv
, γbackup);

20 if alt < γv then
21 λv = alt;
22 Hv = u;

We update the temporary normalized load of device v based on
its new normalized load γv+ rEt+rEr

Bv
, its parent u’s temporary

normalized load λu and the normalized load of the backup path
γbackup.

Here the MLSR function is a single path version of MLGR.
At each step, it picks up the device u with minimum temporary
normalized load λu. If λu equals ∞, then the source s cannot
be connected to the destination d, and MLSR function returns
∞. If the source s is picked up with a temporary normalized
load λs less than ∞, then s is connected with the destination
d, and MLSR function returns λs. The MLSR function can
obtain the path from the last hop trace. If none of above case
is true, the MLSR function will check device u’s neighbors
and update their temporary normalized loads according to u’s
temporary normalized load λu.

Since MLSR takes the form of the Dijkstra’s algorithm,
its time complexity is O(|E| + |V |log|V |). MLGR is a
nested version of MLSR, its time complexity is O(|E|(|E|+
|V |log|V |)+ |V |log|V |) = O(|E|2 + |E||V |log|V |). The time

Algorithm 2: Minimum Load Source Route

1 Function MLSR(G, s, d, Ps, r, γ, B)
Input : A graph G(V,E), source s, destination d,

flow rate r, normalized load vector γ,
battery vector B

Variable: Last hop vector H , temporary normalized
load λ

Output : Normalized load of the source route picked
up by the algorithm (∞ if no graph route
is found)

2 for each vertex v ∈ V do
3 λv =∞;
4 Hv = NULL;
5 add v to Q;

6 λd = γd + rErb

Bd
;

7 while Q is not empty do
8 u = v ∈ Q with minimum λv;
9 remove u from Q;

10 if λu ==∞ then
11 return ∞;

12 if u == source then
13 return λu;

14 for each neighbor v of u within Q do
15 alt = max(λu, γv + rErb

Bv
);

16 if alt < λv then
17 λv = alt;
18 Hv = u;

complexity of each iteration is O(N |E|2 + N |E||V |log|V |),
given there are N flows. The number of iterations is bounded
as the upper bound of normalized load Γup =

∑
k rk(Et+Er)

mini Bi

divided by the threshold of normalized load change Γth =
mink rkErb

maxi Bi
. The time complexity of our greedy heuristic is

O(
Γup

Γth
N |E|2 +

Γup

Γth
N |E||V |log|V |)

VI. EVALUATION

We evaluate our routing algorithms through both experi-
ments on a physical wireless sensor-actuator network (WSAN)
testbed and simulations. We compare our Integer Programming
approach (IP), Linear Programming approximation (LP), and
Greedy Heuristic algorithm (GH) with the reliable and real-
time routing (RRC) approach that Han et al. proposed in [26]
and Dijkstra’s shortest path algorithm (SP) [37]. RRC builds
uplink and downlink routing graphs for all flows based on hop
count. We build a graph route on top of RRC’s routing graph
by selecting one path as the primary path and using available
alternative paths as backup paths. Because RRC does not
fully explore the network to find backup paths, some network
devices on the primary path do not have backup paths. In SP,
we first run Dijkstra’s algorithm to get the primary path with
the shortest hop count, then run the same algorithm to select



Fig. 4: Topology of the WSAN Testbed

backup paths for each network device on the primary path
while avoiding outgoing link on the primary path.

A. Experiments on a WSAN Testbed

We evaluate our routing designs on an indoor WSAN
testbed consisting of 63 TelosB motes equipped with TI
CC2420 radio. The testbed is located on the fifth floors of
two adjacent buildings on the Washington University campus.
Each mote in the testbed is connected to a wired backbone net-
work that helps facilitate the experiments and measurements
without interrupting the wireless communication. Each mote
in the testbed runs the WirelessHART protocol stack presented
in [13]. The protocol stack is implemented in TinyOS 2.1.2
on top of the CC2420x radio driver, which is compatible with
the IEEE 802.15.4 standard. The protocol stack supports the
key WirelessHART network features including a multi-channel
TDMA MAC protocol and source and graph routing protocols.
Field devices are time synchronized using the Flooding Time
Synchronization Protocol (FTSP) [38].

