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Elucidating the Roles of Astrocyte-derived Factors in Recovery and Regeneration Following 

Spinal Cord Injury 

By Russell Edward Thompson 

 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St Louis, 2019 

Professor Dennis Barbour, Chair 

Professor Shelly Sakiyama-Elbert, Co-Chair 

 

 Central nervous system (CNS) injury often causes some level of long-term functional 

deficit, due to the limited regenerative potential of the CNS, that results in a decreased quality of 

life for patients. CNS regeneration is inhibited partly by the development of a glial scar 

following insult that is inhibitory to axonal growth. The major cell population responsible for the 

formation this glial scar are astrocytes, which has led to the belief that astrocytes are primarily 

inhibitory following injury.  Recent work has challenged this conclusion, finding that astrocyte 

reactivity is heterogeneous and that some astrocytes are pro-regenerative following injury. 

Astrocyte transplantation studies following spinal cord injury (SCI) have also found that 

outcomes depend on astrocyte phenotype. Specifically, transplantation of astrocytes with the 

hallmarks of protoplasmic (grey matter) populations improve behavioral and histological 

outcomes; whereas, transplantation of astrocytes exhibiting fibrous (white matter) hallmarks 

worsen outcomes following transplantation. These studies suggest that it could be possible to 

develop an astrocyte-based CNS injury therapeutic by harnessing regenerative astrocyte 

populations. 
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In this work, the ability of mouse embryonic stem cell (mESC)-derived astrocyte 

populations to provide substrates that improve neuronal growth is explored. In addition, the 

effect of implantation of mESC-derived astrocyte extracellular matrix (ECM) on SCI outcomes 

is tested. Methods were developed to derive populations containing predominantly fibrous or 

protoplasmic astrocytes from mESCs. Since these mESC-derived astrocyte populations contain 

other cell types as well, CRISPR-Cas9 technology was used to generate a mESC line that 

expresses puromycin resistance under the control of an astrocyte-specific gene, aquaporin-4. 

This cell line shows promise as a source of live astrocytes for transplantation in the future; 

although further experiments will be required to validate it. Growth of mESC-derived 

motoneurons and V2a interneurons on substrates generated by unselected astrocytes was tested 

and it was found that both neuronal populations extended significantly longer neurites on 

protoplasmic substrates than fibrous substrates. Of particular interest, protoplasmic ECM alone 

was able to support neuronal growth, while fibrous ECM was not. Since ECMs have been 

successfully used to promote recover in other tissues with poor regeneration, astrocyte ECMs 

were further characterized with proteomics. Proteomics data revealed that protoplasmic ECMs 

contained significantly more axon growth permissive proteins, while fibrous ECM contained 

significantly more axon growth inhibitory proteins. These findings suggest that the mESC-

derived protoplasmic astrocyte populations may be able to provide therapeutic value following 

SCI. 

To explore whether astrocyte ECMs provided any recovery benefit after SCI, mESC-

derived astrocyte ECMs were mixed with hyaluronic acid (HA) hydrogels. The resulting 

HA:ECM gels were then injected following SCI and the effects of ECM presence on histological 

markers of recovery was assessed. These studies found that protoplasmic ECM presence within 
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the SCI lesion decreased immune cell infiltration, decreased astrocyte reactivity, and increased 

axonal penetration into the SCI lesion. These benefits were not observed when fibrous ECM was 

implanted and, in fact, the presence of fibrous ECM caused an increase in the presence of 

inhibitory molecules within the glial scar compared to HA alone implantation. This suggests that 

protoplasmic astrocyte ECM has an immunomodulatory effect and alters the phenotype of native 

astrocytes.  Finally, the ability of HA and HA + protoplasmic ECM gels to support cell 

transplantation was explored by incorporating V2a interneurons into the hydrogels prior to 

transplantation. HA with and without ECM was found to support the transplantation of the V2a 

interneurons and the transplanted interneurons were found to migrate into and extend processes 

within the host spinal cord. Taken together these in vivo experiments demonstrate that HA:ECM 

hydrogels have potential as a SCI treatment and, due to the use of mESCs, this material can be 

more easily scaled for large-scale material production than would be possible with a primary cell 

approach. 
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Chapter 1: Introduction 

1.1 Spinal Cord Injury 
Spinal cord Injury (SCI) is characterized as either traumatic or nontraumatic. Traumatic 

injuries are defined as sudden damage to spinal cord due to either concussive force or penetration 

trauma, and nontraumatic injury are defined as vascular damage, cord stenosis, or resulting from 

cancer.(Hatch et al. 2017) Both of these types of insults lead to incomplete or complete lesion of 

the spinal cord itself, which severs the connection between the brain and the rest of the body, 

often resulting in some level of paralysis. SCI has an annual incidence of 17,000 new cases a 

year in the United States with an estimated 243,000 to 347,000 Americans living with chronic 

SCI.(Of 2013) About 80% of new SCI occurs in men, most commonly due to automobile 

accidents followed by falls. Both of these types of injury tend to cause severe neck motion, 

which leads to a cervical cord contusion injury. SCI patients who recover from the initial 

traumatic event tend to have shortened life expectancies compared to uninjured peers and have 

decreased mental well-being.(Boakye, Leigh, and Skelly 2012) In addition, within the SCI 

patient population, life expectancy is shorter when the injury is more rostral.(Of 2013) A big part 

of the poor long-term prognosis of patients who suffer from SCI is that human spinal cord has 

limited ability to regenerate following injury. This means that SCI patients are not likely to have 

significant changes in their level of paralysis following the initial recovery period; therefore, SCI 

is a chronic condition that requires lifelong care. Due to the chronic nature of these injuries, there 

is a clear clinical need to find ways to improve the long-term prognosis for these patients. 
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1.1.1 Spinal Cord Injury Biology 

A large contributor to the limited regenerative capacity of the human spinal cord is the 

stereotyped scar environment that forms following injury called the glial scar. In particular, there 

are two well defined phases of SCI lesion development with the primary injury caused by the 

original trauma followed by a secondary injury that is caused by the immune and inflammatory 

response to the injury. The secondary injury causes an increase in the size of the injury area and, 

in humans, often leads to the formation of a cystic injury cavity. This lesion cavity is filled with 

inflammatory cells and fibroblasts that have invaded from the periphery, and is surrounded by a 

fibrotic scar environment that is formed primarily by astrocytes, the main support cell found in 

the central nervous system (CNS)(Cregg et al. 2014). This scar environment is relatively 

inhibitory to the growth on new axons due primarily to the presence of both inhibitory 

chondroitin sulfate proteoglycans (CSPGs) and myelin associated inhibitors (MAIs)(Simonen et 

al. 2003; Ohtake and Li 2014), and so it is difficult for new neurite growth to occur within the 

lesion area and so few, if any, new connections to be formed across the scar. This injury 

progression overall results in a long-term loss of communication between the brain and the rest 

of the body, which causes paralysis and sensory deficits distal to the injury site. 

Both parts of the glial scar, the lesion core and the surrounding scar, limit the ability of axon 

to extend through the injury. The cavity lacks the normal spinal extracellular environment and 

contains a high concentration of MAIs(Caroni and Schwab 1988), which accumulate due to the 

degradation of the myelin sheaths. Myelin sheaths normally surround axons to improve signal 

transmission, but they degrade into MAIs when the associated axons are damaged or destroyed 

by the injury.  Targeting of MAIs and/or their signaling pathway has been used previous to 

improve growth of neurons in vitro(Caroni and Schwab 1988) and increase neuronal 
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regeneration following SCI.(Simonen et al. 2003; Wilems and Sakiyama-Elbert 2015) The 

astrocytic scar that surround the lesion cavity also contains factors that are inhibitory to axon 

growth. These factors include proteins that are produced by the scar astrocytes such as inhibitory 

CSPGs(Bradbury et al. 2002), tenascin R(Apostolova, Irintchev, and Schachner 2006), and 

keratin sulfate proteoglycans.(Chu et al. 2014) Together these proteins represent a significant 

inhibitory signal to new neurite extension. In addition to this chemical barrier, astrocytes around 

the lesion expand and undergo significant process hypertrophy. These hypertrophic processes 

overlap and form a woven physical barrier that prevents access to the lesion area.(Sun et al. 

2010) Numerous studies have been performed using different techniques to degrade or block the 

action of these astrocyte-derived inhibitory molecules in order to improve axon regeneration 

following SCI.(Bradbury et al. 2002; Wilems et al. 2015; Shinozaki et al. 2016) Due to the 

production of this large number of inhibitory factors, the prevailing theory in the field has been 

that astrocytes were predominantly an inhibitory barrier that needed to be removed to allow for 

improved recovery.  

In order to test the idea that astrocytes are inhibitory following SCI, SCI recovery was 

studied in mice who had been genetically modified to allow for the ablation of the reactive 

astrocyte population. Astrocyte reactivity was knocked-out in mice prior to SCI with either 

vimentin and glial fibrillary acidic protein (GFAP) double knock out or conditional knockout of 

STAT3 (a required factor for astrocyte reactivity) in astrocytes. The result was an increase to the 

size of the injury area due to worsened secondary injury (increased immune cell infiltration) and 

further lack of recovery.(Pekny et al. 1999; J. R. Faulkner et al. 2004; Herrmann et al. 2008) 

These findings indicated that the physical barrier formed by the astrocytes was important to limit 

the damage caused by inflammation of the injury area.  
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This still left open the possibility that astrocytes were helpful in the acute phase of injury, but 

detrimental in chronic SCI cases. To test this hypothesis, delayed astrocyte ablation was 

performed using a GFAP-driven thymidine kinase and ganciclovir injections. These strategies 

allow for the astrocytes around the SCI lesion to be ablated 2 weeks after injury. This delayed 

ablation allows the SCI lesion to stabilize in size and the secondary injury to resolve before the 

astrocytes are removed. However, even in the case of delayed ablation, the lack of astrocytes led 

to decreased functional recovery and a loss of improvement with transplanted 

hydrogels.(Anderson et al. 2016; J. R. Faulkner et al. 2004) Together these knockout studies 

suggest that astrocytes both play a role in the formation of the inhibitory scar, and a role in the 

creation of an environment that is permissive to axon regeneration. This demonstrates that 

astrocytes are necessary for recovery following SCI.(Lukovic et al. 2014) Another observation 

supporting the hypothesis that astrocytes can create axon permissive environment is that axons 

within an SCI lesion colocalize with “GFAP+ bridge” in both mice(Zukor et al. 2013) and 

zebrafish.(Yona Goldshmit et al. 2012) Overall these recent studies suggest that astrocytes are an 

overlooked cell population in terms of their ability to promote recovery following SCI. 

To overcome the complexity of the glial scar environment, a multi-faceted treatment 

approach will be required that addresses the inhibitory aspects of both parts of the glial scar, 

while also providing a substrate that encourages or, at least, is permissive to the growth of new 

axons and the formation of new connections within and beyond the scar environment. 

Furthermore, a treatment scaffold will need to contain the correct growth signals to encourage 

neurites to extend into the lesion. 
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1.1.2 Spinal Cord Injury Models 

There are many different potential animal models used for SCI research, but rats are the most 

commonly used species since rats, like humans, form a lesion within the spinal cord following 

injury. There is a large body of work performed in mice as well due to ready availability of 

genetically modified mouse strains; however, mice in general do not form a large lesion cavity 

making mouse SCI less similar to the human pathology.(Byrnes, Fricke, and Faden 2010) 

Another area of variation in SCI models is the modality of injury used. The most common 

modalities are contusion, transection/hemisection, and compression. Contusion and compression 

are the best models for simulating the most common injury modalities in patients and thus are 

better mimics the neuropathology of human injury. Transection or hemisection, on the other 

hand, is the superior model to for assessing regeneration since the axons are certain to have been 

severed when the injury occurred rather than compressed thus ensuring that any growth into the 

injury region is in fact new growth.(Sharif-Alhoseini et al. 2017) 

1.2 Material Transplant in Spinal Cord Injury 
One clear option to achieve the goals of generating an improved axon growth environment is 

to transplant a new material into the lesion cavity. It is important that these materials be 

biocompatible and minimally immunogenic, a problem for some scaffold systems as breakdown 

products from the implanted material can cause an immune reaction. To achieve this goal, 

materials are often composed of natural or synthetic biomaterials. These transplanted 

biomaterials provide a new substrate within the lesion cavity where the normal extracellular 

matrix (ECM) substrate has been destroyed. Biomaterials can also be modified to include or 

release factors that counteract inhibitory signals and/or promote axon growth into the 
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transplanted substrate. Here SCI treatment materials are divided into two classes: injectable and 

non-injectable. 

1.2.3 Non-injectable Scaffolds 

These materials tend to have a relatively defined volume and shape so the scar environment 

must often be somewhat dissected to create a space that is same size as the scaffold in the case of 

a subacute implantation. This addition dissection often results in additional damage to the spinal 

cord at the time of implantation. There are also many studies that perform the implantation 

acutely and so cut a large enough defect in the spinal cord for the scaffold. A large number of 

different materials have been used for this including: fibrin, collagen, agarose, chitosan.(M. Kim, 

Park, and Choi 2014) It is worth noting that both fibrin and collagen can be injectable, in certain 

formulations, but the formulations discussed here are not injectable. The most commonly used 

natural materials are fibrin and collagen which are discussed briefly here. An advantage of using 

these non-injectable scaffolds is that it is easier to control the precise conditions during scaffold 

formation and so have more precise control of scaffold pore-size and a much wider range of 

conditions that can be utilized. Furthermore, these scaffolds can be modified prior to 

implantation to contain fixed growth factor gradients and other specific topographical features 

that are impossible to form in an injectable scaffold.  

1.2.1.1 Fibrin  

Fibrin has been used extensively in SCI animal models to promote regeneration due to its 

flexibility and biocompatibility. There are many drug and cell delivery systems that have been 

used in fibrin transplantation.(Wilems et al. 2015; D. A. McCreedy et al. 2014; Wilems and 

Sakiyama-Elbert 2015; Johnson, Parker, and Sakiyama-Elbert 2009; Vadivelu et al. 2015) Fibrin 

scaffolds are relatively easily produced by mimicking the same enzymatic cross-linking process 
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that is used during normal clot formation. Unfortunately, fibrin cannot be injected once 

polymerized which limits the use of these scaffolds in a contusion SCI, since in this type of 

injury the lesion cannot be accessed without some additional tissue dissection and so injury to 

the spinal cord. One way to address this issue is to allow the fibrin-thrombin reaction to occur in 

situ and so form a scaffold that fills the lesion and so the polymerization solution can be injected. 

A drawback to a two-phase approach such as this is that polymerization can difficult to achieve if 

there is any flow of cerebrospinal fluid (CSF) over the injury site.(Sharp et al. 2012)  

A major advantage to fibrin scaffold systems, in addition to its degradability and 

biocompatibility, is the simple incorporation of growth factors through the use of a heparin 

binding system.(Sakiyama, Schense, and Hubbell 1999) The heparin system has been use to 

deliver neurotrophic 3 (NT-3) which has been found to improve SCI outcomes.(Taylor et al. 

2006) In addition, fibrin scaffolds have also been used to deliver neural progenitors leading to 

improved functional outcomes(Johnson et al. 2010), as well as progenitor motoneurons.(D. A. 

McCreedy et al. 2014) Toward the goal of creating a multi-faceted treatment system, fibrin 

scaffolds were loaded with NEP1-40 (inhibits MAI signaling) and chondroitinase ABC 

(degrades CSPGs). This combination treatment was found to decrease CSPG deposition in the 

scar and increase the axon growth into the SCI lesion(Wilems and Sakiyama-Elbert 2015); 

however, these benefits were largely lost when progenitor motoneurons were transplant as 

well.(Wilems et al. 2015)  

Fibrin itself has also been functionalized with synthetic peptide ligands that bind to the 

α6β1 integrin receptor. This modification was found to improve neurite extension from rat dorsal 

root ganglion in vitro and to increase axonal growth cone formation following a complete 

transection SCI in vivo.(J. Silva et al. 2017) There has also been study of different animal fibrins 
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as potential scaffolds for SCI injury treatment. Human fibrin alone has been found to improve 

open-field locomotion following subtotal T9 lateral hemisection.(Petter-Puchner et al. 2007) 

Recently, salmon fibrin scaffolds have been shown to improve locomotor and bladder function 

recovery following implantation after a T9 dorsal hemisection.(Sharp et al. 2012) Fibrin has also 

been mixed with other peptides to provide further neuronal growth benefits. In particular, fibrin 

scaffolds modified with laminin and N-cadherin have been found to enhance axonal regeneration 

in vivo.(Schense et al. 2000) Overall, fibrin has been heavily studied as a scaffold for improving 

CNS regeneration and has been found to have numerous beneficial effects. 

1.2.1.2 Collagen 

Collagen is the most abundant extracellular protein in the body and is highly conserved 

between species. It has a fibrous structure, is inexpensive, easily accessible, and biocompatible. 

This makes it an appealing biomaterial due to ease of acquisition and low immunogenicity.(M. 

Kim, Park, and Choi 2014) Collagen has the added advantage of being highly bioactive 

containing many cell-binding and signaling domains which allows collagen itself to provide cell-

signaling. Collagen is also easily modified in the fabrication process to create different fiber 

diameters with and without alignment. Finally, there are many different crosslinking methods 

that can be used to modify the mechanical and degradation properties of collagen 

scaffolds.(Hapach et al. 2015) Due to these factors, collagen-based biomaterials have been 

widely used in tissue engineering applications and in SCI treatment.(Haggerty, Marlow, and 

Oudega 2017) Here some more recently documented uses of collagen are mentioned.  

Crosslinked, aligned collagen scaffolds placed acutely into a complete spinal cord 

transections have been found to improve axon regeneration showing the utility of collagen-based 

materials and alignment on axon growth.(Suzuki et al. 2015) Aligned collagen nano-fibrous 
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nerve conduits have also been transplanted for SCI treatment and have been found to facilitate 

cellular infiltrates with limited ED-1 (macrophage) staining visible.(T. Liu et al. 2012) It has also 

been demonstrated that aligned collagen scaffolds can improve forepaw reaching after a lateral 

cervical resection injury.(Altinova et al. 2014) Collagen sponges have also been transplanted into 

complete transections along with synthetic hydrogels to limit pore size with improved axon 

penetration.(Kaneko, Matsushita, and Sankai 2015) Collagen scaffold with micropatterned 

porosity have been found to slightly improve locomotion after complete transection.(Snider et al. 

2017) A major drawback to the use of collagen as a scaffold material is that the most abundant 

collagen, collagen I, has been associated with an increase in astrocyte expression of inhibitory 

genes associated with the glial scar and collagen is not normally a major component of spinal 

cord ECM.(Hara et al. 2017) 

1.2.2 Injectable Scaffolds 

 Injectable biomaterial scaffolds tend to be hydrogels that can be formed either prior to 

transplant or in situ. These materials will fill the entire lesion area, without requiring any lesion 

dissection.  This avoids one of the major issues with the non-injectable scaffolds, namely the 

need to match scaffold size to the size of the lesion area. These scaffolding systems tend to be 

hydrogels which improves their biocompatibility. Unfortunately, the reaction conditions for 

crosslinking these materials is much more limited due to the requirement that they be shear-

thinning or have fast enough reaction kinetics to form in situ prior to being overly diluted by 

CSF flow. 

1.2.2.1 Hyaluronic Acid-based Injectable Scaffolding 

 Hyaluronic acid (HA) is already widely used for clinical applications and the 

predominant component of the native CNS ECM, making it a popular choice for CNS 
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injectables.(Pakulska, Ballios, and Shoichet 2012) Unfortunately, HA alone does not form a 

sufficiently stable gel in vivo, so the HA must be mixed with other molecules such as 

methylcellulose to form an HAMC hydrogel(Gupta, Tator, and Shoichet 2006) or chemically 

modified to allow a crosslinking reaction to occur. Many chemical modifications have been used 

to functionalize HA macromolecules so that they will react with a crosslinking molecule and 

form a stable hydrogel for treatment of SCI. Functionalization of the HA is often achieved by 

reacting the carboxylic acid group on HA with part of the crosslinking system to be used. 

Examples of functionalization strategies include: thiol-modified (disulfide bond linkage)(Shu et 

al. 2002), aldehyde (Diels-Alder linkage)(Nimmo, Owen, and Shoichet 2011), and 

tetrabutylammonium (TBA) (esterification).(Gaffey et al. 2015)   

These systems either can then be injected as a 2-phase system with fast gelation kinetics 

that will gel in situ (disulfide) or will shear-thin following gelation which allows for 

prefabrication of the gels. Disulfide bond crosslinked HA has been injected as a two phase 

system acutely following SCI and has been found to be neuroprotective to secondary injury, but 

did not improve regeneration(Kushchayev et al. 2016; Horn et al. 2007).  A major requirement 

for these multiple phase systems is that they have fast enough gelation kinetics (on the order of 

seconds to minutes) for the gels to form before the components become too diluted. A way for 

gels with slower kinetics to still be useable is for the gels to be shear-thinning. This means that 

the gels can be pre-formed within the barrel of a syringe and then injected into the injury site. 

Shear thinning HAMC gels have been used intrathecally to improve dural regeneration(Gupta, 

Tator, and Shoichet 2006) and as a vehicle for cell delivery.(Ballios et al. 2015) HA-aldehyde 

crosslinked with malemide-PEG-malemide also forms a hydrogel that has been successfully used 

intrathecal as drug-depo.(Führmann et al. 2015) A major advantage to this crosslinking method 
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compared to others is that the Diels-Alder reaction used to create the crosslink between HA 

molecules does not require the use of a catalyst and the reactants are not toxic. This means that 

no clean-up needs to take place after the crosslinking reaction has been completed which greatly 

simplifies the use of this system as a treatment.(Nimmo, Owen, and Shoichet 2011) In addition, 

Diels-Alder chemistry is stereospecific and highly specific to dienes and dienophiles so other 

materials can be incorporated without risking nonspecific reactions. Overall the literature shows 

that HA-based materials are very flexible, tolerated biologically making these materials 

potentially useful for future treatment modalities. In addition, long HA macromolecules 

themselves have been found to improve SCI outcomes.(Khaing et al. 2011) 

1.2.2.2   Other Injectable Scaffolds for CNS injury 

 While HA is the most commonly used injectable scaffold used for both acellular and 

cellular transplantation in CNS injury, there have been other injectable scaffolds published. One 

such scaffold is a hydrogel formed by combining oligomeric gelatin with copper-capillary 

alginate. These scaffolds have been shown to support the growth of primary radial glia both in 

vitro and in vivo when transplanted into a hypoxic stroke cavity; however, alginate gels are more 

commonly used in other organ systems as a stem cell encapsulation and drug delivery 

material(Willenberg et al. 2011). There has also been work exploring in situ gelling collagen 

hydrogels as a delivery vehicle for GDNF overexpressing mesenchymal stem cells in vivo 

following stroke and that the collagen hydrogel delivery decreased the reaction of host astrocytes 

and immune cells to the transplant.(Hoban et al. 2013) Another injectable hydrogel system that 

has been explored is a diblock copolypeptide hydrogel composed on hydrophobic and 

hydrophilic segments. This is a synthetic gel system that has tunable material properties and has 

been used to successfully support the survival of neural stem cells and to release of hydrophobic 
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and hydrophilic effector molecules.(Zhang et al. 2014; Zhang et al. 2015) While these injectable 

systems show promise, the presence of high levels on HA within the CNS makes HA a appealing 

base material for the generation of an astrocyte-derived biomaterial. 

1.2.3 Drug Delivery 

 Many of the materials discussed above have been transplanted without any drugs or other 

bioactive molecules being incorporated. Unfortunately, the materials discussed thus far tend to 

not have the maximum regenerative benefits without the incorporation of bioactive molecules. In 

the case of SCI, the most commonly included molecules are growth factors that are known to 

improve neurite extension from host neurons or enzymes that nullify the effects of the inhibitory 

molecules present within the glial scar. One approach to load growth factors in fibrin matrices 

was to anchor heparin to the fibrin and then rely on the binding affinity between growth factor 

and heparin to allow for controlled growth factor delivery.(Sakiyama-Elbert and Hubbell 2000) 

Unfortunately, not all bioactive compounds are readily water soluble and/or require enzymatic 

activity to be effective which makes this type of delivery strategy more challenging. In the case 

of HAMC gels, the incorporation of methylcellulose allows for more direct incorporation of 

poorly water-soluble drugs. Altering the methylcellulose concentration can in turn tune the 

release of these molecules.(Y. Wang et al. 2009)  

Other scaffolds tend to require the incorporation of lipid microtubules, polymer spheres 

(such as PLGA microspheres),(Wilems and Sakiyama-Elbert 2015) or have enzymatically 

degradable linkages within the scaffold.(Pakulska, Ballios, and Shoichet 2012) A drawback of 

having these delivery systems present is that they can generate breakdown products that 

negatively impact the regenerative environment.  In the case of PLGA microspheres, the 

acidification caused by the breakdown of PLGA can cause an increase in the inflammatory 
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response within the spinal cord.(Wilems et al. 2015) This can mean that combination therapies 

with many different drug delivery systems can cause unanticipated interactions which can 

attenuate the positive effects observed when each delivery system was used on its own. Thus, it 

is appealing to attempt to capture signaling complexity without having to include multiple drug 

delivery platforms. One method that has been used in other fields to achieve signaling 

complexity without having to include a large number of different growth factors is to use 

decellularized extracellular matrix (ECM) materials. 

1.2.3.1 Decellularized Extracellular Matrix 

 The ECM is composed of proteins that are produced by the cells that occupy a given 

region within the body. The most common ECM proteins are often used as base material for 

transplantable biomaterials, such the collagen, fibrin, and HA materials discussed above. The 

ECM also contains several other proteins that are present at lower levels and attach to the base 

proteins. These proteins all come together to form a complex environment that can bind growth 

factors, especially since most ECM proteins are quite large and contain multiple functional 

domains including cell binding and growth binding regions. For example, fibronectin has been 

found to have a highly promiscuous growth factor binding domain.(Martino and Hubbell 2010) 

The multifactorial nature of decellularized ECMs makes them an appealing way to deliver a 

multitude of bioactive molecules at once.  

The use of decellularized whole tissue is already used clinically for treatment of peripheral 

nerve injuries where is defect is longer than a few millimeters. In the case of these injuries, a 

decellularized nerve graft can be used to enhance regeneration of the damaged nerve(Isaacs 

2013). Another approach being used is to pulverize whole tissue and then form a gel out of the 

resulting powder. This approach has been used in the treatment of myocardial infarctions(Seif-
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Naraghi et al. 2013; Singelyn et al. 2012), and for orthopedic tissue engineering.(Benders et al. 

2013) In the context of CNS injury, ECM gels made using decellularized brain ECM 

demonstrated that ECM from the CNS does provide a more growth permissive substrate for 

neuronal cultures than ECM harvested from other parts of the body in vitro.(Crapo et al. 2012) 

Further work has shown that spinal cord ECM increased neuronal differentiation efficiency of 

NPCs while brain ECM lead to longer neurite extensions.(Medberry et al. 2013)  

The benefit of CNS ECM over other ECMs has largely not extended to in vivo treatments. 

For example, hydrogels made from spinal cord ECM and urinary bladder ECM were found to 

have no significant differences when transplant acutely following a dorsal hemisection SCI. 

However, both types of ECM were found to increase neurite growth into the lesion and 

neovascularization.(Tukmachev et al. 2016) Similar to the case with treatment SCI , urinary 

bladder ECM implantation into stroke cavities has been shown to increase host cell infiltration 

into the lesion core and promote the infiltrating macrophages to adopt a more pro-regenerative 

phenotype(Ghuman et al. 2016a). Taken together, these studies suggest that an ECM-based 

material could provide significant therapeutic benefits to patients that suffer from a CNS injury.  

