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ABSTRACT OF THE THESIS

Design, Construction and Testing of

High Temperature-High Pressure Spectroscopic Cell for Polymer Physics Studies 
by

Sai Janani Ganesan

Master of Science in Biomedical Engineering

Washington University in St. Louis, 2011

Research Advisor:  Professor Carl Frieden

Knowledge  of  phase  behaviour  of  polymer  solutions  is  critical  in  understanding  their  

chemical  and  physical  properties.  Proteins  are  polymers  and  aggregation  is  a  phase 

separation process, hence there is a need for the use of techniques from polymer physics to 

characterize  phase  diagrams.  Prior  work  on  protein  aggregation  indicates  the  need  for 

superheated water to disaggregate the system,  accordingly  this  report  proposes a  simple, 

efficient,  and  reliable  instrument  for  experimentally  determining  cloud-point  curves  for 

binary polymer-solvent systems.  Cloud-point measurements are a prominent technique in 

constructing phase diagrams. A one milliliter optical cell has been designed and constructed, 

to withstand 200 o Celsius temperature and 3500 Psi. The cell has been used to successfully 

reconstruct  coexistence  curves,  and  identify  critical  points  for  different  binary  polymer-

solvent  systems,  including  part  of  the  cloud  point  curve  for  PEG-8000  (Poly-(ethylene 

glycol)n)-water, to validate the use of the device.  We also report our initial  results using 

aggregation prone protein samples.
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Chapter 1

Introduction
Understanding phase behaviour of polymer-solvent systems is of importance in the study of 

synthesis,  polymerization, and processing. The dynamics of polymer solutions can affect the 

solubility and the miscibility of the polymer, resulting in phase separation. Since the early 

part of last century,  efforts have been made to collect  equilibrium experimental data for 

different polymer solutions (Bae et al., 1991; Zeman et al., 1972; Saeki et al., 1976), one of the 

popular methods has been through the construction of cloud point curves. The process of 

phase separation results in a cloudiness or a turbidity in the mixture, the particular point at 

which the nature of the solution changes is called the cloud point (a temperature and a 

concentration value).  A plot of the cloud point temperature as a function of concentration 

leads to the construction of coexistence curves  (Delmas et al.,  1966),  or a thermodynamic 

phase diagram which can also provide useful information on the kinetics of the system. 

Proteins  are  heteropolymers  consisting  of  amino  acids  as  its  monomers,  and  protein 

aggregation is a process of polymer self association which results in  phase separation. Thus 

there  exists  commonality  in  self  association  and  aggregation  of  intrinsically  disordered 

proteins(IDPs) and other synthetic polymers (Dobson et.al, 2006). The process of aggregation 

can be described as the domination of chain-chain interaction over chain-solvent interaction, 

and the polymer is said to be in a poor solvent  (Rubinstein et al., 2003).  The solvent quality 

can be manipulated by changing temperature and pressure.  Also,  prior  unpublished data 

indicate that proteins disaggregate in superheated water. Keeping the above in mind, we 

have constructed a high pressure-high temperature optical cell, that can be used to vary the 

solvent  quality  of  the  protein-solvent  systems  with  temperature,  and  hence  construct 

complete phase diagrams of aggregation prone proteins.
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Presented in this thesis is the design and construction of a simple and reliable instrument to 

determine cloud point curves of binary protein/polymer-solvent systems. A  CCD camera is  

used as the detection system to measure the absorbance signal, and the data collected are 

analyzed in MATLAB. This research focuses on developing an instrument that can be used 

to study protein-solvent systems and gain insights on the process of aggregation.

Outlined below, is a brief overview of the approach, along with other existing techniques for 

constructing coexistence curves, and some brief thermodynamics concepts that are essential 

to  understand the  motivation  behind  this  research.  Also,  the  objective  of  this  thesis  is 

outlined in greater detail. 

1.1 Cloud-point Determination Methods

Thermo-optical analysis (TOA) for cloud point measurements was first proposed by Bae et  

al.  in 1991, and is currently one of the more precise techniques used to determine cloud 

points,  apart  from PICS.  There  have  been other  successful  attempts  at  building  similar  

systems (Saraiva et al., 1993 ;  Shokoufi et al., 2007; Svaboda et al., 1999; Cesteros et al., 1994). 

TOA  involves adding samples to pyrex tubes, and placing them on a heating-cooling stage,  

which is designed for the  observation of the sample behaviour under a microscope, and a 

photodiode is used for the measurement of luminosity. The advantages of our design over 

the other experimental techniques are the following:

a) It is simple, small and a compact device that consists of all the basic elements required to 

make cloud point measurements and can be used and cleaned very easily.

b) Inserting sample into the cell is very simple, there is no need for sealing of pyrex tubes or  

liquid nitrogen.

c)  Multiple  different  measurements  can  be  made(light  scattering,  absorbance  etc),  and 

MATLAB is  used  for  data  analysis.  Real  time  videos  can  also  be  recorded  for  further 

analysis.Even though our instrument is  not sensitive  to very high turbidity,  and is more 

appropriate or  qualitative analysis; it can be integrated with a laser for small angle 
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 light scattering experiments.

1.2 Coexistence Curves

UCST or the upper critical solution temperature is defined as the temperature above which; 

and LCST is the lower critical solution temperature, and is the temperature below which, all  

compositions of the mixture are miscible and exist in a single phase (Flory et al., 1954; Sanchez  

et al., 2000). At both the upper and lower two phase envelope, there are two regions of phase 

separation-the  binodal  and the  spinodal  (the  intersection  of  these  two curves  being  the 

critical  point).  Between the binodal  and spinodal,  there  is  nucleation  and growth phase, 

which requires exceeding an energy barrier,  whereas within the spinodal condition phase 

separation occurs via a process called spinodal decomposition, which is a downhill process. 

(Flory  et  al.,  1954  ;  Crist  et  al.,  1997;  Robenson  et  al.,  2007;  Rubenstein  et  al.,  2003).  Phase 

separation  is  accompanied  by  a  change  in  turbidity,  that  can  be  observed  for  different 

compositions to plot a graph similar to the one below. 

