Washington University in St. Louis

Washington University Open Scholarship

All Theses and Dissertations (ETDs)
1-1-2011

A Graph-Based Algorithm to Determine Protein Structure from
Cryo-EM Data

Stephen Schuh
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation

Schuh, Stephen, "A Graph-Based Algorithm to Determine Protein Structure from Cryo-EM Data" (2011). All
Theses and Dissertations (ETDs). 506.

https://openscholarship.wustl.edu/etd/506

This Thesis is brought to you for free and open access by Washington University Open Scholarship. It has been
accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.


https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/506?utm_source=openscholarship.wustl.edu%2Fetd%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS
School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Tao Ju, Chair
Kunal Agrawal
Robert Pless

A GRAPH-BASED ALGORITHM TO DETERMINE PROTEIN STRUCTURE FR®
CRYO-EM DATA

by
Stephen Schuh

A thesis presented to the School of Engineering
of Washington University in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

May 2011
Saint Louis, Missouri



ABSTRACT OF THE THESIS

A Graph-Based Algorithm to Determine Protein StructurerfrGryo-EM Data
by
Stephen Schuh
Master of Science in Computer Science
Washington University in St. Louis, 2011

Research Advisor: Professor Tao Ju

Cryo-electron microscopy (cryo-EM) provides 3D densitypmaf proteins, but these maps
do not have sufficiently high resolution to directly yieldatic-scale models. Previous
work has shown that features known as secondary structandseclocated in these density
maps. A second source of information about proteins is semuanalysis, which predicts
locations of secondary structures along the protein semgueut does not provide any infor-
mation about the 3D shape of the protein. This thesis presegtaph-based algorithm to
find the correspondence between the secondary structutresdensity map and sequence.
This provides an ordering of secondary structures in the@izitdy map, which can be used

in building an atomic-scale model of the protein.
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Chapter 1
Introduction

Proteins are essential parts of all organisms and are tle¢ atiors within the cell. The
nature of the interactions between proteins is determineplart by their 3D structure.
Protein structure determination is of great interest todgists.

There are a variety of ways to determine the 3D structure afotem. Many methods
take as input a 3D density map of the protein and produce gmibah atomic model of
the protein backbone. The density map is a 3D array of meamunis of density of the
structure at each location in space.

The three most common methods of obtaining density maps-eag diffraction, nuclear

magnetic resonance (NMR) spectroscopy, and cryo-eleatioroscopy (cryo-EM). Each

method has advantages and disadvantages: x-ray diffnaantid NMR tend to yield higher-
resolution density maps, while cryo-EM allows observatiblarger protein complexes and
enables measurement of samples in their natural enviraismaArsurvey of the structures
stored in the Protein Data Bank [14] as of the end of 2010 shbatsx-ray diffraction has

produced 87% of structures, NMR has produced 12%, and chd&s produced fewer
than 0.5% [16].

Given a density map, how can a 3D model of the protein backbereeated? If the input
density map has sufficiently high resolution to discern thepg of the protein backbone,
a relatively simple approach is to segment out the highitiebackbone from the density
map.

But what if the resolution of the density map is not high erfotg directly resolve the

backbone? This thesis presents a method of solving thidgrroby locating larger-scale
features in the density map and determinining how best to@ctirthose larger-scale fea-
tures together to form an estimate of the protein backbone.



1.1 Overview

The state of the art in cryo-EM based single particle recanson [34] provides density
volumes at resolutions from four to ten Angstroms, and trarmot be directly used to
determine the locations of amino acid residues.

However, as seen in Figure 1.1b, secondary structure etsraemeasily observed at these
resolutions due to their characteristic tubular and pliseeshapes. This has led to the
development of many manual [35] and automatic techniquels as SSEHunter [4], He-
lixHunter [19], SheetMinter [22] and SheetTracer [23], ahiuse geometric skeletons,
template-based cross correlation and heuristics to labatiservedSSEs within the den-
sity volume. Figure 1.1c displays the results of one sucthote{SSEHunter). A survey
of methods for detecting secondary structure elementsgS8Eryo-EM density volumes
is provided by Chiu et al. [9].

With the advent of modern, large-scale DNA sequencing &ffarch as the Human Genome
Project [26], obtaining the sequence of amino acid residfiagprotein has become a very
accurate and efficient task. Subsequently, techniquesssuleBIPred [20], JPred [11] (Fig-
ure 1.1a), Scratch [8] and many others have been developaettoately and efficiently
predictwhich amino acid residues in the sequence might form SSEs.

We present a method of bringing together knowledge aboubiiservedSSEs in the 3D
shape of a protein and theredictedSSEs in its amino acid sequence. We show how this
enables the creation of an initial 3D shape of the proteirkibaice that can be refined by
later steps in a model-building pipeline. We present herexaansion of previous work
from our group [1]; the main new contribution is the additmn3-sheets into the method.
Additional contributions include implementation improvents and user interface changes.

1.2 Problem Statement

The computational problem that we address isdtv@espondencbetween the SSEs pre-
dicted from the sequence, and the ones observed in the ylepkime. As illustrated in
Figure 1.1e, such a correspondence establishes a coargete@ihstructure consisting of
a chain of helices and sheets. It is important to note thatabirespondence may not be a



1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 HGQVDCSPGRTANE ST HL EGKTIIEYHVASGYRZICY JPAE TEe ST A NANNE P dTu@iM@ KQEFGI PYNPQSQGV
SO =S VINKEL ¢ (I | GOVRBON=RI KTAVON AVEI HNHNRKeeNe e AGER Dl | Aunio

(a) Annotated sequence of amino acid residues

(b) Density volume (c) Secondary structure elements (dn@toc skeleton (e) SSE Correspondence

Figure 1.1: The inputs to our method are (a) the protein sequence witktitots ofa-helices (green) and
B-strands (blue) predicted using JPred [11]; (b) the 3D va@wintained by cryo-EM; (c) possible locations
of SSEs in the 3D volume detected using SSEHunter [4]; anth&lyeometric skeleton computed from the
density volume. (e) The correspondence between the SSEs setjuence and the 3D volume, computed by
our method.

bijection. Due to noise in a typical density volume, an SStect&n algorithm may fail to
find the locations of all the SSEs within that volume and may aentify false SSEs.

The SSE correspondence problem has previously been stindibd work of Wu et al.
[33] and in our earlier work [1]. Wu employed an exhaustivenbinatorial search to find,
amongst all permutations of SSEs in the density volume, derorg that best matches the
protein sequence. This brute-force algorithm has a fadtime complexity. According
to their experiments, this method is only practical for vemyall inputs, taking 1.5 hours
and 16 hours to find the correspondence of a 3-helix and &-psadtein respectively. In
the first version of our work [1] we achieved much better perfance (i.e. 5 seconds for a
20-helix protein) by formulating the correspondence peabhs a subgraph isomorphism.
Because our previous method found correspondences-faglices only, it could not be
used to generate accurate pseudo-backbones for proteitassrong3-sheets.

1.3 Method

The key idea behind our method is to represent the densityandphe sequence in a
common way, and then step by step build up a correspondemeedte these two repre-
sentations.



Our common representation is a graph, with nodes represeséicondary structures and
edges representing connectivity between secondary gtasct We build thesequence
graph by analyzing the sequence of amino acid residues, predipisitions of SSEs in
the sequence, and connecting them together to form a spaidmear graph. Thdensity
map graphis constructed by analyzing the observed SSEs in the devdityne, and by
using the geometric skeleton to identify their possiblermantivity. Due to noise and the
lack of high resolution in cryo-EM densities, the geomesikeleton may contain many
alternate paths; therefore, this graph is often denselpexted. Section 2.2 describes in
detail how each graph is constructed.

After constructing the two graphs, the next task is to findidést correspondence between
them. In other words, we seek the best mapping of the protgjoence graph onto the
density map graph. The mapping must be robust to errors igrdgehs such as missing
SSEs or missing or extra connectivity between SSEs. Withgoaph formulation, this
can be recast as the constrained, error-correcting gragtbhmg problem which seeks the
best-matching simple paths along the two graphs.

