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Abstract

The Programmers’ Playground takes a new approach to simplifying and supporting the
construction of distributed applications. The approach, called I/Q absiraction, separates the
description of a system’s communication structure from the descriptions of its computational
components so that software modules written in existing programming languages can be inte-
grated flexibly and dynamically by both programmers and end-users. This separation is achieved
by establishing logical connections among the data interfaces of independent software modules.
The logical connections provide a uniform high-level view of communication for both discrete
and continuous data. The I/O abstraction approach inherits ideas from the I/O automaton
model, a formal model of distributed computing that provides compositionality properties and
supports behavioral specifications of system modules.

Implications of I/O abstraction for process migration and the ordering of events in a dis-
tributed system will be studied. Software supporting the I/0O abstraction programming model
will be constructed. A high speed ATM network developed at Washington University will be
used as a testbed for the development work. The availability of this campus network offers an
unusual opportunity to construct novel distributed (multimedia) applications and to test our
ideas in realistic settings. The connection management network protocol (CMNP), the under-
lying protocol for the ATM networks, will be formally studied by giving a formal specification.

Keywords: distributed computing, heterogeneous systems, broadcast, connection manage-

ment, distributed programming environment



1 Introduction

A heterogeneous distributed system is a large collection of application programs written in many
different programming paradigms and running on top of various operating systems and architec-
tures. These are interconnecied by a network that allows the users of these applications to share
data and expensive resources. Such a loose coupling of distributed systems poses three significant
problems [32], namely inconvenience to users, expense, and diminished effectiveness as substantial
effort must be diverted to address the problems of heterogeneity.

Writing programs for an “open” heterogeneous environment is not easy. The presence of multiple
programming languages and operating systems is one obstacle; however, enforcing the use of a
single common language is an impractical solution since different programming paradigms are
better suited for different problems. Low level communication primitives have several problems:
type checking and parameter marshaling must be done explicitly by the user. The low level calls
normally return a status value and different sorts of failures result in different values. A good
program must be prepared for any status. The “other process” should know the types of messages
used and the message organization. In addition, there is the problem of protecting one’s own
data and applications, as well as the problem of locating and making proper use of the data and
applications of others.

What is needed is a high-level abstraction that can integrate programs written in multiple
programming languages and support, in a unified way, the communication needs of a variety of ap-
plications. The goals of the Programmers’ Playground [16] are to take a fresh look at the traditional
mechanisms for interprocess communication in light of the shift from homogeneous to heterogeneous
systems and to present an abstraction and supporting software environment that simplifies the con-
struction of distributed applications, provides end-user configuration and integration of software
modules, permits a dynamically changing communication structure, offers protection for data and
applications, and supports existing programming languages and paradigms. This abstraction and
supporting software will serve as an insulating layer between the programming language and the
low-level communication protocols.

In this proposal, we first describe the general approach. Then we identify four related research
topics that will form the focus of our work. This is followed by the status of our research, the
design and implementation of the programming environment, the plan of completion, and the

future research directions and integration.

1.1 Approach

QOur approach, called I/O abstraction, is a model of interprocess communication in which each
module in a system has a presentation that consists of data structures that may be externally
observed and/or manipulated. An application consists of a collection of independent modules
and a configuration of logical connections among the data structures in the module presentations.
Whenever published data structures are updated, communication occurs implicitly according to

the logical connections.



I/0 abstraction communication is declarative, rather than imperative. The declarative approach
simplifies application programming by cleanly separating computation from communication. Soft-
ware modules written using I/O abstraction do not make explicit requests to establish or effect
communication, but instead are concerned only with the details of the local computation. Commu-
nication is declared separately as high-level relationships among the state components of different
modules.

I/0O abstraction is based on three fundamental concepts: data, control, and connections. We
present these concepts in the context of The Programmers’ Playground, a software library, run-
time system and programming environment we are conmstructing to support the development of

distributed applications using I/O abstraction [16].

1.1.1 Data

Data (the components of a module’s state) may be kept private or they may be published so that
other modules may access the data. Playground provides a library of data types for declaring
data structures that may be published. These include base types for storing integer, real, boolean,
and string values, tuples for storing records with various fields, and aggregates for organizations
of homogeneous collections of elements. Some aggregate data types (such as sets, arrays, and
mappings) are provided in the Playground library, and the applications programmer may define
others. Any Playground data type may be used in the field of a tuple or as the element type of an
aggregate.