 

Figure  1-1.  UCST-Phase  Diagram of  a  Binary  System.  The  plot  of  temperature  vs 

volume fraction, showing phase separation. The curve defines the boundary of miscibility, 

Tc and φc represents the critical point(Flory et al.,1954;Rubinstein et al.,2003; Pappu et al., 2007).
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In the above figure, the temperature controls the solvent quality, and as the temperature is 

increased, the solvent quality increases till  a point is reached, above which the quality of 

solvent is good for all compositions of the mixture (Rubinstein et al., 2003; Crick et al., 2010;  

Flory  et  al.,  1954).  χ represents  the Flory interaction  parameter,  and can also be used to 

characterize the pairwise interaction energies in the binary mixture, which directly affect the 

solvent quality.  With decrease in temperature and hence solvent quality,  phase separation 

into a polymer rich phase  and solvent rich phase occurs, and is depicted in the above figure  

in great detail.  Different regions are defined in the above figure to better understand the 

complete phase diagram. Tθ and φθ represent the theta temperature or state, at which B2 or 

the second virial coefficient goes to zero, and the polymer is in an ideal random coil state  

and possesses maximum conformational entropy. Beyond the theta temperature, the solvent 

quality is good for all compositions of the polymer solvent system.  Region 1 corresponds to  

this state. Region 2 represents a region where the mixture is too dilute to undergo any phase 

transitions.  In figure 1.1,  φ'  and φ''  represent the concentration of a dilute polymer solution 

and a protein aggregated solution respectively. Region 3 represents the region between the 

binodal and spinodal- the region where there is a requirement for large fluctuations in order 

to cross the energy barrier and result in phase separation. Region 4 represents the region 

inside the spinodal, where phase separation occurs by spinodal decomposition.- a process 

that is thermodynamically downhill  and is caused by even the slightest fluctuation in the  

system. Region 6 is the polymer rich phase (Rubinstein et al., 2003; Flory et al., 1954).   Tc and 

φc  represent the critical point of the binary mixture, and is the point where the binodal and 

spinodal  intersect,  and where  fluctuations  in  conformations  are  maximum.  Chain  length 

plays an important role in characterizing the phase diagram.  Tc decreases with decrease in 

chain length (Flory et al., 1954 ; Rubinstein et al., 2003; Crick et al., 2010; Pappu et al. 2007).

1.3 Objective
Investigations  have  shown  how  the  phase  diagram  of  protein  solutions  can  affect  the 

kinetics and mechanisms of nucleation, and the measurement of cloud-points can provide  

4



details on the attractive forces between the protein molecules (Galkin et al., 2001; Frenkel et  

al.,1997). Prior studies suggests that proteins disaggregate in superheated water, and hence 

the need for a simple, reliable equipment setup to study protein solutions in high pressure-

temperature  conditions.  Although there  have  been attempts  to  construct  instruments  to 

determine the cloud points (Szydlowski et al., 1991) , our instrument is unique in its design and 

construction,  which  is  based  on  our  needs  and  constraints.  In  conclusion,  studying 

temperature  induced  phase  transitions  is  an  effective  way  to  determine  the  strength  of 

protein interactions  (Lu et al.,  2003),  and this instrument will  help us gain insight on the 

process of aggregation.

1.4 High Pressure Cell

Phase separation information can be induced by increasing the pressure, temperature among 

others. Keeping the above concept in mind, a high temperature high pressure cell has been 

designed, which can be integrated with a laser for small angle scattering experiments. CCD 

camera is used for detecting absorbance or turbidity, and the results analyzed in MATLAB. 

Since there is a need to perform the experiments in superheated water, the optical cell is  

designed to hold 1 ml of  liquid,   and  tolerate  up to 200  0C  temperature and 3500 Psi 

pressure. The above range is again, based on the objective of the experiment, and the initial  

aim was to construct a cell that can withstand at least 200 0C and the pressure generated at 

that temperature and then modify the design to achieve higher temperatures and pressures. 

The cell is fitted with sapphire windows for  spectroscopic studies, and two cartridge heaters  

are fitted equidistant from the center of the cell, as heat sources. The heaters are connected 

to a power source, and  a constant wattage is supplied to the system.

J type thermocouple is used as the  temperature sensor, and the gaps are sealed with epoxy. 

The windows are supported on either sides by aluminum plates to protect against leakage. 

The detection and analysis is based on measuring absorbance or turbidity with the help of a 

camera. 
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A mercury lamp was used as a light source, and a charge couple device-camera to record 

videos of the  light emitted from the optical cell. The videos were analyzed in MATLAB, by 

converting formatted videos to a series of frames, and then studying the intensity profiles of 

different frames. 

To test the use and performance of the designed optical cell, reconstruction of the cloud 

point curves, for  PEG(Poly-(ethylene glycol)n-8000) -water system was attempted. Similar 

experiments  were  performed  with  polyglutamine,  and  CsgA-both  aggregation  prone 

proteins, to try and observe any phase changes or changes in chain-chain and chain-solvent 

interactions. 

Presented  in  this  thesis  is  a  detailed  account  of  the  design  and construction  of  a  high 

temperature high pressure cell, that can operate in superheated water regime also, the use of 

a detection setup, and the sensitivity of the same in comparison with a spectrophotometer. 

Initial results with  polyglutamine and CsgA are reported as well.
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Chapter 2

Design and Construction
Design  of  this  device  is  based  on  simplicity,  optimal  utilization  of  resources  and  easy 

workability.  Ideal volume of the cell is 1 ml, and the light path is 1 cm, which is critical for  

spectroscopic applications. The main components of the device include:

a)Metal body 

b)Optical element

c)Sensor

d)Heat source

e)Insulation

f)Sealing

2.1 Metal Body
The operation range of the device is 25  0C-200  0C, hence the body of the device must be 

sturdy, have a high thermal conductivity,  low thermal expansion, and low reactivity.

2.1.1 Thermal Conductivity

Thermal  conductivity,  k is  the  property  of  a  material  to  conduct  heat.  It  is  commonly 

defined as, the   amount of heat transmitted, over unit temperature gradient, in unit time 

under steady conditions in a direction normal to a surface of unit area. Based on the value of 

k, we evaluate the rate of heat transfer using the below equation:

ΔQ/Δt = kA (ΔT/h )  (2.1)
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Where ΔQ/Δt is the rate of heat flow, k is thermal conductivity,  A is total cross sectional 

area of the surface,  ΔT is the temperature difference and h is the thickness of conducting 

surface.  Since the ideal shape of the device is a cylinder, the volume 1 ml, and the optimal 

range of operation is 25 0C to 200 0C, the above quantities can be easily calculated.

