
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Theses and Dissertations (ETDs)

1-1-2011

A Graph-Based Algorithm to Determine Protein Structure from A Graph-Based Algorithm to Determine Protein Structure from

Cryo-EM Data Cryo-EM Data

Stephen Schuh
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation Recommended Citation
Schuh, Stephen, "A Graph-Based Algorithm to Determine Protein Structure from Cryo-EM Data" (2011). All
Theses and Dissertations (ETDs). 506.
https://openscholarship.wustl.edu/etd/506

This Thesis is brought to you for free and open access by Washington University Open Scholarship. It has been
accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/506?utm_source=openscholarship.wustl.edu%2Fetd%2F506&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Tao Ju, Chair

Kunal Agrawal
Robert Pless

A GRAPH-BASED ALGORITHM TO DETERMINE PROTEIN STRUCTURE FROM

CRYO-EM DATA

by

Stephen Schuh

A thesis presented to the School of Engineering
of Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

May 2011
Saint Louis, Missouri

ABSTRACT OF THE THESIS

A Graph-Based Algorithm to Determine Protein Structure from Cryo-EM Data

by

Stephen Schuh

Master of Science in Computer Science

Washington University in St. Louis, 2011

Research Advisor: Professor Tao Ju

Cryo-electron microscopy (cryo-EM) provides 3D density maps of proteins, but these maps

do not have sufficiently high resolution to directly yield atomic-scale models. Previous

work has shown that features known as secondary structures can be located in these density

maps. A second source of information about proteins is sequence analysis, which predicts

locations of secondary structures along the protein sequence but does not provide any infor-

mation about the 3D shape of the protein. This thesis presents a graph-based algorithm to

find the correspondence between the secondary structures inthe density map and sequence.

This provides an ordering of secondary structures in the 3D density map, which can be used

in building an atomic-scale model of the protein.

ii

Acknowledgments

I thank Tao for his contagious enthusiasm about computer graphics and for his support,
encouragement, and guidance in helping me to conceptualizeand complete this work.

I thank Sasakthi for all the work this thesis builds on and forhis patience and kindness in
helping me through this project.

I thank all my neighbors in the Media and Machines Lab for cheerful company and engag-
ing conversations.

And I thank Anne for all good things outside of computer science.

Stephen Schuh

Washington University in Saint Louis
May 2011

iii

Contents

Abstract . ii

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Overview . 2
1.2 Problem Statement . 2
1.3 Method . 3
1.4 Contributions . 5
1.5 Previous Work . 5

2 Methods . 7
2.1 Inputs: Density Map and Sequence .. . 7
2.2 Graph Representation of Density Map and Sequence 7

2.2.1 Protein Sequence Graph . 7
2.2.2 Density Volume Graph . 9

2.3 Graph Summary . 11
2.4 Constrained Graph Matching .. 12

2.4.1 Graph Matching . 12
2.4.2 Cost Functions . 13
2.4.3 An Optimal Best-First Search Algorithm 14
2.4.4 Best-First Search . 15

3 User Interface . 16
3.1 Loading Files . 16
3.2 Visualizing Input Data and Graphs 17
3.3 Computing Correspondences and Viewing Results 19
3.4 Adding Constraints . 20
3.5 Adjusting Parameters .22
3.6 Automation Using Settings Files 23

4 Results. 25
4.1 Setup . 25

iv

4.2 Evaluation Methods . 26
4.2.1 Rank of Ground Truth . 26
4.2.2 Composite of All Results . 27

4.3 Experiments . 28
4.3.1 Unsupervised Helix and Sheet Matching 28
4.3.2 Unsupervised Helix-Only Matching 30
4.3.3 Interactive Matching . 32

4.4 Summary of Results . 33
4.5 Performance . 34

5 Discussion. 35
5.1 Limitations . 35
5.2 Future Work . 36

References. 37

Vita . 40

v

List of Tables

3.1 Correspondence search inputs .. . 17
3.2 Visualization options .. 18
3.3 Algorithm parameters .23
3.4 Advanced algorithm parameters .. . 23

4.1 Data used to evaluate the accuracy of the SSE correspondence search 26
4.2 Evaluation of accuracy and performance 34

vi

List of Figures

1.1 SSE correspondence for generating pseudo-backbones 3

2.1 Protein sequence graph .8
2.2 Density volume graph . 9

3.1 User interface for specifying input files 17
3.2 User interface for visualization options 18
3.3 User interface showing the first result for 1IRK 20
3.4 User interface showing the fifth result for 1IRK 21
3.5 User interface for adding constraints 22
3.6 User interface for changing algorithm parameters 22

4.1 Correspondence result for the 1IRK protein 28
4.2 Correspondence result for the 1WAB protein 29
4.3 Correspondence result for Rotavirus 30
4.4 Correspondence result for the 1BVP protein 31
4.5 Correspondence result for the 1TIM protein 33

vii

Chapter 1

Introduction

Proteins are essential parts of all organisms and are the chief actors within the cell. The

nature of the interactions between proteins is determined in part by their 3D structure.

Protein structure determination is of great interest to biologists.

There are a variety of ways to determine the 3D structure of a protein. Many methods

take as input a 3D density map of the protein and produce as output an atomic model of

the protein backbone. The density map is a 3D array of measurements of density of the

structure at each location in space.

The three most common methods of obtaining density maps are x-ray diffraction, nuclear

magnetic resonance (NMR) spectroscopy, and cryo-electronmicroscopy (cryo-EM). Each

method has advantages and disadvantages: x-ray diffraction and NMR tend to yield higher-

resolution density maps, while cryo-EM allows observationof larger protein complexes and

enables measurement of samples in their natural environments. A survey of the structures

stored in the Protein Data Bank [14] as of the end of 2010 showsthat x-ray diffraction has

produced 87% of structures, NMR has produced 12%, and cryo-EM has produced fewer

than 0.5% [16].

Given a density map, how can a 3D model of the protein backbonebe created? If the input

density map has sufficiently high resolution to discern the shape of the protein backbone,

a relatively simple approach is to segment out the high-density backbone from the density

map.

But what if the resolution of the density map is not high enough to directly resolve the

backbone? This thesis presents a method of solving this problem by locating larger-scale

features in the density map and determinining how best to connect those larger-scale fea-

tures together to form an estimate of the protein backbone.

1

1.1 Overview

The state of the art in cryo-EM based single particle reconstruction [34] provides density

volumes at resolutions from four to ten Angstroms, and thus cannot be directly used to

determine the locations of amino acid residues.

However, as seen in Figure 1.1b, secondary structure elements are easily observed at these

resolutions due to their characteristic tubular and plate-like shapes. This has led to the

development of many manual [35] and automatic techniques such as SSEHunter [4], He-

lixHunter [19], SheetMinter [22] and SheetTracer [23], which use geometric skeletons,

template-based cross correlation and heuristics to locatetheobservedSSEs within the den-

sity volume. Figure 1.1c displays the results of one such method (SSEHunter). A survey

of methods for detecting secondary structure elements (SSEs) in cryo-EM density volumes

is provided by Chiu et al. [9].

With the advent of modern, large-scale DNA sequencing efforts such as the Human Genome

Project [26], obtaining the sequence of amino acid residuesof a protein has become a very

accurate and efficient task. Subsequently, techniques suchas PSIPred [20], JPred [11] (Fig-

ure 1.1a), Scratch [8] and many others have been developed toaccurately and efficiently

predictwhich amino acid residues in the sequence might form SSEs.

We present a method of bringing together knowledge about theobservedSSEs in the 3D

shape of a protein and thepredictedSSEs in its amino acid sequence. We show how this

enables the creation of an initial 3D shape of the protein backbone that can be refined by

later steps in a model-building pipeline. We present here anextension of previous work

from our group [1]; the main new contribution is the additionof β -sheets into the method.

Additional contributions include implementation improvements and user interface changes.

1.2 Problem Statement

The computational problem that we address is thecorrespondencebetween the SSEs pre-

dicted from the sequence, and the ones observed in the density volume. As illustrated in

Figure 1.1e, such a correspondence establishes a coarse 3D protein structure consisting of

a chain of helices and sheets. It is important to note that this correspondence may not be a

2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 HGQVDCSPGIWQLDCTHLEGKVILVAVHVASGYIEAEVIPAETGQETAYFLLKLAGRWPVKTVHTDNGSNFTSTTVKAACWWAGIKQEFGIPYNPQSQGV

101 IESMNKELKKIIGQVRDQAEHLKTAVQMAVFIHNHKRKGGIGGYSAGERIVDIIATDIQT
A B C

D E
a b c d

F
(a) Annotated sequence of amino acid residues

(b) Density volume (c) Secondary structure elements (d) Geometric skeleton (e) SSE Correspondence

Figure 1.1: The inputs to our method are (a) the protein sequence with locations ofα-helices (green) and
β -strands (blue) predicted using JPred [11]; (b) the 3D volume obtained by cryo-EM; (c) possible locations
of SSEs in the 3D volume detected using SSEHunter [4]; and (d)the geometric skeleton computed from the
density volume. (e) The correspondence between the SSEs in the sequence and the 3D volume, computed by
our method.

bijection. Due to noise in a typical density volume, an SSE detection algorithm may fail to

find the locations of all the SSEs within that volume and may also identify false SSEs.