To this problem we apply the best-first search algorithm,@upsr method in graph match-
ing problems. As required by the best-first algorithm, weiglesin SSE attribute-based
cost function that assigns lower cost to more likely coroegfences. This means that the
first results returned by the best-first search have the thjotménimal costs [25]. Section
2.4 describes this search and associated cost functiors$an.d

We apply our method to a collection of authentic and simdlatgo-EM test data and show
that it identifies the correct SSE correspondence witleldtino user intervention for small
and medium size proteins. For example, Figure 1.1e showsotinespondence computed
by our method for the 2ITG protein of the Human Immunodeficyewirus (HIV). Our
approach improves the efficiency of an otherwise exhauseagech [33] by several orders
of magnitude, obtaining the correspondence of proteins mibre than 25 SSEs in under
40 seconds. In addition, the availability of the skeletdoves us to plot a path on the
skeleton that connects successive SSEs, suggesting dlpgsseudo-backbone of amino
acid residues.



1.4 Contributions

In summary, we present the following contributions:

e We introduce a common representation of protein sequemckdensity volumes as
attributed relational graphs, which is suitable for stawat matching.

¢ We formulate a constrained error-correcting matching lembbetween attributed
graphs, which differs from previously known exact and ireaatching problems.
In addition we develop an optimal solution based on a bestdaarch.

e We present a novel and efficient computational approachofeirgy an open problem
in structural biology, achieving orders of magnitude spgedver the best available
method and making model building from cryo-EM volumes muasier for medium-
size proteins.

1.5 Previous Work

Graph matching In pattern recognition and machine vision, graphs have bmen used
to represent object models such that object recognitionaesito graph matching. Here
we briefly review graph matching problems and methodolggiese information about
the wide variety of matching techniques is provided by theeys of Bunke and Messmer
[7] and Conte et al. [12].

In general, graph matching problems can be divided intoteratching and inexact match-
ing. Exact matching aims at identifying a correspondencevéen a model graph and (a
part of) an input graph, which can be solved using sub-gre@morphism [30, 13] or graph
monomorphism [32]. Because real-world data is seldom peded noise-free, inexact or
error-correcting matching is desired in a large number gliagtions. As in the work of
Bunke [5], error-correcting matching can be formulated adifig the bijection between
two subgraphs from the model and input graph that minimineseserror function. This
error typically consists of the cost of deforming the oraigraphs to their subgraphs and
the error of matching the attributes of corresponding elgmmm the two subgraphs. Note
that in most applications, the topology of the optimally otétg subgraphs (e.g., whether
it is connected, a tree, a path, etc.) is generally unknowrchS$natching is said to be
un-constrainedince the minimization of the error function is the only goal
5



The most popular algorithms for error-correcting graphahisiy are based on best-first
and A* searches [25]. These algorithms are optimal in theesémat they are guaranteed to
find the global optimal match. However, since the graph magghroblem is NP-complete,
the computational cost can be prohibitive for large grapfsthis end, various types of
heuristic functions have been developed to prune the sspaste [29, 28, 6, 27, 32]. Other
methods such as simulated annealing [17], neural netwd&s probabilistic relaxation
[10], genetic algorithms [31], and graph decomposition] [@dn also be used to reduce
the computational cost. All these optimization methodsdseeloped for un-constrained
matching where the matched subgraphs can assume any tgpolog

For our problem, we know that the sequence is always a lineanwf connected sec-
ondary structure elements. We can use this observationvielagea specialized form of
subgraph isomorphism that benefits from this reduced sepate.



Chapter 2

Methods

2.1 Inputs: Density Map and Sequence

Our method takes inputs from two sources. The first is a ciybelensity map with pre-
dicteda-helix andB-sheet positions provided by SSEHunter and SSEBuilder.s€hend
is a predicted amino acid sequence with predicteakelix andB-strand locations.

2.2 Graph Representation of Density Map and Sequence

We begin by representing the density map and the sequenesagaphs. In general,
nodes in these graphs represent secondary structures gesl gglnonstrate possible con-
nectivity between secondary structures. Figures 2.1 ghditw examples of these graphs
for the 2ITG protein of the HIV virus. The sections that fell@escribe our method of
constructing these graphs.

2.2.1 Protein Sequence Graph

We represent ther-helices and3-strands in the primary sequence using a collection of
vertices and edges in the protein sequence graph. We repesseh helix by two vertices
connected by an edge, and we represent each strand as aveirigle (This choice of two
vertices per helix and one per strand is motivated by theiyemap graph, described in
Section 2.2.2 below.) Each vertex has two associated péeasnes, represents the vertex
type and is equal tél or Sfor helix or strand, respecitvelygs represents the weight of
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Figure 2.1: (a) The sequence of amino acid residues making up the 2|T&iprof the HIV virus and (b)
the corresponding graphs designed to tolerate up to 1 rgisi@et or (c) one missing helix and one missing
sheet, where the vertices and edges have been colored batthibutes. Portions of the sequence have been
omitted for simplicity; the full sequence is shown in Figdréa.

the vertex. Strand vertices have weight equal to the numib@mao acids in the strand;
helix vertices have no weight.

We encode the lengths and connectivity of helices and strasithg graph edges. We add
edges to connect successive vertices in a linear fashionijrfig a linear chain to represent
the sequence. If an edge connects the two nodes represarigix, that edge represents
the helix body. All other edges represent the connectiotsden neighboring helices and
strands along the sequence. Each edge has two associaetepens B is the edge type
and is equal tdd for helix edges and. otherwise;fBs is the edge weight, equal to the
number of amino acids in the portion of the sequence repteddry that edge.

This sequence graph will later be compared to a second geggpksenting the density
map. We next modify thesequenceyraph to accommodate possible deficiencies in the
density mapas follows. To allow for a missing-helix in the density map, we add extra
edges bypassing eactrhelix in the sequence. Each of these edges hasltygad has a
weight equal to the number of amino acids it bypasses. Thégesecreate a path from
beginning to end of the sequence bypassing one helix. Ldewo allow for a missing



(a) Volume, skeleton and SSEs (b) Density volume graph

Figure 2.2: (a) The density volume, skeleton, and detected SSEs, anti€orresponding graph, where
the two terminal vertices 1 and 9 are connected to every oiréex via loop edges. Three helices have been
omitted for simplicity; the full graph is shown in Figure 8.1

B-sheet in the density map, we add an extra edge bypassingBestthnd. Each of these
bypass edges has typeand weight equal to the number of amino acids it bypassegr Aft
these additional edges are added, there is no longer a gatiefrom the beginning to
the end of the sequence graph; each possible path reprédsemsmplete sequence with
zero or more missing helices or strands. In our implemeriathe user specifies how
many helices and sheets may be missing in the density mahas®tl on this input, an
appropriate number of extra loops are added to the sequeagk.g

Figure 2.1b shows the sequence graph including extra ledpgass one helix, and Figure
2.1c shows a graph with extra loops to bypass one helix or tvaeds

2.2.2 Density Volume Graph

As in the sequence graph, the volume gr@&ptonsists of vertices and edges representing
the secondary structures and the connections between thaaha-helix is represented
by two vertices connected by an edge, and gaaeet is represented by a single vertex.
Each helix is represented by two vertices in order to encbdeehtry and exit points of
the protein sequence as it passes through the helix. Byasingach sheet is represented
by a single vertex because one sheet corresponds to zerorersinands in the sequence,

9



and the number of strands per sheet cannot be known when isé¢ydeolume graph is
constructed. Each vertex has two parametetg. represents the vertex type, whichHs

for a helix vertex and& for a sheet vertexac, represents the vertex weight. Sheet nodes
have weight equal to the expected strand length of that siwbéth is estimated based on
the size of the sheet. Helix nodes have no weight.

We encode the connectivity between helices and sheets vafthgedges. As in the se-
guence graph, each edge has a tgpg with H for helix edges and. for loop edges; a
weight Bco representing the number of amino acids represented bydigat e

Like the sequence graph, the density map graph has one edgeatimg the two vertices
that represent each helix. This edge has typend weight equal to the estimated number
of amino acids in that helix, computed based on the Euclidkstance between helix
endpoints.

