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The increasing world population, coupled with an improving quality of life, has driven a 

rapidly increasing demand for fuels, chemicals, and materials. Fossil carbon feedstocks, such as 

petroleum, are currently being consumed to meet these demands. The utilization of these 

feedstocks has negative impacts on human and environmental health, which are undoubtedly 

intensifying as a result of the increased reliance required to meet these demands. As an alternative 

way to meet these demands, biorefineries generate a wide range of fuels, chemicals, and materials 

from biomass, a renewable and sustainable resource. Current second-generation biorefineries use 

a plant-based feedstock, lignocellulosic biomass, comprised of three main components: cellulose, 

hemicellulose, and lignin. Second-generation biorefineries focus on converting cellulose and 

hemicellulose into fermentative fuels, discarding lignin as waste. Lignin is a complex and 

recalcitrant random co-polymer that is difficult to isolate and process, but it is comprised of 

molecular sub-unit structures that are analogous to many high value components of petroleum. If 

biorefineries are to compete against and mitigate the harmful effects of petroleum refineries, they 

must efficiently utilize all three major biomass components to increase product diversity, value, 

and yields. 
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This dissertation explores extracting and upgrading lignin to improve its utilization in 

biorefineries. The first study investigates the use of a series of organic solvent mixtures to extract 

usable lignin from the waste stream of an ammonia fiber explosion extraction (AFEX) biorefinery. 

It focuses on understanding the solvent characteristics that control the lignin yield and resulting 

physochemical properties. An ethanol:water mixture effectively separates lignin from the waste, 

with high yields and only minor chemical modifications. By utilizing a current waste stream, the 

technology is easily adopted without disrupting the biorefinery operation. The dissertation next 

explores the reactions occurring during organosolv pretreatment that control the lignin extraction 

efficiency, as well as reactions associated with key physiochemical characteristics. A ‘pseudo-first 

order in series’ reaction model was applied to nuclear magnetic resonance (NMR) data of extracted 

lignin and kinetics constants for lignin yields and the chemical moieties related to important 

physicochemical properties were elicited. This study provides guiding principles for designing 

future organosolv processes that obtain lignin streams with desired qualities. In a final study, 

Fourier Transform Ion Cyclotron Resonance High Resolution Mass Spectrometry (FT-ICR 

HRMS) is used to analyze lignin breakdown products after catalytic upgrading. FT-ICR HRMS 

overcomes many problems other characterization methods face, but a single analysis results in 

thousands of data points, making processing the data difficult, thus a petroleomic analysis is 

adopted to easily track key characteristics. In the study, FT-ICR HRMS and a petroleomic analysis 

are applied to a catalysis and stabilizing co-solvent system that effectively fragments the lignin 

while preserving important chemical moieties, as shown by petroleomic analysis of the FT-ICR 

HRMS data. All three of the technologies explored within this dissertation offer avenues to 

improve the technical and economic viability of biorefineries. 
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Chapter 1: Introduction 

1.1 Overview 

The increasing world population, coupled with an improving quality of life, has driven 

rapidly increasing demand for fuels, chemicals, and materials.1-3 Currently, most fuels, chemicals, 

and materials are derived from fossil resources,5 whose recovery, processing, and comsumption 

impose a high cost in terms of human and environmental health.1 While pollution from sources 

such as strip mining, ash ponds, and toxic discharge/leaks is detrimental to human and 

environmental well-being, a larger concern is the release of sequestered carbon from fossil 

resources in the form of carbon dioxide and methane, into the atmosphere, leading to irreparable 

global damage and climate change.9-14  The biorefinery is being considered as a promising option 

for producing energy, chemicals, and materials from sustainable resources and preventing the 

release of sequestered carbon. 

 A biorefinery is analogous to current petroleum refineries, housing several unit operations 

that together are capable of producing a wide-range of fuels, chemicals, and materials. However, 

instead of petroleum, biorefineries utilize biomass as the feedstock.3, 6, 15 Biorefineries combine 

integrated thermal, chemical, and biological conversion processes to efficiently utilize all of the 

materials and energy contained within lignocellulosic biomass. Biomass, as a feedstock for fuel, 

chemical, and material production, presents a sustainable carbon recycling pathway.  Sources of 

biomass and fossil carbon (i.e., petroleum, coal, and natural gas) both represent sequestered 

atmospheric CO2. However, the rate at which atmospheric CO2 is sequestered into fossil carbon 

sources is so slow in comparison to the rate of fossil carbon source utilization that sources of fossil 

carbon are not considered renewable, and their consumption is causing atmospheric CO2 
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accumulation at an alarming rate. By utilizing a feedstock such as biomass, whose rates of 

atmospheric CO2 sequestration and utilization are on similar time-scales, biorefineries provide an 

opportunity to meet growing energy and material demands while mitigating the impacts associated 

with fossil carbon-related atmospheric CO2 accumulation.  

 Current first-generation biorefineries produce mainly fuels (e.g., bio-ethanol) and have 

been introduced on a demonstration scale in several countries.16  Because first-generation 

biorefineries require feedstocks like food crops (e.g. corn, sugar cane, or sugar beets) that contain 

readily fermentable sugars, their large-scale and world-wide deployment could negatively impact 

food supplies and prices.16-17 Hence, efforts have shifted towards developing second-generation 

biorefineries, which utilize lignocellulosic materials ( e.g., agricultural and forest residues, as well 

as dedicated energy crops) that are abundant and cheap feedstocks.16 Lignocellulosic biomass is 

comprised of carbohydrates, made up of cellulose and hemicellulose, and lignin. Current second-

generation pilot-scale biorefinery outputs do not suggest that a large-scale biorefinery could meet 

the required process performance and cost metrics for profitable operation. To date, most second-

generation biorefineries rely on the fermentation of hydrolyzed sugars derived from carbohydrates 

to generate various products (e.g., ethanol 18-19, butanol 20, and long chain hydrocarbons 21-22), 

chemicals/monomers 23  (e.g., succinic acid 24 and lactic acid 25), and materials/polymers (e.g., 

polyhydroxyalkanoates 26). In the current processing paradigm, lignin remains relatively under-

utilized.6, 15  

1.2 Motivation  

 The utilization of lignin is crucial to the economic viability and minimal environmental 

footprint of biorefineries and the ultimate displacement of petroleum feedstocks. In an engineering 

analysis of the production process for a potential state-of-the-art bio-ethanol plant, where the lignin 
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is only burned for process energy, the minimum selling price for ethanol would have to be $2.15 

per gallon, equivalent to the performance of gasoline at $3.27 per gallon.27 In the analysis, lignin 

was burnt to produce electricity, providing a value of about $57 per ton of lignin, and very little 

other economic contribution to the overall viability of the biorefinery. 27 Yet because lignin is 

comprised of molecular sub-unit structures that are analogous to many high value components of 

petroleum (i.e., aromatic and phenolic compounds), it has been proposed as a potential source for 

the production of a wide-range of chemicals and materials.28 Smolarski et al. postulate that if lignin 

is converted into benzene, toluene, or xylene (BTX) at ~$1,200 per ton, or phenol at ~$1,800 per 

ton, the economics of a biorefinery are greatly improved. In fact, to meet 2022 US fuel targets, 

fermentative biorefineries would have to produce 16 billion gallons of second-generation biofuels 

from approximately 223 million tons of lignocellulosic biomass, generating a projected 62 million 

tons per year of lignin waste and providing a great economic opportunity.6 Nevertheless, there are 

still technological challenges to producing demanded volumes of lignin-derived chemicals at 

market rates. For biorefineries to be economically competitive, the development of second 

generation biorefineries that focus on the efficient use of lignin as well as the carbohydrate 

fractions will be needed to generate a broader portfolio of value-added products, similar to that 

derived from petroleum. Simply stated, more valuable products and a broader range of products 

must be efficiently derived from not only the carbohydrate fraction of biomass but also from the 

lignin fraction. Such product diversification will minimize the risk associated with “front-end” 

operations and mitigate fluctuations in commodity fuel markets.  
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1.3 Lignin 

1.3.1 What is lignin? 

 Plant cell walls are comprised of three major polymers: cellulose, hemicellulose, and 

lignin, respectively making up ~40-50%, ~10-30%, and 15-30% of the dry weight. Cellulose, 

comprised of glucose monomers joined by β-1,4-glucan linkages forms long (rectangular, 100-200 

nm long and 5-10 nm wide) fibril structures. Hemicellulose, comprised of several possible pentose 

and hexose sugars, typically connects the lignin and cellulose structures, as seen in Figure 1-1.  

Lignin, interwoven between the cellulose fibrils, provides structural integrity, facilitates vascular 

water transport, and is part of the plant’s native defense system.29-31 Plants have evolved a lignin 

structure that is inherently recalcitrant, rigid, and insoluble so that it provides structural support 

Figure 1-1. Simplified graphical representation of cell wall structure with the three main constituents, cellulose, 

hemicellulose, and lignin.8 (Reproduced with permission. Copyright 2010, American Chemical Society) 
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and is naturally resistant to biological and environmental mediated degradation. These same 

properties also make lignin difficult and, thus far, cost-prohibitive to industrially convert into 

value-added products.30  

1.3.2 Lignin structure 

Lignin is described as a three-dimensional, random, co-polymer network mostly comprised 

of variously linked hydroxycinnamyl alcohol monomers, differing mainly in their degree of 

methoxylation (e.g., coniferyl, sinapyl, and p-coumaryl alcohol). Lignification of the plant cell 

wall is mediated through radical coupling reactions. The lignin monomers are enzymatically 

dehydrogenated to produce radicals that are then excreted into the plant cell wall, where these 

radicals undergo uncontrolled radical-coupling polymerization to produce a lignin molecule that 

is primarily linear but contains some branched polymer topologies.29 Typically, coniferyl, sinapyl, 

and p-coumaryl alcohol monolignols are incorporated into lignin as guaiacyl (G), syringyl (S), and 

p-hydroxyphenyl (H) moieties (i.e., phenylpropanoid units), as shown in Figure 1-2. Since the 

Figure 1-2. Hydroxycinnamyl alcohol monomers in the biosynthesis of lignin and their resulting lignin moieties.7 (Figure is 

reproduced under Creative Commons CC BY License) 
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radical coupling between the monomers is uncontrolled, the polymerization results in a number of 

different inter-unit linkages. Several of the common types are illustrated in Figure 1-3, and a 

representative lignin molecule is depicted in Figure 1-4. 

In response to both genetic and transcriptional (i.e., environmental) factors, the 

composition and quantity of lignin varies significantly from species to species, although large 

variations in lignin composition and quantity are also observed genotype to genotype, between 

clones, and even between different tissues within the same plant.29-30 Although the exact structure 

of lignin varies greatly, hardwood lignin tends to have a high methoxy content, consisting of 

roughly equal amounts of guaiacyl and syringyl units; softwood lignin is mainly guaiacyl units; 

and grass lignin is composed of similar amounts of guaiacyl and syringyl units, along with some 

p-hydroxyphenyl units.29  

Figure 1-3. Types of linkages between dimers in lignin.4 



7 

 

The variation in lignin structure and inter-unit linkage distributions is, in part, due to 

biosynthesis genes and environmental factors, but is largely due to the random nature of radical 

coupling reactions and the apparent lack of biochemical control of lignin synthesis.29-31 Certain 

inter-unit linkages, however, have favorable thermodynamic energetics, and thus are present at a 

higher percentage within the cell wall. Major inter-unit linkage distributions in the lignin of 

softwoods and hardwoods are shown in Table 1-1.29 The most frequent inter-unit linkage is the β-

O-4 (an aliphatic-aryl ether) linkage, comprising about half of the total linkages in both softwood 

and hardwood lignin.29 The formation of C-O bonds is favored over the formation of C-C bonds, 

Figure 1-4. Graphical depiction of a possible lignin structure.4 
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thus, the β-O-4 linkage is the most prevalent linkage formed. Hardwood lignin has a slightly higher 

percentage of β-O-4 linkages than softwood lignin, due to the greater number of syringyl units, 

which have a lower chance of forming β-5, 5-5, and 4-O-5 linkages during lignification due to the 

protection of the additional methoxy group. The resulting functional groups associated with the 

various lignin substructures, inter-unit linkages, and terminal sites (i.e., methoxyl, phenolic and 

aliphatic hydroxyl, benzyl alcohol, non-cyclic benzyl ether, and carbonyl groups) have major 

influences on the solubility, reactivity, and fractionation of lignin.15 For example, the β-O-4 

linkage is one of the most easily cleaved chemically; however, linkages with C-C bonds, such as 

β-5, β-β, 5-5, and β-1 linkages, are more resistant to chemical degradation.  

The overall structure and structural subunits of lignin (including their heterogeneity) 

evolved in plants over millions of years, in part as a defensive structure to protect cell wall 

carbohydrates from fungal and microbial attack and/or to protect the plant from chemical 

degradation by the environment. This evolved recalcitrance, inherent structural heterogeneity, and 

plant-to-plant variability of lignin represents a major obstacle to harnessing lignin efficiently for 

the production of desired and specific chemicals. 32-33 

            Table 1-1. Percent of inter-unit linkages in softwood and hardwood lignin.15 

Linkages Softwood (spruce) Hardwood (birch) 

β-O-4, aryl ether 46% 60% 

α-O-4, aryl ether 6-8% 6-8% 

4-O-5, diaryl ether 3.5-4% 6.5% 

β-5, phenyl coumaran 9-12% 6% 

5-5, biphenyl 9.5-11% 4.5% 

β-1, 1,2-Diarylpropane 7% 7% 

β-β, Resinol 2% 3% 

Others 13% 5% 
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1.4 Biorefineries 

At the turn of the 20th century, the petroleum industry started by producing an alternative for 

lamp oil, kerosene, to meet one of the main energy needs of the time. Gasoline and other petroleum 

products initially were waste.34  Similarly, at the turn of the 21st century, biorefineries initially 

focused on replacing one of the main energy demands of our time, transportation fuels, especially 

gasoline and diesel. Lignin is currently a waste product, useful only to generate process heat, but 

as the early petroleum refineries discovered, biorefineries have also realized that waste streams 

can be turned into a variety of profitable products.35  

A current second-generation biorefinery utilizes three basic processes: (1) feedstock 

pretreatment, (2) hydrolysis and fermentation, (3) and product separation. The initial process, 

feedstock pretreatment, typically includes two steps: first, mechanical size reduction, and then a 

chemical pretreatment. Pretreatment reduces the natural resistance of carbohydrates within the 

biomass to deconstruction and increases enzymatic sugar yields, typically by increasing enzymatic 

Figure 1-5. The two main process flows for second-generation biorefineries, providing the opportunity for lignin recovery6  

(Reproduced with permission. Copyright 2014, American Association for the Advancement of Science) 
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access to the cell wall cellulose via biomass pore structure expansion or lignin/hemicellulose 

removal. The carbohydrate-rich fraction then undergoes hydrolysis, either enzymatic or chemical, 

to break it into sugars. The remaining solids (i.e., residual lignin, enzymes, and unhydrolyzed 

carbohydrates) are separated at this point. The sugar-rich stream is then fed to microbial systems 

to be fermented into products. The final step is to separate the desired products from the waste or 

recycle streams. While each step is critical to achieving overall process efficiency, the pretreatment 

process has the largest effect on the biorefinery. 

1.4.1 Current Technologies 

 In the early stages of development, second generation biorefineries adopted many 

technologies from the pulp and paper industry, which had long made high quality cellulose fibers 

from lignocellulosic material. Several different pulping processes (e.g., Kraft pulping, alkaline 

pulping, sulfite pulping, organic solvent (organosolv) pulping, and steam explosion) were adopted 

as pretreatment methods to increase enzymatic hydrolysis yield and rate via delignification, with 

little concern for the resulting lignin structures. These pretreatments have since been modified into 

other biomass fractionation technologies, designed to separate cellulose, hemicellulose, and lignin 

cell wall components for downstream recovery of all or some of the fractions of biomass.  In 

general, many biomass pulping, fractionation, and pretreatment technologies (for example, 

organosolv pulping, organosolv extraction, or organosolv pretreatment) differ only in their process 

severity and applications. For example, biomass pretreatment is designed to reduce the inherent 

resistance of biomass carbohydrates to enzymatic hydrolysis via delignification with little regard 

for the removed lignin fraction. Whereas an extraction process is lignin-focused by design. Each 

delignification process creates a lignin stream with different molecular modifications, affecting 

not only the molecular structure and chemistry of the fractionated lignin but also the resulting 
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molecular/physical (e.g., size, reactivity, and solubility), mechanical, and thermal properties, and 

ultimately possible end uses. 36-39   

This dissertation explores two approaches to separating lignin and the carbohydrate fractions 

of lignocellulosic biomass that limit the detrimental effects of the pretreatment/extraction process 

on the resulting lignin. The first pretreatment/extraction process explored is ammonia fiber 

expansion (AFEX). It offers several advantages, such as milder processing conditions (120 oC), 

significant recovery and reuse of the ammonia catalyst, minimal water utilization, and increased 

enzymatic hydrolysis yields (80-90%) at industrially relevant high solid loadings (18% or 

higher).40 Most importantly, for further unhydrolyzed solids (UHS) and lignin utilization, AFEX 

pretreatments minimize alterations to native lignin linkages and functionalities.41-42 The other 

process explored in this dissertation is organosolv processing, extracting lignin from 

lignocellulosic material with an organic solvent system. Originally developed to be more 

environmentally friendly than Kraft or sulfite pulping, it produces a less modified lignin stream.43  

Organosolv extractions are highly dependent on the organic solvent used and its acidity, water 

content, solubility parameter, and polarity.44-48 The temperature and time profile of the extraction 

also has a significant effect on organosolv extractions of lignin.49-50 Generally, organosolv 

processes have been optimized either as a pretreatment to maximize enzymatic sugar yields and 

bioethanol production or as a pulping method to isolate cellulosic substrates and maximize 

cellulosic substrate yield and quality, while providing an option for lignin optimization.51-53 Both 

of these processes produce a minimally altered and clean (i.e., free of carbohydrates and without 

contamination, such as sulfur) lignin, making them ideal pretreatments for advanced second-

generation biorefineries.  
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1.5 Downstream Processes 

 Lignin has a naturally complex structure that only increases in complexity and variety 

during extraction processes, thus further complicating the use and our understanding of lignin.54 

Extracted lignin contains a variety of inter-monomer linkages, some of which are specific to the 

extraction process, linkage sequence, molecular weight, and topology, with varying chemical 

reactivities.55-58 There are few direct uses for extracted lignin, thus further upgrading is typically 

required to produce base chemicals that can be ‘dropped in’ to current processes producing higher 

value chemicals, fuels, or materials.  Isolated lignin streams for the production of chemicals can 

undergo two processes: depolymerization and upgrading. Depolymerization selectively breaks 

inter-unit linkages and prevents unwanted linkages from forming. Upgrading modifies 

functionality and chemical moieties into more desirable chemical moieties.  There are several 

current methods by which lignin streams are depolymerized and upgraded, typically varying only 

in process intensity: thermal methods (i.e., pyrolysis or gasification), catalytic oxidative or 

reductive fragmentation, and solvolytic cleavage. Typically, the more selective the process, the 

lower the yield of desired product. All the processes yield a large range of desired and undesired 

products.59-62 Two of the challenges in designing and optimizing technologies for lignin 

valorization are accurately understanding the molecular structures and the overall composition of 

lignin-derived products.  