The SSE correspondence problem has previously been studiedin the work of Wu et al.

[33] and in our earlier work [1]. Wu employed an exhaustive combinatorial search to find,

amongst all permutations of SSEs in the density volume, an ordering that best matches the

protein sequence. This brute-force algorithm has a factorial time complexity. According

to their experiments, this method is only practical for verysmall inputs, taking 1.5 hours

and 16 hours to find the correspondence of a 3-helix and 8-helix protein respectively. In

the first version of our work [1] we achieved much better performance (i.e. 5 seconds for a

20-helix protein) by formulating the correspondence problem as a subgraph isomorphism.

Because our previous method found correspondences forα-helices only, it could not be

used to generate accurate pseudo-backbones for proteins containingβ -sheets.

1.3 Method

The key idea behind our method is to represent the density mapand the sequence in a

common way, and then step by step build up a correspondence between these two repre-

sentations.

3

Our common representation is a graph, with nodes representing secondary structures and

edges representing connectivity between secondary structures. We build thesequence

graphby analyzing the sequence of amino acid residues, predicting positions of SSEs in

the sequence, and connecting them together to form a sparse and linear graph. Thedensity

map graphis constructed by analyzing the observed SSEs in the densityvolume, and by

using the geometric skeleton to identify their possible connectivity. Due to noise and the

lack of high resolution in cryo-EM densities, the geometricskeleton may contain many

alternate paths; therefore, this graph is often densely connected. Section 2.2 describes in

detail how each graph is constructed.

After constructing the two graphs, the next task is to find thebest correspondence between

them. In other words, we seek the best mapping of the protein sequence graph onto the

density map graph. The mapping must be robust to errors in thegraphs such as missing

SSEs or missing or extra connectivity between SSEs. With ourgraph formulation, this

can be recast as the constrained, error-correcting graph-matching problem which seeks the

best-matching simple paths along the two graphs.

To this problem we apply the best-first search algorithm, a popular method in graph match-

ing problems. As required by the best-first algorithm, we design an SSE attribute-based

cost function that assigns lower cost to more likely correspondences. This means that the

first results returned by the best-first search have the globally minimal costs [25]. Section

2.4 describes this search and associated cost functions in detail.

We apply our method to a collection of authentic and simulated cryo-EM test data and show

that it identifies the correct SSE correspondence with little or no user intervention for small

and medium size proteins. For example, Figure 1.1e shows thecorrespondence computed

by our method for the 2ITG protein of the Human Immunodeficiency Virus (HIV). Our

approach improves the efficiency of an otherwise exhaustivesearch [33] by several orders

of magnitude, obtaining the correspondence of proteins with more than 25 SSEs in under

40 seconds. In addition, the availability of the skeleton allows us to plot a path on the

skeleton that connects successive SSEs, suggesting a possible pseudo-backbone of amino

acid residues.

4

1.4 Contributions

In summary, we present the following contributions:

• We introduce a common representation of protein sequences and density volumes as

attributed relational graphs, which is suitable for structural matching.

• We formulate a constrained error-correcting matching problem between attributed

graphs, which differs from previously known exact and inexact matching problems.

In addition we develop an optimal solution based on a best-first search.

• We present a novel and efficient computational approach for solving an open problem

in structural biology, achieving orders of magnitude speedup over the best available

method and making model building from cryo-EM volumes much easier for medium-

size proteins.

1.5 Previous Work

Graph matching In pattern recognition and machine vision, graphs have longbeen used

to represent object models such that object recognition reduces to graph matching. Here

we briefly review graph matching problems and methodologies; more information about

the wide variety of matching techniques is provided by the surveys of Bunke and Messmer

[7] and Conte et al. [12].

In general, graph matching problems can be divided into exact matching and inexact match-

ing. Exact matching aims at identifying a correspondence between a model graph and (a

part of) an input graph, which can be solved using sub-graph isomorphism [30, 13] or graph

monomorphism [32]. Because real-world data is seldom perfect and noise-free, inexact or

error-correcting matching is desired in a large number of applications. As in the work of

Bunke [5], error-correcting matching can be formulated as finding the bijection between

two subgraphs from the model and input graph that minimizes some error function. This

error typically consists of the cost of deforming the original graphs to their subgraphs and

the error of matching the attributes of corresponding elements in the two subgraphs. Note

that in most applications, the topology of the optimally matching subgraphs (e.g., whether

it is connected, a tree, a path, etc.) is generally unknown. Such matching is said to be

un-constrainedsince the minimization of the error function is the only goal.

5

The most popular algorithms for error-correcting graph matching are based on best-first

and A* searches [25]. These algorithms are optimal in the sense that they are guaranteed to

find the global optimal match. However, since the graph matching problem is NP-complete,

the computational cost can be prohibitive for large graphs.To this end, various types of

heuristic functions have been developed to prune the searchspace [29, 28, 6, 27, 32]. Other

methods such as simulated annealing [17], neural networks [15], probabilistic relaxation

[10], genetic algorithms [31], and graph decomposition [24] can also be used to reduce

the computational cost. All these optimization methods aredeveloped for un-constrained

matching where the matched subgraphs can assume any topology.

For our problem, we know that the sequence is always a linear chain of connected sec-

ondary structure elements. We can use this observation to develop a specialized form of

subgraph isomorphism that benefits from this reduced searchspace.

6

Chapter 2

Methods

2.1 Inputs: Density Map and Sequence

Our method takes inputs from two sources. The first is a cryo-EM density map with pre-

dictedα-helix andβ -sheet positions provided by SSEHunter and SSEBuilder. Thesecond

is a predicted amino acid sequence with predictedα-helix andβ -strand locations.

2.2 Graph Representation of Density Map and Sequence

We begin by representing the density map and the sequence as two graphs. In general,

nodes in these graphs represent secondary structures and edges demonstrate possible con-

nectivity between secondary structures. Figures 2.1 and 2.2 show examples of these graphs

for the 2ITG protein of the HIV virus. The sections that follow describe our method of

constructing these graphs.

2.2.1 Protein Sequence Graph

We represent theα-helices andβ -strands in the primary sequence using a collection of

vertices and edges in the protein sequence graph. We represent each helix by two vertices

connected by an edge, and we represent each strand as a singlevertex. (This choice of two

vertices per helix and one per strand is motivated by the density map graph, described in

Section 2.2.2 below.) Each vertex has two associated parameters:αS1 represents the vertex

type and is equal toH or S for helix or strand, respecitvely;αS2 represents the weight of

7

HVASGYIEAEVIPAETGQETAYFLLKLAGRWPVKTVHTDNGSNFTSTTVKAACWWAGIKQEFG

(a) Annotated sequence��������� ����	�
��� ����
���
� 	��� ���� ���� ���� ���������� ����� ���
� ����� ����������� ���
� ������������
������

�����
(b) Protein sequence augmented with extra edges to tolerateone missing helix (m= 1, n = 0)

��������� ���� � !�"� #�"� $���!� �"� %�"� &�"� '�"� ���(����#� ���#� ���!� ����� ������"��#� �"�$� �"����������
������

������ ������
���'�

����&�
����&�

���� �
(c) Protein sequence augmented with extra edges to tolerateone missing helix and one missing sheet (m= 1, n = 1)

Figure 2.1: (a) The sequence of amino acid residues making up the 2ITG protein of the HIV virus and (b)
the corresponding graphs designed to tolerate up to 1 missing sheet or (c) one missing helix and one missing
sheet, where the vertices and edges have been colored by their attributes. Portions of the sequence have been
omitted for simplicity; the full sequence is shown in Figure1.1a.

the vertex. Strand vertices have weight equal to the number of amino acids in the strand;

helix vertices have no weight.

We encode the lengths and connectivity of helices and strands using graph edges. We add

edges to connect successive vertices in a linear fashion, forming a linear chain to represent

the sequence. If an edge connects the two nodes representinga helix, that edge represents

the helix body. All other edges represent the connections between neighboring helices and

strands along the sequence. Each edge has two associated parameters:βS1 is the edge type

and is equal toH for helix edges andL otherwise;βS2 is the edge weight, equal to the

number of amino acids in the portion of the sequence represented by that edge.