Unlike the sequence, the density map does not explicitlyigeothe needed connectivity
between helices and sheets. To estimate the connectiatgpserve that secondary struc-
tures in the density map are likely to be connected in 3D thinaegions of high density in
the map. We then seek a representation that depicts theotppof such high-density re-
gions. To this end, we extract a morphologiskletorof the density using a combination
of erosion-based binary [21] and grayscale [2] skeletditimaechniques. Such skeletons
can be robustly generated even from noisy surfaces whisepring the solid topology; an
example is shown in Figure 2.2a.

Given the skeleton, we add an edge between every two vettiaeare connected by a path
along the skeleton, as long as that path does not pass theohglix. These edges have
typeL and weight equal to the estimated number of amino acids al@tgath, computed
based on the shortest-path distance along the skeleton.

We observe that due to noise in the input density map, theetskekometimes does not
capture all the necessary connectivity among structures.thits reason we additionally
add edges between any nodes that are within some user-egatidtance of each other;
if the skeleton captures the true connectivity this distamay be small; if the skeleton is
sparse this threshold must be large. Edges added in this avegytippel. and weight equal
to the straight-line distance between nodes, expresseattsmaf number of amino acids.

We now highlight a key difference between our sequence gaaphour density map, the
representation oB-sheets. In the density graph one node represents an @nsineet,

10



whereas the sequence graph contains one nod@{sérand. Since one sheet contains
many strands, there will necessarily be a one-to-many sporedence between sheet nodes
in the density map graph and strand nodes in the sequende Jimpccommodate this we
add self-loops to the density map graph at every sheet ndueseledges have typeand
weight equal to a user-specified number of amino acids, &lgiset to 5.

Finally we augment the density map by adding two terminatiees of typesB andE.
These vertices are virtual since we cannot predict the phlgications of the sequence
end points based on the input density. We complete the gnaplding a loop edge from
each terminal vertex to every other vertex, with typand no weight.

Figure 2.1b shows a density map graph computed by our method.

2.3 Graph Summary

In summary, we build two graphs, one representing the segLeemd the other representing
the density map. The graphs consist of vertices and edgas heaing types and weights:

e \ertices:
— Helix terminus: A helix terminus vertex has typkand no weight.

— Strand: A strand node has tyfand weight equal to the number of amino acids
in the strand.

— Sheet: A sheet node has tyand weight equal to the expected strand length
in the sheet, estimated based on the sheet size.

— Terminal: The nodes representing the beginning and endecseéfjuence have
typesB andE, respectively, and no weight.

e Edges:

— Helix edge: A helix edge has typg¢ and weight equal to the number of amino
acids in the helix.

— Loop edge: A loop edge has tyjheand weight equal to the number of amino
acids in the loop, computed by traversing the sequence onasid based on
the shortest distance between nodes along the skeleton.

11



2.4 Constrained Graph Matching

After building the graphs described in the previous sestitime problem of finding a good
correspondence between a density map and a sequence catabea the problem of
finding a good correspondences between the two graphs. Welefxe the graph match-
ing problem, describe what we mean by a good correspondandgresent our method of
finding such a correspondence.

2.4.1 Graph Matching

Given two graphs representing the secondary structuresgienthelices and strands/sheets)
in the sequence and in the volume, we show that finding thespondence between the
two sets of structures reduces to a constrained graph mgtphoblem. We begin by defin-
ing a chain:

A chainof a graphG is a sequence of noddss,...,vn} C Vg that form a path irG. A
chain isorderedif v = 1,v, = |Vg|, andv; < viy1 for alli € [1,n— 1]. A chain issimpleif
vi #vjforalli,je[l,n-1].

For example, an ordered chain in the sequence graph coosstsequence of nodes and
edges depicting a linked sequence of helices and strandsiréspondence between struc-
tures in the sequence and the density map is therefore dibijdoetween an ordered,
simple chain in the sequence graph and a chain in the densipygraph. Note that the
definition of a chain allows partial correspondence between a subset of the structures in
the sequence and the volume. The correspondence problebeaefined generally for
any pair of attributed relational graphs:

Correspondence Problem Let S C be two ARGs. The correspondence problem is to
find an ordered, simple chaifp,...,pn} € Vsand chain{qi,...,0n} €\ that minimize
the matching cost:

n n—1
_Zle(pi,Qi) + Zi Ce(Pi; Pi+1, 0l Gi+1) (2.1)

wherecy, Ce are any given functions evaluating the cost of matching n@déth g; or edge
{pi, pira} with {q, g1}

12



Compared to graph matching problems such as exact graphtjgraph) isomorphisms,
inexact graph matching, and maximum common subgraph preb|&8], the correspon-
dence problem described here is unique in that it seeksnbatsthing subgraphs from two
graphs that have a particular shape. Given such constrametgous graph matching algo-
rithms that are guided only by error-minimization can notirectly applied.

2.4.2 Cost Functions

We next explain our choice for the two cost functi@psce in Equation 2.1 when matching
the sequence graph and the volume graph. Note that thethlgonie present in the next
section works for any non-negative cost function.

The two cost functions measure the similarity of the attesuassociated with a pair of
vertices or a pair of edges. The vertex cost function has twpgses: it ensures that two
matched vertices are of the same type, and for a strand-gégek pair, it computes the
difference between the length of the strand and the expettadd length for that sheet.
The vertex cost function is defined as:

[as, —ac,|, if as (X) = ac,(y) =S’
cv(Xy)=<¢ 0O, if as,(x) =ac,(y) #'S’ (2.2)
o, otherwise

The edge cost function enforces type matching and comphaderngth difference between
two helix edges or two loop edges, and is defined as:

([ [Bs,(x.Y) — B, (u,V), if Bs, (%,Y) = Bey (U,v),
andy = x+ 1.
Ce(X7 Ys U,V) = |B52(X7 y) - BCZ(U7V)| + yS(X7 y)7 if BSL(X7 y) = BC1<U,V), (23)
andy > x+ 1.
o, otherwise.

Here, theys term penalizes missing helices and sheets in the volumé gnagh is set to be
a weighted sum of the length of helices and strands bypassedibk edge. For a link
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edge in the protein sequence connecting nodisdy, we compute the penalty as:

Vs(xy)=wh ) Bs(i,i+1) + ) as(i) (2.4)
x<i<y-1, and x<i<y, and
Bs (i,i4+1) ="H ag (i) ='S’

wherewy, andws are user-specified weights that adjust the influence of ngdselices and
missing strands in this penalty term.

2.4.3 An Optimal Best-First Search Algorithm

In this section, we present a best-first search algorithmsédving the correspondence
problem defined above. Our method extends the tree-searttftodheommonly applied
to unconstrained error-correcting graph matching problesnd is guaranteed to find the
optimal match.

To find a match between two graphs, a tree-search algorithrts stut from an initial,
incomplete match and incrementally builds more completéches. To find matching
chains in graph§,C, we first consider a partial match as a sequence of node-pairs

Mk = {{P1, a1}, { Pk, Ok} }

where{ps,...,px} and{qs,...,0q«} are the initial portion of some ordered, simple chain
in Sand some chain i€. Based on the definition of chains and our matching goal of
minimizing cost functions, elements bfi must satisfy the following requirements:

e \ertex requirement: For alli € [1,K]:
p=1 peVs GeVe, and oy(pig)#
andforallj € [Lk], i#j, ac(j)#'S"
i # Qj.

In other words, the only vertices that may repeaiMp are sheet vertices in the
volume graph, and vertices in each pair must be of the sanee typ
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e Edge requirement For alli € [1,k—1]:

Pi < Pit1,  {Pi,Pi+1} €Es, {0,041} €Ec, and ce(pi, Pi+1,0i,0i+1) 7# .

In other words{ ps, ..., px} must form an ordered chain, and the two edges connect-
ing the two nodes in neighboring pairsMy must be of a same type.

Starting with an empty matchly = 0, the search algorithm incrementally builds longer
matching chains. Specifically, we define expansionof a partial matchMy as a new
partial matchMy 1 = MU {{pk+1,0k+1}} such that the added nodps, 1,0k 1 Satisfy the
node requirement and the added ed@Bs px.1}, {0k, 01} (for k > 0) satisfy the edge
requirement. Note that usuallyMy can be expanded into multipMy 1. A matchMy is
completg(i.e., no more expansion can be doneif= |Vg|.

