
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-15-2019

Real-Time Reliable Middleware for Industrial Internet-of-Things Real-Time Reliable Middleware for Industrial Internet-of-Things

Chao Wang
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Wang, Chao, "Real-Time Reliable Middleware for Industrial Internet-of-Things" (2019). McKelvey School of
Engineering Theses & Dissertations. 459.
https://openscholarship.wustl.edu/eng_etds/459

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Feng_etds%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/459?utm_source=openscholarship.wustl.edu%2Feng_etds%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST.LOUIS

School of Engineering & Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Christopher Gill, Chair
Chenyang Lu, Co-Chair

Kunal Agrawal
Sanjoy Baruah

Jing Li

Real-Time Reliable Middleware for Industrial Internet-of-Things
by

Chao Wang

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2019
St. Louis, Missouri

© 2019, Chao Wang

Table of Contents

List of Figures ... v

List of Tables .. viii

Acknowledgments .. ix

Abstract ... xii

Chapter 1: Introduction .. 1

1.1 IIoT Overview .. 1

1.2 Research Challenges and Dissertation Contributions 3

1.2.1 Temporal Requirements in Cyber-Physical Event Processing............. 3

1.2.2 Reliability and Timing in Messaging .. 4

1.2.3 Efficiency in Reliable and Timely Edge Computing 5

1.3 Dissertation Organization ... 6

Chapter 2: Real-Time Cyber-Physical Event Processing 8

2.1 Introduction ... 8

2.2 Related Work ... 10

2.3 Cyber-Physical Event-Processing (CPEP) Model 12

2.3.1 Event Processing ... 13

2.3.2 Absolute Time Consistency.. 14

2.3.3 Relative Time Consistency... 15

2.4 CPEP Design ... 16

2.4.1 Prioritized Processing and Sharing .. 16

2.4.2 Concurrent Processing and Replacement....................................... 18

2.4.3 Time Consistency Enforcement and Shedding 20

2.4.4 Discussion on Distributed Settings .. 21

ii

2.5 CPEP Framework Implementation .. 23

2.6 Empirical Evaluation ... 25

2.6.1 Experiment Set 1: Comparison with Apache Flink.......................... 28

2.6.2 Experiment Set 2: CPEP Prioritization .. 35

2.6.3 Experiment Set 3: Sharing Operators... 38

2.6.4 Experiment Set 4: Enforcing Absolute Time Consistency 40

2.6.5 Experiment Set 5: Enforcing Relative Time Consistency 42

2.6.6 Experiment Set 6: Overhead Measurements 46

2.7 Concluding Remarks .. 47

Chapter 3: Fault-Tolerant Real-Time Messaging .. 48

3.1 Introduction ... 48

3.2 Related Work ... 51

3.3 Fault-Tolerant Real-Time Messaging (FRAME) Model.............................. 53

3.3.1 Overview and Notation ... 54

3.3.2 Assumptions and Requirements .. 55

3.3.3 Temporal Semantics and Timing Bounds 56

3.3.4 Enabling Differentiated Processing and Configuration 58

3.4 The FRAME Architecture... 62

3.4.1 Configurable Scheduling/Recovery Facility 62

3.4.2 Dispatch-Replicate Coordination... 64

3.5 FRAME Implementation .. 65

3.6 Experimental Results ... 66

3.6.1 Experiment Setup .. 66

3.6.2 Message Loss-Tolerance Enforcement ... 69

3.6.3 Latency Penalties Caused by Fault Recovery 72

3.6.4 Latency Performance During Fault-Free Operation 75

3.6.5 Key Lessons Learned .. 76

3.7 Concluding Remarks .. 76

Chapter 4: Adaptive Real-Time Reliable Edge Computing 77

4.1 Introduction ... 77

iii

4.2 Related Work ... 79

4.3 System Model and Definition ... 81

4.3.1 Service Model and Fault Assumption ... 82

4.3.2 Requirements and Problem Statement.. 83

4.4 Analysis for Data Replication .. 84

4.4.1 Need for Data Replication ... 84

4.4.2 Deadline for Data Replication .. 85

4.5 The ARREC Architecture ... 88

4.5.1 Selective Lazy Data Replication .. 90

4.5.2 Fault Detection and Recovery... 91

4.6 Implementation... 91

4.7 Empirical Evaluation ... 92

4.7.1 Experiment Design and Setup .. 92

4.7.2 Message Loss-Tolerance Enforcement ... 96

4.7.3 Mitigation of Overhead Latency.. 100

4.8 Concluding Remarks .. 103

Chapter 5: Conclusions ... 105

References .. 107

iv

List of Figures

Figure 1.1: An Illustration of Industrial Internet-of-Things (IIoT)..................... 2

Figure 2.1: Cyber-physical event processing. .. 9

Figure 2.2: An example graph of event processing streams: si denotes a supplier;
ci, a consumer; oi, an operator. .. 13

Figure 2.3: An example timeline of event processing for consumer c2 in Figure 2.2.
Each vertical arrow marks either the event creation times at the
suppliers or the event arrival time at the consumer......................... 15

Figure 2.4: The CPEP Architecture (H: high priority, M: middle priority, L: low
priority). ... 17

Figure 2.5: Implementation within the TAO event channel. 24

Figure 2.6: The graph of event processing streams for Experiment Sets 1, 2, and 5. 27

Figure 2.7: The graphs of event processing streams for Experiment Sets 3, 4, and 6. 27

Figure 2.8: Experiment Set 1: Latency results of high-priority streams. 30

Figure 2.9: Experiment Set 1: Latency results of middle-priority streams. 31

Figure 2.10: Experiment Set 1: Latency results of low-priority streams................ 31

Figure 2.11: Experiment Set 1: Throughput results of each priority level. 33

Figure 2.12: Experiment Set 1: Memory footprint comparison. 34

Figure 2.13: Experiment Set 2: Latency results. ... 36

Figure 2.14: Experiment Set 2: Latency results (sporadic events). 37

Figure 2.15: Experiment Set 3: Latency results; there was no output event of low
priority for the case ‘w/o sharing’ in presence of nine copies of the
whole graph. .. 39

Figure 2.16: Experiment Set 4: Timely-throughput under different loads. 41

Figure 2.17: Experiment Set 4: Total timely-throughput (Mbps)........................ 42

v

Figure 2.18: Experiment Set 5: Percentage of relatively valid events with no relative
validity shedding. .. 43

Figure 2.19: Experiment Set 5: Relative validity shedding with relative validity
interval = 5.5 ms... 43

Figure 2.20: Experiment Set 5: Relative validity shedding with relative validity
interval = 7.0 ms... 45

Figure 2.21: Experiment Set 5: Relative validity shedding with relative validity
interval = 8.5 ms... 45

Figure 3.1: An Illustration of IIoT Edge Computing. 50

Figure 3.2: Example timelines within the scope of message creation and delivery,
and the relation between events happening in each component.......... 54

Figure 3.3: Example timelines for the proof of Lemma 1. 57

Figure 3.4: The FRAME Architecture... 60

Figure 3.5: Implementation of FRAME within TAO’s Real-Time Event Service. .. 65

Figure 3.6: Topology for empirical evaluation. Dotted lines denote failover paths. 66

Figure 3.7: CPU Utilization for Each Configuration. 69

Figure 3.8: Value of ∆BS for a topic in category 5 through a 24-hour duration. ... 70

Figure 3.9: End-to-end latency before, upon, and after fault recovery (category 0,
Ti = 50, Di = 50). ... 71

Figure 3.10: End-to-end latency before, upon, and after fault recovery (category 2,
Ti = 100, Di = 100). .. 72

Figure 3.11: End-to-end latency before, upon, and after fault recovery (category 5,
Ti = 500, Di = 500). .. 73

Figure 4.1: An illustration for the proof of Lemma 4. 86

Figure 4.2: ARREC System Architecture... 89

Figure 4.3: Interactions between ARREC components. 90

Figure 4.4: Illustration of lazy data replication. .. 90

Figure 4.5: Implementation of ARREC within TAO’s Real-Time Event Service. .. 91

Figure 4.6: Experimental topology.. 94

Figure 4.7: Success rate for loss-tolerance requirement (%). 95

vi

Figure 4.8: Network bandwidth consumption for replication traffic from the Pri-
mary to the Backup. .. 97

Figure 4.9: CPU% accounted for both the processing threads and the replication
thread in the Primary... 98

Figure 4.10: CPU% for the input proxy thread in the Backup. 99

Figure 4.11: Latency (ms) during and after fault recovery (large group). 101

Figure 4.12: 99th percentile latency (large group). .. 101

Figure 4.13: 99th percentile latency (small group). .. 102

Figure 4.14: Latency (ms) during and after fault recovery (small group). 103

vii

List of Tables

Table 2.1: Experiment Set 1: The 99th percentile latency (ms). 29

Table 2.2: Experiment Set 6: Latency of event queues................................... 47

Table 3.1: Comparison of Related Middlewares and Standards. 53

Table 3.2: Example Topic Specifications. .. 59

Table 3.3: Algorithm for Dispatch-Replicate Coordination. 64

Table 3.4: Success Rate for Loss-Tolerance Requirement (%). 68

Table 3.5: Success Rate for Latency Requirement (%). 75

Table 4.1: Topic Specification for Empirical Evaluation. 93

viii

Acknowledgments

The completion of this dissertation would have been impossible if I work alone by myself.

I feel very grateful to have both Dr. Chris Gill and Dr. Chenyang Lu as my advisors in

my Ph.D. training. I also thank Dr. Jonathan Turner for his guidance in my early year of

this journey. To Dr. Jing Li I give my thanks, for technical discussions in many aspects

of theoretical computer science research, as well as for her encouragements whenever I felt

stuck along the way. I thank Dr. Kunal Agrawal for her technical feedbacks in improving

my dissertation work, and I thank Dr. Sanjoy Baruah for his advice in how to position my

research work in a broader context. I cherish those days working with them and learning

from them.

I thank Byron Austin, a senior network engineer in Engineering IT, for his great help in

configuring our edge-cloud test-bed for project FRAME. My thanks must also go to Chong

Li, James Orr, Haoran Li, and Son Dinh, and members of the Applied Research Lab and the

Cyber-Physical Systems Lab, and members in the departmental office, for all their techinal

helps as well as daily accompany during my stay in the department.

Last but not least, I thank God the Father for granting me a chance to come to know Him,

for giving me a willing heart to receive Jesus Christ His Son as my personal savior, and for

His daily grace to sustain me. I often recalled that one Sunday morning, during a prayer

ix

meeting, an elderly lady of our church gave thanks on behalf of me, saying that the purpose

that I come to the United States is to know Him. I truly believe so. With this dissertation I

offer my thanksgiving.

Chao Wang

Washington University in Saint Louis

May 2019

x

Dedicated to my parents.

xi

ABSTRACT OF THE DISSERTATION

Real-Time Reliable Middleware for Industrial Internet-of-Things

by

Chao Wang

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2019

Professor Christopher Gill, Chair

Professor Chenyang Lu, Co-Chair

This dissertation contributes to the area of adaptive real-time and fault-tolerant systems

research, applied to Industrial Internet-of-Things (IIoT) systems. Heterogeneous timing and

reliability requirements arising from IIoT applications have posed challenges for IIoT services

to efficiently differentiate and meet such requirements. Specifically, IIoT services must both

differentiate processing according to applications’ timing requirements (including latency,

event freshness, and relative consistency of each other) and enforce the needed levels of

assurance for data delivery (even as far as ensuring zero data loss). It is nontrivial for an IIoT

service to efficiently differentiate such heterogeneous IIoT timing/reliability requirements to

fit each application, especially when facing increasingly large data traffic and when common

fault-tolerant mechanisms tend to introduce latency and latency jitters.

This dissertation presents a new adaptive real-time fault-tolerant framework for IIoT systems,

along with efficient and adaptive strategies to meet each IIoT application’s timing/reliability

requirements. The contributions of the framework are demonstrated by three new IIoT

middleware services: (1) Cyber-Physical Event Processing (CPEP), which both differentiates

application-specific latency requirements and enforces cyber-physical timing constraints, by

xii

prioritizing, sharing, and shedding event processing. (2) Fault-Tolerant Real-Time Messag-

ing (FRAME), which integrates real-time capabilities with a primary-backup replication

system, to fit each application’s unique timing and loss-tolerance requirements. (3) Adaptive

Real-Time Reliable Edge Computing (ARREC), which leverages heterogeneous loss-tolerance

requirements and their different temporal laxities, to perform selective and lazy (yet timely)

data replication, thus allowing the system to meet needed levels of loss-tolerance while reducing

both the latency and bandwidth penalties that are typical of fault-tolerant sub-systems.

xiii

Chapter 1

Introduction

1.1 IIoT Overview

The term Industrial Internet-of-Things (IIoT) refers to a category of networked computing

systems that observe and interact with a physical environment, in particular through systems

of sensing data generated by embedded devices, especially for applications that need to

maintain descriptive, predictive, and prescriptive analytics of the environment and the system

therein. An IIoT system is thus a cyber-physical system (CPS) spanning both local and

remote contexts.

An example of such an IIoT system is found in wind farms, which consist of several hundreds

of wind turbines that produce electricity (Figure 1.1). Within each local context (referred to

as an edge), a network of sensors and actuators are used to monitor and control a set of wind

turbines, to improve operating efficiency and to maintain system reliability. For example, to

adjust their orientation and speed according to the current windspeed and direction. With

recent advancements in cloud computing, edge computing, and machine learning techniques,

1

Wireless sensor network
 (e.g., in a wind farm)

Private cloud for training and storage

Machine learning
training ...

...
Applications

...

IIoT
services

Edge 1

Database

...
Edge 2 Edge N

...

Cloud

Figure 1.1: An Illustration of Industrial Internet-of-Things (IIoT).

large numbers of data collected from sensor networks can be used for local applications, for

data storage in a cloud, and for sharing of data between edge systems [74].

To improve both performance and cost, increasing numbers of IIoT applications are deployed

locally, that is, as edge systems. Moving applications to the edge of a larger cloud that

hosts, e.g., latency-sensitive services, can reduce the application’s response time to local

stimuli, as well as can saving costs for cloud I/O and hosting. This dissertation focuses on

IIoT services at the edge of a cloud. Modern edge computing platforms, such as Amazon

AWS IoT Greengrass [1] and Microsoft Azure IoT Edge [56], use local IIoT services to

perform computation and messaging, and results are either delivered to local applications or

transported into the cloud. In this setting, facing increasingly high-volume and heterogeneous

data traffic, an IIoT service can become a performance bottleneck. How to make IIoT services

real-time, reliable, and efficient remains a real, challenging, and important research problem,

which is the focus of this dissertation.

2

1.2 Research Challenges and Dissertation Contributions

IIoT applications typically have requirements for Quality-of-Service (QoS). Of particular

interest are those pertaining to timing and delivery. In general, the research challenges are

to have an IIoT service efficiently meet both types of QoS requirements while mitigating

potential conflicts arising from that combination. Specifically, this dissertation address the

challenges in three settings: (1) Cyber-physical event processing, where events are subject to

time consistency criteria and latency requirements, and the workloads for processing events

are nontrivial; (2) Messaging, where there is a lower per-message processing workload, but

each message is subject to latency and/or loss-tolerance requirements; (3) Edge computing,

where processing workload per data element varies, and in addition to needing to meet both

latency and loss-tolerance requirements, it is critical that the IIoT service is efficient. The

following describes each of these three topics in detail.

1.2.1 Temporal Requirements in Cyber-Physical Event Processing

Research Challenge: Cyber-physical event processing deals with events that carry data

describing physical phenomenon [19, 46, 53]. An IIoT service takes a sensor data, tranforms

it, and then delivers it to the applications that subscribe to the result. In IIoT applications

such as wind turbine monitoring, events give a sequence of observations regarding physical

states (e.g., windspeed, orientation, power consumption/generation, temperature, etc.), which

may change over time. In addition, different types of events may have temporal dependencies

on each other (e.g., for multi-sensor fusion [25, 61, 64, 68] or data alignment). In those

cases, out-dated data should be marked or discarded. In addition, IIoT applications often

have different levels of latency requirements (e.g., emergency response vs. logging), and it

is critical that an IIoT service can serve each application according to its need. Moreover,

3

an IIoT service may perform common processing (e.g., FFT and encryption) and complex

processing (e.g., data fusion), and as different applications may require same processing of

events, duplicated processing may waste computational resources. Finally, it is critical to

properly leverage multi-core processors to improve processing throughput.

Dissertation Contribution: This dissertation describes a new real-time middleware called

CPEP, for cyber-physical event processing, with the following four features: (1) Enforcement

of temporal validity and shedding maintains temporal validity constraints, identifying and

possibly removing out-dated data; (2) Configurable processing operations integrate both

simple and complex event processing; (3) Processing prioritization and sharing ensure that

higher-priority events are processed first and reduce the likelihood of starvation of lower-

priority ones; (4) Efficient concurrent processing minimizes memory allocation for events and

can scale up throughput with the number of CPU cores.

1.2.2 Reliability and Timing in Messaging

Research Challenge: Unlike cyber-physical event processing, an IIoT messaging service

simply delivers a message of a certain topic to the applications that subscribe to the topic [59,

60, 66]. The per-message workload within the IIoT service is low, but at the same time

the service must accommodate many more messages. In addition, IIoT applications have

requirements for message latency and reliable delivery, and the needed levels of assurance

are often combined in heterogeneous ways. For example, while monitoring applications

may need hundreds of milliseconds bounds on latency and can tolerate a small number

of consecutive message losses (e.g., by computing estimates using previous or subsequent

messages), logging applications may only require sub-second latency but cannot tolerate any

message loss. Besides latency differentiation, an IIoT service must properly differentiate

messages’ loss-tolerance levels, since fault-tolerant approaches in general tend to slow down

4

a system [9, 13] or impose greater resource consumption [35, 63]. Finally, an IIoT service

needs to account for both the discrepancy between traffic periods within an edge (e.g., tens

of milliseconds) and those to a cloud (e.g., at least a significant fraction of a second), and

the discrepancy between network latency within an edge (e.g., sub-millisecond) and that to

a cloud (e.g., up to sub-second). Premature scheduling of cloud-bound traffic may delay

edge-bound, latency-sensitive traffic.

Dissertation Contribution: This dissertation describes (1) a new fault-tolerant real-time

messaging model, and (2) a new fault-tolerant real-time middleware called FRAME, for

fault-tolerant real-time messaging. The new model gives a holistic description of how message

publishers and a backup messaging broker may participate in recovering lost messages,

and proves timing bounds for real-time fault-tolerant actions in terms of traffic/service

parameters. The new middleware can leverage the proved timing bounds to support efficient

and appropriate message differentiation to meet each of the latency and loss-tolerance

requirements, and can mitigate latency penalties caused by loss recovery.

1.2.3 Efficiency in Reliable and Timely Edge Computing

Research Challenge: In general, an IIoT service should be able to handle both in-band

processing (e.g., as in event processing) and large amounts of traffic (e.g., as in messaging).

With the edge computing paradigm, the aforementioned challenges manifest themselves in

terms of serverless computation (e.g., AWS Lambda [2]), where an IIoT service as an edge

computing engine performs in-band computation for various input data traffic, and delivers

computed results to applications of interest. It is critical to understand how the changes in

traffic patterns/load and computational load may impact system performance; in particular,

how they may impact the data-loss and latency performance. Furthermore, a practical

5

systems solution is needed to meet required levels of data-loss and latency assurance despite

load changes.

Dissertation Contribution: This dissertation gives both theoretical and practical con-

tributions for the above challenge. In the context of the Primary-Backup Replication

model [15], this dissertation formulates the relation between (1) frequency of data replication

and (2) deadline to complete temporally assured replication. A novel selective, lazy data

replication strategy is described, and is implemented in a middleware for adaptive real-time

reliable edge computing (ARREC). The performance of ARREC is evaluated empirically,

demonstrating that it can ensure needed data-loss tolerance levels while reducing both latency

penalties for data computation/delivery, and network bandwidth consumption.

1.3 Dissertation Organization

The rest of the dissertation is structured as follows. Chapter 2 first presents the motivation

and definition of cyber-physical event processing, followed by the design and implementation

of CPEP the IIoT service middleware, showing how CPEP can address the aforementioned re-

search challenge of meeting temporal requirements. The chapter concludes by a comprehensive

evaluation of CPEP’s empricial performance.

Chapter 3 brings into picture the fault-tolerance aspect of IIoT messaging services, and

presents FRAME the fault-tolerant real-time messaging service middleware. The chapter

begins with the background and motivation of such an IIoT messaging service, followed by an

illustration of capabilities of FRAME using typical IIoT traffic configuration, and concludes

with empirical validation of FRAME’s performance.

6

Chapter 4 completes the scope of this dissertation by addressing the efficiency aspect of IIoT

services. In the context of serverless computation in edge computing, the chapter describes

patterns of processing and traffic in IIoT systems, and then presents ARREC the adaptive

real-time reliable edge computing middleware. The timing analysis framework of ARREC

is introduced, followed by a design of system architecture that leverages the timing bounds

from the analysis. Finally, the chapter concludes by a description of an implementation of

ARREC and empirical evaluation of its performance.

For clarity and to make a specific comparison, I describe both related work and system model

in the same chapter of the specific IIoT service middleware. In Chapter 5, I give concluding

remarks of this dissertation.

7

Chapter 2

Real-Time Cyber-Physical Event

Processing

2.1 Introduction

Real-time event processing is essential for cyber-physical systems (CPS), such as Industrial

Internet of Things [26, 28, 45] systems, which must perform operations on sensor data carried

by events and must respond to stimuli with quick and correct actions (e.g., in milliseconds [42,

44]). For example, smart electric grid applications require latency to be less than 50 ms and

processing operations are conducted near the edge of the network to the extent possible [44].

Multi-sensor fusion is required by many real-world applications such as position estimation,

obstacle detection, and object tracking [25, 61, 64, 68]. By synthesizing data supplied

by different sensors, multi-sensor fusion offers subscribers a more cohesive and reliable

assessment of the environment. Such processing is typically multi-stage. For example, data

from sensors (event suppliers) is first passed through one or more filters for noise reduction,

8

Cloud

Edge cloud

FFT EKF Sensor Fusion...

Actuation Sensing

Cyber-physical
event processingApplications

Multi-core platform

Figure 2.1: Cyber-physical event processing.

and then a Fast Fourier Transform (FFT) is applied to the result to obtain frequency domain

representations. Results from different processing streams are then combined, producing an

event that represents a broader-spectrum assessment for applications (event consumers).