  H = 1cm

                          Пr2h = 1                        

r = 0.5643 cm

A =  2Пrh + 2Пr2  = 5.5435 cm2

ΔT = 175 (ideal)

From the  below table  (Table  2.1),  it  is  clear  that  aluminium and copper  were  the  best  

options. Copper has more disadvantages, namely; its weight, ability to tarnish quickly and 

also dissipate heat slower than aluminium.  Aluminium, is cheaper and easier to work with 

and hence was the preferable choice. 

Number Metal K    (W/mK) ΔQ/Δt  ( W)
1 Aluminium 250 2425.28
2 C-Steel 54 523.86
3 Iron 80 -60 776.09-582.06
4 Stainless steel 16 -18 155.218-174.62
5 Copper 386 3744.63
6 Invar 10.7 103.8
7 Brass 151 1464.87
8 Kovar 16.3 158.12

Table 2-1. List of metals and their thermal conductivities. The above is a list of metals 

considered for the design, their thermal conductivity and the expected rate of heat flow for  

the considered design.
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2.1.2 Thermal Expansion

Matter undergoes a change in volume on heating due to an increase in atomic vibrations 

which  results  in  an  increment  in  inter  atomic  distance.  The  linear  thermal  expansion 

coefficient is  the measure of change in material length with increasing temperature. It  is  

given by the formula, listed below:

α = dl/(l*dT)            (2.2)

Where α is the linear thermal expansion coefficient, dl  is the change in length, and dT is the 

change in temperature. The change in dimension for a change in temperature of 175 0C , and 

a thickness of 1 cm is listed in the table below. Increase in temperature can generate 

detrimental internal stress, which might disturb the sealing and coerce a leakage. From the 

following table (Table 2.2), it is clear that in the operation range under consideration, the 

linear expansion of the metal is not going to play a big role.  Aluminium was chosen as the 

metal body for the optical cell.

Number Metal α  (10-6/0C) Change in Length(dl) in m
1 Aluminium 23 4.03E-005
2 C-steel 10.8 1.89E-005
3 Iron 11.1 1.94E-005
4 Stainless Steel 17.3 3.03E-005
5 Copper 17 2.97E-005
6 Invar 1.2 2.10E-006
7 Brass 19 3.33E-005
8 Sapphire 5.3 9.28E-006

Table 2-2. List of metals and their thermal expansion coefficient. The above is a list of 

metals considered for the design, their thermal expansion coefficient and the expected 

increase in length for the considered design.
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2.1.3 Chemical Reactivity

It is critical to consider  the reactivity of the metal used, since it is part of the solution 

chamber and, also  will be in direct contact with aqueous solutions. Aluminium is the metal 

under consideration, and possesses a valency of +3, implying it is relatively unstable vis-a-vis 

other heat conductive metals, and hence more reactive. However, aluminium has the ability 

to form an aluminium oxide, in the presence of oxygen, almost instantly. This acts like a 

protective layer, since the elecronegativity of oxygen enables the formation of strong 

covalent bonds making the layer inert, and stable. Hence the reactivity of the metal is not 

going to play a big role in any of the experiments. 

3Al   +  O2   --------->  Al2O3  

The above reaction occurs instantaneously, when Al comes in contact with air or water.

2.2 Optical Element

Spectroscopic studies of  aqueous solutions at high temperature and pressure in the region 

of  superheated  water  requires  optical  access,  or  windows  that  can  withstand  the  same 

conditions. The windows must be able to withstand physical stress and chemical corrosion,  

have a good transmission range,  scratch resistant, and easy to handle and seal. 

2.2.1 Window Material

The purpose of a window is to provide a clear aperture to transmit light. There are many 

materials that can be used, like BK7 glass, fused silica, quartz etc. Sapphire was chosen as the 

ideal material due to the following reasons.
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a)It  is  the best  choice  for scratch resistant applications  due to extreme surface hardness  

(Mohs=9; Vickers hardness: 2300).

b)Wider  transmission  range,  most  suitable  for  applications  with  laser  and visible  region 

(figure 2.1).

c)High thermal conductivity (k= 42 W/(mK)).

d)Due  to  a  large  structural  strength,  they  can  be  made  much  thinner  with  improved 

transmittance.

e)Low thermal expansion, hence the sealing will be easier. (α = 5.3*10-6/ 0C)

 

Figure  2-1.  Transmittance  range  of  0.25  mm  thick  Sapphire  window.  Range  of 

transmission for a 0.25 mm thick sapphire crystal, clearly indicating an increased level of 

transmittance for the visible spectrum. 

2.2.2 Window Size

The next  element  is  the  thickness  and diameter  of  the  pressure  windows.  As  discussed 

earlier, the volume of the  cell is 1 ml, hence the windows must have a diameter of 1.23 cm 
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or greater.  Considering  25% of the windows will  be used for sealing  and clamping,  the 

windows must have a diameter greater than the required specification. We chose windows 

with 1.725 cm diameter to give more space for clamping and sealing. The optical elements 

must be thick enough to withstand 200 0C and 3500 Psi, hence we used Yoder's (Yoder et al., 

2006;  Harris  et  al.,  1999)  formula  to  calculate  the  least  thickness  required,  for  clamped 

sapphire windows, with 1.725 cm diameter and a 90% clear aperture. 

tw = 0.5Aw[KwfsΔPw/Sf]     (2.3)

Where  tw  is the thickness of the window-which is to be evaluated, Aw is the unsupported 

aperture  diameter-  which  in  this  case  is  90% of  the  clamped diameter,  Kw  is  a  support 

condition constant and is equal to 1.25 if the window is unclamped and 0.75 otherwise, fs is 

the factor of safety and is considered to have a value- 4,  ΔPw  is the differential pressure-

which in this case is considered to be 3485.3 Psi (3500 Psi – 1 atm), Sf is the material fracture 

strength and is 300 MPa for Sapphire (Dunn et al., 1966).

tw = 0.5x0.9x1.725[0.75x4x3485.3/43511.31] =0.1865 cm

A window of diameter 1.725 cm and thickness 0.2 cm was chosen as the optical element for  

the cell.