The presentation: Each Playground module has a presentation that consists of the data that
it has published. The presentation may change dynamically. Associated with each published data
item in a presentation are a public name, documentation, access privileges, and data type. The
public name, documentation, and data type help users of the module understand its presentation.
The data type information also permits type checking of logical connections. The access privileges
are used to restrict the use of published data structures.

Protection: Access privileges include read, write, insert, and connect. Read access allows a
module to observe the value of the data structure and write access allows a module to change the
value of the data structure. Insert access allows a new element to be inserted into an aggregate as
the result of an element-to-aggregate connection, described below. Connect access allows a module
(possibly a third party) to relate the data structure to a data structure of some other module.
Access protection may be changed dynamically.

The environment: A Playground module interacts with an environment, a collection of other
modules that may be unknown to this module but that read and modify the data items in its

presentation (as permitted by the access privileges).

1.1.2 Control

The control portion of a module defines how its state changes over time and in response to its
environment. Insulated from the structure of its environment, a Playground module interacts en-



tirely through the local data structures published in its presentation. A module may autonomously
modify its local state, and it may react to “miraculous” changes in its local state caused by the
environment, This suggests a natural division of the control into two parts: active control and
reactive control.! Playground modules may have a mixture of both active and reactive control.

Active control: The active control carries out the ongoing computation of the module. Mod-
ules with only active control can be quite elegant, since input simply steers the active computation
without requiring a direct response. Active control is analogous to the locally controlled actions of
an I/0 automaton.

Reactive control: The reactive control carries out activities in response to input from the
environment. A module with primarily reactive control simply reacts to each input from the
environment, updating its local state and presentation as dictated by that input change. Reactive
control is analogous to the input actions of an I/Q automaton.

Specifying control: The active control component of a Playground module is defined by the
“mainline” portion of the module. Reactive control is specified by associating a reaction function
with a presentation data item. This function defines the activity to be performed when that data

item is updated by the environment.

1.1.3 Connections

Relationships between data items in the presentations of different modules are declared with logical
connections between those data items. These connections define the communication pattern of
the system. Connections are established by a special Playground module, called the connection
manager (see Section 2.1), that enforces type compaitibility across connections and guards against
access protection violations by establishing only authorized connections.

Connections are declared separately from modules so that one can design each module with a
local orientation and later connect them together in various ways. Connections define the sharing of
state change information. However, if a simple asynchronous data transmission algorithm is used,
state changes at a connection’s endpoints do not necessarily appear to occur atomically. Data

transmission ordering is discussed further in the research proposal.

2 Research Areas

The focus of this research plan is to further develop the I/O abstraction concept and The Pro-
grammers’ Playground in order to support the construction of distributed applications with an
emphasis on the goals outlined at the beginning of the proposal. This thesis will focus on con-
figuration management aspects of the Playground environment: (1) connection management, (2)
data transmission ordering, (3) module migration, and (4) the analysis of the connection manage-
ment network protocol (CMNP), a low level ATM network protocol, to understand how logical

YRarini[28], a rapid prototyping language for concurrent systems based on partially ordered event sets, is an
example of another system that supports this distinction.



connections in the Playground map onto network connections.

2.1 Connection Management

So far, we have been assuming that the environment can change the values of the data items in a
module’s presentation and that the module’s changes to the values of those data items are visible
to the environment, but we have not yet described how ithis communication is established. Since
the environment is really nothing more than a collection of (one or more)} Playground modules, the
question really becomes how to establish a relationship between the data items in the presentations
of different modules.

The Playground connection manager handles adding new connections and deleting existing
connections between the data items of different modules. The connection manager must provide
type checking and must make sure that the access privileges are not violated. The different kinds
of connections available (see below) must also be understood by the connection manager.

Playground supports two kinds of connections, simple connections and element-to-aggregate
connections. A given data item may be involved in multiple connections of both kinds.