Real-time cyber-physical event processing must support configurable complex operations, meet

applications’ latency requirements, enforce temporal validity of events, and leverage multi-

core platforms, as Figure 2.1 illustrates. First, applications often perform simple common

operations (e.g., FFT) as well as complex operations that may be realized by combining

other common operations (e.g, a multi-sensor fusion realized by filters, FFTs, etc.). Second,

a cyber-physical system must accommodate applications’ different latency requirements, and

should allow applications to share processing and data. Duplicating complex operations (or

even portions of them) across application features wastes both communication bandwidth

and computational resources, and re-implementing such operations for each application

may unnecessarily increase software complexity and decrease software reliability. Third,

cyber-physical applications are often subject to temporal validity constraints. For example,

for automotive driving features such as adaptive cruise control, where data from sensors are

fused to provide range estimates, the relevance of each sensor reading may decrease over time,

and out-dated data should be discarded. Finally, to better serve the needs of real-time edge

9

computing [45], an event processing service must efficiently work with streams of events in

terms of memory allocation and throughput.

To address these needs, in this Chapter we introduce a real-time middleware for cyber-physical

event processing (CPEP), with the following four features: Configurable processing operations

integrate both simple and complex event processing; Processing prioritization and sharing

ensure that higher-priority events are processed first and reduce the likelihood of starvation of

lower-priority ones; Enforcement of temporal validity and shedding maintains temporal validity

constraints, identifying and removing out-dated data; and Efficient concurrent processing

minimizes memory allocation for events and can scale up throughput with the number of

CPU cores.

We implemented CPEP atop TAO, a mature and widely used open-source middleware [38, 62]

by adding the above capabilities to its Real-Time Event Service. We compared CPEP with the

Apache Flink stream processing platform [3] and our empirical results show that CPEP can

(through prioritization) better prevent higher-priority processing from incurring unnecessary

delay, (through operation sharing) help reduce latency of lower-priority processing, and

(through shedding) improve throughput of time-consistent events.

2.2 Related Work

Cyber-physical event processing is an essential part of modern Industrial Internet-of-things

architectures [41], and in many use cases [28, 45] it is critical to minimize the time it takes to

respond to stimuli. To this end, both messaging middleware (for example, Kafka [47]) and

the Data Distribution Service (DDS [60]) have been deployed. Kafka provides fault-tolerance

and load-balancing for delivery of time-stamped log messages, and provides an interface for

implementing message processing, but does not differentiate messages according to consumers’

10

priority levels. DDS provides QoS options for data (event) delivery, but does not process

events. In contrast, CPEP both differentiates messages according to consumers’ priority

levels and processes event subject to time consistency.

Apache Flink is an open-source stream processing framework featuring high throughput,

low latency event processing and windowing, and fault tolerance [3]. The Flink framework

accepts multiple event streams and performs stream transformations according to a plan.

The results are new event streams, which in turn can be used for further transformations or

be delivered to event subscribers. Flink supports a distributed runtime environment, where

JobManagers (masters) receive the processing plans from clients and then distribute them

to TaskManagers (workers) for execution. Windowing in Flink is either time driven (e.g.,

every 30 seconds) or event driven (e.g., every 100 events) and is typically used for event

aggregation. Flink does not support absolute or relative time consistency enforcement, both

of which are critical to real-time cyber-physical event processing, nor does it differentiate

stream processing. In contrast, CPEP supports both types of time consistency enforcement

and can prioritize stream processing.

Time consistency has been studied in real-time databases [67, 73], where absolute time consis-

tency means that the datum being used by a transaction still carries a timely measurement,

and relative time consistency means that the data being used by a transaction are updated

within a specified time interval [67]. In our CPEP architecture, we extend the definition

of time consistency for real-time cyber-physical event processing, and provide a design and

implementation to enforce time consistency and to shed invalid work.

Time consistency is needed by many real-world applications. For example, a fire detection

system may deploy a rule that triggers an alarm when both smoke and a high temperature

occur within a certain time interval [20]; in modern automotive systems, conflicting commands

11

sent to the same set of actuators (e.g., throttle actuator and/or brake actuator) within a

certain time interval may cause unsafe interactions [24]; Dominguez et al. also surveyed other

important feature interactions in embedded systems [24].

In social network analysis [36], the popularity of a post, as well as the size of the involved

community, is determined by scores that decrease over time. While social network analysis

is typically conducted at the scale of seconds or even hours, in our CPEP middleware we

enforce time consistency at scales as fine as milliseconds, a resolution required by many

cyber-physical applications. The field of Complex Event Processing (CEP) [53] offers rich

semantics for expressing stimuli using sets of events [19, 46]. GraphCEP [54] processes events

for social network analysis, and implements timetables for updating the ranking of posts and

comments according to the progress of time. GraphCEP maintains time consistency (at the

timescale of hours and seconds) but does not share computation among processing streams.

In contrast, CPEP maintains time consistency at the timescale of milliseconds, and supports

sharing of computation between processing streams.

2.3 Cyber-Physical Event-Processing (CPEP) Model

Our event processing model consists of three kinds of components: suppliers, an event

service, and consumers. Each supplier pushes typed data items, which we call events, to the

event service; the event service processes the events according to a graph that defines the

needed operations and their input/output events, as illustrated in Figure 2.2; a consumer

subscribes to the output events of operations. Each supplier pushes events either periodically

or sporadically. Each consumer is associated with a priority level. In practice, a supplier

(consumer) may be mapped to a distinct sensor or other device, and multiple suppliers

12

o7

o6

o5

o4

o3

o2

o1
s1

s2

s3

s5

s4

High priority

Middle priority

Low priority

c1

c2

c3

c4 Low priority

Figure 2.2: An example graph of event processing streams: si denotes a supplier; ci, a
consumer; oi, an operator.

(consumers) may be mapped to a single device. The event service is executed within a single

host.

In the following, we first define the processing within the event service, and then we define

absolute time consistency and relative time consistency [67, 73]1, which identify the temporal

validity of an event or a set of events, respectively.

2.3.1 Event Processing

Event processing in our model is configured as a directed acyclic graph, as illustrated in

Figure 2.2, and paths along the edges in the graph define the data processing streams for

each consumer. The nodes of the graph are event processing operators, such as FFT, and

the edges denote the precedence relations between operators. For example, Figure 2.2 shows

processing streams for four consumers, and the streams for consumer c2 involve operators o1,

o2, and o6. Operator o1 has three downstream operators (o5, o6, and o7) and operator o6 has

two upstream operators (o1 and o2). A complex operation, such as multi-sensor fusion, may

be built from a set of common operators. Execution of an operator produces an event. We

call events that are pushed from one operator to another internal events, the events pushed

from suppliers supplier events, and the events pushed to consumers consumer events.
1We extend the definitions to make them suitable for real-time cyber-physical event processing, as described

in Sections 2.3.2 and 2.3.3, respectively.

13

The event service schedules operators to process events. An operator is ready for execution if

its specified dependencies are satisfied, e.g., its upstream operators have completed processing

and all of its input events have arrived. The event service adds ready operators to the

execution schedule. After execution, the same events will never be used again by the same

operator. This ensures that cyber-physical operations, such as multi-sensor fusion, do not

(prematurely) process newly arriving data in combination with previously used data.

In Section 2.4, we describe how CPEP first prioritizes operators based on the consumers’

priority levels and then schedules the operators using a fixed-priority preemptive scheduling

policy. We assume that the configuration of processing streams is specified by domain experts

developing a particular application.

2.3.2 Absolute Time Consistency

Event ei is temporally valid at time t if t falls within the absolute validity interval of ei,

defined by

abs(ei) = [tb(ei), te(ei)), (2.1)

where tb(ei) and te(ei) respectively define the beginning and the end of the interval. Because

only supplier events are associated with physical phenomena, we define an internal event’s

absolute validity interval to be the maximum overlap of all ei’s upstream supplier events’

absolute validity intervals: Let o(ei) be the operator that produces ei, and Iei be the set of

events required by operator o(ei). We have

tb(ei) = max{tb(u) | u ∈ Iei}; (2.2)

te(ei) = min{te(u) | u ∈ Iei}. (2.3)

14

S2 S1 S3 C2

t1 t2 t3 t4 t5 t7t6

Figure 2.3: An example timeline of event processing for consumer c2 in Figure 2.2. Each
vertical arrow marks either the event creation times at the suppliers or the event arrival time
at the consumer.

If ei is from a supplier, tb(ei) is defined to be the creation time of the event. For example, as

shown in Figure 2.3, [t1, t5), [t2, t7), and [t3, t6) respectively represent the absolute validity

intervals of the events from s2, s1, and s3, and an event for consumer c2 is temporally valid as

long as it would arrive at c2 before t5. We assume that each supplier event’s absolute validity

interval is also specified by domain experts developing a particular application.

2.3.3 Relative Time Consistency

Here we reuse the definition of absolute time consistency. In general, we say that sets of events

required by an operator may have relative time validity constraints, and each such constraint

describes a mutually dependent timed relation between the events in a set. Formally, we say

that Iei is temporally valid, if given sets Qj ⊆ Iei , j > 0, we have

|tb(ex)− tb(ey)| ≤ RQj
(2.4)

for every two events ex and ey in Qj. We call RQj
the relative validity interval of the set Qj.

From Equation (2.4), equivalently, Iei is temporally valid if

|tb(ep)− tb(eq)| ≤ RQj
(2.5)

15

for all Qj, where event ep is the earliest created and event eq the latest created in each Qj.

Equation (2.5) offers an efficient way to verify the relative time consistency at run-time,

which we will discuss in Section 2.4.3. As with absolute time consistency, we assume that set

Qj and interval RQj
are specified by domain experts.

2.4 CPEP Design

CPEP processes cyber-physical events as follows. First, the graph of event processing streams

is constructed from a configuration file, which specifies a list of the needed operators, with

each item containing the operator type, the number of operators that immediately follow, and

the indices to those operators. For each operator whose output event would be subscribed by

a consumer, the operator is associated with a priority level mapped from the consumer’s QoS

specification. The event service assigns priority levels to the other operators by propagating

upstream the priority levels of the consumer-facing operators, where each operator is assigned

the highest priority level among its downstream operators. For example, the operators in

Figure 2.2 would be partitioned into three priority groups (high: o1, o5; middle: o2, o6; and

low: o3, o4, o7). A supplier event’s priority level is set to the highest priority level among the

supplier-facing operators that would use it. With that priority assignment, the event service

then reacts to the events pushed from suppliers, processes them according to the graph of

event processing streams, and pushes the resulting events to consumers.

2.4.1 Prioritized Processing and Sharing

The top-level component for processing is an EventProcessor, and there is one EventProcessor

per priority level, as is illustrated in Figure 2.4. An EventProcessor includes two sets of

active objects [48]: a set of worker threads in charge of processing same-priority events, and

16

stable priority queue

FIFO queue

input thread

worker thread (odd priority level)

mover thread (even priority level)

Types of threads and queues

prio = example of priority level for a thread

EventProcessor (H)

to next component

to next component

to next component

from previous
component

InputQ PendingQ

MovingQ

MovingQ

InputQ PendingQ

InputQ PendingQ

prio = 99

prio = 97

prio = 95

prio = 99

prio = 98

prio = 96

EventProcessor (M)

EventProcessor (L)

Figure 2.4: The CPEP Architecture (H: high priority, M: middle priority, L: low priority).

a set of mover threads in charge of sharing the events that carry results of processing across

priority levels (e.g., o1 → o6, o2 → o3, and o5 → o7 in Figure 2.2).

A worker thread executes each operator that is ready due to arrival of a supplier event and/or

completion of its upstream operator(s), and will proceed to process the next supplier event

only when there remain no such pending operators. A mover thread shares the processing

result in a tuple that contains both a reference to the pending operator and a reference to

the resulting event.

CPEP prioritizes processing of streams and enforces the following two properties: (1) any

processing of a certain priority level will preempt any cross-priority sharing from the same

(or a lower) priority level; and (2) any cross-priority sharing from a certain priority level

will preempt any processing of a lower priority level. This is achieved by assigning adjacent

thread-level priorities to the worker and mover threads and scheduling them using a fixed

17

priority preemptive scheduling policy: starting from the EventProcessor of the highest priority

level, we first assign all its worker threads the highest thread-level priority, and then assign

all its mover threads the next thread-level priority. We then repeat the process for the

EventProcessor at the next priority level, using the remaining thread-level priorities. An

example priority assignment is shown in Figure 2.4.

Each EventProcessor has three queues. The InputQ buffers all supplier events of the same

priority level as that of the EventProcessor. The PendingQ holds the tuples for the subsequent

same-priority operators along the graph of processing streams, and the MovingQ holds the

tuples for cross-priority sharing. If cross-priority sharing is needed, the current worker thread

puts the corresponding tuple into the MovingQ. An idle mover thread then moves the tuple

from the MovingQ to the PendingQ(s) of the destination EventProcessor(s), which is then

processed by the worker thread of each destination EventProcessor.

2.4.2 Concurrent Processing and Replacement

To improve throughput and reduce latency, on a multi-core platform CPEP can deploy

multiple same-priority worker threads and execute independent operations concurrently

(including independent portions of a complex operation), and different-priority worker threads

can concurrently work using different CPU cores when possible. Concurrent processing is

available in the following two circumstances: (1) when there are multiple event arrivals, be it

from suppliers or from some preceding operators (for example, via sharing), and (2) when

an operator that is followed by multiple operators produces an event. In both cases, the

PendingQ will be populated by multiple tuples. Concurrent processing is made possible in the

following two ways: (1) Collaborative: idle worker threads can take pending operators from

the PendingQ after others have populated it. For example, operators o3 and o4 in Figure 2.2

may be processed concurrently. (2) Pipeline-like: CPEP allows a new series of processing

18

along the graph of streams to start before the completion of the current series. For example,

processing for operators o1 and o2 in Figure 2.2 may start even before the completion of

processing for operator o6.

For each EventProcessor, we set both the number of worker threads and the number of mover

threads to be equal to the number of CPU cores that are dedicated for processing, but do

not pin them to particular CPU cores. This can improve resource utilization and reduce

processing latency2; for example, threads of lower priority levels, upon being preempted, can

migrate to available CPU cores.

With concurrent and prioritized processing, for an operator requiring multiple events (e.g.,

operator o6 in Figure 2.2), it is possible that an upstream operator may produce a second

copy of a previously delivered event while the operator is waiting for an event from another

operator upstream. In this case, the worker thread taking the second event will replace the

previous event by it. Such replacement occurs each time a new event arrival is available,

until the needed event from the other upstream operator is available. The replacement only

takes effect on the immediate operator that receives the event, and other worker threads

processing operators downstream from it will keep using the event they took when processing

that operator.

CPEP can be configured to also enforce event replacement in the InputQ, in which case the

buffer length is at most the number of different supplier event types, and each new event

arrival of the same type will replace the previous event as long as the previous one has not yet

been dequeued. Without event replacement, lower-priority InputQ’s buffer needs to be large

enough to accommodate preemption. The buffer length can be determined from workload

profiling.
2See related discussion for multi-processor global scheduling and partitioned scheduling [22].

19

For both time and space efficiency, internally CPEP maintains a single instance for each

event creation, and all workers may access the same instance concurrently if they need it.

The event is stored in a centralized structure, named the EventStore, where each event is

typed according to the supplier/operator that produced it. To accommodate pipeline-like

concurrency, the EventStore includes one ring buffer per event type, and a new event of that

type is put into the ring’s next slot. The ring size is bounded by the maximum number

of temporally valid instances of that event type at any given time point; for example, the

ring size is equal to one if the event’s absolute validity interval is smaller than the event’s

inter-arrival time. Slots are reclaimed in a lazy fashion, and only if there is a new event

creation but no available slot. When needed, the slot holding the oldest event is reclaimed.

2.4.3 Time Consistency Enforcement and Shedding

CPEP enforces both absolute time consistency and relative time consistency, and can be

configured to have worker threads either mark or shed time-inconsistent events. With marking,

CPEP simply labels such events and lets consumers decide what to do with them. With

shedding, CPEP aborts any subsequent processing. Validation of both types of consistency is

performed upon the invocation of each operator in the event processing graph. In addition,

the absolute time consistency is also validated when the processing result is to be pushed to

a consumer.

Absolute Time Consistency Validation

Given event ei, to validate absolute time consistency, a worker thread compares the current

time t against te(ei), i.e., the end time of the absolute validity interval. The worker thread

reports a violation if t > te(ei). Upon a violation, if CPEP is configured to shed time-

inconsistent events, the worker thread will update the value of te(ei) to the earliest end time

20

among the absolute validity intervals of events on time-consistent upstream branches, and

will remove the event references of the time-inconsistent upstream branch.

Relative Time Consistency Validation

Let S = {e1, e2, ..., ek} be a set of event types subject to a specified relative validity interval,

and following Equation (2.5) we say that the relative time consistency is violated if the

maximum time difference of any two events in S is larger than the specified interval. To

validate such consistency, for each operator CPEP maintains an ordered list of timestamps,

one timestamp per event type in S. When a worker thread invokes an operator with a new

event, it first updates the list and then compares the time interval between the last and the

first element in the list against the relative time consistency interval. The worker thread

reports a violation if the latter interval is smaller.

The above design ensures the correctness of enforcement: for an operator, it is necessary to

keep track of the timestamp of each required event, because event replacements may occur

before all the needed events are available. For example, suppose we only keep track of the

earliest timestamp, say t1, and the latest timestamp, say t2, with respect to S. Given the

second arrival of an event type where its previous arrival has defined t1. In this case, the

second arrival will define t2, but t1 will become undefined since its previous definition was

from the same event type that now defines t2.

2.4.4 Discussion on Distributed Settings

In the current version of CPEP we describe a centralized service design, where a single service

host processes all events. Extension to support distributed settings deserves further study

but is beyond the scope of this dissertation. Here we discuss how the CPEP design may scale

21

to support distributed settings. In particular, we focus on support for mapping the operators

in the event processing graph onto multiple service hosts, to achieve distributed real-time

cyber-physical event processing.

An ideal operator mapping would improve performance while preserving both latency differen-

tiation and time consistency. In principle, (1) in terms of latency, where to map the operators

involves a trade-off between inter-host communication delays and intra-host contention delays.

Inter-host communication involves event transmission, and intra-host contention involves

queueing and preemption. Therefore, for example, given an event processing graph with

independent same-priority subgraphs, it may be advantageous to map operators of the same

subgraph onto a single service host (thus minimizing inter-host communication) and opera-

tors of different subgraphs onto distinct service hosts (thus reducing intra-host contention).

Further, it may be advantageous to map lower-priority operators onto multiple service hosts,

provided that the amount of higher-priority interference on a service host outweighs the

overhead of inter-host communication. (2) In terms of time consistency, events’ validity

intervals may drive mapping decisions, too. (3) In terms of memory efficiency, for multiple

operators that share events, it may be advantageous to map them onto the same service host,

to reduce additional event copies.

The operator mapping may be static, dynamic, or a hybrid. A static mapping may minimize

the runtime overhead, with both the operators pre-allocated to each service host and the

event routing pre-determined across service hosts. A downside is that the mapping may be

pessimistic in the presence of aperiodic events. A dynamic mapping may reduce the pessimism

at the cost of additional latency for runtime modules that must both decide where and how

to route events and load operators if needed. A hybrid mapping also may be advantageous;

for example, adopting static mapping for periodic events and dynamic mapping for aperiodic

events.

22

2.5 CPEP Framework Implementation

In the architecture illustrated in Figure 2.4, we implemented the MovingQ using C++11’s

standard priority queue, and to preserve the ordering of same-priority items we customized

the priority queue’s Compare type to use the timestamp taken at insertion as a tie-breaker.

We implemented the PendingQ using C++11’s standard FIFO queue. For the configuration

of event replacement, we implemented InputQ using C++11’s standard FIFO queues to hold

indices of each supplier event type. The indices are used to access a static storage for each

supplier event type, and the size of the storage is equal to the number of different supplier

event types. To enforce event replacement, each event arrival replaces the corresponding

entry in the storage, and we push its index to the FIFO queue only if there is no such an

index in the queue. For the configuration of no event replacement, we implemented InputQ

using C++11’s standard array as a ring buffer.

We protected the MovingQs, PendingQs, and InputQs with readers-writer locks to allow

concurrent checks for non-emptiness of each queue. Each slot in the EventStore is also

protected by a readers-writer lock to allow concurrent reads. To reduce priority inversion, we

applied the pthread priority inheritance protocol to all worker threads and mover threads.

At run-time, it takes O(1) time to validate absolute time consistency, by comparing te(ei)

against the current time. We maintain te(ei) by keeping track of the earliest end time for

each upstream branch of o(ei).

The graph of event processing was implemented by an array of structs, with each struct

including both data structures for a node in the graph and pointers that build the graph’s

topology. The size of the struct was 464 bytes, including padding. The construction of the

graph needs two linear scans through the array of structs: one scan for propagating priority

level information upstream, and another scan for propagating time consistency information

23

Subscription & Filtering

Supplier Proxies

Event Correlation

Dispatching

Consumer Proxies

EventProcessors

d
ir

e
c
ti

o
n

o
f

e
v
e
n
t

p
ro

c
e
s
s
in

g Supplier Proxies

Dispatching

Consumer Proxies

original with CPEP

Figure 2.5: Implementation within the TAO event channel.

downstream. Notably, all the constructions will complete before the system starts processing

events.

We implemented CPEP within the TAO real-time event service [38]. Event suppliers and

consumers in TAO are connected via one or more event channels, each containing five modules,

as shown in Figure 2.5. Event filtering is conducted at both the Subscription & Filtering

module and the Event Correlation module, where the former filters events according to event’s

type and source ID, and the latter filters events according to correlation rules defined over

event types. The Dispatching module dispatches events to the subscribed consumers. Prior

to our work, the TAO real-time event service only supported simple correlations (logical

conjunction and disjunction) over events’ headers, with non-sharing filters built per consumer.

In contrast, CPEP provides prioritized event processing, enforces time consistency, and

enables sharing of operations for better performance.

In our implementation, we kept the original interfaces of the Supplier Proxies and the

Consumer Proxies, so that suppliers and consumers can connect to the event channel as

before. We replaced the Subscription & Filtering and Event Correlation modules with Event-

Processors. We connected the Supplier Proxies to EventProcessors by a hook method within

the push method of the Supplier Proxies module to put each event into the corresponding

EventProcessor’s InputQ. Worker threads dispatch their output events reactively.

24

2.6 Empirical Evaluation

Here we present six sets of experimental results. In Set 1 we compare CPEP against Apache

Flink in terms of latency, throughput, and memory footprint; in Sets 2 to 5 we evaluate the

effectiveness of CPEP in terms of prioritization, sharing, absolute time consistency shedding,

and relative time consistency shedding, respectively; in Set 6 we present CPEP’s overhead

statistics. In all the experiments we enabled event replacement at InputQ; results of the

configuration with no event replacement have been reported in our previous work [71].