2.3 Sensor

Equilibrium  phase  diagrams  of  polymer-solvent  systems,  represents  the  polymer 

composition as a function of temperature. A sensor to detect the temperature along with a  

system to detect phase transfer are basic requirements. A thermocouple or thermistor that is  

small enough to be in contact with the liquid and not hinder the light path, or disrupt the 

sealing, and is able to sense high temperatures is critical to this design. Thermistors usually  

have a longer response time (10-20 s); and a larger probe which is more difficult to handle.
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Hence a thermocouple was preferred. A thermocouple is a junction between two metals 

(usually alloys) , that produce a voltage proportional to the temperature difference which is 

read by a multimeter. 

2.3.1 Type of Thermocouple

There are many different types of thermocouples, each differentiated by chemical properties, 

melting point,  stability, sensitivity and output range.  Since our operation range was quite 

small (25 0C to 200 0C), more importance was given to the sensitivity of the thermocouple. 

The table below lists the different types of thermocouples and their sensitivity ranges (Beer 

et al.; 1981).

Number Type(ISA) Temperature 
range (0C)

Sensitivity( μV/0C) Material

1 E -270 ~1000 60.9 Ni-Cr & Cu-Ni 
2 J -210 ~ 1200 51.7 Fe & Cu-Ni 
3 K -270 ~ 1350 40.6 Ni-Cr & Ni-Al 
4 T -270 ~ 400 40.6 Cu & Cu-Ni 
5 R -50 ~ 1750 6 Pt & Pt-Rh 
6 S -50 ~ 1750 6 Pt & Pt-Rh 
7 B -50 ~ 1750 6 Pt-Rh & Pt-Rh 

Table 2-3. List of different types of thermocouples. From the above table it is clear that 

type E and J are more sensitive. Type J thermocouple was chosen based on cost efficiency. 

2.4 Heat Source

Heating element is the most critical part of the design. Heaters were chosen based on type,  

size, temperature range, power density, wattage tolerance, lead insulation, and resistance. 
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2.4.1 Type and Size

Cartridge heaters can be inserted into drilled holes, to heat metal blocks. Also, they provide  

high wattage in limited spaces, last longer, have a higher dielectric strength and shock and 

vibration resistance, hence were ideal for our study. The width of the channel is 1 cm (which 

is the path length), thus there is a size restriction on the type of heating element. Cartridge  

heaters are usually a few centimeters in length and a few millimeters in diameter, hence it 

was  an obvious  choice.  We chose  to use  heaters  that  were  1.5''  in  length  and 0.12''  in  

diameter, leaving enough room for the holes to be drilled on the metal.

2.4.2 Wattage and Watt Density

Cartridge heaters have a coiled resistance wire wound through a core, and the assembly is 

covered by a sheath, and they are all rated by wattage and Watt density for either 120 V or 

240 V operation.  We chose the highest  rated heaters for the required size,  also because  

wattage  can  always  be  derated  if  need  be,  and  a  good  power  density  was  required  for 

homogenous heat transfer. Heaters had a power density of 50 W/in 2  and a rating of 25 W 

for 120 V.

2.4.3 Other Specifications

The  tightly  compacted  refractory  insulation  around  the  coils,  provide  an  excellent  heat 

transfer to the stainless steel wall, which is responsible for resistance against corrosion. The 

coil is made of ceramic and is wound by nichrome wire, and has a maximum temperature of 

677 0C. The leads are made of insulated teflon. A tight fit is required for good heat transfer,  

hence the holes were drilled in accordance to the diameter of the heaters. The heaters were 

purchased from Omega Engineering, and the product code is CSS-01125/120.
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2.5 Insulation
Insulating the metal surface to make the instrument easy to handle, and prevent heat loss to 

the surrounding was imminent. After considering different insulating materials, we decided 

to use a hollow block of stainless steel  for outer support and connect the aluminium cell to 

the stainless steel using nuts and bolts. This will make use of air's insulatory properties, and 

also makes it easier to handle. Since the contact between the two metal surfaces is via small  

nuts, the heat transfer will be minimal. The following figure gives the cross-sectional view of  

the use of the hollow stainless steel block. 

Figure 2-2. Cross sectional front view of the arrangement. The above is a cross sectional 

diagram of the arrangement, A is the stainless steel block, B is the hex screw, C is the nut, D 

is the aluminium block and E is the solution chamber.
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2.6 Sealing

Keeping the chamber air tight is a critical part of the design, and hence it is important to seal  

the windows to the metal, well enough to withstand the high temperature and pressure. The 

windows are clamped to the metal, with the help of o-rings. We chose o-rings that are made 

out of teflon- a polymer that can withstand high temperatures (-23 0C to 325  0C). O-rings 

help in accommodating any changes for expansion of the metal, or the sapphire windows, 

giving more  flexibility in sealing.  The figure below is the cross sectional front view of the 

sealing and the use of o-rings. 

Figure 2-3. Cross sectional front view of the clamped windows.  The cross sectional 

diagram of the arrangement where, A is the metal, B is the teflon gasket, C is the window, D  

is the solution chamber.
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2.7 Construction

The device is constructed using an aluminium block (5 cm x 5 cm x 1 cm) as the core, a hole  

is drilled onto the center of the slab. Flanges are made on both sides of the metal piece to  

accommodate the windows and the o-ring. To prevent leakage and to add pressure to the 

window-metal interface, another circular metal piece is connected to the aluminium block by 

screws. Two holes are drilled onto the metal block to accommodate heaters. The heaters are  

connected  to  a  voltage  stabilizer  and  the  heaters  are  maintained  at  constant  potential 

difference, to ensure a steady flow of current. The thermocouple is inserted through the inlet  

port.  A hole  is  drilled onto the center of  the chamber,  and this  acts as  the inlet  to the  

chamber, and to keep the setup air-tight, a swage lock fitting was used at the inlet port. The 

swage lock fitting is a leak tight fitting, that will withstand high pressure, vibration, vacuum 

and temperature changes.  It consists of a cylindrical tube, fitted with a nut and a fitting  

block that sits on the ferrule. The fitting block and the cylindrical tube is used as an inlet..  