Observe that the search procedure essentially builds atmesture withMg at the root of
the tree, expanded partial matchgat thekth level of the tree, and complete matches at
the tree leaves. Our goal is to find the complete match thainmies the matching error
defined by Equation 2.1.

2.4.4 Best-First Search

To find the optimal match without performing an exhaustieetsearch, we adopt the best-
first search algorithm, which prioritizes the expansionrafomplete matches using the
cost function. The best-first search algorithm works by n@aning all un-expanded partial
matches in a priority queue and only expanding the partiagtmaith the best (smallest)
cost function value. Because the lowest-cost node is alwaganded at every step, the
first complete match is guaranteed to have the lowest cost pbssible matches. In our
implementation we continue expanding in the best-firstsafter the first complete match
is found. The next complete match is guaranteed to have tomddowest cost, and so on.
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Chapter 3
User Interface

The algorithm desribed in Chapter 2 has been implementedr#n dhd a user interface
has been implemented using Python and Qt. This is includelderGorgon project [3].
The following sections highlight features of the user ifgee by walking through the steps
required to run the algorithm on the 1IRK protein.

The correspondence search is launched from Gorgon by isgléEind SSE Correspon-
dences...” from the Secondary Structure Element sectithredhctions menu. This launches
a dock item containing the user interface for the algoritfime Ul contains five tabs that
correspond to the steps of using the algorithm. The lefttadstontains prompts for the
input files needed by the algorithm. A screenshot of the datiaces tab is provided in
Figure 3.1.

3.1 Loading Files

To specify input files for the algorithm, the user clicks oe #@ppropriate button in the
data sources tab, shown in Figure 3.1. The four input filegired by the algorithm are
described in Table 3.1. The file input tab also allows the tsspecify files via a Settings
file, which is described in detail in Section 3.6.

As the user specifies the filenames for the input data, thetskebr-helices, angB-sheets
are rendered in the main Gorgon pane. The skeleton is coteckly default, helices are
gray, and sheets are green.
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Find S5E Correspondences F X
Data Sources Visualization Settings
Data Files
Cryo-EM Skeleton:
Sequence:
30 Helix Locations:

30 Sheet Locations:

Data Files, Graph Settings, and Matching Settings

[ L

Settings Fie:

Figure 3.1: User interface for specifying input files

[ Input type | Allowed file formats | Description |
Cryo-EM Skeleton Volume (.off or .mrc) or| A skeleton derived from a CryoEM density map, consisting Df B
Mesh (.atom) curves representing loops aaehelices and 2D surfaces represent-

ing B-sheets. A skeleton would typically have been createdezafli
in the model-building process as part of the SSE Hunter dhgor
Sequence Sequence with SSE pre- A list of the amino acids of the structure with predicted kmas
dictions (.seq) or full| of a-helices ang3-sheets

atomic model (.pdb)
3D Helix Locations VRML file (.vrml, .wrl) or | Locations and sizes @f-helices in 3D density map, typically pro-
SSE Hunter output (.sse) | vided by the SSE Hunter algorithm
3D Sheet Locations | VRML file (.vrml, .wrl) or | Collections of triangles representir§ysheets in 3D density mag,
SSE Hunter output (.sse) | typically provided by the SSE Hunter algorithm

Table 3.1: Input files required for the correspondence search alguorith

3.2 Visualizing Input Data and Graphs

After all the input files have been specified, the algoritheates graphs representing the
density map and the sequence and the Visualization tabdstedl Figure 3.2 shows the
rendered skeletom-helices, angB-sheets along with the Visualization controls.

The Visualization pane allows the user to hide or show théesixe, helices, and sheets.
The available options are described in Table 3.2.

At this point it is helpful to check that thB-sheets from the SSEHunter algorithm were
correctly mapped onto the skeleton. This can be done by ieigai8how Skeleton Sheets”
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Gorgon -2 BEE)
:
Find SSE Corresy pondences 3 x

Data S Wisualization | Settings || dvanced Settings B

Visuslization
[¥] show Skeleran

[] show Helices
[] show Heliz Corners

[] Show SSEHunter Sheets
Show Skeleton Shests
[] show Sheet Carners

[ show All Loops

Find 55 Co Secondary Structure Element Yisua Skeleton Yisual

Figure 3.2: User interface for visualization options

| Visualization Option | Description
Show Skeleton Show or hide the skeleton.
Show Helices Show or hide the-helices.

Show SSEHunter Sheets | Show or hide thg8-sheets provided as input to the algorithm.
Show Skeleton Sheets Show or hide thg3-sheets used by the matching algorithm. These are surfacéseqg
skeleton that are within a user-specified distance of artifpsheet.

Show Sheet Corners Show or hide the boundaries wheg8esheets meet the skeleton curves.

Show All Loops Show or hide the edges in the graph connecting one seconlacyuse to another.

Table 3.2: Visualization options for the correspondence search

and visually comparing the yellow sheets on the skeletoiméogreen sheets from SSE-
Hunter. If the skeleton sheets are much smaller or larger the SSEHunter sheets, the
user may decide to generate a new skeleton with sheets gbpineiate size.

It is also useful to examine the connectivity of the densigpngraph. The loops in the
graph can be visualized by enabling “Show All Loops” and disey “Show Skeleton”.

If there are very few loops (in other words, if there are fewesibetween graph nodes),
the true connectivity of the structure may not be represebyethe graph. To correct this,
the user can create a new skeleton with a lower density tbidstefine the skeleton using
the grayscale skeletonization method, or add Euclidearsfkge Section 3.5). If there
are very many loops (in other words, if the graph is fully cected) the correspondence
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algorithm may run out of memory searching for the best cpoedence. The number of
loops can be reduced by creating a new skeleton with a higiresity threshold.

The next step after visualizing the graphs is to specify trameters for the algorithm and
run the correspondence search.

3.3 Computing Correspondences and Viewing Results

The correspondence search relies on several parametedetiemine graph weights and
cost funtion properties. The correspondence algorithmbearun with default values for
all these parameters by clicking the OK button. If the aldn succeeds, the Results tab
is selected and the lowest-cost result is rendered, as sbowime left side of Figure 3.3.
The rendering shows a colored path from beginning to endeséguence, with the first
helix colored blue and subsequent helices colored in bteerg green, and yellow along
the sequence. Sheets are colored dark yellow, orange, dn@aths between helices and
sheets are colored in a gradient so that the complete paniasth color transitions from
beginning to end. Numbers rendered in white near helicesheets indicate the ordering
of secondary structures along the sequence.

The sequence information is displayed in the table on the sgle of Figure 3.3. The first
column shows ther-helices angB-sheets in the sequence and the second column shows the
corresponding structures in the density map. The percentagarentheses in the second
column is the probability of that helix-to-helix or stratasheet pairing occurring in the

top 35 results. If the percentage is 100%, this pairing apgpaall 35 results returned

by the algorithm; if around 50% it appears in roughly half lo¢ results; if close to 0%,

it appears in few. We will show in Chapter 4 that pairings witgh percentages tend to
correspond to the ground truth. Therefore, the user can fmokigh percentages when
trying to select a good result among the 35 results of therigo.

At the top of the window is a pull-down menu that allows theruseswitch between the
lowest-cost correspondence (selected by default) and fatine mther correspondences in
the top 35, ranked by matching score. When the user selecdtfegedt correspondence,
the selected correspondence is rendered in the left panésaselquence information is
shown on the right. Figure 3.4 shows a different search te€amparing to 3.3, note the
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Find SSE Corresy pondences 3 x
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sheet 9
(85%) ]

strand 4 i o
{100%)

sheet 9
(100%) a

Find 55 Co Secondary Structure Element Yisua Skeleton Yisual

Figure 3.3: User interface showing the lowest-cost correspondencéisdsr 1IRK

different path along the sequence, the different colorirntty@ rendered helices and sheets,
and the different list of correspondences in the table omitie.

If the user is satisfied with one of the top 35 results, the wedone. The selected corre-
spondence can be used as an input to further steps of theimgpggdeline in Gorgon.

If the user is partially satsified with one of the top 35 resuit is possible to constrain
part of the result and re-run the search to fill in the rema@marts of the correspondence.
Section 3.4 describes the process of adding and removirgjreants.