This sequence graph will later be compared to a second graph representing the density

map. We next modify thesequencegraph to accommodate possible deficiencies in the

density map, as follows. To allow for a missingα-helix in the density map, we add extra

edges bypassing eachα-helix in the sequence. Each of these edges has typeL and has a

weight equal to the number of amino acids it bypasses. These edges create a path from

beginning to end of the sequence bypassing one helix. Likewise, to allow for a missing

8

)*+,-.
/*0. 1*0.

2*0.
3*0.

4*0. -*0.*0,56. *0,55.*0,5).
*7,35.*7,14. *7,52.

*7,4.*7,56.*7,16.
*7,3-.

*7,3-.*7,26. *7,1).
*7,8.

*7,8. 6*9.

5*:.
(a) Volume, skeleton and SSEs (b) Density volume graph

Figure 2.2: (a) The density volume, skeleton, and detected SSEs, and (b)the corresponding graph, where
the two terminal vertices 1 and 9 are connected to every othervertex via loop edges. Three helices have been
omitted for simplicity; the full graph is shown in Figure 1.1d.

β -sheet in the density map, we add an extra edge bypassing eachβ -strand. Each of these

bypass edges has typeL and weight equal to the number of amino acids it bypasses. After

these additional edges are added, there is no longer a singlepath from the beginning to

the end of the sequence graph; each possible path representsthe complete sequence with

zero or more missing helices or strands. In our implementation, the user specifies how

many helices and sheets may be missing in the density map, andbased on this input, an

appropriate number of extra loops are added to the sequence graph.

Figure 2.1b shows the sequence graph including extra loops to bypass one helix, and Figure

2.1c shows a graph with extra loops to bypass one helix or one strand.

2.2.2 Density Volume Graph

As in the sequence graph, the volume graphC consists of vertices and edges representing

the secondary structures and the connections between them.Eachα-helix is represented

by two vertices connected by an edge, and eachβ -sheet is represented by a single vertex.

Each helix is represented by two vertices in order to encode the entry and exit points of

the protein sequence as it passes through the helix. By contrast, each sheet is represented

by a single vertex because one sheet corresponds to zero or more strands in the sequence,

9

and the number of strands per sheet cannot be known when the density volume graph is

constructed. Each vertex has two parameters.αC1 represents the vertex type, which isH

for a helix vertex andS for a sheet vertex.αC2 represents the vertex weight. Sheet nodes

have weight equal to the expected strand length of that sheet, which is estimated based on

the size of the sheet. Helix nodes have no weight.

We encode the connectivity between helices and sheets with graph edges. As in the se-

quence graph, each edge has a typeβC1, with H for helix edges andL for loop edges; a

weightβC2 representing the number of amino acids represented by that edge.

Like the sequence graph, the density map graph has one edge connecting the two vertices

that represent each helix. This edge has typeH and weight equal to the estimated number

of amino acids in that helix, computed based on the Euclideandistance between helix

endpoints.

Unlike the sequence, the density map does not explicitly provide the needed connectivity

between helices and sheets. To estimate the connectivity, we observe that secondary struc-

tures in the density map are likely to be connected in 3D through regions of high density in

the map. We then seek a representation that depicts the topology of such high-density re-

gions. To this end, we extract a morphologicalskeletonof the density using a combination

of erosion-based binary [21] and grayscale [2] skeletonization techniques. Such skeletons

can be robustly generated even from noisy surfaces while preserving the solid topology; an

example is shown in Figure 2.2a.

Given the skeleton, we add an edge between every two verticesthat are connected by a path

along the skeleton, as long as that path does not pass througha helix. These edges have

typeL and weight equal to the estimated number of amino acids alongthat path, computed

based on the shortest-path distance along the skeleton.

We observe that due to noise in the input density map, the skeleton sometimes does not

capture all the necessary connectivity among structures. For this reason we additionally

add edges between any nodes that are within some user-specified distance of each other;

if the skeleton captures the true connectivity this distance may be small; if the skeleton is

sparse this threshold must be large. Edges added in this way have typeL and weight equal

to the straight-line distance between nodes, expressed in units of number of amino acids.

We now highlight a key difference between our sequence graphand our density map, the

representation ofβ -sheets. In the density graph one node represents an entireβ -sheet,

10

whereas the sequence graph contains one node perβ -strand. Since one sheet contains

many strands, there will necessarily be a one-to-many correspondence between sheet nodes

in the density map graph and strand nodes in the sequence graph. To accommodate this we

add self-loops to the density map graph at every sheet node. These edges have typeL and

weight equal to a user-specified number of amino acids, typically set to 5.

Finally we augment the density map by adding two terminal vertices of typesB andE.

These vertices are virtual since we cannot predict the physical locations of the sequence

end points based on the input density. We complete the graph by adding a loop edge from

each terminal vertex to every other vertex, with typeL and no weight.

Figure 2.1b shows a density map graph computed by our method.

2.3 Graph Summary

In summary, we build two graphs, one representing the sequence and the other representing

the density map. The graphs consist of vertices and edges, each having types and weights:

• Vertices:

– Helix terminus: A helix terminus vertex has typeH and no weight.

– Strand: A strand node has typeSand weight equal to the number of amino acids

in the strand.

– Sheet: A sheet node has typeSand weight equal to the expected strand length

in the sheet, estimated based on the sheet size.

– Terminal: The nodes representing the beginning and end of the sequence have

typesB andE, respectively, and no weight.

• Edges:

– Helix edge: A helix edge has typeH and weight equal to the number of amino

acids in the helix.

– Loop edge: A loop edge has typeL and weight equal to the number of amino

acids in the loop, computed by traversing the sequence or estimated based on

the shortest distance between nodes along the skeleton.

11

2.4 Constrained Graph Matching

After building the graphs described in the previous sections, the problem of finding a good

correspondence between a density map and a sequence can be recast as the problem of

finding a good correspondences between the two graphs. We next define the graph match-

ing problem, describe what we mean by a good correspondence,and present our method of

finding such a correspondence.

2.4.1 Graph Matching

Given two graphs representing the secondary structure elements (helices and strands/sheets)

in the sequence and in the volume, we show that finding the correspondence between the

two sets of structures reduces to a constrained graph matching problem. We begin by defin-

ing a chain:

A chain of a graphG is a sequence of nodes{v1, . . . ,vn} ⊆ VG that form a path inG. A

chain isorderedif v1 = 1,vn = |VG|, andvi < vi+1 for all i ∈ [1,n−1]. A chain issimpleif

vi 6= v j for all i, j ∈ [1,n−1].

For example, an ordered chain in the sequence graph consistsof a sequence of nodes and

edges depicting a linked sequence of helices and strands. A correspondence between struc-

tures in the sequence and the density map is therefore a bijection between an ordered,

simple chain in the sequence graph and a chain in the density map graph. Note that the

definition of a chain allows apartial correspondence between a subset of the structures in

the sequence and the volume. The correspondence problem canbe defined generally for

any pair of attributed relational graphs:

Correspondence Problem Let S,C be two ARGs. The correspondence problem is to

find an ordered, simple chain{p1, . . . , pn} ⊆VS and chain{q1, . . . ,qn} ⊆VC that minimize

the matching cost:
n

∑
i=1

cv(pi ,qi)+
n−1

∑
i=1

ce(pi , pi+1,qi ,qi+1) (2.1)

wherecv,ce are any given functions evaluating the cost of matching nodepi with qi or edge

{pi , pi+1} with {qi ,qi+1}.

12

Compared to graph matching problems such as exact graph (or subgraph) isomorphisms,

inexact graph matching, and maximum common subgraph problems [18], the correspon-

dence problem described here is unique in that it seeks best-matching subgraphs from two

graphs that have a particular shape. Given such constraints, previous graph matching algo-

rithms that are guided only by error-minimization can not bedirectly applied.

2.4.2 Cost Functions

We next explain our choice for the two cost functionscv,ce in Equation 2.1 when matching

the sequence graph and the volume graph. Note that the algorithm we present in the next

section works for any non-negative cost function.

The two cost functions measure the similarity of the attributes associated with a pair of

vertices or a pair of edges. The vertex cost function has two purposes: it ensures that two

matched vertices are of the same type, and for a strand-sheetvertex pair, it computes the

difference between the length of the strand and the expectedstrand length for that sheet.

The vertex cost function is defined as:

cv(x,y) =











|αS2 −αC2|, if αS1(x) = αC1(y) = ‘S’

0, if αS1(x) = αC1(y) 6= ‘S’

∞, otherwise

(2.2)

The edge cost function enforces type matching and computes the length difference between

two helix edges or two loop edges, and is defined as:

ce(x,y,u,v) =































|βS2(x,y)−βC2(u,v)|, if βS1(x,y) = βC1(u,v),

andy = x+1.

|βS2(x,y)−βC2(u,v)|+ γS(x,y), if βS1(x,y) = βC1(u,v),

andy > x+1.

