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Abstract—An exponential increase in the speed of DNA se-
quencing over the past decade has driven demand for fast, space-
efficient algorithms to process the resultant data. The first step in
processing is alignment of many short DNA sequences, or reads,
against a large reference sequence. This work presents WOOD-
STOCC, an implementation of short-read alignment designed for
Graphics Processing Unit (GPU) architectures. WOODSTOCC
translates a novel CPU implementation of gapped short-read
alignment, which has guaranteed optimal and complete results,
to the GPU. Our implementation combines an irregular trie
search with dynamic programming to expose regularly structured
parallelism. We first describe this implementation, then discuss
its port to the GPU. WOODSTOCC’s GPU port exploits three
generally useful techniques for extracting regular parallelism
from irregular computations: dynamic thread mapping with a
worklist, kernel stage decoupling, and kernel slicing. We discuss
the performance impact of these techniques and suggest further
opportunities for improvement.

I. INTRODUCTION

General-purpose GPU programming languages such as
CUDA and OpenCL enable a broad range of algorithms
to be ported to GPUs for greater performance. Algorithms
that consist of regular, homogeneous calculations repeated
over many data elements are easiest to port to the GPU’s
many-core, SIMT architecture. However, as GPU development
matures at every level, from increased architectural capabilities
and device resources to more sophisticated tool suites and
language functionality, it becomes increasingly interesting and
feasible to map more complex, more irregularly-organized
computations onto GPUs.

In this work, we consider a compute-intensive application of
strong interest to the biological community: short-read DNA
sequence alignment. In this application, a large number of
short DNA strings (“reads”) are matched against an index
generated from a long DNA reference string to locate areas
of correspondence. Although all reads are processed with
the same algorithm, each one requires a different amount of
computation to compare against the reference. This irregular
per-element behavior is typical of other algorithms that filter
a long stream of elements, such as Viola-Jones face detection
in images [19]. A key question in porting such applications
to a GPU is how to regularize their behavior for maximum
performance with a SIMT architecture, even though each input
fundamentally takes a different amount of work to process.

This paper describes a new short-read alignment tool,
WOODSTOCC (WOODSTOCC Offers Optimal Dynamic
programming - Suffix Trie alignment while optimizing OCCu-
pancy). WOODSTOCC seeks to ameliorate the fundamental
irregularity of short-read alignment in order to extract paral-
lelism suited to a GPU. We first describe algorithmic trans-
formations of short-read alignment, applicable to any archi-
tecture, that partly regularize it and expose SIMT parallelism.
We then present a CUDA implementation of WOODSTOCC
for NVIDIA GPUs. This implementation exploits several
techniques to maximize occupancy – the fraction of the GPU’s
resources actively involved in computation – and thereby avoid
having resources remain idle for long periods. Finally, we
empirically study the performance of WOODSTOCC to assess
whether it indeed boosts occupancy and to suggest avenues for
future performance improvement.

We anticipate that the techniques employed by WOOD-
STOCC will be generally useful for GPU application designers
seeking to fully occupy the GPU despite irregular behaviors
in their target applications.

II. BACKGROUND

A. Problem Definition

This work focuses on a variant of DNA sequence align-
ment known as the short-read alignment problem, which
is motivated by the development over the last decade of
experimental techniques for sampling a very large number of
short substrings, or reads, from a long DNA sequence such as
a genome [17]. This inexact matching problem is as follows:

Given a single DNA reference sequence of length n, and
many DNA reads of common length m � n, find for each
read all starting positions in the reference where the entire
read matches with no more than k differences.

Allowable differences include substitution, insertion, or
deletion of individual characters. Figure 1 shows a read align-
ment to part of a reference with three differences. Typically,
the reference length n is tens of millions to billions of
characters, while the read length m ranges from a few tens
to 200 characters. A sequencing experiment generates tens
to hundreds of millions of reads that must be aligned to the
reference.



Fig. 1. Alignment of a read CGCCGA to a longer reference sequence with
three differences.