If the user is not satisfied with any of the top 35 results, iyin@ necessary to change some
of the algorithm’s parameters and re-run the corresporelsearch. Section 3.5 describes
all the parameters.

3.4 Adding Constraints

A constraint is a fixed mapping between a secondary stru¢tuteelix or B-sheet) in the
density map and a secondary structurehglix or 3-strand) in the sequence. Constraints
allow the user to include domain knowledge into the searclcgss; for example, if the
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Figure 3.4: User interface showing the fifth-lowest-cost correspordensults for 1IRK

user knows the correspondence between part of the sequahpard of the density map, it
is possible to constrain just the known part and use the idthgoto find the correspondence
for the rest of the sequence.

Constraints can also be used to reduce the computationallerity of finding a corre-
spondence. For example, if a structure has many heliceshamatssthe algorithm may run
out of memory, in which case a memory error is reported to Hex along with a sugges-
tion to add constraints. In this case the user can use domainl&dge to match a subset
of the helices or sheets, specify those matches as constraid run the algorithm again
to find the best correspondence of the unconstrained stasctAnother approach for large
input data sets is to first run the algorithm arhelices only, find a good correspondence,
constrain all the helices, and then use the algorithm tafihe 3-sheet correspondences.

The user interface provides three ways to add a constrantomstrain a matching found
by the correspondence algorithm, the user checks the eamdtiox in the appropriate row
in the results list. Another way to add a constraint is totdgick an item in the second row
of the results list. This raises a menu that allows the usselect one of the helices in the
density map as a constraint. The final way to add a constsaiatright-click a structure in
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(a) Check a constraint box in the table  (b) Right-click on kxha strand in the table (c) Right-click on a rendered helisheet

Figure 3.5: User interface for adding constraints

Find 55E Correspondences & x [Find SSE Correspondences & x

Data Sources | Visualeation | Settngs | Advanced Settings ¢ [P} tata Sources | Wisusization | Settings | Advanced settings (4]

Giobal Giobal

1 to PDE Distance Ratio: [ 10,0000 & Border Margin Threshold: [

© #bsolate O Normalized O Quadratic

Cos 0.0000
oo

0.2000 o

S.0000

10
Helx Importance 1.0000 5.0000
Missing Helix Penalty, Fixed: 5.0000 5.0000
Missing Helix Penalty, Scaled 0.0000 £ Sheet Merging Threshold 3.0000
Start o End Missing Helix Penalty: | 5,0000 £ [ humber of Missing Sheets: |0
e [ nelude Strands
Indude Shests Rebuild Graph
Sheet Importance: 10000 3
Missing Sheet Penalty, Fixed: 5.0000
Missing Sheet Penalt, Sceled: | 0.0000
Cor Lo ] [
(a) Settings tab (b) Advanced settings tab

Figure 3.6: User interface for changing algorithm parameters

the rendering. This raises a menu that allows the user totsabe of the structures in the
sequence. The three methods of adding constraints are shdwgure 3.5.

After adding a constraint, the correspondence algorithmbearun again by clicking the
OK button.

3.5 Adjusting Parameters

The parameters for the correspondence algorithm are Whostdwo tabs, “Settings” and
“Advanced Settings”. Screenshots of these tabs are prowdEigure 3.6, and the param-
eters are described in Tables 3.3 and 3.4.
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Parameter

Description |

Euclidean to PDB Distance Ratio

Show or hide the edges in the graph connecting one seconmlacjuse to another.

Cost Function

The sizes of helices, loops, and sheets are compared in sh&oation using either|
the absolute difference, the relative difference, or theased difference.

Loop Importance

The relative weight of the loop matching cost in the cost fiomc

Euclidean Loop Penalty

The additional penalty incurred when a Euclidean edge Isdiea in a result. Highe
penalty discourages the use of Euclidean edges.

Helix Importance

The relative weight of the helix matching cost in the costtion.

Missing Helix Penalty, Fixed

The fixed penalty incurred when a helix is skipped.

Missing Helix Penalty, Scaled

The length-dependent penalty incurred when a helix is €dpp

Start or End Missing Helix Penalty

The extra penalty incurred when a helix at the beginning dr @fithe sequence is
skipped.

Include Sheets

Determines whether or not sheets are included in the demsifygraph

Sheet Importance

The relative weight of the sheet-strand matching cost ircts function.

Missing Sheet Penalty, Fixed

The fixed penalty incurred when a strand is skipped.

Missing Sheet Penalty, Scaled

The length-dependent penalty incurred when a strand ips#ip

Table 3.3: Algorithm parameters available on the Settings tab

Parameter

| Description |

Border Margin Threshold

Used in building the density map graph. Due to skeleton grgmme loops may no
intersect a VRML helix cylinder at the cylinder cap. Thisdsnold allows paths td
intersect a helix on the helix side, within some distancenefdap.

Max Euclidean Loop Distance

Used in building the density map graph. If two secondarycstmes are within this
distance of each other, a loop is added between these twe ewoda if they are nof
connected along the skeleton.

Number of Missing Helices

The number of allowed missing helices in the search.

Minimum Sheet Size

Used in building the density map graph. Skeleton surfacedlenthan this threshold
are not treated as sheets in the graph.

Maximum Sheet Distance

Used in building the density map graph. Skeleton surfacgsefiathan this distance
from VRML sheets are not treated as sheets in the graph.

Sheet Self-Loop Length

Used in building the density map graph. A constant reprasgite length of a loop
in the graph from one sheet back to itself.

Sheet Merging Threshold

Used in building the density map graph. Skeleton sheet®clogether than thig
distance are treated as a single sheet.

Number of Missing Sheets

The number of allowed missing strands in the search.

Include Strands

Used in building the graph. Determines whether or not ssaré included in the
sequence graph.

Rebuild Graph

Rebuild both graphs. This is automatically done wheneveuser changes a paran
eter that affects graph construction.

Table 3.4: Algorithm parameters available on the Advanced Settinigs ta

[

3.6 Automation Using Settings Files

The previous sections describe how to load data, add camstrand set algorithm pa-
rameters using the user interface. Another way to providaltta filenames, constraints,
and parameters is by storing them in a text file called a Sgttite. A valid Settings file
must contain minimally the names of input files and can ogtligrninclude constraints and
algorithm parameters.
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If a user repeatedly runs the same correspondence searcheodata set, the use of a
Settings file can help a user prevent tedious re-entry ofdheedilenames and parameters
for each search. Settings files can also be saved by the usatdiouse.

The Settings file is a text file with each row representing anditee, a constraint, or a

parameter value.
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Chapter 4
Results

In this chapter we evaluate the performance of our methodaoiows cryo-EM data sets

for which the ground truth structure is known. We provideutessshowing that the ground

truth structure is often returned as one of the top 35 restitisir method, and that in many
cases it is the top result. We further show that a simple gasitheme based on the top
35 results gives an accurate estimate of the protein stejatuen for data sets for which
the ground truth is not among the 35 best results. We als@presyo-EM data sets for

which our current implementation cannot provide any rasdite to memory limits, and

we describe methods of working around this limitation.

4.1 Setup

We present results for eleven cryo-EM volumes At¥DA resolution, nine of which are
simulated from atomic models obtained from the Protein [Batak [14] and two which
are authentic cryo-EM reconstructions (RDV P8 at®6.8roEL-Apical domain at 4 &1).

For each structure, our method requires a geometric skefeteated from a density map),
locations and sizes af-helices ang3-sheets on the skeleton, and knowledge of the posi-
tions and lengths oft-helices ang3-strands in the protein sequence. In our experiments
the skeleton is created using the methods of Ju et al. [21ABBgsinghe et al. [2]. Helices
and sheets are found in the density map using SSEHuntenféfnhation about the protein
sequence is taken from the Protein Data Bank. Table 4.1thistsesolution of each input
density map, the numbers of helices and sheets in each maph@amumbers of helices
and strands in each sequence.