Simple connections: A simple connection relates two data items of the same type, and may
be either unidirectional or bidirectional. The semantics of a unidirectional connection from integer
z in module A to integer y in module B is that whenever A updates the value of z, item ¥ in module
B is correspondingly updated. If the connection is bidirectional, then an update of #’s value by
module B would also result in a corresponding update to z in A, Arbitrary fan-out and fan-in are
permitted so that multiple simple connections may emanate from or converge to a given data item.
If 2 in the above example is also connected to integer z in module C, then whenever 2 is updated,
so are both ¥ and z. Bidirectional simple connections are useful for interactive or collaborative
work, while a unidirectional connection with high fan-out would be appropriate for connecting a
video source to multiple viewing stations (see Section 6).

Element-to-aggregate connections: A Playground aggregate is an organized homogeneous
collection~of elements, such as a set of integers or an array of tuples. The element type of an
aggregate is the data type of its elements. For example, if s is a set of integers, the element type
of s is integer.

An element-to-aggregate connection results when a connection is formed between a data item of
type T and an aggregate data item with element type T. For example, a client/server application
could be constructed by having the server publish a data structure of type set(T) and having each
client publish a data structure of type 7. If an element-to-aggregate connection is created between
each client’s type T data structure and the server’s set(T') data structure, then the server program
will see a set of client data structures, and each client may interact with the server through its
individual element. As another example, a connection from a data structure of type T to a data
structure of type sequence(T) might be used for a producer/consumer application,

Element-to-aggregate connections may take two different forms: distinguished element connec-

tions and element siream connections, with the choice being made when the aggregate is published.



Let z be an integer and s be a set of integers, and consider an element-to-aggregate connection
from z to s:

A distinguished element connection from z to s causes a new element to be created in the
aggregate s. All interaction for that connection takes place through that distinguished element and
z, as if there is a simple connection between = and the distinguished element of s. The distinguished
element is deleted when the connection is removed. Distinguished element connections are suitable
for the client/server scenario described above. Like simple connections, they may be unidirectional
or bidirectional, and permit arbitrary fan-out and fan-in. In the client/server example, arbitrarily
many clients could be handled by multiple distinguished element connections to the same aggregate,
each with its own distinguished element.

An element stream connection from z to s causes a new element (with the value currently held
by z) to be created in s each time z is updated. Element stream connections are suitable for the
producer/consumer scenario described above and are inherently unidirectional {from the element
to the aggregate). Multiple fan-in is allowed, and could be used to allow many modules to produce

elements for a single consumer, for example.

2.1.1 Related Work

Coordination languages [14] separate communication from computation in order to offer program-
mers a uniform communication abstraction that is independent of a particular programming lan-
guage or operating system. The separation of computation from communrication permits local
reasoning about functional components in terms of well-defined interfaces and allows systems to be
designed by assembling collections of individually verified functional components. There are many
examples. Darwin [21, 30, 23] is a coordination language for managing message-passing connections
between process “ports” in a dynamic system. Processes are expressed in a separate computation
language that allows ports to be declared for interconnection within Darwin. In Polylith [34, 35],
a configuration is expressed using “module interconnection constructs” that establish procedure
call bindings among modules in a distributed system. CONCERT [45] provides a uniform com-
munication abstraction by extending several procedural programming languages to support the
Hermes [40] distributed process model. PROFIT [20] provides a mixture of data sharing and RPC
communication through facets with data and procedure slots that are bound to slots in other facets
during compilation. Extensions to PROFIT enable dynamic binding of slots in special cases [17].
Coordination languages can be implemented directly on top of each supported operating system
and programming language, or for ease of portability, they may be implemented on top of a uniform
set of system level communication constructs for heterogeneous distributed systems, such as the
Mercury system [27] or PVM [13].

2.2 Data transmission ordering

Our current implementation of I/0 abstraction (see Section 3) supports only asynchronous com-
munication, but many applications require stronger properties of message ordering. We plan to



implement a causal ordering’® mechanism for the Playground environment.

Causal ordering is supported in the ISIS system [7], where the programmer declares the groups
of processes to receive multicast messages. Efficiency of the algorithm (in terms of message header
size) depends upon knowing these groups, because messages are ordered within each group. With
I/O abstraction, the programmer does not declare process groups. The configuration is declared
separately from the modules and may change dynamically. For example, bidirectional logical con-
nections might be added between two formerly disconnected sets of modules that communicate
among themselves using causal ordering. Provided that point-to-point connections are FIFQ, when
the first connection is added, no change is required, but when the second connection is added, there
is a possibility of causal ordering violations, so the causal ordering algorithm must now treat the
two sets as one.