Fig. 2. Suffix trie for string GATTACA$. Each path from root to leaf is labeled
with a suffix of the string.

B. Related Work

The computational demands of short-read alignment have
led to several novel algorithmic strategies for rapidly matching
many reads against a common reference. Methods using a
hash-based index of the reference [12], [15] have largely been
superseded by tools that construct a tree-based index, such
as a suffix trie (see Figure 2). Due to the high storage cost
to represent such tries explicitly, they are instead represented
virtually, using a compact data structure such as the FM-
index [5] that allows the trie to be reconstructed on the
fly during alignment. FM-index-based aligners represent the
current state of the art in fast short-read alignment software [9],
[10], [13].

Our approach to short-read alignment emphasizes com-
pleteness of results. Most short-read aligners use trie-search
heuristics that can quickly locate at least one match to a given
read in the reference with up to k differences, if any exist, but
may not find all such matches. Incomplete results are useful for
read-mapping applications in which matches to multiple sites
are simply discarded, but completeness is desirable for more
precise analyses such as genome rearrangement history [1]
and interspecies read alignment. Among CPU-based aligners,
the BWA software [10] in “-N mode” is one of the few that
produce complete output, so we use this tool as our CPU
baseline for performance comparison.

Like WOODSTOCC, some short-read alignment tools use

a dynamic programming (DP) algorithm such as Smith-
Waterman [18] as part of their search algorithm. However,
these tools are either optimized for aligning much longer
sequences than a typical short read [7], [11] or use DP only to
filter putative matches obtained by an incomplete trie-search
heuristic [4], [8].

Modern short-read alignment methods have previously been
ported to GPUs. SARUMAN [2] uses a hash-based index
on the GPU, but its storage requirements restrict its use
to microbial-sized genomes (around 106 characters). MUM-
merGPU [16] searches an explicit representation of the suffix
tree (a compressed trie), which is copied to the GPU a piece
at a time; however, it does not allow for differences between
reads and reference. BarraCUDA and CUSHAW [6], [14]
implement BWA-like implicit trie search on the GPU, but
they are limited either to incomplete trie search heuristics or to
finding alignments without insertion and deletion of characters.

In contrast to previous GPU-based short-read aligners,
WOODSTOCC combines virtual trie traversal with dynamic
programming to guarantee completeness of its results. Its
approach to regularizing GPU-based computation shares some
similarities with BarraCUDA’s worklist strategy, but it is quite
different in detail to accommodate the needs of both dynamic
programming and trie traversal.

III. ALIGNMENT STRATEGY

This section describes how WOODSTOCC organizes its
alignment computation at a high level to expose regular
structure. We exploit the highly structured nature of dynamic
programming alignment to allow computations for many reads
to proceed in lock-step.

A. Core Algorithm

Conceptually, we attempt to align a given read starting at
every character in the reference by aligning it to each labeled
path in the reference’s (virtual) suffix trie. The trie is traversed
depth-first beginning at the root. Each traversal step descends
by one node, or equivalently one character, along an edge and
computes one row of a dynamic programming matrix (a “DP
row”). When the computation reaches node x of the trie, the
DP row contains the least number of differences in an optimal
alignment between each prefix of the read and all occurrences
in the reference of the substring labeling the path from the
root to x. The set of leaves below the current node indicate the
reference locations at which this substring occurs. As shown
in Figure 3, when the trie branches, the work done to compute
the DP row at the branch point can be reused on each of the
branching paths; hence, the total number of rows computed
equals the number of nodes reached by the traversal.

Because the number of differences allowed in the alignment
is a priori limited to k, traversal down a given path may be
truncated once it is clear that all alignments of the read to
that path must have more than k differences, i.e. when all
entries of a DP row become > k. Truncating alignments in
this way limits the depth traversed down any path from the
root to O(m) and so greatly curtails the cost of alignment



Fig. 3. Alignment of read ATA against a fragment of the reference trie of
Figure 2. Each internal node shows the dynamic programming matrix (set of
DP rows) between the read and the string labeling the path to that node. Each
downward step computes one more row of the matrix.

overall. We also note that limiting the number of differences
to k permits the use of banded alignment, which computes
only 2k+1 cells per DP row regardless of the read length m.
In all the work described for this paper, we set k = 3.