In additional to their growth benefits, the highly conserved nature of ECMs means that 

decellularized ECM materials can be xenografted without requiring immune 

suppression.(Mirmalek-Sani et al. 2013; Hudson et al.) This is especially important since the 

immune system plays an important role in tissue regeneration as demonstrated by the discovery 

of M1 and M2 subtypes of macrophages present during the normal repair pathway.(Novak and 

Koh 2013) In the context on CNS regeneration, microglial have also been found to play an 

important long term role in the generation of an axon growth promoting environment by clearing 

cellular debris and secreting factors such as matrix metalloprotease-13 that degrade the fibrotic 
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scar.(X. Jin and Yamashita 2016) Furthermore, infiltration of T-cells and macrophages from the 

periphery has been demonstrate to be required for repair following SCI.(Raposo et al. 2014) 

These observations show that the immune system plays an important role in tissue repair and that 

it would be desirable to avoid therapy that requires immune suppression, since it could 

negatively impact recovery in unforeseen ways. 

1.3 Cell Transplantation in Spinal Cord Injury 
A major issue for acellular spinal implants is the lack of good cell infiltration into the injury 

site either due to the lack of migration of the native cell populations or a lack of the appropriate 

migratory signals within the implant. One way to ensure that transplants have cells present 

within them is to transplant the cells directly into the injury site. Cell transplants have been 

performed with stem/progenitor cells, neuron populations, peripheral cells and glial cell 

populations.(Tetzlaff et al. 2011) An issue with cell transplantation is survival of the transplanted 

cells since they are often being placed into an environment that is full of inflammatory 

signals.(Medalha et al. 2014) One way that this issue has been addressed is transplantation of the 

cells in a scaffold that provides them with support to help improve their survival within the 

spinal cord lesion 

1.3.1 Neuronal Population Transplantation 

Neurons are the primary cell type responsible for transmitting signals from the brain to the 

rest of the body via the spinal cord. It is the severing of the axons in an SCI that causes paralysis 

of the body below the level of the injury. For recovery from SCI to be possible, these 

connections must be restored. One appealing way to achieve this connectivity is to transplant 

neurons into the injury area so that they can form a relay circuit or, much more unlikely due to 

the distances involved, directly reestablish connection. This type of integration has been 
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successfully achieved in transplants of embryonic medial ganglionic eminence cells. These cells 

are GABAergic interneurons from the brain that were able to integrate into the host’s spinal 

circuitry and can prevent the development of mechanical hypersensitivity when transplanted 

prior to peripheral nerve injury.(Etlin et al. 2016) Unfortunately, primary neurons are difficult to 

isolate and primary cells in general are difficult to translate into the clinic, this makes deriving 

neurons from tissue culture sources appealing.  

One way to acquire neurons in a tissue culture setting is to use an immortalized cell line. A 

immortalized neuronal cell line, NT2, has been successfully manipulated to allow for 

transplantation following SCI with the result of reducing allodynia via neurotransmitter 

production.(Eaton et al. 2007) Another way to acquire neurons is to derive them from embryonic 

stem cells (ESCs) or another pluripotent population. The major issue with stem cell-derived 

neurons is that the pluripotent cells remaining within the transplant can form teratomas within 

the spinal cord.(Johnson et al. 2010) A way to avoid the remaining ESC problem is to create a 

method by which residual ESCs can be removed. This can be achieved with puromycin 

selection(D. a. McCreedy et al. 2012) or fluorescence activated cell sorting. Once the ESCs have 

been removed, the cells can be transplanted without risk of teratoma formation.(D. A. McCreedy 

et al. 2014; Wilems et al. 2015) One ESC-derived neuronal population that has been used for SCI 

treatment are progenitor motor neurons derived from human ESCs(Erceg et al. 2010), and mouse 

ESCs.(Wilems et al. 2015) Although these cells demonstrated relatively mild benefits and this 

progenitor population also forms astrocytes and oligodendrocytes.(Mccreedy et al. 2014) 

Overall, there is much work to be done in neuronal transplantation since pure neuronal 

populations after difficult to acquire from progenitor cells due to their relative fragility in culture. 

As techniques for acquiring pure neuronal population cultures improve, it will be possible to 
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explore the effects of different neuronal subpopulation transplants on SCI recovery.(Iyer, 

Wilems, and Sakiyama-Elbert 2016)  

One interesting neuronal population to explore are the spinal interneurons (INs). INs form 

connections between all the neuronal populations with the spinal cord and have been shown to 

play important regulatory roles in coordination, rhythmicity, and spinal reflex arcs. It has been 

shown, in mice, that spontaneous recovery from spatially and temporally separated lateral 

hemisection SCIs is dependent on neuronal populations present around the level of injury, not 

sparing of the long tract axons projecting from the brain.(Courtine et al. 2008) This implies that 

INs are required in order to facilitate the local rewiring that allows spontaneous recovery to 

occur. Further work based on this study has shown that dl3 INs are necessary for motor function 

recovery after SCI.(Bui et al. 2016)  There has been only limited work demonstrating the effects 

of transplantation of IN populations into CNS lesion making this an active area of exploration; 

however, primary GABAergic brain IN precursors have been shown to functionally integrate and 

limit hypersensitivity in mice following a lumbar spared peripheral nerve injury(Etlin et al. 

2016). This study shows the promise of IN transplantation in terms of enabling functional 

recovery following nerve injury. 

A population of spinal INs that has been a particular focus in SCI treatment are V2a INs. V2a 

INs are a largely glutamatergic, ipsilateral projecting IN population found throughout the spinal 

cord, but predominantly in the lumber and cervical regions. In the lumbar region, V2a INs are 

important for left-right alternation in the normal spinal cord, especially at high speeds of 

locomotion.(Steven A. Crone et al. 2008; S. A. Crone et al. 2009) Further dissection of the roles 

played by V2a INs in the lumbar spinal cord found that V2a INs tend not to synapse on other 

V2a INs, but instead tend to project to central pattern generators and ipsilateral motor neuron 
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pools. Some of V2a INs have also been found to have long ascending or descending branches.(K. 

J. Dougherty and Kiehn 2010) This suggests that V2a INs play an important rely and 

coordination role in the lumbar spinal cord, but not a significant role in pattern generation. In 

contrast, V2a INs in the cervical cord have been linked to central respiratory rhythm based on the 

loss of respiratory rhythm, and decreased respiratory rate, in V2a knockout mice.(S. A. Crone et 

al. 2012) The concept of V2a INs as an important population for both relying signals and in the 

respiratory circuitry is supported by the observation that V2a INs are recruited into phrenic 

motor circuitry after a high cervical lateral hemisection SCI. This suggest that the V2a 

population may aid in functional compensation/recovery from cervical SCI.(Zholudeva et al. 

2017) Recently methodology to derive V2a INs from mouse ESCs has been developed(Brown et 

al. 2014) as has a mouse ESC cell line that allows these ESC-derived V2a IN populations to be 

purified.(Iyer et al. 2016) With the development of these ESC tools it is now possible to 

transplant V2a INs following SCI. In this work, we perform a pilot study to determine if these 

mESC-derived V2a INs are able to survive transplantation. 

1.3.2 Progenitor Transplantation 

Since transplantation of specific neuronal populations has proved difficult, transplantation of 

proliferative progenitor cells that can differentiate into neurons has been widely attempted. The 

cells most commonly used in SCI treatment are called neural progenitor cells (NPCs). These 

cells can become neurons, oligodendrocytes, or astrocytes after further differentiation meaning 

that, in theory, transplanting these cells can restore all the cell populations normally present 

within the spinal cord. NPCs are found throughout the CNS in the region surrounding the 

cerebral spinal fluid system and can be harvested from animals at any age. NPCs can also be 

acquired by differentiation of induced pluripotent stem cells (iPSCs) or ESCs.  Due to the 
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teratoma formation observed with ESC transplants, any ESC-derived population must be further 

defined into a specific cell fate prior to transplantation.(Johnson et al. 2010)  

NPCs have been transplanted in chronic SCI lesions in rodents and histological improvement 

has been observed, but it has proven difficult achieve good connectivity between the transplanted 

cells and the host, limiting functional improvement.(Y Jin et al. 2016) Furthermore, 

transplantation of primary adult NPCs has been shown to improve functional outcomes when 

transplanted two weeks after a cervical crush injury.(Wilcox et al. 2014) Unfortunately, it has 

proved difficult to control the differentiation of NPCs once they are transplanted with most of 

them differentiating into glial cells (astrocytes or oligodendrocytes).(Pfeifer et al. 2004) This has 

led to a focus on factors that can be included with the NPCs in order to help better promote 

differentiation into neurons;(X. Li et al. 2013) however, differentiation of NPCs is also heavily 

influenced by the local environment within the host.(Ying Jin, Sura, and Fischer 2012) Thus, 

while there is significant promise to NPC transplantation, the lack of ability to specifically 

control what these cells differentiate into has led investigators to pursue the use of pre-

differentiation prior to transplant to control cellular phenotype. This has proven to be much 

easier for transplanting glial cell populations than neurons since glial cells are still capable of 

dividing and so much easier to maintain in in vitro cell culture. 

1.3.3 Glial Cell Transplantation 

Glia are a large population of supporting cells that are found in nervous tissue that primarily 

serve to support neuronal function. They achieve this by clearing debris following injury, toxic 

metabolites, maintaining homeostasis, and facilitating signal transmission and propagation. Since 

these cells are so important for appropriate neuronal function, they are a logical population to use 

for transplantation following SCI. Comparison of Schwann cells (SCs) , peripheral glial cells, 
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and olfactory ensheathing cells to fibroblastic populations have shown that these glial 

populations are associated with decreased scar formation and improved axon growth into the 

lesion demonstrating that glial cells are able to perform CNS specific functions that improve 

regeneration.(Toft et al. 2013) 

1.3.3.1 Schwann Cell Transplantation 

SCs are the primary supportive cell in the peripheral nervous system. These cells have 

been studied for an ability to support recovery from spinal cord injury because of the strong 

regenerative potential of peripheral nervous system injuries with peripheral axons able to regrow 

across small defects. Furthermore, SCs are myelinating so can, in theory, reform the myelin 

sheaths that surround axons to allow for faster conduction. Meta-analysis of SC transplantation 

studies showed that, regardless of source (primary or stem cell-derived), transplantation of 

Schwann cells significantly improved locomotor function after SCI.(Yang et al. 2015) A specific 

example of SC transplantation is the use of oligo[poly(ethylene glycol) fumarate] scaffolds as a 

vehicle for transplantation. These scaffolds were found to decrease the size of the glial scar and 

reduce the presence of inhibitory CSPGs; although, there were signs of increased inflammation 

and immune cell infiltration due to the presence of the scaffold.(Hakim et al. 2015) Another use 

for SCs is to modify them to overexpress growth factors thus allowing them to serve as both a 

permissive cell population and a drug eluting depot. One example of SCs as growth factor 

delivery vehicles is the transplantation of fibroblast growth factor-2 (FGF-2) overexpressing 

Schwann cells. Transplantation of these SCs were able to improve the growth of motor axons in 

the sciatic nerve following injury.(Allodi et al. 2014) Overall SC transplantation has shown great 

promise and SCs are currently under investigation in clinical trials for use in humans. One caveat 

to the utility of these transplants is that the ability of the Schwann cells to integrate into the host 
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spinal cord is determined by the phenotype of the host astrocytes and often axons are unable to 

leave to lesion area in SC transplanted animals.(Bunge 2016) 

1.3.3.2 Oligodendrocyte Transplantation 

Oligodendrocytes (OLs) are native to the CNS and are primarily responsible for the 

formation of myelin sheaths. One significant difference between OLs and SCs is that an OL will 

myelinate many different axons while Schwann cells myelinate only a single axon. Since they 

are native to the CNS, OL transplantation has been attempted to facilitate myelination of 

regenerating nerve fibers. Myelination is an important focus of potential regenerative treatments 

since it is the final step of recovery in the PNS and is critical for appropriate transmission of 

action potentials and protection of the axons. Native remyelination in the CNS is more difficult 

to achieve than in the PNS because mature OLs lack the capacity to produce new myelin 

sheaths.(Keirstead and Blakemore 1997) This means that central remyelination must be carried 

out by dividing and differentiating oligodendrocyte precursor cells (OPCs), or infiltrating 

SCs.(Gensert and Goldman 1997; Brook et al. 1998) There has been some work looking to how 

to activate local remyelination pathways without requiring cell transplantation. One interesting 

finding is that treatment of the spinal cord with a synthetic TLR4 agonist (E6020) accelerated 

myelin debris clearance and remyelination following a demyelinating injury with lysolecithin. 

This data shows that there is a clear role of macrophage activation in remyelination, it is also 

worth noting that astrocytes express TLR4 so they may play a role as well.(Church et al. 2017) 

 Unfortunately there are not many native OPCs and their migration distance is 

limited(Levine, Reynolds, and Fawcett 2001), so transplantation of OPCs and control of their 

differentiation in vivo has been heavily explored. OPCs themselves do not produce myelin, so 

they must be differentiated into mature, myelinating OLs. Unfortunately, OLs have proven more 
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difficult to differentiate from stem cells or progenitors than either astrocytes or neurons partially 

due to the dependence of OL differentiation on material properties. Materials that are compatible 

with OL differentiation have been reviewed by Russell and Lampe.(Russell and Lampe 2016)  

Primary OPCs have been transplanted following SCI, after having been cultured and 

modified to express ciliary neurotrophic factor, and were found to improved functional recovery 

and remyelinated the axons.(Cao et al. 2010) Similarly, it has been found that human induced 

pluripotent stem cells can be pre-differentiated into OPCs and that those cells are able to promote 

myelination following a thoracic contusion SCI.(Kawabata et al. 2016) Likewise, human 

embryonic stem cells (hESCs) pre-differentiated into OPCs have been found to improve 

remyelination and functional repair following contusion or complete transection SCI.(J. Faulkner 

and Keirstead 2005; Erceg et al. 2010) Extensive study of these hESC-derived OPCs has 

indicated that they are safe for clinical trial(Priest et al. 2015), which has led to an ongoing Phase 

I/II clinical trial sponsored by Asterias Biotherapeutics that has reported promising initial 

efficacy data.(Biotherapeutics 2017) Despite these early successes with this OPC population in 

humans, it is worth noting that a review of all SCI treatment studies using rodent-derived 

remyelinating populations found that there is significant inconsistencies in recovery findings, 

showing that more work is needed on understanding and manipulating myelinating glia 

populations.(Myers et al. 2016) 

1.3.3.3 Olfactory Ensheathing Cells 

Olfactory ensheathing cells (OECs) are a specialized cell found within the nasal mucosa 

that facilitates repeated growth of axons from the peripheral nervous system (nasal mucosa) to 

the CNS (olfactory bulb).(Tetzlaff et al. 2011) Due to this role, these cells have been heavily 

studied as a means to achieve improved regeneration in both the CNS and peripheral nervous 
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system. In SCI, transplantation of OECs has been shown to improve axon growth and limit 

immune cell infiltration into the injury leading to overall improved recovery.(Khankan et al. 

2016) There is also some evidence that OEC transplantation may improve recovery from 

autonomic dysreflexia, which can be a fatal complication of SCI. Specifically, rats with a T4 

complete transection SCI were found to have reduced automonic dysreflexia with OEC, but not 

fibroblast, transplantation.(Cloutier et al. 2016) OECs are used as primary cells that can be 

isolated directly from the patient due to easy access to the olfactory epithelium. Importantly, the 

exact function of the OECs in transplantation is dependent on where they are isolated from in the 

body and how they are treated in culture.(Mayeur et al. 2013) Autologous transplantation of 

OECs has been attempted as a phase I clinical trial and appeared to be safe with 2 of 3 patients 

showing improvements in their neurological function score with rehabilitation training.(Tabakow 

et al. 2013) The difficulty with any autologous treatment is donor site morbidity, in the case of 

OECs there is a risk of anosmia, and the inherent heterogeneity of primary cultures which makes 

quality control more difficult. These complications have led to a recent decrease in the number of 

papers published exploring OEC transplantation. 

1.4 Astrocyte Roles in CNS Regeneration 
Astrocytes are a large heterogeneous population of glia that serve many important 

functions that support neuronal activity. These support functions include maintenance of the 

blood-brain barrier, disposal of toxic metabolites by neurons, signal transduction through 

tripartite synapses, and water homeostasis. Despite this large variety of roles, astrocytes have 

been relatively poorly studied in terms of their ability to promote regeneration. A significant 

contribution to lack of astrocyte study was the general belief in the SCI field that astrocytes are 

largely responsible for creating an inhibitory environment that needs to be circumvented in for 
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recovery to occur. This concept is supported by the fact that astrocytes create a physical barrier 

of overlapping processes(Sun et al. 2010; Sun and Jakobs 2012), as well as produce molecules, 

such as CSPGs, that are inhibitory to neuronal growth.(Oohira, Matsui, and Katoh-Semba 1991) 

 1.4.1 Variability in Astrocyte Reactivity 

One explanation of the observed duality in astrocytic roles following SCI is that different 

astrocyte subpopulations are involved in scar formation versus bridge formation. This hypothesis 

is supported by the inherent heterogeneity of astrocytes(Cahoy et al. 2008) and the known 

differences in the purpose and functions of different astrocyte subpopulations within certain 

brain regions.(Oberheim, Goldman, and Nedergaard 2012) In support of the idea that there is 

heterogeneity in astrocyte reactivity, it has been observed that astrocyte gene expression changes 

depending on whether the CNS insult was ischemic or inflammatory. Ischemic injury has been 

found to lead pro-regenerative reactive astrocytes, while inflammatory insults leads to more 

inhibitory reactive astrocytes.(Zamanian et al. 2012) This injury type-dependent reactivity has 

led to the concept that astrocytes may have two types of reactive polarization, similar to 

macrophages and microglia, which have been termed A1 or A2 reactive astrocytes. A2 (pro-

inflammatory) astrocytes have “harmful” functions, such as synapse destruction, while A1 

reactive astrocytes have “helpful” (pro-regenerative) functions. The heterogeneity of astrocyte 

reactivity is a newly appreciated concept and has been reviewed by Liddelow and 

Barres.(Liddelow and Barres 2017) 

In addition to the differences in astrocyte reactivity depending on insult, it has also been 

found that different brain regions behave differently in response to injury. While there are many 

astrocyte subtypes in the CNS, astrocytes can be broadly defined as either fibrous (found in 

white matter) or protoplasmic (found in grey matter). Interestingly, studies looking at the 
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reactivity of white matter and grey matter astrocytes following CNS injury have found 

significant differences in how astrocyte morphology changes in response to injury. Optic nerve 

crush and corpus callosum injury studies have shown that fibrous astrocytes initially retract their 

processes following insult and then re-extend them leading to a significant increase in the area 

covered by each astrocyte. This process re-extension and hypertrophy leads to significant process 

overlap, which disrupts the normal lamellar structure of the white matter.(Sun et al. 2010) In 

contrast to this, filling studies performed on resting and reactive protoplasmic astrocytes show 

that reactive protoplasmic astrocytes exhibit some process hypertrophy, but they do not exhibit 

the same increase in process overlap between adjacent astrocytes.(Wilhelmsson et al. 2006) 

These observations together suggest that fibrous astrocytes are more involved in the creation of 

the physical barrier found in the glial scar environment, and that potentially a subset of 

protoplasmic astrocytes may be responsible for the formation of GFAP+ bridges across lesion 

cavities. 

1.4.2 Astrocyte Phenotype alters Transplant Outcomes 

The inherent functional differences between fibrous and protoplasmic astrocytes has been 

observed in SCI transplant studies as well. Glial restricted progenitors (GRPs) are a population 

of primary cells that can be isolated from E13.5 embryos and can differentiate into either fibrous 

or protoplasmic astrocytes as well as oligodendrocytes, but not neurons.(Rao, Noble, and Mayer-

Pröschel 1998) Pre-differentiation of these cells into astrocytes using basic fibroblast growth 

factor (FGF-2), bone morphogenetic protein 4 (BMP-4) and N2 media supplement showed 

improved recovery of when compared to the transplantation of undifferentiated GRPs.(J. E. 

Davies et al. 2006) These BMP-4 differentiated astrocytes have a phenotype that is most similar 

to protoplasmic astrocytes. Interestingly, when GRPs are pre-differentiated into fibrous-like 
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astrocytes using ciliary neurotrophic factor (CNTF) they have a detrimental effect of recovery 

leading to decreased axon penetration into the injury site and increasing allodenia.(J. E. Davies et 

al. 2008; S. J. A. Davies et al. 2011) Similar to other studies using primary cells, there has been 

heterogeneity of these findings, likely due to variations in the methods used, that affects study 

outcomes. When the GRPs remain in a more immature state, transplantation of GRP-derived 

astrocytes has been found to improve axon penetration into the injury site, regardless of 

phenotype at the time of transplantation.(C. Haas et al. 2012) Further investigation of the CNTF-

exposed GRPs and BMP-4-exposed GRPs has demonstrated that one of the factors responsible 

for the observed functional difference is periostin-1, which is produced by BMP-4 exposed 

GRPs, but not CNTF-exposed astrocytes.(Shih et al. 2014) Further periostin-1 experiments found 

that recombinant periostin-1 improved neurite extension in vitro and that periostin-1-deficient 

BMP-4-exposed GRPs did not have the same beneficial effects as wild type BMP-4-exposed 

GRPs.(Shih et al. 2014) 

The major issue with GRP transplantation is that these cells need to isolated from an 

embryo, making it difficult to acquire human cells for transplantation and study. One way to 

address this issue is to develop methods to derive these astrocytes from ESCs thereby allowing 

these astrocytes to be derived entirely in vitro. There have been methods developed that allow for 

astrocytes to be derived from ESCs(Roybon et al. 2013; R. J. Benveniste, Keller, and Germano 

2005), but only mixed populations of astrocytes have been produced rather than attempting to 

specifically derive populations that exhibit more a fibrous-like or protoplasmic-like phenotype. 

Overall there is significant promise to astrocyte-based therapies, but there is much left to be 

elucidated in terms of the reactive states of different astrocyte subtypes and  how different 

astrocyte subtypes effect axon growth and regenerative potential.(Chu et al. 2014) 
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1.4.3 Small Molecule Manipulation of Host Astrocyte Phenotype 

Instead of transplanting astrocytes, there have also been studies investigating the use of 

growth factors and/or small molecules to cause the native astrocytes to adopt a more pro-

regenerative phenotype. Metallothionein is one factor that has been shown to induce astrocytes to 

become more pro-regenerative through both intracellular and extracellular actions (Leung et al. 

2009).  Furthermore, delivery of metallothionein has been found to improve neuronal 

regeneration following an optic nerve crush injury (Siddiq et al. 2015). Endogenous glial cells 

can also be manipulated by FGF-2 exposure. Studies in both mice and zebrafish have shown that 

FGF-2 signaling facilitates glial bridge formation following SCI.(Yona Goldshmit et al. 2012; 

Yona Goldshmit et al. 2014) In addition, knockout of spry4, a FGF signaling inhibitor, has been 

found to reduce inflammatory response and decrease gliosis following SCI.(Y. Goldshmit et al. 

2015) FGF-2 within lipid microtubules has been incorporated into collagen-based hydrogels 

leading to increased astrocyte infiltration into hydrogels in vitro.(Macaya et al. 2013)  

There is also evidence that astrocytes exhibit plasticity of their reactive phenotype based 

on the local, extracellular environment. Astrocytes transplanted acutely into an SCI lesion, but 

not healthy spinal cord, have been shown to adopt an inhibitory phenotype. This phenotypic 

switch has been shown to be dependent on integrin-binding to collagen I within the scar. 

Inhibition of collagen I binding with an anti-β1 integrin antibody leads to increase axon 

penetration into the SCI lesion and improved behavioral recovery following a spinal cord 

contusion injury in mice.(Hara et al. 2017) 

Consistent with the classification of reactive astrocytes using the same system as 

macrophages, astrocytes express receptors and cytokines that are associated with the immune 

system. In particular, astrocytes are known to express toll-like receptor 4 (TLR4), suggesting a 

pathway for activation in response to lipopolysaccharide (LPS).(Bsibsi et al. 2002) Loss-of-
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function and gain-of-function studies of TLR4 and triggering receptor expressed on myeloid 

cells-2 (TERM-2), a negative regulator of TLR signaling, have shown that increased TLR4 

activation with LPS increases pro-inflammatory gene expression by astrocytes. In contrast, 

increased TERM-2 signaling has been found to modulate this response by decreasing NF-κB 

activation, suggesting that NF-κB signaling could be an important regulator of pro-inflammatory 

reactive astrocytes.(Rosciszewski et al. 2017)  

Astrocytes are also known to upregulate interleukin receptors in response to injury and to 

express some interleukins. Because of these expression profiles, it stands to reason that 

interactions with immune cells and their secreted factors may alter astrocyte phenotype. Two 

interleukins that have been extensively studied in astrocyte phenotype manipulation are IL-6 and 

IL-10. IL-6 is a pro-inflammatory cytokine that modulates CNS inflammation. IL-6 is produced 

by astrocytes after injury or infection(E. N. Benveniste et al. 1990), and the presence of IL-6 has 

been associated with astrocyte proliferation and scar formation, as well as immune cell 

infiltration in the acute phase following injury.(M. Nakamura et al. 2005) There is also evidence 

that in the subacute phase of SCI injury, IL-6 expression has pro-regenerative effects, suggesting 

a duality of roles for this molecule.(Codeluppi et al. 2014)  In contrast, IL-10 is an anti-

inflammatory cytokine that is important for the resolution of the immune response throughout 

the body. In the context on CNS injury, IL-10 has been delivered intrathecally and 

intramuscularly to improve functional recovery.(Jackson et al. 2005) Furthermore, astrocyte-

specific production of IL-10 has been shown to increase immune cell infiltration, but also 

increases motor neuron survival following a facial nerve axotomy.(Villacampa et al. 2015) There 
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has been some work using flavopiridol, a 

cell-cycle inhibitor, as a way to alter the 

interleukin expression from astrocytes. In 

particular, flavopiridol delivery from 

poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles was found to reduce astrocytic 

synthesis of pro-inflammatory cytokines, 

including IL-6, as well as increasing 

astrocyte-based IL-10 expression.(Ren et al. 

2014) These observations of the astrocytic 

roles in immunomodulation suggest that 

anti-inflammatory signaling cascades used to alter the immune response in other organ systems 

may be able to alter reactive astrocyte phenotypes as well. The factors discussed here are 

summarized in Figure 1.1. Overall the manipulation of astrocyte heterogeneity is still being 

actively investigated and holds great potential as a means to harness astrocytes as a regenerative 

population. 

1.5 Biomaterial-based Manipulation of Glial Phenotypes 
Given the complexities of glial cell response to trauma, with some glia providing a pro-

regenerative support and others tending to inhibit regeneration, there is significant potential 

benefit to use materials to manipulate the phenotypes of both transplanted and native glia. The 

major approaches used for these manipulations are modifying the mechanical properties, 

composition, growth factor delivery, and alignment of the materials. Here what is known about 

Figure 1.1: Schematic Summary of Factors Known to 

Affect Astrocyte Reactivity 
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how these biomaterial factors affect the phenotype and differentiation of the major CNS glial 

populations is discussed. 

1.5.1 Material Properties affecting Cell Fate 

Matrix stiffness is a powerful tool for the manipulation of cell phenotype and the 

differentiation of neural progenitor cells (NPCs). NPCs have been shown to differentiate into 

OLs and neurons on softer matrixes and generally differentiate into astrocytes on stiffer 

matrices.(Seidlits et al. 2010; Russell and Lampe 2016)  In addition to OL differentiation being 

dependent on matrix stiffness, myelination by either SCs or OLs is affected by matrix elasticity 

with low elasticity matrices allowing for increased myelin production by OLs. In contrast, high 

matrix elasticity increases SC myelin production.(Urbanski et al. 2016) These elasticity 

differences are the result of non-muscle myosin II which has been found to be a positive myelin 

regulator in the PNS, but a negative myelin regulator in the CNS.(Urbanski et al. 2016; H. Wang 

et al. 2008) These studies demonstrate that material properties are an important consideration 

when designing scaffolds for either the CNS or PNS. 