∞, otherwise.

(2.3)

Here, theγS term penalizes missing helices and sheets in the volume graph and is set to be

a weighted sum of the length of helices and strands bypassed by a link edge. For a link

13

edge in the protein sequence connecting nodesx andy, we compute the penalty as:

γS(x,y) = ωh ∑
x < i < y−1, and

βS1(i, i +1) = ‘H’

βS2(i, i +1) + ωs ∑
x < i < y, and

αS1(i) = ‘S’

αS2(i) (2.4)

whereωh andωs are user-specified weights that adjust the influence of missing helices and

missing strands in this penalty term.

2.4.3 An Optimal Best-First Search Algorithm

In this section, we present a best-first search algorithm forsolving the correspondence

problem defined above. Our method extends the tree-search method commonly applied

to unconstrained error-correcting graph matching problems, and is guaranteed to find the

optimal match.

To find a match between two graphs, a tree-search algorithm starts out from an initial,

incomplete match and incrementally builds more complete matches. To find matching

chains in graphsS,C, we first consider a partial match as a sequence of node-pairs

Mk = {{p1,q1}, . . . ,{pk,qk}}

where{p1, . . . , pk} and{q1, . . . ,qk} are the initial portion of some ordered, simple chain

in S and some chain inC. Based on the definition of chains and our matching goal of

minimizing cost functions, elements ofMk must satisfy the following requirements:

• Vertex requirement: For all i ∈ [1,k]:

p1 = 1, pi ∈VS, qi ∈VC, and cv(pi ,qi) 6= ∞,

and for all j ∈ [1,k], i 6= j, αC1(j) 6= ‘S’:

qi 6= q j .

In other words, the only vertices that may repeat inMk are sheet vertices in the

volume graph, and vertices in each pair must be of the same type.

14

• Edge requirement: For all i ∈ [1,k−1]:

pi < pi+1, {pi , pi+1} ∈ ES, {qi,qi+1} ∈ EC, and ce(pi , pi+1,qi,qi+1) 6= ∞.

In other words,{p1, . . . , pk} must form an ordered chain, and the two edges connect-

ing the two nodes in neighboring pairs inMk must be of a same type.

Starting with an empty matchM0 = /0, the search algorithm incrementally builds longer

matching chains. Specifically, we define anexpansionof a partial matchMk as a new

partial matchMk+1 = Mk∪{{pk+1,qk+1}} such that the added nodespk+1,qk+1 satisfy the

node requirement and the added edges{pk, pk+1},{qk,qk+1} (for k > 0) satisfy the edge

requirement. Note that usually aMk can be expanded into multipleMk+1. A matchMk is

complete(i.e., no more expansion can be done) ifpk = |VS|.

Observe that the search procedure essentially builds a treestructure withM0 at the root of

the tree, expanded partial matchesMk at thekth level of the tree, and complete matches at

the tree leaves. Our goal is to find the complete match that minimizes the matching error

defined by Equation 2.1.

2.4.4 Best-First Search

To find the optimal match without performing an exhaustive tree search, we adopt the best-

first search algorithm, which prioritizes the expansion of incomplete matches using the

cost function. The best-first search algorithm works by maintaining all un-expanded partial

matches in a priority queue and only expanding the partial match with the best (smallest)

cost function value. Because the lowest-cost node is alwaysexpanded at every step, the

first complete match is guaranteed to have the lowest cost of all possible matches. In our

implementation we continue expanding in the best-first sense after the first complete match

is found. The next complete match is guaranteed to have the second-lowest cost, and so on.

15

Chapter 3

User Interface

The algorithm desribed in Chapter 2 has been implemented in C++ and a user interface

has been implemented using Python and Qt. This is included inthe Gorgon project [3].

The following sections highlight features of the user interface by walking through the steps

required to run the algorithm on the 1IRK protein.

The correspondence search is launched from Gorgon by selecting “Find SSE Correspon-

dences...” from the Secondary Structure Element section ofthe Actions menu. This launches

a dock item containing the user interface for the algorithm.The UI contains five tabs that

correspond to the steps of using the algorithm. The leftmosttab contains prompts for the

input files needed by the algorithm. A screenshot of the data sources tab is provided in

Figure 3.1.

3.1 Loading Files

To specify input files for the algorithm, the user clicks on the appropriate button in the

data sources tab, shown in Figure 3.1. The four input files required by the algorithm are

described in Table 3.1. The file input tab also allows the userto specify files via a Settings

file, which is described in detail in Section 3.6.

As the user specifies the filenames for the input data, the skeleton,α-helices, andβ -sheets

are rendered in the main Gorgon pane. The skeleton is coloredred by default, helices are

gray, and sheets are green.

16

Figure 3.1: User interface for specifying input files

Input type Allowed file formats Description

Cryo-EM Skeleton Volume (.off or .mrc) or
Mesh (.atom)

A skeleton derived from a CryoEM density map, consisting of 3D
curves representing loops andα-helices and 2D surfaces represent-
ing β -sheets. A skeleton would typically have been created earlier
in the model-building process as part of the SSE Hunter algorithm.

Sequence Sequence with SSE pre-
dictions (.seq) or full
atomic model (.pdb)

A list of the amino acids of the structure with predicted locations
of α-helices andβ -sheets

3D Helix Locations VRML file (.vrml, .wrl) or
SSE Hunter output (.sse)

Locations and sizes ofα-helices in 3D density map, typically pro-
vided by the SSE Hunter algorithm

3D Sheet Locations VRML file (.vrml, .wrl) or
SSE Hunter output (.sse)

Collections of triangles representingβ -sheets in 3D density map,
typically provided by the SSE Hunter algorithm

Table 3.1: Input files required for the correspondence search algorithm

3.2 Visualizing Input Data and Graphs

After all the input files have been specified, the algorithm creates graphs representing the

density map and the sequence and the Visualization tab is selected. Figure 3.2 shows the

rendered skeleton,α-helices, andβ -sheets along with the Visualization controls.

The Visualization pane allows the user to hide or show the skeleton, helices, and sheets.

The available options are described in Table 3.2.

At this point it is helpful to check that theβ -sheets from the SSEHunter algorithm were

correctly mapped onto the skeleton. This can be done by enabling “Show Skeleton Sheets”

17

Figure 3.2: User interface for visualization options

Visualization Option Description

Show Skeleton Show or hide the skeleton.
Show Helices Show or hide theα-helices.
Show SSEHunter Sheets Show or hide theβ -sheets provided as input to the algorithm.
Show Skeleton Sheets Show or hide theβ -sheets used by the matching algorithm. These are surfaces on the

skeleton that are within a user-specified distance of an input β -sheet.
Show Sheet Corners Show or hide the boundaries whereβ -sheets meet the skeleton curves.
Show All Loops Show or hide the edges in the graph connecting one secondary structure to another.

Table 3.2: Visualization options for the correspondence search

and visually comparing the yellow sheets on the skeleton to the green sheets from SSE-

Hunter. If the skeleton sheets are much smaller or larger than the SSEHunter sheets, the

user may decide to generate a new skeleton with sheets of the appropriate size.

It is also useful to examine the connectivity of the density map graph. The loops in the

graph can be visualized by enabling “Show All Loops” and disabling “Show Skeleton”.

If there are very few loops (in other words, if there are few edges between graph nodes),

the true connectivity of the structure may not be represented by the graph. To correct this,

the user can create a new skeleton with a lower density threshold, refine the skeleton using

the grayscale skeletonization method, or add Euclidean edges (see Section 3.5). If there

are very many loops (in other words, if the graph is fully connected) the correspondence

18

algorithm may run out of memory searching for the best correspondence. The number of

loops can be reduced by creating a new skeleton with a higher density threshold.

The next step after visualizing the graphs is to specify the parameters for the algorithm and

run the correspondence search.

3.3 Computing Correspondences and Viewing Results

The correspondence search relies on several parameters that determine graph weights and

cost funtion properties. The correspondence algorithm canbe run with default values for

all these parameters by clicking the OK button. If the algorithm succeeds, the Results tab

is selected and the lowest-cost result is rendered, as shownon the left side of Figure 3.3.

The rendering shows a colored path from beginning to end of the sequence, with the first

helix colored blue and subsequent helices colored in blue-green, green, and yellow along

the sequence. Sheets are colored dark yellow, orange, and red. Paths between helices and

sheets are colored in a gradient so that the complete path hassmooth color transitions from

beginning to end. Numbers rendered in white near helices andsheets indicate the ordering

of secondary structures along the sequence.