Because storage of the complete suffix trie, or even a more
efficient suffix tree, would be prohibitively large for genomes
of 108 or more characters, the trie is stored implicitly using the
FM-index. Each step down a path in the trie involves a compu-
tation to “discover” the current node’s children, as described
in [10]. A discovery computation performs several random
accesses to the FM-index data structures in memory, which
are comparable in size to the original reference sequence.

B. Read Batching

Table I compares the running time of the above algorithm
(“naive aligner”) to that of BWA v0.6.0 (using the -N option
to ensure completeness of output) when sequentially aligning
a list of 105 reads of length m = 47 against human chromo-
some 1 (n = 2.5× 108), on a single core of a 2.6 GHz Intel
Core i5 CPU. The majority of the algorithm’s time is spent in
the discovery computations of virtual trie traversal; overall, it
is slower than BWA.

To reduce the cost of trie traversal and lay the groundwork
for the parallelization to follow, we implement read batching.
In one traversal of the suffix trie, we simultaneously perform
dynamic programming alignment computations for many dif-
ferent reads, maintaining separate DP row data structures for
each. Each time a node is discovered by traversal, the DP rows
for all reads are updated as the traversal moves down to this
node. This process is conceptually equivalent to doing a single
traversal of the trie and then reusing all the discovered nodes
to perform dynamic programming for each read. Because the
discovery computation is expensive, performing it once per
node instead of N times for N reads substantially reduces
computation at the cost of maintaining N simultaneous DP
rows, each of size O(k).

An important detail of read batching is that some, but not
all, reads in a batch may have their alignment computation

truncated on a given path due to having no alignment with
≤ k differences. We track the set of “live” reads in a batch
during traversal (i.e. those that have not yet been truncated)
and perform dynamic programming at each step only for live
reads. In this way, the total DP work performed matches that
of the naive implementation, while the traversal work is much
less. As shown in the last row of Table I, batching all reads
into a single group greatly reduces time spent in traversal and
nearly halves overall running time.

Implications for Parallelization: Dynamic programming
with read batching introduces a high degree of regularity to
read alignment. In particular, all live reads’ DP computations
following a given traversal step can be performed in lock-
step using SIMT parallelism. This regularity is in contrast
to multithreaded CPU versions of BWA and related aligners,
which use one independently executing thread per CPU core,
each processing a separate stream of reads. Batching seems
particularly attractive for devices with a very wide SIMT
programming model, such as GPUs.

However, parallelizing the alignment of each read in a
batched implementation introduces the problem of idle reads.
Traversal down a given path in the trie continues until no
reads in the current batch are live; however, some reads may
become dead before others, and no further progress is made
on those reads until the traversal returns to a node at which
they are live. If reads are statically batched and assigned to
compute resources (e.g. vector slots for SIMD instructions, or
GPU threads), resources will be left idle whenever their reads
become dead, limiting parallelism.

To assess the impact of idle reads, we measured the propor-
tion of live reads encountered by the batched implementation
at a range of depths in the trie (averaged over all nodes reached
at that depth). These results are given in Table II. All reads
remain live near the top of the trie, in particular for the first
k levels where no alignment accumulates enough differences
to be ruled out. Thereafter, a substantial fraction of reads are
truncated at each level; after just a few levels, most reads at
a given node are dead.

A wide SIMT architecture such as a GPU encourages highly
regular parallelism, yet the fundamentally irregular nature of
when reads’ alignments are truncated in trie traversal demands
that we eliminate or mitigate idle reads. Dealing with these
conflicting design pressures informs our GPU implementation,
which we describe next.