We also wrap the ferrule with tape to ensure tighter sealing. The figure below describes the 

components of the fitting.

 

 

Figure  2-4  Swage  lock  fitting:  Three  dimensional  diagram  of  the  swage  lock  fitting, 

consisting of a fitting block piece, that rests on a ferrule, which fits to a cylindrical tube, used 

to inject the sample.
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Swage  lock  fitting  also  allows  for  the  insertion  of  thermocouple  into  the  chamber,  the 

thermocouple is sealed onto the fitting using epoxy. The epoxy was chosen to withstand 

high  temperature  conditions,  resist  moisture  absorption  and  electricity,  possess  physical 

strength and chemical resistance, and was purchased from MG Chemicals,  product code: 

832HT.

2.7.1 Steps for Construction

The  following  are  the  steps  involved  in  the  construction  of  the  device,  describe  the 

arrangement of the above mentioned materials. 

a)Aluminium block was ordered from the online metal store, the slab was cut to required 

dimensions (5 cm x 5 cm x 1 cm) and a hole  of 1.25 cm diameter is drilled onto the center  

of the slab. This space acts as the solution chamber. Flanges of a few centimeters are milled 

on both sides of the block, to accommodate o-rings and the windows. Two channels, 0.15''  

in  diameter  and  1.5''  in  length  are  drilled  on  either  side  of  the  center  chamber  to 

accommodate the heaters. 

b)A circular plate of diameter 4 cm was cut from the slab, and a hole of 1cm was drilled onto 

the center of the plate.  Six hex screws (4-40) are used to screw the circular plate onto the  

metal block. 

c)The swage lock fitting is fitted on the top of the metal block- above the drilled center hole,  

after drilling a 1/8''  hole for the cylindrical  tube, the ferrule was locked onto the epoxy 

coated tube. 

d)  The  heaters  were  connected  to  the  voltage  stabilizers,  using  the  lead  leads  and  the 

thermocouple was connected to a digital temperature monitor. The following figures explain 

the final design in detail.
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Figure 2-5. Complete view of the cell alignment. A detailed step by step drawing of how 

the device was put together. 1 represents  the pins/screws, 2 is the circular plate, 3 is the  

sapphire windows, 4 is the o-ring, 5 is the metal block, 6 is the solution chamber 7 is the 

hole in the circular plate.
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Figure 2-6. Cross sectional front view. Front view of the device and it is drawn to scale, 

with exact measurements. The slot for the heaters are in dashed lines. 

Figure 2-7. Cross sectional left view. Left view of the device drawn to scale, with exact 

measurements. The slot for the heaters are in dashed lines.
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Figure 2-8. Isometric view.  Isometric view of the design from the south-west direction. 

21



Figure 2-9. Image of the device. (Above) Image of the device with a 1.5ml eppendorf 

tube and a 100ml beaker for size differentiation. (Below) Cell connected to heaters (leads 

grounded) and thermocouple.

22



Chapter 3

Detection and Analysis
We integrate  the  cell  with  a  absorbance/turbidity  based  detection  system as  mentioned 

previously. The light source used is a mercury lamp and next to the lamp is a filter, that 

filters 50% of  the light, and a diffuser followed by a pin hole adjustment. The cell is fixed on 

to an optical desk, in front of  the pin hole adjustment, a camera is fixed next to the cell. The 

camera  is  connected  to  a  computer  for  data  acquisition.  Videos  are  recorded  using 

VirtualDub, a software, and analysed in MATLAB. The following block diagram is a good 

representation of  the arrangement. 

Figure 3-1. Block diagram of the arrangement. Arrangement of the detection system and 

how the experiment was carried out.  Mercury lamp was used as the light  source out of 

convenience and availability. The experiment was carried out by adding the test solution to 

the cell and supplying a constant voltage. After the movies are recorded, they are edited on  

video editor, and analyzed in MATLAB. 
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Figure 3.2.  Image of the setup. (Above) Arrangement of the detection system. (Below) 

Zoomed image of the cell, covered by glass wool, connected to the thermocouple
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Green light is used to detect turbidity, and cloudiness is detected as a decrease in intensity of  

green light. We perform initial intensity analysis on a completely clarified liquid (water) and a 

completely cloudy liquid (concentrated milk), to get an idea of the change in intensity due to 

turbidity and also the sensitivity of the system. Apart from transmittance, we also capture 

real  time  videos  to  understand  the  individual  process,  once  a  change  in  absorbance  or 

transmitted light is observed. Since studying phase transitions and the process of aggregation 

is part of the objective, a direct observation of the process, in case of a change in transmitted 

light is essential. This is achieved by changing the source to white light and observing the  

changes on the CCD cameras. We use reflected light for direct capture and add in a 4X 

objective for focussing, also we place the camera on a micrometer stage to help in the same. 

By using this method, we can cross check the reasons for change in absorbance, and observe 

the process of changes responsible for an increase in turbidity.

The cell is cleaned with double distilled water, sonicated and rinsed with methanol. It is later  

vacuum dried, or dried in the oven at 150 0C for a few minutes. Aggregates of the proteins 

can adhere to the windows, and the cell is cleaned by sonicating the cell with RBS inside, or 

dilute acid. The cell can also be dismantled and re assembled if required, to replace any part  

of the cell. 

A syringe is used to add and remove samples. The voltage stabilizer maintains a constant  

wattage of  20 W. The wattage can be lowered or the current kept  constant,  to  observe 

changes at a particular temperature. 
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3.1 Image and Intensity Analysis
Green light from the mercury lamp was used as the light source. When the liquid is clear, we 

can observe a circular green spot on the screen, and as the temperature is increased, and 

when the mixture begins to cloud, the incident light leaving the cell produces a dimmer 

image as seen below. The following are pictures of the cloudy mixture and a clarified liquid.

Figure 3-3. Image of the video output. Two recorded images, the one on the left is the 

light,  after  passing through a clarified liquid.  The one on the right is  that  of  light,  after  

passing through a cloudy sample. Analyzing the intensity profiles of the above images will  

give us more information on the turbidity. Also, the blank image is a completely black image. 