Consistent with the observation that material properties affect NPC differentiation, there is 

also evidence that integrin signaling is important for astrocytic differentiation from neural 

progenitor populations. In particular, the exposure of NPCs to IKVAV peptide amphiphile 

(IKVAV-PA) has been shown to increase neuronal differentiation and decrease astrocyte 

differentiation.(G. A. Silva et al. 2004) IKVAV is an important integrin binding region of 

laminin, demonstrating the importance of ECM signals in NPC differentiation, and the 

amphiphile structure used for delivery of the peptides allows for a significant increase in epitope 

density. Delivery of IKVAV-PA has also been shown to decrease glial scar density, and increase 

oligodendrocyte infiltration following a compressive SCI in mice.(Tysseling-Mattiace et al. 
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2008) The observed effect of IKVAV-PA particles on differentiation has been partially attributed 

to β1-integrin signaling with both ESCs and subventricular zone NPCs demonstrating increased 

astrocyte differentiation in the presence of IKVAV when β1-integrin is knocked out. The 

importance of β1-integrin signaling in functional recovery following SCI is further suggested by 

observed behavioral improvements in mice treated with 2 other β1-integrin binding peptide 

amphiphiles, RGD-PA or ADEGVFDNFVLK (Tenascin C)-PA.(Pan et al. 2014) 

1.5.2 Materials that increase Myelination following CNS Trauma 

Since myelination is a critical step in recovery from nervous system trauma, the ability of 

implanted materials to increase the percent of myelinated fibers could have significant clinical 

utility. Since remyelination occurs late following SCI and native OLs don’t have a high capacity 

for remyelination, the ability of materials to promote local remyelination in vivo has not been 

extensively studied. A comparative study of different substrates effect on myelination in vitro by 

myelinating cultures composed of primary cells isolated from E15 rat spinal cords found that low 

molecular weight ε-polycaprolactone (PCL) increased myelination compared to polycarbonate, 

poly(methyl) methacrylate, polystyrene, poly-L-lactide, polydimethylsiloxane, and high 

molecular weight PCL. These studies also showed a clear effect on astrocyte phenotype on 

myelination with media conditioned by astrocytes cultured on PCL decreasing OL myelination, 

while media conditioned by astrocytes cultured on glass increased OL myelination.(Donoghue et 

al. 2013) This suggests that astrocyte phenotype should be considered when designing materials 

to increase remyelination following CNS injury. 

There have been some acellular in vivo implantation studies that have shown increased 

myelin production. One strategy is to deliver sonic hedgehog (SHH) and neurotrophin-3 (NT-3). 

These factors were delivered following a lateral hemisection SCI using lentivirus within a 
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multiple channel bridge composed of PLGA. The inclusion of NT-3 was found to increase 

myelination by infiltrating SCs, while SHH over-expression significantly increased OL 

myelination.(Thomas et al. 2014) Another material found to increase myelination is a Chitosan 

Fragmented Physical Hydrogel suspension (Chitosan-FPHS). This material was found to 

increase myelination in rats at 4, 8 and 10 weeks after a dorsal over-hemisection SCI from both 

SCs and OLs. Interestingly, the OL myelination observed in this study was restricted to regions 

in which astrocytes were able to infiltrate the Chitosan-FPHS.(Chedly et al. 2017) 

1.5.3 Materials that Alter Astrocyte Phenotypes 

Astrocyte phenotype and penetration is an important consideration for CNS repair 

materials since astrocytes are known to support neuronal growth and to be required for the 

survival of certain neuronal populations. It has been found in many biomaterials that neuronal 

growth into the material is correlated with astrocytes or their processes.(Pawar et al. 2015; 

Taylor et al. 2006)  This makes the astrocytic response to transplanted materials crucial to 

consider and demonstrates the importance of determining how to push native astrocytes away 

from a scar phenotype toward a more pro-regenerative state. One material that has been shown to 

limit inhibitory astrocyte formation is high molecular weight (MW) hyaluronic acid (HA). Acute 

transplant of high MW HA following dorsal hemisection SCI decreased immune cell infiltration 

and CSPG deposition.(Khaing et al. 2011) The same is not true of small (40-400 kDa) HA 

chains, which have been shown to activate NF-κB in astrocytes and so upregulate inhibitory 

reactive astrocytes.(Pandey et al. 2013) Similar to this observation with HA, implantation of 

fibrin scaffolds has also be found to slow the accumulation of reactive astrocytes around a SCI 

lesion.(Johnson, Parker, and Sakiyama-Elbert 2010) 



33 

 

Matrix alignment has been shown to be a powerful tool in glial manipulations with glia 

cells, and neurons, aligning to a provided matrix. Unfortunately, alignment is extremely difficult 

to achieve in vivo, so much of what is known about alignment effects is based on in vitro data. 

Aligned cell morphology has been shown to result in increased neurite outgrowth in both 2 and 3 

dimensions.(Corey et al. 2007; East et al. 2010)  Furthermore, when aligned astrocytes enhance 

neuronal growth in the direction of alignment.(Biran, Noble, and Tresco 2003) In addition, 

randomly-aligned, electrospun polyamide nanofibers have been found to decrease astrocyte 

process hypertrophy and GFAP expression in vitro compared to poly-L-lysine on either glass or 

Aclar in response to an inflammatory stimulus (dibutyryladenosine cyclic 

monophosphate).(Volkan Müjdat Tiryaki et al. 2015; Volkan Mujdat Tiryaki et al. 2012) This 

suggests that astrocytes may adopt a more quiescent phenotype when on a fibrillar surface in 

vitro, regardless of alignment. Here only the effect of electrospun materials on astrocytes is 

reviewed, for a complete review of electrospun material in SCI regeneration see Schaub et 

al.(Schaub et al. 2016) 

 Since electrospinning can be used to generate alignment, the benefit of fibrillar matrices 

and alignment has been widely used material starting point for astrocyte manipulations in vitro. 

Study of astrocytes cultured on aligned collagen fibers in vitro have found that astrocytes in an 

aligned environment decrease expression of GFAP, a hallmark of astrocyte reactivity, and 

elongated in the direction of alignment. This in turn led to more organized neurite outgrowth 

from dorsal root ganglions (DRGs).(T. Liu et al. 2012) Furthermore, these structures could be 

rolled into 3D conduits that maintain their alignment growth benefits.(T. Liu et al. 2012) Further 

manipulation of collagen fibers with other matrix proteins can be used to improve astrocyte 

alignment and decrease the expression of CSPGs. In particular, fibrinogen coating significantly 
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increased alignment with the collagen fibers, while aggrecan, laminin, and fibrinogen, but not 

fibronectin decreased CSPG expression of cultured astrocytes.(Hsiao, Tresco, and Hlady 2015)  

 Astrocytes cultured on aligned PLLA materials have also been found to elongated and 

upregulate the two major glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate 

and aspartate transporter 1 (GLAST).(Zuidema et al. 2014) The presence of these transporters is 

important to the support of excitatory, glutamatergic neurons which are unable to process the 

glutamate they release leading to excitotoxicity. PLLA scaffolds have also been used to release 

6-aminonicotinamide, which is an anti-metabolite, to reduce the metabolic rate of astrocytes 

cultured on the drug-eluting fibers.(Schaub and Gilbert 2011) In addition to alignment effects, 

fiber size also impacts astrocyte phenotypes with 400 nm silk fibers inducing longer astrocyte 

process extension, increasing area per astrocyte, and improving neuronal maturation when 

compared to 1200 nm fibers.(Qu et al. 2013)  Increasing the stiffness of 400 nm cellulose acetate 

nanofibers from a tensile modulus of around 24 MPa to around 80 MPa resulted in an increase in 

astrocyte attachment, proliferation, and ECM deposition.(Min et al. 2015)  It is important to note 

that alignment is difficult to achieve in an implantation setting, and so the clinical utility of 

alignment is currently limited. However, randomly aligned, coated electrospun fibers could have 

significant potential as a strategy to manipulate glial populations. Electrospun, randomly aligned 

PCL scaffolds have been seeded with human endometrial stem cells and transplanted following 

dorsal hemisection in rats. The PCL scaffold implant was found to slightly increase neurite 

growth into the SCI lesion, demonstrating the potential of electrospun scaffolds as a treatment 

strategy.(Terraf et al. 2017) 
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1.6 Summary 
Recent work has shown promise for improved treatments for SCI, although there is much 

work still to done to improve the prognosis for those who suffer from SCI. In this work, methods 

are developed to derive protoplasmic and fibrous astrocytes from mouse ESCs and the 

differences in the ability of these populations ability to support the growth of ESC-derived 

neuronal populations is explored. To further future transplantation and functional studies, a new 

mESC cell line is developed that could allow for pure ESC-derived astrocyte population 

acquisition. Finally, the ability of a novel hydrogel, composed of HA and decellularized 

astrocyte ECM, to improve the expression of histological recovery markers following a thoracic 

dorsal hemisection SCI was explored as was the ability of these hydrogels to support V2a 

interneuron transplantation. (R. Thompson and Sakiyama-Elbert 2018) 
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Chapter 2: Different Mixed Astrocyte 

Populations Derived from Embryonic Stem 

Cells have Variable Neuronal Growth 

Support Capacities  

2.1 Abstract 
Central nervous system (CNS) injury often leads to functional impairment due, in part, to 

the formation of an inhibitory glial scar following injury that contributes to poor regeneration. 

Astrocytes are the major cellular component of the glial scar, which has led to the belief that they 

are primarily inhibitory following injury. Recent work has challenged this by demonstrating that 

some astrocytes are required for spinal cord regeneration, and that astrocytic roles in recovery 

depends on their phenotype. In this work, two mixed populations containing primarily either 

fibrous or protoplasmic astrocytes were derived from mouse embryonic stem cells (ESCs). 

Motoneuron and V2a interneuron growth on live cultures, freeze-lysed cultures, or decellularized 

extracellular matrix (ECM) from astrocytes was assessed. Both neuronal populations were found 

to extend significantly longer neurites on protoplasmic-derived substrates than fibrous-derived 

substrates. Interestingly, neurons extended longer neurites on protoplasmic-derived ECM than 

fibrous-derived ECM. ECM proteins were compared with in vivo astrocyte expression profiles, 

and it was found that the ESC-derived ECMs were enriched for astrocyte-specific proteins. 

Further characterization revealed that protoplasmic ECM had significantly higher levels of axon 

growth promoting proteins, while fibrous ECM had significantly higher levels of proteins that 

inhibit axon growth. Supporting this observation, knockdown of spondin-1 improved neurite 

growth on fibrous ECM, while laminin α5 and ɣ1 knockdown decreased neurite growth on 
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protoplasmic ECM. These methods allow for scalable production of specific astrocyte subtype-

containing populations with different neuronal growth support capacities, and can be used for 

further studies of the functional importance of astrocyte heterogeneity. 

2.2 Introduction 
Central nervous system (CNS) trauma represents a significant healthcare burden in the 

United States, in part due to its limited regenerative capacity. Spinal cord injury (SCI) is a good 

modality for studying CNS regeneration because the cord can be relatively easily accessed, the 

axonal tracts can be reliably severed by hemisection, and a stereotyped glial scar and lesion 

cavity forms after injury(Cregg et al. 2014). The lack of regeneration following CNS trauma has 

historically been partially attributed to the astrocytes present within the glial scar, which 

represents a physical and chemical barrier to axon growth. This has led to a focus in the field on 

removing astrocytes to facilitate CNS regeneration.  

Astrocyte removal has been achieved in SCI models by using genetic tools to knockout genes 

required for astrocytes reactivity. In vimentin and glial fibrillary acidic protein (GFAP) double 

knockout mice, astrocytes do not become appropriately reactive after SCI leading to impaired 

glial scar formation, and increased bleeding (Pekny et al. 1999). Similarly, conditional knockout 

of floxed STAT3, an inducer of astrocyte reactivity, using GFAP-Cre has been found to disrupt 

the formation of the glial scar, increase macrophage infiltration into the spinal cord, and lead to a 

larger lesion cavity after SCI (Herrmann et al. 2008).  Conditional ablation of reactive astrocytes 

at the time of injury or 5 weeks after SCI using GFAP-thymidine kinase (TK) + ganciclovir has 

also been shown to lead to worse functional outcomes due to death of dividing GFAP+ cells. 

These studies demonstrate that astrocytes are required both acutely to control spread of 

secondary injury and chronically to facilitate functional recovery (Anderson et al. 2016; J. R. 
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Faulkner et al. 2004). Thus, there is a clear role for astrocytes in CNS regeneration and potential 

for their contribution to regenerative therapies. 

Recent work on astrocytes has shown that there are many more distinct astrocyte populations 

than previously believed (Cahoy et al. 2008; Oberheim, Goldman, and Nedergaard 2012). 

Furthermore, the type of insult, inflammatory or ischemic, to the CNS has been shown to affect 

whether native astrocytes become more pro-regenerative or more inhibitory, supporting the idea 

that some astrocytes have pro-regenerative roles (Zamanian et al. 2012). The physical barrier 

represented by the glial scar is primarily due to the woven nature of astrocyte processes adjacent 

to the lesion (Sun and Jakobs 2012). Structural studies of astrocytes suggest that not all astrocyte 

populations form such barriers in response to trauma. In particular, fibrous (white matter) 

astrocytes have been shown to exhibit process hypertrophy and a significant increase in process 

overlap following injury in optic nerve (Sun et al. 2010); conversely, protoplasmic (grey matter) 

astrocytes have been demonstrated to exhibit some process hypertrophy after injury, but little to 

no increase in process overlap (Wilhelmsson et al. 2006). These studies show that fibrous 

astrocytes adopt a phenotype more consistent with classic glial scar morphology in response to 

injury, suggesting that these populations may be more involved in glial scar formation. With the 

lower levels of overlap observed in reactive protoplasmic astrocytes, it is possible that a subset of 

these astrocytes may be responsible for pro-regenerative effects of astrocytes following CNS 

injury. 

The concept that astrocyte subtypes have variable roles following injury has been explored 

using primary glial restricted progenitors (GRPs), isolated from rat, mouse and human 

embryonic spinal cords (Rao, Noble, and Mayer-Pröschel 1998). These cells have been 

successfully transplanted into rats following a right-sided cervical dorsal column transection SCI 
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leading to improved recovery (Y Jin et al. 2016; J. E. Davies et al. 2006). Furthermore, GRPs 

have been pre-differentiated into astrocytes using either ciliary neurotrophic factor (CNTF) or 

bone morphogenic protein 4 (BMP-4) to generate fibrous-like or protoplasmic-like astrocytes (J. 

E. Davies et al. 2008). When transplanted following spinal cord injury, GRPs differentiated into 

fibrous astrocytes were found to have a detrimental effect on axon growth into the lesion and 

functional outcomes, while protoplasmic transplants improved axon growth and functional 

outcomes (J. E. Davies et al. 2008; S. J. A. Davies et al. 2011). While isolation of GRPs from 

humans has been achieved from a fetal brain and spinal cord, these methodologies are not 

scalable for clinical use. The novel component of our work is the derivation of these astrocyte 

populations from mouse embryonic stem cells (ESCs). This methodology could be applied to 

human pluripotent cells, and thus represents a scalable cell source for future pro-regenerative 

astrocyte-based therapy development. Furthermore, an ESC source of these astrocytes could 

allow for further elucidation of the mechanisms utilized by pro-regenerative astrocytes that are 

absent in astrocyte populations inhibitory to axon growth and vice versa. 

Previous protocols to derive astrocytes from ESCs have not focused on deriving specific 

astrocyte subtypes. In this work, glial cell populations containing primarily fibrous or 

protoplasmic astrocytes are derived from mouse ESCs. These populations are then demonstrated 

to have different abilities to support the growth of ESC-derived motoneurons and V2a 

interneurons, with protoplasmic populations allowing neurons to extend significantly longer 

neurites than observed on fibrous populations. Finally, these neuronal growth support differences 

are found to be due, in part, to altered extracellular matrix (ECM) composition with fibrous 

astrocyte populations depositing more axon growth-inhibitory proteins while protoplasmic 

astrocyte populations deposit more axon growth-permissive proteins. 
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2.3 Materials and Methods 

2.3.1 mESC Culture 

RW4 (ATCC, SCRC-1018) mESCs were maintained in complete media (10% Fetal Bovine 

Serum (Invitrogen), 10% Newborn Calf Serum (Invitrogen), 132 µM beta mercaptoethanol 

(BME) (Sigma, St Louis, MO), 10,000 units/mL mouse leukemia inhibitory factor (Life 

Technologies, Carlsbad, CA) and passaged when at 60-80% confluency. Cells were passaged 

using 0.25% trypsin-EDTA (Life Technologies) at 37°C for 5 min to dissociate the cells. The 

trypsin reaction was quenched and cells were seeded into a new T25 flask coated with 0.1% 

gelatin (Sigma). 

2.3.2 Glial Population Differentiation 

1x106 RW4 ESCs were cultured in suspension on agar-coated 10 cm dishes in 10 mL DFK5 

(DMEM/F12 (Life Technologies) plus 5% Knockout Serum Replacement (Life Technologies), 

50 µM nonessential amino acids (Life Technologies), 1x Insulin-Transferrin-Selenium (Life 

Technologies), 100 µM beta-mercaptoethanol (Sigma), 5 μM thymidine, and 15 μM of the 

following nucleosides: adenosine, cytosine, guanosine, and uridine (Life Technologies) for two 

days to form embryoid bodies (EBs) followed by 4 days in 10 mL DFK5 plus 2 µM RA and 

600nM Smoothened Agonist (SAG) to confer a spinal identity with a media change after 2 days 

(Roybon et al. 2013). On day 6, the EBs were dissociated and 4x106 cells were seeded onto a 

gelatin-coated low adherence 10 cm dish (ThermoFisher) in DFK5 media plus 20 ng/mL 

epithelial growth factor (EGF) (Peprotech), 10 ng/mL fibroblast growth factor 1 (FGF-1) 

(Peprotech) and 1 µg/mL laminin for 5 days as described in Benvensite et al. (R. J. Benveniste, 

Keller, and Germano 2005). On day 11, the cultures were switched into lineage-specific media 

for 4 additional days on the same plates. Fibrous media: DMEM/F12 plus 1x G5 supplement 
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(Invitrogen), 10 µg/mL CNTF (Peprotech); Protoplasmic media: DFK5 plus 10 µg/mL FGF-1, 

10 µg/mL BMP4 (Peprotech); Benveniste astrocyte media: DFK5 plus 10 µg/mL FGF-1, 10 

µg/mL platelet derived growth factor AA (PDGF-AA) (Peprotech) (R. J. Benveniste, Keller, and 

Germano 2005). At day 15 the cells were reseeded onto gelatin-coated plates at a density of 

20,000 cells/cm2 and maintained in lineage specific media for 6 additional days prior to use 

(Figure 2.1A). 

2.3.3 Immunocytochemistry (ICC) 

Cells were fixed in 4% paraformaldehyde (Sigma) for 20 mins and then permeabilized in 0.1% 

Triton-X (Sigma) for 15 mins. Cells were then blocked with 5% of an appropriate serum (Goat 

(Sigma) or Donkey (Sigma)) in phosphate buffered saline (PBS) for 1 hr. Primary antibodies 

were used at the following dilutions: GFAP 1:100 (Immunostar), A2B5 1:25 (DSHB), aquaporin 

4 (Aqp4) 1:100 (Santa Cruz Biotechnology), Olig2 1:1000 (Santa Cruz Biotech), CS56 1:250 

(Sigma), Spondin-1 1:100 (Abcam), Collagen XIIα1 1:100 (Santa Cruz Biotechnology), Sox2 

1:100 (Santa Cruz Biotechnology), HSPG2 1:100 (Fisher), O4 1:100 (Millipore), S100 1:100 

(Dako, Santa Clara, CA), SSEA-1 1:25 (DSHB), Oct 3/4 1:200 (Santa Cruz Biotech), β-tubulin 

1:1000 (Biolegend), Neurofilament 1:10 (DSHB), Nestin 1:10 (DSHB). Primary antibody 

incubation was carried out overnight in 2% of appropriate serum in PBS. Secondary antibodies 

(Life Technologies) were all used at a 1:1000 dilution and incubated in 2% of appropriate serum 

in PBS for 1 hr at room temperature. 1:1000 Hoechst (Invitrogen) in PBS was incubated with the 

cells for 15 min prior to imaging. Nuclear colocalization was determined using Cell Profiler 

software (Broad Institute). 
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2.3.4 Flow Cytometry 

Fibrous and protoplasmic populations were removed from the plate surface with 0.25% trypsin-

EDTA and fixed using 1% paraformaldehyde for 15 min followed by blocking in 5% goat serum 

in PBS for 20 min. Primary antibody incubation was performed for 45 min using the same 

dilutions as ICC. Cells were washed once with PBS and secondary incubation was performed for 

45 min prior to washing three times with PBS. Cells were then analyzed using a Guava EasyCyte 

(Millipore), and the data was quantified using FlowJo. For analysis, a cell gate was drawn based 

on forward scatter and side scatter. Staining graphs were restricted to events within this cell gate 

and stain gates were drawn based on secondary only controls to exclude 99% of control events 

from the gate to minimize the false positive rate. Quadrant gates for double stained samples were 

drawn based on secondary controls as well as single stained populations. 

2.3.5 Quantitative reverse transcriptase PCR (qRT-PCR) 

 Day 21 glial populations were removed from the 

culture plate via 0.25% trypsin treatment followed by 

quenching with CM. The resulting cell suspension was 

then spun down at 300 rcf at 4° C for 5 min, and the 

RNA was extracted using a Qiagen RNA extraction kit 

following manufacturer instructions. RNA 

concentration was determined using an Implen 

Nanophotomer and 500 ng of RNA from each sample 

was converted to cDNA using a High-Capacity RNA to cDNA kit (Applied Biosystems). 

Finally, the mRNA levels of the genes of interest was determined using specific Taqman assays 

following manufacturer instructions (Life Tech, Table 2.1). β-actin was used as the 

normalization control in all samples. 

Target Primer ID (ThermoFischer) 

β-actin Mm02619580 

GFAP Mm01253033 

GLT-1 Mm01275814 

GLAST Mm00600697 

GDNF Mm00599849 

Table 2.1: qPCR primers used to validate 

astrocyte identity 
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2.3.6 Viral Knockdown  

At day 15 of differentiation, cells were seeded at 10,000 cells/cm2 in appropriate media. Cells 

were then infected with mission shRNA lentiviral particles (Sigma, Table 2.2) at a multiplicity of  

infection of 2.5 on day 16. Infection was 

allowed to proceed for 1 day and media was 

then replaced and the cells cultured for an 

additional day. To ensure only infected cells 

were present, cultures were selected with 2 

µg/mL puromycin for either 1 day for the 

fibrous cultures or 2 days for the 

protoplasmic cultures. On day 21, all cells 

were removed from the plate using trypsin 

and reseeded onto gelatin-coated 48 well 

plates. Cells were then cultured for 6 days 

with media changes every other day to allow 

for ECM deposition. After ECM deposition, 

cells were removed by decellularization as 

described in substrate preparation or stained 

for ICC. 

2.3.7 Substrate Preparation 

Day 21 glial cells were seeded onto gelatin-coated 48-well plates at a density of 20,000 cells/cm2 

and cultured for 6 days in appropriate media to allow for matrix deposition. Following the 6 day 

culture period, cells were removed via decellularization (using a modified Hudson protocol 

Target TRC Number 

Spondin-1 0000090520 

Laminin ɣ1 0000055421 

Laminin α5 0000252850 

Perlecan 0000256980 

Collagen XIIα1 1 0000091115 

Collagen XIIα1 2 0000091116 

Collagen XIIα1 3 0000335258 

Collagen XIIα1 4 0000335319 

Collagen XIIα1 5 0000335320 

Collagen VIα3 1 0000091854 

Collagen VIα3 2 0000091855 

Collagen VIα3 3 0000091856 

Collagen VIα3 4 0000091857 

Laminin β1 1 0000094314 

Laminin β1 2 0000094315 

Laminin β1 3 0000094316 

Laminin β1 4 0000094317 

Laminin β1 5 0000094318 

Table 2.2: shRNA viruses used for ECM knockdown 

studies 
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(Hudson, Liu, and Schmidt 2004)), lysed via freezing, or left alive. For frozen cells, the plates 

were sealed with Parafilm (Bemis, Neenah, WI) and placed in the freezer overnight. All plates 

were washed once with DMEM containing 25mM HEPES (Life Technologies) prior to neuron 

seeding. 

2.3.8 Motoneuron Culture 

Motoneurons were derived from Hb9-Puro CAG-TdTomato mESCs that constitutively express 

TdTomato under the control of the synthetic CAG promoter, as previously described (D. A. 

McCreedy et al. 2014). To obtain pure motoneuron cultures, EBs were selected with 4 µg/mL 

puromycin from day 5 to 6 of differentiation prior to dissociation seeding onto the desired 

substrate at a density of 20,000 cells/cm2. Motoneurons were cultured in half DFK5 and half 

Neurobasal media (Life Tech) plus 1x B27. Cultures were then imaged at regular time points 

over 2 days. 

2.3.9 V2a Interneuron Culture 

V2a interneurons were generated from Chx10-PAC bact-TdTomato mESCs as previously 

described (Iyer et al. 2016). After induction, EBs were dissociated with 0.25% trypsin and 

2.5x107 cells were seeded onto a poly-L-ornithine/laminin coated T25 flask. Chx10+ cells were 

then selected in half neural basal-half DFK5 media with 1x GlutaMAX (Life Tech), 1x B27, 2 

µg/mL puromycin and 10 ng/mL of the following growth factors for 24 hr: glial-derived 

neurotrophic factor (GDNF) (Peprotech), neurotrophin-3 (NT-3) (Peprotech), and brain-derived 

neurotrophic factor (BDNF) (Peprotech). After selection, neurons were lifted from the flasks 

using Accutase® (Sigma) treatment for 30 min and then reseeded at 50,000 cells/cm2 onto the 

desired substrate in half neuro basal-half DFK5 media plus 1x GlutaMAX, 1x B27, and 10 
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ng/mL of the following growth factors: BDNF, GDNF, NT-3. Neurite extension for both 

neuronal types was determined using Cell Profiler. 

2.3.10 Conditioned Media 

After day 15 of differentiation, each population was seeded in its appropriate media for 2 days to 

condition the media. Conditioned media (CM) was subsequently harvested and spun down at 

3000 rcf for 25 min. Motoneurons were seeded at 84,000 cells/cm2 onto poly-L-ornithine coated 

6-well polystyrene dishes in one of three media conditions: 50% unconditioned protoplasmic 

media and 50% unconditioned fibrous media, 50% protoplasmic CM and 50% unconditioned 

fibrous media, or 50% unconditioned protoplasmic media and 50% fibrous CM. This 50:50 

mixing strategy was used so CM effects could be directly compared without having the growth 

factors in the astrocyte media affect neuronal growth outcomes. Following the addition of one of 

the three media solutions to motoneuron cultures, five images of each condition were acquired in 

a random spatial orientation every 24 hrs for 3 days, and the neurite area per nucleus was 

quantified with Cell Profiler. 

2.3.11 Proteomics and Western Blotting 

Day 21 cells were seeded at 20,000 cells/cm2 onto gelatin-coated plates and allowed to grow for 

6 days prior to decellularization. After decellularization, the residual proteins were scraped off 

the plate into Milli-Q water and lyophilized overnight. The resulting powder was dissolved in 

4% sodium dodecyl sulfate (SDS) (Sigma) 100mM Tris-HCl pH 7.6 (ThermoFisher). Protein 

concentration of this solution was determined using a BCA Assay Kit (ThermoFisher) and then 

dithiothreitol (DTT) (ThermoFisher) was added to the samples to a final concentration of 

100mM. 15 µg of ECM protein was used for proteomics analysis. For western analysis, the 

samples were run on 4-15% mini-PROTEAN TGX gradient gels (Bio-rad) at 130 V for 1.5 hr. 
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Western tank transfer was performed at 30 V overnight using 10% methanol (Sigma), 25 mM 

Tris Base (ThermoFisher) and 192 mM Glycine (Sigma) transfer buffer to a PVDF membrane 

(Millipore). The membrane was then probed with the following antibody dilutions overnight: 

Spondin-1 1:150, Collagen XIIα1 1:200, HSGP2 1:100. Licor goat anti-rabbit and goat anti-rat 

secondary antibodies were used at a dilution of 1:15000 in PBS and were incubated for 20 min 

prior to imaging. 