IV. GPU IMPLEMENTATION

We now describe WOODSTOCC, the implementation of our
aligner on a GPU using CUDA. We first review the relevant
aspects of the GPU architecture, then describe at a high level
our mapping of the alignment algorithm onto the GPU. We
then identify a flexible mapping strategy that maintains high
utilization of the GPU’s parallelism throughout the various
stages of the algorithm despite the irregular aspects of the
application’s execution.



Algorithm Time
Total(s) Traversal (%) DP calculation (%) Other (%)

BWA -N 634 N/A N/A N/A
Naive aligner 860 51 19 30

Batched aligner 454 17 63 20
TABLE I

COST TO ALIGN 105 READS OF LENGTH 47 AGAINST HUMAN CHROMOSOME 1 ON ONE CORE OF 2.6 GHZ INTEL CORE I5 CPU. FOR WOODSTOCC
ALGORITHMS, TIME SPENT IN EACH PORTION OF THE ALGORITHM IS PROFILED.

Depth Liveness Depth Liveness
0-3 1 8 0.014
4 0.377 9 0.005
5 0.191 10 0.002
6 0.086 11 0.001
7 0.036

TABLE II
AVERAGE FRACTION OF LIVE READS AT TRAVERSAL DEPTHS 0-11 IN THE

BATCHED IMPLEMENTATION, k = 3.

A. CUDA GPU Model

Computation on a GPU using CUDA is organized hierar-
chically: a grid is mapped onto the device; the grid consists
of blocks; and each block consists of threads. When an
application kernel is launched on a GPU, blocks are assigned
to processing elements (called Streaming Multiprocessors or
SMs). The organization of threads into blocks and blocks
into a grid is programmer-controlled and specified at kernel
launch time. Each CUDA execution flow instance is known as
a context and contains all information necessary for the kernel
to execute.

While each thread conceptually performs an independent
unit of work at each time step, the actual execution granularity
of threads is an array of 32 threads, called a warp. During
execution, the scheduler for each SM swaps active warps in
and out of execution, until all warps from all blocks assigned
to that SM have completed. While executing, the 32 threads
within a warp follow instructional lock-step: during each
execution cycle, each thread in the warp will either execute
a common instruction or be idle. Code divergence between
threads in the same warp is detrimental to performance, since
each branch of the divergence gets executed serially, with some
threads being idle during the execution of each branch.

Synchronization barriers are implemented as built-ins in
CUDA at the block level only. When a synchronization barrier
in the kernel code is reached, threads from all warps in
a block must wait until they have all reached the barrier
before proceeding. Global synchronization across blocks is
theoretically possible but would be prohibitively costly.

GPUs have several different types of memory, each with
different characteristics, but three are most relevant to our
application: a large but slow global memory shared among all
blocks; fast per-block shared memory; and very fast per-thread
registers. If the amount of requested per-thread data storage
exceeds register resources at any time during execution, the
excess data is spilled into a special section of global memory
called local memory.

All experiments reported in this work used an NVIDIA

GeForce GTX Titan GPU with Kepler architecture. This card
contains 14 SMs, each of which can maintain up to 64 active
warps, operating at 837 MHz with 6.1 GB of global memory.

B. Application mapping to GPU

WOODSTOCC divides the set of reads to be aligned
across multiple blocks on the GPU. Each block operates
autonomously and runs a CUDA kernel that implements virtual
suffix trie alignment on a disjoint subset of reads. All blocks
share a common FM-index data structure for virtual trie
traversal, which occupies the majority of global memory.
However, each block independently performs DP and traversal
of the virtual suffix tree to align its subset of reads. As each
block discovers alignments of its reads to the reference with at
most k differences, it aggregates them into a per-block global
memory buffer that is copied back to the host when the block
completes.

The relatively short duration and high data volume of
each DP and trie traversal calculation step in our algorithm
precludes mapping strategies that require frequent control
transfers between CPU and GPU. In particular, we cannot
put either trie traversal or DP alone on the GPU but must
implement the entire algorithm. We chose to implement the
algorithm as a single, monolithic kernel to enable data transfer
between algorithm stages in per-block shared memory. The
principal innovation in WOODSTOCC’s approach is in how
it organizes this application kernel, which we describe next.