In order to handle causal broadcast in a dynamically changing graph, we plan to exploit in-
formation available in the logical configuration graph. Since the biconnected components of the
graph form a tree, by causally ordering the messages within each biconnected component (bcc), we
will be able to guarantee that causal ordering for the entire system. There are many distributed
algorithms for computing biconnected components [2, 19, 33]. These algorithms use some form
of distributed depth first search [1, 25], and then use a probe-echo [3] algorithm to compute the
biconnected components. They are inherently static, that is, a simple change to the original graph,
like adding an edge, would involve starting the algorithms all over. We are interested in distributed
bce algorithms which can dynamically maintain the bee information of a graph.

With this motivation, we have developed two incremental distributed algorithms, (1) a serialized
algorithm where graph update requests occur one at a time, and (2) a concurrent algorithm where
simultaneous graph update requests are permitted, for maintaining biconnected components in a
dynamically changing graph [42]. We also plan to demonstrate the usefulness of our biconnected
component algorithm by implementing the serialized version of the BCC algorithm on top of the
Playground. The causal ordering mechanism will then be integrated with the BCC implementation
to allow for incremental updates over the connection graph.

2.2.1 Related Work

The problem of computing biconnected components has been studied extensively. A number of
sequential algorithms exist for dynamic graphs and there are several decentralized algorithms for
static graphs, but the algorithms we present in this paper are, to our knowledge, the first distributed
algorithms for finding biconnected components in dynamic graphs.

A distributed algorithm for finding biconnected components was given by Chang [9]. This
algorithm has a message complexity of 4m — n, where m and » are the number of edges and vertices
in the graph respectively. The distributed algorithm by Ahuja and Zhu [2] has the same message
complexity but improves on the message size bound. Hohberg [19] and Park et al. [33] present

2Quppose that information from process A is sent to processes B and C, process B makes a decision (possibly
based on A’s information), and C sees the result of that decision. Causal ordering would require that C observe A’s

information before seeing the results of B’s decision.



distributed algorithms for finding biconnected components in a graph with a message complexity
of O(m + nlogn). These algorithms require the computation of a depth-first search tree. Hence,
they are appropriate for a static graph, but the cost of recomputation of the depth-first search tree
(for every change in topology) makes these algorithms impractical for a dynamic setting.

Tarjan and Vishkin proposed an optimal parallel algorithm on CRCW PRAM model [43]. This
algorithm is also not incremental, but instead of using depth-first-search, it reduces the biconnec-
tivity problem to the problem of computing connected components. Westbrook and Tarjan [44]
proposed a sequential algorithm to compute biconnected components in a dynamically changing
graph structure. A block forest of block trees is constructed using the biconnected components
and the vertices in the graph. This block forest is used in maintaining the biconnected components
of the original graph. Rauch [36] presented a sequential algorithm for maintaining biconnected
components. This algorithm involves precomputation and “lazy” updating.

The algorithms we present are dynamic as well as distributed, and are designed to scale up for
large systems. Update requests can be issued at any node in the system and in any order. The
nodes have only local knowledge of the system graph and exchange information with other nodes by
sending and receiving messages. Only one copy of the topology is maintained and it is distributed

among the nodes in the system.

2.3 Reconfiguration and Process Migration

Module migration is the relocation of a running process from one host to another such that the
move is transparent to the modules that interact with it. By supporting process migration, we can
allow dynamic end-user manipulation of not only the logical configuration, but also the allocation of
modules to processors. This is useful for load balancing, relieving network congestion and handling
hardware maintenance without interruption of processing.

Data interfaces (such as I/Q abstraction) can simplify rua-time support for module migration
and facilitate writing migratable modules. The trick is to provide a clean data interface that
captures only the essential I/0 behavior of a module and at the same time exposes enough state
information so that the module can be relocated without the need for separate state extraction
techniques. Once the state information is exposed, the next problem is determining when it is
safe to move the module. The programmer might specify this explicitly by identifying safe points
in the code (as in [18]), but we prefer confining the process migration code (cleanup and restart)
to one section of the program and relying on existing mechanisms for specifying atomic steps to
prevent untimely migration. If a module is moved between atomic steps, then its behavior will be
unaffected.