2.3.12 Preparation of peptides for LC-MS 

15 µg of ECM proteins solubilized in 30 µL SDT buffer (4%SDS, 100mM Tris-HCl pH 7.6, 

100mM DTT) were diluted with 200 µL of 100 mM Tris-HCL buffer, pH 8.5 containing 8M 

urea. Detergent was removed by buffer exchange in filter unit with a 30K MWCO (Millipore, 

part# MRCF0R030). Iterative centrifugations were performed at 14,000 rcf for 15 min with the 

addition of 200 µL of 100mM Tris-HCL buffer pH 8.5 containing 8M urea to the top filter unit. 

The proteins were alkylated with 100 µL of 50mM iodoacetamide directly in the top of the filter, 

mixing at 25 rcf and incubating at room temperature for 20 min in the dark. The filter was spun 

at 14000 rcf for 10 min and the flow through discarded. Unreacted iodoacetamide was washed 

through the filter with application of 2 x 200 µL of 100mM Tris-HCL buffer, pH 8.5 containing 

8M urea with centrifugation for 10 min after each addition. The urea buffer was exchanged into 

100 mM ammonium bicarbonate buffer, pH 8 with two additions of 200 µL each and spinning 

after each addition. The filters were transferred to a new collection tube and 100 µL of 0.05 

µg/µL trypsin, dissolved in 100mM ammonium bicarbonate buffer, was added to each filter. The 

samples were digested overnight at 37°C in a humidity chamber. An additional aliquot of trypsin 

(1 µg) was added and digestion was continued for 4 hr. The filter units were spun for 15 min and 

the digest was collected in the lower unit. The filter was washed with 50 µL 0.5M sodium 
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chloride, and the wash was collected with the peptides. Residual detergent was removed by ethyl 

acetate transfer, followed by acidification to 5% formic acid final concentration in preparation 

for desalting. The peptides were desalted using micro-tips (C4, BIOMEKNT3C04 and porous 

graphite carbon, BIOMETNT3CAR) (Glygen) on a Beckman robot (Biomek NX) as previously 

described (Chen et al. 2012) for analysis using LC-MS. 

2.3.13 LC/MS Analysis 

LC-ESI/MS/MS analysis was performed using a Q-Exactive™ Plus Hybrid Quadrupole-

Orbitrap™ Plus mass spectrometer (ThermoFisher) coupled to an EASY-nanoLC 1000 system 

(ThermoFisher).  The samples were loaded (2 µL) onto a 75 m i.d. × 25 cm Acclaim PepMap 

100 RP column (ThermoFisher).  The peptides were eluted at a flow rate of 300 nL/min with an 

acetonitrile gradient in aqueous formic acid (0.1%) as mobile phase A. Peptide elution occurred 

in the following sequence: 0-4% B (buffer B) for 1 min, 4-12% B over 127 min, 12- 22% B over 

112 min, 22-30% B over 40 min, 30-70% B over 6 min, hold at 70% B for 6 min, followed by 

increase in B to 95% B over 1 min and an isocratic wash at 95% B for 6 min.  Full-scan mass 

spectra were acquired using the Orbitrap™ mass analyzer in the mass-to-charge ratio (m/z) of 

375 to 1500 and with a mass resolving power set to 70,000.  Ten data-dependent high-energy 

collisional dissociations (HCD) were performed with a mass resolving power set to 35,000, a 

fixed first m/z 100, an isolation width of 2.0 m/z, and the normalized collision energy (NCE) 

setting of 27.  The maximum injection time was 120 ms for parent-ion analysis and 120 ms for 

product-ion analysis.  Target ions already selected for MS/MS were dynamically excluded for 30 

sec.  An automatic gain control (AGC) target value of 3x106 ions was used for full MS scans and 

5x105 ions for MS/MS scans.  Peptide ions with charge states of one or greater than seven were 

excluded from MS/MS acquisition. The tandem mass spectra were processed using Matrix 
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Science Distiller version 2.5 without charge state deconvolution and deisotoping. The processed 

files were used for protein database searches using Mascot (Matrix Science, London, UK; 

version 2.5.1). The UniProt Mouse Reference database (downloaded May 3, 2014, 69021 

entries) was used. A parent ion tolerance and MS2 fragment tolerance were set to 10 ppm and 

0.05 Da, respectively. Carbamidomethyl of cysteine was specified as a fixed modification and 

oxidation of methionine was set as a variable modification. Protein identifications were 

performed using Scaffold, version 4.4.8 (Proteome Software Inc., Portland, OR) implementing 

the Protein and Peptide Prophet algorithms (Keller et al. 2002; Nesvizhskii et al. 2003). Peptide 

identifications were accepted with > 90.0% probability. Protein identifications were accepted if 

they could be established at greater than 95.0% probability and contained at least 2 peptides with 

unique sequences.  Protein probabilities were assigned using the Protein Prophet algorithm. 

Proteins that contained similar peptides, but could not be differentiated based on identification of 

unique peptide sequences, were grouped to satisfy the principles of parsimony. 

2.3.14 TRAP-Seq analysis 

TRAP libraries were sequenced on an Illumina HiSeq 2500, and reads were analyzed as 

previously described (Reddy et al. 2016).  Differential expression analysis of cortex TRAP vs. 

PreIP was performed using the edgeR package. Raw and analyzed RNA-sequencing data are 

available at GEO: GSE74456.  For the present study, only cortex PreIP and TRAP samples were 

used (GSM1920988-1920993). Candidate ECM components were mapped to Ensembl gene IDs 

using the biomaRt package, based on gene symbol. Out of the 638 ECM components with ≥99% 

protein identification probability, 559 were robustly expressed in the TRAP-seq samples and 

thus were used for comparative analysis. 
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2.3.15 Statistics 

Statistical analysis was performed using Minitab software for neurite length measurements (one-

way ANOVA with Bonferroni correction). Excel was used for qRT-PCR (pairwise t-test) and 

colocalization data (Student’s t-test). Proteomics data was analyzed using Scaffold4, significance 

determined with Fisher exact test using the Benjamini-Hochberg false positive correction 

method. 

2.4 Results 

2.4.1 Generation of Fibrous Astrocyte or Protoplasmic Astrocyte containing 

Glial Populations from mESCs 

 To determine the effect of fibrous and protoplasmic populations on neuron growth, 

methods were developed to obtain these astrocyte subtypes from mESCs. In particular, this 

protocol was based on prior ESC-derived astrocyte protocols described in Benveniste et al. (R. J. 

Benveniste, Keller, and Germano 2005) and Roybon et al. (Roybon et al. 2013), and the GRP-

derived astrocyte protocol described in Davies et al. (J. E. Davies et al. 2006). This protocol was 

designed to generate spinal populations by first caudalizing mESCs with RA treatment 

(Wichterle et al. 2002) followed by BMP-4 treatment to obtain cultures containing protoplasmic 

astrocytes, and CNTF treatment to obtain cultures containing fibrous astrocytes (Figure 2.1A, (R. 

E. Thompson et al. 2017)). To allow for direct comparison of protein expression between the 

fibrous and protoplasmic populations, a second population containing protoplasmic-like 

astrocytes was generated using the protocol described in Benvensite et al. (R. J. Benveniste, 

Keller, and Germano 2005). This protocol was not used for future studies because the continued 

use of PDGF-AA led to significant oligodendrocyte presence within the cultures. To determine 

the dominant phenotype of the astrocytes within these cultures, the expression of known 

protoplasmic or fibrous markers was assessed using ICC and qRT-PCR. In particular, A2B5 
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(Holland 2001) and nuclear Olig2 (J. E. Davies et al. 2008) are expected be elevated in fibrous 

astrocytes and oligodendrocyte precursors (OPCs). ICC demonstrated that cells exposed to 

Figure 2.1: mESCs can be 

selectively differentiated 

into mixed populations 

containing either 

protoplasmic or fibrous 

astrocytes. A) Schematic 

representation of the 

astrocyte differentiation 

protocols used in this work. 

All astrocytes are subjected 

to the same initial 11 days 

after which media factors 

are changed so that fibrous, 

protoplasmic or the BA 

(Benveniste protocol (R. J. 

Benveniste, Keller, and 

Germano 2005)) population 

develops. RA: retinoic acid, 

SAG: smoothened agonist, 

EGF: epithelial growth 

factor, FGF-1: fibroblast 

growth factor 1, CNTF: 

ciliary neurotrophic factor, 

BMP-4: bone 

morphogenetic protein 4, 

PDGF-AA: platelet-derived 

growth factor AA. B-C) 

GFAP (red) and A2B5 

(green) staining in 

protoplasmic (B) or fibrous 

(C) cultures at the end of 

differentiation. D-E) Olig2 

(red) and CSPG (green) 

staining in protoplasmic (D) 

or fibrous cultures (E) at end 

of differentiation. Nuclei 

stained with Hoechst (blue). 

Scale bar: 100 µm. F) 

Quantification showing the 

percent of nuclei that 

colocalized with Olig2 

staining in different cultures. 

Error bars: std error, n=9-12.  G) Log2 expression difference in mRNA levels for fibrous and protoplasmic astrocyte markers compared to BA 

control population. Error bars represent standard error, n=6. **: p<0.01, ***: p<0.001  
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CNTF and G5 containing media expressed both A2B5 and nuclear Olig2, as expected for fibrous 

astrocytes (Figure 2.1B-E). Quantification of Olig2+ nuclei in both fibrous and protoplasmic 

cultures revealed that a significantly higher percentage of nuclei were Olig2+ in fibrous cultures 

than protoplasmic cultures (Figure 2.1F).  

To further confirm the presence of either fibrous or protoplasmic astrocytes within these 

mixed cultures, qPCR was used to determine mRNA levels of genes known to be differentially 

expressed between these astrocyte populations, specifically GFAP (general reactive astrocyte 

marker), glutamate transporter 1 (GLT-1), glutamate and aspartate transporter 1 (GLAST), and 

glial cell line-derived neurotrophic factor (GDNF). Based on primary cell characterizations and 

analysis of GRPs in culture, GLT-1 is slightly elevated in fibrous astrocytes (Goursaud et al. 

2009), GLAST is significantly elevated in fibrous astrocytes (Goursaud et al. 2009; Vanhoutte et 

al. 2004), and GDNF is elevated in protoplasmic astrocytes (S. J. A. Davies et al. 2011). 

Consistent with these observations, the ESC-derived populations showed significant upregulation 

of GLAST and slight upregulation of GLT-1 in the fibrous population, and significant 

upregulation of GDNF in the protoplasmic population suggesting that astrocytes within these 

populations are either protoplasmic or fibrous depending on media exposure (Figure 2.1G).  

To determine the percentage of cells in these cultures expressing mature astrocyte 

markers, flow cytometry was performed for aquaporin-4 (Aqp-4) and A2B5 expression (Cahoy 

et al. 2008) (Figure 2.2B). Aqp-4 is known to be specifically expressed on the cell membranes of 

both mature fibrous and mature protoplasmic astrocytes, but not radial glia radial glia in vivo 

(Nagelhus et al. 1998). This makes it an appealing marker to determine the percentage of mature 

astrocytes in these cultures by flow cytometry. A notable drawback to the use of Aqp-4 is that 

Aqp-4 is known to have variable expression levels both in cultured astrocytes and in vivo. Thus, 
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Figure 2.2: Quantification of astrocytes present in mESC cultures. A) Representative images showing 

A2B5, Aqp-4 and merged staining in protoplasmic and fibrous cultures 6 days after differentiation. Blue 

represents Hoechst nuclear stain. Scale bar: 100 µm. B) Representation flow cytometry graphs of secondary 

controls and samples stained for Aqp-4 and A2B5 for both fibrous and protoplasmic cultures. Each graph 

represents 10,000 cells based on a forward scatter (FSC) and side scatter (SSC) gate. Quadrant gates drawn 

based on single stained samples and secondary controls. Numbers represent the percent of cell events within 

each quadrant C) Average percentage of cells staining for A2B5, Aqp-4, and both markers in Fibrous and 

Protoplasmic cultures. n=5, error bars: std error, **: p<0.01. D-E) Average percent of total cells staining β-

tubulin+ (neurons) (D) or S100+ (E). N=4, error bars: 95% confidence interval. **: p<0.01 
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Aqp-4 quantification may result in an underestimation of the percent of astrocytes present in the 

culture (Figure 2.2A) (Kleiderman et al. 2016). Quantification of flow cytometry data 

demonstrated 48.8±0.8% of cells staining Aqp-4+ in protoplasmic cultures and 39.7±0.5% of 

cells staining Aqp-4+ in fibrous cultures with 34.0±0.4% of cells in fibrous cultures staining both 

Aqp-4+ and A2B5+ (Figure 2.2B,C). Overall, fibrous cultures had a significantly higher 

percentage of A2B5+ cells than protoplasmic cultures and a significantly higher percentage of 

cells both Aqp-4+ and A2B5+, consistent with the expected fibrous astrocyte phenotype (Figure 

2.2).  

Since flow cytometry quantification indicated that other cells types may be present, ICC 

staining was used to determine what non-astrocyte populations were present and to cast a larger 

net for astrocytes. Cultures were stained for S100, which has been shown to be upregulated in 

astrocytes as they mature (Raponi et al. 2007), β-tubulin (neurons), O4 (oligodendrocytes), 

SSEA-1 (mESCs), and Oct 3/4 (mESCs). It is important to note that S100 is also present in some 

radial glial populations and early oligodendrocyte lineages based on lineage tracing experiments 

(Hachem et al. 2005), although it is generally used as an astrocyte marker.  We found that fibrous 

populations contained 8.6 ± 4.9% neurons based on β-tubulin staining and that 82.8 ± 2.2% of 

the cells were S100+. Protoplasmic populations were found to have 5.6 ± 1.9% β-tubulin+ cells 

and 91.5 ± 2.3% S100+ cells (Figure 2.2D, E). There was no observable staining of nuclear S100 

in either culture, which has been linked to oligodendrocyte differentiation (Deloulme et al. 

2004), indicating that, combined with a few to no cells staining O4+, both cultures do not contain 

significant oligodendrocyte presence (Brunne et al. 2010). There were also few to no cells 

staining SSEA-1+ or Oct 3/4+, demonstrating limited presence of undifferentiated stem cells. 
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Taken together, this data suggests that these glial cultures are primarily composed of cells within 

the astrocyte lineage with some presence of gliogenic radial glia and neurons.  

2.4.2 Astrocyte-derived substrates modify neuronal growth 

 Next, the ability of these two populations to serve as supportive substrates for neuronal 

growth was assessed and it was observed that live astrocyte substrates exhibiting either 

phenotype were able support motoneuron neurite outgrowth (Figure 2.3A, D). To determine 

what aspects of these substrates contributed to neurite outgrowth, modified substrates were 

Figure 2.3: Protoplasmic astrocyte-derived substrates are permissive to motoneuron growth and neurite 

extension. A-G) Representative images of motoneurons on different astrocyte-derived substrates after 48 hours 

in culture. A-C) Fibrous substrates, D-F) Protoplasmic substrates. A, D) Live astrocyte substrate, B, E) Freeze-

Lysed astrocyte substrate, C, F) Decellularized astrocyte substrate. G) Gelatin control shows no clear neurites. 

Scale bar: 100 µm H) Quantification of neurite extension from motoneurons cultured for 48 hours on different 

astrocyte substrates. Error bars: std error, n: 19-52. * p<0.05, ** p<0.01, *** p<0.001. Dark bars = protoplasmic 

substrate, light bars = fibrous substrate.  
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produced using decellularization or freeze lysis. Decellularization leaves only ECM on the plates 

while freeze lysis leaves behind ECM and cell membranes. The neurite outgrowth area per 

nucleus from motoneurons was measured on live, decellularized, and frozen substrates to 

determine the relative contribution of ECM, membrane, and secreted factors. Motoneurons could 

extend neurites on both live (Figure 2.3A, D) and frozen (Figure 2.3B, E) substrates; however, 

the motoneurons exhibited only limited neurite extension on decellularized fibrous ECM (Figure 

2.3C), while showing robust growth on protoplasmic ECM (Figure 2.3F). Neurite area was also 

found to be significantly greater on live protoplasmic substrates than decellularized protoplasmic 

ECM or any fibrous substrate after 2 days of culture (Figure 2.3H). Furthermore, decellularized 

protoplasmic ECM exhibited significantly greater growth than either unmodified gelatin or 

decellularized fibrous ECM (Figure 2.3H).  

The effect of fibrous and protoplasmic conditioned media (CM) on neurite extension 

from motoneurons was also tested to determine if there were any growth benefits of the factors 

secreted by the astrocyte populations. To allow for direct comparison between fibrous and 

protoplasmic CMs, and control for the effect of the astrocyte growth factors on the neurons, 

motoneurons were grown in ½ 

fibrous media and ½ 

protoplasmic media. These 

studies found that protoplasmic 

CM slightly, but significantly, 

improved neurite extension 

from motoneurons compared Figure 2.4: Protoplasmic CM significantly improves motoneuron 

growth. Neurite area per nucleus of motoneurons grown in fibrous and 

protoplasmic astrocyte CM over 72 hours. Error bars: Std Error, n=14-

21, ** p<0.01 
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to unconditioned media after 72 hours (Figure 2.4).  

To confirm that these growth differences were not specific to motoneurons, the effect of 

frozen and decellularized astrocyte substrates on mESC-derived V2a interneuron neurite 

extension was tested. V2a interneurons were derived from mESCs using a Chx10-PAC cell line 

with constitutively active TdTomato expression (Iyer et al. 2016). It was found that the 

interneurons, similar to motoneurons, exhibited significantly longer neurite outgrowth on 

protoplasmic (Figure 2.5 C-D) versus fibrous substrates (Figure 2.5 A-B); in addition, the 

magnitude of the ECM effect was found to be greater on the interneuron cultures than the 

motoneuron cultures (Figure 2.5F).  

2.4.3 Fibrous and protoplasmic astrocytes deposit distinct ECMs 

 Since the ECM deposited by these predominantly glial cultures was sufficient to support 

neuron growth, label-free LC/MS proteomics was performed to determine what proteins are 

present in ECMs harvested from both protoplasmic and fibrous populations. Identification of 

Figure 2.5: Protoplasmic astrocyte-derived substrates are more permissive to V2a interneuron growth 

than fibrous astrocyte-derived substrates. A-E) Representative images of V2a interneurons after 72 hours in 

culture on different astrocyte-derived substrates. A,B) Fibrous substrates, D,E) Protoplasmic substrates, A,D) 

Freeze-Lysed astrocyte substrate, B,E) Decellularized astrocytes substrate. C) Unmodified Gelatin Control. 

Scale bar: 100 µm F) Quantification of neurite extension from V2a interneurons cultured for 3 days on different 

astrocyte substrates. Error bars: Std. Error, n=40-56, *** p<0.001. Dark bars = protoplasmic substrate, light bars 

= fibrous substrate. 
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these proteins will allow for better understanding of the reasons for the observed neuronal 

growth differences and potentially allow for customized substrate design. ECMs harvested from 

mESC-derived populations were found to be largely similar with 530 of the 638 proteins 

identified not being expressed at different levels; however, there were significant expression 

differences of several key axon growth-related proteins (Figure 2.6A, Table 2.3, Table 2.4). 

Fibronectin-1 was found to be most abundant protein in both ECMs with significantly more 

spectral counts detected in the protoplasmic samples (Figure 2.6A). Fibronectin has been 

described as being expressed by primary astrocytes in culture (Liesi, Kirkwood, and Vaheri 

Figure 2.6: Protoplasmic and Fibrous 

astrocytes have distinct ECM composition. A) 

Graphical representation of proteomics results. 

Each point represents the average spectral count 

of the identified protein from 2 independent runs. 

Lines denote 1, 2, or 3 standard deviations away 

from equal spectral count of the specific protein 

detected.  Proteins found to be significantly 

different between protoplasmic and fibrous ECMs 

are denoted by green squares, Fisher exact test 

with Benjamini-Hochberg correction, p < 0.001, 

n=2. Orange squares denote proteins that did not 

differ significantly between astrocyte ECMs. A’) 

Blow up of indicated area in A. Red circles mark 

proteins of interest: 1: spondin-1, 2: collagen 

XIIα1, 3: perlecan, 4: neurocan, 5: versican, 6: 

laminin α5. B) Confirmation of proteomics 

findings for spondin-1, collagen XIIα1, and 

perlecan with IHC (target protein in green and 

nuclei in blue) showing an expression pattern 

consistent with the proteomics data. Scale bar = 

100 µm. C) Western blots of ECMs harvested 

from decellularized plates also shows the expected 

pattern spondin-1, collagen XIIα1, and perlecan. 

F: Fibrous ECM, P: Protoplasmic ECM, 

Arrowhead denotes protein band. 
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1986), is transiently expressed away from the blood vessels during CNS development (Stewart 

and Pearlman 1987), and has been linked to improved neuron growth in adult white matter (Tom 

et al. 2004). The proteins with the greatest differential expression between the protoplasmic and 

fibrous populations, were spondin-1 (spon1), Collagen XIIα1 (col12a1), and perlecan (hspg2). 

Spondin-1, also known as F-spondin, was expressed at significantly greater levels in fibrous 

ECM and is known to be involved in axonal pathfinding and turning during development 

(Burstyn-Cohen et al. 1999) (Figure 2.6A’ #1). Col12a1 and perlecan were both found at 

significantly greater levels in protoplasmic ECM (Figure 2.6A’ #2, #3).  Perlecan-coated plates 

have been demonstrated to promote neurite extension in vitro (R. Nakamura, Nakamura, and 

Fukunaga 2015). Also of note is that the chondroitin sulfate proteoglycans (CSPGs) (neurocan 

and versican), which are known inhibitory molecules(Oohira, Matsui, and Katoh-Semba 1991), 

were found to be significantly more prevalent in fibrous ECM (Figure 2.6A’ #4, #5), while 

laminins, known to be axon growth promoting, were more prevalent within protoplasmic ECM 

(Figure 2.6A’ #6). To confirm the validity of our proteomics results, ICC was performed on both 

protoplasmic and fibrous cultures for collagen XIIα1, perlecan, and spondin-1 (Figure 2.6B). To 

further validate the proteomics, western blotting was performed on ECMs harvested from 

decellularized astrocyte plates (Figure 2.6C). The expression pattern of these proteins matched 

the profiles found in the LC/MS data demonstrating the validity of the proteomic results (Figure 

2.6B-C). 

2.4.4 ECM produced by ESC-derived cultures is consistent with in vivo 

astrocyte protein expression 

The cultures used for this work are not purely astrocytic as there is a clear presence of 

both neurons and glial progenitors. Thus, it was important to determine if the harvested ECMs 

were consistent with in vivo astrocyte expression profiles to demonstrate if the harvested ECMs 
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are similar to native astrocyte ECM production. This was achieved by comparing the proteins 

found in astrocyte ECMs to a set of genes identified as expressed in astrocytes in vivo. In vivo 

astrocyte expression profiles were determined using a previously described translating ribosome 

affinity purification (TRAP) mouse line that targets all in vivo astrocyte populations using 

ALDH1L1 (Doyle et al. 2008), coupled with RNAseq. This BAC-TRAP methodology compares 

the prevalence of mRNA transcripts in the total brain isolate to the prevalence of the same 

mRNA transcripts when only the mRNAs attached to astrocyte ribosomes are present. This 

approach allows for any transcript that is enriched in the astrocyte (TRAP) fraction to be 

considered astrocyte-specific, or at least more highly expressed by astrocytes than other CNS 

populations. Genes that are relatively depleted in the TRAP fraction (enriched in the pre-IP 

fraction) can be considered more highly expressed by a different population within the CNS or 

not expressed by astrocytes. The distinction between enrichment and population-specific 

expression was made based on the fold change in expression level of the particular gene between 

the TRAP and pre-IP fractions. 

 The validity of the TRAP-Seq method was confirmed by locating all genes previously 

identified as astrocyte- or neuron-specific within the data set (Tien et al. 2012). It was found that 

84% of genes previously identified as astrocyte-specific were enriched in the astrocyte fraction, 

and 81% of those previously identified as neuron-specific were depleted in the astrocyte fraction, 

confirming a successful TRAP (Figure 2.7A). Based on the mean fold change of the neuronal 

markers between the astrocyte fraction and whole brain isolate, a threshold was calculated to 

allow for genes to be considered astrocyte-specific with 95% confidence. With a threshold 

established, the mRNAs that encode for proteins found within the mESC-derived ECMs were 

located within the BAC-TRAP RNA-seq samples. Based on this methodology, 183 (33%) of the 
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ECM proteins identified can be considered to be astrocyte-specific (J. D. Dougherty et al. 2010), 

and 159 of these were at least 2-fold enriched in the TRAP fraction (Figure 2.7B). The majority 

of these astrocyte-specific ECM proteins were found in both protoplasmic and fibrous ECMs. In 

addition to containing astrocyte-specific proteins, ECM components were also found to be more 

highly expressed in the TRAP than in the PreIP fraction (Figure 2.7C, paired t-test, p < 0.0001).  

Figure 2.7: ECM components generated by ESC-derived astrocytes are found in cortical astrocytes based 

on BAC-TRAP. A) Astrocyte-specific genes (red) are enriched in the TRAP fraction while neuronal-specific 

genes (green) are enriched in the PreIP samples. n=3. B) ECM candidate genes are enriched within the TRAP 

fraction compared to PreIP sample. Lines are 95% and 68% confidence of astrocyte-specific expression. Grey 

points are all genes detected in the BAC-TRAP data, red points denote genes that code for proteins detected in 

ECM proteomics data. C) ECM proteins are significantly enriched in TRAP fraction as compared to the PreIP 

fraction. Paired t-test, p = 5.66x10-9. D) Comparison of identified proteins with the proteomics and BAC-TRAP 

data. Proteins were considered astrocyte-expressed if there was 95% confidence that the mRNA was enriched 

within the TRAP fraction compared to the PreIP fraction. The ECM proteins identified in proteomics were 

enriched for proteins expression in astrocytes based on BAC-TRAP at a significantly higher level than expected 

by chance. Fisher exact test, p = 2.x10-7. 
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Among those genes detectable in RNA-seq samples, ECM components were more likely than 

chance to be identified as expressed by astrocytes in the BAC-TRAP data (Figure 2.7B,D, 

Fisher’s exact test, p < 0.001). Furthermore, ECM components were more likely than chance to 

be identified as having 2-fold higher expression in astrocytes in vivo (Fisher’s exact test, p < 

0.05). This data shows that the proteins found within the ESC-derived ECMs are consistent with 

in vivo astrocyte expression profiles and suggests that the mESC-derived ECMs from both 

fibrous and protoplasmic populations are consistent with in vivo astrocyte ECM. 

2.4.5 Motoneuron 

growth depends on the 

presence and absence of 

specific ECM proteins 

 To test which proteins 

within the mESC-derived 

ECMs are important for 

motoneuron growth, proteins 

with known roles in neurite 

growth found to be highly 

expressed in one ECM, but 

not the other were targeted 

with shRNA knockdown. 

Targets were preferentially 

chosen from protoplasmic 

ECM in order to determine 

growth promoting factors for 

Figure 2.8: Viral knockdown modifies motoneuron growth on 

astrocyte ECMs. A-E) Aqp-4 (red) and A2B5 (green) staining of 

infected astrocytes. A-C) Protoplasmic astrocytes infected with 

nontargeting (A), laminin α5 targeting (B), or laminin ɣ1 targeting (C) 

virus. D-E) Fibrous astrocytes infected with nontargeting (D), or spondin-

1 targeting (E) virus. Scale bar: 100 µm.  F) Spondin-1 knockdown in 

fibrous ECM leads to a significant increase in motoneuron growth. n=39-

58 G) Laminin α5 or laminin ɣ1 knockdown decreases motoneuron 

growth on protoplasmic ECM. n=44-104. Error bars: std error; *: p<0.05; 

**: p<0.01; ***: p<0.001.  
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potential future work using a small number of specific proteins.  In particular, collagen XIIα1, 

collagen VIα3, laminin β1, perlecan, laminin α5, and laminin ɣ1 were targeted in protoplasmic 

ECM, while spondin-1 was targeted in fibrous ECM.  Since matrix deposition takes multiple 

days, shRNAs were stably expressed using lentiviral transduction. Staining of astrocytes 

following infection showed that both fibrous and protoplasmic astrocyte maintained the expected 

morphology and phenotype, although cell density was significantly lower than previously 

observed (Figure 2.8A-E). 