Currently, several methods are used to characterize lignin and lignin-derived products. Gel 

permeation chromatography characterizes the size distribution of the lignin molecules, indicating 

the progress of depolymerization processes, but provides no chemical information.  Nuclear 

magnetic resonances (NMR) can give very detailed structural information, but requires a large 

sample size and gives only averages across a sample. For sufficient sample amounts, several 

different NMR techniques are useful in characterizing lignin-derived products. Carbon (13C) NMR 
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can provide quantitative information on the types of chemical moieties and can also provide 

information on specific inter-unit linkages, using 2D NMR techniques such as 1H-13C 

heteronuclear single quantum coherence (HSQC).   Gas chromatography, typically coupled with 

mass spectroscopy, is another commonly used technique for analyzing the volatile components of 

the product mixtures. Unfortunately, many components of the lignin-derived products, which are 

oligomeric, oxygen-rich, and polar, are not volatile enough to be separated.63 Additionally, typical 

mass spectrometers do not have the resolution to separate all the components.  Liquid 

chromatography is used to overcome the challenge of the lower volatility of many lignin 

breakdown products, but typically it cannot separate the mixture adequately and takes an 

impractically long time for a single sample.  

Fourier-transform ion cyclotron resonance with high resolution mass spectroscopy (FTICR-

HRMS) offers a detailed understanding of lignin breakdown products. Short run time, high 

sensitivity, high resolution, and ability to analyze larger molecular weight molecular analytes make 

FTICR-MS a powerful tool for analyzing lignin breakdown products.  Although FTICR-HRMS is 

only semi-quantitative due to the ionization bias of individual compounds, by utilizing several 

different ionization methods a more complete picture of the compounds within a lignin-derived 

mixture can be obtained.64 

1.6 Objectives and Approach 

The main objective of this dissertation is to study technologies that improve lignin utilization 

and valorization within a biorefinery. The dissertation explores three different technologies, two 

processes and a lignin characterization method, all with the potential to improve lignin utilization 

within biorefineries.  
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 Study 1: The first study explores a route to better recover and use lignin from a common 

waste stream of second-generation biorefineries. Unhydrolyzed solids (UHS), the post-enzymatic 

hydrolysis waste stream from an AFEX process, were extracted with a series of solvents. The 

lignin from the four highest yielding solvent extractions was highly characterized to develop value-

added product streams.  

Study 2: The second study examines adapting a common pretreatment process, organosolv, 

as an extraction process. A key aspect is developing a deep understanding of the lignin reaction 

kinetics during the extraction, so that a process can be designed with a desired lignin in mind, 

instead of the resulting carbohydrates, as in a pretreatment. 

Study 3: The third study utilizes FTICR-HRMS to analyze lignin and lignin breakdown 

products from catalytically depolymerized, organosolv extracted lignin. FTICR-HRMS provides 

a comprehensive picture of the products resulting from three time series of depolymerizations, (1) 

catalytic depolymerization, (2) catalytic depolymerization with a stabilizing co-solvent, and (3) a 

depolymerization without any catalysis as a control. 

1.7 Dissertation Outline 

This dissertation contains five chapters: an introduction to the field of biorefineries, a chapter 

on each study, and a chapter describing my thoughts on the future direction of the biorefinery field. 

References are provided at the end of each chapter, with some references cited multiple times 

within the dissertation. 

  The first chapter gives a broad overview of lignocellulosic biomass and biorefineries, along 

with several state-of-the-art technologies for biorefineries. The motivation, specific objectives, and 

layout of the dissertation are also presented in this chapter. The second chapter is based on Study 

1, exploring a new process to be added onto existing second-generation biorefineries that utilizes 
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a waste stream to produce a useful lignin stream. An AFEX biorefinery process is used as a model 

system to exhibit the potential of the new process. The third chapter is based on Study 2, adapting 

an organosolv pretreatment to a lignin extraction process, shifting the processing paradigm to 

emphasize lignin rather than carbohydrates. Understanding the lignin reaction kinetics occurring 

during organosolv extractions will allow the process to be designed to optimize the lignin product 

stream. The fourth chapter details Study 3, FTICR coupled with high resolution mass spectroscopy 

that tracks the chemical makeup of different lignin depolymerization mixtures with a level of detail 

that is hard to gain by any other means. The final chapter delivers a perspective on the future 

directions of the field. It discusses possible lignin extraction technologies and avenues for 

upgrading lignin streams into value-added products.  
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Chapter 2: Isolation of Lignin from 

Ammonia Fiber Expansion (AFEX) 

Pretreated Biorefinery Waste 
 

This chapter was adapted from the following publication: 

Meyer, James R., et al. "Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated 

biorefinery waste." Biomass and Bioenergy 119 (2018): 446-455. 

 

2.1 Abstract 

Rapidly improving the efficiency of biorefineries and lignin utilization requires adapting 

technologies from existing processes. This chapter describes experiments to isolate lignin from 

unhydrolyzed solids (UHS), a by-product stream of second-generation biofuel production, with 

organic solvent solutions. Under reflux conditions, aqueous solutions of acetone, ethanol (EtOH), 

acetic acid (AcOH), and γ-valerolactone (GVL) displayed approximately 53, 51, 53, and 65 % 

yields of extractable solids, respectively, from corn stover UHS after ammonia fiber expansion 

(AFEX) pretreatment and subsequent enzymatic hydrolysis. Detailed chemical characterization, 

including nuclear magnetic resonance, gel permeation chromatography, and thermogravimetric 

analysis, showed that material extracted from UHS using EtOH:H2O and acetone:H2O contained 

a lignin fraction that most resembled native lignin; although, the material extracted using 

acetone:H2O contained a significant carbohydrate component. These results suggest that solvent 

polarity, rather than solvent reflux temperature, is a more significant factor determining the mass 

yields of extractable solids from UHS.     
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2.2 Introduction 

 As second-generation biorefineries start to come online, it important to remember that it 

has taken years of engineering, financing, and construction to accomplish. In many current 

pilot biorefineries, the potential of lignin is not fully realized.1-2 Therefore, to quickly 

implement lignin upgrading technology, existing material streams and process designs must 

be adapted. This chapter describes how such an adaptive approach can upgrade a waste 

stream into a potential source of valuable fuels, chemicals, and materials. 

 An ammonia fiber expansion (AFEX) pretreatment was used as the model system 

because it is currently in pilot-scale development as a lignocellulosic biomass pretreatment 

technology for second-generation bioethanol production. AFEX pretreatment is known to 

increase total enzymatic sugar yields from and enzyme accessibility to lignocellulosic cell 

wall carbohydrates, via fiber decompression as well as hemicellulose and lignin 

solubilization/rearrangement.3 AFEX offers several advantages over other pretreatment 

technologies, such as milder processing conditions (120oC), significant recovery and reuse 

of the ammonia catalyst, minimal water utilization, decreased production of fermentative 

inhibitory compounds (e.g., hydroxymethylfurfural, furfural, lignin degradation products), 

and increased enzymatic hydrolysis yields (80-90%) at industrially relevant high solid 

loadings (18% or higher).4 Most importantly, the milder processing conditions utilized in 

AFEX pretreatment limits the modification of lignin.  

   In previous efforts, an AFEX pretreatment was modified (i.e., extractive ammonia (EA) 

pretreatment) to facilitate enzymatic hydrolysis and generate a lignin-rich ammonia 

extractive product.5-6  This ammonia-soluble lignin-rich extractive, easily isolated from the 

pretreatment solvent via evaporation, could potentially undergo water/ethanol-based 

fractionation to produce several lignin product streams with attractive commercial 
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applications. Yet, following enzymatic hydrolysis of the AFEX pretreated biomass, the 

unhydrolyzed solids (UHS) left behind, which are enriched in lignin (up to 50%), remain 

under-utilized.4 The lignin-rich UHS is similar to the industrial lignin cake produced during 

second-generation biofuel production. Thus, to generate co-products from the lignin in 

UHS, AFEX pretreatment and its reduced severity (e.g., time, temperature, and pH), is ideal 

because the lignin structure appears very similar to ‘‘native’’ lignin.3, 5 

 A typical AFEX lignocellulosic biorefinery, processing 2000 tons of biomass per day, 

will leave behind approximately 400 to 450 thousand tons of UHS in a year.4 For maximum 

economic efficiency of an AFEX biorefinery, the production of value-added products from 

soluble lignin isolated from UHS (by removing residual carbohydrates).7 For example, the 

mild depolymerization of lignin into renewable aromatics is dependent on the removal of 

carbohydrates and the abundance of ether lignin monomer linkages.8-13. Similarly, the 

thermo-rheological behavior of lignin, which determines its melt-processability and 

mechanical properties (e.g., lignin-derived carbon fibers), is highly affected by the presence 

of residual carbohydrates and the abundance of non-native condensed (C-C) lignin 

monomer linkages.14  The isolation methods applied to fractionate the lignin and residual 

carbohydrate fractions in the UHS tend to have more significant impacts on the structure 

and quality of the extracted lignin than the AFEX pretreatment. Basically, the processing 

history of lignin can highly affect its downstream processing and applications.  

 The thermal, physical, and chemical properties of the extracted lignin, and thus its 

quality and applicability for specific applications, depend not only on the structure of the 

lignin within the UHS, but also on the isolation method and conditions used to remove 

unwanted carbohydrates, proteins, and ash in the UHS from its lignin fraction.  While lignin 
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extraction from lignocellulose 15-16 or black liquor 17-18 has been extensively explored, 

lignin extraction from residues after pretreatment and enzymatic hydrolysis 19-20 has 

garnered only limited attention.  

 In this chapter, various organic solvents under reflux were screened for the extraction of 

lignin from UHS generated by the enzymatic hydrolysis of AFEX-pretreated corn stover. 

The goal was to understand the effect of solvent on the extraction of lignin from UHS and 

on the resulting structure and properties of that lignin.  

2.3. Materials and Methods 

Scheme 2-1: Schematic diagram of the lignin isolation process from UHS after the modified AFEX pretreatment 

and enzymatic hydrolysis with an acetic acid:H2O (2:1) solvent system. 
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2.3.1. Materials  

Corn stover (Pioneer 36H56), harvested in September 2010 in Wisconsin (USA), was oven 

dried at 50 C for approximately two weeks. The biomass was further passed through a 5 mm 

screen installed in a Christy hammer mill (Christison Scientific LTD, England) and stored at 4 C 

in heat-sealed bags prior to utilization. The moisture content of the dried and milled corn stover 

was approximately 6% on a wet weight basis. On a dry weight basis, we experimentally determined 

that the untreated corn stover contained approximately 31% glucan, 19% xylan, 1% galactan, 3% 

arabinan, 13% Klason lignin, 1% acid soluble lignin, and 13% acid insoluble ash. All chemicals, 

buffers, and fractionation solvents used in this chapter were purchased from Sigma Aldrich (St. 

Louis, MO, USA). The enzymes Cellic® CTec2 (138 mg protein/mL, batch number VCNI 0001) 

and Cellic® HTec2 (157 mg protein/mL, batch number VHN00001) were generously provided by 

Novozymes (Bagsvaerd, Denmark), and Multifect Pectinase® (72 mg protein/mL, batch number 

4861295753) was generously provided by DuPont (formerly Genencor, Palo Alto, CA). The 

protein concentrations of the enzymes were determined by estimating the protein content (and 

subtracting the non-protein nitrogen contribution) using the Kjeldahl nitrogen analysis method 

(AOAC Method 2001.11, Dairy One Cooperative Inc., Ithaca, NY, USA). 

2.3.2. Methods 

2.3.2.1. Ammonia Fiber Expansion (AFEX) Pretreatment 

 The AFEX pretreatment was carried out as previously described.21 Pretreatments were 

conducted at a 1:1 ammonia-to-biomass ratio (dry biomass weight basis) with 60 wt% 

biomass moisture and run at a temperature of 120 C for a residence time of 30 min. The 

pretreated biomass was stored dried (at 10 wt% moisture) in zip sealed bags at 4 C in a 

refrigerator prior to further usage.  
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2.3.2.2. Enzymatic Hydrolysis 

Enzymatic hydrolysis of the AFEX pretreated corn stover was performed at 6.0% glucan 

loading. The enzymatic hydrolysis was carried out for 96 h in a 4L bioreactor at 50 C, with a 

buffered pH of 4.8. A total protein loading of 20 mg protein per g biomass was used. The 

commercial enzymes and their respective dosages used were Ctec2 (28.5 mL per kg CS), Htec2 

(16.0 mL per kg CS), and Multifect Pectinase (38.2 mL per kg CS), based on values described 

previously.21 The mass balance around the enzymatic hydrolysis was constructed as described 

previously.21  

2.3.2.3. Isolation of Extracted Materials from Unhydrolyzed Solids (UHS) 

To remove adsorbed sugars and proteins, the UHS obtained after enzymatic hydrolysis 

were washed three times (100 mL for 10 g) with distilled water. Each time, the slurry was stirred 

for 3 h and centrifuged at 4000 rpm for 30 min. The UHS was dried at 80 C for 48 h and then 

milled through a 0.1 mm sieve. The desired amounts of UHS (10 g) and solvent (200 mL) were 

refluxed for 24 h as shown in the schematic representation of Scheme 1 (yields are reported in 

Table 1). After refluxing, the solids were filtered and washed with distilled water (200 mL). The 

filtrate was washed twice with 100 ml of hexane and dichloromethane (except for extractions 

involving GVL and GVL:H2O) to remove impurities like fatty acid sugars, and then concentrated 

to 50 ml under vacuum in a rotary evaporator at 50 °C. Next, 10 mL of water was added and the 

filtrate was centrifuged at 4000 rpm. The centrifuged solids were lyophilized. In the case of 

extractions involving GVL or a GVL:H2O mixture, after the filtrate was concentrated under 

reduced pressure, ethyl acetate was added to precipitate the lignin, and the entire mixture was 

centrifuged at 4000 rpm for 30 min, and then lyophilized. For all the mixed solvent systems (i.e., 

benzene:EtOH, acetone:H2O, EtOH:H2O, glycerine:H2O, GVL:H2O, and AcOH:H2O) a 2:1 
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volume ratio of organic solvent to water was used. The solvents were chosen based on solvent 

polarity, boiling point, and pH. 

2.3.2.4. Isolation of Standard Lignin  

The standard lignin sample (used as a control) was prepared according to the reported 

procedure of Guerra et al. and Holmtman et al.22-23 The UHS was extracted with dioxane: H2O 

(96% dioxane by volume) in a shaker at 100 rpm for 24 h at 27 °C in the dark. This extraction was 

performed three times, each time using 200 ml of solvent per g of UHS. The dioxane: H2O extracts 

were combined, and the solvents were removed at 35°C under reduced pressure. The solid lignin 

was then dissolved in 90% acetic acid (50 mg/ml) and precipitated in deionized water. The 

precipitated lignin was freeze dried, dissolved in 1,2 dichloroethane:ethanol (2:1 v/v), and 

precipitated in hexane, then washed with cold hexane. The sample was dried overnight at 40C. 

The yield of standard lignin extracted from UHS through this procedure was 12.6% ± 0.5%. 

2.3.2.5. Determination of Carbohydrate and Lignin Content 

 The carbohydrate, acid insoluble lignin, and acid insoluble ash contents of UHS and the 

materials extracted from UHS were measured according to methods reported by NREL24-

25. Carbohydrate analysis was conducted using high performance liquid chromatography 

(HPLC) equipped with an automatic sampler (LC2010; Shimadzu Scientific Instruments, 

Columbia, MD, USA) and refractive index detector (Waters RI Detector, 410; Waters 

Corporation, Milford, MA, USA). A two-stage hydrolysis protocol was employed on UHS 

and extracted lignin to convert structural carbohydrates into monosaccharides. Stage one 

of the carbohydrate digestion involved using 72% sulfuric acid at 30 °C for 60 min, while 

stage two began after dilution of the acid to a 4% concentration and included heating to 121 

°C for 60 min. The released monosaccharides were profiled using an HPLC and HPX-87H 
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Aminex column (Bio-Rad, Hercules, CA, USA) maintained at 65°C, with a 5.0 mM sulfuric 

acid-based mobile phase (flow rate of 0.6 mL/min). Total glucan, xylan, and arabinan 

values were calculated from the released monosaccharides (i.e., glucose, xylose, and 

arabinose) concentrations based on quantification by external standards. The Klason or acid 

insoluble lignin contents were the solids that remained after the two-stage hydrolysis 

protocol and after correction for the mass of residual acid insoluble ash. Acid-insoluble ash 

contents were determined based on the weight loss that occurred after dry acid-insoluble 

lignin was heated in a muffle furnace at 575 °C for 24 hours.  Duplicate carbohydrate, acid-

insoluble lignin, and ash content analyses were performed, and the averages were rounded 

to the nearest whole number. Standard deviations for all values were less than one percent. 