C. Kernel organization to maximize occupancy

WOODSTOCC is designed to map the threads of each block
to the work of the application kernel so as to maximally exploit
the SIMT parallelism of the GPU. In particular, we seek to
maximize GPU occupancy in two senses: first, all threads
within a block should be kept busy doing useful work (thread
occupancy); and second, there should be enough available
blocks of work that no SM is idle for lack of a block to work
on (block occupancy).

In a traditional, regular GPU application such as matrix
multiplication, a straightforward static mapping of threads onto
work units for the duration of a kernel suffices to maintain
high occupancy. However, the irregular nature of short read
alignment demands a more nuanced approach. Batching is an
effective algorithmic optimization, but when few reads remain
live, thread occupancy within a block suffers greatly. This
challenge extends to block occupancy as well – some blocks
may finish much sooner than others, leaving SMs partially or
completely idle while the last few blocks finish.



Fig. 4. Stages of the WOODSTOCC GPU kernel main loop. Trie nodes with
nonempty batches of live reads (circles) are queued on a worklist. The first
stage pulls enough nodes to assign a live read to most threads in the block.
Nodes are “exploded” into their read sets for dynamic programming, after
which the remaining live reads are collected into new, smaller read batches.
Finally, nodes are subjected to trie traversal, which generates more work for
the worklist. The output of the kernel, read-reference alignments, is generated
by the dynamic programming stage.

Figure 4 illustrates the structure of the WOODSTOCC
GPU kernel. The kernel repeatedly executes a main loop that
performs alternating DP and trie traversal steps. Two key
features of this kernel are the use of a worklist and associated
pull stage, which ameliorate the problem of idle reads in DP,
and dynamic remapping, which recomputes the mapping of
work to threads in a block on the fly, entirely within the GPU,
to enable differently shaped computations to run efficiently in
a single kernel.

Eliminating idle reads: Recall that the CPU version of our
alignment algorithm works on a single batch of live reads in
lock-step until the batch is exhausted. The algorithm therefore
works on live reads from only a single trie node at a time.
In contrast, WOODSTOCC aggregates live read batches from
multiple trie nodes into a common worklist. On each loop
iteration, the kernel pulls and simultaneously computes on
as many batches from this worklist as are needed to occupy
(nearly) all threads in a block.

The worklist is maintained as follows. Starting with the
root node, nodes with live reads are added the worklist as
they are uncovered by traversal. Each queued node requires
a DP calculation for each of its live reads, as well as a trie
traversal step to discover and enqueue any of its child nodes
with nonempty live read batches. Nodes become dead when
all reads associated with them are dead, or when they have no
more children to expose; such nodes are not enqueued. The
kernel’s main loop runs until the worklist is empty, at which
time every possible live node in the trie has been processed.

To utilize the worklist effectively, we add a “pull” stage to

the main loop prior to DP and trie traversal. In this stage, the
kernel computes a progressive sum of batch sizes for the first
m nodes on the worklist, for each m from 1 up to the number
of threads per block. Each node may have a different-sized
batch of live reads. The kernel then dequeues the maximum
number of nodes such that the sum of their batch sizes fits
within the number of threads for the block. For efficiency, the
progressive sum is computed using a parallel scan operation
in time logarithmic in the list size. The DP calculation then
devotes one GPU thread to each live read from the dequeued
batches.

Because a loop iteration works on either all or none of a
node’s batch of live reads, the worklist does not guarantee
that we always have a live read for every thread in a block.
However, we anticipate that most threads will have DP work
to do on every loop iteration, leaving very few threads idle.

Dynamic remapping: An important feature of the WOOD-
STOCC kernel is that it combines operations at different
granularities. Dynamic programming uses one thread per live
read, while the pull and trie traversal stages of each loop
work with entire nodes, rather than their component live reads.
WOODSTOCC dynamically reassigns work to threads within
each loop iteration of the kernel to match the granularity of
the computation required by each computation stage to the
granularity of the GPU’s parallelism.