Figure 4 shows the topology of our testbed. We select
motes 129 and 155 (green circles) as the access points, which
are physically connected to a root server (gateway). The
other motes act as field devices (red circles). The network
manager is a software running on the root server. For each
link in the testbed, we measured its packet reception ratio
(PRR) by counting the number of received packets among
250 packets transmitted over the link. Following the practice
of industrial deployment, we only add links with PRR higher
than 90% in all channels used to the topology of the testbed. To
avoid channels occupied by the campus Wi-Fi, we use IEEE
802.15.4 channels 11 to 15 in our experiments.

We generate 8 flows in our experiment. The period of each
flow is picked up from the range of 20∼7 seconds, which are
typical periods used in the process industry as specified in the
WirelessHART standard [1]. The length of the hyper-period
is 128 seconds. The relative deadline of each flow is equal to
its period. We run the experiments for 100 rounds of hyper-
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Fig. 5: Histogram of Link Qualities

period (around 3 hours) to collect at least 100 periods of data
traces for each flow. Based on the data traces we collected,
we evaluate our proposed approaches in terms of delivery
ratio and expected network lifetime. The delivery ratio of a
flow is defined as the fraction of packets that are successfully
delivered to the destination.

The expected network lifetime is calculated based on the
collected traces. Because TelosB motes in the testbed are
wire powered, we assign virtual battery capacity for each
mote randomly from the range of 8000J to 9000J , where
8640J is the typical capacity of two AA batteries. We analyze
the collected data traces from the experiments to obtain the
energy consumption of each network device in 100 rounds of
hyper-period. Based on that, we project the expected network
lifetime.

To study reliability, we first measure the link qualities.
Figure 5 shows the histogram of link qualities (PRR) of 327
links we used in our experiments. We collect the PRR of each
link on all 4 channels. Although our link selection process only
selects links with PRR higher than 90%, we find some links
have much lower PRR than the 90% threshold at run time. For
example, link

−−−−−→
158 156 under channel 12 has the lowest PRR



Routing Algorithm Flow Index
1 2 3 4 5 6 7 8

Source

SP 0.993 0.874 0.898 1.0 1.0 1.0 1.0 1.0
RRC 0.992 0.760 0.833 0.996 0.989 0.994 1.0 1.0
GH 0.996 0.886 0.897 0.997 0.998 1.0 1.0 1.0
LP 0.997 0.827 0.896 0.998 0.989 1.0 1.0 1.0

Graph

SP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
RRC 0.996 0.990 0.988 1.0 1.0 1.0 1.0 1.0
GH 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LP 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE III: Delivery Ratios of Flows
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Fig. 6: Expected Network Lifetime relative to SP

of 7%. The dynamics of wireless links suggest it is necessary
to have path diversity.

Table III shows the delivery ratios of all 8 flows under both
graph routing and source routing. We use the primary path of
the graph route as the source route of each flow. Our results
show that graph routing provides a better delivery ratio than
source routing. For example, the delivery ratios of all four
routing algorithms for flow 2 under source routing are below
0.9, which can be unacceptable for industrial applications.
In comparison, their delivery ratios under graph routing are
at least 0.99. Our results demonstrate the effectiveness of
redundant routes in improving reliability. We also found in
RRC’s graph routes for flow 1, 2, and 3, 50% of the links
on the primary paths do not have backup paths. The lack of
backup paths makes RRC vulnerable to link dynamics.