2.3.2.6. Gel Permeation Chromatography (GPC) Analysis 

 Before gel permeation chromatography analysis, the materials extracted from UHS were 

acetylated according to a slightly modified published procedure.26 In brief, the dried 

extracted material from UHS (15 mg) was dissolved in a 1:1 (v/v) mixture of acetic 

anhydride/pyridine (2.00 mL) and stirred at room temperature overnight. Anhydrous 

ethanol (5 mL) was then added, and after 30 min, the solvent was removed by rotary 

evaporation. The residue was repeatedly diluted with ethanol and evaporated under reduced 

pressure until all traces of acetic acid and pyridine were removed from the product. The 

residue was dissolved in a minimum quantity of chloroform (2 mL) and precipitated with 

diethyl ether. The precipitate was centrifuged, washed with diethyl ether (×3), and dried 

under vacuum overnight. 

 The acetylated extracted materials from UHS were then dissolved in tetrahydrofuran 

(THF, 0.5 mg/ml) and filtered through a 0.45-μm nylon membrane filter. GPC analysis was 
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carried out using a Waters 2590 chromatography system with an ultraviolet detector on a 

three-column sequence of WatersTM Styragel HR1, HR3, and HR4 columns. THF was used 

as eluent, and the flow rate was 0.8 ml/min. Polystyrene standards were used for calibration. 

A calibration curve was constructed based on six narrow polystyrene standards ranging in 

molecular weight from 1.5 × 103 to 3.6 × 106 g/mol. 

2.3.2.7. Nuclear Magnetic Resonance (NMR) Analysis  

NMR tubes for quantitative 1D 13C NMR of materials extracted from UHS were prepared 

by first making a solvent mixture of DMSO-d6 with 0.05% wt. of both 1,3,5 trioxane as an internal 

standard and chromium(III) acetylacetonate as a T1 relaxing agent. Then mixing the solvent 

mixture and materials extracted from UHS were mixed in a 10:1 w/w ratio and added to the NMR 

tube. NMR samples for 2D 1H-13C heteronuclear single quantum coherence (HSQC) of materials 

extracted from UHS were made  by adding only DMSO-d6 as the solvent in a 10:1 ratio. Whole 

cell HSQC NMR samples of the solid remaining after extraction from UHS were prepared by 

following a procedure developed by Mansfield et al. 27. All 13C and 31P NMR spectra were acquired 

using a Varian Unity Inova-600 MHz and a Varian Unity Plus-300 MHz spectrometers, 

respectively. HSQC NMR spectra were recorded by a Varian Unity Inova-600 spectrometer. The 

HSQC analysis was performed using a standard Varian gradient HSQC pulse sequence with a 90° 

pulse, 0.11 s acquisition time, 1.5 s recycle delay, 521 scans, a JC–H of 145 Hz, and acquisition of 

256 data points at 45 °C . 31P NMR spectra were acquired after in-situ derivatization of materials 

extracted from UHS samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP). 

N–Hydroxy–5–norborene–2,3–dicarboximide was used as an internal standard. The conditions for 

31P NMR spectra were as follows: a 45° pulse angle, 0.1 s acquisition time, 25 s recycle delay, and 

256 scans at room temperature.28-29 The quantitative 13C NMR spectra were collected at 45 oC, 
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using a z-restored spin-echo sequence and inverse-gated 1H decoupling with a 90° pulse, 0.87 s 

acquisition time, 10 s recycle delay, and 128 scans. Inversion-Recovery experiments were run prior 

to insure the quantitative nature of the experiments.  

2.3.2.8. Thermogravimetric Analysis (TGA)  

Thermogravimetric analysis was performed using a TGA Q500 series thermogravimetric 

analyzer (TA Instruments, USA) with a heating rate of 20 K/min in a flowing nitrogen environment 

at 2.0 mL/min.30  

2.4. Results and Discussion  

2.4.1. Mass Yield 

 Generally, more severe solvent extraction conditions, such as high/low pH and higher 

temperatures, are associated with greater lignin extraction mass yields due to increased 

lignin solubility, lignin fragmentation, and/or carbohydrate depolymerization.31 For 

example, severe solvent extraction conditions can also cause carbohydrate 

depolymerization, resulting in a high percent mass conversion of UHS. However, after the 

aqueous washing steps, mass related to water-soluble oligosaccharides and/or 

monosaccharides will be lost and the percent mass yield of extracted material will decrease. 

In this case, the extracted material precipitated from the organic solvent, most likely, will 

be lignin. Equally important, more severe solvent extraction conditions will promote 

unwanted chemical and molecular alteration to the lignin being extracted, such as inter-

monomer linkage cleavage reactions (e.g., aryl ether hydrolysis) and condensation 

reactions (e.g.,  electrophilic carbocations forming C-C bond).32 

 Table 2-1 reports the percent mass yields resulting from the extraction of UHS with 

various solvents under reflux for 24 h. These results suggest that, on average, solvent 
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systems with higher solvent extraction (reflux) temperatures resulted in higher mass yields. 

However, the data in Table 2-1 also suggest that solvent factors that determine 

lignin/carbohydrate-solvent interactions (e.g., various solvent and lignin/carbohydrate 

solubility parameters, solvent pKa, solvent hydrogen bond basicity, and solvent 

dipolarity/polarizability) play a more important role in determining the mass yield of 

extractable material from UHS. The AcOH:H2O solvent system gave the highest extraction 

yield, followed by GVL:H2O > EtOH:H2O  > acetone:H2O. Extensive studies have 

investigated the addition of water to organic solvents, such as methyl isobutyl ketone and/or 

EtOH:H2O
33-34, AcOH and/or formic acid:H2O

35-37, and acetone:H2O
38-40, to augment 

lignin removal from biomass. The addition of water to a polar organic solvent (miscible) 

seems to increase the extraction mass yield, which matches observations by several other 

researchers41-42, either due to an increase of reflux temperature or an alteration in 

lignin/carbohydrate-solvent interactions. The significant difference between the extraction 

percent mass yield of acetone and acetone:H2O, EtOH and EtOH:H2O, and GVL and 

GVL:H2O solvent systems with respect to the small increase in reflux temperature suggests 

water is altering the lignin/carbohydrate-solvent interactions so as to increase extraction 

yield. The polar solvents were found to have higher percent mass yields of extraction from 

UHS than the non-polar solvents.  

Table 2-2. Percent mass yields of material extracted from UHS with various solvents. The four highest yielding 

solvent systems are bolded. 

Solvent Refluxing Temp. (°C) % Mass Yield 

Dichloromethane (DCM) 40 2.9 

Benzene:Ethanol (2:1) 50 26.3 

Acetone 56 6.3 

Acetonitrile (ACN) 82 22.4 

Acetone:H2O (2:1) 57 52.6 

Hexane 60 0.6 
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1,4 Dioxane 75 27.4 

Benzene 78 3.8 

Ethyl acetate 78 4.3 

Ethanol (EtOH) 79 32.7 

EtOH:H2O (2:1) 81 51.3 

Glycerine:H2O (2:1) 100 33.9 

1,4 Dioxane:H2O (2:1) 100 37.1 

Water 100 38.7 

Valerolactone GVL 100 38.9 

Acetic Acid (AcOH) 100 48.2 

AcOH:H2O (2:1) 100 65.5 

GVL:H2O (2:1) 100 53.5 

 

 From a processing standpoint, optimizing the mass extraction yields from UHS is 

critical. However, in the context of isolating a “native” lignin or a lignin with specific 

properties for further application, understanding the effect of extraction on the chemical 

and molecular structure of the material extracted is of equal or greater importance. Thus, 

for each of the four extraction solvent systems that gave the highest percent mass yields 

(acetone:H2O, EtOH:H2O, GVL:H2O, and AcOH:H2O), the soluble materials extracted 

were characterized to determine their chemical and molecular properties and compared to 

a standard lignin as a control (a dioxane extraction from UHS, not requiring heating for 

comparison43).  

2.4.2. Compositional Analysis 

To determining the relative proportions of carbohydrates, Klason (acid-insoluble) lignin, and 

ash, compositional analysis was conducted on the UHS, the solid residues remaining after 

extraction, and the material extracted from UHS, (see Tables 2-2 and 2-3). A more detailed 

accounting of the relative proportion of carbohydrates (i.e., glucan, xylan, and arabinan) can be 

found in the Appendix I, Tables I-1 and I-2. Klason lignin is the solid residue that remains after a 
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two-stage acid hydrolysis procedure, corrected for residual ash. Both significant residual 

carbohydrates and ash are generally considered detrimental to further utilization of lignin.16 

Table 2-2 gives the results from the compositional analysis for the material extracted from UHS 

using acetone:H2O, EtOH:H2O, GVL:H2O, and AcOH:H2O. The ratio of carbohydrates to Klason 

lignin is lowest for material extracted with AcOH:H2O, followed by lignin extracted with 

EtOH:H2O, which indicates those samples were mostly lignin. In comparison, material extracted 

with GVL:H2O or acetone:H2O is more carbohydrate-rich than the original UHS. Note the ash 

contents for all extracted materials are negligible.  

Table 2-2. Relative compositional analysis of the material extracted from UHS with various solvents. 

Solvent 
% Carbohydrates 

(± 2%) 

% Klason 

Lignin (± 2%) 

% Ash 

(± 1%) 

Acetone:H2O (2:1) 38 62 0.7 

Ethanol:H2O (2:1) 4 96 0.3 

AcOH:H2O (2:1) 2 98 0.2 

GVL:H2O 55 45 0.9 

 

Compositional analysis of the solid residues remaining after extraction from UHS can also be 

used to assess the ability of the screened solvents to selectively dissolve and extract lignin. Since 

the mass yields of the solid residues remaining after extraction were at least 50% for all solvents, 

conducting compositional analysis on those solids (as opposed to material extracted from UHS) 

was much easier (due to the smaller sample size) and is reported in Table 2-3. For example, the 

mass yield of material extracted from UHS with DCM was 2.9% (or 290 mg from 10 g of UHS), 

which was simply not enough material to conduct compositional analysis. However, the mass of 

solid residues remaining after extraction of UHS with DCM was sufficient. 

On average, the ratio of carbohydrates to Klason lignin in the solid residues remaining after 

extraction decreases with increasing extraction temperature: only the solid residues remaining after 
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extraction with glycerine:H2O, H2O, GVL, AcOH, and GVL:H2O showed a ratio lower than UHS. 

Thus, thirteen of the eighteen screened solvent systems displayed the ability to extract more lignin 

than carbohydrates from UHS, which is expected because carbohydrates have a low solubility in 

most organic solvents. The material extracted from UHS with GVL:H2O showed the highest 

percent mass yield, but also a high carbohydrate to Klason lignin ratio, and thus the lowest 

selectively for lignin. Xue et al. showed that in co-solvent systems with GVL, a well-known 

solvent for biomass 44, its hydrogen bond basicity parameter (β-value) plays an important role in 

solubilizing both lignin and cellulose.45 The high solubility of both lignin and cellulose in GVL 

leads to a low selectively of the extraction for lignin from UHS. An alternative explanation 

involves the chemical and molecular modification of carbohydrates, facilitating their increased 

solubility. For example, refluxing in AcOH could acetylate the carbohydrates in UHS and increase 

their extractability in organic solvents, lowering the selectively for the extraction of lignin from 

UHS. 

Table 2-3. Relative compositional analysis of the solids remaining after extraction of carbohydrates and lignin from 

UHS (solids which are not dissolved) with various solvents. The highest yielding solvent systems are in bold.  

Solvent 
% Carbohydrates (± 

2%) 

% Klason Lignin 

(± 2%) 
% Ash (± 1%) 

Dichloromethane 29 41 29 

Benzene:Ethanol 

(2:1) 
24 39 37 

Acetone 23 43 34 

Acetonitrile 24 41 35 

Acetone:H2O 

(2:1) 
21 39 40 

Hexane 31 41 28 

1,4 Dioxane 21 38 41 

Benzene 30 42 27 

Ethyl acetate 30 43 28 

Ethanol (EtOH) 19 40 41 

EtOH:H2O (2:1) 20 27 52 

Glycerine:H2O 

(2:1) 
12 51 36 
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1,4 Dioxane:H2O 

(24:1) 
21 36 43 

Water (H2O) 13 52 35 

γ-Valerolactone 

(GVL) 
10 44 46 

AcOH 15 46 40 

AcOH:H2O (2:1) 19 13 68 

GVL:H2O (2:1) 2 65 33 

UHS 25 52 23 

 

Assuming that the ash in UHS is not soluble, the absolute mass of ash found in UHS and in the 

solid residues remaining after extraction will not change. As a result, one method to compare the 

relative compositions of solid residues remaining after extraction and determine the amount of 

carbohydrates and lignin solubilized is to normalize the compositions based on the ash content. 

For example, the relative composition of UHS is 25% carbohydrates, 52% lignin, and 23% ash by 

mass (or 2.5 g of carbohydrates, 5.2 g of lignin, and 2.3 g of ash for 10 g of UHS). Assuming the 

extraction began with 10 g of UHS and the mass of ash in the solid residue remaining after 

extraction of UHS is the same as the mass of ash in the UHS before extraction, then the solid 

residue remaining after extraction of UHS with hexane has 2.5 g of carbohydrates, 3.4 g of lignin, 

and 2.3 g of ash. In other words, extraction with hexane does not remove any carbohydrates from 

UHS, but does remove ~1.8 g of lignin (a 35% decrease) which does not show up in the washed 

hexane precipitant. Table 2-4 lists the percent change in the absolute amount of carbohydrates and 

lignin in the solids remaining after extraction with various solvents.  

Table 2-4. Percent change in the absolute amounts of carbohydrates and lignin remaining in the residual solids after extraction. 

The highest yielding solvent systems are in bold 

Solvent 
% Δ for 

Carbohydrates 
% Δ for Lignin 

Dichloromethane -9 -38 

Benzene:Ethanol (2:1) -41 -53 

Acetone -38 -45 

Acetonitrile -39 -49 
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Acetone:H2O (2:1) -52 -57 

Hexane -1 -35 

1,4 Dioxane -54 -59 

Benzene -1 -33 

Ethyl acetate -4 -32 

Ethanol (EtOH) -58 -57 

EtOH:H2O (2:1) -65 -77 

Glycerine:H2O (2:1) -70 -38 

1,4 Dioxane:H2O 

(24:1) 
-56 -63 

Water (H2O) -67 -35 

γ-Valerolactone (GVL) -80 -58 

AcOH -67 -49 

AcOH:H2O (2:1) -75 -91 

GVL:H2O (2:1) -96 -13 
 

Though the percent mass yields were low, the extractions with DCM, hexane, benzene, and 

ethyl acetate were highly selective for lignin. On the other hand, though the percent mass yields 

were high, the extraction with GVL:H2O was not selective for lignin. The data in Table 2-4 also 

indicated that the extraction with acetone:H2O, dioxane, EtOH, EtOH:H2O, glyercine:H2O, 

dioxane:H2O, H2O, GVL, AcOH, GVL:H2O, and AcOH:H2O resulted in at least a 50% decrease 

in both carbohydrates and lignin. This finding suggests that these solvents have a significant 

capacity to solubilize and/or depolymerize carbohydrates and lignin. Table 2-4, also shows that 

the extraction of UHS with AcOH:H2O removes ~75% of the carbohydrates and ~91% of the 

lignin, however, the material extracted from UHS with AcOH:H2O contains almost no 

carbohydrates. This result suggests that the AcOH:H2O UHS extraction generated water-soluble 

oligosaccharides and/or monosaccharides that were removed during the extraction washing steps. 

A similar loss of mass due to aqueous washing was observed for the material extracted from UHS 

with EtOH:H2O. 
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2.4.3. Gel Permeation Chromatography (GPC) 

The molecular weight of a lignin, in part, determines many of its physical properties, such as 

its thermal transition temperatures (e.g., glass transition temperature), mechanical properties (e.g., 

strength), and flow behavior.46 If the molecular weight is too low or too high, these physical 

properties will not overlap with the material property requirements for an application, thus, inter-

monomer cleavage and condensation reactions, which  generally occur quite easily in treatments 

such as high temperature extractions must be taken into account for lignin extractions.46  In 

addition, different solvents can selectively solubilize and extract different fractions of the lignin 

molecular weight distribution. Herein, GPC was applied to understand possible changes in lignin 

molecular weight distributions as a function of the extraction. 

The molecular weights of the materials extracted from UHS using acetone:H2O, EtOH:H2O, 

GVL:H2O, and AcOH:H2O were determined via GPC in tetrahydrofuran (THF) following their 

acetylation. Acetylation facilitates dissolution for GPC analysis. Figure 2-1 displays the resulting 

chromatograms, as well as the corresponding number average molecular weight (Mn, relative to 

polystyrene standards in g/mol) and dispersity (Ð). The molecular weight distributions of the 

materials extracted had Ð values between 1.4 and 1.8. The highest molecular weight materials 

resulted from extraction with GVL:H2O, which may be variously attributed to selective removal 

of higher molecular weight fractions, to condensation reactions that result from the higher 

temperature used for extraction, and/or to residual carbohydrates. Though similar to the standard 

lignin with respect to Mn and Ð, the material extracted with acetone:H2O  demonstrated the lowest 

molecular weight, evident in its chromatogram and the absence of a shoulder at a retention time of 

20 min. Trends with respect to molecular weight display similar changes for lignin after organosolv 

pretreatment or fractionation.47 
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2.4.4. Nuclear Magnetic Resonance (NMR) Analysis 

In an effort to understand the effect of each extraction solvent system on the chemical and 

molecular structure of the material extracted from UHS, a series of nuclear magnetic resonance 

(NMR) experiments were conducted. NMR is a powerful analytical tool for lignin, facilitating both 

functional and sub-structural unit analysis and illuminating the chemical changes that occur to 

lignin during its extraction from UHS. 