All the results are normalized with respect to the blank image.
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3.1.1 Analysis in MATLAB

The following is the algorithm for analyzing the movie files. The movies  recorded are in .avi 

format, noise value is calculated from a blank movie file. The videos were recorded using the 

software  Virtual Dub, the videos were in yuy2 format, which is the format associated with 

webcam video files. MATLAB can read only the RGB formatted files, hence it is necessary 

to change the format of the video file, before loading it in MATLAB for further analysis. 

The recorded video were of the size 640 x 480 pixels ,and 30 frames were recorded per 

second to make the video. The following is the algorithm used for intensity analysis.

a) The total number of frames are determined, after reading the movie file in “.avi” - RGB 

(red green blue) format.

b) The movie is converted to the number of frames and the information of all the frames are 

stored in a separate file.

c) Intensity of black is zero and white is one. We extract information of pixels that have an 

intensity value greater than zero, and add it on to a new file with the noise value previously 

determined.

d) Analyze the new file, and sum the intensity values of each pixel of the 640 x 480 image.

e) Plot the intensity values of each frame with time.

f) Further analysis of different frames can be performed.

g) For coloured video files, the files were converted to black and white before analysis.
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3.2 Characterizing the Detection Setup

It is important to characterize our detection system, hence a few basic experiments were 

performed using milk as the sample.  Milk contains an innumerable number of dissolved 

particles, and is also an emulsion of a continuous colloidal phase. Hence the right sample to 

test the system. Two ml of two percent milk was taken and serially diluted (20 fold), and 

each  of  those  samples  were  tested  for  turbidity  using  our  system,  the  video  files  were 

recorded for half a minute and the total intensity analyzed. Also, the absorbance values of 

the same samples were obtained using the spectrophotometer. The results obtained from 

both the experiments correlated with each other, with not much difference. However, our 

system failed to detect highly concentrated samples due to extreme turbidity, which resulted 

in a zero intensity plot. Nonetheless, our system was effective in the region of interest and 

hence can be considered as a good enough scale to detect cloud points. Absorbance values  

increased with concentration of milk, and the Intensity values(transmitted light) decreased 

with  higher  concentrations  of  milk.  The  data  and relevant  graphs  are  presented  below. 

Observed images are presented in the Appendix.

Ratios of Dilution Absorbance Intensity(normalized)
1 2.434 6.9303
0.5 1.941 8.9023
0.25 1.1182 115770
0.125 0.5884 532230
0.0625 0.2902 850540
0.03125 0.1498 1068600
0.015625 0.0727 1217400

Table 3-1. Absorbance and Intensity values for serial dilution of milk . List of 

absorbance values  using spectrophotometer and the intensity values obtained by using our 

detection system for different concentrations of milk. 
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The ratios of  dilution was considered to plot the graphs, and the plots were non-linear. The 

CCD camera was unable to detect changes in very high brightness or very low brightness, 

however it was found to be very sensitive in detecting clouding. Most of  the experiments 

that were designed to be performed with this instrument were in the absorbance range of  1-

2 and below 0.5, and hence in this range, our detection system was sensitive enough to 

perform experiments.

From the graphs below, it is clear that there is no clear relationship between absorbance 

values and Intensity readings. However, there exists a good correlation and even 

proportionality between the two methods. The relationship between the absorbance and 

concentration is exponential, and the relationship between the total intensity values averaged 

over all the frames of  a 30 second movie, and concentration is logarithmic.

Figure 3-4. Absorbance vs Intensity.  The Intensity is sensitive, even at low absorbances 

of 0.1, however, loses sensitivity on increase in absorbance value beyond 1.
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We plot absorbance values of each diluted sample with its respective intensity. The above 

graph is  a  clear  representation of  the sensitivity  of  our  detection  system.  The system is  

sensitive even at absorbances, as low as 0.1 . And there exists a linear correlation between 

the  absorbance  obtained  via  spectrophotometer  and  the  intensity  obtained  using  video 

analysis,  this  lasts  till  an absorbance value of  1.  There is a decrease in sensitivity  of  the 

system,  beyond this  point,  however  since the objective  of  this  report  is  to detect  cloud 

points.  The  sensitivity  of  the  detection  setup,  over  the  range  of  operation  and 

experimentation was very high. 

3.3 Determination of Cloud Points for PEG(8000)

We measured  cloud  points  of  a  PEG-water  system.  PEG(8000)-water  system is  a  well 

studied and researched system, hence an obvious choice. The cell was designed to handle a  

maximum of 200 0C, and the UCST of PEG-8000 is at a much higher temperature, hence 

LCST was evaluated and the cloud points were plotted. Initially, water was heated inside the  

cell, and we were able to keep the water in a superheated state, at 175 0C. 10, 20, 30, 40, and 

50 percent (weight fraction) PEG-8000 aqueous mixtures were made, and the solutions were 

heated inside the cell, the videos captured were analysed. The values obtained matched the 

ones obtained by other theoretical and experimental methods  (Saeki et al., 1973; Bae et al,  

1991).  The following is an account of results for a 50% solution, a decrease in intensity is 

noticeable at a temperature of 146 0C, which drops to zero beyond that temperature. And on 

cooling  the  intensity  increases  again,  at  the  same  temperature.  Since  the  process  was  

reversible, it clearly indicated the detection of a cloud point. Firstly, the image analysis of the 

50% solution, followed by a complete intensity analysis.
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Figure 3-5. Turbidity of green light. Image analysis of heating 50% PEG solution. Frames 

at different temperatures, showing the clouding of the solution. Clouding begins at 146 0C 

and beyond 147 0C the screen can not detect any transmitted light. 
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Figure  3-6.  Image  analysis  of  cooling  50%  PEG  solution.  Frames  at  different 

temperatures, showing the clarification of the solution. The solution starts clarifying at 

146 0C,  and below 145 0C the screen transmits all the green light. 
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Figure 3-7. Direct video capture. Image analysis of heating 50% PEG solution.  Frames at 

different temperatures, each corresponding to a particular absorbance value.
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Figure 3-8. Direct Video Capture. Image analysis of cooling 50% PEG solution. Frames 

at different temperatures, each corresponding to a particular absorbance value.
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Figure 3-9. Intensity plot. Analysis of the heating and cooling of PEG 50% solution from 

temperature 145 0C to 147 0C and vice-versa. The above graph shows a dip in intensity value 

at 145 0C, which regains at 146 0C. 