Quantification of motoneuron growth on knockdown ECMs found that knockdown of 

spondin-1 in fibrous cultures increased neurite extension (Figure 2.8F), while laminin α5 or 

laminin ɣ1 knockdown in protoplasmic astrocytes decreased neurite extension (Figure 2.8G). 

There were no significant effects observed for any of the shRNA constructs targeting collagen 

XIIα1, collagen VIα3, laminin β1, or perlecan; however, knockdown was not verified in these 

cultures due to the lack of effect (Figure 2.9). Using western blotting and qPCR, spon1 shRNA 

treatment was found to decrease expression of spondin-1 to 53% of the uninfected control and 

decreased mRNA levels to 44% of the non-targeted control (Figure 2.10). The laminin α5 and ɣ1 

Figure 2.9: Knockdown of collagen VIα3, laminin β1, collagen 

XIIα1, or Perlecan does not significantly alter motoneuron 

growth on protoplasmic astrocyte ECM. A) Effect of collagen 

VIα3 (colVIα3) knockdown on motoneuron neurite length on 

resulting protoplasmic ECM. N=15-67. 4 separate shRNA 

constructs were used. B) Effect of laminin β1 (lam β1) knockdown 

on motoneuron neurite length. N=19-67. 5 separate shRNA 

constructs were used. C) Effect of collagen XIIα1 (colXIIα1) and 

perlecan knockdown on motoneuron neurite length on resulting 

protoplasmic ECM. N=13-30. 5 separate shRNA constructs were 

used for collagen XIIα1, 1 previously validated construct was used 

for perlecan. 
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shRNAs used have been 

previously validated by 

Sigma to reduce expression 

of the target protein by 67% 

and 95%, respectively, so no 

further validation was 

performed on these 

constructs. Interestingly, the 

decreases observed in the 

knockdown ECMs does not fully account for the growth differences observed between 

protoplasmic and fibrous ECMs suggesting that the neuronal growth effects are multifactorial 

and due to many different proteins within the ECMs. 

2.5 Discussion 
 CNS injury leads to a significant economic and psychological burden for patients due, in 

part, to the lack of spontaneous regeneration within the CNS (Boakye, Leigh, and Skelly 2012). 

Classically, this lack of recovery has been thought to be partially caused by the formation of a 

glial scar that contains woven astrocyte processes and a large number of proteins that inhibit 

axon growth (Cregg et al. 2014). Recently, it has been observed that astrocytes are also involved 

in spontaneous recovery in mice and zebrafish (Yona Goldshmit et al. 2014; Zukor et al. 2013; 

C. Haas et al. 2012), and that astrocyte transplants can improve recovery following SCI, if they 

have a pro-regenerative phenotype (J. E. Davies et al. 2008; Chu et al. 2014). Since astrocytes 

have been successfully used for SCI treatment, a scalable methodology for the derivation of pro-

regenerative astrocytes could have a significant clinical impact. This work demonstrates a 

Figure 2.10: Spondin-1 shRNA decreases both mRNA and protein 

expression. A) mRNA levels decrease in fibrous astrocyte cultures 

treated with spon1 shRNA when compared to astrocytes infected with 

nontargeting shRNA. B) Western blot quantification using densitometry 

shows decreased spondin-1 in cultures treated with spon1 shRNA. n=2, 

Error bars: 95% Confidence Interval. 
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scalable method to produce either fibrous or protoplasmic astrocytes from mouse ESCs (Figure 

2.1, 2.2), with around 40% astrocytes in fibrous cultures and 49% astrocytes in protoplasmic 

cultures based on Aqp-4 staining (Figure 2.2). This is likely a conservative estimate, as Aqp-4 

staining is known to vary across astrocyte cultures, which is clear in our staining as well (Figure 

2.2). Quantification of S100 staining suggests that fibrous cultures contain around 83% 

astrocytic-lineage cells and protoplasmic cultures contain around 92% astrocytic-lineage cells, 

even if not all the astrocytes express sufficient Aqp-4 for detection with flow cytometry (Figure 

2.2). The significant differences in GLAST, GDNF, and A2B5 expression, coupled with the cell 

morphology differences, indicate that these methods generate astrocytes that are consistent with 

in vivo fibrous and protoplasmic astrocyte phenotypes, and that fibrous populations contain 

mostly white matter astrocytes while protoplasmic populations contain mostly grey matter 

astrocytes (Figure 2.1, 2.2). Astrocyte presence within these cultures was further confirmed with 

BAC-TRAP demonstrating that ECMs derived from fibrous and protoplasmic cultures were 

consistent with in vivo astrocyte expression profiles during development (Figure 2.7). 

Functionally these predominantly astrocytic cultures were found to have differing 

abilities to support neuronal growth with protoplasmic–derived substrates tending to be more 

supportive of neuron growth than fibrous substrates. This was especially apparent in the case of 

decellularized ECMs (Figure 2.3, 2.5). It is important to note that transplanted immature, but not 

mature, astrocytes have been found to improve outcomes following SCI, while demonstrating 

further migration from the transplant area and reduction of the glial scar (G. M. Smith and Silver 

1988; G. M. Smith and Miller 1991). Due to these observations, and the relatively immature 

nature of these cultures, it is possible that the functional differences observed in the mESC 

cultures are applicable to embryonic, but not adult, astrocyte populations. However, this protocol 
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does provide a readily scalable method to produce populations that can be used to support 

neuronal growth. 

It would be potentially interesting to explore the effects of inflammatory stimulus on the 

observed neuronal growth support properties of these astrocytes. Recent work has demonstrated 

that astrocytes exhibit a continuum of reactive phenotypes following injury, with some 

exhibiting pro-regenerative phenotypes and others exhibiting inhibitory phenotypes (Liddelow 

and Barres 2017). It has been observed that pro-inflammatory and anti-inflammatory stimuli 

push reactive astrocyte phenotypes one way or the other on this continuum. In particular, 

inflammatory injury caused by lipopolysaccharide (LPS) causes a astrocytes to adopt a more  

 inhibitory phenotype (Zamanian et al. 2012). In addition, interleukin-6 (IL-6), a pro-

inflammatory cytokine, leads to an increase in astrocyte proliferation and scar formation in vivo 

(M. Nakamura et al. 2005); while, IL-10, an anti-inflammatory cytokine, has been to shown 

improve functional recovery following CNS injury when delivered intrathecally or 

intramuscularly (Jackson et al. 2005). Future experiments could explore the effects of these 

inflammatory and anti-inflammatory stimuli on the neuronal growth support capacities of these 

mESC-derived fibrous and protoplasmic populations. 

  Recent work by Anderson et al. showed that astrocytes are required for recovery 

following SCI in mice (Anderson et al. 2016). As part of this work, they compared axon growth 

permissive and inhibitory proteins produced by astrocytes and non-astrocytes following injury. 

The proteomics data set collected in this study was searched for these proteins, and it was found 

that, if present within the ECMs, permissive proteins tended to be significantly upregulated in 

protoplasmic. 



66 

 

 ECM while inhibitory proteins were 

upregulated in fibrous ECM (Table 2.3). This 

suggests that the neuron growth differences 

observed on the ECMs derived in this study 

are likely due to both the more inhibitory 

nature of the fibrous ECM and the more 

permissive nature of the protoplasmic ECM. 

This concept is supported by the observed 

decrease in motoneuron growth on 

protoplasmic ECM following knockdown of 

laminin α5 and laminin ɣ1 and the increase in 

motoneuron growth on fibrous ECM following spondin-1 knockdown (Figure 2.8). Future work 

on which proteins are the most important for neuron growth in these ECMs could allow for a 

small subset of ECM components to be mass produced and delivered to improve recovery 

following CNS injury. (R. E. Thompson et al. 2017) 

Significantly enriched in 

Fibrous ECM 

Average 

Percent of 

Total 

Spectra 

Significantly enriched in 

Protoplasmic ECM 

Average 

Percent of 

Total 

Spectra 

Cytoplasmic dynein 1 

heavy chain 1 

 

0.37 Fibronectin 

 

2.25 

Vimentin 0.31 Myosin-9 1.27 

 

 

Spondin-1 

 

 

0.30 

Basement membrane-

specific heparan sulfate 

proteoglycan core protein 

 

 

0.74 

Tubulin beta-2B chain 0.15 Myosin-10 0.66 

Protein Significantly 

upregulated 

in 

Axon 

Growth 

Role 

Neurocan Fibrous Inhibitory 

Versican Fibrous Inhibitory 

Netrin-1 Fibrous Inhibitory 

Semaphorin-

3A 

Fibrous Inhibitory 

Tenascin C Fibrous Permissive 

Laminin α1 Protoplasmic Permissive 

Laminin α5 Protoplasmic Permissive 

Laminin β1 Protoplasmic Permissive 

Laminin ɣ1 Protoplasmic Permissive 

Collagen 4α1 Protoplasmic Permissive 

Fibronectin Protoplasmic Permissive 

Perlecan Protoplasmic Permissive 

Matrillin-2 N.S. Permissive 

Table 2.3: Known axon growth modulatory 

proteins identified in astrocyte ECM 

proteomics data. 

 

Table 2.4: Proteins found to have significantly different expression in mESC-

derived astrocyte ECMs. Proteins are listed in decreasing number of average 

spectra detected. n=2. 
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Latent-transforming 

growth factor beta-binding 

protein 1 

 

0.13 Collagen alpha-1(XII) 

chain 

      

 

0.59 

Combined Horseradish 

Peroxidase 

 

0.11 Protein Ahnak 

 

0.37 

Tenascin 0.11 Protein Col6a3 0.32 

Neurocan core protein 0.11 Laminin subunit alpha-5 0.29 

Versican core protein 0.10 Plectin 0.21 

Glia-derived nexin 0.10 Filamin-A 0.21 

Protein Fndc1 0.10 Laminin subunit gamma-1 0.2 

Heat shock protein HSP 

90-beta 

 

0.07 Fibrillin-1 

 

0.17 

Keratin, type I cytoskeletal 

14 

 

0.07 Laminin subunit beta-2 

 

0.17 

Keratin, type II 

cytoskeletal 5 

 

0.07 Agrin 

 

0.15 

Tissue-type plasminogen 

activator 

 

0.06 Laminin subunit beta-1 

 

0.13 

 

Desmoplakin 

 

0.05 

Protein-glutamine gamma-

glutamyltransferase 2 

 

0.12 

Peroxidasin homolog 0.05 EMILIN-1 0.10 

A disintegrin and 

metalloproteinase with 

thrombospondin motifs 4 

 

 

0.05 Fibrillin-2 

 

 

0.09 

Creatine kinase B-type 0.05 Collagen alpha-1(VI) chain 0.09 

Multiple epidermal growth 

factor-like domains protein 

6 

 

 

0.04 Nidogen-1 

 

 

0.09 

Semaphorin-3A 0.04 Nidogen-2 0.09 

T-complex protein 1 

subunit delta 

 

0.04 Myosin-11 

 

0.08 

Fatty acid synthase 0.04 Laminin subunit alpha-1 0.07 

Keratin, type II 

cytoskeletal 2 epidermal 

 

0.04 Collagen alpha-2(VI) chain 

 

0.07 

Unconventional myosin-Va 0.04 Unconventional myosin-Ic 0.06 

D-3-phosphoglycerate 

dehydrogenase 

 

0.04 Periostin 

 

0.06 

SPARC-related modular 

calcium-binding protein 1 

 

0.04 

Inter-alpha-trypsin 

inhibitor heavy chain H5 

 

0.06 

Keratin, type I cytoskeletal 

10 

 

0.03 Collagen alpha-2(IV) chain 

 

0.05 

Splicing factor, proline- 

and glutamine-rich 

 

0.03 

Collagen alpha-1(XVIII) 

chain 

 

0.05 

Transcription activator 

BRG1 

0.03 

Collagen alpha-1(IV) chain 

0.05 
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Ubiquitin-like modifier-

activating enzyme 1 

 

0.03 

Myosin phosphatase Rho-

interacting protein 

 

0.04 

Alpha-enolase 0.03 Annexin A1 0.04 

Phosphoglycerate kinase 1 0.03 Collagen alpha-1(V) chain 0.04 

 

Protein Gm20425 

 

0.03 

Tubulointerstitial nephritis 

antigen-like 

 

0.04 

Lamin-B1 0.03 Cytochrome P450 1B1 0.03 

Dedicator of cytokinesis 

protein 1 

 

0.03 Myoferlin 

 

0.03 

Junction plakoglobin 0.03 Protein Atp2b4 0.03 

 

Netrin-1 

 

0.03 

Sorbin and SH3 domain-

containing protein 2 

 

 

0.03 

Mitogen-activated protein 

kinase kinase kinase kinase 

4 

 

 

0.02 

E3 ubiquitin-protein ligase 

RNF213 

 

 

0.02 

Nuclear pore membrane 

glycoprotein 210 

 

0.02 Collagen alpha-2(V) chain 

 

0.02 

 

Low-density lipoprotein 

receptor-related protein 2 

 

 

0.02 

Transforming growth 

factor-beta-induced protein 

ig-h3 

 

 

0.02 

Nascent polypeptide-

associated complex subunit 

alpha 

 

 

0.02 Dysferlin 

 

 

0.02 

 

WSC domain-containing 

protein 1 

 

 

0.02 

Thrombospondin type-1 

domain-containing protein 

4 

 

 

0.02 

Fructose-biphosphate 

aldolase C 

 

0.02 

Collagen alpha-1(XIV) 

chain 

 

0.01 

Plakophilin-1 0.02   

14-3-3 protein theta 

(Fragment) 

 

0.02  

 

Interleukin enhancer-

binding factor 3 

 

0.01  

 

Bone morphogenetic 

protein 1 

 

0.01  

 

Extracellular sulfatase 

Sulf-2 

 

0.01  

 

Nephronectin 0.01   

Heat shock protein HSP 

90-alpha 

 

0.01  

 

Transforming growth 

factor beta-2 

 

0.01  

 

Microtubule-associated 

protein 2 

 

0.01  
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Phosphoserine 

aminotransferase 

 

0.01  

 

Keratin, type I cytoskeletal 

16 

 

0.01  

 

Pleiotrophin 0.01   

Apolipoprotein E 0.01   

Dynactin subunit 1 0.01   

Multifunctional protein 

ADE2 

 

0.01  

 

Fatty acid-binding protein, 

brain 

 

0.01  

 

T-complex protein 1 

subunit theta 

 

0.01  
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Chapter 3: Generation of Enriched Astrocyte 

Cultures from a Selectable Mouse Embryonic 

Stem Cell Line 

3.1 Abstract 
Central nervous system (CNS) trauma often leads to long term sequalae for patients due to the 

limited regenerative capacity of the CNS. Part of the reason for the limited recovery following 

CNS injury is that the native astrocytes form a barrier, called the glial scar, around the injury site 

that prevents the growth of new axons. The role astrocyte play in the formation of the scar led to 

the belief that astrocytes were primarily inhibitory following injury; however, recent work on 

astrocyte knockout mice has found that astrocytes are also necessary for recovery from CNS 

trauma. Furthermore, primary astrocyte transplantation into spinal cord injuries has been found 

to lead to improved functional outcomes when protoplasmic (grey matter) astrocytes were 

transplanted. Since it is difficult to translate primary cells transplantation into the clinic, methods 

were developed to generate protoplasmic and fibrous (white matter) astrocytes from mouse 

embryonic stem cell (mESCs). Unfortunately, mESC-derived cell populations need to be purified 

prior to transplantation to remove the risk of teratoma formation. In this work, a cell line that 

allows for selection of mESC-derived astrocyte culture is generated by using the Aqp4 locus to 

drive the expression of a puromycin resistance gene. Selection of protoplasmic astrocytes 

derived from this cell line was found to increase the percent of cells positive for Aqp4 and 

GFAP. These selected astrocyte cultures have the potential to be used for both further in vitro 

characterization of astrocyte functions and in vivo transplantation. 



71 

 

3.2 Introduction 
 Astrocytes have historically been viewed as primarily inhibitory to recovery following 

CNS trauma. This viewpoint arose because astrocytes are the main cellular component of the 

glial scar, which represents both a physical and biochemical barrier to axon growth (Cregg et al. 

2014). Thus, it seemed logical that mice lacking astrocyte reactivity because of a vimentin and 

glial fibrillary acidic protein (GFAP) double knockout would have improved recovery from 

spinal cord injury (SCI). Surprisingly, these double knockout mice were found to have 

significantly increased bleeding, inflammation, and spread of secondary injury compared to 

wild-type mice following SCI or stroke (Pekny et al. 1999; Z. Liu et al. 2014). Recent work has 

also explored the effect of delayed astrocyte knockout using GFAP-thymidine kinase (TK) mice. 

In these mice, ganciclovir administration causes targeted ablation of dividing GFAP+ cells (Bush 

et al. 1998). Using this model, acute astrocyte ablation was still found to worsen secondary 

injury following SCI, and to result in a decrease in axonal growth into the lesion area (Anderson 

et al. 2016; J. R. Faulkner et al. 2004). Delayed astrocyte ablation was also performed 5 weeks 

after SCI, which resulted in worse functional outcomes than mice with intact astrocytes 

(Anderson et al. 2016). These genetic strategies demonstrate that astrocytes play some pro-

regenerative roles in both the acute and chronic phases of CNS trauma, even though these roles 

are not as well defined as the known inhibitory effects of scar astrocytes. 

 The concept of astrocytes as a pro-regenerative population is supported by the observed 

tendency for the majority of axons within the SCI lesion to be associated with GFAP+ astrocyte 

processes in rats (Taylor et al. 2006), mice(Zukor et al. 2013), and zebrafish(Yona Goldshmit et 

al. 2012). This association between astrocytes and neurons within the lesion led to investigation 

of the role of transplanted astrocytes in providing a permissive environment for axons in the 
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lesion. Glial restricted progenitors (GRPs) can be isolated from mouse or human embryos and 

differentiated into both white matter (fibrous) and grey matter (protoplasmic) astrocytes, as well 

as oligodendrocytes, but not neurons (Rao, Noble, and Mayer-Pröschel 1998; S. J. A. Davies et 

al. 2011). GRPs pre-differentiated into protoplasmic astrocytes have been shown to improve 

recovery following right-sided cervical dorsal column transection SCI (J. E. Davies et al. 2006). 

Interestingly pre-differentiation of GRPs into fibrous astrocytes did not confer these same 

benefits and instead had a detrimental effect on recovery (S. J. A. Davies et al. 2011; J. E. Davies 

et al. 2008). Importantly, similar to many primary cell transplantation therapies, there has been 

some considerable variability in these findings, with another study showing that GRPs pre-

differentiated into astrocytes conferred a recovery benefit regardless of the astrocyte phenotype 

(C. Haas et al. 2012).  

Due to the inconsistencies in primary cell cultures, and the difficulty in obtaining 

sufficient primary cells for transplantation, a pluripotent cell source of astrocytes could be 

extremely useful. Astrocytes have been derived from human induced pluripotent stem cells 

(iPSCs) and transplanted following a cervical contusion SCI. These iPSC-derived astrocytes 

were found to not have significant effects on recovery; however, when modified to expression 

high levels of glutamate transporter 1 (GLT1), iPSC-derived astrocyte transplantation reduced 

lesion size and improved diaphragm function (K. Li et al. 2015). These transplantation studies 

demonstrate that there is potential for astrocyte transplantation following SCI; however, 

significantly more work it required to determine the best astrocyte populations for transplantation 

and improve astrocyte-derivation methodology. 

 A highly purified, renewable source of astrocytes could be extremely valuable for 

studying astrocyte function in vitro and improving in vivo outcomes of astrocyte transplantation. 
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Methods have already been developed to specifically derive protoplasmic or fibrous astrocytes 

from mESCs (R. E. Thompson et al. 2017); however, ESC-derived cell populations must be 

purified in some way to remove undifferentiated stem cells. Without removal of the remaining 

stem cells, there is significantly risk of teratoma formation following transplantation, which can 

results in worse outcomes that the SCI itself (Führmann et al. 2016; Johnson et al. 2010). One 

strategy that has been successfully used to remove residual undifferentiated ESCs from cultures 

is to generate transgenic ESC lines that express puromycin N-acetyltransferase (PAC), which 

confers resistance to puromycin, under the control of a cell-lineage specific promoter (Mccreedy 

et al. 2014; Iyer et al. 2016; Xu et al. 2015). In this work, mESCs were modified using 

CRISPR/Cas9 technology to express PAC under the control of the aquaporin-4 (Aqp-4) 

promoter. Aqp-4 was chosen for this work because it is expressed specially in astrocytes, and all 

mature astrocyte populations express some level of Aqp-4 (Nagelhus et al. 1998), which should 

allow this cell line to generate cultures containing predominantly mature astrocytes. 

3.3 Materials and Methods 

3.3.1 mESC Culture 

RW4 (ATCC, SCRC-1018) and Aqp4-PAC mESCs were maintained in complete media 

(CM) (10% Fetal Bovine Serum (Invitrogen), 10% Newborn Calf Serum (Invitrogen), 132 µM 

beta mercaptoethanol (BME) (Sigma, St Louis, MO), 10,000 units/mL mouse leukemia 

inhibitory factor (Life Technologies, Carlsbad, CA) and passaged when at 60-80% confluency. 

Cells were passaged using 0.25% trypsin-EDTA (Life Technologies) at 37 °C for 5 min to 

dissociate the cells. The trypsin reaction was quenched with CM and cells were seeded into a 

new T25 flask coated with 0.1% gelatin (Sigma). 



74 

 

3.3.2 Aqp4-PAC Selection Vector 

All cloning steps were carried out in DH5α E. coli. 

The targeting cassette was constructed in a Gateway-

compatible plasmid (pStart-K; Addgene #20346, 

Cambridge, MA) using a 718 bp SalI-AscI fragment of the 

3’ end of the 2nd intron of the Aqp4 gene and a piece the 5’ 

untranslated region of the 3rd exon of Aqp4 (5’ arm) and a 

618 bp AscI-NotI fragment containing the genomic 

sequence of the 3’ end of the 3rd exon of aqp4 (3’ arm). 

This site was chosen of PAC insertion so that homologous 

recombination would result in the Aqp-4 start codon being removed and replaced with the PAC 

sequence. Between these 2 homology arms a PAC/Pgk-neo dual resistance gene was inserted. 

This dual resistance cassette contains, from 5′ to 3′: an Asc1 site, Kozak sequence, the coding 

region of PAC with bGH polyA signal (PKO-Select Puro; Agilent Genomics, Santa Clara, CA), 

floxed phosphoglycerate kinase I (Pgk) promoter driving the neomycin phosphotransferase gene 

(Neo) with bGH polyA signal, and another AscI site. Gateway recombination with the LR 

Clonase II Kit (Life Technologies #11791) was used to insert the entire region between the attL1 

and attL2 sites into a pWS-TK3 vector, which contains the thymidine kinase gene to allow for 

negative selection of the electroporated ESCs (Wu et al. 2008) (Figure 3.1). 

3.3.3 RW4 Electroporation and Clonal Analysis 

Electroporation and clonal analysis was performed as previously described (Iyer et al. 

2016). To facilitate a higher efficiency of homologous recombination in electroporated ESCs, a 

CRISPR/Cas9 system was used. Guide RNAs (gRNAs), inserted into a derivative of Addgene 

plasmid #43860, and Cas9 expression vectors (Addgene plasmid #43945) were generated by the 

Figure 3.2: Plasmid map of the aqp4-

PAC targeting cassette in a pStartK 

backbone. 
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Genome Engineering Core at Washington University in St Louis. For both gRNAs, there were no 

common polymorphisms within the gRNA sequence and there was at least a 3 bp mismatch with 

the 20 nucleotide targeting sequence and any other sites in the mouse genome (Table 3.1). By  

meeting these two criteria, 

the probability of an off-

target cuts is greatly 

decreased (Veres et al. 

2014). 1 x 107 RW4 ESCs 

were suspended in 

electroporation buffer (20 mM HEPES pH 7.5, 137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, 

and 6 mM dextrose) with 8 µg Aqp4-PAC vector, 1 µg Cas9 expression vector and 1 µg of one 

of the 2 gRNA vectors. Electroporation was performed in a 0.4 cm cuvette (Bio-Rad, Hercules, 

CA) at 0.23 kV and 960 µF. Following electroporation cells were seeded in CM on a gelatin 

coated 10 cm dish overnight to recover followed by 10 days of CM with 150 nM fialuridine 

(FIAU, Moravek #M251, Brea, CA) and 40 μg/mL geneticin (G418, Life Technologies #10131), 

replaced every 2 days.  

After selection, 48 colonies were picked from each gRNA plate and the clones screened 

by junction PCR (jPCR) with the primers in Table 1. jPCR positive clones were expanded until 

they could be frozen in liquid nitrogen and analyzed for PAC and Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) copy number with quantitative real-time PCR (qPCR) using a 

customized TaqMan Copy Number Assay according to manufacturer instructions. For these copy 

number assays, mouse telomerase reverse transcriptase (Tert) was used as the endogenous 

Name Sequence 

Aqp4 gRNA 1 GTGACAGAGCTGCGGCAAG 

Aqp4 gRNA 2 ACAGAGCTGCGGCAAGGCGG 

jPCR Forward ACCCCGATGCCAAGTGGCTG 

jPCR Reverse GCGCCAGGAGGCCTTCCATCTGTTGCT 

Table 3.2: Guide RNA (gRNA) and Junction PCR (jPCR) Primer 

Sequences 

 



76 

 

control, RW4s were used as the negative control, and a previously validated PAC line, Hb9-

PAC, was used as the positive control (Mccreedy et al. 2014). 

3.3.4 Derivation and Selection of Astrocyte Populations 

Astrocyte were derived from Aqp4-PAC positive clones as previously described (R. E. 

Thompson et al. 2017). Briefly: 1x106 ESCs were cultured in suspension on agar-coated 10 cm 

dishes in 10 mL DFK5 (DMEM/F12 (Life Technologies) plus 5% Knockout Serum Replacement 

(Life Technologies), 50 µM nonessential amino acids (Life Technologies), 1x Insulin-

Transferrin-Selenium (Life Technologies), 100 µM beta-mercaptoethanol (Sigma), 5 μM 

thymidine, and 15 μM of the following nucleosides: adenosine, cytosine, guanosine, and uridine 

(Life Technologies) for two days to form embryoid bodies (EBs) followed by 4 days in 10 mL 

DFK5 plus 2 µM retinoic acid and 600nM Smoothened Agonist (SAG). On day 6, the EBs were 

dissociated and 4x106 cells were seeded onto a gelatin-coated tissue culture treated 10 cm dish 

(ThermoFisher) in DFK5 media plus 20 ng/mL epithelial growth factor (EGF) (Peprotech), 10 

ng/mL fibroblast growth factor 1 (FGF-1) (Peprotech) and 1 µg/mL laminin for 5 days. On day 

11, the cultures were switched into lineage-specific media for 4 additional days on the same 

plates. Fibrous media: DMEM/F12 plus 1x G5 supplement (Invitrogen), 10 µg/mL ciliary 

neurotrophic factor (CNTF) (Peprotech); Protoplasmic media: DFK5 plus 10 µg/mL FGF-1, 10 

µg/mL bone morphogenic protein 4 (BMP4) (Peprotech). On day 15, the cells were reseeded 

onto gelatin-coated plates at a density of 20,000 or 100,000 cells/cm2 and maintained in lineage 

specific media for 2 additional days prior to selection in appropriate lineage specific media from 

D17 to D18 at different concentrations of 0, 2, 4, or 8 µg/mL puromycin (Sigma).  
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3.3.5 qPCR 

RNA was harvested at various time points throughout the astrocyte differentiation protocol by 

removing the cells from the culture plate with 0.25% trypsin treatment. Cells were then spun 

down at 300 rcf for 5 minutes and the RNA extracted using a Qiagen RNeasy extraction kit 

according to manufacturer instructions. For qPCR, 500 ng of RNA from each sample was 

converted into cDNA using a High-Capacity RNA to cDNA kit (Applied Biosystems). Finally, 

the mRNA levels of the genes of interest was determined using specific Taqman assays 

following manufacturer instructions. β-actin was used as the normalization control in all samples. 