2D 1H-13C heteronuclear single quantum coherence (HSQC) NMR was performed on the UHS, 

standard lignin, solid residues remaining after extraction from UHS, and material extracted from 

UHS. 2D 1H-13C HSQC NMR can be used to resolve the overlapping 1H or 13C spectral features 

of lignin or material extracted from UHS in the 13C and 1H spectral dimensions.  In general, 2D 

Figure 2-1: Gel permeation chromatograms of material extracted from UHS with various solvents (with the standard lignin for 

comparison). The dotted line is only a reference to visually indicate shifts in the chromatographs 
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HSQC NMR is not quantitative, but rather indicates the presence of a wide array of lignin-related 

sub-structures. Figure 2-2 and 2-3 include the HSQC NMR spectra of the standard lignin and 

materials extracted from UHS, displaying the aromatic region (1H: 5.8-8.3 ppm and 13C: 90-150 

ppm) in Figure 2-2 and the aliphatic region (1H: 2.8-6.0 ppm and 13C: 50-100 ppm) in Figure 2-3. 

The aromatic region for the standard lignin (representing native lignin) shows the presence of 

various lignin sub-structural units that are aromatic monomers, including ferulate (FA), p-

coumarate (pCA), p-hydroxybenzyl (PB), guaiacyl (G), oxidized guaiacyl (G’), 4-hydroxyphenyl 

(H), syringyl (S), and oxidized syringyl (S’) units. Furthermore, the aliphatic region for the 

standard lignin shows various lignin sub-structural units that are linkages between aromatic 

monomers, including β-O-4 aryl ether (A), phenylcoumaran (β-5) (B), and resinol (β-β) (C) 

linkages, as well as cinnamyl alcohol (X1) end groups. The aromatic and aliphatic region spectra 

for the standard lignin are characterized by intense cross-peaks and the appearance of multiple 

cross-peaks for the same sub-structural unit. For example, β-O-4 aryl ether linkages are detectable 

by cross-peaks for carbon-hydrogen correlations at the α-, β- and γ-carbon positions. Generally, 

due to its favorable NMR relaxation behavior, the cross-peak for the γ-carbon position is most 

prevalent. As degradation occurs and the concentration of β-O-4 aryl ether linkages is reduced, the 

cross-peak for the α- and β-carbon positions disappear first, followed by the γ-carbon cross-peak. 

Appendix I, Table I-3 includes the 1H-13C HSQC chemical shifts of these lignin-related sub-

structural units and their assignments, including whether each sub-structural unit was detected in 

the 1H-13C HSQC NMR spectra of the standard lignin and materials extracted from UHS. The 

whole cell HSQC NMR spectra of the UHS and solids remaining after extraction of UHS are 

shown in Appendix I, Figures I-1 and I-2. These spectra clearly show strong lignin-related cross-
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peaks, indicating the presence of G, S, and β-O-4 aryl ether sub-structural units in all the solids 

remaining after extraction of UHS. 

The HSQC NMR spectrum, in both the aromatic and aliphatic regions, for the material extracted 

from UHS with acetone:H2O was nearly identical to the HSQC NMR spectrum of standard lignin, 

indicating their significant chemical similarity. The HSQC NMR spectrum of the material 

extracted from UHS with acetone:H2O contains relatively unaltered cross-peaks. These cross-

peaks indicate the presence of inter-monomer linkages and monomer units, and even those sub-

structural units susceptible to degradation or chemical alteration, such as X1, FA, and pCA. 

Accordingly, the material extracted from UHS with EtOH:H2O also is very similar to standard 

Figure 2-2. Aromatic region of the 2D 1H-13C HSQC NMR spectra of the standard lignin and material extracted from UHS with 

various solvents. 
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lignin. In the aromatic and aliphatic regions of the HSQC NMR spectra of material extracted from 

UHS with AcOH:H2O and GVL:H2O, the reduction or disappearance of various cross-peaks 

suggests that degradation occurred during extraction. The complete disappearance of cross-peaks 

attributed to B, C, and X1 sub-structures in the HSQC NMR spectrum of material extracted from 

UHS with AcOH:H2O suggests this extraction resulted in the most significant degradation or 

chemical alteration. Lastly, the aliphatic region of the HSQC NMR spectra of material extracted 

from UHS with GVL:H2O, and to a lesser degree, material extracted from UHS with acetone:H2O, 

Figure 2-3. Aliphatic region of the 2D 1H-13C HSQC NMR spectra of the standard lignin and material extracted 

from UHS with various solvents. 
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show the presence of non-lignin related aliphatic C-O cross-peaks, presumably from 

carbohydrates.  

Quantitative 13C NMR spectra of the standard lignin and material extracted from UHS with 

EtOH:H2O, GVL:H2O, AcOH:H2O, and acetone:H2O are shown in Figure 2-4. The 13C NMR 

chemical shifts and functional group assignments for lignin are listed in Appendix I, Table I-4, 

along with the amount of carbon attributed to carbonyl and carboxyl, methoxyl, aromatic C-H, 

aromatic C-C, aromatic C-O, aliphatic C-O, and aliphatic C-C functionalities. Figure 2-5 shows 

the relative percentage of carbon attributed to carbonyl and carboxyl, methoxyl, aromatic C-H, 

aromatic C-C, aromatic C-O, aliphatic C-O, and aliphatic C-C carbon functionalities. The 

Figure 2-4. 13C NMR spectra of material extracted from UHS in aqueous solutions of acetone, ethanol, acetic 

acid, and γ-valerolactone (GVL).  Note the spectrum of extracted lignin from UHS in aqueous GVL has 13C 

NMR resonances from residual GVL at 177, 77, 29, and 21 ppm.  
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spectrum of material extracted from UHS in GVL:H2O has 13C NMR resonances from residual 

GVL at 177, 77, 29, and 21 ppm, indicating ~33 % of the material extracted from UHS in 

GVL:H2O (on a % carbon basis) is GVL. No other spectrum suggested a similar type of solvent 

contamination. The material extracted from UHS in GVL:H2O displays the highest percentage of 

aliphatic C-O carbon, 25 %, and has an aromatic carbon to aliphatic C-O carbon ratio of 1.7 

(compared to the 4.8 ratio observed for standard lignin and the >3.2 ratio observed for the materials 

extracted from UHS with other solvents). Along with the 2D HSQC NMR results, the relatively 

high percentage of aliphatic C-O carbon can be, in part, attributed to the presence of carbohydrates. 

The percentage of aromatic carbons that are aromatic C-C carbons in material extracted from UHS 

in GVL:H2O is ~26% compared to the ~30% observed for standard lignin and the materials 

extracted from UHS with other solvents. At the conditions for organic solvent extraction of lignin, 

the formation of highly reactive groups on lignin (e.g., benzylic carbocations) can cause inter- and 

intra-molecular condensation reactions.48 Since aromatic C-C bonds form as a result of these 

condensation reactions, the fact that material extracted from UHS in GVL:H2O displays a lower 

percentage of aromatic carbons that are aromatic C-C carbons suggests that its lignin component 

has undergone the least amount of condensation. The strong presence of 13C NMR resonances at 

178 and 21 ppm, representing carboxyl and acetal methyl carbons respectively, in the 13C NMR 

spectrum of material extracted from UHS with AcOH:H2O confirms that acetylation has occurred. 

Integration of the 13C NMR resonances at 178 and 21 ppm suggests that ~10 % of the carbon in 

the material extracted from UHS with AcOH:H2O is the result of this acetylation. When comparing 

materials extracted from UHS with AcOH:H2O and EtOH:H2O, the percentage of aliphatic C-O 

carbon is lower for the material extracted from UHS with AcOH:H2O. This result suggests that the 
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material extracted from UHS with AcOH:H2O undergoes more degradation at aliphatic C-O 

linkages than the material extracted from UHS with EtOH:H2O.  

  

To profile the change in terminal phenolic monomer units and overall hydroxyl group 

distribution, quantitative 31P NMR on material extracted from UHS following phosphorylation 

with 2–chloro–4,4,5,5–tetramethyl–1,3,2–dioxaphospholane (TMDP) was conducted. This 

methodology is used to routinely determine the content of aliphatic, phenolic (i.e., guaiacyl, 

syringyl, C5-substituted guaiacyl phenolics, catechols, p–hydroxyphenols, etc.), and carboxylic 

acid hydroxyl groups on lignin. Quantitative 31P NMR spectra of the phosphorylated material 

extracted from UHS are shown in Appendix I, Figure I-3. The 31P NMR chemical shifts and 

Figure 2-5. Amounts of carbon attributed to various functional groups on material extracted from UHS with 

various solvents as determined by 13C NMR  
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functional group assignments are listed in Appendix I, Table I-5, along with the hydroxyl content 

(mmol of OH per g of lignin) for the materials extracted from UHS.  

Table 2-5 displays total, aliphatic, and aromatic hydroxyl contents for the materials extracted 

from UHS. Hydroxyls can be attributed to lignin chain ends (4-position phenolic hydroxyls), lignin 

inter-monomer linkages (2 per β-O-4 or β-1 and 1 per phenylcourmaran/spirodienone), or residual 

carbohydrates (3 or 4 per sugar monomer). In the case of lignin, the greater amount of aromatic 

hydroxyls per mass of lignin suggest more chain ends, which in turn indicate a lower molecular 

weight. Therefore, an increase in total hydroxyl content with respect to the standard lignin can 

suggests three possibilities: (1) chain scission at aryl ether linkages that produce a phenolic 

hydroxyls, (2) selective extraction of small molecular weight lignin, and/or (3) the presence of a 

higher percentage of residual carbohydrates. On the other hand, decreases in total hydroxyl content 

can suggest (1) selective extraction of large molecular weight lignin, (2) disruption of lignin inter-

monomer linkages that leads to or is accompanied by reduction in aliphatic hydroxyls,  (3) 

hydroxyl groups that have undergone chemical modification (i.e., acetylation), and/or (4) the 

presence of a lower percentage of residual carbohydrates.  

Table 2-5. OH content (mmol of OH/g of extracted material) determined by 31P NMR spectral intensities of 

phosphorylated lignin extracted from UHS with various solvents. 

Assignment 

OH content (mmol/g) 

Std 
Acetone:

H2O 
EtOH:H2O AcOH:H2O GVL:H2O 

Total OH 9.6 10.4 8.4 5.8 7.4 

Aliphatic OH 4.7 7.6 5.4 1.9 3.6 

Aromatic OH 3.8 1.9 2.2 2.8 2.6 

2.4.5. Thermogravimetric Analysis (TGA)  

The thermal stability and decomposition of lignin are important physical properties 

for a variety of applications and are typically determined using thermogravimetric analysis 

(TGA). TGA measure the percentage of total weight lost as a function of increasing 
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temperature and shows the onset temperature of degradation. The TGA curves of the 

material extracted from UHS with acetone:H2O, EtOH:H2O, AcOH:H2O, and GVL:H2O 

are shown in Appendix I, Figure I-4, and the total weight loss percentage, residue mass 

percentage, onset temperature of thermal degradation, and end temperature of thermal 

degradation are in Table 2-6. The TGA curves of all the materials extracted from UHS are 

very similar as are the corresponding total weight loss percentages and residue mass 

percentages. 

Table 2-6. TGA results for the lignin extracted from UHS with various solvents.  

Sample Tonset (°C) Tend (°C) 
Total weight loss % 

 (+/- 2%) 

Residue mass %  

(+/- 2%) 

Acetone:H2O 182 437 52 41 

EtOH:H2O 225 445 53 40 

AcOH:H2O 253 449 51 42 

GVL:H2O 247 445 53 43 

Standard 253 441 53 41 

2.5. Conclusions 

 While the work reported in this chapter was performed on a process that utilized an AFEX 

pretreatment and corn stover feedstock, the knowledge gained can be extended to most second-

generation biorefineries, because all will have a waste stream of UHS, regardless of the 

pretreatment method and biomass feedstock. While other pretreatments and feedstocks will 

ultimately dictate the final structure of the lignin molecules and resulting UHS, the underlying 

extraction principles will be transferable.   

Mass yields of materials extracted from UHS were higher for polar and high-reflux 

temperature solvents. The addition of water to polar organic solvents improved the mass yields of 

materials extracted from UHS. Due to the small increases in reflux temperature upon adding water, 

the results suggest lignin-solvent interactions that determine solubility (e.g., solvent H-bonding 

properties) are important when considering a solvent for lignin extraction from UHS. These results 
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correspond well with other studies that focus on aqueous/organic solvent systems as a means to 

improve biomass pretreatment42, lignin extraction from biomass47, or lignin separation into 

fractions 49-50. Other factors, such as a solvent’s propensity to perform chemical modifications 

(e.g., acetylation), must also be considered. Although low mass yields are unwanted, it is important 

to note that non-polar solvents were highly selective for lignin extraction from UHS, and could 

potentially provide a high value stream, depending on the compounds extracted. The AcOH:H2O 

solvent system gave the maximum mass yield of material extracted from UHS, and was highly 

selective for lignin extraction. However, the AcOH:H2O solvent system did cause acetylation and 

the most significant degradation to lignin–related aliphatic C-O sub-structures. Most likely the 

acidity of AcOH caused significant chemical degradation, and produced water-soluble 

oligosaccharides and/or monosaccharides that were removed during the extraction washing steps. 

The GVL:H2O solvent system had the second highest mass yield of material extracted from UHS, 

but also produced an extracted material that was carbohydrate-rich. The EtOH:H2O solvent system 

gave a high mass yield of material extracted from UHS and a high selectively for lignin extraction 

(after water washes), while producing material extracted from UHS with a relatively unaltered 

lignin structure. Extracting UHS with organic solvents provides an opportunity to valorize 

currently unutilized lignin. 
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Chapter 3: Understanding Fragmentation 

and Condensation Reaction Kinetics during 

Organosolv Extractions 
This chapter was adapted from the following manuscript in preparation for publication: 

Meyer, James R. et al. “Understanding Fragmentation and Condensation Reaction Kinetics 

during Organosolv Extractions” (2019) 

3.1 Abstract 

A current biorefinery approach to lignin valorization relies on a high temperature extraction 

using organic solvents, or organosolv extraction. However, the extraction severity (i.e., extraction 

residence time and temperature profile) required to obtain high lignin extraction yields generally 

results in a lignin that has undergone significant molecular and morphological alteration and that 

no longer has the desirable properties for further downstream processing into valuable products. 

To better understand reaction pathways that lead to these undesirable chemical and molecular 

alterations, organosolv extractions were conducted at increasing extraction temperatures of 150, 

180, and 210 °C.  Lignin was collected at extraction residence times of 0.25, 1.0, 2.5, 5.5, 12.0, 

and 25.0 h for each extraction temperature.  The collected lignin was analyzed using nuclear 

magnetic resonance (NMR) techniques which quantitatively determine the concentration of key 

chemical moieties known to correlate with lignin chain fragmentation and condensation pathways 

as well as to affect lignin properties. Kinetics of the generation and consumption of key NMR 

detectable chemical moieties on lignin extracted from poplar biomass during an organosolv 

extraction with ethanol has been modeled in terms of two reactions in-series. In this model, it is 

assumed that the concentration of chemical moieties on extracted lignin can be described via a 
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pseudo first‐order reaction that results in the appearance of lignin chemical moieties and then a 

pseudo first‐order reaction that that results in the disappearance of lignin chemical moieties. 

Arrhenius parameters have been obtained to describe the rate constants of these lignin chemical 

moiety generation and consumption reactions. 

3.2 Introduction 

In the previous chapter, an extraction process which upgrades an existing waste stream to 

produce a more valuable lignin product stream was developed. The downstream process of a 

previously designed biorefinery was investigate so that the process would be rapidly deployable 

and a fraction of the valuable lignin could be recuperated; but to truly achieve the full potential 

lignin can offer to the viability of biorefineries, it must be considered throughout the entire process. 

Irreparable degradation (i.e., the formation of certain C-C condensed inter-unit linkages) can result 

from pretreatment processes, lowering the possible downstream uses and thus value.  Organosolv 

extractions are a promising approach to separate lignin from lignocellulosic biomass with minimal 

drawbacks for downstream upgrading. The process performance is highly dependent on (1) 

whether an acid catalyst is used, (2) the properties of the organic solvent (e.g., acidity, water 

content, solubility parameter, and/or polarity)1-5, and (3) the temperature and time profile of the 

extraction.6-7 Generally, organosolv processes have been optimized either as a pretreatment to 

maximize enzymatic sugar and/or fermentative bio-product yields or as a pulping method to isolate 

cellulosic substrates and maximize cellulosic substrate yield and quality.8-10 In most pulping, 

pretreatment, or fractionation processes, the primary target is cell wall carbohydrates and thus little 

attention is paid to its effect on the resulting lignin. 

In the past, the effect of organosolv extraction conditions on lignin properties has been 

explored by correlating reaction conditions (e.g., extraction time, extraction temperature, and acid 
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concentration) with extraction performance (e.g., lignin yield and carbohydrate content), lignin 

molecular properties (e.g., oxygen content, aromaticity, antioxidant content), or lignin 

molecular/physical proprieties (e.g., size, thermal stability, degradation temperature).11-16 While 

these models provide insights, their correlations are highly dependent on the specific biomass 

source and reactor setup.  Most other lignin extraction kinetic models seek only to describe the 

apparent rate of soluble lignin generation, which fails to account for the molecular changes that 

happen to the lignin as a result of secondary reaction pathways occurring during prolonged 

extraction times (or reactor residence time) in a batch reactor configuration.17-20  In this study, the 

kinetics of the generation and consumption of key NMR detectable chemical moieties on extracted 

lignin as a function of organosolv extraction time and temperature for a hybrid poplar (populus 

deltoides x trichocarpa) are deconvoluted. The terminology used to describe lignin extraction in 

the literature is often treated as exchangeable; however, this makes a precise discussion of the 

complex phenomena occurring difficult.  Therefore, in this study, extraction is refers to the unit 

operation used to separate lignin from biomass, fractionation is defined as the molecular process 

of lignin leaving the biomass cell wall matrix, precipitation is defined as the molecular process of 

lignin precipitating from solvent due to a change in solvent and/or lignin properties; whereas, 

lignin chain fragmentation is defined as a set of reactions that manifest as the breaking or cleavage 

of inter-monomer linkages in a  lignin molecule and lignin chain condensation is defined as a set 

of reactions that manifest as the inter- or intra-molecular condensation of a lignin molecule(s). Our 

goal is to kinetically model the appearance and disappearance of key chemical moieties whose 

presence or removal is indicative of lignin chain fragmentation and condensation reaction 

pathways occurring during organosolv extraction. 
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3.3 Experimental Section  

3.3.1 Materials. All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used as 

received, except for the deuterated solvents, which were purchased from Cambridge Isotope 

Laboratories, Inc. (Tewksbury, MS).  