Our test-bed consists of three hosts: on Host 1 we ran all event suppliers (Pentium Dual-Core

3.2 GHz, Ubuntu Linux with kernel v.3.19.0); on Host 2 we ran the CPEP event service and

the Apache Flink server (Intel i5-4590 3.3 GHz four-core machine, Ubuntu Linux with kernel

v.4.2.0); on Host 3 we ran all event consumers (Pentium Dual-Core 3.2 GHz, Ubuntu Linux

with kernel v.3.13.0). We connected the three hosts via a Gigabit switch running in a closed

LAN. Host 2 had two NICs, and we used one for inbound traffic from Host 1 and another for

outbound traffic to Host 3. Out of its four cores, on Host 2 we used three cores in the first

experiment set (a comparison study with Apache Flink), and in the remaining experiment

sets we offloaded the inbound network IO and CPEP’s Supplier Proxies to the fourth core,

and the three cores were dedicated to event processing.

TAO’s event channel was configured with the following parameters: we used the default factory,

and we assigned null to ECFiltering, ECSupplierFiltering, ECProxyConsumerLock, and

ECProxySupplierLock; reactive to ECDispatching; reactive to both ECConsumerControl

and ECSupplierControl. Finally, we assigned zero to ECConsumerControlPeriod and zero

to ECSupplierControlPeriod.

25

We assigned real-time priority levels to both worker threads and mover threads, with the

highest priority level set to 99. We also assigned 99 as the priority level of the thread for

Supplier Proxies. We did not use the PREEMPT_RT patch [29].

Events were supplied at different rates, and consumers of events were assigned different

priorities. We used two graphs of processing streams, shown in Figures 2.6 and 2.7, and in

each case we evaluated the performance under different degrees of system workload. The

workload we implemented demonstrates standard multi-sensor fusion operations [25, 61,

64, 68], with the following four operators combined in different ways: Extended Kalman

Filter (EKF) [76], Fast Fourier Transform (FFT) [30], Concatenation (CAT) (implemented

using C++’s memcpy function), and the Advanced Encryption Standard (AES) [34]. We

ensured that the operators are thread-safe by creating a distinct Kalman filter object per

EKF operator and distinct FFTW matrices per FFT operator; the Libgcrypt library is by

default thread-safe and we created a single Libgcrypt handler for all AES operators.

Because both absolute and relative time consistency enforcement use events’ creation times to

validate consistency, for event suppliers belonging to the same stream we chose to coordinate

the phasing of event creations when evaluating absolute time consistency shedding (otherwise,

the time difference between the creation times may dominate the latency and hence the

shedding decision) and we chose not to coordinate event creations when evaluating relative

time consistency shedding (otherwise, either all events would pass or all of them would be

shed). Specifically, in the first four and the sixth experiment sets, we coordinated the event

suppliers belonging to the same stream, and in the fifth experiment set we chose not to

coordinate as we did in the others. We coordinated the phasing of all suppliers that are

upstream from a common consumer event and that have the same event rate, by dispatching

them all from the same timer expiration, rather than from individual independent timers.

26

 High priority
 Middle priority

 Low priority

EKF2 FFT1

CAT1 AES2FFT2

EKF4 FFT3 AES3

EKF1 AES1

c2

c1

c3

s1

s2

s3

s4

s7

s82
0

 m
s

5
 m

s
1

0
 m

s

EKF3

s5

s6

Figure 2.6: The graph of event processing streams for Experiment Sets 1, 2, and 5.

High priority

Middle priority

Low priority

EKF3 FFT3 CAT2 AES2

FFT4

c2

s5

s6

EKF4
s7
s8

EKF1 FFT1 CAT1 AES1

FFT2

c1

s1

s2

EKF2
s3
s4

CAT3 AES4 c3

AES3

1
0

 m
s

1
0

 m
s

(a) With sharing operators.

High priority

Middle priority

Low priority

EKF4 FFT4 CAT2 AES2

FFT5

c2

s5

s6

EKF5
s7
s8

EKF1 FFT1 CAT1 AES1

FFT2

c1

s1

s2

EKF2
s3
s4

CAT3 AES4 c3

AES3

1
0

 m
s

1
0

 m
s

EKF6 FFT6

FFT7EKF7

FFT3EKF3

(b) Without sharing operators.

Figure 2.7: The graphs of event processing streams for Experiment Sets 3, 4, and 6.

We measured the end-to-end latency, i.e., the time interval between the latest time a

supplier pushed a required event and the time the consumer received the resulting event

(e.g., [t3, t4] in Figure 2.3). We synchronized our test-bed’s hosts via PTPd [33], an open

source implementation of the IEEE Std. 1588-2008 Precision Time Protocol [40]. Both the

service host’s clock and the consumer host’s clock were synchronized to the clock of the

supplier host. The synchronization error was within 0.05 milliseconds.

27

In each of the first four experiment sets, we ran each sub-case ten times and calculated the

95% confidence interval for each measurement; in the fifth experiment set, where we chose not

to coordinate event suppliers, we ran each sub-case fourty times so that the 95% confidence

interval converged. In each sub-case we sequentially ran three phases: warm-up, measuring,

and dumping. In the warm-up phase we connected all event suppliers and consumers to

CPEP and had them start pushing and receiving events; in the measuring phase we measured

both the latency and the throughput of output events, and we kept all the measurements

in memory, which were then saved to disk in the dumping phase. For CPEP, the warm-up

phase took ten seconds. Apache Flink requires a longer warm-up time and we set it to 75

seconds. In both cases, the measuring phase spanned 100 seconds.

2.6.1 Experiment Set 1: Comparison with Apache Flink

Figure 2.6 shows the graph of event processing streams used in this experiment set. To cover

different degrees of workload, we first deployed three copies of the high-priority streams, three

copies of the middle-priority streams, and twelve copies of the low-priority streams, and then

we increased the workload by deploying more copies of the middle-priority streams. Each

supplier event carried a batch of one-byte datapoints3: each event supplied by s1 and s2

carried 512 datapoints (5 ms event inter-arrival time); s3 to s6, 1024 datapoints (10 ms); and

s7 and s8, 2048 datapoints (20 ms). Each output event for a high-priority consumer carried

512 one-byte datapoints; each output event for a middle-priority consumer carried 1024

16-byte datapoints4; each output event for a low-priority consumer carried 2048 eight-byte

datapoints.
3For example, in structural health monitoring[37], FFT may require 2048 samples to perform, and raw

data may need to be transmitted to a base station if in situ processing is not sufficient.
4The FFT operator caused the increase in datapoint size, as the FFTW library transformed each byte of

datapoints into an eight-byte real number (the single precision version of FFTW).

28

Table 2.1: Experiment Set 1: The 99th percentile latency (ms).

Priority Service Number of middle-priority streams
3 6 9 12 15

High Flink 3.8 ± 0.1 5.9 ± 0.2 12.6 ± 0.4 52.6 ± 4.1 448.9 ± 171.7
CPEP 0.8 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.0

Middle Flink 4.5 ± 0.1 6.4 ± 0.2 11.3 ± 0.4 28.9 ± 0.5 107.9 ± 18.1
CPEP 1.6 ± 0.0 1.8 ± 0.0 2.2 ± 0.0 2.5 ± 0.0 3.0 ± 0.1

Low Flink 5.2 ± 0.3 7.4 ± 0.2 15.5 ± 0.6 43.3 ± 1.3 679.8 ± 274.0
CPEP 3.7 ± 0.3 4.8 ± 0.2 6.8 ± 0.6 10.6 ± 1.0 33.4 ± 0.2

For a fair comparison to CPEP, in our Apache Flink (we simply call it Flink hereafter)

Java application we used the same C++ libraries for the EKF, FFT, and AES operators,

and invoked them via Java JNI. Since in CPEP we focus on single-host event processing,

we configured Flink to run in a local environment, with a single Flink JobManager and

TaskManager, respectively, and we ensured that they ran within the same JVM. To utilize

multiple CPU cores, we set Flink’s parallelism level equal to the number of CPU cores used

for event processing (i.e., three), and also had the TaskManager use three task slots for

concurrent execution. We implemented a socket data source to connect Flink with event

suppliers, and a socket data sink to connect it with event consumers. We chose not to use

Flink’s Complex Event Processing library [32], because so far it does not support the removal

of used events to avoid premature processing, which is required by cyber-physical event

processing (see Section 2.3.1). We therefore implemented event processing using Flink’s

built-in data transformation functions. We also turned off checkpointing to reduce latency in

Flink.

Latency Comparison

The latency results are shown in Figure 2.8 (high priority), 2.9 (middle priority), and 2.10

(low-priority) and Table 2.1; Figure 2.8(a) shows the CPU utilization normalized to the

29

3 6 9 12 15

Number of middle-priority streams

0
20
40
60
80

100

U
ti

liz
a
ti

o
n
 (

%
)

CPEP

Flink

(a) CPU utilization.

3 6 9 3 6 9 3 6 9

Number of middle-priority streams

0

1

2

3

4

5

La
te

n
cy

 (
m

s) (Box plot) (90th percentile) (Mean)

CPEP Flink

(b) Moderate workload (CPU utilization = 40–80%).

12 15 12 15 12 15

Number of middle-priority streams

10-1

100

101

102

103

La
te

n
cy

 (
m

s) (Box plot) (90th percentile) (Mean)

CPEP Flink

(c) Heavy workload (CPU utilization > 80%).

Figure 2.8: Experiment Set 1: Latency results of high-priority streams.

number of cores. The results show that CPEP outperformed Flink in terms of latency in all

degrees of workload, and CPEP’s latency performance followed the order of priority level. A

major reason is that CPEP prioritizes event processing based on the consumer priority levels,

while Flink does not. In CPEP, tasks of higher priority will preempt lower-priority tasks’

execution, while in Flink tasks of higher priority may need to wait for the execution of tasks

of lower priority.

Here we qualify the latency results by the corresponding inter-arrival times of events. In

general, latency longer than the inter-arrival time implies that there are newer data available

30

3 6 9 3 6 9 3 6 9

Number of middle-priority streams

0

2

4

6

8

10
La

te
n
cy

 (
m

s) (Box plot) (90th percentile) (Mean)

CPEP Flink

(a) Moderate workload (CPU utilization = 40–80%).

12 15 12 15 12 15

Number of middle-priority streams

10-1

100

101

102

La
te

n
cy

 (
m

s) (Box plot) (90th percentile) (Mean)

CPEP Flink

(b) Heavy workload (CPU utilization > 80%).

Figure 2.9: Experiment Set 1: Latency results of middle-priority streams.

3 6 9 3 6 9 3 6 9

Number of middle-priority streams

0

5

10

15

20

La
te

n
cy

 (
m

s) (Box plot) (90th percentile) (Mean)

CPEP Flink

(a) Moderate workload (CPU utilization = 40–80%).

12 15 12 15 12 15

Number of middle-priority streams

100

101

102

103

La
te

n
cy

 (
m

s) (Box plot) (90th percentile) (Mean)

CPEP Flink

(b) Heavy workload (CPU utilization > 80%).

Figure 2.10: Experiment Set 1: Latency results of low-priority streams.

31

before a consumer has received the processed result. In practice, it is desirable to have latency

even shorter than the inter-arrival time, and latency beyond the inter-arrival time may not be

acceptable. Under moderate workload (CPU utilization = 40–80%), both CPEP and Flink

had 90th percentile latency and mean latency shorter than the corresponding inter-arrival

time of events; under heavy workload (CPU utilization > 80%), however, the latency of Flink

may exceed the inter-arrival time of events. The high-priority streams, for example, had

about 10 ms mean latency (Figure 2.8(c)), which is twice the inter-arrival time.

For the 99th percentile latency, as shown in Table 2.1, CPEP’s latency was shorter than

the inter-arrival time in every sub-case except for that of low-priority streams along with 15

middle-priority streams (33.4 ± 0.2 versus 20 ms); in this sub-case, the CPUs were nearly

saturated, and the latency of Flink was also beyond the inter-arrival time of events (679.8 ±

274.0 ms versus 20 ms). For the low-priority streams, both the 90th percentile latency and

mean latency of CPEP were similar to those of Flink, except for the aforementioned sub-case.

Throughput Comparison

The throughput results for each priority level are shown in Figure 2.11. The plots labeled by

CPEP/Flink total show the throughput in terms of total events received by a consumer, and

the plots labeled by CPEP/Flink timely show the throughput in terms of events received with

latency shorter than the inter-arrival time. For the high-priority consumers (Figure 2.11(a)),

both CPEP and Flink produced events at rates close to the event rates at the suppliers

(three high-priority streams), but Flink produced much less timely events as we increased the

workload: for example, in the presence of 12 middle-priority streams, Flink only produced

about 300 events per second, half of the ideal rate. For the middle-priority consumers (Fig-

ure 2.11(b)), Flink started to produce fewer events as we increased the workload. For the

low-priority consumers (Figure 2.11(c)) we made the same observation for CPEP. In general,

32

3 6 9 12 15

Number of middle-priority streams

0
100
200
300
400
500
600
700

e
v
e
n
ts

 /
 s

e
co

n
d

CPEP total

Flink total

CPEP timely

Flink timely

(a) High priority

3 6 9 12 15

Number of middle-priority streams

0
200
400
600
800

1,000
1,200
1,400
1,600

e
v
e
n
ts

 /
 s

e
co

n
d

CPEP total

Flink total

CPEP timely

Flink timely

(b) Middle priority

3 6 9 12 15

Number of middle-priority streams

0
100
200
300
400
500
600
700

e
v
e
n
ts

 /
 s

e
co

n
d

CPEP total

Flink total

CPEP timely

Flink timely

(c) Low priority

Figure 2.11: Experiment Set 1: Throughput results of each priority level.

CPEP and Flink behaved differently under heavy workload: in CPEP the greater latency

accrued to events of the lowest priority level, thanks to the prioritized processing; in Flink

the latency was distributed to all events, since Flink does not differentiate processing for

different priority levels.

The prolonged latency also suggests that, in terms of absolute time consistency, many events

may not be considered valid, hence both wasting CPU resources and unnecessarily increasing

delay. Indeed, many more violations of absolute time consistency can occur, since the latency

here only accounted for the duration between the last event creation and the event delivery

(e.g., [t3, t4] in Figure 2.3) while the absolute time consistency accounts for the duration

33

0 1000 2000 3000 4000 5000 6000

Time series (time unit: 100 milliseconds)

100

101

102

103

104

V
m

S
iz

e
 (

M
B

)
Flink

CPEP

(a) VmSize.

0 1000 2000 3000 4000 5000 6000

Time series (time unit: 100 milliseconds)

100

101

102

103

V
m

R
S
S
 (

M
B

)

Flink

CPEP

(b) VmRSS.

Figure 2.12: Experiment Set 1: Memory footprint comparison.

between the first event creation and the ultimate event delivery (e.g., [t1, t4] in Figure 2.3).

In Experiment Set 4, we evaluate CPEP’s absolute time consistency enforcement and its

shedding strategy. In the remaining five experiment sets, we do not use Flink and instead

focus on evaluating CPEP’s performance with different configurations, since CPEP clearly

outperformed Flink in this comparison.

Memory Footprint Comparison

We empirically compared the memory footprint of Flink and CPEP by querying the kernel

data structures via /proc/[pid]/status. We show in Figure 2.12 the result of virtual

memory size (VmSize) and the virtual memory resident size (VmRSS). Compared with Flink’s

memory usage, CPEP reduced more than 88% of the max VmSize (from 7146.5 MB to

824.6 MB) and more than 97% of the max VmRSS (from 1424.8 MB to 31.5 MB). We also

measured Java JNI’s impact on the memory footprint, via the pmap utility. The sampling

rate was 100 milliseconds and we took 600 samples. The VmRSS of the JNI task was always

48 KB, which is less than 0.005% of the total VmRSS.

34

2.6.2 Experiment Set 2: CPEP Prioritization

CPEP can be configured for either prioritized or non-prioritized processing. In this experiment

set we compared the event latency of prioritized processing versus that of non-prioritized

processing.

Figure 2.13 shows latency comparisons under different system workloads, with CPU utilization

from around 45% to 95%, normalized to the number of cores used in processing event

operations. As shown in Figure 2.13(b), prioritization maintained the latency of high-priority

streams across different workloads. In contrast, without prioritization, the latency increased

as the workload increased. Middle-priority streams exhibited similar behavior, shown in

Figure 2.13(c). Low-priority streams exhibited the opposite behavior, shown in Figure 2.13(d),

where prioritization led to higher latency for them than no prioritization did. This was

because prioritization caused preemption of lower-priority processing. Nevertheless, the

resulting latency was still less than half of the inter-arrival time of events (except for the

sub-case of 15 middle-priority streams) and, as the next experiment set will show, sharing

operations can further reduce the latency.

Figure 2.13 also shows that streams may have high tail latency even though the system

was not heavily loaded (for example, the 99th percentile latency of high-priority streams

in the sub-case of six middle-priority streams, with the normalized CPU utilization 63%

(Figure 2.13(b))). This happened because event arrivals of different streams were independent

of each other and sometimes arrived close in time and contended heavily with each other. A

stream may experience a higher tail latency under a higher workload, because in this case

the processing of the stream is more likely to be delayed due to such contentions.

35

3 6 9 12 15

Number of middle-priority streams

0

20

40

60

80

100

U
ti

liz
a
ti

o
n
 (

%
)

w/ prioritization

w/o prioritization

(a) CPU utilization.

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15

Number of middle-priority streams

0
1
2
3
4
5
6

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ prioritization w/o prioritization

(b) High priority.

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15

Number of middle-priority streams

0
2
4
6
8

10
12

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ prioritization w/o prioritization

(c) Middle priority.

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15

Number of middle-priority streams

0
5

10
15
20
25
30
35
40

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ prioritization w/o prioritization

(d) Low priority.

Figure 2.13: Experiment Set 2: Latency results.

36

3 6 9 12 15

Number of middle-priority streams

0

20

40

60

80

100

U
ti

liz
a
ti

o
n
 (

%
)

w/ prioritization

w/o prioritization

(a) CPU utilization.

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15

Number of middle-priority streams

0
1
2
3
4
5
6
7
8
9

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ prioritization w/o prioritization

(b) High priority.

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15

Number of middle-priority streams

0
2
4
6
8

10
12

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ prioritization w/o prioritization

(c) Middle priority.

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15

Number of middle-priority streams

0
5

10
15
20
25
30
35
40

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ prioritization w/o prioritization

(d) Low priority.

Figure 2.14: Experiment Set 2: Latency results (sporadic events).

37

Results for Sporadic Events

We evaluated CPEP’s performance with sporadic event streams, by adding a random time

offset in the range of ± 2.5 ms to the inter-arrival time of each event supplier. The result is

shown in Figure 2.14. The performance is similar to the case without random time offsets

(Figure 2.13), confirming that CPEP works for both periodic and sporadic event streams.

2.6.3 Experiment Set 3: Sharing Operators

In this experiment set we evaluated the latency performance of sharing operations. We

also enabled prioritized processing. We configured the graph of event processing streams as

shown in Figure 2.7. Each event supplied by s1 to s4 carried 512 datapoints; s5 to s8, 1024

datapoints. The non-sharing version was constructed from the sharing version by duplicating

the shared operators (FFT2 and FFT4) and all their upstream operators (EKF2 and EKF4).

All suppliers generated events with inter-arrival time of 10 ms. Because the streams share

operations, here we varied workload by deploying copies of the whole graph.

The latency results shown in Figure 2.15 confirm that sharing operations can help reduce

event latency. In particular, lower-priority streams received higher reductions in latency,

because the shared operations were done by the higher-priority counterpart. Figure 2.15(d)

shows that as the workload increased, with sharing we may reduce the latency of lower-priority

streams by more than 30% (e.g., the sub-case with seven copies of the whole graph), and

with about the same mean latency the system can accommodate 40% more streams (e.g.,

from five to seven copies of the whole graph). Besides reducing latency, sharing also saved

CPU utilization. Figure 2.15(a) shows that with five copies of the whole graph, sharing can

save about 20% in CPU utilization.

38

1 3 5 7 9

Number of copies of the whole graph

0

20

40

60

80

100

U
ti

liz
a
ti

o
n
 (

%
) w/ sharing

w/o sharing

(a) CPU utilization.

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Number of copies of the whole graph

0

2

4

6

8

10

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ sharing w/o sharing

(b) High priority.

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Number of copies of the whole graph

0

2

4

6

8

10

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ sharing w/o sharing

(c) Middle priority.

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Number of copies of the whole graph

0

2

4

6

8

10

La
te

n
cy

 (
m

s) (Box plot) (99th percentile) (90th percentile) (Mean)

w/ sharing w/o sharing

(d) Low priority.

Figure 2.15: Experiment Set 3: Latency results; there was no output event of low priority for
the case ‘w/o sharing’ in presence of nine copies of the whole graph.

For lower-priority streams, the result in Figure 2.15(d) also suggests that the savings in

processing time due to sharing may outweigh the time spent waiting for higher-priority

39

streams. For higher-priority streams, as shown in Figure 2.15(b) and (c), sharing processed

events to lower-priority counterpart did not incur much overhead, either.

2.6.4 Experiment Set 4: Enforcing Absolute Time Consistency

In this experiment set we evaluated the performance of absolute time consistency shedding

and sharing, both separately and combined, in terms of timely-throughput, i.e., delivery of

events within their absolute validity intervals. Here we reuse the graph of processing streams

as shown in Figure 2.7. We set the absolute validity interval to 10 ms.

Figure 2.16 shows the result of timely-throughput in terms of events per second, where

Figure 2.16(a) shows the CPU utilization. The benefit of shedding for timely-throughput

was bounded by a range of system load, and for streams of higher priority the range shifted

toward higher loads. This occurs because shedding did not take place under trivial loads,

and because under heavy loads there is less slack time for streams to exploit. Since the

absolute validity intervals approximate the supplier events’ inter-arrival times, shedding

occurred only when the total processing demand overloaded the CPUs. In particular, without

sharing and with 11 copies of the graph of streams, the CPUs were saturated and shedding

helped improve the timely-throughput of middle-priority streams (Figure 2.16(c)). With

sharing and with 15 or more copies of the graph of streams, high-priority processing demand

dominated CPU resources and therefore the timely-througput of middle-priority streams

dropped. Under such conditions, not shedding middle-priority demand at operators may

improve timely-throughput, because the incurred delay may lead to event replacements in

InputQ, which act essentially as early removals of events that, if otherwise dequeued, would

still become out-dated before processing completion.

40

7 9 11 13 15 17 19

Number of copies of the whole graph

0
20
40
60
80

100
U

ti
liz

a
ti

o
n
 (

%
)

w/o sharing, w/o shedding

w/o sharing, w/ shedding

w/ sharing, w/o shedding

w/ sharing, w/ shedding

(a) CPU utilization.

7 9 11 13 15 17 19

Number of copies of the whole graph

0
500

1,000
1,500
2,000
2,500
3,000

e
v
e
n
ts

 /
 s

e
co

n
d

w/o sharing, w/o shedding

w/o sharing, w/ shedding

w/ sharing, w/o shedding

w/ sharing, w/ shedding

(b) Low priority.