The sequence information is displayed in the table on the right side of Figure 3.3. The first

column shows theα-helices andβ -sheets in the sequence and the second column shows the

corresponding structures in the density map. The percentage in parentheses in the second

column is the probability of that helix-to-helix or strand-to-sheet pairing occurring in the

top 35 results. If the percentage is 100%, this pairing appears in all 35 results returned

by the algorithm; if around 50% it appears in roughly half of the results; if close to 0%,

it appears in few. We will show in Chapter 4 that pairings withhigh percentages tend to

correspond to the ground truth. Therefore, the user can lookfor high percentages when

trying to select a good result among the 35 results of the algorithm.

At the top of the window is a pull-down menu that allows the user to switch between the

lowest-cost correspondence (selected by default) and any of the other correspondences in

the top 35, ranked by matching score. When the user selects a different correspondence,

the selected correspondence is rendered in the left pane andits sequence information is

shown on the right. Figure 3.4 shows a different search result. Comparing to 3.3, note the

19

Figure 3.3: User interface showing the lowest-cost correspondence results for 1IRK

different path along the sequence, the different coloring of the rendered helices and sheets,

and the different list of correspondences in the table on theright.

If the user is satisfied with one of the top 35 results, the workis done. The selected corre-

spondence can be used as an input to further steps of the modeling pipeline in Gorgon.

If the user is partially satsified with one of the top 35 results, it is possible to constrain

part of the result and re-run the search to fill in the remaining parts of the correspondence.

Section 3.4 describes the process of adding and removing constraints.

If the user is not satisfied with any of the top 35 results, it may be necessary to change some

of the algorithm’s parameters and re-run the correspondence search. Section 3.5 describes

all the parameters.

3.4 Adding Constraints

A constraint is a fixed mapping between a secondary structure(α-helix or β -sheet) in the

density map and a secondary structure (α-helix or β -strand) in the sequence. Constraints

allow the user to include domain knowledge into the search process; for example, if the

20

Figure 3.4: User interface showing the fifth-lowest-cost correspondence results for 1IRK

user knows the correspondence between part of the sequence and part of the density map, it

is possible to constrain just the known part and use the algorithm to find the correspondence

for the rest of the sequence.

Constraints can also be used to reduce the computational complexity of finding a corre-

spondence. For example, if a structure has many helices and sheets the algorithm may run

out of memory, in which case a memory error is reported to the user along with a sugges-

tion to add constraints. In this case the user can use domain knowledge to match a subset

of the helices or sheets, specify those matches as constraints, and run the algorithm again

to find the best correspondence of the unconstrained structures. Another approach for large

input data sets is to first run the algorithm onα-helices only, find a good correspondence,

constrain all the helices, and then use the algorithm to fill in theβ -sheet correspondences.

The user interface provides three ways to add a constraint. To constrain a matching found

by the correspondence algorithm, the user checks the constraint box in the appropriate row

in the results list. Another way to add a constraint is to right-click an item in the second row

of the results list. This raises a menu that allows the user toselect one of the helices in the

density map as a constraint. The final way to add a constraint is to right-click a structure in

21

(a) Check a constraint box in the table (b) Right-click on a helix or strand in the table (c) Right-click on a rendered helixor sheet

Figure 3.5: User interface for adding constraints

(a) Settings tab (b) Advanced settings tab

Figure 3.6: User interface for changing algorithm parameters

the rendering. This raises a menu that allows the user to select one of the structures in the

sequence. The three methods of adding constraints are shownin Figure 3.5.

After adding a constraint, the correspondence algorithm can be run again by clicking the

OK button.

3.5 Adjusting Parameters

The parameters for the correspondence algorithm are located on two tabs, “Settings” and

“Advanced Settings”. Screenshots of these tabs are provided in Figure 3.6, and the param-

eters are described in Tables 3.3 and 3.4.

22

Parameter Description

Euclidean to PDB Distance Ratio Show or hide the edges in the graph connecting one secondary structure to another.
Cost Function The sizes of helices, loops, and sheets are compared in the cost function using either

the absolute difference, the relative difference, or the squared difference.
Loop Importance The relative weight of the loop matching cost in the cost function
Euclidean Loop Penalty The additional penalty incurred when a Euclidean edge is included in a result. Higher

penalty discourages the use of Euclidean edges.
Helix Importance The relative weight of the helix matching cost in the cost function.
Missing Helix Penalty, Fixed The fixed penalty incurred when a helix is skipped.
Missing Helix Penalty, Scaled The length-dependent penalty incurred when a helix is skipped.
Start or End Missing Helix Penalty The extra penalty incurred when a helix at the beginning or end of the sequence is

skipped.
Include Sheets Determines whether or not sheets are included in the densitymap graph
Sheet Importance The relative weight of the sheet-strand matching cost in thecost function.
Missing Sheet Penalty, Fixed The fixed penalty incurred when a strand is skipped.
Missing Sheet Penalty, Scaled The length-dependent penalty incurred when a strand is skipped.

Table 3.3: Algorithm parameters available on the Settings tab

Parameter Description

Border Margin Threshold Used in building the density map graph. Due to skeleton errors, some loops may not
intersect a VRML helix cylinder at the cylinder cap. This threshold allows paths to
intersect a helix on the helix side, within some distance of the cap.

Max Euclidean Loop Distance Used in building the density map graph. If two secondary structures are within this
distance of each other, a loop is added between these two nodes even if they are not
connected along the skeleton.

Number of Missing Helices The number of allowed missing helices in the search.
Minimum Sheet Size Used in building the density map graph. Skeleton surfaces smaller than this threshold

are not treated as sheets in the graph.
Maximum Sheet Distance Used in building the density map graph. Skeleton surfaces farther than this distance

from VRML sheets are not treated as sheets in the graph.
Sheet Self-Loop Length Used in building the density map graph. A constant representing the length of a loop

in the graph from one sheet back to itself.
Sheet Merging Threshold Used in building the density map graph. Skeleton sheets closer together than this

distance are treated as a single sheet.
Number of Missing Sheets The number of allowed missing strands in the search.
Include Strands Used in building the graph. Determines whether or not strands are included in the

sequence graph.
Rebuild Graph Rebuild both graphs. This is automatically done whenever the user changes a param-

eter that affects graph construction.

Table 3.4: Algorithm parameters available on the Advanced Settings tab

3.6 Automation Using Settings Files

The previous sections describe how to load data, add constraints, and set algorithm pa-

rameters using the user interface. Another way to provide the data filenames, constraints,

and parameters is by storing them in a text file called a Settings file. A valid Settings file

must contain minimally the names of input files and can optionally include constraints and

algorithm parameters.

23

If a user repeatedly runs the same correspondence search on one data set, the use of a

Settings file can help a user prevent tedious re-entry of the same filenames and parameters

for each search. Settings files can also be saved by the user for later use.

The Settings file is a text file with each row representing a filename, a constraint, or a

parameter value.

24

Chapter 4

Results

In this chapter we evaluate the performance of our method on various cryo-EM data sets

for which the ground truth structure is known. We provide results showing that the ground

truth structure is often returned as one of the top 35 resultsof our method, and that in many

cases it is the top result. We further show that a simple voting scheme based on the top

35 results gives an accurate estimate of the protein structure, even for data sets for which

the ground truth is not among the 35 best results. We also present cryo-EM data sets for

which our current implementation cannot provide any results due to memory limits, and

we describe methods of working around this limitation.

4.1 Setup

We present results for eleven cryo-EM volumes at 4Å-10Å resolution, nine of which are

simulated from atomic models obtained from the Protein DataBank [14] and two which

are authentic cryo-EM reconstructions (RDV P8 at 6.8Å, GroEL-Apical domain at 4.2̊A1).

For each structure, our method requires a geometric skeleton (created from a density map),

locations and sizes ofα-helices andβ -sheets on the skeleton, and knowledge of the posi-

tions and lengths ofα-helices andβ -strands in the protein sequence. In our experiments

the skeleton is created using the methods of Ju et al. [21] andAbeysinghe et al. [2]. Helices

and sheets are found in the density map using SSEHunter [4]. Information about the protein

sequence is taken from the Protein Data Bank. Table 4.1 liststhe resolution of each input

density map, the numbers of helices and sheets in each map, and the numbers of helices

and strands in each sequence.