The pull stage of the computation assigns one GPU thread
to each node pulled from the worklist. After some initial work,
we must “explode” the nodes to assign one live read per GPU
thread for DP. The reads from all dequeued nodes are assigned
to consecutive threads, but each read must also know which
node it came from. To compute each read’s node efficiently in
parallel, we use a parallel binary search [3] on the progressive
sum of the number of live reads in each node, which was
computed in the pull stage.

After DP, we know whether each read remains live, but we
must then regroup only the live reads for each node into new,
usually smaller batches. For efficiency, this operation is also
parallelized, using a segmented parallel scan to map the live
reads for each node into a dense array stored with the node.
Finally, trie traversal is performed at node granularity, and
nodes are enqueued onto the worklist for future processing.

D. Decoupling traversal from DP

A straightforward implementation of the WOODSTOCC
main loop executes each of its three stages once per main
loop of the kernel. However, we anticipate that trie traversal,
a major part of the computation, will typically not utilize all
available threads. First, the number of nodes dequeued by the
pull stage may be much less than the number of threads, since
each node may have multiple live reads. Second, some nodes’
read batches may be empty after the DP step, in which case
those nodes are discarded without the need for trie traversal.

We aggressively maximize thread occupancy for trie traver-
sal by dynamically scheduling the stages of the kernel’s main
loop. In particular, we allow multiple iterations of the pull and
DP stages to be executed between calls to trie traversal. Each



iteration performs DP on read batches from a different set of
nodes, generating work for the traversal stage. We queue up
this work (in the form of pending nodes for trie traversal) on a
separate worklist until enough traversal work exists to occupy
most or all threads in a block; only then do we pull nodes
from this list and perform the traversal operation.

E. Boosting block occupancy via kernel slicing

Periodic kernel slicing is a technique for maintaining occu-
pancy that operates at block rather than thread granularity. The
purpose of kernel slicing is to maximize the number of active
blocks available to execute on an SM at any given time. When
a kernel is launched, it does not terminate until all blocks in
its grid terminate, so all blocks must wait for the slowest block
to finish. If some blocks are much slower to finish than others,
the SM spends much of its time underutilized.

To avoid idle blocks, periodic kernel slicing decomposes
the execution of a single monolithic kernel instance into many
shorter instances called slices, effectively pausing the kernel
after each slice and assigning any idle blocks a new set of
reads to be processed. Kernel slicing exploits the fact that
global memory persists between kernel launches within the
same CUDA context. A statically allocated global continuation
buffer holds all non-persistent block data between slices, so
that control can be returned to the CPU between slices via
kernel termination and re-launch, with all necessary data per-
sisting on the device across slices. In this way, the maximum
time a block could remain idle is the length of a single slice,
rather than the execution time of the maximum-latency block
in its grid.

We note that an effect similar to periodic kernel slicing
can be achieved in CUDA simply by creating a big enough
computation grid that the total number of blocks to process
exceeds the maximum number of active blocks for the device.
For example, the maximum number of active blocks per SM
on the GTX Titan device is 16, for a total of 16× 14 = 224
active blocks. As active blocks are retired, CUDA schedules
the remaining blocks onto the available SMs. However, this
approach fails to scale to very large data sets because the
number of blocks that can be created for one kernel execution
is limited by the device resources and/or CUDA implemen-
tation. Periodic kernel slicing, on the other hand, faces no
such limitation because it periodically restarts the kernel after
creating new blocks as needed.

To see why slicing is helpful for our computation, consider
Figure 5, which shows a CDF of measured block finishing
times over the course of a kernel instance. This CDF confirms
that, while most blocks have a short execution time, a few
take dramatically longer to complete. A monolithic kernel does
not return control to the host until every block is finished;
hence, blocks with low latencies will remain idle for most
of the kernel’s overall execution time. With slicing enabled,
blocks with low latencies can be assigned new work as blocks
with long latencies continue their execution, better utilizing
the GPU’s resources.

Fig. 5. Cumulative distribution function of the number of major loop iterations
executed by each of 128 blocks when run to completion.