7 9 11 13 15 17 19

Number of copies of the whole graph

0
500

1,000
1,500
2,000
2,500
3,000

e
v
e
n
ts

 /
 s

e
co

n
d

w/o sharing, w/o shedding

w/o sharing, w/ shedding

w/ sharing, w/o shedding

w/ sharing, w/ shedding

(c) Middle priority.

7 9 11 13 15 17 19

Number of copies of the whole graph

0
500

1,000
1,500
2,000
2,500
3,000

e
v
e
n
ts

 /
 s

e
co

n
d

w/o sharing, w/o shedding

w/o sharing, w/ shedding

w/ sharing, w/o shedding

w/ sharing, w/ shedding

(d) High priority.

Figure 2.16: Experiment Set 4: Timely-throughput under different loads.

41

7 9 11 13 15 17 19

Number of copies of the whole graph

0
50

100
150
200
250
300
350
400

M
b
p
s

w/o sharing, w/o shedding

w/o sharing, w/ shedding

w/ sharing, w/o shedding

w/ sharing, w/ shedding

Figure 2.17: Experiment Set 4: Total timely-throughput (Mbps).

High-priority streams (Figure 2.16(d)), although already protected by prioritization, still

benefited from shedding, because when the system is overloaded shedding can reduce the

amount of intra-priority contention, i.e., the contention between the out-dated processing and

the processing that works to meet the timing constraint. Low-priority streams (Figure 2.16(b))

benefited most from sharing, but may not benefit much from shedding because (1) shedding

works best when the system is under heavy load, in which case the lower-priority streams

may already suffer nontrivial preemption, and (2) the benefit of shedding would accrue first

to higher-priority streams due to prioritization.

Figure 2.17 shows the timely-throughput and includes all three priority levels. It shows that

without sharing, even though the CPUs had been saturated in the presence of nine copies

of the graph, with the help of shedding the system can keep producing at 200 Mbps with

up to 19 copies of the graph of streams; with sharing, we could still save about 20% CPU

utilization in the presence of 11 copies of the graph.

2.6.5 Experiment Set 5: Enforcing Relative Time Consistency

In this experiment set, we used the graph of event processing streams as shown in Figure 2.6,

and we did not coordinate the suppliers for each stream. We set the relative validity interval

to 5 ms for both high-priority and low-priority streams, and for the middle-priority streams

42

3 6 9 12 15

Number of middlepriority streams

0

20

40

60

80

100

R
el

at
iv

el
y

tim
e

co
ns

is
te

nt
ev

en
t p

ro
du

ct
io

n
(%

)
5.5 ms 7.0 ms 8.5 ms 10.0 ms

(a) High-priority events.

3 6 9 12 15

Number of middlepriority streams

0

20

40

60

80

100

R
el

at
iv

el
y

tim
e

co
ns

is
te

nt
ev

en
t p

ro
du

ct
io

n
(%

)

5.5 ms 7.0 ms 8.5 ms 10.0 ms

(b) Middle-priority events.

3 6 9 12 15

Number of middlepriority streams

0

20

40

60

80

100

R
el

at
iv

el
y

tim
e

co
ns

is
te

nt
ev

en
t p

ro
du

ct
io

n
(%

)

5.5 ms 7.0 ms 8.5 ms 10.0 ms

(c) Low-priority events.

3 6 9 12 15

Number of middlepriority streams

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

5.5 ms
7.0 ms
8.5 ms
10.0 ms

(d) CPU utilization.

Figure 2.18: Experiment Set 5: Percentage of relatively valid events with no relative validity
shedding.

3 6 9 12 15

Number of middlepriority streams

0
200
400
600
800

1,000
1,200
1,400
1,600

ev
en

ts
 /

se
co

nd

w/ rel. validity shedding
w/o rel. validity shedding

(a) Middle-priority throughput.

3 6 9 12 15

Number of middlepriority streams

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

w/ rel. validity shedding
w/o rel. validity shedding

(b) CPU utilization.

Figure 2.19: Experiment Set 5: Relative validity shedding with relative validity interval = 5.5
ms.

we evaluated four relative validity intervals: 5.5 ms, 7.0 ms, 8.5 ms, and 10.0 ms. In all

cases, we enabled prioritized processing and did not enable absolute validity shedding. In

43

the following, we first show the performance with no relative validity shedding, and then we

show the performance improvement by enabling relative validity shedding.

Effects of Violations of Relative Time Consistency

For the cases of no relative validity shedding, Figure 2.18(a) to (c) shows the percentage of

relatively time-consistent events produced, and Figure 2.18(d) shows the CPU utilization,

for each case of the middle-priority relative validity interval. First of all, Figure 2.18(a)

shows that the high-priority streams were protected by prioritized processing; they were

not affected by different middle-priority validity intervals, nor were they affected by the

increase in the number of middle-priority streams. Figure 2.18(c) shows that, also due to

prioritized processing, the low-priority streams had a decrease in the percentage of relatively

time-consistent events produced as we increased the number of middle-priority streams.

Figure 2.18(b) shows the results of middle-priority streams. The middle-priority streams

are subject to more relative time consistency violations, because they depend on four event

types, two more than the high-priority streams and middle-priority streams (see Figure 2.6).

Figure 2.18(b) shows that, with a longer relative validity interval, there was an increase in the

percentage of relatively time-consistent event production. With the relative validity interval

equal to 10 ms, close to the event inter-arrival time, the percentage was close to 100%. In

general, the percentage did not change much as we increased the number of middle-priority

streams, because (1) the contention from high-priority streams did not change, (2) relative

time consistency depends on the event creation time, which is indifferent to the time of

processing, and (3) the CPUs did not saturate.

44

3 6 9 12 15

Number of middlepriority streams

0
200
400
600
800

1,000
1,200
1,400
1,600

ev
en

ts
 /

se
co

nd

w/ rel. validity shedding
w/o rel. validity shedding

(a) Middle-priority throughput.

3 6 9 12 15

Number of middlepriority streams

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

w/ rel. validity shedding
w/o rel. validity shedding

(b) CPU utilization.

Figure 2.20: Experiment Set 5: Relative validity shedding with relative validity interval = 7.0
ms.

3 6 9 12 15

Number of middlepriority streams

0
200
400
600
800

1,000
1,200
1,400
1,600

ev
en

ts
 /

se
co

nd

w/ rel. validity shedding
w/o rel. validity shedding

(a) Middle-priority throughput.

3 6 9 12 15

Number of middlepriority streams

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

w/ rel. validity shedding
w/o rel. validity shedding

(b) CPU utilization.

Figure 2.21: Experiment Set 5: Relative validity shedding with relative validity interval = 8.5
ms.

Figure 2.18(d) shows the CPU utilization normalized to the number of cores. With the result

shown in Figure 2.18(b), this suggests that with no relative validity shedding, many more

CPU cycles were wasted if we had a shorter relative validity interval.

Effects of Relative Time Consistency Enforcement and Shedding

Figure 2.19 to 2.21 show the result of relative validity shedding with each relative validity

interval, respectively. In all cases, relative validity shedding produced a higher relatively

time-consistent throughput and at the same time reduced CPU utilization. With a shorter

relative validity interval, there was more relative gain in throughput by shedding, because in

45

that case there were more violations of relative time consistency and thus shedding saved

more CPU cycles for relatively time-consistent processing. Figure 2.20, for example, shows

the results for relative validity interval = 7.0 ms, in which case shedding helped improve the

throughput by about 200 events/second and saved about 5% in CPU utilization. It might

not be possible to achieve the ideal throughput, which is 100 × k, where k is the number

of middle-priority streams, because event suppliers were not coordinated and since without

phase coordination the relevant events may spread out in time, violations of relative time

consistency are more likely. With relative validity shedding, the throughput we had is much

closer to ideal.

2.6.6 Experiment Set 6: Overhead Measurements

We evaluated CPEP’s runtime overhead by showing both (1) queueing overhead, and (2) pre-

emption overhead. For queueing overhead, we measured both enqueue and dequeue times

for the InputQ, PendingQ, and MovingQ. We took the average of one million measurements

of each operation, and the result is shown in Table 2.2. The recorded dequeue time for the

PendingQ included the time spent in binding operator’s parameters to the dequeued metadata.

The time complexity of the MovingQ is logarithmic in the queue length. Regarding the

number of queueing operations per event, each supplier event needs at most one enqueue and

one dequeue for the InputQ, each operator along the event processing graph needs exactly

one enqueue and one dequeue for the PendingQ, and each transition between operators of

different priority needs exactly one enqueue and one dequeue for the MovingQ. Our imple-

mentation permits concurrent checks for non-emptiness of a queue via readers-writer lock

(see Section 2.5).

For the preemption overhead, we used trace-cmd to measure the number of scheduling events

at runtime for 100 seconds. We compared CPEP’s prioritization (using Linux’s SCHED_RR

46

Table 2.2: Experiment Set 6: Latency of event queues.

InputQ PendingQ MovingQ
Enqueue 1.23 ns 34.86 ns 194.21 ns
Dequeue 1.03 ns 337.81 ns 177.33 ns

real-time scheduler with real-time priorities) against a baseline version that disabled CPEP’s

prioritization (using Linux’s default CFS scheduler with no real-time priority). Our result

shows a 40% reduction in the number of context switches (the sched_switch events), with

prioritization enabled than with it disabled, from about 60 switches per millisecond to

about 37 switches per millisecond. As the SCHED_RR real-time scheduler permits global

push and pull operations, it resulted in an increase in the number of thread migrations

(the sched_migration events) from about 2.5 migrations per millisecond under CFS to

about 6.3 migrations per millisecond under SCHED_RR. The preemption overhead therefore

involves a tradeoff between a reduction in context switches and a smaller increase in the

thread migrations. A detailed comparison between SCHED_RR and CFS can be found in the

literature [14].

2.7 Concluding Remarks

In this Chapter, we introduced the CPEP middleware for real-time cyber-physical event

processing. CPEP features configurable operations, prioritization, time consistency enforce-

ment, efficient memory management, and concurrent processing. We implemented CPEP

within the TAO event service, and empirically evaluated it in comparison to Apache Flink,

showing that CPEP outperforms Flink in terms of latency, throughput, and memory foot-

print. Our further experiments showed that CPEP can both reduce latency and improve

timely-throughput, through prioritization, sharing, absolute time consistency shedding, and

relative time consistency shedding.

47

Chapter 3

Fault-Tolerant Real-Time Messaging

3.1 Introduction

The edge computing paradigm assigns specific roles to local and remote computational

resources. Typical examples are seen in Industrial Internet-of-Things (IIoT) systems [26, 41,

43, 45], where latency-sensitive applications run locally in edge servers, while computation-

intensive and shareable tasks run in a private cloud that supports multiple edges (Figure 3.1).

Both an appropriate configuration and an efficient run-time implementation are essential in

such environments.

IIoT applications have requirements for message latency and reliable delivery, and the needed

levels of assurance are often combined in heterogeneous ways. For example, emergency-

response applications may require both zero message loss and tens of milliseconds end-to-end

latency, monitoring applications may tolerate a small number of consecutive message losses

(e.g., by computing estimates using previous or subsequent messages) and require hundreds

48

of milliseconds bounds on latency, and logging applications may require zero message loss

but may only require sub-second latency.

Such systems must be able to differentiate levels of latency and loss-tolerance requirements.

With no latency differentiation, latency-sensitive messages may arrive too late; with no

loss-tolerance differentiation, the system may demand excessive resources since it must treat

every message with the highest requirement level. An edge computing system further needs

to account for both the discrepancy between traffic periods within an edge (e.g., tens of

milliseconds) and those to a cloud (e.g., at least sub-second), and the discrepancy between

network latency within an edge (e.g., sub-millisecond) and that to a cloud (e.g., up to sub-

second). Premature scheduling of cloud-bound traffic may delay edge-bound, latency-sensitive

traffic.

It is challenging to differentiate such heterogeneous requirements for both latency and loss

tolerance efficiently. Differentiating latency requirements alone at millisecond time scales

is nontrivial; enabling message loss-tolerance differentiation adds further complexity, since

fault-tolerant approaches in general tend to slow down a system. In particular, systems

often adopt service replication to tolerate crash failures [9, 13]. Replication requires time-

consuming mechanisms to maintain message backups, and significant latency penalties may

be incurred due to system rollback upon fault recovery. Alternative replication methods may

reduce latency at the expense of greater resource consumption [35, 63]. To date, enabling

and efficiently managing such latency/loss-tolerance differentiation remains a realistic and

important open challenge.

In this paper, we propose the following problem formulation to address those nuances of

fault-tolerant real-time messaging for edge computing: each message topic is associated with

a loss-tolerance level, in terms of the acceptable number of consecutive message losses, and

49

Wireless sensor network
 (e.g., in a wind farm)

Private cloud for training and storage

Machine learning
training ...

...
Applications

...

Message
brokers

Edge 1

Database

...
Edge 2 Edge N

...

Figure 3.1: An Illustration of IIoT Edge Computing.

an end-to-end latency deadline, and the system will process messages while (1) meeting

designated loss-tolerance levels at all times, (2) mitigating latency penalties at fault recovery,

and (3) meeting end-to-end latency deadlines during fault-free operation. In this paper, we

focus on the scope of one edge and one cloud.

This paper makes three contributions to the state of the art in fault-tolerant real-time

middleware:

• A new fault-tolerant real-time messaging model. We describe timing semantics for

message delivery, identify under what conditions a message may be lost, prove timing

bounds for real-time fault-tolerant actions in terms of traffic/service parameters, and

demonstrate how the timing bounds can support efficient and appropriate message

differentiation to meet each requirement.

• FRAME: A differentiated Fault-tolerant ReAl-time MEssaging architecture. We propose

an edge computing architecture that can perform appropriate differentiation according

to the model above. The FRAME architecture also mitigates latency penalties caused by

fault recovery, via an online algorithm that prunes the set of messages to be recovered.

50

• An efficient implementation and empirical evaluation. We describe our implementation

of FRAME within the TAO real-time event service [38], a mature and widely-used

middleware. Empirical evaluation shows that FRAME can efficiently meet both types

of requirements and mitigate the latency penalties caused by fault recovery.

The rest of this paper is organized as follows: In Section 3.2, we compare and contrast our

approach to other related work. In Section 3.3, we describe FRAME’s fault-tolerant real-time

model, using an illustrative IIoT scenario. The architectural design of FRAME is presented

in Section 3.4, and its implementation is described in Section 3.5. In Section 3.6, we present

an empirical evaluation of FRAME. Section 3.7 summarizes and presents conclusions.

3.2 Related Work

Modern latency-sensitive applications have promoted the need for edge computing, by which

applications can respond to local events in near real-time, while still using a cloud for

management and storage [41, 65]. AWS Greengrass is a typical edge computing platform [1],

where a Greengrass Core locally provides a messaging service that bridges edge devices and

the cloud. Our model aligns with such an architecture. While there is recent work [6] on a

timely and reliable transport service in the Internet domain using overlay networks, to our

knowledge we are the first to characterize and differentiate timeliness and fault-tolerance for

messaging in the edge computing domain.

Both real-time systems and fault-tolerant systems have been studied extensively due to their

relevance to real-world applications [13, 52]. For distributed real-time systems, the TAO

real-time event service [38] supports a configurable framework for event filtering, correlation,

and dispatching, along with a scheduling service [31]. In this paper, we consider timing

51

aspects of message-loss tolerance and show that our new model can be applied to address

needs for efficient fault-tolerant and real-time messaging.

Among fault-tolerance approaches, service replication has been studied for reliable distributed

systems. Delta-4 XPA [9] coined the names active/passive/semi-active replication. In active

replication, also called the state-machine approach [63], service requests are delivered to all

host replicas, and the responses from replicas are compared or suppressed and only one result

is returned. In passive replication, also known as the primary-backup approach [15], only one

primary host handles requests, the other hosts synchronize to it, and one of the synchronized

hosts would replace the primary host should a fault occur. Semi-active approaches have

been applied to real-time fault-tolerant systems to improve both delay predictability and

latency performance [35]. A discussion regarding conflicts between real-time and fault-

tolerance capabilities is available [58]. There are also recent studies for virtual machine

fault-tolerance [21, 72] and for the recovery of faulty replicas [55]. In this paper, we follow

directions established in the primary-backup approach.

A complementary research topic is fault-tolerant real-time task allocation, where a set of

real-time tasks and their backup replicas are to be allocated to multiple processors, in order

to tolerate processor failures while meeting each task’s soft real-time requirements. The

DeCoRAM middleware [8] achieved this by considering both primary and backup replicas’

execution times and failover ordering, and thereby reducing the number of processors needed

for replication. In contrast, the work proposed in this paper considers end-to-end timeliness

of message delivery and tolerance of message loss, and via timing analysis can reduce the

need for replication itself.

Modern messaging solutions offer message-loss tolerance in three ways: (1) publisher reten-

tion/resend : a publisher keeps messages for re-sending; (2) local disk : message copies are

52

Table 3.1: Comparison of Related Middlewares and Standards.

Middleware/Standard Message-Loss Tolerance Strategies
Pub. Resend Local Disk Backup Broker

Flink [3] x x
Kafka [4] x x x
Spark Streaming [5] x x
NSQ [59] x
DDS (Standard) [60] x
MQTT (Standard) [66] x
FRAME (This work) x x

written to local hard disks; (3) backup brokers : like the primary-backup approach, message

copies are transferred to other brokers; Table 3.1 lists the usage of these strategies in modern

solutions. We note that none of these solutions explicitly addresses the impact of fault

tolerance on timeliness. In this paper, we introduce a timing analysis that gives insight

into how publisher retention and backup brokers relate to each other, and we demonstrate

a trade-off in applying those strategies. We chose not to examine the local disk strategy

because it performs relatively slowly.

3.3 Fault-Tolerant Real-TimeMessaging (FRAME)Model

In this section, we present the constraints for a messaging system to meet its fault-tolerance

and real-time requirements. We first give an overview of a messaging model and its notation,

followed by our assumptions and the requirements for fault-tolerant and real-time messaging.

We then describe temporal semantics for such messaging and prove sufficient timing bounds to

meet the specified requirements. We conclude the section with a discussion of how the timing

bounds may be applied to drive system behaviors, using different system configurations as

examples.

53

tp tdPrimary Broker

Backup Broker

te

Publisher

Subscriber
tc

tr

ts

tb

loss-tolerantloss-tolerant subject to
message loss

msg. created
at Publisher

msg. delivered
at Subscriber

msg. deleted
at Publisher

msg. replica arrived
at Backup Broker

Figure 3.2: Example timelines within the scope of message creation and delivery, and the
relation between events happening in each component.

3.3.1 Overview and Notation

We consider a common publish-subscribe messaging model, with publishers, subscribers, and

brokers. Each publisher registers for a set of topics, and for each topic it publishes a message

sporadically. A message is delivered via a broker to each subscriber of the topic. We define two

types of brokers, according to their roles in fault tolerance. The broker delivering messages

to subscribers is called the Primary, while another broker that backs up messages is called

the Backup. The Backup is promoted to become a new Primary should the original Primary

crash. The Primary and its respective Backup are assumed to be mapped to separate hosts.

Each publisher has connection to both the Primary and the Backup, and it always sends

messages to the current Primary. Each subscriber has connection to both, too. We use the

term message interchangeably with topic.

Let I be the set of topics associated with a publisher. For each topic i ∈ I, messages are

created sporadically with minimum inter-creation time Ti, also called the period of topic i.

For each message, within the time span between its creation at a publisher and its final

delivery at the appropriate subscriber, there are seven time points of interest (Figure 3.2): tc

54

the message creation time at the publisher, tp the message arrival time at the Primary, ts the

message arrival time at the subscriber, te the time at which the publisher deleted the message

it had retained, tr the time at which the Primary sent a replica of the message to the Backup,

tb the time the Backup received the message replica, and td the time the Primary dispatched

the message to the subscriber. Let ∆PB = tp − tc be the latency from the publisher to its

broker, ∆BS = ts − td the latency from the broker to the subscriber, and ∆BB = tb − tr the

latency from the broker to its Backup.

3.3.2 Assumptions and Requirements

This study assumes the following fault model. Each broker host is subject to processor

crash failures with fail-stop behavior, and a system is designed to tolerate one broker failure.

We choose to focus on tolerating broker crash failures, since a broker must accommodate

all message streams and is a performance bottleneck. Common fault-tolerance strategies

such as active replication may be used to ensure the availability of both publishers and

subscribers. The Primary broker host and the Backup broker host are within close proximity

(e.g., connected via a switch). The clocks of all hosts are sufficiently synchronized5, and

between the Primary and the Backup there are reliable inter-connects with bounded latency.

Publishers are proxies for a collection of IIoT devices, such as sensors, and aggregate messages

from them.

For each topic i, its subscriber has a specific loss-tolerance requirement and latency requirement.

A loss-tolerance requirement is specified as an integer Li ≥ 0, saying that the subscriber can

tolerate at most Li consecutive message losses for topic i. We note that such loss tolerance

is specified because in common cyber-physical semantics (e.g., monitoring and tracking), a

small number of transient losses may be acceptable as they can be compensated for, using
5For example, via PTP [40] and/or NTP [57] protocols; see Section 3.6.1 for our experimental setup.

55

estimates from previous or subsequent messages. A latency requirement is specified as an

integer Di ≥ 0, defining a soft end-to-end latency constraint [52] of topic i from publisher to

subscriber. For multiple subscribers of the same topic, we choose the highest requirements

among the subscribers. Finally, we assume that each publisher can retain the Ni ≥ 0 latest

messages that it has sent to the Primary. During fault recovery, a publisher will send all Ni

retained messages to its Backup. Let x be a publisher’s fail-over time, which is defined as an

interval beginning at a broker failure until the publisher has redirected its messaging traffic

to the Backup.

3.3.3 Temporal Semantics and Timing Bounds

As illustrated in Figure 3.2, within the interval from tc to ts, a message may be loss-tolerant

because either (1) it has a copy retained in the publisher (over time interval [tc, te]) or (2) a

replica of the message has been sent to the Backup (over time interval [tb, ts]). Nevertheless,

there could be a time gap in between those intervals during which the message can be lost,

because the publisher has deleted its copy and a replica has not yet been sent to the Backup

(time interval (te, tb)). Let Rr
i = tr− tp be the response time for a job that replicates message i

to the Backup, and Rd
i = td − tp the response time for a job that dispatches message i to

the subscriber. Depending on the specifications of Li and Ni, there are constraints on the

response time of message dispatching and message replication. In the following, we prove an

upper bound on the worst-case response time for replicating and dispatching, respectively.

Lemma 1. Let Dr
i be the relative deadline for a replicating job for topic i. To ensure that

the subscriber will never experience more than Li consecutive losses of messages in the topic,

it is sufficient that

Rr
i ≤ Dr

i = (Ni + Li)Ti −∆PB −∆BB − x. (3.1)

56

i1
t1

ik-2
tk-2

ik-1
tk-1

ik
tk
x

...