3.3.2 Biomass Preparation. The hybrid poplar (populus deltoides x trichocarpa) wood chips were 

received from GreenWood Resources, Inc. (Clatskanie, OR). They were air-dried, milled to 35-45 

mesh with a Wiley mill, sieved twice, Soxhlet extracted for 18 h with toluene:ethanol (2:1), Soxhlet 

extracted ethanol for 18 h, dried, and stored in a freezer until use.  

3.3.3 Organosolv Extraction. A set of organosolv extractions was run at three temperatures: 150, 

180, and 210 °C. In each set, an extraction was run for each of six durations: 0.25, 1.0, 2.5, 5.5, 

12, and 25 h, for a total of 18 extractions. All the extractions were carried out in a 300 mL Parr 

reactor (Series 4560 Mini Reactor). 50 mL of a 65% aqueous ethanol solution and 5 g of biomass 

(10 mL:1 g v/w solvent to biomass ratio) was added to a 300 mL Parr glass reactor liner. The 

reactor was preheated to the extraction temperature for 20 min. The empty hot reactor was opened, 

the glass liner with the reaction mixture was placed in the reactor, and the reactor was re-sealed 

and heated to the extraction temperature all within five minutes.  By preheating the reactor, the 

desired reaction temperature was rapidly reached and a more consistent ramp-up time achieved, 

regardless of the extraction temperature. At the end of the extraction process, the reactor was 

quenched by flowing cooling water through an internal cooling loop and submerging the reactor 

in an ice bath. Once the reactor had cooled to 60 °C, it was opened and the extraction mixture was 

immediately filtered. The filtride was washed twice with 30 mL of 65% aqueous ethanol solution 

warmed to 75 °C, air dried, and weighed. The dried filtride made up the cellulose-rich residual 

biomass fraction. The liquid filtrate recovered was washed in a separatory funnel with 25 mL of 
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hexane to remove small hydrophobic molecules. The reaction solvent was removed from the 

filtrate using rotary evaporation, causing a lignin-rich solid to precipitate. This solid was washed 

with 50 mL of deionized water to remove aqueous-soluble components from the precipitated 

lignin. To complete the mass balance, rotary evaporation was again used to remove the water to 

produce the aqueous soluble fraction.  

3.3.4 Gel Permeation Chromatography. To prepare the GPC sample, the lignin was dried at 35 

ºC and 0.1 Torr for 18 h, dissolved in tetrahydrofuran (THF, ~10 mg/ml), and filtered through a 

0.45 μm nylon membrane filter. GPC analysis was carried out using a Waters e2695 system with 

a 2489 ultraviolet detector (260 nm) on a four-column sequence of WatersTM Styragel columns 

(HR0.5, HR1, HR3, and HR5). THF was used as eluent at a flow rate of 1.0 ml/min. A calibration 

Biomass 

Residual Biomass 

Solids 

4) Hexane Washing 

5) Solvent Removal 
6) Water Wash 

1) Organosolv Extraction 

2) Ethanol/Water Washing 

3) Filtration 

Liquid Filtrate 

Lignin 

Figure 3-1: Organosolv extraction work-up, highlighting the production of a residual 

biomass (carbohyrate-rich) solids and lignin. 

  

Hexane Solubles 

Aqueous Solubles 
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curve was constructed based on six narrow polystyrene standards and two small molecules 

(diphenylmethane and toluene), ranging in molecular weight from 3.4 × 104 to 92 g/mol.  

3.3.5 31P-NMR. In preparation for 31P NMR analysis, the lignin samples were dried at 35 ºC at 0.1 

Torr for 18 h. Under the protection of argon, ~40 mg of lignin was dissolved in a mixture of 

anhydrous pyridine and deuterated chloroform (Py/CDCl3, 1.6/1.0, v/v) containing a relaxation 

agent (chromium (III) acetylacetonate) and an internal standard (N-hydroxy-5-norbornene-2,3-

dicarboximide). In a small vial containing a small stir bar, the mixture was stirred for 30 min at 

room temperature. Then 2-chloro 4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP) (~200 µL) 

was added and the mixture was stirred for another 30 min. The reaction mixture was transferred 

into a 5 mm NMR tube for 31P NMR analysis. Quantitative 31P NMR spectra were collected, using 

a 500 MHz Varian Unity Inova, at room temperature with a 90° inverse gated decoupling pulse, a 

15 s relaxation delay, and 128 scans (for a total experiment time of 32 min) were collected for each 

spectra.  The TMDP hydrolysis product signal (132.2 ppm) was chosen as a reference. 

3.3.6 13C-NMR. In preparation for 13C NMR analysis, the extracted lignin samples were dried at 

35 ºC at 0.1 torr for 18 h. About 80-100 mg of the lignin sample was added into a dry NMR tube, 

followed by ~1.5 mL of DMSO-d6, which contained ~4 mg/ml of 1,3,5 trioxane as an internal 

standard and ~3 mg/ml chromium acetylacetonate as a relaxation agent. The samples were covered 

in foil, vortexed, and allowed to rest to insure complete dissolution. The quantitative 13C NMR 

spectra were collected at 45 oC with a z-restored spin-echo sequence and a relaxation delay of 60 

seconds on a 600 MHz Varian NMR equipped with a HCN cold probe. A total of 2048 scans were 

collected for each spectra (for a total experiment time of 34.1 hours). 13C inversion-recovery 

experiments were conducted on select samples to ensure the recycle delay was set properly. 
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3.3.7 Modeling Mass Yield Kinetics. Initially, lignin yield was modeled as described by Vázquez 

et al.21 This “reaction-in-series” model utilizes pseudo first-order kinetics to represent each 

reaction: I, the initial amount of lignin within the biomass. Lignin within the biomass undergoes 

fractionation to produce F, the portion of lignin that has been fractionated out of the biomass and 

is soluble in the extraction solvent. As the extraction continues, N, the portion of fractionated lignin 

that has undergone a secondary reaction pathway (i.e., fragmentation) that produces lower 

molecular weight molecules or another secondary reaction pathway (i.e., condensation) that 

produces higher molecular weight molecules that may become so large or molecularly condensed 

that they precipitate out of the extraction solvent. 

I 
𝑘𝐹
→   F 

𝑘𝑃
→  N          (1) 

 𝐶𝐹 =
𝐶𝐼𝑜∗𝑘𝐹

𝑘𝑃−𝑘𝐹
(𝑒−𝑘𝐹𝑡 − 𝑒−𝑘𝑃𝑡) + 𝐶𝐹𝑜𝑒

−𝑘𝑃𝑡            (2) 

Here, 𝐶𝐹 is the concentration of the fractionated lignin, 𝐶𝐹𝑜 is the concentration of fractionated 

lignin at t = 0, 𝑘𝐹  is the rate constant of fractionation, 𝑘𝑃 is the rate constant of lignin precipitating 

out of solution, and 𝐶𝐼𝑜  is the initial concentration of lignin that can be fractionated from biomass. 

It is important to note that t=0 is when the reactor reaches the extraction temperature. As a result, 

𝐶𝐹𝑜 is not zero, as some lignin has been extracted during the reactor heating temperature ramp. 

Equation 2 was fitted to the data with Igor Pro version 6.3.7.2. 

3.3.8 Modeling Chemical Kinetics. The modeled described by Vázquez et al.21 was then extended 

to chemical functional group or moieties within the fractionated lignin. For this model, A 

represents NMR observable functional groups or chemical moieties of interest on the fractionated 

lignin. P represents all the possible functional groups or chemical moieties on lignin within the 
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cell wall matrix that are able to be converted to A on the fractionated lignin. D represents functional 

groups or chemical moieties which A is converted into due to molecular changes that occur to 

fractionated lignin as a result of extraction conditions in a batch reactor configuration. 

P 
𝑘𝐴
→   A 

𝑘𝐷
→  D          (3) 

𝐶𝐴 =
𝐶𝑃𝑜∗𝑘𝐴

𝑘𝐷−𝑘𝐴
(𝑒−𝑘𝐴𝑡 − 𝑒−𝑘𝐷𝑡) + 𝐶𝐴𝑜𝑒

−𝑘𝐷𝑡               (4) 

Here, 𝐶𝐴 is the concentration of a NMR observable functional group or chemical moiety on the 

fractionated lignin denoted as A, 𝐶𝐴𝑜 is the concentration of chemical moiety A in the fractionated 

lignin at t = 0, 𝑘𝐴 is the rate constant for the appearance of A, 𝑘𝐷 is the rate constant for the 

disappearance of A, and 𝐶𝑃𝑜  is the concentration of all of the different functional groups or 

chemical moieties on lignin that have the potential of becoming functional group or chemical 

moiety A on the fractionated lignin at t = 0. Similar to Equation 1, 𝐶𝐴𝑜 is not zero, as some lignin 

has been extracted during the reactor heating temperature ramp , and thus the moiety exist in the 

fractionated lignin at t=0. The Equation 4 was fitted to the data with Igor Pro version 6.3.7.2. 

3.4 Results and Discussion 

Organosolv lignin extraction is a very complex set of concurrent and sequential processes 

that involves (1) mass transfer of extraction media (e.g., organic solvent and water) into the 

biomass cell wall structure, (2) a complex series of heterogeneous chemical reactions between cell 

wall polymers and extraction media, and (3) mass transfer of solubilized lignin out of the cell wall 

via the extraction media.22   Once the extraction media is transported to the region of extraction, 

chemical phenomena occur that facilitate lignin fractionation including carbohydrate 

depolymerization, fragmentation of lignin, and cleavage of chemical linkages and physical 

entanglements between lignin and carbohydrates.23  Lignin fractionation primarily involves on 
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solvolytic cleavage of ether and ester bonds (i.e., lignin-carbohydrate complexes, lignin 

fragmentation via aryl ether inter-monomer linkages, and carbohydrate glycosidic linkages).  The 

solubility of lignin in many of the solvents used in organosolv extraction is relatively low.24 

Generally however, smaller molecular weight polymers tend to have higher solubilities than their 

high molecular weight counterparts.25 Thus, the initial fragmentation of lignin not only helps to 

free lignin from the biomass cell wall matrix but also helps to solubilize lignin. 

Lignin fractionation, which requires chemical reactions, represents the minimum 

modification of lignin (with respect to its native molecular structure) required for soluble lignin to 

appear. Due to the complexity of biomass and lignin, some lignin molecules in the biomass cell 

wall will readily fractionate, while others require more time and energy. As a result during 

organosolv extraction, the solubilized lignin molecules that are easily released and transported 

from the cell wall matrix at short extraction residence times are subjected to extraction conditions 

for a significant portion of the total extraction residence time required to achieve high yields. 

During this period, the population of already fractionated lignin molecules can undergo secondary 

reaction pathways (i.e., secondary to the chemical reactions required for fractionation). The 

secondary reaction pathways that can occur to fractionated lignin can be classified as reactions that 

cause (1) chain fragmentation, (2) intra- or inter-chain condensation, or (3) some other chemical 

modification not effecting chain topology or molecular weight (Figure 2). Fragmentation reaction 

pathways of fractionated lignin are generally associated with lignin inter-monomer ether cleavage 

and molecular weight reduction. In contrast, proposed condensation reaction pathways of 

fractionated lignin involve the formation of aryl-aryl or aryl-aliphatic C-C linkages.26-29  Both 

intra-molecular and inter-molecular condensation reactions can occur, though only inter-molecular 
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condensation reactions result in increased molecular weight. In some cases, the lignin molecule 

can become so condensed that it is no longer soluble, precipitating out of the extraction media back 

onto the biomass and lowering the overall lignin extraction yields.30 

3.4.1 Lignin Extraction Yield.  The mass of lignin, the residual carbohydrate-rich, and the water 

soluble fraction (as described in Figure 3-1) was reported as a function of extraction time and 

temperatures in Supplementary Figure II-1.  Note that as extraction severity increases, the percent 

of total mass recovery decreases.  This was primarily attributed to the increased formation of a 

char-like solid that was difficult to remove from the reactor. Overall this data indicates that both 

the carbohydrates and lignin are susceptible to depolymerization at the reaction condition and 

furthermore, the depolymerization products are susceptible to further degradation and 

condensation, resulting in lower yields.     

Biomass 
Fractionation 

Lower MW 

Lignin 

Higher MW 

Lignin  

Fragmentation  

Condensation  

Precipitation 

Insoluble Lignin 

Figure 3-2: A schematic of the processes occurring during organosolv extraction of lignin. 

Soluble Lignin 
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The model developed by Vázquez et al.21 was fit to the lignin extraction yield data shown 

in Figure 3-3 while rate constants for lignin fractionation and precipitation are in Table 3-1. For 

extractions at temperatures of 150, 180, and 210 °C, the rate constants of fractionation are, 

respectively, 0.37, 0.37, and 1.1 h-1, while the rate constants of precipitation are ~0, 0.01, and 0.02 

h-1. As shown in Figure II-2, both lignin fractionation and precipitation seem to have an Arrhenius 

temperature dependence with activation energies of 39 and 124 kJ/mol, respectively. The observed 

activation energy for lignin fractionation was similar to the activation energy of delignification 

reported by Vázquez et al.21 The analysis of lignin yield as a function of time reveals that the rate 

Table 3-1: Rate constants and activation energy of fractionation and precipitation. 

Rate Constants (h-1)  
EA(kJ/mol) 

150 °C  180 °C  210 °C  

kF kP  kF kP  kF kP  Fractionation Precipitation 

0.37 ~0  0.37 0.01  1.1 0.02  39 124 

Figure 3-3: Lignin extraction yields (points) from at 150, 180, and 210 °C with fits to 

the kinetic model (lines) describing the rates of fractionation and precipitation. 
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of lignin fractionation is at least an order of magnitude larger than the rate of lignin precipitation 

and that there is a significant energy barrier to lignin precipitation.  However, as seen in Figure 3, 

small rates of lignin precipitation can cause significant decreases in lignin yield at long extraction 

times.   

3.4.2 Lignin Molecular Weight. GPC analysis was used to describe the change in the molecular 

weight of the fractionated lignin as a function of extraction time, as shown in Figure 4.  

Fractionated lignin number average molecular weight (Mn), weight average molecular weight 

(Mw), and dispersity (Ð) based on polystyrene standards are in Table II-1. The two competing 

secondary reactions pathways, fragmentation and condensation, play an important role in the 

resulting molecular weight of the lignin. The lignin resulting from the 150°C extraction decreased 

in molecular weight as extraction time increased, indicating fragmentation reactions dominated 

over condensation reactions. The average molecular weights of the 180°C extracted lignin initially 

decreased, then at the longer extraction time, the average molecular weights began to increase. The 

extraction conducted at 210 °C followed a similar pattern as the 180 °C extraction, initially 

decreasing in molecular weight, then increasing. These results suggest that condensation reactions 

require higher temperatures.  The combined GPC and lignin yield results suggest that increases in 

molecular weight, likely due to condensation reactions, are related to lignin precipitation and 

decreases in lignin yield observed at high temperature and/or long extraction times. An additional 

observation is the appearance and disappearance of downfield peaks (between 31 and 35 min) that 

likely represent oligomers with degrees of polymerization less than four. The appearance of these 

peaks is a result of initial fragmentation reactions and seem to be most prominent in lignin 

extracted at 150 °C for 5.5 h. The disappearance of these peaks at longer extraction times and 
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higher extraction temperature indicates that these oligomers are not stable and likely undergone 

condensation reactions.  

Figure 3-4: The resulting GPC chromatographs of the a) 150, b) 180, and c) 210 °C series lignin.  

b) 

c) 

a) 
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3.4.3 Lignin Chemical Moiety Modeling.  Quantitative NMR was conducted to quantify a 

functional group or chemical moiety present within the fractionated lignin as a function of 

extraction time and temperature. The change in the chemical moiety concentration of the 

fractionated lignin was then analyzed using a pseudo-first order kinetic model for reactions in-

series. It is important to realize the differences between our model and a traditional kinetic 

modeling approach. First, instead of considering the molarity of a chemical moiety, the 

concentration of a chemical moiety is expressed in mmol of that chemical moiety present on the 

recovered (fractionated and still soluble) lignin per gram of that lignin at a given extraction time, 

(i.e., mmol C or OH of moiety per gram lignin). This concentration will change as a result of (1) 

lignin fractionation continuously producing lignin molecules with a different chemical 

composition than previously fractionated lignin molecules, (2) secondary reactions that either 

generate or consume a chemical moiety, or indirectly concentrating or diluting a chemical moiety 

by changing the molecular weight, and (3) lignin precipitation that removes lignin molecules of 

different chemical moiety composition than current observed in solution. Additionally, the initial 

concentration of chemical moieties will match the chemical moiety concentration in the 

fractionated lignin molecules that have been initially generated at the start of the extraction 

(lim
𝑡→0
𝑓(𝑡) where 𝑓(𝑡) is the concentration of a chemical moiety), or in this case, during the time 

required for the reactor system to reach the desired extraction temperature. 