Figure 6 presents the expected lifetimes of different routing
approaches normalized to that under SP. Because it takes too
long to compute routes for the testbed topology under the
IP approach, we do not have the results of IP. The results
show SP has the shortest expected lifetime and GH has the
longest expected lifetime. GH’s expected lifetime is 37%
longer than SP, and LP’s expected lifetime is 33% longer
than SP. RRC achieves a lifetime longer than SP and shorter
than LP. Our results show GH and LP enhance the expected
network lifetime compared to SP and RRC.
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Fig. 7: Expected Lifetime Relative to Optimal Solution

B. Simulations

We compare different routing algorithms through simulation
in this subsection. The simulator is written in C++ and follows
the design of our testbed. All simulations are performed on
a MacBook Pro laptop with 2.4 GHz Intel Core 2 Duo
processor. We use a trace driven simulation. All data collected
in experiments are imported into the simulator. Similar to the
experiments, we use links with PRR higher than 90%. The
period of each flow is randomly generated from the range
of 20∼7 seconds. And we use IEEE 802.15.4 channels 11 to
15 in our simulations. In the simulation, when a packet is
transmitted on a link, the simulator uses a data point from the
traces collected in experiments. We generate different results
by randomly assigning network device battery capacities from
8000J to 9000J .

Because the IP approach is computationally expensive,
which requires more than 24 hours to complete its execution in
simulations based on our testbed topology, we evaluate all five
routing algorithms on a small topology consisting of 10 motes
and 20 links from our testbed. Figure 7 shows the lifetime
ratios of SP, RRC, GH, and LP relative to IP. The median of
GH and LP are 83% and 85% of the optimal lifetime under IP.
Compared with IP, SP and RRC have 44% and 47% median
lifetime ratios. The figure shows that GH and LP outperform
SP and RRC in terms of the expected lifetime.

We further test our algorithms with a large number of flows
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Fig. 8: Simulation Results on Testbed Topology

in simulation on the entire testbed topology. We evaluate our
routing designs on different numbers of flows by increasing the
number of source and destination pairs. We randomly select
motes as sources and destinations. We compare four routing
designs in terms of network lifetime and execution time.

Figure 8(a) shows the expected network lifetime of different
routing designs on the entire testbed topology. In general,
network lifetime decreases as the number of flows increases,
because more flows bring more energy consumption to net-
work devices. Furthermore, results show SP consistently has
the shortest network lifetime. RRC’s network lifetime is longer
than SP but shorter than GH and LP. GH and LP provide longer
network lifetime than the other two. The figure shows GH and
LP can improve the network lifetime over RRC by up to 63%
and 76%.

The computational complexity of the four routing algo-
rithms are presented in Figure 8(b). The figure compares
execution times of four algorithms in log scale. The results
show LP is much slower than the other three algorithms.
This happens because linear programming solver in general
is slower than straightforward routing algorithms such as SP
and GH. Besides LP, GH has the highest time complexity.
However, the maximum execution time of GH in our simu-
lation is approximately 0.35 seconds, which is acceptable to
WirelessHART networks that need to reconfigure a network

only in response to topology change.

VII. CONCLUSION

As IoT starts gaining adoption in industrial applications, in-
dustrial WSANs provide critical communication infrastructure
for industrial automation. Industrial WSANs face significant
challenges in achieving long-term reliable communication in
harsh environments. While the WirelessHART standard adopts
graph routing to enhance network reliability, the problem of
maximizing network lifetime for graph routing becomes a crit-
ical open problem. This paper introduces and formulates the
network lifetime maximization problem for graph routing. We
present an optimal graph routing algorithm based on integer
programming, and two efficient algorithms based on linear
programming relaxation and greedy heuristic, respectively. We
have implemented our graph routing algorithms on a physical
WSAN network testbed. Experimental results on the testbed
and in simulations show the linear relaxation and greedy
heuristic can improve the network lifetime by up to 60% when
compared to an existing graph routing algorithm. Moreover,
the greedy heuristic requires significantly lower computation
time, making it particularly suitable for WirelessHART net-
works that may compute graph routes frequently when facing
network changes in open environments.
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Synchronization Protocol,” in ACM Conference on Embedded Networked
Sensor Systems (SenSys’04), November 2004.


	Maximizing Network Lifetime of Wireless Sensor-Actuator Networks under Graph Routing
	Recommended Citation
	Maximizing Network Lifetime of Wireless Sensor-Actuator Networks under Graph Routing

	tmp.1455553853.pdf.Fz4ws