...

ΔPB

Publisher

Primary Broker

Backup Broker

ΔBB

Figure 3.3: Example timelines for the proof of Lemma 1.

Proof. Without loss of generality, we consider a series of message creation times for topic i,

as shown in Figure 3.3. Adding ∆PB to each creation time, we have the release time of the

replicating job for each message. Suppose that the Primary crashed at a certain time within

(tk−1, tk]. We have two cases:

Case 1: Crash at a time within (tk−1, tk − x). In this case, message ik will be sent to the

Backup instead, since the publisher has detected the crash of Primary. By definition, the

publisher would send the latest Ni messages to the Backup once it detected failure of the

Primary. Therefore, messages ik−1, ik−2, ..., through ik−Ni
would be recovered and are not

considered lost. According to the requirement, topic i can have no more than Li consecutive

losses. Hence, message ik−Ni−Li−1 had to be replicated to the Backup before the Primary

crashed, which means the response time of replicating the message must be smaller than

((k − 1)− (k −Ni − Li − 1))Ti −∆PB −∆BB = (Ni + Li)Ti −∆PB −∆BB, supposing that,

in the worst case, the crash happened immediately after the release of a replicating job for

message ik−1.

Case 2: Crash at a time within [tk − x, tk]. In this case, message ik will be lost and then

recovered after the publisher has detected the crash of the Primary. By definition, besides

ik, Ni − 1 earlier messages will also be recovered. The earliest message recovered by the

publisher would be ik−(Ni−1). Similar to Case 1, message ik−(Ni−1)−Li−1 had to be replicated

to the Backup before the Primary crashed, meaning that the response time of replicating the

57

message must be smaller than (Ti−x) + ((k− 1)− (k− (Ni− 1)−Li− 1))Ti−∆PB−∆BB =

(Ni + Li)Ti −∆PB −∆BB − x.

Case 2 dominates, and hence the proof.

Lemma 2. Let Dd
i be the relative deadline for a dispatching job for topic i. For the topic to

meet its end-to-end deadline Di, it is sufficient that

Rd
i ≤ Dd

i = Di −∆PB −∆BS. (3.2)

Proof. We prove by contradiction. Let r be the current amount of time remaining before

missing the end-to-end deadline, and r = Di at message creation. When message i arrives at

the broker (time point tp), we have r = Di −∆PB. Now, suppose that it would take longer

than Di −∆PB −∆BS before the dispatch of message i (time point td). We will then have

r < (Di −∆PB)− (Di −∆PB −∆BS), i.e., r < ∆BS. By definition, the latency [td, ts] is at

least ∆BS, and therefore by the time the message reached the subscriber (time point ts), we

will have r < 0, i.e., a deadline miss. Thus, Dd
i = Di −∆PB −∆BS is an upper bound on the

worst-case response time for dispatching message i.

3.3.4 Enabling Differentiated Processing and Configuration

In the following, we give five applications of the timing bounds in Lemmas 1 and 2. We

define deadlines for message dispatching and replication using Equations (3.1) and (3.2), and

we schedule both activities using the Earliest Deadline First (EDF) policy [52]. Further,

we propose a heuristic based on the fact that a dispatched message no longer needs to be

replicated, and we show where the heuristic is useful.

58

Table 3.2: Example Topic Specifications.

Topic Category Ti Di Li Ni Destination
0 50 50 0 2 Edge
1 50 50 3 0 Edge
2 100 100 0 1 Edge
3 100 100 3 0 Edge
4 100 100 ∞ 0 Edge
5 500 500 0 1 Cloud

Proposition 1. (Selective Replication) It is sufficient to suppress the replication of topic i

if a system can meet deadline Dd
i and

Dd
i ≤ Dr

i . (3.3)

Following Proposition 1 we have a condition to judge whether there is a need for replication:

x+ ∆BB −∆BS > (Ni + Li)Ti −Di.

As an illustration, we consider an IIoT scenario [41], where publishers are proxies for edge

sensors, subscribers are either within an edge (e.g., in close proximity to publishers and

brokers) or in a cloud (e.g., in AWS Elastic Compute Cloud (EC2)), and brokers are in closer

proximity to publishers than to subscribers. We consider six categories of topic specification,

as shown in Table 3.2. Categories 0 and 1 represent highly latency-sensitive topics (e.g., for

emergency-response applications), with zero- and three-message-loss tolerance, respectively.

Categories 2, 3, and 4 represent moderately latency-sensitive topics (e.g., for monitoring

applications), with different levels of loss tolerance. Li =∞ means that all subscribers of the

topic only ask for best-effort delivery. Category 5 represents weakly latency-sensitive topics

(e.g., for logging applications), with zero-message-loss tolerance. The fifth column shows the

minimum value of Ni that ensures Dr
i is non-negative.

59

Subscriber
...

Message Buffer

Message DeliveryMessage Proxy EDF Job Queue

... Jr
AJd

BJd
A ...

A

B
...

M1
A

M2
B

Topic

...

... M2
AM3

A

M3
B

The Primary

Publisher
...

The Backup Backup Buffer

A

B
...

M1
A

M1
B

Topic

...

...

M2
BM3

B

Message
Proxy

EDF Job
Queue

Message
Delivery

Message Buffer

thread Jd(r)
A dispatch (replication)

job for topic A
message of topic A;
sequence number=1M1

A

Notation

control path
data path failover path

...

...

Job Generator for
dispatch / replication

1

3 2

4 5

...
DispatcherDispatcher

DispatcherReplicator

Retention Buffer

A

B

...
M2

B

Topic

...

... M2
AM3

A

M3
B

Figure 3.4: The FRAME Architecture.

1) Admission test: Lemmas 1 and 2 provide a simple admission test: both Dr
i ≥ 0 and

Dd
i ≥ 0 must hold for any topic i. For example, if we are to meet a fault-tolerance requirement

Li = 0 (i.e., zero message loss), Equation (3.1) shows that we must enable publisher message

retention. Otherwise, the message will be lost should the Primary crash immediately after

a message arrival. In general, to satisfy Dr
i ≥ 0, it follows that (1) if message period Ti is

small, it then requires a larger value of Ni + Li; and (2) a higher loss-tolerance requirement

(i.e., a smaller Li) requires a larger value of Ni.

2) Differentiating topics with heterogeneous latency (Di) and loss-tolerance (Li)

requirements: Applying Equations (3.1) and (3.2), we have the following order over Dr
i

and Dd
i , assuming ∆BS = 1 for subscribers within an edge and ∆BS = 20 for subscribers in

a cloud, ∆BB = 0.05, and x = 50: {Dd
0 = Dd

1 < Dr
0 = Dr

2 < Dd
2 = Dd

3 = Dd
4 < Dr

1 < Dr
3 <

Dr
5 < Dd

5}, indexed by topic category. There is no need for topic replication in category 4

since subscribers only ask for best-effort delivery. Applying Proposition 1, we can remove the

need for replication in categories 0, 1, and 3, and only need replication for categories 2 and 5.

This lowers system load and can help a system accommodate more topics. We give empirical

validation of this in Section 3.6.

60

3) Leveraging publisher message retention: While assuming the minimum admissible

value of Ni for each category allows one to study the most challenging case for a messaging

system to process such a topic set, the value of Ni in practice may be tunable, for example, if

a publisher is a proxy host for a collection of devices. Also, a fault-tolerant system is typically

engineered with redundancies. Now, we increase the value of Ni by one for categories 2 and 5.

We will have both Dd
2 < Dr

2 and Dd
5 < Dr

5, giving dispatching activities a higher precedence.

Applying Proposition 1, we may further remove the need for replication in those categories

as well. In Section 3.6 we will show the empirical benefit of such an increase in publisher

message retention.

4) Differentiating topics with latency requirements non-equal to their periods:

There can be messages that either have Di < Ti or Di > Ti. Case Di < Ti applies to rare

but time-critical messages, such as for emergency notification. In this case, without loss of

generality we assume Ti =∞ and Li = 0. The admissible value of Ni is greater-than-zero,

and Equation (3.3) suggests no need for replication as long as message delivery can be made

in time. Case Di > Ti applies to messages with traveling time longer than their rate, such as

in multimedia streaming. In this case, Equation (3.3) suggests a likely need for replication,

unless ∆BS is small.

5) Differentiating edge-bound and cloud-bound traffic: Traffic parameters within an

edge and to a cloud are usually of different orders of magnitude. While edge-bound traffic

periods may be tens of milliseconds, cloud-bound traffic periods may be a sub-second or

longer. For network latency, we observed 0.5 ms round-trip time between a local broker

and a subscriber connected via a switch, and 44 ms round-trip time between the broker

and a subscriber in AWS EC2 cloud. Lemmas 1 and 2 capture the relation between these

parameters. Cloud latency is less predictable, and we choose to use a lower-bound of ∆BS,

which can be obtained by measurement. Proposition 1 ensures the same level of loss tolerance

61

even if at run-time there is an occasional increase in cloud latency. A loss-tolerance guarantee

would break if a system chose to suppress a replication when it should not, but that will

not happen as we use a lower-bound of ∆BS. Although an under-estimated cloud latency at

run-time might delay the cloud traffic (due to the use of EDF policy), in edge computing

clouds are typically used for training and storage and do not have hard latency constraints.

An over-estimation of cloud latency could be undesirable, however, as it could both preclude

the use of selective replication and prematurely delay other traffic.

3.4 The FRAME Architecture

We now describe the FRAME architecture for differentiated fault-tolerant real-time messaging.

The key criteria are (1) to meet both the fault-tolerant and real-time requirements for each

topic efficiently, and (2) to mitigate both latency penalties during fault recovery and replication

overhead during fault-free operation. The FRAME architecture, shown in Figure 3.4, achieves

both via (1) a configurable scheduling/recovery facility that differentiates message handling

according to each fault-tolerance and real-time requirement, and (2) a dispatch-replicate

coordination approach that tracks and prunes a valid set of message copies and cancels

unneeded operations.

3.4.1 Configurable Scheduling/Recovery Facility

During initialization, FRAME takes an input configuration and, accordingly, computes pseudo

relative deadlines for replication, Dr
i
′, and for dispatch, Dd

i
′, with Dr

i
′ = (Ni+Li)Ti−∆BB−x

and Dd
i
′ = Di −∆BS. The content of the configuration includes values for Ni, Li, Ti, and

Di, per topic i, and values for x and ∆BS per subscriber. The computed pseudo relative

deadlines Dr
i
′ and Dd

i
′ are stored in a module called the Message Proxy (see Figure 3.4). At

62

run-time, for each message arrival, the Message Proxy first takes the arriving message and

copies it into a Message Buffer, and then invokes its Job Generator along with a reference

to the message’s position in the Message Buffer. The Job Generator then creates job(s) for

message dispatching (replicating). The Job Generator subtracts ∆PB from Dr
i
′ and Dd

i
′,

obtaining the relative deadlines Dr
i and Dd

i as defined in Lemmas 1 and 2, and then sets an

absolute deadline for each dispatching (replicating) job to tp +Dd
i (tp +Dr

i). A replicating

job will not be created if Dd
i ≤ Dr

i , according to Proposition 1.

Scheduling of message delivery is performed using the EDF policy. This is achieved by

pushing jobs into a queue called the EDF Job Queue, within which jobs are sorted according

to their deadlines. A Message Delivery module fetches a job from the EDF Job Queue and

delivers the message that the job refers to, accordingly. A job for dispatching (replicating) is

executed by a Dispatcher (Replicator) in the module. A Dispatcher pushes the message to a

subscriber, and a Replicator pushes a copy of the message to the Backup, where the message

copy will be stored in a Backup Buffer. For a topic subscribed by multiple Subscribers, the

Job Generator would create only one dispatching (replicating) job for each message arrival.

A Dispatcher taking the job would push the message to each of its subscribers.

Fault recovery is achieved as follows. The Backup tracks the status of its Primary via periodic

polling, and would become a new Primary once it detected that its Primary had crashed.

Upon becoming the new Primary, the broker would first dispatch a selected set of message

copies in its Backup Buffer. The dispatch procedure is the same as handling a new message

arrival, except that jobs now refer to the broker’s Backup Buffer, not its Message Buffer,

and ∆PB is increased according to the arrival time of the message copy. Only those message

copies whose original copy have not been dispatched will be selected for dispatch.

63

Table 3.3: Algorithm for Dispatch-Replicate Coordination.

Type of Operation Procedure
Dispatch 1. dispatch the message to the subscriber

2. set Dispatched to True
3. if Replicated is True, request the Backup to
set Discard to True

Replicate 1. if Dispatched is True, abort
2. replicate the message to the Backup
3. set Replicated to True

Recovery 1. if Discard is True, skip the message
(in the Backup) 2. create a dispatching job for the message

3. push the job into the EDF Job Queue

3.4.2 Dispatch-Replicate Coordination

During fault recovery, it would add both overhead to a system and latency penalties to

messages if we did not differentiate message copies in the Backup Buffer. In FRAME,

differentiation is achieved by maintaining a dynamic set of message copies in the Backup

Buffer, and by skipping other copies during fault recovery. To be specific, during fault-free

operation, once the Primary has dispatched a message, it will (1) direct its Backup to

prune the Backup Buffer for the topic, and (2) cancel the pending job for the corresponding

replication, if any. The coordination algorithm is given in Table 3.3. Flags (Dispatched,

Replicated, Discard) are associated with each entry in the Message Buffer/Backup Buffer

that keeps a message copy; for each new message copy, all flags are initialized to False. If a

topic has multiple subscribers, the Primary would set the Dispatched flag to true only after

the message has been dispatched to all the subscribers.

64

Subscription & Filtering

Supplier Proxies

Event Correlation
Dispatching

Consumer Proxies

Message Proxy

m
e
ss

a
g

in
g

d
ir

e
ct

io
n

(a) original TAO (b) with FRAME

Message Delivery

Supplier Proxies

Consumer Proxies

Figure 3.5: Implementation of FRAME within TAO’s Real-Time Event Service.

3.5 FRAME Implementation

We implemented the FRAME architecture within the TAO real-time event service [38], where

messages were encapsulated in events, publishers and subscribers were implemented as event

suppliers and consumers, and each broker was implemented within an event channel. Prior

to the work described in this dissertation, the TAO real-time event service only supported

simple event correlations (logical conjunction and disjunction). In contrast, FRAME enables

differentiated processing according to the specified latency and loss-tolerance requirements.

An event channel in the original TAO middleware contains five modules, as shown in

Figure 3.5(a). Figure 3.5(b) illustrates our implementation: we preserved the original

interfaces of the Supplier Proxies and the Consumer Proxies, and replaced the Subscription &

Filtering, Event Correlation, and Dispatch modules with FRAME’s Message Proxy and

Message Delivery modules.

We connected the Supplier Proxies to the Message Proxy module by a hook method within

the push method of the Supplier Proxies module. The Message Delivery module delivers

messages by invoking the push method of the Consumer Proxies module. We implemented

Dispatchers and Replicators using a pool of generic threads, with the total number of threads

equal to three times the number of CPU cores. We implemented FRAME’s EDF Job Queue

using C++11’s standard priority-queue, and used C++11’s standard chrono time library

65

ES2

ES1

Primary Broker

Backup Broker

Edge Subscribers

Cloud
Subscriber

EP1 B1

B2

CS1Edge Publishers

EP2

Figure 3.6: Topology for empirical evaluation. Dotted lines denote failover paths.

to timestamp and compare deadlines to determine message priority. The Message Buffer,

Backup Buffer, and Retention Buffer are all implemented as ring buffers.

3.6 Experimental Results

We evaluate FRAME’s performance across three aspects: (1) message loss-tolerance enforce-

ment, (2) latency penalties caused by fault recovery, and (3) end-to-end latency performance.

We adopted the specification shown in Table 3.2, with ten topics each in categories 0 and 1,

and five topics in category 5. The timing values are in milliseconds. We evaluate different

levels of workload by increasing the number of topics in categories 2–4. We chose to increase

the workloads this way, as in IIoT scenarios sensors often contribute to the majority of the

traffic load, and some losses are tolerable since lost data may be estimated from previous

or subsequent updates. The payload size is 16 bytes per message of a topic. Publishers for

categories 0 and 1 were proxies of ten topics, publishers for categories 2–4 were proxies of 50

topics, and each publisher for category 5 published one topic. Each proxy sent messages in a

batch, one message per topic. The set of workloads we have evaluated includes a total of

1525, 4525, 7525, 10525, and 13525 topics.

3.6.1 Experiment Setup

Our test-bed consists of seven hosts, as shown in Figure 3.6: One publisher host has an

Intel Pentium Dual-Core 3.2 GHz processor, running Ubuntu Linux with kernel v.3.19.0, and

66

another has an Intel Core i7-8700 4.6 GHz processor, running Ubuntu Linux with kernel

v.4.13.0; both broker hosts have Intel i5-4590 3.3 GHz processors, running Ubuntu Linux

kernel v.4.15.0; one edge subscriber host has an Intel Pentium Dual-Core 3.2 GHz processor,

running Ubuntu Linux with kernel v.3.13.0, and another has an Intel Core i7-8700 4.6 GHz

processor, running Ubuntu Linux with kernel v.4.13.0; the cloud subscriber is a virtual

machine instance in AWS EC2, running Ubuntu Linux with kernel v.4.4.0. We connected

all local hosts via a Gigabit switch in a closed LAN. Both broker hosts had two network

interface controllers, and we used one for local traffic and another for cloud traffic. In each

broker host, two CPU cores were dedicated for Message Delivery, and one CPU core was

dedicated for the Message Proxy.

We assigned real-time priority level 99 to all middleware threads, and we disabled irqbalance [51].

We synchronized our local hosts via PTPd [33], an open source implementation of the PTP

protocol [40]. The publisher hosts’ clock, the edge subscriber hosts’ clock, and the Backup

host’s clock were synchronized to the clock of the Primary host, with synchronization error

within 0.05 milliseconds. The cloud subscriber’s clock was synchronized to the Primary’s

clock using chrony [69] that utilizes NTP [57], with synchronization error in milliseconds.

The latency measurement for ∆BS is dominated by the communication latency to AWS EC2,

which was at least 20 milliseconds.

We compared four broker configurations: (1) FRAME; (2) FRAME+, where we set Ni = 2

for categories 2 and 5, to evaluate publisher message retention; (3) FCFS (First-Come-

First-Serve), a baseline against FRAME, where no differentiation is made and messages are

handled in the order of their arrivals; (4) FCFS-, which is FCFS without dispatch-replicate

coordination. In both FCFS and FCFS-, for each message arrival the Primary first performed

replication and then dispatch.

67

Table 3.4: Success Rate for Loss-Tolerance Requirement (%).

Di Li FRAME+ FRAME FCFS FCFS-
Workload = 7525 Topics

50 0 100.0 100.0 0.0 100.0
50 3 100.0 100.0 0.0 100.0
100 0 100.0 100.0 0.0 100.0
100 3 100.0 100.0 0.0 100.0
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 100.0 0.0 100.0

Workload = 10525 Topics
50 0 100.0 100.0 0.0 100.0
50 3 100.0 100.0 0.0 100.0
100 0 100.0 100.0 0.0 100.0
100 3 100.0 100.0 0.0 100.0
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 100.0 0.0 100.0

Workload = 13525 Topics
50 0 100.0 80.0 ± 30.1 0.0 100.0
50 3 100.0 80.0 ± 30.1 0.0 100.0
100 0 100.0 73.2 ± 30.7 0.0 78.4 ± 13.3
100 3 100.0 79.3 ± 29.9 0.0 99.3 ± 0.5
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 80.0 ± 30.1 0.0 100.0
Note: 100% success rate for all with 1525 and 4525 topics.

For each configuration we ran each test case ten times and calculated the 95% confidence

interval for each measurement. We allowed 35 seconds for system initialization and warm-up.

The measuring phase spanned 60 seconds. We injected a crash failure by sending signal

SIGKILL to the Primary broker at the 30th second, and studied the performance of failover

to the Backup. We also ran each test case without fault injection, to obtain both end-to-end

latency performance at fault-free operation, and CPU usage in terms of utilization percentage,

for each module of the FRAME architecture.

68

1525 4525 7525 10525 13525
Total # of Topics

0

50

100

150

200

CP
U

Ut
iliz

at
io

n
(%

)

FCFS FCFS- FRAME FRAME+

(a) Message Delivery Module in the Primary.

1525 4525 7525 10525 13525
Total # of Topics

0

25

50

75

100
CP

U
Ut

iliz
at

io
n

(%
)

FCFS FCFS- FRAME FRAME+

(b) Message Proxy Module in the Primary.

1525 4525 7525 10525 13525
Total # of Topics

0

25

50

75

100

CP
U

Ut
iliz

at
io

n
(%

)

FCFS FCFS- FRAME FRAME+

(c) Message Proxy Module in the Backup.

Figure 3.7: CPU Utilization for Each Configuration.

3.6.2 Message Loss-Tolerance Enforcement

Table 3.4 shows the success rate of meeting loss-tolerance requirements under increasing

workload6. All four configurations had 100% success rate for 1525 and 4525 topics. FRAME

outperformed FCFS after the workload reached 7525 topics and more, thanks to the selective

replication of Proposition 1. FRAME only performed the needed replications (topic cate-

gories 2 and 5) and suppressed the others (topic categories 0, 1, and 3), saving more than
6The success rate for category 4 is always 100% because the category has no loss-tolerance requirement

(Li =∞)

69

0 25000 50000 75000 100000 125000 150000 175000
Subscriber receiving sequence

102

103

104

La
te

nc
y

(m
s)

BS at run-time

Figure 3.8: Value of ∆BS for a topic in category 5 through a 24-hour duration.

50% in CPU utilization for the Message Delivery module, compared with the result of FCFS

for the case with 7525 topics (Figure 3.7(a)). With FCFS, the Primary was overloaded: the

threads of the Message Delivery module competed for the EDF Job Queue, and the thread of

the Message Proxy module was kept blocked (implied in Figure 3.7(b)) each time it created

jobs from arrivals of message batches.

To evaluate publisher message retention, we compared FRAME with FRAME+. Leveraging

Proposition 1, with FRAME+ the Primary did not need to perform any replication to its

Backup, and loss tolerance was solely performed by publisher re-sending the retained messages.

As shown in Table 3.4, FRAME+ met all loss-tolerance requirements in every case. Further,

the replication removal saved CPU usage in the Primary broker host (Figure 3.7(a)). The

replication removal also saved CPU usage in the Backup broker host (Figure 3.7(c)), because

the Backup did not need to handle additional traffic from the Primary.

To evaluate the impact of dispatch-replicate coordination, we compared FCFS with FCFS-.

FCFS- outperformed FCFS in loss-tolerance performance (Table 3.4), because with FCFS-

the Primary may replicate and deliver messages sooner since it did not coordinate with the

Backup. But that way the Primary would miss opportunities to preclude latency penalties

caused by fault recovery, however, and we evaluate the impact in the next subsection.