1EMDB numbers for these authentic reconstructions are 1060 (RDV P8) and 5001 (GroEL)

25

Protein Volume Size Sequence Density Map
(d3) Helix count Strand count Sheet count Missing helices Missing sheets

1UF2 96 4 - - - -
2ITG 64 6 4 1 - -
1IRK 96 9 9 3 1 1
1WAB 64 9 5 1 2 -
1DAI 64 9 9 3 - 2
1BVP 128 10 14 3 - -
Rotavirus 96 14 16 2 5 2
3LCK 64 12 7 2 5 -
1TIM 96 12 8 1 3 -
GroEL (Apical Domain) 100 5 8 2 - -
RDV P8 96 14 8 3 2 1

Table 4.1: Data used to evaluate our method for finding the correspondence between SSEs.

A note about algorithm parameters: The parameters used by our method are detailed

in Section 3.5. In all experiments described here, the missing helix and sheet penalty terms

in Equation 2.4 are set toωh = 5,ωs = 5. In our most noisy data set (RDV P8), a Euclidean

distance threshold ofε = 10Å was used to create extra edges in the volume graph to allow

for missing connectivity in the geometric skeleton.

4.2 Evaluation Methods

Because we anticipate that our method does not always find thecorrect correspondence as

its first result, we compute a list of candidate correspondences between the SSEs in the

sequence graph and the density map graph, ranked by their matching costs. This can be

done easily in the best-first search framework by terminating the search after a number of

complete matches (typically 35) have been found.

We evaluate the quality of the 35 results returned by our method by comparing them to a

manual labeling of the SSEs in the density volume based on theknown atomic structure

(for simulated data) or a structural homologue (for authentic data). We use two approaches

to compare our method’s results to the ground truth, as described in the following sections.

4.2.1 Rank of Ground Truth

Intuitively, if our method returns the ground truth as its first result, the method works well.

The first evaluation method is to compare the ground truth to each of the results returned

26

by our method, searching for a result that exactly matches the ground truth. The rank of

the correct result is a measure of the quality of the algorithm.

This evaluation method is meaningful only if the ground truth is among the top results of

the algorithm. This method does not provide a sense of the overall quality of all the results.

4.2.2 Composite of All Results

Intuitively, if our method returns a set of possible correspondences which are very similar

to each other, and if these correspondences are similar to the ground truth, our method

works well. The second evaluation method uses a simple voting scheme to combine all

the results returned by our method into a single composite result. Each SSE-pair in this

composite result is compared to each SSE-pair in the ground truth. The quality is measured

as the percentage of pairs in the composite result that matchthe ground truth.

Formally, we denote as{i, j} a matching between helix or strandi in the sequence and

helix or strandj in the density map. Define probabilityP({i, j}) as the probability that

matching{i, j} occurs in the set ofn results output by the algorithm. If this probability is

equal to one, every result contains the matching ofi to j; if the probability is close to zero,

the matching ofi to j is not common among the results. After the algorithm is finished and

n results have been returned, it is straightforward to computeP({i, j}) for all i, j. As noted

in Section 3.3, these probabilities are reported as percentages in the user interface.

Given a set ofn results and probabilitiesP, our voting scheme simply chooses for eachi

the value of j that maximizesP({i, j}). This creates a composite result representing the

most likely correspondence. We compare each SSE in this composite result to the ground

truth and report the fraction of helices that are correct, denotedEh, the fraction of strands

that are correct, denotedEs, and the overall fraction of strands and helices that are correct,

denotedEc. If Eh, Es, andEc are all equal to one, the voting scheme perfectly predicts the

ground truth; if they are close to zero, the voting scheme is not effective at predicting the

ground truth.

27

(a) Results displayed as a pseudo-backbone, and the probabilities for each pairing (b) ActualCα backbone

Figure 4.1: (a) The user interface showing our method’s results for the SSE correspondence of the 1IRK
protein of the Human Insulin Receptor, with the pseudo-backbone displayed on the left and the individual
SSE correspondences displayed in the table at right along with the probability of each matching in the list of
candidates. Even though the correspondence does not have a perfect sheet matching, the pseudo-backbone is
almost identical to that of (b) the ground truth.

4.3 Experiments

We apply our method to the data sets in Table 4.1 and evaluate the results using the two

methods described above: we compute the rank of the ground truth among the candidate

matches, and we computeEh, Es, andEc. In our experiments we observe that anEh, Es, or

Ec score higher than 0.8 indicates a very good list of candidatematches that differ from the

ground truth by only one or two SSEs. We report these results in Table 4.2. Details about

several of these data sets are provided in the sections that follow.

4.3.1 Unsupervised Helix and Sheet Matching

1IRK

Figure 4.1 shows the result of applying our method to find the SSE correspondence for

the 1IRK protein. This data set is challenging due to missingSSE elements and similar

lengths of loops, strands and helices. Note that the pseudo-backbone generated for the first

candidate is almost identical to the ground truth backbone,in spite of the fact that two

28

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 ENPASKPTPVQDVQGDGRWMSLHHRFVADSKDKEPEVVFIGDSLVQLMHQCEIWRELFSPLHALNFGIGGDSTQHVLWRLENGELEHIRPKIVVVWVGTN
101 NHGHTAEQVTGGIKAIVQLVNERQPQARVVVLGLLPRGQHPNPLREKNRRVNELVRAALAGHPRAHFLDADPGFVHSDGTISHHDMYDYLHLSRLGYTPV
201 CRALHSLLLRLL

a b cdA B C D E FG HI
e

(a) Annotated sequence of amino acid residues

(b) Density volume (c) Detected SSEs and geometric skeleton (d) SSE Correspondence

Figure 4.2: (a) The annotated sequence of amino acid residues of the 1WABprotein. (b) The density volume.
(c) The detected secondary structure elements and the skeleton. (d) The correspondence between the two sets
of SSEs computed by our method.

β -strands were not correctly identified by our method as missing in the density map. The

helix portion of the pseudo-backbone exactly matches the ground truth, so the helix-only

rank in Table 4.2 is 1. By contrast, the ground truth strand correspondence does not appear

in any of the top 35 results, so the helices-and-sheets rank in the table is>35.

The metricsEh, Es, Et for these 35 results are 1.0, 0.76, and 0.92, respectively. This

indicates that if we take a majority vote among the top 35 correspondences, we would

obtain the correct helix correspondence and more than threefourths of the correct sheet

correspondences. This means that the user can use the probabilities P({i, j}) associated

with each SSE to select a good result from among the top 35, andto make assumptions

while iteratively refining the results. These probabilities are reported in the user interface

as percentages, as shown by the red circle in Figure 4.1.

1WAB

Figure 4.2 shows that our method is able to identify the correct SSE assignment for 1WAB

as a highly-ranked candidate. Observe that our algorithm isrobust to noise in the data,

such as the two missing helices in the density volume. As a by-product of our algorithm,

a pseudo-backbone can be visualized by rendering the skeleton paths represented by the

graph edges in the optimally matching chain. This pseudo-backbone serves as a starting

point when determining the actualCα backbone.

29

(a) Rank 1 correspondence (b) Actual correspondence

Figure 4.3: (a) The optimal correspondence for Rotavirus computed by our method. (b) The actual corre-
spondence.

4.3.2 Unsupervised Helix-Only Matching

As the number ofα-helices andβ -sheets in a protein increases, the memory required by our

method increases exponentially in the worst case. We observe that our implementation runs

out of memory when the number of SSEs reaches 15 to 30, depending on the connectity

of the skeleton. For proteins larger than this limit, we use one of two approaches to work

around the memory limitation.

The first approach, described in this section, is to use a two-step process. In the first step

all β -sheets are removed from the graph and a goodα-helix-only correspondence is found.

The helix correspondences are fixed according to the result of this first step, and our algo-

rithm is used a second time solve for only theβ -sheet correspondences. We find that this

approach works best for proteins where allβ -sheets are located in a single cluster and not

surrounded byα-helices.

The second approach, adding constraints based on the user’sknowledge of protein struc-

ture, is described in Section 4.3.3.

30

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 MDTIAARALTVMRACATLQEARIVLEANVMEILGIAINRYNGLTLRGVTMRPTSLAQRNEMFFMCLDMMLSAAGINVGPISPDYTQHMATIGVLATPEIP
101 FTTEAANEIARVTGETSTWGPARQPYGFFLETEETFQPGRWFMRAAQAVTAVVCGPDMIQVSLNAGARGDVQQIFQGRNDPMMIYLVWRRIENFAMAQGN
201 SQQTQAGVTVSVGGVDMRAGRIIAWDGQAALHVHNPTQQNAMVQIQVVFYISMDKTLNQYPALTAEIFNVYSFRDHTWHGLRTAILNRTTLPNMLPPIFP
301 PNDRDSILTLLLLSTLADVYTVLRPEFAIHGVNPMPGPLTRAIARAAYV

b c d fA B C DE FGI kih g
J Hj ml ena

(a) Annotated sequence of amino acid residues

(b) Helix-only correspondence (c) Optimal correspondenceafter helix constraints (d) Actual correspondence

Figure 4.4: (a) The annotated sequence of amino acid residues of the 1BVPprotein. (b) The optimal corre-
spondence computed by our method where the helix correspondence is correct. (c) The optimal correspon-
dence after the helices have been constrained. (d) The actual correspondence.