In [41], we suggest three approaches to writing migratable modules that exploit data interface
properties, localize process migration code, and use atomicity mechanisms of The Programmers’
Playground. Physical reconfiguration in The Programmers’ Playground involves the reassignment

of a module from one processor to another®. Any mechanism to support this migration must stop

3We assume that the assignment of a physical communication path to each logical connection is handled by lower



the module’s computation on the first processor, move any necessary state and the code from the
first processor o the second, and start the computation on the second processor. As defined earlier,
the physical reconfiguration algorithm must guarantee that the behavior of each module involved
in physical reconfiguration is the same as if the physical reconfiguration did not occur. Thus, every
data transmission must occur in the appropriate order, with no such transmissions being lost or
duplicated as the result of the migration. Some of the internal computation may be repeated, but
the environment should not be able to tell.

Since we wish to avoid expensive state extraction techniques, moving the state information will
be accomplished by moving the values in the presentation of the module. However, not all the
local state information is necessarily exposed in the presentation of a Playground module. In fact,
it is desirable to have a relatively narrow interface for interaction with the environment. If the
most “important” data is exposed, though, that may be enough to restart the module. Modules
written in this way may include a procedure to initialize the local state from the presentation, and a
cleanup function to be invoked before the module migration mechanism saves the presentation. We
say that modules written in this fashion follow the active restart paradigm. Sometimes, the module
itself may provide reactive control to package up any remaining state information necessary in order
to move and restart the module. Such modules are said to be written in the reactive paradigm.
Otherwise, the modules can be written in the atomic transaction paradigm, where the module
accesses the presentation data items atomically using the primitives provided in the Playground
implementation (see Section 3).

We plan to incorporate these algorithms into our run-time system in order to see their perfor-
mance in practice. We also expect that some of these techniques may also be useful as part of lock

recovery mechanisms for our concurrency control algorithms (see Section 6).

2.3.1 Related Work

An important property of I/0Q abstraction that facilitates reconfiguration is that it exposes state
information in the presentation of each module. This state information is accessible to the run-
time system at all times. This ability to access state distinguishes I/0 abstraction from many other
programming models that provide access to configuration information. For example, a Durra [4, 5]
application can evolve during execution by dynamically removing processes and their ports and
instantiating new processes and their ports without affecting other processes. Darwin [21, 30, 23],
a generalization of Conic [22, 23], supports logical reconfiguration where the programmer adds code
that adapts program modules to participate in reconfiguration. Both Durra and Darwin [5, 21]
allow only adding or deleting processes and interconnections between them. PROFIT [20], a recent
language that provides a mixture of RPC and data sharing for communication, permits dynamic
binding of slots only in special cases [17]. Argus [26] supporis reconfiguration with two phase
locking over atomic objects and version management recovery techniques. Some systems support
physical reconfiguration, but support for module migration often has relied upon complicated and

level network protocols, so we do not consider that here.



expensive techniques for the extraction of the module’s state information [38]. Platforms like
Polylith [35] support moving a process to another machine while the application is executing. In
Polylith, configuration is expressed in terms of a set of procedure call bindings. The programmer
specifies “reconfiguration points,” that are used to automatically prepare a process to participate
during reconfiguration and special techniques are used to capture internal program state in order
to accomplish the migration [18). Because I/O abstraction already exposes local state information
for each module, we are able to avoid some of the problems that have plagued other systems and
accomplish reconfiguration in a straightforward and efficient manner.

2.4 Network Signaling Protocol

Formal models are increasingly used in the design of communication systems. The precise specifi-
cation and verification of systems help avoid design flaws that go unnoticed until the later stages of
the design. Formal specification also provides users with an understanding of the services available
in the system. Formally describing a service at an abstract level, from a protocol that provides
that service, helps in standardization and customization of that service [12]. In this context we are
working on a formal specification and a proof of a network protocol called Connection Management
Network-node Protocol (CMNP) that is designed for use with the high speed ATM networks devel-
oped here at Washington University. The “users” of this protocol are those protocols that interface
with the real world applications. The Playground Programming environment will interface with
CMNP to provide the desired communication abstraction between user applications.

We define network signaling as the exchange of control messages among elements of a com-
munication network to manage the network, and to initiate, maintain, and terminate connections
between endpoints in a network. CMNP is a network signaling protocol that is being designed for
the high speed ATM networking project at Washington University. The protocol is designed to
address a wide range of services dominated by multipoint multimedia communications. CMNP is
a distributed protocol and the network nodes cooperate to provide the service.