70

630 640 650 660 670

0

50

100

La
te

nc
y

(m
s) FRAME+

630 640 650 660 670

0

50

100

La
te

nc
y

(m
s) FRAME

470 480 490 500

0

5000

10000
La

te
nc

y
(m

s) FCFS

630 640 650 660 670
Subscriber receiving sequence

0

250

500

La
te

nc
y

(m
s) FCFS-

Figure 3.9: End-to-end latency before, upon, and after fault recovery (category 0, Ti = 50,
Di = 50).

We further conducted a micro-benchmark to show that FRAME can keep the same level of

loss tolerance despite cloud latency variation. We ran the workload of 7525 topics non-stop

for 24 hours, using the FRAME configuration, and we measured the run-time value of ∆BS

for a topic in category 5 (Figure 3.8)7. The setup value of ∆BS for Dd
5 was 20.7 ms, which

was the minimum value from an one-hour test run. As a result, we observed no message loss

throughout the 24 hours, despite changes in the value of ∆BS.

71

310 315 320 325 330

0

50

100

La
te

nc
y

(m
s) FRAME+

310 315 320 325 330

0

50

100

La
te

nc
y

(m
s) FRAME

230 235 240 245 250

0

5000

10000
La

te
nc

y
(m

s) FCFS

310 315 320 325 330
Subscriber receiving sequence

0

250

500

La
te

nc
y

(m
s) FCFS-

Figure 3.10: End-to-end latency before, upon, and after fault recovery (category 2, Ti = 100,
Di = 100).

3.6.3 Latency Penalties Caused by Fault Recovery

We evaluate the latency penalties in terms of the peak message latency following a crash

failure. We set the size of the Backup Buffer to ten for each topic. Under the workload of

1525 topics, all four configurations performed well, and at higher workloads both FRAME

and FRAME+ outperformed FCFS and FCFS-. In the following, we evaluate a series of

end-to-end latency results under the workload of 7525 topics. We only show results of distinct

messages, differentiated by their sequence numbers. Duplicated messages were discarded.

The results are shown in Figures 3.9–3.11 with each column presenting four configurations

for a topic category.
7The +104 ms latency spike occurred at around 8am on Thursday.

72

60 62 64 66 68 70

0

50

100

La
te

nc
y

(m
s) FRAME+

60 62 64 66 68 70

0

50

100

La
te

nc
y

(m
s) FRAME

44 46 48 50 52 54

0

5000

10000
La

te
nc

y
(m

s) FCFS

60 62 64 66 68 70
Subscriber receiving sequence

0

250

500

La
te

nc
y

(m
s) FCFS-

Figure 3.11: End-to-end latency before, upon, and after fault recovery (category 5, Ti = 500,
Di = 500).

In general, without dispatch-replicate coordination (demonstrated by FCFS-), the number of

messages affected by fault recovery is lower-bounded by the size of the Backup Buffer, since

at run-time steady state the Backup Buffer is full, and during fault recovery new message

arrivals may need to wait. With the proposed dispatch-replicate coordination (demonstrated

by FRAME+, FRAME, and FCFS), the amount of work is decoupled from the buffer size and

is instead equal to the number of messages whose original copy has not yet been dispatched.

Both FRAME and FRAME+ met the loss-tolerance requirements (zero message loss); for

FRAME, although the Primary did replication, the Backup Buffer was empty at the time of

fault recovery (all pruned), suggesting the effectiveness of dispatch-replicate coordination; for

FRAME+, the Primary did no replication according to Proposition 1. FRAME+ successfully

73

recovered one message for each of categories 0 and 2 by publishers re-sending their retained

message copies. The latency of FRAME+ during fault recovery was higher than that of

FRAME, because with FRAME+ the Backup would process one additional message copy

per topic in categories 2 and 5, and that caused delay.

For FCFS, the system was overloaded, messages were delayed (latency > 10 seconds) and

many of them were lost: 206 losses for a topic in category 0, 103 losses for a topic in category

2, and 20 losses for a topic in category 5. We observed that dispatch-replication coordination

was in effect, as the Backup Buffer for those topics was empty at the time of fault recovery.

After switching to the Backup, message latency sharply dropped. For example, for topic

category 2 (Figure 3.10), the Backup began processing at the 240th message. Since the

Backup Buffer was empty, there was no latency penalty for new arrivals.

For FCFS-, we observed that the Backup Buffer was full at the time of fault recovery, because

there was no dispatch-replicate coordination. Therefore, there were large latency penalties

since the Backup needed to process all message copies in the Backup Buffer. For example,

shown in Figure 3.10, FCFS- had a peak latency above 500 ms, which was about 400 ms

longer than the deadline. In contrast, FRAME had a peak latency below 50 ms. The latency

prior to the Primary crash was low, because FCFS-, like FRAME and unlike FCFS, did not

overload the system (Figure 3.7(a)). Finally, we note that while FCFS- processed messages in

the Backup Buffer and caused great latency penalties, those messages were all out-dated and

unnecessary, and all the needed messages were actually recovered by publishers re-sending

their retained copies; for the topic in category 5, there was no message loss using FCFS- and

the publisher re-sending was unnecessary, and the two latency spikes were due to overhead in

processing unneeded copies (Figure 3.11).

74

Table 3.5: Success Rate for Latency Requirement (%).

Di Li FRAME+ FRAME FCFS FCFS-
Workload = 4525 Topics

50 0 100.0 99.9 ± 2.5E-2 99.9 ± 5.0E-2 100.0
50 3 100.0 99.9 ± 3.0E-2 99.9 ± 4.1E-2 100.0
100 0 100.0 100.0 100.0 100.0
100 3 100.0 100.0 99.9 ± 1.1E-3 100.0
100 ∞ 100.0 100.0 99.9 ± 1.9E-3 100.0
500 0 100.0 100.0 100.0 100.0

Workload = 7525 Topics
50 0 100.0 99.9 ± 4.4E-2 0.2 ± 0.1 99.9 ± 4.2E-2
50 3 100.0 99.9 ± 3.9E-2 0.2 ± 0.1 99.9 ± 6.3E-2
100 0 100.0 99.9 ± 8.8E-3 0.0 99.9 ± 1.4E-2
100 3 100.0 99.9 ± 5.6E-3 0.0 99.9 ± 1.3E-2
100 ∞ 100.0 99.9 ± 9.2E-3 0.0 99.9 ± 1.5E-2
500 0 100.0 100.0 0.0 100.0

Workload = 10525 Topics
50 0 100.0 99.9 ± 5.7E-2 0.2 ± 5.3E-2 99.8 ± 8.1E-2
50 3 100.0 99.9 ± 5.6E-2 0.2 ± 5.5E-2 99.8 ± 6.8E-2
100 0 99.9 ± 5.4E-2 99.9 ± 4.0E-2 7.2E-2 ± 0.1 99.9 ± 3.1E-2
100 3 99.9 ± 5.2E-2 99.9 ± 3.9E-2 7.2E-2 ± 0.1 99.9 ± 2.9E-2
100 ∞ 99.9 ± 5.0E-2 99.9 ± 4.3E-2 6.9E-2 ± 0.1 99.9 ± 3.1E-2
500 0 100.0 100.0 0.0 100.0

Workload = 13525 Topics
50 0 98.4 ± 2.9 85.4 ± 21.7 0.1 ± 0.1 99.4 ± 3.6E-1
50 3 98.4 ± 2.9 85.3 ± 21.7 0.2 ± 0.2 99.5 ± 2.3E-1
100 0 97.6 ± 4.4 83.7 ± 21.9 2.6E-4 ± 6.0E-4 98.3 ± 1.0
100 3 97.6 ± 4.4 83.8 ± 21.9 9.9E-4 ± 2.2E-3 98.3 ± 1.1
100 ∞ 97.6 ± 4.4 83.8 ± 21.9 6.6E-4 ± 1.5E-3 98.3 ± 1.1
500 0 98.6 ± 2.8 86.1 ± 21.8 0.0 100.0
Note: 100% success rate for all with 1525 topics.

3.6.4 Latency Performance During Fault-Free Operation

In addition to fault tolerance, it is critical that a system performs well during fault-free

operation. Good fault-free performance implies an efficient fault-tolerance approach. Table 3.5

shows the success rate for meeting latency requirement Di. All configurations performed well,

except for FCFS at higher workloads, in which cases the system was overloaded as discussed

75

in Section VI-B. This suggests that both the architecture and implementation are efficient,

as even the FCFS configuration performed well as long as the system was not yet overloaded.

3.6.5 Key Lessons Learned

Here we summarize four key observations:

1. Applying replication removal as suggested by Proposition 1 can help a system accom-

modate more topics while reducing CPU utilization (FRAME v.s. FCFS).

2. Pruning backup messages can reduce latency penalties caused by fault recovery at a

cost of nontrivial overhead during fault-free operation (FCFS v.s. FCFS-).

3. Following the first two lessons, combining replication removal and pruning can achieve

better performance both at fault recovery and during fault-free operation (FRAME v.s.

FCFS-).

4. Allowing a small increase in the level of publisher message retention can enable large

replication removal and greatly improve efficiency (FRAME v.s. FRAME+).

3.7 Concluding Remarks

In this Chapter, we introduced a new fault-tolerant real-time edge computing model and

illustrated that the proved timing bounds can aid in requirement differentiation. We then

introduced the FRAME architecture and its implementation. Empirical results suggest

that FRAME is performant both in fault-tolerant and fault-free operation. Finally, we

demonstrated in an IIoT scenario that FRAME can keep the same level of message-loss

tolerance despite varied cloud latency, and we show that a small increase in publisher message

retention can both improve loss-tolerance performance and reduce CPU usage.

76

Chapter 4

Adaptive Real-Time Reliable Edge

Computing

4.1 Introduction

Data processing at the edge of clouds is essential to Industrial Internet-of-Things (IIoT)

systems [41]. An IIoT edge processing service receives data from local networked embedded

devices, performs in-band processing, and delivers distilled information to IIoT applications.

The service runs in resource-constrained edge platform and must be resilient to system

failures. With the increasing deployment of IIoT devices for a wide range of IIoT applications,

such data processing services must be able to meet a variety of applications’ different fault-

tolerance and real-time requirements with efficiency. For purposes of monitoring, inference,

and prediction, IIoT applications typically can tolerate a few consecutive losses of data, as an

application may compute estimates using previous or subsequent data. IIoT applications may

require soft deadlines end-to-end, between data creation and final delivery of the processed

77

result. For example, monitoring applications may require tens of milliseconds end-to-end

latency, and late delivery is less useful to the application.

It is challenging for an IIoT edge processing service to remain efficient while meeting

applications’ latency and loss-tolerance requirements, especially as common fault-tolerance

approaches often introduce significant overhead. IIoT devices often have limited storage

capacity, which may limit re-transmissions end-to-end. State machine approaches [63] provide

seamless, end-to-end data loss-tolerance but are resource-expensive as they run full copies

of system replicas, while primary-backup approaches [15] are resource-efficient at a cost of

reduced timeliness. During fault-free operation, recording and sending service states from

a primary to a backup may delay normal data processing; during fault-recovery operation,

replay from a previous state may delay processing of new data. It is thus nontrivial to achieve

timeliness for both operations.

In this Chapter, we study adaptive real-time reliability techniques for IIoT processing services.

We consider both resource constraints in edge computing systems and application requirements

in data loss-tolerance and latency, and present three major contributions in this area of

research:

1. A timing analysis framework for data replication. We extend the primary-backup

service model by taking into account device-specific capacity for re-transmissions and

application-specific requirements for loss-tolerance and latency. We analyze relative

deadline for data replication to satisfy each level of loss-tolerance requirement, and

show how the relative deadline inversely correlates to the frequency of replication.

2. An architecture for adaptive real-time reliable edge computing (ARREC). We introduce

a new software system architecture that can efficiently meet application-specific require-

ments for data-loss tolerance and latency. Based on our observations that (1) in-band

78

processing often has short execution times per data element, and (2) applications can

tolerate a few consecutive losses of data, we introduce heuristics that perform selective

lazy data replication to reduce latency impact on data processing, while keeping needed

levels of data loss-tolerance assurance.

3. An efficient implementation and empirical evaluation. We describe our implementation

of ARREC within the mature and widely-used TAO real-time event service [38] mid-

dleware, and present an empirical validation of ARREC’s performance using typical

IIoT workloads and data traffic patterns. Our empirical results show that ARREC can

efficiently meet both latency and loss-tolerance requirements, during both fault-free

operation and fault-recovery.

The rest of this Chapter is organized as follows: In Section 4.2, we survey related work. In

Section 4.3, we present our system model and problem definition. In Section 4.4, we provide

a new timing analysis for replication. In Section 4.5, we introduce the ARREC software

architecture, and describe its implementation in Section 4.6. In Section 4.7, we present

our empirical evaluation of ARREC. We summarize this work and present conclusions in

Section 4.8.

4.2 Related Work

IIoT systems largely follow the edge computing paradigm, where applications respond to local

events in near real-time [41, 65]. AWS Greengrass is a typical edge computing platform [1],

where a Greengrass Core locally provides a processing service, and in-band processing is

triggered by data from IIoT devices. Our approach aligns well with such an architecture.

There is recent work [6] on a timely and reliable transport service, and other work [12] on

79

fault-tolerant task allocation to meet different recovery time requirements. To our knowledge,

we are the first to study real-time reliable in-band processing in the IIoT domain.

Stream processing is related to in-band processing, but usually with longer execution times

per stream and therefore the service can accommodate less data traffic per service host.

Modern stream processing services leverage checkpointing techniques for fault-tolerance and

can be classified into two types, where in the micro-batch model [75], an event stream is

segmented into micro-batches of duration in seconds. Within each micro-batch, a processing

graph is partitioned into stages, and checkpoints are taken at barriers inserted between stages

and at the end of the micro-batch. In the continuous operator model [17], each operator in a

processing graph is a long-running task and intermediate results are directly transferred to

the next operators. Checkpoints in this model are taken periodically and in a distributed

manner, and together they form a consistent global snapshot [18], providing a rollback point

for fault recovery.

Both stream processing models exhibit a performance trade-off between when a system is

running fault-free and when it is recovering from failure. The micro-batch model induces

less latency penalty for fault recovery, at the cost of more complex and time-consuming

coordination during fault-free operation. The continuous operator model, in contrast, incurs

less latency overhead when fault-free, but may take longer to recover from failure. The Drizzle

project [70] offers an empirical comparison of two representative implementations: Apache

Spark [75] (using the micro-batch model) and Apache Flink [17] (using the continuous operator

model). Drizzle introduced a choice of grouping micro-batches to bound the coordination

overhead under fault-free operation, defined as the ratio of time spent on scheduling to

the overall execution time of the service. In contrast, in this Chapter we focus on a more

performant IIoT processing service that works at time scales of tens of milliseconds, with

large amounts of input data per service host and short execution times per data element, and

80

is constrained by application-specific timing and loss-tolerance requirements. The approach

proposed in this Chapter works efficiently in both fault-free and fault recovery operations.

In IIoT processing services, appropriate scheduling of both data processing and data replication

activities is critical and challenging: a system should complete data replication in time to

ensure needed levels of data loss-tolerance, while also making progresses in data processing to

meet soft latency requirements. In essence, for both types of activity, a system must ensure

timely completion of one type while allowing enough progress of the other. Research on

real-time scheduling, such as Zero-Slack [23, 27, 39] and Virtual-Deadline [10, 11] strategies

in mixed criticality systems [16] and the earliest deadline zero laxity scheduling algorithm

(EDZL) [7, 49, 50], offer ways to schedule activities of different levels of assurance and ensure

timely completion of the ones with the highest level. In the Zero-Slack strategy, for example,

a critical time instant is pre-computed per task, and the system ensures that after that time

instant, execution of high-criticality tasks will not be further delayed by low-criticality tasks.

In contrast, in this Chapter, we observe that in IIoT processing services, data replication

activities (which are more critical than data processing) can be safely postponed or even

skipped. We prove deadlines for data replication, identify conditions of skipping replication,

introduce a scheduling heuristic for lazy and selective data replication, and describe a new

system architecture that leverages the heuristic. Our empirical validation shows that the

resulting system can meet data loss-tolerance requirements while reducing latency impact on

data processing.

4.3 System Model and Definition

In this section, we first present our service model for IIoT processing and our fault model.

We then introduce IIoT real-time fault-tolerance specifications and our problem statement.

81

4.3.1 Service Model and Fault Assumption

We focus on a local IIoT service that performs in-band data processing, and we call such

a service an edge processing core, or simply an edge core. An edge core receives data from

publishers, invokes processing operations on the data, and then delivers processed data to

subscribers. We define two types of edge cores, the Primary that processes and replicates

data, and the Backup that receives the replicated data. We assume there is one Backup per

Primary edge core, each running on a different host. Each data publisher publishes data of a

set of topics, with an inter-publishing time no smaller than Ti for data of topic i.

We assume that the Primary performs in-band processing for each data topic. This is modeled

as a set of processing tasks, denoted by τ p. For data of topic i, task τ pi ∈ τ p is the in-band

processor for it, and the execution time is ei. An arrival of data of topic i triggers a job

release of task τ pi . At the completion of the job the Primary will deliver the processed data

to its subscriber.

We assume that Primaries are subject to processor crash failures with fail-stop behavior.

Upon a crash failure, the Backup will be promoted to become a new Primary. The new

Primary will resume the service by re-processing/re-delivering the replicated data, and all

publishers will then send data to the new Primary. We also assume that our target system

uses reliable inter-connects between hosts running publishers, subscribers, the Primary, and

the Backup: these inter-connects do not fail or partition. We define a set of replication tasks,

denoted by τ r, and a set of fault-recovery tasks, denoted by τ f . For topic i, replication

task τ ri ∈ τ r represents the work of replicating data belonging to topic i to the Backup, and

fault-recovery task τ fi ∈ τ f represents the work by the Backup to process the replicated data

belonging to topic i at the time of recovery, which is essentially a re-processing/re-delivery of

data that was being handled by the Primary.

82

4.3.2 Requirements and Problem Statement

We assume that each publisher can keep the Ni latest data elements that it has sent to the

Primary, and will send them to the new Primary as part of fault recovery. Each subscriber has

a loss-tolerance requirement per data element of interest, specified as Li ≥ 0 for data type i,

saying that the subscriber cannot tolerate more than Li consecutive data losses. Further, each

subscriber has a latency requirement Dp
i for each data topic it subscribes to. The requirement

specifies a soft end-to-end deadline, between the time a publisher sent the data and the time

the processed data arrived at its subscriber.

Conceptually, the problem is to schedule all tasks in τ ≡ {τ p∪τ r∪τ f} such that all constraints

are met. A plausible approach, which we refer to as eager data replication, is to schedule jobs

of τ ri for execution at their earliest possible times, so that each data element arriving at the

Primary may have a copy in the Backup as soon as possible. Eager data replication, however,

may incur significant delay to the data processing for τ p, because frequent traffic from the

Primary to the Backup could consume a significant portion of the CPU resources. In this

Chapter, we explore lazy data replication, to study how both postponing executions of τ ri ,

and grouping pending replications to some extent, may help improve overall performance.

In the following sections, we first discuss timing constraints for data replication, and then

describe our IIoT middleware solution that leverages such constraints as an effective guide to

schedule data replications.

83

4.4 Analysis for Data Replication

In this section, we introduce an analysis framework and thereby answer two questions:

(1) Under what conditions is replication needed? (2) Before what time must a replication job

complete?

We address each of these questions in the following subsections, respectively. For now, we

assume that a system can meet these conditions if need be. In the next section, we introduce

our design of the ARREC architecture that is capable of doing so.

4.4.1 Need for Data Replication

We say that a piece of data is uncovered if it has arrived at the Primary but has neither

been replicated to the Backup, nor had a copy kept at the publisher. Should the Primary

crash, all uncovered data would be lost. Intuitively, keeping a large number of data copies at

a publisher for re-transmission could reduce the need for data replication to the Backup, but

such an approach is neither ideal nor practical. It is not ideal because it will cause a burst in

both re-transmission and re-processing. It is not practical because data publishers in IIoT

systems are typically embedded devices that have limited data storage for such purposes.

Data replication is needed but may be performed sparingly. For example, let data topic i be

the one of interest, and suppose Li = 3 and Ni = 0. The Primary may need to replicate data

from topic i only if the number of consecutive uncovered data elements of topic i has reached

some threshold, e.g., three, though in which case the Primary must complete replication

before the next data arrival from topic i; otherwise, a crash failure before the completion of

replication would violate the loss-tolerance requirement.

84

In general, the need for replication depends on the number of consecutive uncovered data

elements. A simple condition for the data of topic i is to replicate once every Li data arrivals,

and the system can thus ensure needed data-loss tolerance as long as it has succeeded in

replicating data to the Backup. In the rest of this Chapter, we suppose that the Primary

replicates data from topic i once every Mi arrivals, and we analyze the relation between Mi

and the deadline to complete such a replication action.

4.4.2 Deadline for Data Replication

First, we prove a constraint between applications’ requirements and platform parameters:

Lemma 3. For data topic i, to prevent more than Li consecutive data losses, Li and Ni

cannot be both zero.

Proof. We prove by contradiction. Assuming that both Li = 0 and Ni = 0. If a crash

happened immediately after a data arrival, it would be impossible to ensure no data loss:

the data did not have a copy kept at the publisher for re-transmission, and the Primary was

unable to replicate data in time. The system would have at least one data loss.

We define a relative replication deadline for data topic i, or simply a replication deadline,

denoted by Dr
i , to be the maximum allowable response time for the Primary to complete

replicating the data. In the following, we derive bounds on the replication deadline in terms of

applications’ requirements and platform parameters. Let δPP be the latency from a publisher

to the Primary, δPrB be the latency from the Primary to the Backup, and TFO be a publisher’s

fail-over time, which is the interval between when the Primary crashed and when the publisher

is able to send its data to the new Primary.

85

TFO

...

tk-1 tk

: targets for replication

Ni

...

Li - y

Li + 1

...

Figure 4.1: An illustration for the proof of Lemma 4.

Lemma 4. For data topic i, set Mi = Li − y ≥ 1. To prevent more than Li consecutive data

losses, the replication deadline must satisfy the following bound:

Dr
i ≤ (Ni + y + 1)Ti − TFO − δPP − δPrB. (4.1)

Proof. We consider a sequence of data arrivals of type i, as shown in Figure 4.1. Subtracting

δPP from each data arrival time, we have the data sending time at the publisher. Suppose

that the Primary crashed at a time within (tk−1, tk]. There are two cases to prove:

Suppose that a crash happened within (tk−1, tk−TFO). Without loss of generality, we suppose

that the crash happened immediately after the data arrival at time tk−1, and thus data

arriving at time tk−1 will be lost. Later data will not be lost, because the publisher will be

able to detect the Primary failure before time tk and will send them to the Backup instead.