Rotavirus

For the Rotavirus structure shown in Figure 4.3, we first solved for theα-helix-only corre-

spondence. As shown in Table 4.2, our method returns the actual α-helix correspondence

as the lowest-cost match. Next we constrain allα-helices and solve for theβ -strand cor-

respondence. Due to the clustered nature of theβ -strands, the correctβ -strand correspon-

dence does not appear in the top list of candidates. The relatively poor sheet matching

results are reflected by the low value ofEs.

31

1BVP

We apply the same strategy to find the structure of the 1BVP protein of the Blue-Tongue

Virus, with results shown in Figure 4.4. Like the Rotavirus example, our algorithm cor-

rectly predicts the helix correspondence but returns relatively poor sheet matching results,

as demonstrated by the low value ofEs in the results table. The cause of the poor sheet

matching results is that two longβ -strands are incorrectly matched to a very largeβ -sheet,

when they should be matched to a separate, smaller sheet. This error is due to our algo-

rithm’s assumption that longer strands should be matched tolarger sheets.

4.3.3 Interactive Matching

The previous section described a two-step approach for working around memory limita-

tions for structures with many SSEs where strands are clustered together and separate from

helices. This is just one possible cause of memory problems.Other possible causes include

a high degree of symmetry, such as aβ -barrel structure, or a large number ofα-helices.

Even if the algorithm is not limited by memory, some types of input data, such as a low-

resolution density map with insufficient shape or topology information about the protein,

can lead to incorrect matching results. To overcome these limitations, we allow the user to

manually assign matching constraints based on knowledge about protein structure.

Specifically, the user can designate the correspondence between a subset of helices and/or

sheets in the sequence graph and the density map graph. This information is translated into

node attributes in the graph, reducing the branching factorof the search. The user interface

for adding constraints is described in Section 3.4.

Although the process of choosing constraints can be time consuming, we note that it is

significantly faster than finding a complete correspondencemanually. Our implementation

enables relatively fast iteration as constraints are addedand removed, with typical algorithm

execution times ranging from a few seconds to forty seconds on a desktop computer, as

shown in Table 4.2.

32

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 APRKFFVGGNWKMNGKRKSLGELIHTLDGAKLSADTEVVCGAPSIYLDFARQKLDAKIGVAAQNCYKVPKGAFTGEISPAMIKDIGAAWVILGHSERRHV
101 FGESDELIGQKVAHALAEGLGVIACIGEKLDEREAGITEKVVFQETKAIADNVKDWSKVVLAYEPVWAIGTGKTATPQQAQEVHEKLRGWLKTHVSDAVA
201 VQSRIIYGGSVTGGNCKELASQHDVDGFLVGGASLKPEFVDIINAKH

a b c dA B C DE F G H Ihg fe KJ
(a) Annotated sequence of amino acid residues

(b) Density, skeleton and SSEs (c) Optimal correspondence (d) Optimal after constraint (e) Actual correspondence

Figure 4.5: (a) The annotated sequence of amino acid residues of the 1TIMprotein. (b) The inputs to
our algortihm. (c) The minimum-cost correspondence computed by our method. (d) The minimum-cost
correspondence computed by our method, after the user has constrained the helix labeled D. (e) The actual
correspondence, which is returned by our method as the 25th result after the constraint in (d) has been applied.

1TIM

Figure 4.5 shows an example of the 1TIM protein found in chicken muscle. For this struc-

ture our implementation runs out of memory if no user constraints are applied, even if

sheets are removed from the problem. After a user-specified constraint was added to the

helix marked as (D), the correct correspondence was found asthe 25th result in the candi-

date list. Although the ground truth has rank 25, the large values ofEh, Es, andEt in Table

4.2 show that the composite accuracy of the top 35 correspondence results is quite good.

In this example, the constraint was chosen by noting that in the sequence, most paths from

one helix to another pass through a sheet, with only one exception. The case where two

helices are connected only by a loop should correspond to thetwo helices in the density

that are connected by a loop.

4.4 Summary of Results

The results for all 11 proteins are presented in Table 4.2, showing the number of user-

specified constraints used, the rank of the ground truth whenconsidering only the helix

correspondences, the rank of the ground truth considering all of the SSEs, the execution

times, and the associatedEh, Es, andEc scores for the list of top 35 candidates.

33

Protein User Helix only Helices and Strands Execution time (s)
Constraints Rank Eh Rank Es(Strand only) Ec(Composite) First match Top 35 matches

1UF2 - 1 0.96 1 - 0.96 0.00 0.00
2ITG - 1 1.00 1 1.00 1.00 0.00 0.01
1IRK - 1 1.00 >35 0.76 0.92 0.65 0.82
1WAB - 11 0.89 11 1.00 0.91 0.65 1.14
1DAI 1 17 0.82 17 1.00 0.89 0.21 0.32
1BVP -/10∗ 1 1.00 >35 0.58 0.83 0.86 1.50
Rotavirus -/14∗ 1 1.00 >35 0.19 0.62 5.25 6.83
3LCK - 7 0.95 >35 0.71 0.89 17.01 21.04
1TIM 1 25 0.91 25 1.00 0.93 11.60 15.41
Groel - 1 1.00 >35 0.90 0.95 0.07 0.11
RDV P8 6 12 0.96 >35 0.88 0.94 36.54 38.32

Table 4.2: The number of user constraints specified for each experiment, the rank andEh score when con-
sidering only theα-helix correspondence, the rank andEs scores when considering bothα-helix as well as
β -strand correspondences, the combinedEc scores, and the execution times to find the first correspondence
and the list of the top 35 candidates.∗For 1BVP and Rotavirus, the experiment was conducted by firstfind-
ing the helix correspondence using no constraints, and thenconstraining all the helices to find theβ -strand
correspondence.

We have presented three different ways to apply our method: solve for helix and sheet

correspondences together in an unsupervised way; solve first for helix correspondences,

then solve for sheet correspondences as a second step; or solve for the correspondence in

an interactive way by incorporating domain knowledge into the algorithm’s cost function.

The results in Table 4.2 show that these three approaches canbe used to find the correctα-

helix correspondence, and to a lesser extent, to find the correctβ -sheet correspondence, for

several proteins of different sizes and shapes. The good quality of the results is indicated

by the low rank of the ground truth in the results, and by the high values ofEh for helices,

Es for strands, andEc for the overall correspondence.

4.5 Performance

The execution times listed in Table 4.2 show that our implementation is fast enough to be

used interactively, allowing the user to run the algorithm many times, adding and removing

constraints or adjusting cost function parameters betweensubsequent iterations. All tests

were performed on a desktop computer running 32-bit WindowsXP.

We noted above that our method requires more memory as the number of SSEs increases

or as the connectivity of the skeleton increases. We have described some ways to work

around this limitation in order to build models of increasingly large proteins.

34

Chapter 5

Discussion

We have described a method of finding the correspondence between the secondary struc-

tures in a protein sequence and the secondary structures in an intermediate-resolution pro-

tein density map. Our method builds on previous work from ourgroup which considered

only α-helices [1]; our main contribution is the inclusion ofβ -sheets into the method.

We have implemented our method in C++ using Phython and Qt forthe user interface and

visualization, and we have described the features of our user interface, which is part of the

Gorgon protein modeling system.

We have presented results showing that our method successfully finds α-helix andβ -sheet

correspondence on a collection of real and simulated data sets. We achieve better results for

helices than sheets. We showed that in some structures such as theβ -barrel, the inclusion

of sheets in the algorithm improves the quality of the helix results.

5.1 Limitations

Memory Due to memory limitations, our method cannot automaticallysolve for cor-

respondences in structures with a large number of helices and sheets. In Chapter 4 we

presented two approaches for working around this issue. Thefirst approach is a two-step

process in which the helix correspondence is found, then thehelix correspondence is fixed

and the correspondence for the sheets is found. The second approach is to use use our algo-

rithm in a semi-interactive fashion, with the user specifying portions of the correspondence

and the algorithm solving for the rest.

35

Skeleton Quality Our algorithm relies on a geometric skeleton to determine possible

paths between SSEs, which means that the results generated by our method are highly de-

penedent on the quality of the skeleton. For skeletons with many broken paths, we suggest

that the user refine the skeleton using the Grayscale Skeletonization method included in the

Gorgon system.