We believe that CMNP is the first network node signaling protocol that supports dynamic mul-
timedia multicast connection set up. This is very suitable for the evolving Playground environment
(see Section 6). In this area, we present a formal model of a simplified version of CMNP. We have
modeled CMNP using the I/0 automaton model of Lynch and Tuttle [29]. It is well suited for
modeling asynchronous distributed systems. The purpose of the presentation is two fold: (1) to
present a practically useful and correct multipoint network node signaling protocol, and (2) to show
the power of formal modeling techniques, both in protocol modeling and verification.

2.4.1 Related Work

Integrated Service User Part (ISUP) of S87 [8] is a network node protocol that has been employed
in practice. It supports circuit switching in ISDN. Segall and Jeffe [37] proposed a connection
set up protocol with local identifiers. Spinelli {39] presented a reliable route set up and reliable
data transmission protocol and later modified this protocol o include seli-stabilization. Both these

10
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Figure 1: A Playground system

protocols are for point-to-point connections. Segall et al. [11] proposed a reliable multiuser tree set
up protocol which can be used in a high speed network. There are two major limitations to their
protocol. First, the node that initiates the connection set up must know the network topology.
Second, the multicast tree is dynamic in the sense that any node in the tree can only leave the
tree freely, but a new node cannot be added to an existing connection tree. Qur protocol is really
distributed and dynamic. Any node can join or leave a connection at any time and no node needs
to keep global states. Cidon et al. [10] presented a connection set up protocol which can set up a
point-to-point or limited multicast connection in a high speed network. Since the reservation phase
is fast, the potential contention probability is reduced. Their protocol does not provide support
for general multicasts and in order to support the protocol the underlying hardware must support
source routing, an esoteric feature that many switching nodes do not have.

3 Design and Implementation

The Programmers’ Playground is designed as a software library, run-time system, and program-
ming environment that insulates the applications programmer from the operating system and the
network. The version of the system described here supports applications written in C++ on top of
the Sun0OS UNIX operating system with sockets as the underlying communication mechanism. A
logical overview of a Playground system is shown in Figure 1.

Veneer: Each Playground module is written using I/0 abstraction, as described earlier. Each
module includes a software library called the veneer that serves as an abstraction barrier between the
Playground module and its environment, The veneer defines the Playground datatypes, manages
the presentation information, and handles reactive control. Each supported programming language
requires its own Playground veneer.

Protocol: At modaule initialization, the veneer automatically launches a separate protocol pro-
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cess that handles interprocess communication resulting from updates to published data. The mod-
ule’s veneer and protocol communicate through data structures in shared memory. The protocal
also interacts with the connection manager, a special application that is used to create logical con-
nections among the published data items of different modules. The protocol makes the module’s
presentation known to the connection manager and the connection manager informs the protocol
of the connections established between the module’s published data structures and those of other
modules.

Connection Manager: The connection manager is itself implemented as a Playground mod-
ule. It interacts with the protocol processes of other Playground modules through element-to-
aggregate connections that are antomatically set up by those protocol processes. These “bootstrap”
connections are used by the protocols to convey presentation descriptions to the connection man-
ager, and to learn about changes to the logical connection structure. (These presentation entries are
shown in Figure 1 as P and L, respectively.) The connection manager also publishes a connection
request data structure (shown as R in the Figure 1) and registers a reaction function with it. This
data structure can be updated by modules such as a graphical configuration application. For each
connection request, the reaction function checks for type compatibility, verifies that the connection
obeys the access protections established for the endpoint data stractures, and adds the connection
to its published connection information. The protocols at the endpoints of the requested connec-
tion are advised of the new connection through the normal implicit I/O abstraction communication
mechanism. Note that the connection manager is not a communication botileneck since it simply
sets up connections that are thereafter handled individually by the endpoint protocols.

Communication: Whenever the application updates the value of a published data structure,
the veneer encodes the data and informs the protocol. The protocol then forwards the new value
to all all other modules to whom an outgoing connection has been established from that data
structure. Depending on the encoding scheme used, the entire data structure or only the updated
portion is sent. Upon receipt of a new value for a data structure, the protocol forwards this update
to the application veneer which updates the data structure and any necessary reactive control is
handled. Note that all of this I/O happens implicitly, as the result of an (overloaded) assignment
to the published data structure.