By definition, all the latest Ni data will be recovered via publisher re-transmission.

There will be more than Li consecutive data losses if there were at least Li + 1 consecutive

uncovered data elements when a system crashes. To avoid this, and since the Primary

triggers replication only once every Li − y arrivals, in the worst case the last attempt of

replication that must succeed would be the one made for the data that has arrived at time

t(k−1)−(Ni−1)−(y+2) (e.g., the rightmost box in Figure 4.1), and the replication must complete

no later than time tk−1. Therefore, the replication deadline must be smaller than or equal to

((k − 1)− ((k − 1)− (Ni − 1)− (y + 2))Ti − δPP − δPrB = (Ni + y + 1)Ti − δPP − δPrB.

86

Now suppose that a crash happened at a time instant within [tk − TFO, tk]. In this case, the

publisher cannot detect the crash in time and would still send data that should have arrived at

the Primary at time tk, and that data will be lost. The publisher would send subsequent data to

the Backup and so they will not be lost. The worst case is that the crash happens immediately

after time tk−1+Ti−TFO, and therefore the replication deadline must be smaller than or equal

to (Ti−TFO)+((k−(k−(Ni−2)−(y+2))−1)Ti−δPP−δPrB = (Ni+y+1)Ti−TFO−δPP−δPrB.

Lemma 4 shows that a more frequent replication interval (a smaller Mi) can permit a longer

replication deadline. For example, if we configure the Primary to replicate once every Li data

arrivals, a replication deadline would be (Ni +1)Ti−TFO−δPP −δPrB; if instead we configure

the Primary to replicate at every data arrival, then setting y = Li− 1 the replication deadline

would be (Ni + Li)Ti − TFO − δPP − δPrB, which is (Li − 1)Ti longer. For the case Li = 0,

according to the definition of Mi, a system must replicate at every data arrival, and thus

setting y = −1 the replication deadline would be NiTi − TFO − δPP − δPrB. In Section 4.7,

we describe our empirical evaluation of the those alternatives.

The following Lemma suggests that the Primary may feasibly perform even less-frequent

replication for data topic i:

Lemma 5. For Ni > 0, one may set Mi = max{Li, 1} + 1, in which case the replication

deadline must satisfy the following bound:

Dr
i ≤ NiTi − TFO − δPP − δPrB. (4.2)

Proof. Similar to the proof for Lemma 4, the worst case is that the Primary crashed within

[tk− TFO, tk]. Setting Mi = max{Li, 1}+ 1 means that now we make a replication once every

87

Li + 1 data arrivals (or once every two arrivals, if Li = 0), and therefore the last replication

job must complete before a crash. With publisher re-transmission, in the worst case the last

replication job was for the data arrival at time tk−Ni
, and the deadline must be upper-bounded

by ((k − 1)− (k −Ni))Ti + (Ti − TFO)− δPP − δPrB = NiTi − TFO − δPP − δPrB.

Finally, the following Lemma shows that Lemma 5 gives the maximum allowable value of Mi:

Lemma 6. To prevent more than Li consecutive data losses, Mi cannot be larger than Li + 1

for Li > 0.

Proof. We prove this by showing that replicating every Li + 2 arrivals or longer does not

work. Replicating at such an interval implies that there are at least Li + 1 data arrivals

between two replications. The loss-tolerance requirement will break if the earliest data that

would be recovered by publisher re-transmission happens to be the one for which we made a

replication, because in this case at least Li + 1 data arrivals before that replication will be

lost.

4.5 The ARREC Architecture

We now provide a high-level overview of the ARREC architecture for adaptive real-time

reliable edge computing, and then describe how ARREC’s components coordinate to enforce

loss-tolerance and latency requirements.

ARREC is designed to achieve efficient data replication while meeting applications’ require-

ments. This is carried out via simple heuristics that selectively pick and group data for

replication and replicate groups of data in a lazy yet timely manner. Postponing replication

actions can effectively remove needs for actual execution, because typical IIoT in-band

88

Data
subscriber

Data
publisher

The Primary

Data
publisher

Data
publishers

Data
subscriber

Data
subscribers

Replication handler

... ...

Processing
engine

The Backup

Recovery handler

Processing
engine

Figure 4.2: ARREC System Architecture.

processing has short execution times (e.g., performing inference or prediction) and processed

and delivered data can be exempted from replication. In ARREC, we leverage the timing

constraints on replication (see Section 4.4.2) to postpone replication actions to the extent

possible, and thus improve overall efficiency of resource utilization, reduce latency impact on

in-band processing, and at the same time keep needed levels of data loss-tolerance assurance

for each application.

The ARREC architecture is illustrated in Figure. 4.2. The system is pre-configured with

the specifications from publishers and subscribers. Upon each data arrival the processing

engine component creates a processing job. Before processing the data, the processing engine

selectively creates a replication job, driven by the valueMi (see Section 4.4.1). The replication

handler component decides when to perform data replication. All replicated data elements

are kept in a buffer in the Backup, and upon fault recovery the recovery handler component

then feeds those data elements to the processing engine. The processing engine schedules all

jobs of τ pi and τ fi according to absolute deadline, defined as the arrival time of data of topic i

plus Dp
i minus the elapsed time since the data sending time at the publisher. In this Chapter

we chose to use the earliest-deadline-first (EDF) scheduling policy as an example.

89

ti
m

e

fr
o
m

 p
u
b
lis

h
e
r

Replication
handler

Processing
engine

to
 s

u
b
sc

ri
b
e
r

to
 t

h
e

B
a
ck

u
p

A

B

C
D

Figure 4.3: Interactions between ARREC components.

...

arrivals of different
data topics batch

window

di : deadline to start replicating data arrived at ti

t2 d2

...
service-wide deadline
to start a replication

t1 d1t3 t4 d3 d4

Figure 4.4: Illustration of lazy data replication.

4.5.1 Selective Lazy Data Replication

Selecting data for replication is carried out via cooperation between the processing engine

and the replication handler, as illustrated in Figure 4.3. Upon each arrival of data topic i,

the processing engine compares the value of Mi with the number of data arrivals since the

latest replication, and marks data for future replication if the number becomes larger than

or equal to Mi (Step A), in which case the replication handler in turn will update its timer

for lazy replication based on the marked data element’s corresponding replication deadline

(Figure 4.4): the timer expiration time is set to the earliest among the deadlines to start

replicating data, where a deadline to start replication is defined as the replication deadline

minus execution time of the replication action. In the meantime, the processing engine can

perform needed in-band data processing (Step B). When the timer expires, the replication

handler will select all the marked data elements for which the replication start time falls

within a batch window (Step C) and will replicate them in a batch (Step D).

90

Subscription & Filtering

Supplier Proxies

Event Correlation
Dispatching

Consumer Proxies

m
e
ss

a
g
in

g
d

ir
e
ct

io
n

(a) original TAO (b) with ARREC

Processing
engine

Supplier Proxies

Consumer Proxies

Replication
handler

Recovery
handler

Figure 4.5: Implementation of ARREC within TAO’s Real-Time Event Service.

4.5.2 Fault Detection and Recovery

The Backup periodically polls the Primary, and will become the new Primary should the

Primary crash. The new Primary will schedule both the data from the previous Primary and

the newly arriving data according to their processing deadlines. In IIoT in-band processing the

failover overhead includes both the amount of processing work that needs to be re-performed

and the subsequent latency impact to newly arriving data elements. It is thus critical to

identify and skip redundant re-processing. Through the lazy replication heuristic, ARREC

would create fewer data copies in the first place. In addition, ARREC can optionally perform

a quick recovery by skipping data that has been delivered in the previous Primary. To enable

quick recovery, the Primary attaches the sequence numbers of delivered data to the replication

batch, and the Backup can use such information to identify and skip unneeded data copies.

4.6 Implementation

We implemented ARREC within the TAO real-time event service [38], where data elements are

carried as events’ payloads and publishers and subscribers are implemented as event suppliers

and consumers. The processing engine, the replication handler, and the recovery handler are

also implemented within an event channel. An event channel in the original TAO middleware

contains five modules, as shown in Figure 4.5(a). Figure 4.5(b) illustrates our implementation:

we preserved the original interfaces to event suppliers (i.e., the Supplier Proxies module) and

91

to event consumers (i.e., the Consumer Proxies module), and replaced the Subscription &

Filtering, Event Correlation, and Dispatch modules with ARREC’s components.

We connected the Supplier Proxies module to the Message Proxy module by a hook method

within the push method of the Supplier Proxies module. The Message Delivery module delivers

messages by invoking the push method of the Consumer Proxies module. We implemented

the processing engine using one thread serving as an input proxy on a dedicated CPU core,

and a pool of generic threads serving as processing workers on a set of dedicated CPU cores,

with the total number of threads equal to ten times the number of CPU cores for processing.

We implemented the replication handler as a highest-priority thread, to prevent it from being

delayed by data processing, and allocated it to the CPU cores for processing, and we used

C++11’s standard chrono time library to timestamp data.

4.7 Empirical Evaluation

In this section, we present our empirical evaluation of ARREC’s performance from two

perspectives: (1) loss-tolerance enforcement: can a system meet each application’s required

level of data loss-tolerance and is the approach efficient? (2) latency performance: what is

replication’s impact on the processing latency during fault-free and fault-recovery operations,

respectively?

4.7.1 Experiment Design and Setup

We evaluate two configurations of ARREC against two baseline configurations. The ARREC_all

configuration performs lazy data replication, and the ARREC_Li configuration in addition

performs replication selectively, once per every Li arrivals, for data topic i. The first baseline

is Retransmission-only, in which the Primary performs no data replication at all and

92

Table 4.1: Topic Specification for Empirical Evaluation.

Category Usage Example Li Ni Dp
i (ms) Ti (ms)

1 logging 0 1 ∞ 50
2 0 1 100 100
3 0 1 500 500
4 monitoring 3 0 50 50
5 3 0 100 100

solely relies on re-transmissions from data publishers to the Backup for data-loss tolerance.

Comparison against this baseline shows the overhead of data replication. The second baseline

is Periodic, in which the Primary performs periodic, service-wide replication by replicating

all data that has arrived since the most recent replication.

We present empirical results for a selection of topic specifications, based on the following

three observations about IIoT systems:

1. Data publishers have limited data storage for re-transmission. Often, data publishers

are embedded devices. Some publishers may have more capacity, such as wireless base

stations that aggregate data, but in those cases the capacity is amortized to the number

of data topics they aggregate.

2. Most of the data topics may have moderate or no loss-tolerance requirements. The

majority of data generated in IIoT systems are from embedded sensors for monitoring

purposes. Some intermittent losses of data may be compensated, for example, by

estimation from previous or subsequent data.

3. Some data topics may require zero loss but have no latency requirement. An example is

topics used for logging purposes.

Accordingly, for our empirical evaluation, we used the topic specifications shown in Figure 4.1.

For each topic category, we chose the minimum feasible value of Ni (number of data kept at

93

Subscriber host

The Primary hostPublisher host 1

Publisher host 2 The Backup host

Figure 4.6: Experimental topology.

a publisher for re-transmission) for each value of Li (tolerable number of consecutive data

losses): for topics with Li = 0, Ni must be greater than zero to tolerate a Primary host crash

immediately after a data arrival. We loaded our system by feeding 50 topics for categories 1

and 4 each, and 100 topics for categories 2 and 3, and we gradually increase the number of

topics in category 5, from 900 to 1300, to evaluate the performance of our system under a

range of workloads. The total number of topics processed by the system is thus from 1200 to

1600. For each topic we controlled the execution time of its processing load to be 0.1 ms.

We evaluated two IIoT traffic patterns: (1) large group transmissions, by which we evaluated

the impact of bursty data arrivals from a large publisher, and (2) small group transmissions,

by which we evaluated the impact of many connections from multiple smaller publishers. For

large group transmissions, we used one publisher to generate all data in topic category 5; for

small group transmissions, we used multiple publishers to generate data in topic category 5,

with ten topics per publisher. For the rest of the topic categories, we created publishers with

ten topics per publisher.

Our test-bed consists of five hosts, as shown in Figure 4.6: One publisher host has an Intel

Pentium Dual-Core 3.2 GHz processor, running Ubuntu Linux with kernel v.3.19.0, and

another has an Intel Core i7-8700 4.6 GHz processor, running Ubuntu Linux with kernel

v.4.13.0; both Broker hosts have Intel i5-4590 3.3 GHz processors, running Ubuntu Linux

kernel v.4.15.0; one subscriber host has an Intel Pentium Dual-Core 3.2 GHz processor,

running Ubuntu Linux with kernel v.3.13.0. We connected all hosts via a Gigabit switch in a

closed LAN. In both the Primary host and the Backup host, two CPU cores were dedicated

94

1200 1300 1400 1500 1600
Total # of Topics

0

20

40

60

80

100

Su
cc

es
s r

at
e

fo
r l

os
s t

ol
er

an
ce

 (%
)

Retransmission-only
Periodic-50ms
Periodic-25ms
ARREC_all
ARREC_Li

(a) Large group.

1200 1300 1400 1500
Total # of Topics

0

20

40

60

80

100
Su

cc
es

s r
at

e
fo

r l
os

s t
ol

er
an

ce
 (%

)

Retransmission-only
Periodic-50ms
Periodic-25ms
ARREC_all
ARREC_Li

(b) Small group.

Figure 4.7: Success rate for loss-tolerance requirement (%).

for both processing threads in a processing engine and the replication thread, and one CPU

core was dedicated for the input proxy thread. We assigned both the replication thread and

the input proxy thread the highest priority level 99 and worker threads with the next highest

priority level 98, all with real-time scheduling policy SCHED_FIFO. We synchronized our local

hosts via PTPd [33], an open source implementation of the PTP protocol [40]. The clocks of

the publisher hosts, the subscriber host, and the Backup host were synchronized to the clock

of the Primary host, with synchronization error within 0.05 milliseconds. We injected a crash

failure by sending signal SIGKILL to the Primary broker at the 40th second, and studied the

performance of failover to the Backup. We used the iftop tool to measure the average rate

of network bandwidth consumption of the latest 40 seconds.

95

4.7.2 Message Loss-Tolerance Enforcement

Figure 4.7 shows the success rate for meeting the loss-tolerance requirements, for topic

category 1, for configurations ARREC_all, ARREC_Li, Periodic-50ms (with replication period

set to 50 ms, the shortest period of the topic specification in Table 4.1), Periodic-25ms

(replication period = 25 ms), and Retransmission-only. For each configuration, we ran each

workload twenty times and calculated the average percentage of meeting the loss-tolerance

requirement for each category, along with the 95% confidence interval.

Configurations ARREC_all, ARREC_Li, and Periodic-25ms met the requirements under each

degree of workload, while both configurations Periodic-50ms and Retransmission-only

occasionally failed to meet the loss-tolerance requirement. Topic category 1 is a challenging

case, because the processing for data with no latency requirement may be delayed by some

other more urgent data processing, as a result of the use of an EDF scheduling policy. For

a certain topic in category 1, there could be multiple data waiting to be processed, and

they would be lost upon a system crash. We observed a 100% success rate for all the other

categories, as also due to the use of an EDF scheduling policy, all deadlines may be met as

long as the system has not yet been saturated. For the case of small group transmissions, the

system was saturated with 1600 topics.

The periodic replication strategy may fail to replicate those data in time, because it is not

aware of the timing constraint on replication for each data. Doing replication at a shorter

periodic may work, but its success relies on trial-and-error tuning to find a suitable period

for each specific set of topics. With a shorter period also comes a higher overhead in resource

consumption.

96

1200 1300 1400 1500 1600
Total # of Topics

0

20

40

60

80

100

Re
pl

ica
tio

n
Tr

af
fic

 (M
bp

s) Retransmission-only
Periodic-50ms
Periodic-25ms
ARREC_all
ARREC_Li

(a) Large group.

1200 1300 1400 1500
Total # of Topics

0

20

40

60

80

100

Re
pl

ica
tio

n
Tr

af
fic

 (M
bp

s) Retransmission-only
Periodic-50ms
Periodic-25ms
ARREC_all
ARREC_Li

(b) Small group.

Figure 4.8: Network bandwidth consumption for replication traffic from the Primary to the
Backup.

We evaluated resource efficiency of ARREC, showing that while meeting loss-tolerance

requirements, ARREC consumed less network bandwidth, compared with the periodic

replication baselines. The results are shown in Figure 4.8. With a payload size of 512

bytes per data element, configuration ARREC_all may save 33–49 Mbps in replication traffic,

i.e., about an 88% reduction, compared with configuration Periodic-25ms. This result

demonstrates the benefit of lazy replication: it gives more time for a system to process

and deliver data before performing replication, and the system can skip spurious data. We

observed that configuration ARREC_all saved more bandwidth than configuration ARREC_Li,

although the latter only selects data for replication once every Li arrivals. The reason is

that the longer replication deadline permitted by configuration ARREC_all (see Lemma 4)

would allow more pending replications to be skipped. Configuration ARREC_Li outperformed

97

1200 1300 1400 1500 1600
Total # of Topics

0

50

100

150

200

CP
U

Ut
iliz

at
io

n
(%

)

Retransmission-only
Periodic-50ms
Periodic-25ms

ARREC_all
ARREC_Li

(a) Large group.

1200 1300 1400 1500 1600
Total # of Topics

0

50

100

150

200
CP

U
Ut

iliz
at

io
n

(%
)

Retransmission-only
Periodic-50ms
Periodic-25ms

ARREC_all
ARREC_Li

(b) Small group.

Figure 4.9: CPU% accounted for both the processing threads and the replication thread in
the Primary.

the periodic replication baselines, because the use of a batch window (40 ms in this case)

allows data with a longer replication deadline to be exempted from the current round of

replication. Finally, our results also show that configuration Periodic-25ms took more

network bandwidth than configuration Periodic-50ms, because with a shorter period the

system had less chance to skip replication.

Figure 4.9 shows the system utilization of each configuration under increasing workload.

Configuration Retransmission-only gives the baseline CPU%, i.e., with the processing

threads only, as the replication thread is not active in this configuration. Comparing that

against all the other configurations, we observed that the replication thread took at most 5%

CPU utilization, and the addition did not grow in proportion to the increase in workload. We

also measured the overhead of maintaining a group of pending replications, which accounted

for less than 2.5% CPU utilization.

98

1200 1300 1400 1500 1600
Total # of Topics

0.0

2.5

5.0

7.5

10.0

12.5

15.0

CP
U

Ut
iliz

at
io

n
(%

)

Retransmission-only
Periodic-50ms
Periodic-25ms

ARREC_all
ARREC_Li

(a) Large group.

1200 1300 1400 1500 1600
Total # of Topics

0.0

2.5

5.0

7.5

10.0

12.5

15.0
CP

U
Ut

iliz
at

io
n

(%
)

Retransmission-only
Periodic-50ms
Periodic-25ms

ARREC_all
ARREC_Li

(b) Small group.

Figure 4.10: CPU% for the input proxy thread in the Backup.

Figure 4.10 shows the CPU utilization due to the recovery handler in the Backup, which

was executed by the input proxy thread. The result for configuration Retransmission-only

shows that the overhead due to fault detection (with a 10 ms polling period) accounted for

about 5% in CPU utilization. The results for other configurations also show the overhead of

handling data replication from the Primary. Configurations ARREC_all and ARREC_Li both

had lower overhead than periodic replication, because of the use of lazy replication. The

overhead of configuration ARREC_all was lower than that of configuration ARREC_Li, because

the former permits a longer deadline before actually replicating data. Finally, Figure 4.10

also shows that when using periodic replication, a shorter period caused more work to be

performed at the Backup (comparing configurations Periodic-50ms and Periodic-25ms),

because more data was replicated from the Primary. This again suggests the benefit of

leveraging temporal laxity in replication deadlines, as the ARREC design explicitly does.

99

We also empirically evaluated the performance of ARREC with small group transmissions as

described in Section 4.7.1. In this case, ARREC also outperformed the periodic replication

approaches, in terms of success rate for loss-tolerance (Figure 4.7(b)), network bandwidth

consumption (Figure 4.8(b)), and CPU utilization (Figure 4.9(b)). Compared with the case of

large group transmissions, we have three observations: (1) small group transmissions resulted

in higher load to the system in the processing threads (compare Figures 4.9(a) and (b));

(2) the additional load due to replication remained the same (compare Figures 4.9(a) and (b));

and (3) the network bandwidth consumption was reduced (compare Figures 4.8(a) and (b)).

With small group transmissions, there were more data publishers, and the connection overhead

increased. As data arrivals became less bursty, there was less data within each period of

replication, and therefore comparing with the periodic replication approaches, the relative

benefit of lazy replication was less apparent.

4.7.3 Mitigation of Overhead Latency

We evaluated latency during and after fault recovery. In each topic category, we took a

sequence of data arrivals at a publisher, gouging the change of the end-to-end latency over

time. Figure 4.11 show the latency performance with and without the proposed quick recovery

strategy, in topic category 4, for a workload of 1400 topics. Notably, configuration ARREC_all

demonstrated almost no latency penalty for fault recovery, even with no aid from the proposed

quick recovery strategy (Figure 4.11(a)), since many pending replications were skipped and

thus little workload needed to be re-processed during fault recovery. For other configurations,

the increase in latency was due to a combination of the effects from the need to re-process

data in the Backup buffer and the new arrivals with shorter deadlines during re-processing.

The quick recovery strategy removed the redundant need for re-processing, and thereby

100

770 780 790 800 810 820 830 840 850

0
250
500

La
te

nc
y

(m
s)

ARREC_Li

770 780 790 800 810 820 830 840 850

0
250
500

La
te

nc
y

(m
s)

ARREC_all

770 780 790 800 810 820 830 840 850

0
250
500

La
te

nc
y

(m
s)

Periodic-25ms

770 780 790 800 810 820 830 840 850
Arrival sequence at a subscriber

0
250
500

La
te

nc
y

(m
s)

Periodic-50ms

(a) Without quick recovery.

770 780 790 800 810 820 830 840 850

0
250
500

La
te

nc
y

(m
s)

ARREC_Li

770 780 790 800 810 820 830 840 850

0
250
500

La
te

nc
y

(m
s)

ARREC_all

770 780 790 800 810 820 830 840 850

0
250
500

La
te

nc
y

(m
s)

Periodic-25ms

770 780 790 800 810 820 830 840 850
Arrival sequence at a subscriber

0
250
500

La
te

nc
y

(m
s)

Periodic-50ms

(b) With quick recovery.

Figure 4.11: Latency (ms) during and after fault recovery (large group).

1200 1300 1400 1500 1600
Total # of Topics

0

10

20

30

40

50

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (m

s)

Retransmission-only
Periodic-50ms
Periodic-25ms
ARREC_all
ARREC_Li

Figure 4.12: 99th percentile latency (large group).

effectively reduced the combination of effects that would otherwise slow down the system

(Figure 4.11(b)). We observed similar results for other topic categories.