3.3.6 Immunocytochemistry 

Cells were fixed in 4% paraformaldehyde (Sigma) for 20 mins and then permeabilized in 0.1% 

Triton-X (Sigma) for 15 mins. Cells were then blocked with 5% of an appropriate serum (Goat 

or Donkey (both from Sigma)) in phosphate buffered saline (PBS) for 1 hr. Primary antibodies 

were used at the following dilutions: GFAP 1:100 (Immunostar), Aqp4 1:100 (Santa Cruz 

Biotechnology), β-tubulin 1:1000 (Biolegend). Primary antibody incubation was carried out 

overnight in 2% of appropriate serum in PBS. Secondary antibodies were all used at a 1:1000 

dilution and incubated in 2% of appropriate serum in PBS for 1 hr. 1:1000 Hoechst (Invitrogen) 

in PBS was incubated with the cells for 15 min prior to imaging. Percent of cells positive for 

each marker in the cultures was determined by counting the number of nuclei visible per image, 

and then the number of cells staining positive for the given marker. For each well, a minimum of 

3 images taken at different locations were counted, and the average of those percentages used as 

the percent positive for the given biological replicate.  
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3.3.7 Statistics 

Percent positive cells at different concentrations of puromycin were compared using a paired t-

test in Excel at a 95% confidence interval. When appropriate, a Bonferroni correction was used 

to account for multiple comparisons. 

3.4 Results and Discussion 

3.4.1 Aqp4-PAC ESC-derived Protoplasmic, but not Fibrous, Astrocytes 

Express PAC mRNA 

 Clustered regularly interspaced short palindromic repeats combined with Cas9 

endonuclease (CRISPR-Cas9) technology allows for high-efficiency, specific double strand 

break creation based on the sequence 20 nucleotide guide RNA (gRNA) (Cong et al. 2013). 

Double strand breaks are generally repaired by non-homologous end joining, but rarely, in the 

presence of a donor DNA strand, homologous recombination repair occurs. The specificity of the 

CRISPR-Cas9 double strand break allows for significantly shorter homology arms to be used in 

the donor strand than previous required and the efficiency of the double strand break at the 

targeted location enhances the need for repair. Here CRISPR-Cas9 was used to insert a PAC 

gene into one of the two aqp4 alleles in the RW4 mESCs genome through a homology-directed 

repair mechanism. PAC insertion designed to occur at the location of the normal aqp4 start 

codon in the third exon of the gene (Figure 3.2A). After electroporation, mESC colonies were 

selected with both neomycin (positive selection) and ganciclovir (negative selection). Surviving 

colonies were then screened using junction PCR (jPCR) to confirm that PAC was inserted into a 

aqp4 locus. jPCR revealed that 2 of the 48 picked clones for one of the gRNAs contained PAC in 

the desired location (Figure 3.2B).  Since insertion of PAC into both aqp4 loci and/or randomly 

into the genome is theoretically possible, qPCR was used to determine the total number of copies 

of PAC gene within the genome of the jPCR positive clones. Both jPCR positive clones were 
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found to have a single copy of PAC, based on comparison to a previously validated PAC 

containing cell line, Hb9-PAC (Mccreedy et al. 2014) (Figure 3.2C).  

Figure 3.2: PAC was successfully inserted into 1 copy of the aqp4 gene and is expressed in protoplasmic 

astrocyte cultures. A) Schematic representation of the CRISPR-Cas9 mediated strategy used to insert a copy of the 

PAC gene into one of the two aqp4 alleles. B) Junction PCR demonstrating successful PAC insertion into the 

targeted aqp4 locus (arrowhead). C) Copy number assay comparing GAPDH and PAC copies detected in 

unmodified RW4 ESCs, previous described and validated selectable ESC line (Hb9-PAC), and 2 Aqp4-PAC clones 

(D7 and B11). N=4, error bars: std err. D) qPCR data showing mRNA levels of aqp4 and PAC in astrocytes 

cultures derived from D7 aqp4-PAC ESCs at different time points of either fibrous (left) or protoplasmic (right) 

astrocyte differentiation. N=3-5; Error bars: std err; dashed lines: 2-fold change (either up or down regulated), 

compared to undifferentiated ESCs E) qPCR data showing mRNA levels of aqp4 and PAC in astrocytes cultures 

derived from D7 aqp4-PAC ESCs at different time points of either fibrous (left) or protoplasmic (right) astrocyte 

differentiation. N=2-5; Error bars: std err; dashed lines: 2-fold change, either increase or decrease, compared to 

undifferentiated ESCs. 
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 With both clones validated to contain only a single PAC at the expected location in the 

genome, expression of both Aqp-4 and PAC throughout either fibrous or protoplasmic astrocyte 

differentiation was determined with qPCR. qPCR revealed that neither B11 or D7 derived 

fibrous astrocyte cultures exhibited a significant increase of PAC mRNA levels compared to 

mESCs over the tested time course (Figure 3.2D, E, left panels). This lack of PAC upregulation 

indicates that these Aqp4-PAC cell lines are not useable for selection of fibrous astrocyte 

cultures. One potential option for future studies to pursue to obtain a selected fibrous astrocyte 

culture would be to use a previously developed Olig2-PAC cell line (D. a. McCreedy et al. 

2012). This cell line has been used to acquire progenitor motor neurons, which can form 

astrocytes, oligodendrocytes and neurons, and has been transplanted following dorsal 

hemisection SCI (D. A. McCreedy et al. 2014; Wilems et al. 2015). Fibrous astrocytes are known 

to maintain Olig2 expression, while protoplasmic astrocytes translocate Olig2 to the cytoplasmic 

and then stop expression (Cassiani-Ingoni et al. 2006; J. E. Davies et al. 2008). This effect has 

been observed to occur at around D15-17 in the mESC-derived astrocyte cultures, and so this 

Olig2-PAC mESC line could be used to select for specifically fibrous astrocytes at a later time 

point in the differentiation protocol. Delayed selection should also remove any motoneurons, 

which express olig2 early in their differentiation, from the cultures as well.  

In contrast to the observations in fibrous differentiation, both B11 and D7 demonstrated a 

clear upregulation of PAC mRNA levels compared to mESCs during protoplasmic astrocyte 

differentiation. This peak was found to occur at around D17 of the protoplasmic astrocyte 

differentiation protocol and coincides with the peak of Aqp-4 expression in both clones. Also, it 

appears that PAC mRNA levels in general track with Aqp-4 mRNA levels, an indication that 

PAC and Aqp-4 are driven by similar regulator mechanisms (Figure 3.2D, E, right panels). Since 
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the D7 clone exhibited slightly higher levels of PAC mRNA than B11, puromycin selection 

experiments were carried out using this cell line.  

Previous experiments have shown that neurons extend longer neurites on protoplasmic 

than fibrous substrates (R. E. Thompson et al. 2017), and that protoplasmic astrocytes improve in 

vivo outcome when transplanted (S. J. A. Davies et al. 2011; J. E. Davies et al. 2008). These 

observations suggest that a selected protoplasmic population is worth pursuing, even if the same 

cell line cannot be used to generate selected fibrous populations. A potential explanation of the 

lack of significant upregulation in PAC in the fibrous cultures is that fibrous differentiation does 

not drive a large enough change in Aqp-4 levels over the mESCs to surpass the low levels of 

expression of the PAC in ESCs. This is somewhat supported by the lower level of the Aqp-4 

mRNA peak in the fibrous cultures than the protoplasmic cultures (Figure 3.2D, E). A potential 

reason for the apparent low levels of aqp4-PAC expression is that the PAC-containing transcript 

is not as well controlled by the posttranscriptional mechanisms that are known to be important 

for normal Aqp-4 gene regulation (Moe et al. 2008). 

3.4.2 Puromycin Selection of Aqp4-PAC Protoplasmic Astrocytes Increases 

the Percent of Aqp4+ Cells 

 Since PAC mRNA was found to be upregulated in protoplasmic astrocytes at D17 of 

differentiation, selection of astrocyte cultures derived from clone D7 Aqp4-PAC ESCs was 

performed to determine if the PAC was functional, and if post-selection cultures were enriched 

for astrocytes. Cells were selected for 24 hours at 2 different seeding densities (20,000 cells/cm2 

and 100,000 cells/cm2) and exposed to 3 different concentrations of puromycin (0 µg/mL, 2 

µg/mL, and 4 µg/mL). Post-selection cells were stained of Aqp-4 and GFAP to determine the 

astrocyte percentage within the cultures (Figure 3.3A). Quantification of the percent of cells 
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expressing these markers revealed that selection with 4 µg/mL puromycin significantly increased 

the percent of aqp4 positive cells from 38 ± 5% to 62 ± 14% in plates seeded with 100,000 

cells/cm2 (Figure 3.3B). There was also a significant increase from 44 ± 8% to 80 ± 12% GFAP+ 

cells on plates seeded with 20,000 cells/cm2 following selection with 4 µg/mL puromycin 

(Figure 3.3C).  

These plates were also stained for β-tubulin III (Tuj-1) since neurons have previously 

been shown to be the primary non-astrocytic population in these ESC-derived cultures (R. E. 

Thompson et al. 2017). β-tubulin III staining demonstrated a clear presence of neurons in 

unstained plates, and an apparent loss of these cells in plates that had been exposed to puromycin 

Figure 3.3: Puromycin selection increases astrocyte percentage is aqp4-PAC ESC-derived 

protoplasmic astrocyte cultures. A) Representative images of selected and unselected protoplasmic 

astrocyte cultures derived from Aqp4-PAC ESCs stained for Aqp-4 (red) and Tuj-1 (green). Scale bar: 

100 µm, blue: nuclei. B) Quantification of the percent of cells expressing aqp-4 at different 

concentration of puromycin and cell densities. Error bars: Std. err. n=3-4. C) Quantification of the 

percent of cells expressing GFAP at different concentrations of puromycin and cell densities. Error 

bars: Std. err. n=2-3. D) Quantification of the percent of cells expressing β -tubulin III at different 

concentrations of puromycin and cell densities. Error bars: Std. err. n=2-3. *:p<0.05. 
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(Figure 3.3A). Quantification of β-tubulin III staining revealed a significant decrease in neurons 

following selection of both 100,000 and 20,000 cells/cm2 cultures. In 100,000 cells/cm2 cultures 

the percentage β-tubulin III+ decreased from 20 ± 7% to 3 ± 1% (Figure 3.3D). These 

preliminary findings indicate that selection of the Aqp4-PAC cultures increases the percentage of 

astrocytes present with the culture and removes most of the main contaminating cell type, 

neurons. Further experiments are required to validate these findings, explore potential alterations 

to selection to improve purity, determine if any ESCs are remaining within the cultures, and 

establish if there is functional maturation of these astrocytes. 

It would be potentially interesting to perform calcium imaging on these post-selection 

astrocyte cultures to determine the level of functional maturation. Calcium signaling in 

astrocytes has recently been shown to be a major component of normal glial and neuronal 

interactions, so any ESC-derived astrocyte population should exhibit appropriate calcium 

signaling. In particular, astrocytes have been shown to propagate calcium waves in response to 

neurotransmitters, adenosine triphosphate (ATP), and mechanical stimulus through 2 distinct 

mechanisms: gap junctions and extracellular ATP release and subsequent signaling via P2Y 

purinoceptors (Oberheim, Goldman, and Nedergaard 2012). It has been found that fibrous 

astrocytes rely on the purinoceptors, P2Y1 and P2X7, to propagate calcium waves (Hamilton et 

al. 2008). In contrast, protoplasmic astrocytes are reliant on gap junctions between neighboring 

cells for calcium wave propagation. Although protoplasmic astrocytes do expressing  P2Y1, and 

so are responsive to exogenous ATP signaling (Fam, Gallagher, and Salter 2000; B. Haas et al. 

2005). Together these observations of in vivo astrocytic calcium wave dynamics offer an 

appealing approach to functionally confirm the fibrous or protoplasmic identity of the ESC-

derived astrocyte cultures following selection. This can be achieved by observing calcium wave 
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propagation in these cultures in the presence of purinoceptor or gap junction antagonist in 

response to ATP addition or a mechanical stimulus. 
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Chapter 4: Effect of Hyaluronic Acid 

Hydrogels Containing Astrocyte-Derived 

Extracellular Matrix and/or V2a 

Interneurons on Spinal Cord Injury 

Recovery 

4.1 Abstract 
Spinal cord injury (SCI) represents a substantial financial and psychological burden for patients, 

due to the limited capacity of the central nervous system (CNS) for spontaneous recovery. One 

reason for the lack of regeneration, and poor clinical outcomes, is the formation of an astrocyte-

derived glial scar that inhibits new axon growth. Astrocytes have also been shown to be 

important for spontaneous SCI recovery in rodents, suggesting some astrocyte populations are 

pro-regenerative, while others are inhibitory following injury. In this work, the effect of 

implanting hyaluronic acid (HA) hydrogels containing extracellular matrix (ECM) harvested 

from mouse embryonic stem cell (mESC)-derived astrocytes on SCI recovery in rats was 

explored. In addition, the ability of HA hydrogels with and without ECM to support the 

transplantation of mESC-derived V2a interneurons was tested. The incorporation of ECM 

harvested from protoplasmic (grey matter) astrocytes, but not ECM harvested from fibrous 

(white matter) astrocytes, into hydrogels was found to reduce the size of the glial scar, increase 

axon penetration into the lesion, and reduce macrophage/microglia staining two weeks after 

implantation. HA hydrogels were also found to support transplantation of V2a interneurons and 

the presence of these cells caused an increase in neuronal processes both within the lesion and in 

the 500 µm surrounding the lesion. Overall, protoplasmic mESC-derived astrocyte ECM showed 
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potential for future development to treat CNS injury. In addition, ECM:HA hydrogels represent a 

novel scaffold with potentially beneficial effects on SCI recovery both with and without cells.  

4.2 Introduction 
 Every year 17,000 Americans experience a spinal cord injury (SCI) and, due to the 

chronic nature of SCI, there are an estimated 243,000 to 347,000 Americans living with some 

level of disability due to SCI (Of 2013). The high number of chronic SCI patients is due to the 

lack of native regenerative capacity of the spinal cord, which means that SCI patients often 

experience some degree of lifelong paralysis. This paralysis results in a decrease in both life 

expectancy and quality of life for people living with SCI (Boakye, Leigh, and Skelly 2012). Due 

to the high healthcare burden for SCI patients, there is significant interest in developing materials 

and treatments that can be used to improve SCI outcomes. To facilitate treatment development, it 

is important to understand the native repair pathways and the factors that inhibit these pathways. 

One of the major inhibitors of spinal cord regeneration is the glial scar that develops 

around the spinal cord lesion (Cregg et al. 2014). This scar has a stereotyped morphology with 

astrocytes forming a scar penumbra that represents both a physical barrier, due the woven 

morphology of astrocyte processes, and a biochemical barrier to new axon growth. One major 

class of axon growth inhibitors present within the glial scar is chondroitin sulfate proteoglycan 

(CSPG) (Oohira, Matsui, and Katoh-Semba 1991). Degradation of CSPGs with the enzyme 

chondroitinase ABC has been show to improve SCI outcomes in rodents, indicating the 

importance of CSPGs in axon growth inhibition (Bradbury et al. 2002; Wilems and Sakiyama-

Elbert 2015). These observations, coupled with the role astrocytes play in the formation of a 

physical barrier in the glial scar, led to the belief that astrocytes are primarily inhibitory 

following SCI. 
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Recent studies have challenged the conclusion that astrocytes are solely inhibitory 

following SCI, with astrocyte knockout studies demonstrating that astrocytes are required for 

recovery following SCI as well. In particular, glial fibrillary acid protein (GFAP)-thymidine 

kinase (TK) mice, which allows ganciclovir administration to be used to ablate all dividing 

GFAP+ cells, have been used to study the conditional ablation of astrocytes either at the time of 

injury or 5 weeks after injury. These studies have found that the lack of astrocytes around the 

SCI lesion acutely results in larger lesion area and decreased axonal growth into the lesion (J. R. 

Faulkner et al. 2004; Anderson et al. 2016).  Delivery of ganciclovir 5 weeks after injury caused 

delayed scar ablation, but did not result in increased axonal growth. Furthermore, it was found 

that hydrogel-based delivery of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor 

(BDNF) improved axon penetration into the lesion only when the glial scar was intact (Anderson 

et al. 2016). These data suggest that some astrocytes can be pro-regenerative following SCI, and 

that they are required for recovery.  

These knockout observations are supported by recent astrocyte reactivity studies, which 

found that reactive astrocytes exist on a phenotypic spectrum from pro-regenerative to inhibitory 

for axon growth. (Liddelow and Barres 2017). One illustration of this reactivity spectrum is the 

changes in astrocyte phenotype depending on insult. In particular, an inflammatory insult from 

lipopolysaccharide has been found to lead to inhibitory reactive astrocytes, while an ischemic 

insult leads to pro-regenerative reactive astrocytes (Zamanian et al. 2012). In addition, cytokines 

have also been found to manipulate reactive astrocyte phenotype as well, with acute IL-6 

exposure promoting inhibitory, scar astrocytes (E. N. Benveniste et al. 1990; Codeluppi et al. 

2014)  and IL-10 promoting pro-regenerative astrocytes (Jackson et al. 2005). These 
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observations suggest that there is a role of the immune response in regulating the regenerative 

potential of astrocytes. 

Astrocyte populations from different regions of the central nervous system (CNS) have 

also been found to have different responses to injury. Injury to fibrous (white matter) astrocytes 

has been found to cause process hypertrophy and overlap reminiscent of the glial scar (Sun et al. 

2010), while protoplasmic (grey matter) astrocytes exhibit minimal process overlap following 

injury (Wilhelmsson et al. 2006). Functional differences between protoplasmic and fibrous 

astrocyte populations have also been observed in transplantation following right-side cervical 

dorsal column transection SCI. In particular, transplantation of human or mouse glial restricted 

progenitor-derived astrocytes exhibiting a protoplasmic phenotype led to improved outcomes, 

both histologically and behaviorally, compared to transplantation of astrocytes exhibiting a 

fibrous phenotype (J. E. Davies et al. 2008; S. J. A. Davies et al. 2011). Recently, methods were 

developed to specifically derive these astrocyte populations from mouse embryonic stem cells 

(mESCs). Studies of in vitro neuron growth on substrates derived from these astrocytes revealed 

that neurons extended significantly longer neurites on protoplasmic-derived substrates than 

fibrous-derived substrates, particularly when only decellularized extracellular matrix (ECM) 

from each type of astrocyte was tested (R. E. Thompson et al. 2017). 

The ability of astrocyte-derived ECM alone to support neurite extension is particularly 

appealing because ECMs often contain many bioactive molecules that can promote regeneration 

(Badylak, Freytes, and Gilbert 2009). The capacity for ECM to promote regeneration has been 

harnessed to improve recovery from bone and cartilage injury (Benders et al. 2013), peripheral 

nerve injury (Moore et al. 2011) and myocardial infarction (Singelyn et al. 2012). Importantly 

for implantation into patients, ECM xenografts have been successfully used without any 
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indication of immune rejection from the host (Seif-Naraghi et al. 2013; Mirmalek-Sani et al. 

2013; Hudson et al.). Given both their bioactivity and low immunogenicity, compared to cell 

transplantation, ECM-based materials have significant appeal for promoting tissue regeneration; 

however, many ECM-derived materials require animal sacrifice for tissue harvest. One way to 

avoid the animal harvest requirement is to derive ECMs from in vitro sources, such as ESC-

derived or induced pluripotent stem cells (iPSCs)-derived cell populations. One drawback to in 

vitro harvested ECM is that they do not form a hydrogel without additional crosslinking. This 

means that the in vitro ECM needs to be incorporated into a gelation system or crosslinked to be 

useable as a scaffold. 

Hyaluronic acid (HA) plays the major structural role in the native CNS ECM and 

naturally binds to other CNS ECM components making HA a logical choice as a base scaffold 

for SCI treatment (Bignami, Hosley, and Dahl 1993). HA needs to be crosslinked to have 

sufficient stability for implantation, and a gentle, specific crosslinking reaction is required to 

avoid modifying incorporated ECM proteins (Pakulska, Ballios, and Shoichet 2012). A 

previously developed HA gelation system uses a Diels-Alder reaction between HA-furan and 

polyethylene glycol (PEG)-dimaleimide that meets these requirements and forms an injectable, 

biocompatible HA hydrogel (Nimmo, Owen, and Shoichet 2011; Führmann et al. 2015). 

Injectability of the hydrogel is a desirable trait since it allows the entire, irregular lesion cavity to 

be filled without requiring significant dissection of the glial scar to create space (Matthews et al. 

2016). 

Interneurons (INs) are the main neuronal population that facilitates local connectivity 

between spinal cord neurons. This role makes INs key for coordination, left-right alteration, 

reflex circuits, and central pattern generation. Interestingly, rodents have been found to 
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demonstrate recovery from spatially and temporally separated left and right lateral transections, 

but not just spatially separated left and right lateral transections. This suggests that local 

rewiring, which is likely due to local IN populations, is important for spontaneous recovery from 

SCI (Courtine et al. 2008). One IN population that has known involvement in spontaneous SCI 

recovery is V2a INs. These cells have been implicated as required for normal left-right 

alternation in the lumbar spinal cord, especially at high speeds of locomotion, as well as 

respiratory recovery following cervical SCI (Steven A. Crone et al. 2008; S. A. Crone et al. 

2009; Zholudeva et al. 2017). Recently, a mESC line has been developed that allows for highly 

enriched populations of V2a INs to be derived in vitro, making transplantation of this specific IN 

population possible (Iyer et al. 2016; Brown et al. 2014). 

This work examines the effect of HA hydrogels containing ECM derived from different 

mESC-derived astrocyte populations on motoneuron growth in vitro and the effects of these 

astrocyte ECMs on recovery of rats from a thoracic dorsal hemisection SCI. The ability of HA 

hydrogels with and without ECM to support transplantation of mESC-derived V2a INs into a 

SCI lesion is also explored. This work represents the first implantation of a mESC-derived ECM 

for the treatment of SCI, and, to the authors’ knowledge, is the first implantation study using an 

in vitro derived ECM. The utility of the implanted ECM was found to depend on the phenotype 

of the astrocyte-containing population that produced it. Fibrous ECM (F-ECM) was found to 

confer no benefit and in some cases detrimental effects histological outcomes, while 

protoplasmic ECM (P-ECM) was found to decrease the size of the glial scar, decrease 

macrophage/microglia infiltration, and increase axonal ingrowth. mESC-derived V2a INs were 

found to survive in HA hydrogels both with and without incorporation of P-ECM, and the 

presence of V2a INs was found to increase the presence of neuronal processes within and around 
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the SCI lesion. These data demonstrate a novel material platform that shows significant promise 

as a material for development of future CNS injury treatments. 

4.3 Materials and Methods 

4.3.1 mESC Culture 

RW4 (ATCC, SCRC-1018), Hb9-PAC CAG-TdTomato and Chx10-PAC bact-TdTomato 

mESCs were maintained in complete media (CM) (10% Fetal Bovine Serum (Invitrogen, 

Carlsbad, CA), 10% Newborn Calf Serum (Invitrogen), 132 µM beta mercaptoethanol (BME) 

(Sigma, St Louis, MO), 10,000 units/mL mouse leukemia inhibitory factor (Life Technologies, 

Carlsbad, CA) and passaged every 2 to 3 days (60-80% confluency). 0.25% Trypsin-EDTA (Life 

Technologies) incubation at 37°C for 5 min was used to dissociate mESCs from the culture flask. 

This reaction was then quenched with fresh CM and cells were seeded into a new T25 flask 

coated with 0.1% gelatin (Sigma). 

4.3.2 Astrocyte ECM production 

Fibrous and protoplasmic populations were derived from RW4 ESCs as previously 

described (Figure 4. 1A) (R. E. Thompson et al. 2017). Briefly, 1x106 RW4 ESCs were cultured 

in suspension on agar-coated 10 cm dishes in 10 mL DFK5 (DMEM/F12 (Life Technologies) 

plus 5% Knockout Serum Replacement (Life Technologies), 50 µM nonessential amino acids 

(Life Technologies), 1x Insulin-Transferrin-Selenium (Life Technologies), 100 µM beta-

mercaptoethanol (Sigma), 5 μM thymidine, and 15 μM of the following nucleosides: adenosine, 

cytosine, guanosine, and uridine (Life Technologies) for two days to form embryoid bodies 

(EBs) followed by 4 days in 10 mL DFK5 plus 2 µM RA and 600nM Smoothened Agonist 

(SAG) (Roybon et al. 2013). On day 6, EBs were dissociated and 4x106 cells were seeded onto a 

gelatin-coated low adherence 10 cm dish (ThermoFisher) in DFK5 media plus 20 ng/mL 
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epithelial growth factor (EGF) (Peprotech, Rocky Hill, NJ), 10 ng/mL fibroblast growth factor 1 

(FGF-1) (Peprotech) and 1 µg/mL laminin (Fisher Scientific) for 5 days. On day 11, the cultures 

were switched into lineage-specific media for 10 additional days. Fibrous media: DMEM/F12 

plus 1x G5 supplement (Invitrogen), 10 µg/mL ciliary neurotrophic factor (CNTF) (Peprotech); 

Protoplasmic media: DFK5 plus 10 µg/mL FGF-1, 10 µg/mL bone morphogenetic protein 4 

(BMP4) (Peprotech). 

At D21, astrocytes were seeded onto gelatin-coated TC treated 10 cm dishes 

(ThermoFisher) at a density of 20,000 cells/cm2 and culture in appropriate lineage media for 6 

Figure 4.1: Schematic representation of astrocyte ECM production and V2a derivation. A) Protoplasmic-

like and fibrous-like astrocytes were derived from mouse embryonic stem cells (mESCs) using a 15-day 

protocol. Following the 15 days of induction, astrocytes were allowed to mature in appropriate media for 6 days 

(D15-D21) prior to being seeded for matrix deposition (D21-27). After deposition, plates were decellularized, 

and the ECM scraped off the plates and lyophilized in 50 mM trehalose solution. B) V2a interneurons were 

derived from a mESC line that expresses puromycin resistance under the control of the Chx10 promoter and has 

constitutively active TdTomato expression. Following selection, interneurons were seeded onto aggrewell plates 

for 2 days to allow neuroaggregates to form prior to embedding them into HA hydrogels.  
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days to allow for matrix deposition. After matrix deposition, cells were removed from the culture 

plates using a modified Hudson decellularization protocol (Hudson, Liu, and Schmidt 2004). 

Following decellularization, 1 mL of 50 mM trehalose was added to each plate and the proteins 

on the plate were scraped from the plate surface with a cell scraper. The resulting suspension of 

ECM proteins was then lyophilized overnight and stored at -20 °C until use in hydrogels. 