β -Sheet Marching Accuracy Our results showed that theβ -sheet matching accuracy of

the algorithm is inferior to theα-helix matching accuracy. Improving the algorithm design

may be able to improve this to some extent. However some of this difference is due to

the input to our algorithm: it is more difficult to accuratelylocate sheets than helices in a

density map.

5.2 Future Work

β -Sheets andβ -Strands In the cost function, each match between a sheet in the density

map and a strand in the sequence considers only the average expected size of the sheet, and

does not include any information about the geometry of the sheet or the points at which the

path enters and exits the sheet. In proteins, strands tend toform parallel paths across sheets

with entry and exit points on opposite sides of a sheet. The cost function could be modified

to discourage non-parallel paths through sheets.

Loop Lengths We determine the lengths of loops by measuring the shortest path between

two structures across the skeleton. The true path between two nodes may follow a much

longer path, particularly if the skeleton is dense with connections between structures. This

suggests that our method might be improved by associating with each pair of structures a

range of possible path lengths, and modifying the cost function so that the matching cost is

low as long as the path lengths fall within this range.

Constraints The current implementation allows the user to specify constraints between

structures in the density map and the sequence. In addition to this, neighbor constraints

could be quite powerful. The user could specify that two structures in the density map

should be matched to two neighboring structures along the sequence.

36

References

[1] Sasakthi Abeysinghe, Tao Ju, Matthew L. Baker, and Wah Chiu. Shape modeling and
matching in identifying 3D protein structures.Computer-Aided Design, 40(6):708–
720, June 2008.

[2] Sasakthi S. Abeysinghe, Matthew Baker, Wah Chiu, and TaoJu. Segmentation-free
skeletonization of grayscale volumes for shape understanding. In Proc. IEEE Inter-
national Conference on Shape Modeling and Applications SMI2008, pages 63–71,
2008.

[3] Matthew L. Baker, Sasakthi S. Abeysinghe, Stephen Schuh, Ross A. Coleman, Austin
Abrams, Michael P. Marsh, Corey F. Hryc, Troy Ruths, Wah Chiu, and Tao Ju. Mod-
eling protein structure at near atomic resolutions with gorgon. Journal of Structural
Biology, 174(2):360 – 373, 2011.

[4] Matthew L. Baker, Tao Ju, and Wah Chiu. Identification of secondary structure ele-
ments in intermediate-resolution density maps.Structure, 15(1):7–19, January 2007.

[5] H. Bunke. Error correcting graph matching: On the influence of the underlying cost
function. IEEE Trans. Pattern Anal. Mach. Intell., 21(9):917–922, 1999.

[6] H. Bunke and G. Allermann. Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters, 1:245–253, 1983.

[7] Horst Bunke and Bruno T. Messmer. Recent advances in graph matching. IJPRAI,
11(1):169–203, 1997.

[8] J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldi. Scratch: a protein structure
and structural feature prediction server.Nucleic Acids Research, 33:W72–W76, 2005.

[9] Wah Chiu, Matthew L. Baker, Wen Jiang, Matthew Dougherty, and Michael F.
Schmid. Electron cryomicroscopy of biological machines atsubnanometer resolu-
tion. Structure, 13(3):363–372, March 2005.

[10] William J. Christmas, Josef Kittler, and Maria Petrou.Structural matching in com-
puter vision using probabilistic relaxation.IEEE Trans. Pattern Anal. Mach. Intell.,
17(8):749–764, 1995.

[11] Christian Cole, Jonathan D. Barber, and Geoffrey J. Barton. The jpred 3 secondary
structure prediction server.Nucleic Acids Research, 36:W197–W201, May 2008.

37

[12] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition.International Journal of Pattern Recognition and Artificial
Intelligence, 18(3):265–298, 2004.

[13] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of the
vf graph matching algorithm. InInternational Conference on Image Analysis and
Processing, 1999.

[14] S. Dutta and H.M. Berman. Large macromolecular complexes in the protein data
bank: a status report.Structure, 13:381–388, 2005.

[15] J. Feng, M. Laumy, and M. Dhome. Inexact matching using neural networks.Pattern
Recognition in Practice IV: Multiple Paradigms, Comparative Studies, and Hybrid
Systems, pages 177–184, 1994.

[16] Research Collaboratory for Structural Bioinformatics. RCSB Protein Data Bank
Statistics. http://www.rcsb.org/pdb/static.do?p=general information/

pdb statistics/index.html, 2011. [Online; accessed 18-Apr-2011].

[17] L. Herault, R. Horaud, F. Veillon, and J. J. Niez. Symbolic image matching by simu-
lated annealing. InProc. British Machine Vision Conference (BMVC90), pages 319–
324, 1990.

[18] Radu Horaud and Thomas Skordas. Stereo correspondencethrough feature grouping
and maximal cliques.IEEE Trans. Pattern Anal. Mach. Intell., 11(11):1168–1180,
1989.

[19] Wen Jiang, Matthew L. Baker, Steven J. Ludtke, and Wah Chiu. Bridging the infor-
mation gap: computational tools for intermediate resolution structure interpretation.
Journal of Molecular Biology, 308(5):1033 – 1044, 2001.

[20] David T. Jones. Protein secondary structure prediction based on position-specific
scoring matrices.Journal of Molecular Biology, 292(2):195–202, 1999.

[21] Tao Ju, Matthew L. Baker, and Wah Chiu. Computing a family of skeletons of volu-
metric models for shape description.Computer-Aided Design, 39(5):352–360, 2007.

[22] Yifei Kong and Jianpeng Ma. A structural-informatics approach for mining [beta]-
sheets: Locating sheets in intermediate-resolution density maps.Journal of Molecular
Biology, 332(2):399 – 413, September 2003.

[23] Yifei Kong, Xing Zhang, Timothy S. Baker, and Jianpeng Ma. A structural-
informatics approach for tracing [beta]-sheets: Buildingpseudo-c[alpha] traces for
[beta]-strands in intermediate-resolution density maps.Journal of Molecular Biol-
ogy, 339(1):117 – 130, May 2004.

38

[24] B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomor-
phism detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(5):493–504, 1998.

[25] N.J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann Publishers,
1980.

[26] L. Roberts, R. J. Davenport, E. Pennisi, and E. Marshall. A history of the human
genome project.Science, 291(5507):1195, February 2001.

[27] A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs for
pattern recognition.IEEE Trans. Systems, Man, and Cybernetics, 13:353–363, 1983.

[28] L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact matching.IEEE
Trans. Pattern Anal. Mach. Intell., 3(5):504–519, 1981.

[29] W. H. Tsai and K. S. Fu. Error-correcting isomorphisms of attributed relational graphs
for pattern recognition.IEEE Trans. Systems, Man, and Cybernetics, 9:757–768,
1979.

[30] J. R. Ullmann. An algorithm for subgraph isomorphism.J. ACM, 23(1):31–42, 1976.

[31] Yuan-Kai Wang, Kuo-Chin Fan, and Jorng-Tzong Horng. Genetic-based search for
error-correcting graph isomorphism.IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B, 27(4):588–597, 1997.

[32] A.K. Wong, M. You, and A.C. Chan. An algorithm for graph optimal monomorphism.
IEEE Trans. Systems, Man, and Cybernetics, 20(3):628–636, 1990.

[33] Yinghao Wu, Mingzhi Chen, Mingyang Lu, Qinghua Wang, and Jianpeng Ma. Deter-
mining protein topology from skeletons of secondary structures.Journal of Molecular
Biology, 350(3):571–586, 2005.

[34] Z. Hong Zhou. Towards atomic resolution structural determination by single-particle
cryo-electron microscopy.Curr Opin Struct Biol, 18(2):218–228, 2008.

[35] Z. Hong Zhou, Matthew Dougherty, Joanita Jakana, Jing He, Frazer J. Rixon, and
Wah Chiu. Seeing the herpesvirus capsid at 8.5å.Science, 288(5467):877–880, May
2000.

39

Vita
Stephen Schuh

Degrees B.A. Physics, Reed College, May 2001
M.S. Computer Science, Washington University, May 2011

Publications Matthew L. Baker, Sasakthi S. Abeysinghe, Stephen Schuh, Ross
A. Coleman, Austin Abrams, Michael P. Marsh, Corey F. Hryc,
Troy Ruths, Wah Chiu, and Tao Ju. Modeling protein structureat
near atomic resolutions with Gorgon.Journal of Structural Biol-
ogy, 174(2):360-373, 2011.

Nathan Jacobs, Stephen Schuh, Robert Pless, Compressive Sens-
ing and Differential Image Motion Estimation,IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2010.

May 2011

40

Protein Structure from Cryo-EM Data, Schuh, M.S. 2011

	A Graph-Based Algorithm to Determine Protein Structure from Cryo-EM Data
	Recommended Citation

	thesis-main.dvi