Atomicity: (see Section 6) Locks are used to prevent two applications from concurrently
changing the data structures at the endpoints of a single logical connection. The lock {token)
is held by the veneer before each update and released after the update. When the lock for a
logical connection is not local, the protocol makes an external request for the lock on behalf of the
veneer. The protocol is responsible for ensuring that at most one lock exists among the protocols
participating in each logical connection, and it regenerates the token when it is lost (due to a
partition, for example).

The locks alone do not prevent “blind” writes in which a value written by one module is
obliterated without being observed by any other module. If an atomic read-compute-write for a
published data structure is required, or if an atomic operation involving several published data
structures is required, the programmer may use the functions begin_atomic_step(obj_list) and
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end_atomic_step() provided by the veneer for encapsulating a set of changes as an atomic step.
The obj.list names the set of objects for which locks should be held for the duration for the
atomic step. At the end of the atomic step, the locks are released and all the changed objects are

forwarded to other applications as one atomic change.

4 Status

Playground and Connection Manager: As of this writing, we have a small Playground
implementation that includes a veneer for C++, a protocol that uses TCP socket communication
on top of the SunOS (UNIX) operating system, and a connection manager. The veneer contains
implementations for all the basic Playground data types, tuples, and some aggregates (mapping,
set, queue, and array). The protocol, launched with each application, automatically sets up a
“primary” socket for providing presentation description information to the connection manager
and receiving connection information from the connection manager through the usual implicit I/O
abstraction communication mechanism.

All updates to the presentation data result in the necessary implicit communication according
to the logical connections. These updates are caught by overloading the assignment operator for
the Playground data types. Currently, incremental changes to aggregates result in the entire new
value of the aggregate being sent by the protocol, instead of just the changed element(s). Whenever
the application reads a Playground datatype , any pending input changes are handled so that the
application sees recent and consistent data. The protocol’s concurrency control algorithms (see
Section 6) are not yet implemented, so race conditions for updates to data elements are possible.
Simple connections and element-to-aggregate connections are supported. While type checking is
enforced, access protection is not currently enforced.

Connections are made through a graphical front-end to the connection manager [31] that pro-
vides dynamic configuration of logical connections between the presentations of Playground mod-
ules.

Playground currently supports the development of distributed applications using I/Q abstrac-
tion. However, we have not yet ported Playground to the ATM network, and we have not yet added
datatypes to the veneer for supporting continuous media (such as andio and video, see Section 6).
Data Transmission Ordering: In [42], we have present two incremental distributed algorithms
for computing biconnected components in a dynamically changing graph. The serial algorithm
requires that the environment issue only one update request at a time. The concurrent algorithm
allows the environment to make multiple concurrent update requests. The algorithm serializes the
requests within each connected component with each node in a connected component having the
same view of the update sequence, while allowing requests in different connected components to
proceed in parallel. The algorithm uses logical clocks and collects timestamps from nodes in a
connected component in order to achieve identical view of the update sequence across nodes. As
the graph changes dynamically, ordering information is propagated to ensure consistency.

Our concurrent algorithm has a worst case communication complexity of O(b+ ¢) messages for

13



an edge insertion and O(b + ¢) messages for an edge removal, and a worst case time complexity
of O(c) for both operations, where ¢ is the maximum number of biconnected components in any
of the connected components during the operation, b is the number of nodes in the biconnected
component containing the new edge, and &' is the number of nodes in the biconnected component
in which the update request is being processed.

Reconfiguration and Process Migration: Dynamic reconfiguration is explored in the context
of I/O abstraction [41]. The properties of I/O abstraction, particularly the clear separation of
computation from communication and the availability of a module’s state information, help sim-
plify the reconfiguration strategies. Both logical and physical reconfiguration are discussed, with
an emphasis on a new module migration mechanism that avoids the expense and complication
of state extraction techniques. Logical reconfiguration may involve adding or removing modules,
adding or removing logical communication channels, replacing one module by another, or redi-
recting communication. Physical reconfiguration may involve reassigning a module to a different
processor (module migration) or assigning the communication to a different path in the network.
The flexibility of our migration mechanism is illustrated by presenting three different paradigms:
the reactive paradigm, active restart paradigm, and active transaction paradigm, for constructing
reconfigurable modules that are compatible with this new mechanism.