Finally, we evaluated the latency performance before a fault occurs. As we primarily con-

sider soft latency requirements, we looked at the tail latency performance. In particular,

we measured the 99th percentile latency for a topic in each category. Figure 4.12 shows

101

1200 1300 1400 1500
Total # of Topics

0

10

20

30

40

50

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (m

s)

Retransmission-only
Periodic-50ms
Periodic-25ms
ARREC_all
ARREC_Li

Figure 4.13: 99th percentile latency (small group).

the result for category 4, which has the shortest deadline (50 ms). Again, configuration

Retransmission-only gave the baseline latency to evaluate the impact caused by each

replication configuration. The results show that replication caused only a slight impact to

the tail latency performance. Configurations ARREC_all and ARREC_Li always outperformed

periodic replication baselines, because they both performed replication less frequently and

replicated less data in each round. Configuration ARREC_all further outperformed configura-

tion ARREC_Li, because it replicated least-frequently and with the least data in each round

of replication. Overall, the 99th percentile latency stayed within the requirement.

For small group transmissions, the latency performance is shown in Figures 4.13 and 4.14,

respectively. For fault recovery latency, compared with large group transmissions, we observed

that configuration ARREC_Li, like configuration ARREC_all, did not have a latency burst right

after failover. With small group transmissions, the data arrivals were less bursty and thus it is

more likely that the replication handler may skip more data replications, since the processing

engine would be able to finish some data processing and delivery earlier. Periodic replication

approaches may not benefit much from this, as they are indifferent to replication deadlines

and do not use a batch window to further postpone some replication actions. Finally, all

configurations performed well in terms of tail latency (Figure 4.13), because there were fewer

bursty data arrivals.

102

780 800 820 840 860

0
250
500

La
te

nc
y

(m
s)

ARREC_Li

780 800 820 840 860

0
250
500

La
te

nc
y

(m
s)

ARREC_all

780 800 820 840 860

0
250
500

La
te

nc
y

(m
s)

Periodic-25ms

780 800 820 840 860
Arrival sequence at a subscriber

0
250
500

La
te

nc
y

(m
s)

Periodic-50ms

(a) Without quick recovery.

780 800 820 840 860

0
250
500

La
te

nc
y

(m
s)

ARREC_Li

780 800 820 840 860

0
250
500

La
te

nc
y

(m
s)

ARREC_all

780 800 820 840 860

0
250
500

La
te

nc
y

(m
s)

Periodic-25ms

780 800 820 840 860
Arrival sequence at a subscriber

0
250
500

La
te

nc
y

(m
s)

Periodic-50ms

(b) With quick recovery.

Figure 4.14: Latency (ms) during and after fault recovery (small group).

4.8 Concluding Remarks

In this Chapter, we focused on support for IIoT services that efficiently perform in-band data

processing and meet applications’ requirements for data loss-tolerance and latency. Based on

the observations that (1) IIoT in-band processing typically has a short execution time, and

(2) IIoT data traffic often includes topics with different loss-tolerance and latency requirements,

we introduced ARREC, a new middleware design and implementation that performs in-band

data processing while also performing adaptive and lightweight data replication to a backup

host. Our empirical evaluation shows that (1) ARREC can meet needed levels of data

loss-tolerance with efficient resource consumption, while reducing latency overhead that

would otherwise manifest during fault recovery; (2) concerning the frequencies of selecting

data elements to replicate, it is favorable to select at a higher frequency because, thanks to

103

short execution times of processing per data element, the proposed lazy replication heuristic

can effectively skip many selected data elements; and (3) ARREC is performant for both large

and small groups of IIoT data transmissions to the service, where large group transmissions

may save the service’s CPU utilization and small group transmissions may reduce tail latency

of data processing.

104

Chapter 5

Conclusions

The advancement in IIoT systems and edge computing pose new research challenges in

the areas of cyber-physical, real-time, and fault-tolerant computing. This dissertation has

studied an IIoT data service framework that connects the devices that generate data and the

applications that make use of them, and performs appropriate in-band data transformation.

Such an IIoT data service framework must meet different types and levels of application-

specific requirements pertaining to timing and reliability. Accordingly, this dissertation has

presented three related middleware services, called CPEP, FRAME, and ARREC. CPEP

addresses the need for real-time cyber-physical event processing, with a focus on both reducing

latency according to the specified event priority, and shedding and sharing cyber-physical

processing loads for efficiency. FRAME provides fault-tolerant real-time messaging, where

both message loss-tolerance requirements and latency requirements are efficiently handled,

from a holistic view of timing aspects, with consideration of platform parameters such as

devices’ retransmission capacity as well as transmission latency with the edge system and

to the cloud. Finally, ARREC offers an adaptive middleware solution for heterogeneous

in-band data processing that is typical in IIoT systems. The use of lazy group data replication

105

effectively reduces the overhead of ensuring loss-tolerance, resulting in an IIoT data service

that is real-time, fault-tolerant, and efficient. These three research contributions provide

evidence that an IIoT service may continue meeting applications’ demand of timely and

reliable data supply, even though the underlying system may experience failures and failovers.

106

References

[1] Amazon. AWS IoT Greengrass. 2019. url: https://aws.amazon.com/greengrass/.

[2] Amazon. AWS Lambda. 2019. url: https://aws.amazon.com/lambda/.

[3] Apache. Apache Flink: Scalable Stream and Batch Data Processing. 2019. url: https:
//flink.apache.org.

[4] Apache. Apache Kafka. 2019. url: http://kafka.apache.org.

[5] Apache. Apache Spark Streaming. 2019. url: https : / / spark . apache . org /
streaming/.

[6] Amy Babay, Emily Wagner, Michael Dinitz, and Yair Amir. “Timely, reliable, and
cost-effective internet transport service using dissemination graphs.” In: Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Conference on. IEEE.
2017, pp. 1–12.

[7] Theodore P. Baker, Michele Cirinei, and Marko Bertogna. “EDZL scheduling analysis.”
In: Real-Time Systems 40.3 (Dec. 2008), pp. 264–289.

[8] Jaiganesh Balasubramanian, Aniruddha Gokhale, Abhishek Dubey, Friedhelm Wolf,
Chenyang Lu, Chris Gill, and Douglas Schmidt. “Middleware for resource-aware de-
ployment and configuration of fault-tolerant real-time systems.” In: Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE. 2010, pp. 69–78.

[9] P. A. Barret, Andrew M Hilborne, Peter G Bond, Douglas T Seaton, Paulo Veríssimo,
Luís Rodrigues, and Neil A Speirs. “The Delta-4 extra performance architecture (XPA).”
In: Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International
Symposium. IEEE. 1990, pp. 481–488.

[10] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto Marchetti-
Spaccamela, Suzanne Van Der Ster, and Leen Stougie. “The preemptive uniprocessor
scheduling of mixed-criticality implicit-deadline sporadic task systems.” In: Real-Time
Systems (ECRTS), 2012 24th Euromicro Conference on. IEEE. 2012, pp. 145–154.

[11] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. “Mixed-criticality
scheduling on multiprocessors.” In: Real-Time Systems 50.1 (2014), pp. 142–177.

107

https://aws.amazon.com/greengrass/
https://aws.amazon.com/lambda/
https://flink.apache.org
https://flink.apache.org
http://kafka.apache.org
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/

[12] Anand Bhat, Soheil Samii, and Ragunathan (Raj) Rajkumar. “Recovery Time Con-
siderations in Real-Time Systems Employing Software Fault Tolerance.” In: 30th
Euromicro Conference on Real-Time Systems (ECRTS 2018). Ed. by Sebastian Alt-
meyer. Vol. 106. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 23:1–23:22. doi:
10.4230/LIPIcs.ECRTS.2018.23.

[13] Kenneth P. Birman. Guide to Reliable Distributed Systems: Building High-Assurance
Applications and Cloud-Hosted Services. Springer Publishing Company, Incorporated,
2012.

[14] Bjorn B. Brandenburg. “Scheduling and Locking in Multiprocessor Real-Time Operating
Systems.” PhD thesis. The University of North Carolina at Chapel Hill, 2011.

[15] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg. “The primary-
backup approach.” In: Distributed systems 2 (1993), pp. 199–216.

[16] Alan Burns and Robert Davis. “Mixed criticality systems-a review (the eleventh edi-
tion).” In: Department of Computer Science, University of York, Tech. Rep (2018),
pp. 1–77.

[17] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.
“Lightweight asynchronous snapshots for distributed dataflows.” In: arXiv preprint
arXiv:1506.08603 (2015).

[18] K Mani Chandy and Leslie Lamport. “Distributed snapshots: Determining global states
of distributed systems.” In: ACM Transactions on Computer Systems (TOCS) 3.1
(1985), pp. 63–75.

[19] Gianpaolo Cugola and Alessandro Margara. “Processing Flows of Information: From
Data Stream to Complex Event Processing.” In: ACM Comput. Surv. 44.3 (June 2012),
15:1–15:62.

[20] Gianpaolo Cugola and Alessandro Margara. “TESLA: A Formally Defined Event
Specification Language.” In: Proceedings of the Fourth ACM International Conference
on Distributed Event-Based Systems. 2010, pp. 50–61.

[21] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. “Remus: High availability via asynchronous virtual machine
replication.” In: Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). San Francisco. 2008, pp. 161–174.

[22] Robert I. Davis and Alan Burns. “A Survey of Hard Real-Time Scheduling for Multi-
processor Systems.” In: ACM computing surveys (CSUR) 43.4 (2011), p. 35.

[23] Dionisio De Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. “On the scheduling
of mixed-criticality real-time task sets.” In: Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE. Citeseer. 2009, pp. 291–300.

[24] Alma L. Juarez Dominguez. “Detection of Feature Interactions in Automotive Active
Safety Features.” PhD thesis. University of Waterloo, 2012.

108

https://doi.org/10.4230/LIPIcs.ECRTS.2018.23

[25] Nour-Eddin El Faouzi, Henry Leung, and Ajeesh Kurian. “Data Fusion in Intelligent
Transportation Systems: Progress and Challenges–A Survey.” In: Information Fusion
12.1 (2011), pp. 4–10.

[26] Peter C. Evans and Marco Annunziata. “Industrial Internet: Pushing the Boundaries of
Minds and Machines.” In: General Electric Reports (2012).

[27] Tom Fleming, Huang-Ming Huang, Alan Burns, Chris Gill, Sanjoy Baruah, and
Chenyang Lu. “Corrections to and Discussion of “Implementation and Evaluation
of Mixed-criticality Scheduling Approaches for Sporadic Tasks”.” In: ACM Transactions
on Embedded Computing Systems (TECS) 16.3 (2017), p. 77.

[28] FogHorn. Industries Served and Use Cases - Foghorn Systems. 2017. url: https:
//www.foghorn.io/industries/.

[29] The Linux Foundation. The Real Time Linux Collaborative Project. 2017. url: https:
//wiki.linuxfoundation.org/realtime/start.

[30] Matteo Frigo and Steven G. Johnson. FFTW. 2017. url: http://www.fftw.org.

[31] Christopher D Gill, Ron K Cytron, and Douglas C Schmidt. “Multiparadigm scheduling
for distributed real-time embedded computing.” In: Proceedings of the IEEE 91.1 (2003),
pp. 183–197.

[32] GitHub. Complex Event Processing for Flink. 2017. url: https://github.com/
apache/flink/tree/master/flink-libraries/flink-cep.

[33] GitHub. PTP Daemon. 2019. url: https://github.com/ptpd/ptpd.

[34] GnuPG. The Libgcrypt Library. 2017. url: https://gnupg.org/software/libgcrypt.

[35] Aniruddha S Gokhale, Balachandran Natarajan, Douglas C Schmidt, and Joseph K
Cross. “Towards real-time fault-tolerant CORBA middleware.” In: Cluster Computing
7.4 (2004), pp. 331–346.

[36] Vincenzo Gulisano, Zbigniew Jerzak, Spyros Voulgaris, and Holger Ziekow. “The DEBS
2016 Grand Challenge.” In: Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems. 2016, pp. 289–292.

[37] Gregory Hackmann, Fei Sun, Nestor Castaneda, Chenyang Lu, and Shirley Dyke. “A
holistic approach to decentralized structural damage localization using wireless sensor
networks.” In: Real-Time Systems Symposium, 2008. IEEE. 2008, pp. 35–46.

[38] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. “The Design and
Performance of a Real-Time CORBA Event Service.” In: ACM SIGPLAN Notices 32.10
(1997), pp. 184–200.

[39] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. “Implementation and evalua-
tion of mixed-criticality scheduling approaches for periodic tasks.” In: Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2012 IEEE 18th. IEEE.
2012, pp. 23–32.

109

https://www.foghorn.io/industries/
https://www.foghorn.io/industries/
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
http://www.fftw.org
https://github.com/apache/flink/tree/master/flink-libraries/flink-cep
https://github.com/apache/flink/tree/master/flink-libraries/flink-cep
https://github.com/ptpd/ptpd
https://gnupg.org/software/libgcrypt

[40] IEEE. “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems - Redline.” In: IEEE Std 1588-2008 (Revision of
IEEE Std 1588-2002) - Redline (July 2008), pp. 1–300.

[41] Industrial Internet Consortium. “Industrious Internet Reference Architecture.” In: (Jan.
2017).

[42] Real-Time Innovations. Connext DDS at a Glance: Understanding the Software Frame-
work that Connects the Industrial IoT. White Paper. Real-Time Innovations, 2017.

[43] Konrad Iwanicki. “A Distributed Systems Perspective on Industrial IoT.” In: 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS). IEEE. 2018,
pp. 1164–1170.

[44] Kedar Khandeparkar, Krithi Ramamritham, and Rajeev Gupta. “QoS-Driven Data
Processing Algorithms for Smart Electric Grids.” In: ACM Trans. Cyber-Phys. Syst.
1.3 (Mar. 2017), 14:1–14:24. doi: 10.1145/3047410.

[45] Daniel Kirsch. “The Value of Bringing Analytics to the Edge.” In: Hurwitz & Associates
(2015).

[46] Gerald G. Koch, Boris Koldehofe, and Kurt Rothermel. “Cordies: Expressive Event
Correlation in Distributed Systems.” In: Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems. ACM. 2010, pp. 26–37.

[47] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: a Distributed Messaging System
for Log Processing.” In: Proceedings of the NetDB. 2011, pp. 1–7.

[48] Greg R. Lavender and Douglas C. Schmidt. “Active Object: an Object Behavioral
Pattern for Concurrent Programming.” In: Proc. Pattern Languages of Programs, 1995.

[49] Jinkyu Lee and Insik Shin. “Edzl schedulability analysis in real-time multicore schedul-
ing.” In: IEEE Transactions on Software Engineering 39.7 (2013), pp. 910–916.

[50] Suk Kyoon Lee. “On-line multiprocessor scheduling algorithms for real-time tasks.”
In: TENCON’94. IEEE Region 10’s Ninth Annual International Conference. Theme:
Frontiers of Computer Technology. Proceedings of 1994. IEEE. 1994, pp. 607–611.

[51] Breno Henrique Leitao. “Tuning 10Gb network cards on Linux.” In: Proceedings of the
2009 Linux Symposium. Citeseer. 2009.

[52] Jane W. S. Liu. Real-Time Systems. 1st. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2000.

[53] David C. Luckham. The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2001.

[54] Ruben Mayer, Christian Mayer, Muhammad Adnan Tariq, and Kurt Rothermel. “Graph-
CEP: Real-Time Data Analytics Using Parallel Complex Event and Graph Processing.”
In: Proceedings of the 10th ACM International Conference on Distributed and Event-
Based Systems. ACM. 2016, pp. 309–316.

110

https://doi.org/10.1145/3047410

[55] Odorico Machado Mendizabal, Fernando Luís Dotti, and Fernando Pedone. “High
performance recovery for parallel state machine replication.” In: 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). IEEE. 2017,
pp. 34–44.

[56] Microsoft. Azure IoT Edge. 2018. url: https://azure.microsoft.com/en-us/
services/iot-edge/.

[57] David L Mills. “Internet time synchronization: the network time protocol.” In: IEEE
Transactions on communications 39.10 (1991), pp. 1482–1493.

[58] Priya Narasimhan, TA Dumitraş, Aaron M Paulos, Soila M Pertet, Carlos F Reverte,
Joseph G Slember, and Deepti Srivastava. “MEAD: support for Real-Time Fault-
Tolerant CORBA.” In: Concurrency and Computation: Practice and Experience 17.12
(2005), pp. 1527–1545.

[59] NSQ. A Realtime Distributed Messaging Platform. 2019. url: https://nsq.io.

[60] Object Management Group. Data Distribution Service (DDS). 2015. url: http://www.
omg.org/spec/DDS/.

[61] Daniel Piri. “Sensor Fusion for Nanopositioning.” MA thesis. Austria: Vienna University
of Technology, 2014.

[62] Douglas C. Schmidt. The ADAPTIVE Communication Environment (ACE). 2017. url:
http://www.cs.wustl.edu/%5C%7Eschmidt/ACE.html.

[63] Fred B Schneider. “Replication management using the state-machine approach.” In:
Distributed systems 2 (1993), pp. 169–198.

[64] Abu Sebastian and Angeliki Pantazi. “Nanopositioning With Multiple Sensors: A Case
Study in Data Storage.” In: IEEE Transactions on Control Systems Technology 20.2
(2012), pp. 382–394.

[65] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge computing:
Vision and challenges.” In: IEEE Internet of Things Journal 3.5 (2016), pp. 637–646.

[66] OASIS Standard. “MQTT version 3.1.1.” In: (2014).

[67] John A. Stankovic, Sang Hyuk Son, and Jörgen Hansson. “Misconceptions About
Real-Time Databases.” In: Computer 32.6 (1999), pp. 29–36.

[68] Ciza Thomas, ed. Sensor Fusion and Its Applications. Sciyo (Publisher), 2010.

[69] Ubuntu. Time Synchronization. 2019. url: https : / / help . ubuntu . com / lts /
serverguide/NTP.html.

[70] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali
Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica. “Drizzle: Fast and
adaptable stream processing at scale.” In: Proceedings of the 26th Symposium on
Operating Systems Principles. ACM. 2017, pp. 374–389.

111

https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://nsq.io
http://www.omg.org/spec/DDS/
http://www.omg.org/spec/DDS/
http://www.cs.wustl.edu/%5C%7Eschmidt/ACE.html
https://help.ubuntu.com/lts/serverguide/NTP.html
https://help.ubuntu.com/lts/serverguide/NTP.html

[71] Chao Wang, Christopher Gill, and Chenyang Lu. “Real-time middleware for cyber-
physical event processing.” In: Quality of Service (IWQoS), 2017 IEEE/ACM 25th
International Symposium on. IEEE. 2017, pp. 1–6.

[72] Cheng Wang, Xusheng Chen, Weiwei Jia, Boxuan Li, Haoran Qiu, Shixiong Zhao, and
Heming Cui. “PLOVER: Fast, Multi-core Scalable Virtual Machine Fault-tolerance.” In:
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI).
USENIX Association. 2018.

[73] Ming Xiong, Rajendran Sivasankaran, John A. Stankovic, Krithi Ramamritham, and
Don Towsley. “Scheduling Transactions with Temporal Constraints: Exploiting Data
Semantics.” In: Real-Time Systems Symposium, 1996., 17th IEEE. IEEE. 1996, pp. 240–
251.

[74] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and Xinyu
Yang. “A survey on the edge computing for the Internet of Things.” In: IEEE access 6
(2018), pp. 6900–6919.

[75] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. “Discretized streams: Fault-tolerant streaming computation at scale.” In:
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM. 2013, pp. 423–438.

[76] Vincent Zalzal. KFilter - Free C++ Extended Kalman Filter Library. 2008. url:
http://kalman.sourceforge.net.

112

http://kalman.sourceforge.net

	Real-Time Reliable Middleware for Industrial Internet-of-Things
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 IIoT Overview
	1.2 Research Challenges and Dissertation Contributions
	1.2.1 Temporal Requirements in Cyber-Physical Event Processing
	1.2.2 Reliability and Timing in Messaging
	1.2.3 Efficiency in Reliable and Timely Edge Computing

	1.3 Dissertation Organization

	Chapter 2: Real-Time Cyber-Physical Event Processing
	2.1 Introduction
	2.2 Related Work
	2.3 Cyber-Physical Event-Processing (CPEP) Model
	2.3.1 Event Processing
	2.3.2 Absolute Time Consistency
	2.3.3 Relative Time Consistency

	2.4 CPEP Design
	2.4.1 Prioritized Processing and Sharing
	2.4.2 Concurrent Processing and Replacement
	2.4.3 Time Consistency Enforcement and Shedding
	2.4.4 Discussion on Distributed Settings

	2.5 CPEP Framework Implementation
	2.6 Empirical Evaluation
	2.6.1 Experiment Set 1: Comparison with Apache Flink
	2.6.2 Experiment Set 2: CPEP Prioritization
	2.6.3 Experiment Set 3: Sharing Operators
	2.6.4 Experiment Set 4: Enforcing Absolute Time Consistency
	2.6.5 Experiment Set 5: Enforcing Relative Time Consistency
	2.6.6 Experiment Set 6: Overhead Measurements

	2.7 Concluding Remarks

	Chapter 3: Fault-Tolerant Real-Time Messaging
	3.1 Introduction
	3.2 Related Work
	3.3 Fault-Tolerant Real-Time Messaging (FRAME) Model
	3.3.1 Overview and Notation
	3.3.2 Assumptions and Requirements
	3.3.3 Temporal Semantics and Timing Bounds
	3.3.4 Enabling Differentiated Processing and Configuration

	3.4 The FRAME Architecture
	3.4.1 Configurable Scheduling/Recovery Facility
	3.4.2 Dispatch-Replicate Coordination

	3.5 FRAME Implementation
	3.6 Experimental Results
	3.6.1 Experiment Setup
	3.6.2 Message Loss-Tolerance Enforcement
	3.6.3 Latency Penalties Caused by Fault Recovery
	3.6.4 Latency Performance During Fault-Free Operation
	3.6.5 Key Lessons Learned

	3.7 Concluding Remarks

	Chapter 4: Adaptive Real-Time Reliable Edge Computing
	4.1 Introduction
	4.2 Related Work
	4.3 System Model and Definition
	4.3.1 Service Model and Fault Assumption
	4.3.2 Requirements and Problem Statement

	4.4 Analysis for Data Replication
	4.4.1 Need for Data Replication
	4.4.2 Deadline for Data Replication

	4.5 The ARREC Architecture
	4.5.1 Selective Lazy Data Replication
	4.5.2 Fault Detection and Recovery

	4.6 Implementation
	4.7 Empirical Evaluation
	4.7.1 Experiment Design and Setup
	4.7.2 Message Loss-Tolerance Enforcement
	4.7.3 Mitigation of Overhead Latency

	4.8 Concluding Remarks

	Chapter 5: Conclusions
	References