WOODSTOCC incorporates slicing at intervals of 3000
main loops, which introduces negligible overhead according
to profile data. Empirical tests showed that this yields a time
savings of approximately 5 − 10% for input sets of size
comparable to the one tested in our experiments.

V. RESULTS

We now provide empirical measurements to support the
utility of our occupancy-boosting techniques for the WOOD-
STOCC kernel and to assess its performance. Measurements
were taken on an NVIDIA GeForce GTX Titan from a run
processing an input set of 105 length-47 reads against human
chromosome 1. Unless otherwise specified, the GPU kernel
was run with 160 threads per block.

A. Impact of worklist and dynamic mapping

Table III illustrates the distribution of work (as measured
by GPU cycles) among the three stages of the WOODSTOCC
main loop, as well as the measured thread occupancy for each.
The profiled implementation used the worklist and dynamic
remapping of work between reads and threads, but not the
decoupling of trie traversal from the rest of the loop. Our
design successfully boosted the thread occupancy of dynamic
programming to around 86%, and the thread occupancy to
greater than 70% for two thirds of the application’s total
runtime. As predicted, the thread occupancy in trie traversal
is limited by previous loop stages; it is only about a third.

Stage Time (%) Thread occupancy (%)
Pull from worklist 24 71
DP align 42 86
Trie traversal 34 31

TABLE III
RELATIVE CONTRIBUTION OF EACH MAIN STAGE OF THE KERNEL TO
OVERALL RUNTIME, AND THREAD OCCUPANCY DURING EACH STAGE

MEASURED AS THE PROPORTION OF THREADS MAPPED TO USEFUL WORK
UNITS. ALL MEASUREMENTS WERE TAKEN FROM ALIGNING A SET OF 105

LENGTH-47 READS AGAINST HUMAN CHROMOSOME 1 AND AVERAGED
ACROSS ALL GPU EXECUTION BLOCKS.



We also investigated the impact of the number of threads
per block and blocks per SM on overall performance. We
measured the best performance to come from using 160
threads per block and 6 blocks (30 warps) per SM. While
this configuration does not maximize the number of active
blocks (16) or active warps (64) per SM supported by the
device, our dynamic work mapping technique does ensure
high thread occupancy within the active warps present on the
device, and optimizing over the thread/block configurations for
performance is orthogonal to the current work.

B. Kernel stage decoupling
To probe the effect of stage decoupling, we measured thread

occupancy during the third stage of the kernel for more and
less aggressive queueing of nodes for trie traversal. Decoupling
has the practical effect of growing the size of the main
worklist, as it causes more nodes to become simultaneously
available for processing. To control queueing, we chose dif-
ferent thresholds for how large this worklist was allowed to
grow before traversal was triggered.

Table IV shows the effect of increasing the threshold from
a relatively small value (twice the expected maximum depth
of the trie) to a much larger value (20 times this depth).
As anticipated, the occupancy of trie traversal with the more
aggressive approach goes to nearly 100%, while the number
of distinct calls to traversal drops by two-thirds.

The performance impact of boosting the occupancy of trie
traversal from about one-third to 100% is sensitive to the
intensity of the traversal stage. An earlier implementation
of WOODSTOCC showed only a 6% reduction in overall
runtime. We suspect that because trie traversal is extremely
global-memory intensive and exhibits little coalescing of ac-
cesses across threads, boosting occupancy did not substantially
reduce the number of distinct global memory transactions
needed to align all reads to the reference, with correspondingly
little overall performance impact. This optimization would
likely be more effective for less global-memory intensive ker-
nels, though we will also reinvestigate its impact in WOOD-
STOCC after anticipated optimizations to trie traversal.