4.3.3 Preparation of V2a Interneuron Neuroaggregates 

V2a INs were generated from Chx10-PAC bact-TdTomato mESCs as previously 

described (Iyer et al. 2016). After induction, EBs were dissociated with 0.25% trypsin and 

2.5x107 cells were seeded onto a poly-L-ornithine/laminin coated T25 flask. Chx10+ cells were 

then selected in half neural basal (Life Technologies)-half DFK5 media with 1x GlutaMAX (Life 

Tech), 1x B27, 2 µg/mL puromycin and 10 ng/mL of the following growth factors for 24 hr: 

glial-derived neurotrophic factor (GDNF) (Peprotech), NT-3 (Peprotech), and BDNF 

(Peprotech). After selection, neurons were lifted from the flasks using Accutase® (Sigma) 

treatment for 30 min and then 500,000 cells/well were placed into an AggreWell 400 plate with 

1,200 small aggregation wells (Stemcell Technologies, Vancouver, BC). V2a INs were 

maintained in V2a neuronal media (half neurobasal–half DFK5 media plus 1x GlutaMAX, 1x 

B27, and 10 ng/mL of the following growth factors: BDNF, GDNF, NT-3) on the AggreWell™ 

plate for 2 days to allow for neuroaggregate (NA) formation (Figure 4.1B). After aggregate 

formation, NAs were washed from the AggreWell plates with 100 µL of V2a neuronal media. 

4.3.4 Preparation of HA Hydrogels 

30% conjugated HA-furan and 39% conjugated HA-methylfuran were synthesized as 

previously described from 250 MDa MW HA (Creative PEGWorks, Chapel Hill, NC) (Nimmo, 

Owen, and Shoichet 2011). Percent conjugation signifies the percentage of carboxylic acid 
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groups within the HA macromolecules that have been reacted to add the furan functional group. 

For ECM incorporation, lyophilized ECMs were dissolved in 50 µL water and the protein 

concentration determined using a Pierce 660 nm assay (ThermoFisher) according to 

manufacturer instructions. All hydrogels had a final HA concentration of 1 mg/mL and a 3.5:3.0 

molar ratio of the PEG-dimaleimide (Creative PEGWorks) crosslinking molecule to furan groups 

added. For in vitro motoneuron assays, ECM was added to 2 mg/mL HA-furan at different 

weight ratios prior to PEG addition, and then sterile phosphate-buffered saline, pH 7.4 (PBS) 

was added until HA concentration was 1 mg/mL. To form thin HA gels, 50 µL of gel was added 

to each well of a 48 well plate, and the plates were incubated overnight at 37 °C prior to 

motoneuron seeding. 

For acellular implantation studies: 2 mg/mL HA-furan was dissolved in water, or 50 mM 

trehalose for HA alone implantation, followed by addition of the reconstituted astrocyte ECM at 

a 1:100 weight ratio of ECM to HA, and finally the solution was diluted with sterile PBS. PEG-

dimaleimide was then added and 50 µL of gel solution was loaded into a Hamilton syringe and 

the syringe placed at 37 °C overnight to allow gelation to occur prior to implantation. For V2a 

IN transplantation: HA-methylfuran was dissolved in V2a neuronal media at a concentration of 4 

mg/mL, and then astrocyte ECM was added at a 1:100 weight ratio of ECM to HA followed by 

addition of sufficient NA suspension to obtain a final concentration of approximately 6 NAs/µL. 

The final solution was then diluted with V2a neuronal media to 1 mg/mL HA. The NA number 

used results in roughly 60 NAs, or 25,000 cells, being transplanted per animal. Once the gel 

solution was prepared, 50 µL of gel was loaded into a Hamilton syringe, and the syringe placed 

at 37 C for 2 hours to allow gelation to occur prior to transplantation. 
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4.3.5 Motoneuron Culture on Thin HA Hydrogels 

Motoneurons were derived from Hb9-Puro CAG-TdTomato mESCs that constitutively 

express TdTomato under the control of the synthetic CAG promoter, as previously described (D. 

A. McCreedy et al. 2014). To obtain pure motoneuron cultures, EBs were selected with 4 µg/mL 

puromycin from day 5 to 6 prior to dissociation and seeding onto the prepared HA hydrogels at a 

density of 20,000 cells/cm2. Motoneurons were then cultured in half DFK5 and half Neurobasal 

media plus 1x B27 and imaged daily over the next 2 days. 

4.3.6 Dorsal Hemisection Surgery 

All animal procedures used in this work were approved by the Institutional Animal Care 

and Use Committee at the University of Texas at Austin, followed the NIH Guide for the Care 

and Use of Laboratory Animals, and were supported by the Animal Resources Center at the 

University of Texas at Austin. Animals (female Long-Evans rats, 225-275 g, Envigo, 

Indianapolis, IN) were anesthetized with 1.5-5% isoflurane and subcutaneous (SQ) injection of 5 

mg/kg xylazine, surgery was performed on a heated pad. A single incision was made through the 

skin on the back from approximately T4 to T12, then blunt dissection was used to expose the 

muscular layer. Parallel cuts were made on either side of the spinal cord from T7 to T10 and the 

muscles along the spinal cord were retracted. To expose the spinal cord, a T8 dorsal 

laminectomy was performed using fine tipped rongeurs and the dura mater was removed with 

fine-tipped tweezers and microscissors.  

To ensure a consistent injury, the spinal column was stabilized with spinal clamps 

attached to a stereotactic frame (Narishige, Tokyo, JP) and vitrectomy scissors, attached a 

micromanipulator, were lowered 1.5 mm into the spinal cord. To ensure a consistent dorsal 

hemisection, three cuts were administered at three separate locations moving from left to right 
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across the entire spinal cord. Following hemisection, the muscular layer was closed with 

degradable suture and the skin stapled closed. Post-op animals were given cefazolin (25 mg/kg 

SQ) to limit infection and cefazolin injections were continued 2x/day for 5 days. For pain 

management, animals were given buprenorphine (0.04 mg/kg SQ) 2x/day for the first 2 days 

post-op followed by 0.01 mg/kg SQ buprenorphine injections 2x/day for an additional 3 days. 

Bladders were expressed manually 2x/day until spontaneous bladder emptying resumed. 

4.3.7 Hydrogel Transplantation Surgery 

Two weeks after the dorsal hemisection procedure was performed, injured spinal cords 

were re-exposed via the same approach used in the injury surgery. Once the spinal cord was 

exposed, a small hole was made in the scar tissue to allow access into the SCI lesion cavity for a 

blunt-tipped Hamilton syringe. HA hydrogels were prepared as described above and 10 µL of gel 

was injected into each lesion cavity, which is sufficient gel to slightly overfill the cavities. For 

sham implants, the lesion cavity was exposed as in the HA implantation animals and 10 µL 

sterile 50 mM trehalose was injected. For the acellular implantation study animals were divided 

into 4 groups: sham implant, HA alone, HA + Fibrous ECM (F-ECM), HA + Protoplasmic ECM 

(P-ECM) (Table 4.1). In the V2a IN transplantation study animals were divided into 5 groups: 

sham implant, HA-mF alone, HA + P-ECM, HA + Cells (V2a IN NAs), HA + P-ECM + Cells 

Treatment Group N 

Sham Implant (Injury Only) 8 

HA alone Implant 8 

HA + Fibrous Astrocyte ECM (F-ECM) 7 

HA + Protoplasmic Astrocyte ECM (P-ECM) 8 

T8 Dorsal 

hemisection Injury 

Surgery 

2 weeks 
Implantation 

(Treatment) Surgery 

Immunohistochemistry 
2 weeks 

Table 4.1: Study design of acellular implantation study to compare astrocyte ECM effects on SCI 

recovery. 
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(V2a IN NAs) (Table 4.2). Post-op care was performed as in the injury surgeries, all animals in 

the V2a IN transplantation study were immune suppressed with daily SQ injections of 

cyclosporine-A (10 mg/kg, Novartis, Basel, CH) starting on the day of transplantation and 

continuing for the duration of the study.  

Two weeks after the transplantation surgery animals were euthanized via overdose of 

FatalPlus (pentobarbital) and transcardial perfusion was performed with 4% paraformaldehyde  

(PFA) (Fisher Scientific) in phosphate buffered saline (PBS). After dissection, spinal cords were 

post-fixed in 4% PFA for 4 hours at 4 °C and washed overnight with phosphate buffer at 4 °C 

prior to being cryoprotected in 30% sucrose in water for 3 days at 4 °C. Cryoprotected cords 

were embedded in Tissue-Tek OCT compound, frozen and cut into 20 µm sagittal sections on a 

Leica CM1950 cryostat. 

4.3.8 Immunohistochemistry 

After sectioning, immunohistochemistry (IHC) was performed on 7 spinal cord sections, 

spaced 200 µm apart, for each animal in the study. For cord staining, OCT was washed from the 

slides with PBS and the sections were permeabilized with 0.1% Triton X-100 for 15 minutes. 

Following permeabilization, cord sections were washed 3x with PBS and blocked with 5% 

normal goat serum in PBS (NGS) for 1 hour. Primary antibodies were then applied overnight at 4 

Treatment Group N 

Sham Implant (Injury Only) 7 

HA alone Implant 7 

HA + Protoplasmic Astrocyte ECM (P-ECM) 7 

HA + V2a Interneuron Aggregates (Cells) 8 

HA + P-ECM + Cells 8 

Table 4.2: Study design of V2a IN transplantation study to confirm benefits of P-ECM incorporation 

in a different HA hydrogel and explore the ability of HA hydrogels to support cell transplantation. 

T8 Dorsal 

hemisection Injury 

Surgery 

Implantation 

(Treatment) Surgery 

2 weeks 
Immunohistochemistry 

2 weeks 
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°C at the following dilutions in 2% NGS: Tuj-1 (BioLegend, San Diego, CA, Clone AA-10, 

1:1000), GFAP (ImmunoStar, Hudson, WI, 1:100), chondroitin sulfate (CS56, Sigma, 1:250), 

CD68 (ED1, Bio-Rad Antibodies, Oxford, UK, 1:200), CD8α (Bio-Rad Antibodies, 1:1000), 

CD11b (Bio-Rad Antibodies, 1:1000), NeuN (EMD Millipore, Billerica, MA, 1:500), VGlut-2 

(Millipore, 1:1000), NeuN (Millipore, 1:500). Following primary incubation, cords were washed 

3x with PBS and were then incubated for 2 hours at room temperature in a 1:500 dilution of the 

appropriate AlexaFluor secondary antibody (Life Technologies) in 2% NGS. Finally, cords were 

washed 3 times with PBS and the sections mounted using ProLong Gold anti-fade reagent with 

DAPI (Life Technologies). 

4.3.9 Immunohistochemistry Image Analysis 

To quantify IHC staining, tile scan images were taken using a CMOS camera attached to 

a Leica DMi8 inverted fluorescent microscope with a 10x objective. Lesion areas were then 

traced using ImageJ and the traced lesion expanded by 500 µm to assess the host response to the 

implant. The resulting lesion area and lesion area + 500 µm images were quantified using a 

custom Matlab (Mathworks, Natick, MA) script as previously described (Wilems and Sakiyama-

Elbert 2015). This script determines the intensity of each pixel and then determines whether the 

pixel is positive or negative for a given stain based on a user defined threshold. To facilitate 

comparison between animals and groups, all sections for a given group were stained, imaged, 

and analyzed at the same time. Additionally, data reported represents percent positive area for 

each stain which is defined as (positive pixels/all non-black pixels)*100. Using this approach 

helps to control for sectioning artifacts that result holes in the section. Quantification for the 500 

µm surrounding the lesion alone was achieved by subtracting the positive and total pixel count in 

the lesion only image from the equivalent pixel counts in the lesion + 500 µm images. For 
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colocalization analysis, images were processed using CellProfiler (Broad Institute, Cambridge, 

MA) and the number of pixels positive for both the stain of interest (Tuj-1 or VGlut-2) and 

TdTomato was quantified. 

4.3.10 Statistics 

In vitro data was analyzed by two-way ANOVA with a Bonferroni post-hoc correction 

using a 95% confidence threshold. For in vivo studies, significance was determined using the 

non-parametric Kruskal-Wallis analysis of variance followed by Dunn’s test to determine 

significance with 95% confidence. Power analysis was performed prior to starting the in vivo 

studies. Both studies were powered to show a 30% difference with 80% confidence. 

4.4 Results 

4.4.1 Protoplasmic ECM Incorporation Improves Motoneuron Growth on 

HA Hydrogels 

 Previous work has demonstrated that motoneurons exhibited longer neurite extension on 

decellularized mESC-derived protoplasmic astrocyte substrates than decellularized mESC-

derived fibrous astrocytes substrates (R. E. Thompson et al. 2017). Since decellularization leaves 

only the ECM on the plate (Hudson, Liu, and Schmidt 2004), the ability of ECMs harvested from 

decellularized mESC-derived astrocyte substrates to improve motoneuron growth was explored. 

To allow these ECMs to form a growth substrate, ECM was combined with a previously 

described HA-furan PEG-dimaleimide hydrogel system. This HA system was chosen because of 

the gentle crosslinking reaction and its ability to be used in vivo (Nimmo, Owen, and Shoichet 

2011). To preserve bioactivity, ECM was scraped from decellularized plates into 50 mM 

trehalose and then lyophilized. The resulting ECM powder was then dissolved in water with HA-

furan in three different weight to weight ratios of ECM to HA (1:500, 1:100, 1:25 ECM:HA) 
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prior to the addition of the PEG-

dimaleimide crosslinker. A thin 

layer of gel was then allowed to 

form overnight in the culture plate 

prior to motoneuron seeding.  

Motoneuron growth on 

ECM:HA hydrogels was assessed 

after 48 hours, and it was found that 

1:25 Fibrous ECM (F-ECM) to HA, 

and 1:100 and 1:25 Protoplasmic 

ECM (P-ECM) to HA gels 

significantly improved motoneuron 

neurite extension when compared to 

HA gels with no added ECM 

(Figure 4.2B, C, F, H). There was 

also a trend demonstrating some dose dependency of the ECM with increasing ECM 

concentration improving neurite growth as evidenced by 1:100 P-ECM:HA showing 

significantly improved growth compared to 1:500 P-ECM:HA (Figure 4.2E). Finally, P-ECM 

demonstrated greater potency than F-ECM as illustrated by motoneurons extending significantly 

longer neurites on 1:100 P-ECM:HA gels than 1:100 F-ECM:HA gels (Figure 4.2B, E, H). These 

data indicate that ECM can be harvested from mESC-derived astrocyte cultures, and that the 

ECM maintains its ability to support neuronal growth. Based on these in vitro results, 1:100 

Figure 4.2: Protoplasmic ECM incorporation improves 

motoneuron growth after 48 hours in culture on HA 

hydrogels. Ratios given are weight of ECM to weight of HA.  A-

G) Representative images of motoneurons grown on different HA 

hydrogel substrate after 48 hours. A-C: HA hydrogels containing 

protoplasmic ECM; D-E: HA hydrogels containing fibrous ECM. 

Scale bars: 100 µm. H) Quantification of neurite area/nucleus of 

motoneurons after 48 hours in culture. Error bars = std error, 

n=25-45, *: p<0.05, **: p<0.01, ***: p<0.001.  
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ECM:HA ratio gels were used to determine the effect of astrocyte-derived ECM on SCI recovery 

in vivo. 

4.4.2 Protoplasmic ECM can be Detected in HA Hydrogels in vitro and in 

vivo 

 Next, the ability of the HA hydrogels to retain ECM in vivo and in vitro was investigated 

using antibodies against collagen XIIα1. Collagen XIIα1 staining was used because previous 

proteomic data showed that collagen XIIα1 was the most prevalent protein within P-ECM that 

was significantly enriched in P-ECM over F-ECM, and it is too large to readily diffuse away (R. 

E. Thompson et al. 2017). Immunohistochemistry revealed that the collagen XIIα1 within the P-

ECM could be detected in P-ECM:HA gels, but not in HA alone gels after 1 week in vitro, and 

that the incorporated collagen XIIα1 forms aggregates that are over 100 µm across within the gel 

(Figure 4.3A, B). Beyond 1 week in vitro the gels began to lose integrity.  

Collagen XIIα1 staining was also used to determine if the P-ECM was present two weeks 

after implantation into a SCI lesion. Staining revealed collagen XIIα1 aggregates within the SCI 

lesion of animals implanted with P-ECM:HA gels that were similar in size to those observed in 

the in vitro staining (Figure 4.3B, D). These aggregates were not present in animals transplanted 

with HA alone gels, but more diffuse collagen XIIα1 staining was detected in the HA alone and 

P-ECM:HA gels suggesting that some native cells within the SCI lesion produce collagen XIIα1 

(Figure 4.3C).  

 With collagen XIIα1 staining indicating the continued presence of implanted ECM for up 

to 2 weeks in vivo, the effect of F-ECM and P-ECM on histological recovery from SCI was 

explored to determine whether the observed in vitro effects of astrocyte ECMs translated into 

any in vivo effects. To address this question, a subacute implantation model in rats was used 
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where a T8 dorsal hemisection SCI was performed, followed two weeks later by an implantation 

(treatment) surgery. The two-week delay between injury and treatment allows the glial scar and 

lesion cavity to fully develop and 

stabilize in size. This limits the 

continued expansion of the lesion 

following implantation, which can 

impede the ability of native cells to 

penetrate the implant (Taylor and 

Sakiyama-Elbert 2006). Two weeks 

after implantation, recovery was 

assessed by measuring the response 

of immune cells, astrocytes, and 

neurons to the HA implants using 

immunohistochemistry. 

4.4.3 Protoplasmic ECM Modulates Host Immune Response in Acellular 

Implants 

 The ECMs used for this study were harvested from mouse cells and transplanted into a 

rat host, so it was important to ensure that there were no signs of implant rejection by the 

immunocompetent host. The immune response to HA hydrogel implantation was assessed with 

staining for CD11b (general myeloid cell marker), CD8a (cytotoxic T-cell marker), and ED-1 

(marker of activated macrophages and microglia). Immune staining revealed no signs of 

rejection of the xenogenic ECM based on the lack of any increase in immune cell staining in the 

presence of ECM (Figure 4.4). In fact, the implantation of P-ECM:HA gels was found to 

significantly reduce infiltration of myeloid cells (CD11b+ area) into the lesion compared to all 

Figure 4.3: A-B) Collagen XIIα1 staining in HA hydrogels either 

without ECM (A) or with P-ECM (B) after 1 week in vitro. C-D) 

Collagen XIIα1 (green) staining in animals transplanted with HA 

alone (C) or HA + P-ECM (D). Notice that native astrocytes do 

produce Collagen XIIα1 (C), but not in the same aggregate 

morphology seen in P-ECM gels (B, D). Scale bar: 100 µm. 

Arrowheads: Collagen XIIα1 aggregates from incorporated P-

ECM. 
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Figure 4.4: Protoplasmic ECM decreases immune cell infiltration into a SCI lesion. A-D) Representative 

images of CD8a (Cytotoxic T-cells, red) staining and the CD11b (myeloid lineage cells, green) staining 2 weeks 

after implantation (4 weeks after injury). Scale bars: 500 µm, dashed line denotes lesion boundary. E,F) 

Quantification of CD11b+ area both within the SCI lesion (E) and in the 500 µm surrounding the SCI lesion (F). 

G,H) Quantification of CD8a+ area both within the SCI lesion (G) and in the 500 µm surrounding the SCI lesion 

(H). J,K) Quantification of ED1+ area (macrophages) both within the SCI lesion (J) and in the 500 µm 

surrounding the SCI lesion (K). *: p<0.05, **:p<0.01. n=7 HA + Fibro ECM, 8 for all other groups. 
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other groups (Figure 4.4A-E), and decrease CD11b staining around the lesion compared to the 

sham implant group (Figure 4.4A, D, F). Staining for microglia and macrophages (ED-1+ area) 

was found to mirror the pattern observed in the CD11b staining with P-ECM incorporation 

causing a significant decrease in the percent ED-1+ area surrounding the lesion compared to both 

the sham implant group and the HA hydrogel group (Figure 4.4J-K).  

4.4.4 Protoplasmic ECM Incorporation Decreases the Presence of Inhibitory 

CSPGs and Size of the Glial Scar Following Acellular Implantation 

 The glial scar forms around the lesion core following SCI and is known to represent both 

a physical and biochemical barrier to axonal regeneration following SCI. In addition, astrocyte 

reactivity is known to be upregulated in the presence of some foreign materials (Y.-T. Kim et al. 

2004). Thus, it is important to assess the astrocytic response to a material implant. To determine 

the level of astrocyte reactivity, GFAP (a pan-reactive astrocyte marker) was used. The 

production of inhibitory molecules within the cords was also determined with an antibody 

against CS56, which detects CSPGs. GFAP staining revealed that P-ECM:HA gel implantation 

decreased the size of the glial scar (based on percent GFAP+ area in the 500 µm surrounding the 

lesion) compared to both the sham implant group and the F-ECM:HA implant group (Figure 

4.5A, C-D, F). CS56 staining also showed that P-ECM:HA gels decreased the presence of 

inhibitory CSPGs within the lesion (Figure 4.5A, D, G). The presence of the HA itself was 

sufficient to cause a decrease in the presence of inhibitory CSPGs in the glial scar (500 µm 

surrounding the lesion); interestingly, this effect was lost in the F-ECM:HA gel group, but 

maintained in the P-ECM:HA gel group (Figure 4.5A-D, H). Taken together these data show that 

the type of astrocyte ECM within the implant affects the response of the host astrocytes to the 

HA hydrogels with P-ECM decreasing the GFAP+ area surrounding the lesion and F-ECM 
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potentially negating the reduction in CSPG staining surrounding the lesion seen in the HA alone 

group.  

Figure 4.5: HA reduces CSPG staining and protoplasmic ECM incorporation decreases GFAP area. A-D) 

Representative images of CS56 (inhibitory CSPGs, green) staining and the GFAP (reactive astrocytes, red) 

staining 2 weeks after implantation (4 weeks after injury). Scale bars: 500 µm, dashed line denotes lesion 

boundary. E,F) Quantification of GFAP+ area both within the SCI lesion (E) and in the 500 µm surrounding the 

SCI lesion (F). G,H) Quantification of CS56+ area both within the SCI lesion (G) and in the 500 µm surrounding 

the SCI lesion (H). *: p<0.05, **:p<0.01. n=7 HA + Fibro ECM, 8 for all other groups. 
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4.4.5 Protoplasmic ECM Incorporation Increases Neurite Growth into a SCI 

Lesion Following Acellular Implantation 

 With encouraging results in terms of the immune and astrocyte reaction to P-ECM:HA 

gels, the next important question was whether these scaffolds had any impact on growth of axons 

into the SCI lesion. This is important to measure since the penetration of native axons into the 

transplanted material could aid in future reconnection of the signaling pathways within the spinal 

cord. Staining for β-tubulin III (Tuj-1) was used to assess the presence of neuronal processes 

within and around the SCI lesions. Based on percentage of the lesion/border area staining 

positive for β-tubulin III, it was found that P-ECM:HA gels increased axonal growth into the 

lesion compared to both the sham implant control and the F-ECM:HA gel group (Figure 4.6A-

E). This increase in β-tubulin III indicates that the presence of P-ECM improves the ability of 

native neurons to extend into the SCI lesion and glial scar environment, consistent with the 

improvement seen in in vitro neuron growth in the presence of P-ECM (Figure 4.2) (R. E. 

Thompson et al. 2017).  

Overall, P-ECM:HA hydrogel implantation appeared to improve histological outcomes 

following SCI injury, so the ability of these hydrogels to support the transplantation of a 

neuronal population was explored. For cellular transplantation within the HA gels to be possible, 

the HA crosslinking had to be modified to accelerate the gelation kinetics to enhance cell 

viability. Changing from HA-furan to HA-methylfuran (HA-mF) was recently described as a 

method that utilizes the same crosslinking chemistry and material properties, but allows for faster 

gelation (L. J. Smith et al., n.d.). By maintaining as much of the same material properties and 

similar chemistry, it seemed likely that the P-ECM:HA-mF gel implants would exhibit the same 

benefits that were observed in P-ECM:HA implants.  
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4.4.6 Protoplasmic ECM Maintains Immunomodulatory Effects in the 

Presence of Systemic Immune Suppression 

 Recently there has been increased interest in the ability of INs to support local rewiring 

and hence facilitate spontaneous recovery following SCI. Thus far IN transplantation has largely 

focused on inhibitory, GABAergic IN precursors that are isolated from the forebrain. These INs 

have been successfully transplanted into the spinal cord, and they have been shown to integrate 

and improve post-SCI pain and bladder function (Etlin et al. 2016; Fandel et al. 2016). Recently, 

a Chx10-PAC mESC line has been developed that allows for derivation of highly enriched V2a 

INs (Iyer et al. 2016). Since V2a INs have been suggested as an important type of neurons for 

Figure 4.6: Protoplasmic ECM incorporation increases neural fiber staining within an SCI lesion. A-D) 

Representative images of β-tubulin III (neurons, green) staining and the GFAP (reactive astrocytes, red) staining 

2 weeks after implantation (4 weeks after injury). Scale bars: 500 µm, dashed line denotes lesion boundary. E,F) 

Quantification of Tuj1+ area both within the SCI lesion (E) and in the 500 µm surrounding the SCI lesion (F). *: 

p<0.05, **:p<0.01. n=7 HA + Fibro ECM, 8 for all other groups. 
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local rewiring and represent an excitatory population, mESC-derived V2a INs with constitutively 

active TdTomato were used in this study. To facilitate survival thru transplantation, V2a INs 

were aggregated with approximately 420 cells/NAs using an AggreWell™ plate before addition 

to the HA solution prior to gelation. Roughly 60 NAs were transplanted into each animal 

resulting in a total of ~25,000 cells per transplant. This cell transplantation study had 5 groups: 

sham implant (to allow for comparison to the acellular study), HA-mF alone, HA-mF + P-ECM, 

HA-mF + Cells and HA-mF + P-ECM + Cells (Table 4.2).   

Figure 4.7: Protoplasmic ECM decreases macrophage staining, even in the presence of 

immunosuppression. A-E) Representative images of ED-1 staining (macrophages/microglia, green) 2 weeks 

after implantation (4 weeks after injury). Scale bars: 500 µm, dashed line denotes lesion boundary. F,G) 

Quantification of ED-1+ area both within the SCI lesion (F) and in the 500 µm surrounding the SCI lesion (G). *: 

p<0.05. n=7 for Sham, HA, and HA + Proto ECM, 8 for HA + Cells and HA + Proto ECM + Cells. 
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To confirm that immune suppression was sufficient and to compare to the 

macrophage/microglia findings of the acellular study, ED-1 staining was performed on sections 

from the second in vivo study. Quantification of ED-1 staining revealed that, similar to what was 

observed in the acellular implantation study, P-ECM significantly decreased the percentage of 

the lesion area stained positive for ED1compared to sham and HA-mF alone (Figure 4.7F). The 

percent ED1+ area was also found to be significantly lower in the 500 µm surrounding the lesion 

in P-ECM transplantation than the sham implant group (Figure 4.7F-G). Importantly there was 

no indication of a significant increase in ED-1 staining when the NAs were transplanted, 

indicating sufficient immune suppression (Figure 4.7A, D-E, F-G). 

4.4.7 Incorporation of V2a INs Decreases GFAP Staining while HA-mF 

Decreases Inhibitory CSPG Staining 

Staining for GFAP and CS56 in the cellular transplantation study revealed similar effects 

on the glial scar to those observed in the acellular implantation study. In particular, the presence 

of HA-mF hydrogels seemed to be sufficient to significantly decrease inhibitory CSPG staining 

within the 500 µm surrounding the lesion (Figure 4.8A-C, G). Similar to the acellular study, the 

percent GFAP+ area was found to be significantly decreased in the presence of P-ECM compared 

to both sham and HA alone groups. (Figure 4.8J). The GFAP staining was also found to be 

altered in the presence of the V2a NAs with both cellular groups showing significantly less 

GFAP staining within and around the lesion than the HA alone group (Figure 4.8B, D-E, H-J). 

These observations indicate that HA-mF has the same effect on the scar astrocytes as observed in 

the HA furan and that P-ECM incorporation causes GFAP downregulation regardless of the HA 

used. 
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4.4.8 V2a IN Aggregates Survive Within HA-mF Hydrogels and P-ECM:HA 

Hydrogels and Increase Neuronal Process Staining Within and Surrounding 

the SCI Lesion 

 Since there was no sign of immune rejection of transplants, the presence of V2a INs 

within the lesion was assessed by quantifying TdTomato fluorescence. The percentage of the 

area within the SCI lesion found to be TdTomato+ was significantly higher in the HA + Cells and 

the HA + P-ECM + Cells group than the associated acellular hydrogel groups (Figure 4.9B-F). 