Individual plots showing the increase in clouding and eventual clarification are shown below. 

These  experiments  were  performed for  other  concentrations  and the cloud points  were 

recorded. The plots for each of the concentration is available in the appendix of this record. 
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Figure  3-10.  Intensity  plot  of  heating  PEG  solution.  Intensity  values  at  respective 

temperatures.

Figure  3-11.  Intensity  plot  of  cooling  PEG  solution.  Intensity  values  at  respective 

temperatures.
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Figure 3-12.  Phase diagram of PEG (8000)-  water  system.  Partial  phase diagram of 

PEG-water system, showing cloud-point temperatures as a function of weight fraction of 

polyethylene glycol. Blue points constitutes the experimental values, and the red denotes the 

values obtained from Bae et al.

Cloud points were observed for different concentrations of the binary mixture, to plot the 

phase diagram and determine the LCST of the mixture. This diagram correlates with the one 

published by Bae et al. In 1991.  This analysis helps in validating the function of the cell and 

its use in constructing phase diagrams of other polymer-solvent systems.
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Figure 3-13. Phase diagrams for several PEG-water systems. A figure, from Bae et al.,  

1991, and displays the UCST and LCST for different PEG-water systems.  In the above 

figure, dark circles are for PEG molecular weight of 3.29E+3, and the dark squares are for 

PEG-8000 and the dark triangles are for PEG-14.4E+3. (Printed with permission)

The above correlation confirms the use and validity of the cell. However, the applicability of 

the  cell  for  protein  aggregation  studies  remains  to  be  tested.  Hence  the  following 

experiments were carried out.  The images and intensity plots of other concentrations  of  

PEG(8000)-water systems can be found in the Appendix.
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3.2 Studying Protein Aggregation

Many neurodegenerative diseases are characterized by protein aggregation, the process of 

phase separation in protein solutions, is due to a range of interactions (Dobson et al., 2004).  

As discussed previously, the phase diagram of a polymer-solvent system provides us with 

great  details  on  driving  forces  and  mechanisms  involved  in  polymer  aggregation.  Even 

partial  information on the equilibrium curves  can  help in  better  understanding of  IDP 

aggregation (Crick et al., 2010; Pappu et al. 2007). Unpublished data reveal that proteins tend 

to disaggregate in superheated water, and hence appropriate to study the same in a high 

pressure-high temperature cell.

 Domains of polyglutamine are part of various intrinsically disordered proteins and hence are 

associated with protein aggregation. One millimolar sample of polyglutamine (Q(40)KKKK) 

was prepared and heated in the optical cell, to understand the possibility of using the cell to  

study protein aggregation, also to try and gain insights on the critical temperature and phase 

transitions. Aggregates might not be precipitates but all precipitates are aggregates. Hence 

the presence of aggregates in solution can only be determined by a quantitative analysis of 

the  size  distribution.  However,  we  can  identify  the  presence  of  precipitates  using  our 

analysis,  and can possibly  integrate  the  system with a  small  angle  scattering  setup upon 

noticing an interesting change, to understand the complete process.

We also performed similar experiments with CsgA, a curlin subunit of  E. coli   involved in 

fibril  formation. Few aggregating proteins have been suspected to be monomeric at high 

temperatures, hence heating an aggregated solution, might help us gain critical details on this  

general perception. 

The polyglutamine sample is prepared by dissolving 5.04 mg protein in 1 ml water. The dried 

sample is dissolved in equal portions of trifluroacetic acid and 2-propanol, dried by nitrogen 
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and dissolved in 50 mM, pH 7 phosphate buffer  (Crick et al., 2006).  The sample is heated 

inside the cell, at a constant wattage of 20 W, and the absorbance changes are recorded.  

After  which,  a  real  time  video  is  subsequently  recorded,  to  better  understand  the 

phenomenon behind change in transmitted or  absorbed light. The changes that appeared in 

the system on heating beyond a temperature range, disappear on cooling, and hence can be 

reproduced in a single trial. At 30 0C, large aggregates of the sample settle at the bottom, and 

some stick onto the glass. As we heat the sample, during a period of 160 0C to 175 0C, the 

precipitates settled at the bottom start to disappear. To summarize,  initially the solution was  

completely cloudy, and on increase in temperatures the precipitates settled at the bottom and 

on further increase in temperature, the settled precipitates started to disappear. The figures 

below show corresponding direct video  images.

A similar experiment with CsgA was performed. Sample was prepared using 20mM, pH 7.2 

phosphate buffer. The concentration of the sample was 7 µM, and the sample was a month 

old, stored at 4  0C. Initially fibers were present inside the solution chamber, on heating in 

superheated water, at around 127 0C the solution turned cloudy, and remained cloudy till

187 0C, theoretically, this solution should eventually clarify. Also, on cooling, the cloudiness 

disappeared at the same temperature range. Hence this process was reversible, and could be 

part  of  the  equilibrium  curve.  For  better  understanding  of  this  process,  a  scattering 

experiment has to be performed. Images of the above process are displayed in the following 

pages.

40



Figure 3-14. Real time images of heating 1mM polyQ solution. Real time images for  a 

temperature range of 150 0C to 165 0C
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Figure 3-15. Real time images of cooling 1mM polyQ solution. Real time images for  a 

temperature range of 165 0C to 150 0C
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Figure 3-16. Real time images of heating 7 µM CsgA solution. Real time images for  a 

temperature range of 75 0C to 185 0C
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Figure 3-17. Real time images of cooling 7 µM CsgA solution. Real time images for  a 

temperature range of 185 0C to 75 0C
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Chapter 4

Discussion and Conclusions
The above is a report on developing an instrument setup to help quantify polymer-solvent 

phase  transitions  and  hence  gain  insights  on  IDP  aggregation  processes.  We  have 

successfully tested the use of  the cell for polymer physics studies. The plot of  cloud points 

of  PEG(8000)-water  system  establishes  the  use  of  the  device  for  constructing  phase 

diagrams.  Our  attempt  to  study  polyglutamine  and  CsgA  aggregation  needs  further 

investigation. Integration of  the system with a laser setup is required for further analysis, and 

quantification of  the above results on the same.