C. Overall performance and limitations
On an Intel Core i7-950 processor, the best CPU software

version of WOODSTOCC achieves a throughput of approx-
imately 320 reads/sec per CPU core, while the throughput

Threshold factor Stage execution count Avg thread occupancy
2 93652 34.5%
20 32346 100%

TABLE IV
STAGE EXECUTION COUNT AND AVERAGE THREAD OCCUPANCY (AS A

PERCENTAGE OF MAXIMUM) DURING THE THIRD KERNEL STAGE FOR TWO
THRESHOLD FACTORS. THE THRESHOLD FACTOR IS GIVEN AS THE RATIO

OF THE MAIN WORKLIST SIZE TO THE MAX POSSIBLE DEPTH IN THE
SEARCH TRIE. NOTE THAT, AS EXPECTED, THE THIRD STAGE IS EXECUTED

FAR LESS FREQUENTLY AND ITS AVERAGE THREAD OCCUPANCY IS
MAXED OUT WHEN THE HIGHER THRESHOLD FACTOR IS USED. ALL

MEASUREMENTS WERE TAKEN FROM ALIGNING A SET OF 104 LENGTH-47
READS AGAINST HUMAN CHROMOSOME 1 AND AVERAGED ACROSS

BLOCKS.
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Fig. 6. Runtime comparison of BWA on a single CPU core and two versions
of WOODSTOCC on three NVIDIA GPUs when aligning a dataset of 104

length-47 reads against human chromosome 1. The ‘Separate lists’ version
employs a simple data-parallel strategy with independent worklists for each
thread, whereas the full version incorporates dynamic thread mapping and
kernel slicing.

of the software tool BWA (version 0.7.9, modified to find
alignments in the forward direction only) achieves throughput
of approximately 360 reads/sec, on an input set of 105 length-
47 reads against human chromosome 1. On the same input set,
WOODSTOCC on an NVIDIA GeForce GTX Titan achieves
throughput of approximately 4000 reads/sec – slightly more
than a factor of 11 greater than BWA’s per-core throughput
(see Figure 6).

To isolate the value added of our contributions over a pure
data-parallel but task-independent approach, we implemented
a version of WOODSTOCC in which threads are mapped to
reads 1-to-1 for the duration of the algorithm and each thread
stores its own (sequentially processed) worklist. While this
version realized approximately a 3× speedup over BWA by
itself, adding dynamic thread mapping with the shared worklist
further increased performance by 2-3×, and kernel slicing by
an additional 0.1×.

Performance of the task-independent version of WOOD-
STOCC and the full version including worklists and slicing
is shown in Figure 6. These results show that the benefits of
worklist maintenance and slicing far outweigh their overhead,
and suggest their general utility as a parallel work management
framework versus a pure task-independent framework.

The optimizations of this work were effective in boosting
the thread occupancy of all stages of short read alignment, de-
spite the inherent irregularity of the computation. The current
bottleneck to further major performance gains is not thread
occupancy. The occupancy of the DP stage, which is limited by
the need to use reads from a whole number of states, could be
further improved with a strategy such as node splitting or bin
packing of whole states. However, we anticipate that according
to Amdahl’s Law the performance improvement from such a



change would be marginal, since there is only room for a
further 14% increase in occupancy during this stage and it
currently accounts for less than half of overall runtime.

VI. CONCLUSION AND FUTURE WORK

We have presented WOODSTOCC, a new short-read align-
ment algorithm for the GPU that extracts regular, SIMT-
compatible parallelism from an irregular alignment and trie
search computation. WOODSTOCC employs three strategies–
dynamic thread mapping, kernel stage decoupling, and peri-
odic kernel slicing– to boost available GPU parallelism. These
optimizations likely generalize to other irregular algorithms
for filtering large data sets in variable amounts of time per
element.

Examination of our kernel’s timing results shows that ex-
ecution time is dominated by dynamic programming and trie
traversal. Having these as our current performance bottleneck,
rather than a worklist or a thread mapping issue, is a testament
to the effectiveness of the strategies presented here.

More important than further optimizing WOODSTOCC
itself, we plan to investigate the applicability of our GPU op-
timization strategies to general DAG-specified computations.
One example candidate is “decision cascades” in areas such
as image processing, where variable decision times per input
have until now limited the applicability of SIMT parallelism.
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