Figure 4.8: Hydrogel implantation modulates the response of the host astrocytes. A-E) Representative 

images of CS56 staining (inhibitory CSPGs, green) 2 weeks after implantation (4 weeks after injury). Scale bars: 

500 µm, dashed line denotes lesion boundary. F,G) Quantification of CS56+ area both within the SCI lesion (F) 

and in the 500 µm surrounding the SCI lesion (G). H,J) Quantification of GFAP+ area both within the SCI lesion 

(H) and in the 500 µm surrounding the SCI lesion (J). *: p<0.05. n=7 for Sham, HA, and HA + Proto ECM, 8 for 

HA + Cells and HA + Proto ECM + Cells. 
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However, this difference did not extend to the 500 µm surrounding the lesion (Figure 4.9G). 

Together these observations suggest that the V2a NAs are surviving with the gel for up to 2 

weeks following transplantation. 

 Based on the continued presence of V2a NAs within the SCI lesion, staining for β-tubulin 

III was performed to see if the presence of V2a NAs resulted in an increase of area staining 

positive for neuronal processes within and around the lesion. β-tubulin III staining revealed a 

similar pattern among the acellular groups as observed in the first in vivo study with HA + P-

Figure 4.9: A-E) Representative images of β-tubulin III staining (neurons, green) and tdTomato (transplanted 

cells, red) 2 weeks after implantation (4 weeks after injury). Scale bars: 500 µm. F,G) Quantification of the 

percent TdTomato+ area both within the SCI lesion (F) and in the 500 µm surrounding the SCI lesion (G). H,J) 

Quantification of  percent Tuj1+ area both within the SCI lesion (H) and in the 500 µm surrounding the SCI 

lesion (J). *: p<0.05. n=7 for Sham, HA, and HA + Proto ECM, 8 for HA + Cells and HA + Proto ECM + Cells. 

 

 

a 
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ECM demonstrating significantly more neural fibers than either HA or sham within the SCI 

lesion (Figure 4.9H). The presence of cells also resulted in a significant increase of β-tubulin III 

within the lesion compared to both the sham implant and the HA alone implant groups (Figure 

4.9H). β-tubulin III staining surrounding the lesion was also found to be significantly increased 

in HA + P-ECM, HA + Cells, and HA + P-ECM + Cells when compared to HA alone (Figure 

4.9J). Furthermore, animals with HA + P-ECM + Cells transplants were found to have a 

significantly higher percentage of β-tubulin III+ area around the lesion than sham transplant 

animals (Figure 4.9J).  

4.4.9 Transplanted Cells Maintain V2a Identity, Extend Neural Processes 

within and around Lesion, and Migrate into Host Spinal Cord 

 To determine whether transplanted V2a interneurons maintained a glutamatergic, 

neuronal identity, colocalization between TdTomato fluorescence and staining for β-tubulin III, 

vesicular glutamate transporter 2 (VGlut-2), or neuronal nuclei (NeuN) was assessed. Visual 

inspection of cord sections revealed locations both within and around the lesion where these 

stains colocalized with TdTomato (Figure 4.10A-C). The presence this colocalization around the 

lesion suggests that the transplanted interneurons are able to migrate into the host spinal cord. 

The percent of area within and around the lesion that was positive for both β-tubulin III and 

TdTomato was quantified to determine the level of neuronal process extension from the 

transplanted cells both within the lesion and in the host. This analysis found that the cellular 

groups exhibited significantly more colocalization than the acellular groups, indicating that the 

transplanted V2a NAs extended neuronal processes (Figure 4.10D-E).  

Similar quantification was performed on VGlut-2 staining and it was found that the HA + 

P-ECM + Cells group had significantly more colocalization of VGlut-2+
 and TdTomato+ both 
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within the lesion and in the 500 µm surrounding the lesion than any of the acellular groups 

(Figure 4.10F-G). Together these observations suggest that the V2a NAs are surviving within the 

Figure 4.10: Transplanted V2a Interneurons maintain identity and enter the host spinal cord A-C) 20x 

magnification of the lesion boundary in animal transplanted with HA + P-ECM + Cells showing locations where 

β-tubulin III (A), VGLUT2 (B), or NeuN (C) staining colocalizes with TdTomato (arrowheads) both within the 

lesion (L) and in the glial scar (S). Scale bar: 100 µm. D-E) Percent of area within the lesion (D) and in the 500 

µm surrounding the lesion (E) staining positive for both TdTomato and β-tubulin III. F-G) Percent of area 

within the lesion (F) and in the 500 µm surrounding the lesion (G) staining positive for both TdTomato and 

VGLUT-2. *: p<0.05, **:p<0.01. n=7 for Sham, HA, and HA + Proto ECM, 8 for HA + Cells and HA + Proto 

ECM + Cells. 
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HA hydrogels and that they continue to be glutamatergic.  These data also suggest that some 

combination of the NAs extending neuronal processes and the host increasing axonal growth 

(perhaps due to the presence of the NAs) accounts for the observed increase in β-tubulin III+ area 

both within and around the SCI lesion in the HA + Cells group compared to the HA alone group. 

4.5 Discussion 

4.5.1 HA Hydrogel Implantation Decreases Inhibitory CSPG Staining Within 

the Glial Scar and Protoplasmic Astrocyte ECM Incorporation Decreases 

Astrocyte Reactivity 

 Glial scar formation assessment with CS56 and GFAP staining revealed that the presence 

of either HA-furan or HA-mF hydrogels within the lesion area resulted in decreased staining of 

inhibitory proteoglycans in the 500 µm surrounding the lesion (Figures 4.5,4.8). Downregulation 

of CSPGs staining has been previous described in response to acute implantation of either a 

photo-crosslinked high molecular weight HA hydrogel or a poly-L-lysine (PLL) modified HA 

hydrogel (Khaing et al. 2011; Wen et al. 2016). This effect has been found the be dependent on 

the molecular weight of the HA with lower molecular HA (40 to 400 kDa) observed to cause an 

upregulation of CSPG expression and an increase in the size of glial scar (Pandey et al. 2013).  In 

the present studies, HA hydrogel implantation is found to cause a similar downregulation of 

CSPG expression when delivered two weeks after injury, unlike the acute treatment used in 

previous studies. This effect of HA on CSPG expression has not been observed in implantation 

studies of fibrin (Wilems and Sakiyama-Elbert 2015), fetal spinal cord ECM (Lemons, Howland, 

and Anderson 1999), or methylcellulose hydrogels (Pakulska, Tator, and Shoichet 2017) 

following SCI. This suggests that the observed decrease in CSPG expression might be a specific 

benefit of HA hydrogels.  
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Despite the decrease in CSPG area, there was no observed downregulation of GFAP in 

the presence of HA hydrogels compared the sham implant animals (Figure 4.5, 4.8). GFAP 

immunoreactivity in response to material implantation has been found to be highly variable 

across with some materials, such as fibrin, leading to decreased GFAP+ area (Johnson, Parker, 

and Sakiyama-Elbert 2009; Johnson et al. 2010), while others, such as poly(lactic-co-glycolic 

acid) (PLGA) and gelatin sponges, increased GFAP immunoreactivity (Du et al. 2014). 

Incorporation of P-ECM was found to reduce the percent GFAP+ area in the 500 µm surrounding 

the lesion with both HA hydrogel formulations tested compared to sham implantation. The HA + 

P-ECM hydrogels were also found to demonstrate a similar decrease in CSPG staining as 

observed in the HA alone hydrogels (Figure 4.5, 4.8). This finding suggests that P-ECM 

presence may help to reduce the reactivity and/or hypertrophy of native astrocytes surrounding 

the lesion, while maintaining the benefits of HA on CSPG expression.  

Interestingly, the beneficial effects of HA implantation on the glial scar was largely lost 

when a F-ECM:HA hydrogel was implanted. This change is evidenced by the significant 

increase in GFAP staining in the 500 µm surrounding the lesion in F-ECM:HA implanted 

animals compared to P-ECM:HA implanted groups, and the loss of the HA-associated CSPG 

reduction in the F-ECM:HA group (Figure 4.5). This suggests that F-ECM incorporation may 

result in some phenotype switch of native astrocytes toward a more inhibitory phenotype, which 

results in the observed increase in astrocyte reactivity and CSPG production. The concept of 

ECM components affecting astrocyte phenotype is not new, with astrocytes known to upregulate 

a “scar” phenotype in response the integrin binding to certain ECM components, such as 

collagen I (Hara et al. 2017; Tysseling-Mattiace et al. 2008). Studies of some of the major 

proteins found to be upregulated in P-ECM compared to F-ECM, namely fibronectin and 
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aggrecan (R. E. Thompson et al. 2017), have also been found to decrease GFAP and CSPG 

expression by astrocytes in vitro (Hsiao, Tresco, and Hlady 2015). These studies provide a 

potential basis for further experiments to identify the specific components within F-ECM and P-

ECM that cause these apparent changes in native astrocyte phenotype. 

4.5.2 P-ECM Decreases Immune Cell Infiltration both in and around the SCI 

Lesion 

 Since the ECM transplants were xenogenic, it was important to ensure that they were not 

being rejected by the host. Consistent with previous decellularized ECM implantation studies 

(Hudson et al.), no increase in immune cell infiltration was observed in any of the ECM implant 

groups despite an immunocompetent host in the acellular implant study (Figure 4.4). In fact, the 

data indicated that P-ECM, but not F-ECM, resulted in a decrease in myeloid cell and 

macrophage/microglia infiltration in the 500 µm surrounding the lesion compared to sham 

implantation (Figure 4.4). Furthermore, HA:P-ECM implantation was found to significantly 

reduce myeloid cell staining within the lesion compared to all other groups (Figure 4.4). This 

observation suggests that P-ECM may exhibit an immunomodulatory role within the spinal cord.  

ECM-dependent immune modulation has been previously described in the transplantation 

of other ECM materials (Dziki et al. 2017), and has been observed in transplantation of either 

decellularized urinary bladder or decellularized whole spinal cord ECM following SCI 

(Tukmachev et al. 2016). One potential explanation for P-ECM, but not F-ECM, displaying 

evidence of immunomodulation is the presence of significantly more fibronectin and laminin in 

P-ECM. Fibronectin and laminin together have been found to cause tumor necrosis factor alpha 

(TNF-α), a known pro-inflammatory cytokine, to bind to fibronectin and adopt a pro-adhesive 
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function (Hershkoviz, Goldkorn, and Lider 1995). This binding of TNF-α limits its diffusion and 

could help to control and localize the inflammatory response. 

Another possible explanation is that P-ECM may alter the ratio of classically activated 

M1 macrophages, that cause tissue destruction, to “alternatively” activated M2 macrophages, 

which have been shown to be important to normal tissue repair throughout the body and CNS 

(Kigerl et al. 2009). In support of this idea, decreased macrophage infiltration and increased M2 

macrophage presence has been described in response to implantation of increasing 

concentrations of decellularized urinary bladder ECM into a stroke cavity (Ghuman et al. 

2016b). Based on these studies, it would be potentially enlightening to explore the macrophage 

activation state following P-ECM implantation to determine if P-ECM implantation is causing an 

increase in the presence of M2 macrophages. Overall, the immunomodulation effects observed in 

this study are a relatively unique advantage of ECM-based treatments, since many materials used 

for implantation are immunologically inert.  

4.5.3 Protoplasmic, but not Fibrous, Astrocyte ECM Improves Neuron 

Growth on Acellular HA hydrogels both in vivo and in vitro  

 In vitro motoneuron growth assays on thin HA hydrogels found that both F-ECM and P-

ECM increased average neurite extension. P-ECM exhibited more potency demonstrating an 

effect at a 1:100 weight ratio of ECM to HA, while no significant effect was observed with F-

ECM until a 1:25 weight ratio (Figure 4.2). These in vitro findings were somewhat replicated in 

the in vivo implantation studies with 1:100 P-ECM:HA hydrogel implantation resulting in 

significantly more axon growth into the SCI lesion than when a 1:100 F-ECM:HA hydrogel or 

nothing was implanted (Figure 4.6). Both ECMs were used at 1:100 ratios for the in vivo studies 

to better facilitate comparison between them. P-ECM incorporation was also found to increase 
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axon growth in the HA-mF hydrogel system with acellular P-ECM:HA-mF hydrogels 

demonstrating significantly more axon growth into the lesion compared to HA-mF alone 

hydrogels and sham implant animals. Previous studies have shown implantation of either 

decellularized fetal spinal cord or urinary bladder ECM following dorsal hemisection SCI 

increases neuronal growth, supporting the idea that the naïve spinal cord ECM could have pro-

regenerative properties (Tukmachev et al. 2016).  

In both in vivo studies, there is an observable inverse correlation in the acellular treatment 

groups between the percent GFAP+ area in the 500 µm surrounding the lesion and the percent β-

tubulin III+ area within the lesion (Figures 4.5, 4.6, 4.8, 4.9). This suggests that the axonal 

growth benefits observed in the presence of P-ECM may be related to a phenotypic switch of the 

native astrocytes to a less reactive state. Further experimentation is required to determine the 

precise nature of any astrocyte phenotype change and what specific factors within the implanted 

ECMs might be responsible for these changes.  

4.5.4 V2a INs Survive within HA Hydrogels, Migrate/Extend Processes into 

the Host, and Increase Neuronal Process Area both within and around the 

SCI Lesion regardless of P-ECM Presence 

 Quantification of the continued presence of the V2a IN NAs, using TdTomato 

fluorescence, revealed that both HA-mF hydrogels and P-ECM:HA-mF supported cellular 

transplantation (Figure 4.9). Staining for β-tubulin III revealed that the presence of V2a NAs led 

to a significant increase in neuronal processes within and around the lesion area. This V2a IN-

associated increase in neuronal process staining could be the result of two different sources: 

growth from the transplanted INs, and/or increased axon ingrowth from the host promoted by the 

INs within the lesion. Quantification of the colocalization TdTomato and β-tubulin III suggests 

that a combination of these two effects is occurring, since the TdTomato+ neuronal processes 
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only explain some of the observed increase in neuronal processes (Figure 4.10D-E). 

Colocalization analysis also revealed that some TdTomato+ processes entered the host spinal 

cord, indicating that these transplanted cells might be able to integrate with the host or at least 

are able to move out the lesion site itself (Figure 4.10E). The ability of the transplanted cells to 

migrate into the host is further supported by the presence of NeuN+ TdTomato+ nuclei in the 

region surrounding the lesion (Figure 4.10C). Analysis of VGlut-2 staining showed that 

VGLUT-2+ TdTomato+ pixels represented a significantly larger percent of the area within and 

around the lesion in the HA + P-ECM + Cells group than observed in any acellular group (Figure 

4.10F-G). This finding indicates that the transplanted V2as are maintaining their glutamatergic 

identity following transplantation. 

Overall, neuronal staining data demonstrated that either V2a IN NA transplantation or P-

ECM incorporation conferred a significant benefit on neuronal growth compared to HA alone, 

but the combination of these factors did not significantly increase the area staining positive for 

neuronal processes (Figure 4.9). Importantly, TdTomato colocalization with NeuN, VGlut-2, and 

β-tubulin III indicates that the transplanted V2a interneurons maintain their identity as 

glutamatergic neurons, migrate into the host, and extending neuronal processes both within the 

lesion and into the surrounding cord (Figure 4.10). Future long-term recovery studies will be 

required to determine if these transplanted V2a INs are able to functionally integrate into the host 

spinal cord, and if the presence V2a INs and/or the increased neuronal area caused by P-ECM 

incorporation translates into any behavioral improvements.  

 This work, as a whole, demonstrates that mESC-derived P-ECM, but not F-ECM, 

incorporation into HA hydrogels results in significant improvements in histological markers of 

recovery following SCI. Furthermore, ECM implantation was found to alter the behavior of 
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immune cells, astrocytes, and neurons within the context of the injured spinal cord, showing the 

multifactorial functionality of the HA:P-ECM material. The HA hydrogels were also found to 

support the transplantation of V2a INs into the SCI lesion and the presence of these cells was 

found to cause similar increases in neuronal process staining to those observed with P-ECM 

implantation. HA is the primary component of the native CNS ECM and HA alone implantation 

was found to decrease CSPG staining around the lesion, and support cellular transplantation. 

These observations indicate that HA may be preferable to other materials for CNS injury 

treatment. This work also shows that mESCs can be used as a scalable source of bioactive ECM 

as well as a source of V2a INs. The use of mESCs increases the potential clinical impact of this 

work, since the materials used do not require donor tissue to be generated. (R. E. Thompson et al. 

2018) 
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Chapter 5: Summary of Findings and Future 

Directions 

5.1 Summary of Findings 
 This work has strived to develop strategies to improve treatment for SCI by better 

defining the ability of different astrocyte populations to support neuron growth either in vitro and 

in vivo following SCI. We chose to focus on astrocytes in this project because recent studies 

have found that some astrocyte populations are required for recovery, and so it seems likely that 

not all astrocytes are primarily inhibitory as previously believed. With the goal of eventually 

translation of this project in mind, we focused on deriving the materials used in this work from 

mouse embryonic stem cells (mESCs). mESCs were chosen for this work because they can be 

more readily scaled up and involve fewer ethical concerns than primary cells. In addition, 

techniques that are developed in mESCs can, and have, been modified to allow similar cell 

populations to be derived from human induced pluripotent stem cells (iPSCs). This means that 

this work could eventually to be used to generate astrocyte population from human iPSCs, which 

would be an appropriate cell source for human transplantation. 

The first aim of this project was to develop methodologies that could be used to 

differentiate specifically fibrous-like (white matter) astrocytes or protoplasmic-like (grey matter) 

astrocytes from mESCs. This protocol was developed based on previous work on mESC-

derivation by Benveniste et al., iPSCs-derivation by Roybon et al., and deriving specific 

astrocyte subtypes from primary glial progenitors by Davies et al. (R. J. Benveniste, Keller, and 

Germano 2005; Roybon et al. 2013; J. E. Davies et al. 2008). In Chapter 2, we showed that by 

combining aspects of these previously published works we could obtain cultures that contained 
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astrocytes that were predominantly fibrous or predominantly protoplasmic. Importantly, we 

found that these protocols resulted in protoplasmic populations that did not contain many 

astrocytes that exhibited fibrous hallmarks and vice versa. We then tested the abilities of these 

astrocytes to support the growth of motoneurons and interneurons. These experiments 

demonstrated that protoplasmic astrocytes were able to support significantly longer neurite 

extension than fibrous astrocytes from both neuron populations used.  

Neuronal growth effect was particularly marked when the neurons were grown on 

decellularized astrocyte extracellular matrices (ECMs). Since ECM-based treatments have shown 

significant promise in other injuries with poor native regeneration, we focused on further 

characterization of the mESC-derived astrocytes ECMs. First, we identified all of the proteins 

found within our protoplasmic ECM (P-ECM) and fibrous ECM (F-ECM) using label-free 

proteomics. Then, with the help of Dr. Dougherty’s lab, we compared the proteomics data to a 

dataset of the mRNA expression profile of astrocytes in vivo. This comparison revealed that our 

astrocyte ECMs were consistent with what an in vivo astrocyte produces. Finally, analysis of the 

ECM proteins revealed that P-ECM in general contained higher levels proteins known to be axon 

growth permissive than F-ECM, while F-ECM was found to be relatively enriched for proteins 

known to be inhibitory to axon growth. Knockdown of some of these proteins, with the highest 

levels of expression, revealed that the neuron growth benefits of protoplasmic ECM were 

somewhat reduced in laminin α5 or laminin β1 knockdown while F-ECM was able to support 

longer neurite extensions when spondin-1 was knocked down. 

In Chapter 3 we discussed our efforts to develop a puromycin selectable astrocyte mESC 

line.  A selectable cell line was important to develop since our astrocyte differentiation protocol 

does not result in pure astrocyte cultures, which could impede future experiments, and the 
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transplantation of unpurified ESC-derived cultures has been found to lead to teratoma formation, 

thus limiting to ability to transplant astrocytes using these techniques. This aspect of the project 

was based on previous work done in the lab by Dr. McCreedy and Dr. Iyer who developed the 

puromycin selectable motoneuron and V2a interneuron lines used in this work. We demonstrated 

that the puromycin-resistance gene (PAC) was inserted into the mESC genome within one of the 

aqp4 loci. Furthermore, we found that the modified cell lines did exhibit an increase in PAC 

expression, coinciding with Aqp-4, over the course of astrocyte differentiation, but only in the 

protoplasmic cultures. This indicates that the developed aqp4-PAC cell line cannot be used for 

fibrous selection. Preliminary data does indicate that selection of aqp4-PAC-derived 

protoplasmic cultures does result in a significant increase in cells staining Aqp-4+. Future work 

will be required to further confirm the purity of the selected protoplasmic cultures and develop a 

different selection strategy for fibrous astrocytes. 

Due to the observed benefits of mESC-derived astrocyte ECM in vitro, in Chapter 4 of 

this work we explored the ability of these ECMs to affect recovery following SCI in rats. To 

develop the harvested mESC-derived astrocyte ECMS into a useable therapeutic, we combined 

the lyophilized ECM with a hyaluronic acid (HA) hydrogel system previously developed by Dr. 

Shoichet’s group (Nimmo, Owen, and Shoichet 2011). Using a thin layer of hydrogel, we tested 

the effects of different ECM concentrations on the growth of motoneurons in vitro. This work 

revealed that a 1:100 weight ratio of ECM to HA was sufficient for the protoplasmic ECM to 

significantly improve neurite extension from the motoneurons in vitro. This observation led us to 

use this ratio for animal implant studies.  

The initial animal study was performed with 4 groups: sham implant, HA alone, HA + F-

ECM, and HA + P-ECM. This study revealed that the HA hydrogel reduced the presence of 
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inhibitory proteoglycans around the lesion and that addition of P-ECM reduced staining for 

reactive astrocyte as well. The observed beneficial effects on the glial scar environment were lost 

in the presence of F-ECM, indicating that F-ECM may cause an upregulation of a more 

inhibitory phenotype of the native astrocytes.  HA + P-ECM implantation was also found to 

decrease immune cell infiltration into and around the SCI lesion and to significantly increase the 

penetration of axons into the SCI lesion. Based on these histological improvements, we 

performed a cellular transplantation study to explore the ability of these HA hydrogels to support 

transplantation of V2a interneurons as a pilot transplant population.  

The V2a transplantation studies used a slightly modified HA hydrogel system, using HA-

methylfuran (HA-mF), that was recently developed by Dr. Shoichet’s group to have faster 

gelation kinetics and so allow for cellular encapsulation. Our V2a study had 5 groups: sham 

implant, HA alone, HA + P-ECM, HA + Cells, HA + P-ECM + Cells. This study found largely 

similar effects as observed in the first, acellular study with P-ECM incorporation demonstrating 

distinct benefits in histological markers of recovery compared to HA alone or sham implant. In 

addition, we found that either HA or HA + P-ECM supported the transplantation of V2a 

interneurons and that the presence of interneurons was found to significantly increase the 

staining for neuronal processes within the SCI lesion.  

Overall, this work demonstrates that mESCs can be used to generate specific subtypes of 

astrocytes and that these astrocytes had differential capacities to support neuronal growth. We 

also found that these effects translated into an in vivo setting with P-ECM containing HA 

hydrogels improving histological outcomes in rats following a T8 dorsal hemisection SCI. 

Finally, HA hydrogels were shown to support transplantation of V2a interneurons. This work 

represents a novel approach to generating an ECM-based material and shows that the effect of 
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astrocyte ECM on histological outcomes SCI depends on astrocyte phenotype. Further work 

should focus on determining if the improved histological outcomes results in functional 

improves, and what proteins within the ECMs result in these observed histological changes. 

5.2 Future Directions 

5.2.1 Live Astrocyte Transplantation 

 Based on the results from our ECM transplantation, it would be interesting to explore the 

potential of live mESC-derived astrocyte transplantation to improve SCI outcomes. Toward this 

end, we are working toward the generation of a selectable astrocyte cell line uses an astrocyte 

specific gene, aqp4, to drive puromycin resistance expression. This cell line still needs to be 

further characterized to demonstrate that selection the residual stem cells from the culture so 

there is no risk of teratomas formation (Johnson et al. 2010), and that the astrocytes functionally 

mature based on calcium imaging. In addition, calcium imaging can be used to further validate 

that the mESC-derived astrocyte populations have functional properties consistent with in vivo 

populations. In particular, protoplasmic astrocytes should exhibit gap junction-dependent 

calcium waves (B. Haas et al. 2005), while fibrous astrocyte exhibit purinergic receptor-

dependent calcium waves (Hamilton et al. 2008). Blocking these signaling pathways and 

performing calcium imaging in the cultures should elicit different responses in our mESC-

derived astrocyte populations. Since calcium imaging is important for normal astrocyte-neuron 

interactions, this type of functional assay would be important to show to indicate that we have 

functionally mature astrocytes. Once selection has been accomplished, and validated, it would be 

interesting to transplant purified protoplasmic astrocytes in HA hydrogels and compare to results 

to the HA + P-ECM data reported in this work to see how much of the live cell transplant effect 

is captured by implanting the ECM alone.  
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5.2.2 Engineered ECMs 

 The proteomics data collected in this work shows the composition of both P-ECM and F-

ECM. We did perform some validation experiments in this work that showed the importance of 

spondin-1 as an inhibitory component of the fibrous ECMs, and laminin α5 and laminin β1 as a 

permissive component of the protoplasmic ECM; however, further work is required to better 

define what elements in these ECMs cause the observed differences in neuronal growth and in 

vivo effects. Based on these future studies, and the data presented here, it would be potentially 

interesting to explore adding a small number of specific proteins to the HA hydrogels and 

determining if these hydrogels can replicate the effect of the full ECM implant. In addition to 

adding specific proteins, it could be also productive to add small peptides that contain the 

binding sequencing of the ECM proteins and cell surface proteins. This type of peptide 

implantation has been done in SCI treatment using integrin binding peptides with some success 

(Tysseling-Mattiace et al. 2008; Pan et al. 2014). I think that one particularly interesting peptide 

sequence to explore is the binding sequence of the neural cell adhesion molecule (NCAM) 

(Neiiendam et al. 2004). By incorporating this peptide sequence, it may be possible to capture 

some of the benefits observed when the neurons were grown on frozen astrocyte substrates 

because NCAM is a major astrocyte membrane component. In this way, the NCAM peptide 

could be used to increase the benefits of P-ECM implantation without adding any elements that 

require immunosuppression of the host. Overall the combination of pure proteins and binding 

peptide offers an exciting and controlled method to generate materials for the treatment of SCI.  

5.2.3 Functional Recovery from SCI following P-ECM and/or V2a 

Interneuron Transplantation 

 We collected some encouraging data showing histological recovery in rats in response to 

transplant of either P-ECM or V2a Interneurons in a HA hydrogel. While the 2 week study 
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showing these results suggests that the materials developed in this work are worth pursuing 

further, it is important to test if any functional recovery occurs in the 8 weeks post 

transplantation of, in particular, the HA + Cells + P-ECM and HA + P-ECM gels. For the T8 

dorsal hemisection model used in this work, functional recovery measurement is most 

appropriately accomplished with the Basso, Beattie and Bresnahan (BBB) open-field locomotor 

scale (Basso, Beattie, and Bresnahan 1995), horizontal ladder test, von Frey hair sensory test, 

and an incline plane test. This set of functional assays will allow for assessment of locomotor 

recovery, sensory recovery in the hind limbs, stability, and coordination. It would also be 

interesting to perform some tract tracing experiments following a longer recovery period to 

determine if the transplanted V2a interneurons are integrating into the host spinal cord. Overall, I 

believe that P-ECM represents an exciting, multifactorial treatment for SCI and I look forward to 

seeing what else can be done with these P-ECM:HA hydrogels. 
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