LEMDB numbers for these authentic reconstructions are 1R6%/(P8) and 5001 (GroEL)
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Protein \olume Size Sequence Density Map
(d3) Helix count  Strand counf Sheet count Missing helices  Missing shegts

1UF2 96 4 - - - -
2ITG 64 6 4 1 -

1IRK 96 9 9 3 1 1
1WAB 64 9 5 1 2 -
1DAl 64 9 9 3 - 2
1BVP 128 10 14 3 - -
Rotavirus 96 14 16 2 5 2
3LCK 64 12 7 2 5

1TIM 96 12 8 1 3

GroEL (Apical Domain) 100 5 8 2 - -
RDV P8 96 14 8 3 2 1

Table 4.1: Data used to evaluate our method for finding the corresparedestween SSEs.

A note about algorithm parameters: The parameters used by our method are detailed
in Section 3.5. In all experiments described here, the midselix and sheet penalty terms

in Equation 2.4 are set @, = 5, (s = 5. In our most noisy data set (RDV P8), a Euclidean
distance threshold af = 10A was used to create extra edges in the volume graph to allow
for missing connectivity in the geometric skeleton.

4.2 Evaluation Methods

Because we anticipate that our method does not always fintbtinect correspondence as
its first result, we compute a list of candidate correspondsrbetween the SSEs in the
sequence graph and the density map graph, ranked by thashimgtcosts. This can be
done easily in the best-first search framework by termigatie search after a number of
complete matches (typically 35) have been found.

We evaluate the quality of the 35 results returned by our otetly comparing them to a
manual labeling of the SSEs in the density volume based oRkrtbern atomic structure
(for simulated data) or a structural homologue (for auticegta). We use two approaches
to compare our method’s results to the ground truth, as dhestin the following sections.

4.2.1 Rank of Ground Truth

Intuitively, if our method returns the ground truth as itsffiresult, the method works well.
The first evaluation method is to compare the ground truthati ef the results returned
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by our method, searching for a result that exactly matchegtbund truth. The rank of
the correct result is a measure of the quality of the algorith

This evaluation method is meaningful only if the groundhrig among the top results of
the algorithm. This method does not provide a sense of thetbggiality of all the results.

4.2.2 Composite of All Results

Intuitively, if our method returns a set of possible cor@spences which are very similar
to each other, and if these correspondences are similaetgrtbund truth, our method
works well. The second evaluation method uses a simple yatheme to combine all
the results returned by our method into a single composseltteEach SSE-pair in this
composite result is compared to each SSE-pair in the grauttd fThe quality is measured
as the percentage of pairs in the composite result that niia¢otround truth.

Formally, we denote a$i, j} a matching between helix or stramdn the sequence and
helix or strandj in the density map. Define probabili§({i, j}) as the probability that
matching{i, j } occurs in the set afi results output by the algorithm. If this probability is
equal to one, every result contains the matchingtofj; if the probability is close to zero,
the matching of to j is not common among the results. After the algorithm is fiacsand
nresults have been returned, it is straightforward to comp(i, j }) for all i, j. As noted
in Section 3.3, these probabilities are reported as peagestin the user interface.

Given a set oh results and probabilitieB, our voting scheme simply chooses for each
the value ofj that maximizeP({i, j}). This creates a composite result representing the
most likely correspondence. We compare each SSE in this asitegresult to the ground
truth and report the fraction of helices that are correabotledE;, the fraction of strands
that are correct, denotdgl, and the overall fraction of strands and helices that arectr
denoteckE.. If Ey, Es, andE¢ are all equal to one, the voting scheme perfectly predigs th
ground truth; if they are close to zero, the voting schemetseffective at predicting the
ground truth.
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Probabilty of occurrence in h|
list of top correspondences 7

(a) Results displayed as a pseudo-backbone, and the pitésitior each pairing (b) ActuaC, backbone

Figure 4.1: (a) The user interface showing our method’s results for tBE Sorrespondence of the 1IRK
protein of the Human Insulin Receptor, with the pseudo-bacdk displayed on the left and the individual
SSE correspondences displayed in the table at right alotigthé probability of each matching in the list of
candidates. Even though the correspondence does not havieatjsheet matching, the pseudo-backbone is
almost identical to that of (b) the ground truth.

4.3 Experiments

We apply our method to the data sets in Table 4.1 and evalbateesults using the two
methods described above: we compute the rank of the grouttdamong the candidate
matches, and we compuig, Es, andEc. In our experiments we observe thati&n Es, or
E; score higher than 0.8 indicates a very good list of candiaetiehes that differ from the
ground truth by only one or two SSEs. We report these resuliable 4.2. Details about
several of these data sets are provided in the sectionsollat/f

4.3.1 Unsupervised Helix and Sheet Matching
1IRK

Figure 4.1 shows the result of applying our method to find tB& $orrespondence for
the 1IRK protein. This data set is challenging due to misS&d elements and similar
lengths of loops, strands and helices. Note that the psbadkbone generated for the first
candidate is almost identical to the ground truth backbamepite of the fact that two
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(a) Annotated sequence of amino acid residues

\

(b) Density volume (c) Detected SSEs and geometric skeleton (d) SSE Correspondence

Figure 4.2: (a) The annotated sequence of amino acid residues of the JM&Bin. (b) The density volume.
(c) The detected secondary structure elements and theake({d) The correspondence between the two sets
of SSEs computed by our method.

B-strands were not correctly identified by our method as migsi the density map. The
helix portion of the pseudo-backbone exactly matches thargt truth, so the helix-only
rank in Table 4.2 is 1. By contrast, the ground truth strandespondence does not appear
in any of the top 35 results, so the helices-and-sheets rathieitable is>35.

The metricsk;, Es, E; for these 35 results are 1.0, 0.76, and 0.92, respectivehis T
indicates that if we take a majority vote among the top 35espondences, we would
obtain the correct helix correspondence and more than foreths of the correct sheet
correspondences. This means that the user can use the ilit@saB({i, j}) associated
with each SSE to select a good result from among the top 35t@anthke assumptions
while iteratively refining the results. These probabistere reported in the user interface
as percentages, as shown by the red circle in Figure 4.1.

1WAB

Figure 4.2 shows that our method is able to identify the @I$SE assignment for 1WAB
as a highly-ranked candidate. Observe that our algorithrobsst to noise in the data,
such as the two missing helices in the density volume. As prbguct of our algorithm,
a pseudo-backbone can be visualized by rendering the shgbetths represented by the
graph edges in the optimally matching chain. This pseudddi@ne serves as a starting
point when determining the actu@)}, backbone.
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Figure 4.3: (a) The optimal correspondence for Rotavirus computed ynmthod. (b) The actual corre-
spondence.

4.3.2 Unsupervised Helix-Only Matching

As the number ofr-helices angB-sheets in a protein increases, the memory required by our
method increases exponentially in the worst case. We obsleat our implementation runs
out of memory when the number of SSEs reaches 15 to 30, deyeadithe connectity

of the skeleton. For proteins larger than this limit, we use of two approaches to work
around the memory limitation.

The first approach, described in this section, is to use astep-process. In the first step
all B-sheets are removed from the graph and a godelix-only correspondence is found.
The helix correspondences are fixed according to the rekthtsfirst step, and our algo-
rithm is used a second time solve for only fBiesheet correspondences. We find that this
approach works best for proteins where&sheets are located in a single cluster and not
surrounded byr-helices.

The second approach, adding constraints based on the ksevidedge of protein struc-
ture, is described in Section 4.3.3.
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(a) Annotated sequence of amino acid residues

(b) Helix-only correspondence (c) Optimal correspondeafter helix constraints (d) Actual correspondence

Figure 4.4: (a) The annotated sequence of amino acid residues of the pBM®Ein. (b) The optimal corre-
spondence computed by our method where the helix corregpords correct. (c) The optimal correspon-
dence after the helices have been constrained. (d) The actuaspondence.

Rotavirus

For the Rotavirus structure shown in Figure 4.3, we firstesofior thea-helix-only corre-
spondence. As shown in Table 4.2, our method returns thalazthelix correspondence
as the lowest-cost match. Next we constraincahelices and solve for thB-strand cor-
respondence. Due to the clustered nature offfstrands, the corre@-strand correspon-
dence does not appear in the top list of candidates. Thavediapoor sheet matching
results are reflected by the low valuekf
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1BVP

We apply the same strategy to find the structure of the 1BVReprof the Blue-Tongue
Virus, with results shown in Figure 4.4. Like the Rotavirvample, our algorithm cor-
rectly predicts the helix correspondence but returnsivelgtpoor sheet matching results,
as demonstrated by the low value &f in the results table. The cause of the poor sheet
matching results is that two lorfgrstrands are incorrectly matched to a very lggsheet,
when they should be matched to a separate, smaller sheet.effrbr is due to our algo-
rithm’s assumption that longer strands should be match&dder sheets.