However, there are three main concerns that still needs to be addressed. Firstly, the heating; 

we  have  two  heaters  on  either  sides  of  the  cell  to  ensure  uniform  heating,  but  while 

performing  the  experiments,  we  were  able  to  see  convection  currents,  and  hence  the 

possibility of  unequal heating. This could be solved by better insulation or adding another 

heater. Also, we could possibly go to higher temperatures by modifying certain parts of  the 

design, like introducing another heater at the bottom of  the cell. 

Secondly, there is a concern for heat loss to the surrounding air, and hence increasing the 

power supplied to the system. For our experiments, we were able to cover the whole setup 

with aluminium foil but there still was a need to supply more power than required to increase 

the  temperature  of  the  system.  Hence,  further  experiments  will  be  carried  out  in  the 

presence of  glass wool or foam. We are going to use better insulation and cover the cell to 

prevent heat loss to the surroundings for other experiments. After using the cell with protein 

solutions, the aggregates might stick to the sapphire windows, and this can be cleaned by 

sonicating the cell with acid inside. 
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Thirdly, the effect of the rate of heating and cooling. The rate of heating in most of the 

experiments were much slower than the rate of cooling. Studying the effect of heating in 

cloud point determination is critical, before experimenting with protein solutions. Also, the 

effect of quick cooling and slow heating needs to be probed. The above can be done with 

better insulation, also the use of liquid nitrogen.

Our  experiments  with  polyglutamine  solutions(in  phosphate  buffer)  have  a  positive 

outcome. We were able to observe a  slow and gradual  change in the dissolution of  the 

aggregates settled at the bottom i.e. as the temperature is increased beyond 150 0C for 1 mM 

KKQ(40)KK, the chain-chain interactions start to decrease and there is an increase in chain-

solvent  interactions.  This  is  consistent  with  other  theories  of  polymer  physics  discussed 

previously.  .  From the intensity analysis,  it is obvious that there is a constant process of 

aggregate dissolution that is taking place inside the cell. This is the first step to a series of  

other  experiments  that  can  be  performed  at  different  concentrations  and  temperature 

regimes to construct the phase diagram. However, it is important to integrate the system 

with a laser to perform small angle light scattering studies to get any insights on the size 

distribution of the suspended molecules. This can also be used to better quantify the process  

of disaggregation.

The results obtained using CsgA protein, indicates the formation of another phase. Perhaps  

the presence of smaller aggregates, however, it is clear that 7 µM CsgA in phosphate buffer 

does not become monomeric even at 185 0C. Since this process is reversible, we suspect that 

this  process  is  part  of  the  equilibrium  curve  and  further  analysis  is  required  to  fully  

understand the process. Small angle scattering can be easily setup by integrating the current  

setup with a laser and a pin hole adjustment. This will help us focus light on one spot, and  

by analyzing the size of the image, and the distance of the camera from the cell, the angle of  

scattering can be easily determined. Thus a size distribution of the solution can be obtained.
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And hence there is a a lot of scope for what we can study using this optical cell. The ultimate 

aim is to completely construct the phase diagram of an IDP, to gain insight on the process  

of  IDP aggregation.  After  insulating  the  cell, the  homogeneity  of  heat  transfer  can  be 

determined  by  using  dyes  that  change  colour  with  pH.   Upon  heating  the 

solution,equilibrium of  water dissociation shifts towards the right and hence more H+ ions 

are released into the environment which decreases the pH of  the system. We plan to use  3  

dyes:a)bromothymol blue(t blue at 7.6 and above and yellow at 6 or below); b) Phenol red  

(red at 8.2 or above and yellow at 6.8 or below); c) bromocresol purple (purple at 6.8 or 

above and yellow at 5.2 or below) which change colour with a slight pH change and monitor 

the path of heat transmission. Hence there exists great potential for future studies with the 

above described instrument setup.
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Appendix 1

%Extract frames from a movie file and analyze overall pixel intensities
%clear all previously stored variables
% p is the intensity 
clear movie
clear p
close all
%Make sure you are located in the parent directory of the movie before
%running. Also, be sure to include the .avi extension.
MovieFileName = input('File name:','s');
%Noise is calculated from a blank movie, i.e. a movie without the 
presence of light
Noise =17.8;
%read avi file and get information from the movie
aviinfo(MovieFileName)
movie = aviread(MovieFileName);
% Determine how many frames there are and set the total to zero
NuOfFrames = size(movie, 2);
% Set the extents of the image, based on the size 
Rmin = 1;
Rmax = 480;
Rcmin = 1;
Rcmax = 640;
tic;
%initially run this outside since the frame size will not change
for frame=1
% Extract data from each frame of the movie
     thisFrame2=movie(frame).cdata(:,:,2);
     I(frame)=mean2(thisFrame2);
% Subtract the noise from the frame
    thisFrame=thisFrame2-Noise;
     I2(frame)=mean2(thisFrame);
% Make a new frame with 0 intensity
    [rows, cols] = size (thisFrame);
    newFrame = zeros(size(thisFrame));
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% Define a condition, add pixels that satify the condition into a new 
% frame
    for c = Rcmin:Rcmax
        for r = Rrmin:Rrmax
            if thisFrame(r,c) > 0
                newFrame(r,c) = thisFrame(r,c)+Noise;
            end
        end
    end
    p(1)=sum(sum(newFrame))
    imshow(newFrame)
end
% end timer
toc;
% Do the same for all the other frames of the movie
tic;

for frame= 2:NuOfFrames
    thisFrame2=movie(frame).cdata(:,:,2);
    I(frame)=mean2(thisFrame2);
    thisFrame=thisFrame2-Noise;
    I2(frame)=mean2(thisFrame);
    newFrame = zeros(size(thisFrame));
        for c = Rcmin:Rcmax
        for r = Rrmin:Rrmax
            if thisFrame(r,c) > 0
                newFrame(r,c) = thisFrame(r,c) + Noise;
            end
        end
    
end
    p(frame)=sum(sum(newFrame));
end
% Mean Intensity of the movie
Mean=mean2(p)
toc;
% Plot time versus intensity
plot((1:NuOfFrames)/24.97,p)
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