Various hydroxyl or carbon functional groups on lignin can be attributed to phenolic groups 

at the end of lignin chains, aliphatic hydroxyl groups that are part of inter-monomer sub-structures, 

and other lignin monomeric or inter-monomer sub-structural moieties.  As a result, tracking lignin 

hydroxyl or carbon functional groups distributions provide unique insight into fragmentation and 

condensation reactions. The most commonly cited lignin fragmentation reaction mechanism 
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involves β-aryl ether (β-O-4, Figure 3-5a; containing two aliphatic hydroxyls) linkages cleavage 

under mildly acidic conditions.4, 31-33 One proposed route begins with a dehydration reaction which 

leads to acidolysis and formation of a carbonium ion at the Cα-position of the aliphatic side chain 

(Figure 3-5b) to generate a Hibbert-type ketone (Figure 3-5d).  Though clearly present in the 

acidolysis reaction of lignin β-O-4 model compounds, in lignin recovered from organosolv 

extraction ketone are generally not detect in any significant amount.4, 31-33 Although Miles-Barrett 

et al.34 clearly demonstrated with 2D NMR experiments that, depending on the lignin source, both 

syringyl and guaiacyl moiety lignin-bound Hibbert ketone units could be found in acid-catalyzed 

organosolv lignin. Loss of lignin-bound Hibbert ketone units have also been explained by 

equilibration to other isomers via allylic rearrangement. Competing pathways to fragmentation and 

lignin-bound Hibbert ketone formation involves the (1) release of formaldehyde from the Cγ-

position of the aliphatic side chain to form an enol ether-type linkage (Figure 3-5c) or (2) chain 

condensation with the 5-carbon of a guaiacyl unit to form a phenylcoumaran-type substructure 

(Figure 3-5g).  Note that the formation, as described above, of the lignin-bound Hibbert ketone, 

phenylcoumaran-type substructure, and enol ether-type linkage results in not only chain cleavage 

and phenolic end group formation but also the loss, respectively, of one, one, and two aliphatic 

hydroxyls. Similar to β-aryl ether linkages, non-cyclic α-aryl ether (α-O-4) linkages are easily 

cleaved and result in a new phenolic end group and loss of an aliphatic hydroxyl; although, their 

considerably lower prevalence makes non-cyclic α-aryl ether cleavage of limited importance. 

Cyclic α-aryl ether (β-5 or phenylcoumaran) and dialkyl ether (β-β or resinol) linkages have been 

shown to be relatively more resistant to degradation at organosolv conditions. However, acidic 

reactions of based on model compound studies, phenylcoumaran linkages maybe susceptible to 

minor acidolysis. Though, unlikely to result in chain cleavage, this acidolysis could cause a 
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reduction in the presence of ether functionality. Lignin condensation reaction mechanisms also 

involve β-aryl ether linkages, and begins with a dehydration reaction which leads to acidolysis and 

formation of a carbonium ion at the Cα-position of the aliphatic side chain.  In this case, electron-

rich positions at the positions ortho or para to methoxyl groups on the aromatic ring of another 

lignin monomer form stable C-C bonds with carbonium ion at the Cα-position, leading to inter- or 

intramolecular condensation, the loss of an aliphatic hydroxyl, and formation of an aromatic 

carbon attached to a carbon. 

 

31P NMR on fractionated lignin following phosphorylation with 2–chloro–4,4,5,5–

tetramethyl–1,3,2–dioxaphospholane (TMDP) can be used to quantitatively profile the distribution 

Figure 3-5: Proposed reaction routes mechanism occurring during organosolv reactions 
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of hydroxyl and phenolic groups. The 31P NMR analysis focused on the appearance and 

disappearance of several chemical moieties: (1) aliphatic moieties based on the concentration of 

hydroxyls attached to aliphatic carbon (150 – 145.4 ppm), (2) terminal guaiacol moieties based on 

the concentration of phenolics on a guaiacyl ring (140 – 138 ppm); (3) terminal syringol moieties 

based on the concentration of phenolics on a syringyl ring (144.5 – 142 ppm), (4) terminal C5-

substituated guaiacol moieties, referred to as condensed phenolics, based on the concentration of 

phenolics on a C5-substituated guaiacyl ring (142 – 140 ppm), and (5) carboxylic acid moieties 

based on the concentration of hydroxyls attached to carbonyl carbons (135.5 – 133 ppm). The 31P 

NMR chemical shift regions for hydroxyl chemical moieties of interest are in Table II-2 and the 

spectra for all fractionated lignin sample are in Figures II-3 a-c. The concentrations of hydroxyl 

chemical moieties are plotted against extraction time along with fits to the pseudo first-order 

kinetic model (Figure 3-6 and Figure II-4). The rate constants for the appearance and 

disappearance of these hydroxyl chemical moieties are compiled in Table 3-2. Tracking the 

hydroxyl moieties, insight is gained into the secondary reaction pathways occurring during 

extraction. 
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Figure 3-6: Amount of a) aliphatic OH and b) phenolic OH per gram of recovered lignin.  

Solid lines represent a fit to a pseudo first-order kinetic model. 
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Table 3-2: The rate constants for the chemical moieties derived from 31P NMR. 

Chemical 

Moiety 

Rate Constants(h-1)  
EA(kJ/mol) 

150 °C  180 °C  210 °C  

kA kD  kA kD  kA kD  Appearance Disappearance 

Aliphatic 0.0035 0.11  0.0037 0.12  0.013 0.73  35 54 

Phenolic 0.45   0.59   0.76   15  

Syringol 0.44   0.45   1.02   24  

Guaiacol 0.40   0.44   0.73   17  

Condensed 

Phenolic 
0.36   0.44   0.9   26  

Carboxylic 

Acid 
0.07   0.19   0.2   29  

 

 Rate Constants(h-1)   

 150 °C 180 °C 210 °C EA(kJ/mol) 

 kA  kD kA  kD kA  kD Appearance Disappearance 

Total Carbon 0.16  -- 0.32  -- 0.73  -- 43  

Total Aromatic 0.20  -- 0.32  -- 0.63  -- 33  

Aromatic C-C 0.22  -- 0.48  -- 0.97  -- 42  

Aromatic C-O 0.21  -- 0.32  -- 0.63  -- 31  

Aromatic C-H 0.20  -- 0.24  -- 0.52  -- 27  

Etherified 

Aromatic  C-O 
--  0.21 --  0.26 --  0.76  37 

Non Etherified 

Aromatic C-O 
0.19  -- .26  -- .78  -- 40  

Aliphatic 0.055  -- 0.27  -- 0.36  --- 52  

O-Aliphatic --  0.32 --  0.97 --  1.0  32 

 

 

Table 3-3: Rate constants for chemical moieties derived from 13C NMR 
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Syringol and guaiacol moieties have appear at similar rate constants (ca. 0.4 h-1) at lower 

temperatures (150 and 180°C), but as the extraction temperature increases to 210 °C, syringol’s 

rate constant of appearance increases by a factor of 2.3 while that of the guaiacol rate of appearance 

increases by only a factor of 1.7. The condensed phenolic rate of appearance is similar to that of 

the syringol and guaiacol moieties, displaying a comparable increase from lower to higher 

temperatures. The appearance of condensed phenolic moieties could result from chain cleavage at 

the 4-position of a lignin unit already containing a 5-5 linkage. However, a more favorable 

explanation supported by the difference in the rate constant of appearance increases of the syringol 

and guaiacol, is the condensation of two terminal guaiacol moieties. The observed rate constants 

of terminal phenolic moieties are the highest, confirming that aryl ether inter-monomer linkage 

fragmentation is a dominating feature of organosolv processing. In addition to the appearance of 

phenolic moieties, 31P NMR suggests that carboxylic acids moieties appear as function of 

extraction time, which can be another product of aliphatic-aryl ether cleavage. The total aliphatic 

hydroxyl concentration decreases as a function of extraction time. The direct loss of aliphatic 

hydroxyls from aliphatic-aryl ether inter-monomer linkages can be a result of lignin chain 

fragmentation causing the resulting lignin to not only have a lower molecular weight but also 

higher carbon content (via deoxygenation). As the oxygens are removed and the carbon content is 

increased, the concentration of the remaining carbon-containing chemical moieties increases. Total 

integration of 13C NMR, as well as the elemental analysis, Table II-5, indicates that the mmol of 

carbon per gram of lignin increases as a function of extraction severity (i.e., time and temperature).  

After the aliphatic hydroxyl groups were fit to the model, a rate constant of appearance was derived 

for the aliphatic hydroxyl, which was attributed to freshly fractionated lignin having a higher 
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concentration of aliphatic hydroxyls, not  to secondary reactions forming new aliphatic hydroxyl 

moieties.  

 13C NMR can be used to quantitatively profile the distribution of the key chemical moieties 

that comprise lignin. An initial assessment of the 13C NMR, seen in Figure II-5 indicates that the 

organosolv extraction produced a lignin sample without carbohydrates. The 13C NMR analysis 

focused on the appearance and disappearance of several key chemical moieties: (1) aliphatic 

moieties, based on the concentration of aliphatic carbons (0 – 28 ppm), (2) O-aliphatic moieties, 

based on the concentration of aliphatic carbon attached to an alcohol, ester, and/or ether  (58 – 90 

ppm), (3) aromatic carbon-carbon (C-C) moieties, based on the concentration of aromatic carbons 

attached to a carbon (124 – 142 ppm), (4) aromatic carbon-oxygen (C-O) moieties, based on the 

concentration of aromatic carbons attached to an oxygen (142 – 160 ppm), and (5) aromatic 

carbon-hydrogen (C-H) moieties, based on the concentration of aromatic carbons attached to a 

hydrogen (102-124 ppm).  The 13C NMR integrations for these chemical shift regions are in Table 

II-3 and the spectra for all fractionated lignin samples are in the Figure II-5. The concentration of 

the carbon-containing chemical moieties are plotted against extraction time along with fits to the 

pseudo first-order kinetic model (Figure II-6). The rate constants for the appearance and 

disappearance of the carbon-containing chemical moieties are compiled in Table 3-3.  

 The integration of the total carbon spectra with respect to the internal standard and the 

known amount of lignin dissolved in the NMR sample suggest that the carbon content of the 

extracted lignin is increasing. This trend was confirmed by total organic carbon analysis on a subset 

of samples as shown in Table II-4. Sannigruhi et al. and Hallac et al. have proposed β-O-4 scission 

mechanisms and Chakar et al. has proposed α-O-4 scission mechanisms in which O-aliphatic 

carbons moieties are consumed.26, 28, 32 Beyond the deoxygenation, Santos et al.29, proposed a β-
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O-4 scission mechanism in which a hydroxylated γ carbon is lost, resulting in an increase in mmol 

C/ g lignin as the resulting lignin has a lower hydrogen and oxygen content. The increase in carbon 

content concentrates both the aliphatic and aromatic chemical moieties within the lignin. Although 

the increases in concentration are not equal, the aromatic chemical moieties have higher rate 

constants than the aliphatic, implying that the deoxygenation happens faster than the loss in 

aliphatic carbon groups and that aromatic groups are relatively stable, thus becoming most quickly 

concertated in the lignin molecules. 

A deeper analysis of the aromatic carbon reveals additional details about the fragmentation 

and condensation reactions occurring. First, the aromatic C-O moieties have a rate constant very 

similar to that of the overall aromatic groups. This similarity implies that there are not significant 

reaction pathways that consume the methoxy groups or phenolic hydroxyl group on the aromatic 

or produce addition aromatic C-O groups. Although the total aromatic C-O has a similar rate 

constant to that of the general increase in aromatic carbon, when the region is separated into 

etherified (148-154 ppm) and non-etherified (145-148 ppm) aromatic C-O moieties, there are 

significant changes. The rate constant of appearance for non-etherified moieties and the rate 

constant of disappearance for etherified C-O aromatic moieties are similar, implying the direct 

conversion of the etherified into the non-etherified. This is in line with the observation that the 

breaking of aryl ether bonds is a major fragmentation pathway and reaction occurring during 

organosolv extraction. 

Condensation reactions can be tracked by the difference between the rate constants of the 

aromatic C-C bonds and the aromatic C-H compared to the overall aromatic rate constants. The 

formation of β-5, 5-5’, and to lesser extents, α-6 or β-6, consume aromatic C-H moeities and result 

in the formation of an aromatic C-C moiety. Although the concentrations of both the aromatic C-
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C and aromatic C-H increase from the increase in carbon content, when comparing the rate 

constants of total aromatic (0.20, 0.32, 0.63 h-1) to the aromatic C-H (0.20, 0.24, 0.52 h-1) and 

aromatic C-C (0.22, 0.48, 0.97 h-1), it can be seen that at 150 °C, there is little difference in the 

rate constants, but at the higher temperatures there is a dramatic difference in the rate constants. 

The aromatic C-H rate constants are lower than the total aromatic and the aromatic C-C is greater 

than the total aromatic rate constants, implying that aromatic C-C moieties are forming, and 

aromatic C-H moieties are being consumed, at a greater rate than the concentration effects of losing 

O-aliphatic or aliphatic moieties. This observation aligns with the yield, GPC, and 31P NMR results 

that show that the condensation reactions require higher temperatures to occur. 

3.5 Conclusions 

 Kinetic models were successfully developed to describe lignin yield as well as the 

appearance and disappearance of key chemical moieties of organosolv extracted lignin. As 

expected, higher temperature extractions had faster rates of lignin fractionation, but they also lost 

lignin to precipitation, at longer times resulting in lower lignin yields.  31P NMR and 13C NMR 

provide insights into secondary reaction pathways occurring after fractionation. The fragmentation 

pathways proceed at all temperatures, whereas condensation reactions require higher temperatures 

before they proceed at appreciable rates. The elucidation of rate constants for the major chemical 

moieties allows the processes to be designed not only for lignin yield and molecular weight, but 

also for desired chemical traits with the downstream use in mind. 
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Chapter 4: Improving the Understanding of 

Lignin Derived Mixtures with Fourier 

Transform Ion Cyclotron Resonance High 

Resolution Mass Spectrometry 

4.1 Abstract 

Understanding the chemical makeup of extracted lignin and the resulting mixture from 

lignin upgrading processes is of great importance for downstream uses. The complexity of the 

original lignin, compounded by the extraction and the upgrading processes, causes difficulty in 

understanding the final mixture. The combination of electrospray ionization (ESI) and atmospheric 

pressure photoionization (APPI) Fourier transform ion cyclotronic resonance (FTICR) high 

resolution mass spectrometry (HRMS) allow a near complete characterization of lignin breakdown 

product mixtures resulting from catalytic upgrading. Although, even with a clearer picture, 

thousands of data points are produced and advanced data processing methods are still required to 

be able to use the data quickly and efficiently.  

4.2 Introduction  

Previous chapters described extraction and isolation methods for lignin. Unfortunately, 

there are few direct uses for extracted lignin, thus further upgrading is typically required to produce 

base chemicals that can be ‘dropped in’ to current processes for producing higher value chemicals, 

fuels, or materials. A large range of catalytic systems for upgrading lignin have been explored.1 

Lignin streams are currently depolymerized and upgraded with various approaches: thermal 

methods (i.e., pyrolysis or gasification),2-5 solvolytic cleavage,6 and catalytic oxidative7-9or 

reductive10-11 fragmentation. Typically, the more selective the process, the lower the yield of 
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desired product, although, all processes yield a large range of both desired and undesired 

products.1, 12-14  

One of the major hurtles in designing effective lignin upgrading processes is accurately 

understanding the molecular structures and the overall composition of lignin-derived products. 

Currently, several methods are used to characterize lignin and lignin-derived products. Gel 

permeation chromatography characterizes the size distribution of the lignin molecules, indicating 

the progress of the depolymerization processes, but provides no chemical information.  Nuclear 

magnetic resonance (NMR) can give very detailed structural information, but requires a large 

sample size and gives only averages across a sample. For sufficient sample amounts, NMR 

techniques are useful in characterizing lignin-derived products. Carbon (13C) NMR can provide 

quantitative information on the types of chemical moieties and can also provide information on 

specific inter-unit linkages, using 2D NMR techniques such as 1H-13C heteronuclear single 

quantum coherence (HSQC).   Gas chromatography (GC), typically coupled with mass 

spectroscopy (MS), is another commonly used technique for analyzing the volatile components of 

the product mixtures. Unfortunately, many components of the lignin-derived products, which are 

oligomeric, oxygen-rich, and polar, are not volatile enough to be separated.15 Additionally, typical 

mass spectrometers do not have the resolution to separate all the components.  Liquid 

chromatography (LC) is used to overcome the challenge of the lower volatility of many lignin 

breakdown products, but typically it cannot separate the mixture adequately and takes an 

impractically long time for a single sample. To better design catalysts and processes to produce 

high value chemicals, accurately understanding the complex mixture of molecules resulting from 

upgrading processes are crucial.   
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Fourier-transform ion cyclotron resonance with high resolution mass spectroscopy (FTICR-

HRMS) offers a detailed understanding of lignin breakdown products. A short run time, high 

sensitivity, high resolution, and the ability to analyze higher molecular weight molecular analytes 

make FTICR-MS a powerful tool.  Although FTICR-HRMS is only semi-quantitative, due to the 

ionization bias of individual compounds, a more complete picture of the compounds within a 

lignin-derived mixture can be obtained by utilizing several different ionization methods.16  

In this study, three sets of lignin depolymerization reaction systems: (1) copper doped porous 

metal oxide (CuPMO) catalyst in methanol, (2) the same catalytic system with dimethyl carbonate 

(DMC) as a stabilizer, and (3) methanol solvolysis (MeOH), were used a model system to develop 

FTICR-HRMS analysis for lignin. Previous studies have used these three systems to analyze the 

gaseous products.17-18 In these studies, GC-MS analysis focusing on the production of monomers 

and volatile products. However, there is a significant portion of the products and intermediates that 

are not volatile enough to be analyzed by GC-MS, thus requiring additional analysis to obtain the 

complete picture.   

4.3 Methods 

4.3.1 Organosolv Extraction: Clean poplar wood chips (600 g) and hydrochloric acid (12 mL) 

were added to 4.5 L of methanol, then heated to reflux and stirred for 12 days. The resulting 

mixture was filtered and the solution volume reduced by rotational evaporation. Ice was added to 

precipitate the lignin. The lignin was collected by filtration, washed with cold water, and then dried 

under vacuum. 