In our work, we considered reconfiguration in the context of a static presentation. A program
must publish its data structures before beginning execution and cannot add or remove entries from
its presentation. This is not a very serious restriction as a “changing” presentation can be achieved
in the static case using element-to-aggregate connections. For example, a server can publish one
variable that is a set of addresses and any number of clients can talk to the server through an
element-to-aggregate connection with this set. However, a dynamic presentation may be needed
for other purposes, for example protection or temporary communication. One way to achieve this
is to restart the program with its initial presentation, and only the values of variables that are still
in the current presentation will be updated in the new machine.

We propose to implement the reactive paradigm for reconfiguration and integrate it with the
Playground environment as part of this proposal.

5 Plan of Completion

The research project is divided into four tasks and will require twelve months to complete including
write up of the dissertation. The task plan is shown in the table below.
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Tasks

Expected completion time

Playground Implementation:

Veneer with simple datatypes
Veneer with aggregates (except sets)
Playground Protocol

August 1994
August 1994
August 1994

Connection Manager:

Simple connections

Bootstrap connections with other applications
Type checking

Element to Aggregate connections

Protection checking

Playground documentation

August 1994
August 1994
August 1994
September 1994
September 1994
October 1994

Reconfiguration:
Module migration algorithms description

Reactive paradigm
Integration and Documentation

August 1993
January 1995
February 1995

Data Transmission Ordering

BCC algorithms description April 1994
Static causal ordering algorithm March 1995
Serialized BCC algorithm April 1995

Integration of serialized algorithm with causal ordering | May 1995

Documentation and technical write up July 1995
Connection Management Network Protocol:
CMNP specification July 1994

CMNP verification December 1994

6 Future Related Work and Integration

Note that I/O abstraction has a “read-always” semantics. Hence, traditional database concurrency
control theory [6] does not carry over directly to I/O abstraction systems. Rather than actively
performing an atomic read on an object, an application has continuous access to external updates
through its presentation, so it is difficult to identify what would constitute a “read lock.” In many
applications, a mechanism (e.g., write locks) is required to prevent race conditions on updates to
published data. However, this is not always required. For example, when only reactive control is
used at the endpoints of bidirectional connections, it may be perfectly reasonable for both endpoints
to write simultaneously.

Our work on concurrency control will concentrate on developing correctness conditions and
mechanisms for specifying concurrency control requirements for I/Q abstraction applications. Based
on these conditions, we will develop concurrency control algorithms to support a range of concur-

rency control requirements. The usual concurrency control concerns, such as deadlock, will be
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considered. We expect close ties between the message ordering restrictions and the concurrency
control correctness conditions.

In The Programmers’ Playground, the connections should be designed to accommodate both
discrete data (such as sets of integers) and continuous data (such as audio and video) in a single
high-level mechanism, with differences in low-level communication requirements handled automati-
cally by the run-time system according to data type information. Synchronization of media streams
will play an important role in determining the usefulness of continuous media datatypes. The
simplest example of media synchronization is the synchronization of audio and video information.
ATM network protocols provide some synchronization services, but our main concern is in how the
programmer will specify synchronization requirements and how the run-time system will implement
those requirements in terms of the primitives provided by the network. We plan to develop multi-
media datatypes whose semantics include synchronization requirements. For example, in addition
to video and audio data types, we plan to support higher level objects such as media streams that
can be composed and spliced together to form other media streams. Then, by treating real time
as a primitive stream, we will be able to specify objects with complex synchronization and timing
requirements.

It will be important to distribute the functionality of the connection manager in order to provide
a scalable service. We plan to provide an evolving logical hierarchy of connection managers. Qur
plan is to have the connection manager operate with local knowledge, so that each user could
have one connection manager. Connections between applications of different users is handled by
first including the presentation of one connection manager into the other connection manager. For
example, when a connection between modules of user A and user B is required, the connection
manager of user A can become an ordinary application in user B’s connection manager. Now user
B’s connection manager has access to the presentations of user A’s modules.

The Programmers’ Playground when integrated with proper concurrency control algorithms
and multimedia datatypes and media synchronization mechanisms would simplify the construction
of distributed multimedia applications, such as digital libraries, efficient video conferencing, and

medical imaging.
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