4.3.3 Interactive Matching

The previous section described a two-step approach forimgkround memory limita-
tions for structures with many SSEs where strands are ckgstegether and separate from
helices. This is just one possible cause of memory probl@tiser possible causes include
a high degree of symmetry, such ag-#arrel structure, or a large numberathelices.

Even if the algorithm is not limited by memory, some typesngdut data, such as a low-
resolution density map with insufficient shape or topolagfpimation about the protein,
can lead to incorrect matching results. To overcome thesalions, we allow the user to
manually assign matching constraints based on knowledpet lbotein structure.

Specifically, the user can designate the correspondenaebeta subset of helices and/or
sheets in the sequence graph and the density map graphnfidrisation is translated into
node attributes in the graph, reducing the branching faafttire search. The user interface
for adding constraints is described in Section 3.4.

Although the process of choosing constraints can be timswuaing, we note that it is

significantly faster than finding a complete correspondenasually. Our implementation

enables relatively fast iteration as constraints are adddademoved, with typical algorithm
execution times ranging from a few seconds to forty secomda desktop computer, as
shown in Table 4.2.
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(a) Annotated sequence of amino acid residues

(b) Density, skeleton and SSEs  (c) Optimal correspondence d) Offtimal after constraint (e) Actual correspondence

Figure 4.5: (a) The annotated sequence of amino acid residues of the prokéin. (b) The inputs to
our algortihm. (c) The minimum-cost correspondence coexbiny our method. (d) The minimum-cost
correspondence computed by our method, after the user hasraimed the helix labeled D. (e) The actual
correspondence, which is returned by our method as the @stift after the constraintin (d) has been applied.

1TIM

Figure 4.5 shows an example of the 1TIM protein found in clirckuscle. For this struc-
ture our implementation runs out of memory if no user comstsaare applied, even if
sheets are removed from the problem. After a user-specifindtiaint was added to the
helix marked as (D), the correct correspondence was foutttea®5th result in the candi-
date list. Although the ground truth has rank 25, the lardeesofE;, Es, andE; in Table
4.2 show that the composite accuracy of the top 35 corregymedresults is quite good.

In this example, the constraint was chosen by noting thdtersequence, most paths from
one helix to another pass through a sheet, with only one ¢éxcepThe case where two
helices are connected only by a loop should correspond tombénelices in the density
that are connected by a loop.

4.4 Summary of Results

The results for all 11 proteins are presented in Table 4.8wsty the number of user-
specified constraints used, the rank of the ground truth vdoasidering only the helix
correspondences, the rank of the ground truth considetirgf the SSEs, the execution
times, and the associatég, Es, andE, scores for the list of top 35 candidates.
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Protein User Helix only Helices and Strands Execution time (s)
Constraints| Rank  Ep Rank Eg(Strand only) E¢(Composite) | First match  Top 35 matcheg
1UF2 - 1 0.96 1 - 0.96 0.00 0.00
2ITG - 1 1.00 1 1.00 1.00 0.00 0.01
1IRK - 1 1.00| >35 0.76 0.92 0.65 0.82
1WAB - 11 0.89 11 1.00 0.91 0.65 1.14
1DAl 1 17 0.82 17 1.00 0.89 0.21 0.32
1BVP -/10* 1 1.00| >35 0.58 0.83 0.86 1.50
Rotavirus -114¢ 1 1.00| >35 0.19 0.62 5.25 6.83
3LCK - 7 095| >35 0.71 0.89 17.01 21.04
1TIM 1 25 0.91 25 1.00 0.93 11.60 15.41
Groel - 1 1.00| >35 0.90 0.95 0.07 0.11
RDV P8 6 12 0.96| >35 0.88 0.94 36.54 38.32

Table 4.2: The number of user constraints specified for each experirttentank andg, score when con-
sidering only thea-helix correspondence, the rank alBgscores when considering botlithelix as well as
B-strand correspondences, the combiBgdcores, and the execution times to find the first correspareden
and the list of the top 35 candidate$:or 1BVP and Rotavirus, the experiment was conducted byfifirdt
ing the helix correspondence using no constraints, anddbestraining all the helices to find thf2strand
correspondence.

We have presented three different ways to apply our methobke dor helix and sheet
correspondences together in an unsupervised way; solvddireelix correspondences,
then solve for sheet correspondences as a second stepyeif@othe correspondence in
an interactive way by incorporating domain knowledge it éalgorithm’s cost function.

The results in Table 4.2 show that these three approachdseaased to find the correat-
helix correspondence, and to a lesser extent, to find thedgftrsheet correspondence, for
several proteins of different sizes and shapes. The goddyqahithe results is indicated
by the low rank of the ground truth in the results, and by tlghhalues ok, for helices,
Es for strands, and for the overall correspondence.

4.5 Performance

The execution times listed in Table 4.2 show that our impletaigon is fast enough to be
used interactively, allowing the user to run the algorithammtimes, adding and removing
constraints or adjusting cost function parameters betwebsequent iterations. All tests
were performed on a desktop computer running 32-bit Wind$is

We noted above that our method requires more memory as thberuwh SSESs increases
or as the connectivity of the skeleton increases. We haverides some ways to work
around this limitation in order to build models of increaginlarge proteins.
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Chapter 5
Discussion

We have described a method of finding the correspondencesbetthe secondary struc-
tures in a protein sequence and the secondary structuredmteamediate-resolution pro-
tein density map. Our method builds on previous work fromgnaup which considered
only a-helices [1]; our main contribution is the inclusion @fsheets into the method.

We have implemented our method in C++ using Phython and Qh#user interface and
visualization, and we have described the features of ouring®face, which is part of the
Gorgon protein modeling system.

We have presented results showing that our method suctig$sfds a-helix andf-sheet
correspondence on a collection of real and simulated dega\sfe achieve better results for
helices than sheets. We showed that in some structures subbZbarrel, the inclusion
of sheets in the algorithm improves the quality of the hedisuits.

5.1 Limitations

Memory Due to memory limitations, our method cannot automaticative for cor-
respondences in structures with a large number of helicdssheets. In Chapter 4 we
presented two approaches for working around this issue.fildtepproach is a two-step
process in which the helix correspondence is found, thehéher correspondence is fixed
and the correspondence for the sheets is found. The secprubap is to use use our algo-
rithm in a semi-interactive fashion, with the user speci§yportions of the correspondence
and the algorithm solving for the rest.
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Skeleton Quality Our algorithm relies on a geometric skeleton to determingsitde
paths between SSEs, which means that the results geneyated method are highly de-
penedent on the quality of the skeleton. For skeletons wéhynibroken paths, we suggest
that the user refine the skeleton using the Grayscale Skétatmn method included in the
Gorgon system.

B-Sheet Marching Accuracy Our results showed that thff2sheet matching accuracy of
the algorithm is inferior to ther-helix matching accuracy. Improving the algorithm design
may be able to improve this to some extent. However some sfdiffierence is due to
the input to our algorithm: it is more difficult to accuratébcate sheets than helices in a
density map.

5.2 Future Work

B-Sheets and3-Strands In the cost function, each match between a sheet in the gensit
map and a strand in the sequence considers only the avenageted size of the sheet, and
does not include any information about the geometry of tleesbr the points at which the
path enters and exits the sheet. In proteins, strands tédochtgarallel paths across sheets
with entry and exit points on opposite sides of a sheet. Tkefoaction could be modified

to discourage non-parallel paths through sheets.

Loop Lengths We determine the lengths of loops by measuring the shoraistyetween
two structures across the skeleton. The true path betweemdaes may follow a much
longer path, particularly if the skeleton is dense with cartions between structures. This
suggests that our method might be improved by associatitigegich pair of structures a
range of possible path lengths, and modifying the cost fando that the matching cost is
low as long as the path lengths fall within this range.