4.3.2 Lignin Depolymerization: Lignin depolymerization reactions were carried out in custom-

built bomb reactors comprised of a ¾ inch Swagelok union and two ¾ inch Swagelok plugs, 

resulting in an internal volume of ~10 mL. The reactors are described in detail in Matson et al.19 
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Three sets of reactions were run: the standard reaction, charged with 100 mg of lignin and 3 mL 

of methanol; catalyzed reactions, charged the same as the standard with the addition 100 mg of 

catalyst; and stabilized catalytic reactions, charged the same way as the catalyzed reactions with 3 

mL of the mixture of methanol and dimethyl carbonate in a 2:1 ratio. The time-dependent product 

distribution studies were conducted by adding identical quantities of lignin, catalyst, and solvent 

to a set of reactors. These reactors were sealed and placed into a pre-heated furnace set to 300 °C, 

then removed after the given time interval (3, 6, or 9 h) and quenched in an ice water bath. 

4.3.3 FT-ICR MS 

4.3.3.1 Sample Preparation: Methanol and toluene solvent were LC MS grade and used as 

received. The samples were diluted 20-fold in 1 mL of methanol. The ESI experiments were 

carried out without the addition of any dopants. For the APPI experiments, toluene was added as 

a dopant in a 1 to 9 toluene to sample ratio.  

4.3.3.2 Analysis Conditions: The measurements were performed on a Bruker SolariX 15T FT-

ICR equipped with an electrospray ionization (ESI) and an atmospheric pressure photoionization 

(APPI) source, controlled with “FTMS” control software to optimize the different ionization 

methods and operating parameters.  DataAnalysis software (BrukerDaltonik version 4.2) was used 

for peak picking and a visual data quality check. 

ESI FT-ICR MS: Analysis were carried out in both positive and negative ion modes. In negative 

mode, the voltage at the end plate was 500 V, and the capillary was 2.4 KV. In positive mode, the 

voltage at the end plate was -500 V, and the capillary was -2.4 KV. The source gas was at 180 °C 

and held at 0.5 bar pressure. The nebulizer gas flow rate was 4.0 l/min, and the sample was injected 

with a flow rate of 3.0 uL/min. Ions were accumulated for 0.1 s per scan, with 300 scans summed 

for the final spectrum, which ranged from m/z 100 to 1000, with a resolution of 350K at 381 m/z. 
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APPI FT-ICR MS: The APPI source was equipped with a UV lamp that emitted 10 eV photons. 

The voltage at the end plate was 300V and at the capillary was 400V. The source gas was 220 °C 

and held at 4 bar pressure.  The vapor temperature was 400 °C. The nebulizer gas flow rate was 

2.0 L/min, and sample was injected at a flow rate of 10.0 uL/min . The ions were accumulated for 

0.2 s per scan, with 300 scans summed for the final spectrum. The spectrum ranged from m/z 100 

to 1000. 

4.3.3.3 Post-acquisition Data Processing: 

DataAnalysis software (BrukerDaltonik version 4.2) was used to convert raw spectra into 

lists of “m/z” and “abundance” by applying “FTMS” peak picker with the S/N threshold set to 7 

and the relative and absolute intensity thresholds set to 0.001 and 100 respectively. The same peak 

picker parameters were used for all positive and negative mode ESI and APPI spectra. Prior to 

peak export, spectra were internally calibrated using an interactive function, a list of common 

contaminant peaks, and lignin library peaks compiled from other sources. Based on the calibration 

results the, estimated precision for these measurements was 0.3 ppm or better. 

Molecular formulas were assigned using the Compound Identification Algorithm (CIA), 

described by Kujawinski et al20-22 and implemented in PNNL-produced software Formularity23. 

All identified ions in the spectra were assumed to be singly charged; all CIA searches were 

performed with a mass error threshold of 0.3 ppm for m/z<500 and with elemental count filters of 

N<6, S<3, P<2, N*S*P=0. To analyze negative mode spectra, the presence of oxygen was also 

mandated (O>0). Formulas for m/z>500 were assigned exclusively through a CH2, H2, and O 

connected homologous series. When multiple formulas were matched with the same peak, the 

formula with the lowest number of heteroatoms, N+S+P, was selected. If multiple formulas shared 

this number, the formula with lowest mass error was chosen. Other than negative mode ESI 
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spectra, all other spectra were searched twice, assuming different ion types as summarized in the 

table below. Results from individual searches were consolidated into a single report using same 

ambiguity resolution criteria, namely the lowest N+S+P count and mass error. Isotopic peaks for 

many formulas confirmed by the 1.0034 Da spacing found between peaks assigned to 12Cn and 

12Cn−1
13C, were removed from final reports. 

 

 

4.3.4 Elemental Analysis: The CNS elemental analysis was carried out using a standard protocol 

on a VarioEL Cube Elemental Analyzer (Elementar Analysensysteme GmbH, Langenselbold 

Germany). Helium carrier gas was flowed at 240 mL/min at 1150 mBar, dosed with oxygen for 

210 second at a rate of 37 mL/min. The combustion was done at 1150 °C packed with granular 

tungsten trioxide and the reduction tube filled with copper wire (4 mm x 0.5 mm) at 850 °C. 

Nitrogen and carbon where detected by thermal conductivity detector, and sulfur was detected by 

an infrared detector.  

4.4 Results 

Several studies have explored the ionization bias of the various techniques and compounds. 

By using both (±) ESI and (±) APPI ionization to analyze the breakdown mixtures, a more 

complete picture of the resulting compounds is obtained. In this work, an initial analysis 

determined the number of peaks and the amount of the total ion current (TIC) that could be 

assigned to a particular chemical formula, as well as which ionization methods could ionize the  

Ionization Mode Ions

ESI Negative [M-H]-

ESI Positive [M+H]+, [M+Na]+

APPI Negative [M-H]
-, 

M*
-

APPI Positive [M+H]
+
, M*

+
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chemical. Table 4-1 displays the number of individual peaks, as well as the percent of the TIC that 

is unassigned and assigned a chemical formula and Figure 4-1 is a Venn diagram displaying the 

overlap of compounds detected by each ionization technique. 

 (±) APPI ionization averages over 80% of the individual masses being assigned a chemical 

formula per sample, and (±) ESI averages only 60% assignments per sample. However, over 90% 

of the (±) APPI TIC is assigned, and over 75% of (±) ESI TIC is assigned a molecular formula. 

For organosolv lignin catalytic breakdown products, (±) APPI ionization produces overall larger 

mass counts and total ion current (TIC), as well as chemical formula assignments, than (±) ESI 

ionization. Only ~10% of the identified compounds were detected by all of the ionization methods, 

whereas ~70% of the compounds were detected by only a single ionization method, confirming 

   APPI_NEG  APPI_POS  ESI_NEG  ESI_POS 
   # of peaks TIC  # of peaks TIC  # of peaks TIC  # of peaks TIC 

Untr-

Lignin 

Unassigned  601 22%  454 7%  1390 28%  306 9% 

Assigned  2471 78%  2725 93%  1152 72%  580 91% 

CuPMO 

9h 

Unassigned  233 3%  723 2%  2296 26%  1596 36% 

Assigned  2633 97%  5944 98%  1517 74%  2082 64% 

CuPMO 

6h 

Unassigned  436 4%  734 2%  2383 28%  1539 44% 

Assigned  3189 96%  6166 98%  1331 72%  1559 56% 

CuPMO 

3h 

Unassigned  197 4%  589 2%  1227 17%  1223 23% 

Assigned  2278 96%  5566 98%  2189 83%  1946 77% 

DMC 9h 
Unassigned  590 4%  1641 7%  1081 14%  2101 36% 

Assigned  3757 96%  4531 93%  2464 86%  1915 64% 

DMC 6h 
Unassigned  551 4%  1486 6%  1430 12%  2018 37% 

Assigned  4030 96%  5100 94%  2233 88%  1977 63% 

DMC 3h 
Unassigned  764 5%  1609 7%  842 13%  1848 29% 

Assigned  4156 95%  4542 93%  2456 87%  1970 71% 

MeOH 

9h 

Unassigned  912 6%  897 4%  818 22%  1040 19% 

Assigned  3471 94%  4332 96%  2511 78%  2454 81% 

MeOH 

6h 

Unassigned  933 7%  943 5%  783 26%  987 21% 

Assigned  3467 93%  4264 95%  2549 74%  2349 79% 

MeOH 

3h 

Unassigned  910 8%  1005 5%  1185 34%  555 13% 

Assigned  3160 92%  4208 95%  1967 66%  1995 87% 

Table 4-1: Number of peaks assigned a molecular formula and the percent of TIC comprised of masses assigned 

a chemical formula. 
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that multiple ionization techniques are required for a complete picture of the chemical profile of 

the lignin breakdown products. 

A closer look at the masses assigned a chemical formula is required to understand the 

chemical bias of the ionization methods. The majority of the chemicals, both in terms of number 

and TIC are comprised of C, H, and O. Non-oxygenated aliphatic (i.e., C and H) containing 

compounds were only detected by positive ionization methods, particularly (+) APPI. Nitrogen-

containing compounds were favorably ionized by positive modes and by ESI. (+) ESI in particular 

Figure 4-1 Venn diagram of the unique chemical structures detected by each ionization method. The 

areas are not to scale. 
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has a strong bias towards nitrogen containing compounds, and over 50% of the compounds 

detected by (+) ESI in some samples were nitrogen containing compounds. Sulfur followed a 

similar pattern, being favorably ionized by positive modes and ESI. (+) ESI had the largest portion, 

36%, of assignments containing sulfur. Phosphorous was the opposite, being favored by negative 

modes and APPI ionization, (-) APPI had the largest portion, 4%, of assignments containing 

phosphorous. The heteroatom (nitrogen, sulfur, and phosphorous) chemical count distributions are 

tables III-1, III-2, and III-3. Elemental analysis to determine the carbon, nitrogen, sulfur content 

was also performed to understand the overall chemical makeup of the lignin breakdown product 

mixture, Table III-4. Both nitrogen and sulfur made up less than 0.1 wt% of the samples, and this 

small amount confirms that ionization bias occurred. The low overall mass count and TIC of (+) 

ESI, coupled with the disproportionate amount of nitrogen and sulfur containing compounds, 
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proves the extreme ionization bias that can occur for lignin breakdown products. It is important to 

remember that each ionization method has a bias. 

The molecular weight was calculated to insure that there isn’t weight based bias in the 

ionization methods. The molecular weight distribution calculated from FTICR-HRMS is more 

accurate than the GPC. GPC relies on correlating a standard, typically polystyrene, and its 

interaction with chromographic columns to the lignin breakdown products and its interaction with 

the columns. The interactions are typically not exactly the same, and furthermore, the interaction 

between the columns and the difference types of lignin breakdown products is rarely the same. By 

using the exact masses of the FTICR-HRMS gives a more precise distribution. The average 

number molecular weight (Mn), average weight molecular weight (Mw), and dispersity (Ð) were 

calculated for each of the samples’ spectra produced by the four ionization methods, considering 

both the unique masses and the TIC (Table III-5). The molecular weight is crucial to understanding 

the reactions occurring, e.g., fragmentation or condensation, as well as the physiomechanical 

characteristics of the breakdown products. A quick check of the Mn and Mw indicates that the 

ionization methods do not favor either higher or lower molecular weights. The Mn, Mw, and Ð 

based on the numbers indicates the increase or decrease in diversity of chemicals present. The Mn, 

Mw, and Ð based on the TIC indicates the most prevalent reaction pathways, i.e., whether 

fragmentation or condensation dominate.  

 The amount of data produced by a single FTIRC-HRMS can be thousands of chemical 

species (data points), and since at least four different runs are need to accurately characterize a 

single mixture, advanced analytical methods are needed to understand and track a series of reaction 

conditions. A slew of analyses have been developed based on FTICR spectra of crude oils and to 

a lesser extent, refined petroleum, named ‘petroleomics’, which consists of a series of 
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visualizations and analyses, (e.g., Van Kreveleen, DBE vs #C, oxygen distributions, and Kendrick 

Mass Defect) . These methods are very useful to characterize crude oils or coal, but can be labor 

intensive to understand the nuanced difference when trying to follow reactions.  

Additional studies have been done to adopt the petroleomic techniques from oil to biomass 

applications.   Herein, petroleomics are adopted in a meaningful way to succinctly characterize 

lignin breakdown products from three different upgrading systems.  

The adaption of petroleomics was performed on the signal from CxHyOz (x=3-72, y=1-140, 

z=0-25) which accounts for most of the signal, both in terms of molecular formula count and TIC. 

The first technique used were Van Kreveleen plots. Van Kreveleen plots were originally designed 

to measure the maturity of coal by plotting the amount of hydrogen per carbon versus oxygen per 

carbon, and were later adopted to petroleum and now lignin. Both deoxygenation and 

L
o
g

1
0  T

IC
 In

te
n

s
ity

 

Figure 4-3:Example of Van Kreveleen plots, (+) APPI CuPMO 3h 
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hydrogenation are a major lignin upgrading pathways that can be tracked with the Van Kreveleen 

plots. An example of Van Kreveleen plot is shown in Figure 4-3 and all of the plots are in Appendix 

III. The amount of data is quickly too large to be easily and rapidly analyzed to monitor a reaction 

system. In this work, we utilize the Van Kreveleen data to calculate the center point, i.e., point 

(average of the O/C, average of the H/C), and spread, i.e., point(one standard deviation in the O/C, 

one standard deviation in the H/C), of both the number count and weighted by TIC. Similar single 

point Van Kreveleen plots have been generated by elemental analysis, but these plots are unable 

to provide the spread data, as with FTIRC-MS. This additional information is crucial to following 

the reaction direction. By plotting this data, it is rapidly apparent the difference between the 

samples and the extent of reaction. Shown here the (+) APPI center point and spread plots as an 

example, the other ionization techniques are in Appendix III.  

All of the characterizations techniques are used to analyze our test system, three time series 

with only methanol as a control (MeOH), with a copper porous metal oxide catalyst (CuPMO), 

and finally the catalyst with the addition of a reactive co-solvent DMC (DMC). The location of 

the center points largely varies based on the ionization efficiency, but distinct trends do appear. 

First, the MeOH series has the lowest H/C ratios. This confirms that without the catalyst, little 

hydrogen is produced, and the hydrogenation reaction pathway is minimal. Additionally, the 

CuPMO series typically had the lowest O/C ratio, with the aboundance of hydrogen and without 

the stabilizing DMC, an additional deoxygenation reaction pathway was present. The spread plots 

gave additional insight into the reactions occurring. First, the untreated lignin always had the 

highest spread in both the H/C and O/C directions, proving that all the upgrading processes did, to 

some degree, narrow the product distribution. Additionally, the DMC, series typically had the 
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lowest spread in both the H/C and O?C. This indicates that the co-solvent does prevent some 
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secondary reactions thus producing a more narrow chemical distribution. 

4.5 Conclusion: 

It was demonstrated a rapid technique to characterize the chemical makeup of lignin 

breakdown products. (+) APPI is a preferred ionization technique for lignin breakdown products 

do to its ability to ionize both aliphatic and oxygenated hydrocarbons. We also proven that CuPMO 

with DMC as a reactive co-solvent produces a narrower product distribution which is beneficial to 

downstream separations. This work will help design the next generation of catalyst and upgrading 

processes, moving towards an economically viable biorefinery.    
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Chapter 5 Conclusions and Future Studies 
5.1 Conclusions: 

In a series of three studies, this dissertation explored methods to better utilize lignin in 

biorefineries and improve their overall economic viability. In the initial study, a lignin waste 

stream from a current AFEX biorefinery was extracted with various solvent systems to produce 

value added lignin streams. Both an ethanol and water and an acetone and water solvent system 

produced a high yield of carbohydrate-free, minimally altered lignin. By using a conventional 

waste stream, the new methods can be deployed quicker and at lower cost. In a second study, to 

achieve the ultimate goal of producing designer lignin, the reactions underlying organosolv 

extraction were explored and the rate constants for the appearance and disappearance of key 

chemical moieties found. An improved understanding of the fractionation and condensation 

reactions allows extraction processes to be designed to produce lignin streams with desired lignin 

structures and characteristics. Even the designer lignin streams require catalytic upgrading to 

produce more valuable mixtures of fine chemicals. Finally, to help guide the synthesis of novel 

catalytic systems, the third study focused on rapidly and accurately characterizing the complex 

mixture that results from catalytic upgrading. The combined results of the research presented in 

this dissertation can advance the economic competitiveness of biorefined lignin and increase its 

potential to eventually replace fossil resources.  

5.2 Future Studies 

5.2.1 Continuing Studies 

 Chapter 2 explored the use of various organic solvent systems to extract lignin from a 

current waste stream. Further investigation should be conducted into the chemical structure of 

lignin extracted by non-polar solvents. The highly non-polar solvents had lower yields, but were 
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highly selective for lignin. So even at ~3% mass yield, there is still the potential to produce around 

10 thousand tons of high value products based on the DOE projection, if the lignin extracted by 

the non-polar solvent systems favored high value structures. Additionally, studies on extracting 

lignin from other pretreatments should also be conducted to determine how well the results extend 

to other systems. While similar trends are expected, every pretreatment alters the lignin structure 

differently and thus the solubility of the lignin will be different.  

Chapter 3 quantified the apparent reaction rate constants of key chemical moieties for 

organosolv extractions. Additional studies should be done with different sizes of biomass particles 

to determine whether the controlling phenomenon is transport (diffusion and convection) or kinetic 

(reaction rates). In scaling up the extraction process, larger biomass particles will most likely be 

used, thus it will be crucial to understand the controlling mechanism. Studies with other feedstocks, 

particularly a softwood and/or grass, would be interesting to see how the rate constants change 

based on the initial lignin structure and monolignol ratio.  

Chapter 4 used FTIRC-HRMS to analyze the lignin breakdown products from catalytic 

upgrading. A great deal more research is needed in this area, as catalysis development will be 

critical if lignin is to be converted into fine chemicals. Additional work to completely understand 

the bias of the ionization source, and methods to lessen the bias, are needed as well.  
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5.2.2 Future Directions 

 To fully utilize lignin, separation technologies and methods need to be developed. Due to 

lignin’s inherent heterogeneity, even an ideal catalyst will produce a complex mixture of 

compounds. Many of the chemical industry’s large scale separation processes (e.g., distillation) 

have been developed for petroleum fractionation. Lignin is less stable, more oxygen rich, and more 

acidic than most crude oil mixtures, so numerous adaptations will be required to effectively 

produce fine chemicals. 



102 

 

Appendix I: Supplementary Information for 

Chapter 2: Isolation of Lignin from 

Ammonia Fiber Expansion (AFEX) 

Pretreated Biorefinery Waste 
 

Contains 12 pages including: 4 figures and 5 tables.  
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Figure I-1.  Aliphatic region of 2D 1H-13C HSQC NMR spectra of UHS and the solids 

remaining after extraction of UHS with aqueous solutions of acetone, ethanol, acetic acid, 

and γ-valerolactone. 
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Figure I-2.  Aromatic region of 2D 1H-13C HSQC NMR spectra of UHS and the solids 

remaining after extraction of UHS with aqueous solutions of acetone, ethanol, acetic acid, 

and γ-valerolactone. 
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Figure I-3. 31P NMR spectral intensities of phosphitylated material extracted from UHS in 

aqueous solutions of acetone, ethanol, acetic acid, and γ-valerolactone. 

 

 

  



107 

 

 

 

 

 

 

 

  
Figure I-4. Thermogravimetric analysis (TGA) cruves of material extracted from UHS in 

aqueous solutions of acetone, ethanol, acetic acid, and γ-valerolactone. 
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Table I-1. Relative compositional analysis of the material extracted from UHS with various 

solvents. 

Solvent 
Glucan 

(%) 

Xylan 

(%) 

Arabinan 

(%) 

Acid 

insoluble 

Lignin (%) 

Ash 

content 

(%) 

Acetone:H2O (2:1) 27.1 8.8 1.7 61.7 0.7 

Ethanol:H2O (2:1) 1.9 1.9 0.0 95.9 0.3 

GVL:H2O 34.5 16.6 3.6 44.5 0.9 

AcOH:H2O (2:1) 1.0 0.9 0.0 97.9 0.2 

 

  



109 

 

Table I-2. Relative compositional analysis of the residual solids after extraction of UHS with 

various solvents. 

Solvent 
Glucan 

(%) 

Xylan 

(%) 

Arabinan 

(%) 

Acid 

insoluble 

Lignin (%) 

Ash 

content 

(%) 

Dichloromethane 

(DCM) 
20.1 7.8 1.6 41.3 29.2 

Benzene:Ethanol (2:1) 15.4 7.1 1.6 39.3 36.5 

Acetone 16.0 7.4 0.0 42.7 33.9 

Acetonitrile (ACN) 15.3 7.1 1.6 40.9 35.2 

Acetone:H2O (2:1) 16.4 5.0 0.0 39.1 39.5 

Hexane 21.3 7.8 1.7 41.3 27.9 

1,4 Dioxane 12.9 6.6 1.7 38.0 40.9 

Benzene 21.4 7.6 1.5 42.1 27.5 

Ethyl acetate 20.8 7.3 1.5 42.8 27.6 

Ethanol 11.6 6.0 1.6 39.9 40.9 

Ethanol:H2O (2:1) 13.3 5.5 1.5 27.3 52.5 

Glycerine:H2O (2:1) 10.0 2.2 0.0 51.4 36.3 

1,4 Dioxane:H2O 

(24:1) 
13.2 6.3 1.5 36.4 42.7 

Water 9.5 2.7 0.8 51.8 35.2 

γ-Valerolactone (GVL) 9.6 0.8 0.0 43.7 45.9 

AcOH 10.1 4.6 0.0 45.8 39.6 

GVL:H2O 0.8 0.8 0.0 65.3 33.1 

AcOH:H2O (2:1) 16.4 2.4 0.0 13.4 67.8 

UHS 18.0 7.3 0.1 51.8 22.8 
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 Table I-3. 1H/13C chemical shifts and assignments for the chemical substructures units as 

detected by HSQC NMR spectra of the material extracted from UHS in aqueous solutions of 

acetone, ethanol, acetic acid, and γ-valerolactone. 

s: strong resonance; m: medium resonance; w: weak resonance 

  

δC/δH(ppm) Assignment Std 
GVL 

:H2O 

AcOH 

:H2O 

EtOH 

:H2O 

Acetone 

:H2O 

55.5/3.7 
C/H in methoxyl group 

(OMe) 
s s s s s 

59.6/3.4-3.7 
Cγ/Hγ in β-O-4 ether linkage 

(A) 
s s s s s 

71.5/4.9 Cα/Hα in β-O-4 linked (A) s s s s s 

63.3/4.4(3.9) 
Cγ/Hγ in β-O-4 ether acetyl 

linkage (A) 
-- -- s -- -- 

83.6/4.3 
Cβ/Hβ in β-O-4 linked to a 

G unit (A) 
s m w s s 

85.5/4.1 
Cβ/Hβ in β-O-4 linked to a S 

unit (A) 
s w w s s 

103.5/6.7 C2,6/H2,6 in syringyl units(S) s s s s s 

110.6/7.0 C2/H2 in guaiacyl units (G) s m w s s 

114.3/6.7 C5/H5 in guaiacyl units (G) s s s s s 

118.6/6.8 C6/H6 in guaiacyl units (G) s s m s s 

127.9/7.2 

C2,6/H2,6 in 

 p-hydroxycinnamyl units 

(H) 

s s s s s 

120.7/7.0 C6/H6 in ferulate (FA) s -- -- w w 

128.6/7.4 
C2,6/H2,6 in p-coumarate 

(pCA) 
m m m m m 
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Table I-4. Carbon content (mmol C / g lignin) attributed to functionalities from quantitative 13C 

NMR spectral intensities of the material from UHS in aqueous solutions of acetone, ethanol, 

acetic acid, and γ-valerolactone. The residual γ-valerolactone peaks were removed from the 

integrations.  

13C Chemical 

Shift (ppm) 
Assignment 

Carbon Content (mmol of C / g lignin)   

GVL:H2O AcOH:H2O EtOH:H2O Acetone:H2O Standard 

 Total C 48.0 43.9 39.2 46.3 46.0 

166.2-95.8 Aromatic C 20.6 21.7 20.5 23.6 26.1 

91.0-60.8 / 

55.2-0.0  
Aliphatic C 18.9 12.9 11.2 14.1 13.9 

166.2-142.0 Aromatic C-O 7.3 5.9 6.2 7 7.1 

142.0-125.0 Aromatic C-C 5.5 6.4 6.4 7.1 8.1 

125.0-95.8 Aromatic C-H 7.9 9.4 7.9 9.5 10.9 

91.0-60.8 Aliphatic C-O 11.9* 4.8 5.8 7.5 5.4 

60.8-55.2 Methoxyl 3.3 3.8 3.8 4.9 5.2 

55.2-0.0  Aliphatic C-C 7.0 8.1 5.4 6.6 7.7 

215.0-166.2 
Carbonyl and 

Carboxyl 
5.2* 5.5 3.7 3.6 1.6 

*The intensity of solvent related peaks were removed from the integration.  
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Table I-5. Hydroxyl content (mmol of OH / g of lignin) determined by 31P NMR spectral 

intensities of the phosphitylated material extracted from UHS in aqueous solutions of acetone, 

ethanol, acetic acid, and γ-valerolactone. 

 

31P Chemical 

Shift (ppm) 
Assignment 

OH content (mmol of OH / g of lignin) 

Std 
GVL:

H2O 

AcOH

:H2O 

EtOH

:H2O 

Acetone:

H2O 
 Total OH 9.6 7.4 5.8 8.4 10.4 

145.4-150.0 Aliphatic OH 4.7 3.6 1.9 5.4 7.6 

136.0-143.5 Aromatic OH 3.8 2.6 2.8 2.2 1.9 

143.5-141.5 

Syringyl and 

Condensed Phenol 

OH 

1.0 0.7 0.9 0.5 0.4 

141.5-140.5 
C5-Substituted 

Guaiacyl OH 
0.1 0.2 0.2 0.2 0.2 

140.5-138.8 Guaiacyl  OH 1.5 0.9 1.0 0.9 0.8 

~137.8 
p-Hydroxyphenyl 

OH 
1.2 0.8 0.7 0.7 0.6 

136.0-130.0 Carboxylic Acid OH 1.1 1.2 1.1 0.9 0.9 
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Appendix II: Supplementary Information for 

Chapter 3 Understanding Fragmentation and 

Condensation Reaction Kinetics during 

Organosolv Extractions 
 

Contains 12 pages: 6 figures and 4 tables 
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  Figure II-1: Mass balance of the recovered fractions. The starting biomass was ~5g, the starting 

lignin within the biomass is ~1.1g (dashed line). The number above each column is the total mass 

percent of starting biomass recovered after the organosolv extractions. 
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Table II-1: GPC results. The number average and weight average molecular weight and 

dispersity of the recovered lignins 

     

 150 °C  180 °C  210 °C   

 Mn Mw Ð  Mn Mw Ð  Mn Mw Ð   

0.25 h 1300 2500 2.0  1100 2300 2.1  1300 3500 2.7   

1.0 h 1300 3300 2.7  1000 2600 2.5  1100 2300 2.1   

2.5 h 1000 2200 2.2  1200 2700 2.4  800 1200 1.6   

5.5 h 700 1900 2.7  1000 2400 2.4  900 1500 1.7   

12 h 1200 2400 2.0  900 1500 1.6  900 1600 1.7  

25 h 1000 2000 1.9  1200 2300 1.8  700 1200 1.6  
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Structure Δ(ppm) 

Aliphatic OH 150.0-145.4 

Syringyl Phenolic OH ~142.7 

Guaiacyl Phenolic OH 140.2-139.0 

Condensed Phenolic OH 144.7-140.2 

Carboxylic Acid OH 136.0-133.6 

Internal Standard 152.8-151.0 

TMDP Hydrolysis Product ~132.2 

 

  

Table II-2: Chemical shifts and integration regions for lignin in a 31P NMR spectrum. 
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 Figure II-3: 
31

P NMR spectra for a) 150 °C b) 180 °C and c) 210 °C extraction series with integration 

regions for key moieties indicated by arrows. 
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Figure II-4: Amount of a) syringyl OH b) guaiacyl OH  c) condensed OH and d) 

carboxylic acid OH per gram of recovered lignin with fits 
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Structure Δ(ppm) 

Aliphatic  28 - 0 

O-Aliphatic  90 - 58 

Aromatic  160 - 100 

Aromatic C-H 124 - 100 

Aromatic C-C 146 – 124 

Aromatic C-O 146 - 160 

Etherified Aromatic C-O 154 - 148 

Non-Etherified Aromatic C-O 148 - 145 

Internal Standard 93.2 

Table II-3: Chemical shifts and integration regions for lignin in a 13C NMR spectrum. 
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Table II-4 

 

Carbon Concentration (mmol C / g lignin) 

 1 h  12 h  25 h 

150 °C 0.049  0.052  0.054 

180°C 0.049  0.054  0.055 

210 °C 0.053  0.057  0.060 
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Figure II-5: 13C NMR spectra of a) 150 

b) 180 and c) 210 °C series 
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Figure II-6:Amount of a) Total  b) 
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Appendix III: Supplementary Information 

for Chapter 4 Improving the understanding 

of complex lignin derived mixtures with 

Fourier transform ion cyclotron resonance 

high resolution mass spectrometry 
 

Contains 14 pages: 7 figures and 5 tables 
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Count of 
peaks  

# of N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Ionization 
Method 

(-) APPI 280 85 107 178 121 0 0 0 0 0 0 0 0 0 0 0 0 0 
(+) APPI 366 133 57 345 159 0 0 0 0 0 0 0 0 0 0 0 0 0 
(-) ESI 253 801 172 32 20 0 0 0 0 0 0 0 0 0 0 0 0 0 
(+) ESI 772 532 356 510 620 299 50 298 49 107 62 94 38 8 5 12 6 2 

                    

% of peaks # of N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Ionization 
Method 

(-) APPI 3% 1% 1% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
(+) APPI 3% 1% 1% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
(-) ESI 3% 11% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
(+) ESI 11% 8% 5% 7% 9% 4% 1% 4% 1% 2% 1% 1% 1% 0% 0% 0% 0% 0% 

 

 

 

 

 

  

Table III-1: Distribution of nitrogen containing compounds by ionization 

method 
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Count of 

Peaks 
# of S 1 2 3 4 5 6 7 8 9 

Ionization 

Method 

(-) APPI 267 156 0 0 0 0 0 0 0 

(+) APPI 528 236 0 0 0 0 0 0 0 

(-) ESI 922 425 0 0 0 0 0 0 0 

(+) ESI 1578 668 119 79 6 8 6 4 2 

           

% of 

peaks 
# of S 1 2 3 4 5 6 7 8 9 

Ionization 

Method 

(-) APPI 3.3% 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

(+) APPI 4.6% 2.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

(-) ESI 12.1% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

(+) ESI 23.2% 9.8% 1.7% 1.2% 0.1% 0.1% 0.1% 0.1% 0.0% 

 

 

 

 

  

Table III-2: Distribution of sulfur containing compounds by 

ionization method 
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Count of 

Peaks 
# of P 1 

Ionization 

Method 

(-) APPI 286 

(+) APPI 390 

(-) ESI 125 

(+) ESI 40 

   

% of 

peaks 
# of P 1 

Ionization 

Method 

(-) APPI 4% 

(+) APPI 3% 

(-) ESI 2% 

(+) ESI 1% 

 

 

 

  

Table III-3: Distribution of phosphorous containing compounds by 

ionization methods 
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Sample N [%] C [%] S [%] 

MeOH3h 0.084 59.746 0.028 

MeOH 6h 0.082 68.977 0.023 

MeOH 9h 0.082 60.370 0.021 

CuPMO 3h 0.087 63.947 0.016 

CuPMO 6h 0.075 65.955 0.008 

CuPMO 9h 0.073 66.370 0.008 

DMC 3h 0.056 57.793 0.002 

DMC 6h 0.073 57.830 0.002 

DMC 9h 0.062 61.424 0.003 

Untreated Lignin 0.079 59.021 0.031 

 

 

  

Table III-4: Elemental analysis of the lignin samples 
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Mass 
Count 

 Untr-
Lignin 

CuPMO 
9h 

CuPMO 
6h 

CuPMO 
3h 

DMC 
9h 

DMC 
6h 

DMC 
3h 

MeOH 
9h 

MeOH 
6h 

MeOH 
3h 

(-) 
APPI 

Mn 374 336 352 335 433 412 433 404 410 437 
Mw 458 366 385 368 497 469 496 452 461 496 
Ð 1.22 1.09 1.09 1.10 1.15 1.14 1.15 1.12 1.12 1.13 

(+) 
APPI 

Mn 326 374 394 369 400 397 400 371 376 379 
Mw 386 414 439 410 456 451 455 417 423 431 
Ð 1.18 1.11 1.11 1.11 1.14 1.14 1.14 1.13 1.12 1.14 

(-) ESI 
Mn 342 319 345 366 389 362 394 391 389 372 
Mw 384 342 373 399 426 389 430 427 425 407 
Ð 1.13 1.07 1.08 1.09 1.09 1.07 1.09 1.09 1.09 1.09 

(+) ESI 
Mn 328 415 421 409 416 429 418 430 436 430 
Mw 372 446 450 440 441 457 445 457 464 460 
Ð 1.13 1.07 1.07 1.07 1.06 1.07 1.07 1.06 1.06 1.07 

 

TIC            

  Untr-
Lignin 

CuPMO 
9h 

CuPMO 
6h 

CuPMO 
3h 

DMC 
9h 

DMC 
6h 

DMC 
3h 

MeOH 
9h 

MeOH 
6h 

MeOH 
3h 

(-) 
APPI 

Mn 319.8 284.2 297.2 280.7 375.1 350.5 376.3 373.4 377.0 400.7 
Mw 382.8 311.5 325.2 312.4 426.4 394.6 427.6 410.3 415.6 446.0 
Ð 1.20 1.10 1.09 1.11 1.14 1.13 1.14 1.10 1.10 1.11 

(+) 
APPI 

Mn 270.0 291.1 304.3 282.1 341.2 329.6 338.7 322.8 332.2 334.1 
Mw 325.0 325.9 342.1 318.5 391.2 376.5 388.7 367.2 376.1 381.6 
Ð 1.20 1.12 1.12 1.13 1.15 1.14 1.15 1.14 1.13 1.14 

(-) 
ESI 

Mn 267.7 321.2 315.2 339.4 354.9 337.5 357.1 324.4 323.0 317.5 
Mw 291.2 334.9 324.3 362.4 382.6 359.8 386.8 355.6 354.4 349.0 
Ð 1.09 1.04 1.03 1.07 1.08 1.07 1.08 1.10 1.10 1.10 

(+) 
ESI 

Mn 310.8 383.4 376.9 373.5 391.9 395.3 393.6 395.7 400.1 385.6 
Mw 328.3 414.0 405.7 397.6 409.6 416.8 411.7 414.1 419.3 406.1 
Ð 1.06 1.08 1.08 1.06 1.05 1.05 1.05 1.05 1.05 1.05 

 

Table III-5: Molecular weight and dispersity of the lignin samples by ionization method 
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Figure III-1: (-) APPI Van Kreveleen plots 
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Figure III-2: (+) APPI Van Kreveleen plots 
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Relative Intensity 

Figure III-3: (-) ESI Van Kreveleen plots 
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Relative Intensity 

Figure III-4: (+) ESI Van Kreveleen plots 
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