Constraints The current implementation allows the user to specify qanss between
structures in the density map and the sequence. In addditimg, neighbor constraints
could be quite powerful. The user could specify that twodtres in the density map
should be matched to two neighboring structures along theesee.

36



References

[1] Sasakthi Abeysinghe, Tao Ju, Matthew L. Baker, and Wain CBhape modeling and
matching in identifying 3D protein structure€omputer-Aided Desigr0(6):708—
720, June 2008.

[2] Sasakthi S. Abeysinghe, Matthew Baker, Wah Chiu, andJiaoSegmentation-free
skeletonization of grayscale volumes for shape undersigndn Proc. IEEE Inter-
national Conference on Shape Modeling and Applications 3008 pages 63-71,
2008.

[3] Matthew L. Baker, Sasakthi S. Abeysinghe, Stephen ScRoks A. Coleman, Austin
Abrams, Michael P. Marsh, Corey F. Hryc, Troy Ruths, Wah Cand Tao Ju. Mod-
eling protein structure at near atomic resolutions withggor Journal of Structural
Biology, 174(2):360 — 373, 2011.

[4] Matthew L. Baker, Tao Ju, and Wah Chiu. Identification e€sndary structure ele-
ments in intermediate-resolution density mapsucture 15(1):7-19, January 2007.

[5] H. Bunke. Error correcting graph matching: On the infloef the underlying cost
function. IEEE Trans. Pattern Anal. Mach. IntelR1(9):917-922, 1999.

[6] H. Bunke and G. Allermann. Inexact graph matching foustural pattern recogni-
tion. Pattern Recognition Letterd:245-253, 1983.

[7] Horst Bunke and Bruno T. Messmer. Recent advances inhgregiching. IJPRA]
11(1):169-203, 1997.

[8] J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldrai: a protein structure
and structural feature prediction servducleic Acids Resear¢cB83:W72-W76, 2005.

[9] Wah Chiu, Matthew L. Baker, Wen Jiang, Matthew Dougherdpnd Michael F.
Schmid. Electron cryomicroscopy of biological machines@bnanometer resolu-
tion. Structure 13(3):363—372, March 2005.

[10] William J. Christmas, Josef Kittler, and Maria PetraBtructural matching in com-
puter vision using probabilistic relaxatiomEEE Trans. Pattern Anal. Mach. Intell.
17(8):749-764, 1995.

[11] Christian Cole, Jonathan D. Barber, and Geoffrey Jtdar The jpred 3 secondary
structure prediction serveNucleic Acids Researc86:W197-W201, May 2008.

37



[12] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirtyyed graph matching
in pattern recognition.International Journal of Pattern Recognition and Atrtificia
Intelligence 18(3):265—-298, 2004.

[13] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. dPernce evaluation of the
vf graph matching algorithm. linternational Conference on Image Analysis and
Processing1999.

[14] S. Dutta and H.M. Berman. Large macromolecular comgsdex the protein data
bank: a status reporStructure 13:381-388, 2005.

[15] J. Feng, M. Laumy, and M. Dhome. Inexact matching usiexgral networksPattern
Recognition in Practice IV: Multiple Paradigms, ComparetiStudies, and Hybrid
Systemspages 177-184, 1994.

[16] Research Collaboratory for Structural Bioinformatic RCSB Protein Data Bank
Statistics. http://www.rcsb.org/pdb/static.do?p=general_information/
pdb_statistics/index.html, 2011. [Online; accessed 18-Apr-2011].

[17] L. Herault, R. Horaud, F. Veillon, and J. J. Niez. Synmibaiage matching by simu-
lated annealing. I®Proc. British Machine Vision Conference (BMVC9pages 319—
324, 1990.

[18] Radu Horaud and Thomas Skordas. Stereo correspontieocgh feature grouping
and maximal cliques.IEEE Trans. Pattern Anal. Mach. Intell11(11):1168-1180,
1989.

[19] Wen Jiang, Matthew L. Baker, Steven J. Ludtke, and Waiu CBridging the infor-
mation gap: computational tools for intermediate resolustructure interpretation.
Journal of Molecular Biology308(5):1033 — 1044, 2001.

[20] David T. Jones. Protein secondary structure predictiased on position-specific
scoring matricesJournal of Molecular Biology292(2):195-202, 1999.

[21] Tao Ju, Matthew L. Baker, and Wah Chiu. Computing a fgroflskeletons of volu-
metric models for shape descriptid@omputer-Aided Desigr39(5):352—-360, 2007.

[22] Yifei Kong and Jianpeng Ma. A structural-informatiggpsoach for mining [beta]-
sheets: Locating sheets in intermediate-resolution demsips.Journal of Molecular
Biology, 332(2):399 — 413, September 2003.

[23] Yifei Kong, Xing Zhang, Timothy S. Baker, and JianpengaM A structural-
informatics approach for tracing [beta]-sheets: Buildpsgudo-c[alpha] traces for
[beta]-strands in intermediate-resolution density magsurnal of Molecular Biol-
ogy, 339(1):117 — 130, May 2004.

38



[24] B. T. Messmer and H. Bunke. A new algorithm for erroretaint subgraph isomor-
phism detection.|EEE Transactions on Pattern Analysis and Machine Intellige
20(5):493-504, 1998.

[25] N.J. Nilsson. Principles of Artificial Intelligence Morgan Kaufmann Publishers,
1980.

[26] L. Roberts, R. J. Davenport, E. Pennisi, and E. MarshAllhistory of the human
genome projectScience291(5507):1195, February 2001.

[27] A. Sanfeliu and K.S. Fu. A distance measure betweeibaté&d relational graphs for
pattern recognitionlEEE Trans. Systems, Man, and Cybernetics353—-363, 1983.

[28] L. G. Shapiro and R. M. Haralick. Structural descripg@and inexact matchintEEE
Trans. Pattern Anal. Mach. Inte]I3(5):504-519, 1981.

[29] W. H. Tsaiand K. S. Fu. Error-correcting isomorphisrhattributed relational graphs
for pattern recognition.IEEE Trans. Systems, Man, and Cybernet@s57-768,
1979.

[30] J. R. Ullmann. An algorithm for subgraph isomorphismACM 23(1):31-42, 1976.

[31] Yuan-Kai Wang, Kuo-Chin Fan, and Jorng-Tzong Horng.n&e-based search for
error-correcting graph isomorphisniEEE Transactions on Systems, Man, and Cy-
bernetics, Part B27(4):588-597, 1997.

[32] A.K.Wong, M. You, and A.C. Chan. An algorithm for grapptonal monomorphism.
IEEE Trans. Systems, Man, and Cybernet&¥3):628—636, 1990.

[33] Yinghao Wu, Mingzhi Chen, Mingyang Lu, Qinghua Wangdamanpeng Ma. Deter-
mining protein topology from skeletons of secondary strteet.Journal of Molecular
Biology, 350(3):571-586, 2005.

[34] Z. Hong Zhou. Towards atomic resolution structurakdetination by single-particle
cryo-electron microscopyCurr Opin Struct Bio) 18(2):218-228, 2008.

[35] Z. Hong Zhou, Matthew Dougherty, Joanita Jakana, Jieg Frazer J. Rixon, and
Wah Chiu. Seeing the herpesvirus capsid at 8&Aence288(5467):877-880, May
2000.

39



Vita

Stephen Schuh

Degrees B.A. Physics, Reed College, May 2001
M.S. Computer Science, Washington University, May 2011

Publications Matthew L. Baker, Sasakthi S. Abeysinghe, Stephen Schuss Ro
A. Coleman, Austin Abrams, Michael P. Marsh, Corey F. Hryc,
Troy Ruths, Wah Chiu, and Tao Ju. Modeling protein strucaire
near atomic resolutions with Gorgodournal of Structural Biol-
ogy, 174(2):360-373, 2011.

Nathan Jacobs, Stephen Schuh, Robert Pless, Compreseis®e Se
ing and Differential Image Motion EstimatiolEE International
Conference on Acoustics, Speech, and Signal ProcessiA$8e)
2010.

May 2011

40



Protein Structure from Cryo-EM Data, Schuh, M.S. 2011



	A Graph-Based Algorithm to Determine Protein Structure from Cryo-EM Data
	Recommended Citation

	thesis-main.dvi

