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ABSTRACT OF THE THESIS 

 

The Design and Implementation of an Extensible Brain-Computer Interface  

by 

Scott Burns 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2010 

Research Advisor:  Dennis Barbour 

 

 

An implantable brain computer interface (BCI) includes tissue interface hardware, signal conditioning 

circuitry, analog-to-digital conversion (ADC) circuitry and some sort of computing hardware to 

discriminate desired waveforms from noise. Within an experimental paradigm the tissue interface and 

ADC hardware will rarely change. Recent literature suggests it is often the specific implementation of 

waveform discrimination that can limit the usefulness and lifespan of a particular BCI design. If the 

discrimination techniques are implemented in on-board software, experimenters gain a level of 

flexibility not currently available in published designs. To this end, I have developed a firmware library 

to acquire data sampled from an ADC, discriminate the signal for desired waveforms employing a 

user-defined function, and perform arbitrary tasks. I then used this design to develop an embedded 

BCI built upon the popular Texas Instruments MSP430 microcontroller platform. This system can 

operate on multiple channels simultaneously and is not fundamentally limited in the number of 

channels that can be processed. The resulting system represents a viable platform that can ease the 

design, development and use of BCI devices for a variety of applications. 
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Chapter 1 Introduction 
Connecting the mind to computer understandably evokes thoughts of the future.  The technology has 

been a mainstay in modern science fiction and popular motion pictures.  Beyond popular culture 

though, the ability to process signals from the brain quickly and accurately represents a platform for 

scientific research and clinical therapy without peer.  Towards this goal, the output of brain-computer 

interface (BCIs) research has grown enormously over the past decade. In addition to restoring hearing 

(Wilson, Finley et al. 1991), relieving Parkinson’s disease symptoms (Obeso, Olanow et al. 2001) and 

treating depression (Bewernick, Hurlemann et al. 2009), newer clinical applications of BCIs include 

restoring speech capabilities (Kennedy, Bakay et al. 2000) and providing motor control of prosthetics 

(Hochberg, Serruya et al. 2006). Scientifically, both invasive and non-invasive BCIs allow researchers to 

study the brain in a more natural state by removing subject immobilization requirements traditionally 

necessary when recording the electric potential from individual nerve cells. The promise of these 

devices, both clinically and scientifically, grows both with the development of new electronics 

technology as well as knowledge of how the brain functions normally and can be manipulated 

electrically.  

 

2.1 Origins 

The first traceable mention of brain-computer interfaces in the scientific literature dealt with 

using EEG traces to derive control signals from the brain(Vidal 1973).  EEG continues to 

provide useful (albeit low-dimensional) control signals, but the paper also accurately depicts 

how the field would develop in the future.  Specifically, Vidal foretold of both scientific and 

clinical applications through brain-computer interfaces.  Unfortunately for Vidal, the field 

lacked the technology necessary to tackle the significant challenges present in the early 1970s. 

 

As technologies improved, several groups used brain-computer interfaces to effectively “read” 

motor regions of the mind (Schmidt, McIntosh et al. 1978; Georgopoulos, Lurito et al. 1989).  

Another group derived a 1-dimensional control signal from EEG traces to move a computer 

cursor (Wolpaw, McFarland et al. 1991).  Many groups since have used both invasive 

(Kennedy, Bakay et al. 2000; Taylor, Helms Tillery et al. 2002; Santhanam, Ryu et al. 2006) and 
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non-invasive technologies (Utsugi, Obata et al. 2007; Huang, Lin et al. 2009) to derive control 

signals used to operate prosthetics and computer interfaces.  Much of the early progress of 

brain-computer interface technology can be attributed to the laboratories interested in the 

motor cortex region.  Indeed, an early and continued interest in brain-computer interfaces is 

the restoration of function by routing control signals around immobilized limbs (Kennedy, 

Bakay et al. 2000; Taylor, Helms Tillery et al. 2002). 

 

The majority of published modern implantable BCI designs involve the recording of neural 

signals and their transmission to a remote storage device (often a personal computer) for 

offline analysis. Early designs implemented a relatively small number of recording channels 

(Grohrock, Hausler et al. 1997; Lei, Sun et al. 2004), while recently published devices provide 

data acquisition with relatively high channel density (Yun, Kim et al. 2007; Chestek, Gilja et al. 

2009; Rizk, Bossetti et al. 2009). Other designs have provided a means to remotely stimulate 

neurons (Xu, Talwar et al. 2004). While providing fruitful research, this type of BCI design is 

limited by one-way communication, particularly poor for closed-loop applications. 

 

2.2 Current State-of-the-Art 

Until the 1st decade of the 21st century, brain-computer interface designs primarily focused on solely 

capturing information from the central nervous system.  Mavoori, et al., presented the first implantable 

BCI incorporating closed-loop, autonomous action potential detection and neural stimulation: the 

Neurochip (Mavoori, Jackson et al. 2005). The Neurochip’s novel engineering provided the enabling 

technology for an important discovery regarding cortical plasticity (Jackson, Mavoori et al. 2006). The 

low-power 8-bit microcontroller used in the Neurochip was relatively constrained in processing 

capability, restricting closed-loop applications to neural recording on a single channel and ultimately 

limiting the general utility of the design. Hampson, et al, have recently presented a recording device 

built with a microcontroller capable of recording and wirelessly transmitting 16 channels of neural data 

across a Bluetooth interface (Hampson, Collins et al. 2009). This device does not currently provide 

control signals to other pieces of hardware, limiting the designs ability to transmit information into the 

central nervous system. 
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Distinct from the use of off-the-shelf electronics hardware, a productive avenue of research has 

concentrated on the design of application-specific integrated circuits (ASICs) specifically designed to 

detect action potentials or other signals of interest and wirelessly transmit information (Mojarradi, 

Binkely et al. 2003; Harrison, Kier et al. 2009; Raghunathan, Gupta et al. 2009). Ultra low power 

requirements and small size are major advantages of BCI designs employing ASICs; however, once 

designed and implemented in silicon, these devices cannot be customized with added functionality 

without redesigning the hardware circuits.  If the brain-computer interface application requires only 

capturing the neural waveforms and not generating any stimulus in response, these ASIC designs 

represent the state-of-the-art in recording capabilities. Such open-loop design may limit both scientific 

and clinical application, however. 

 

2.3 Need for Novelty 

There currently exists no general solution for extracting multichannel closed-loop control signals from 

neural data in low-power, general-purpose BCIs. The preferred design for such a system would easily 

scale to handle the number of channels required by the scientific experiment or clinical application. 

The overall design should also adapt easily to different experimental paradigms. In this thesis, I present 

a BCI design that balances flexibility and energy-efficiency yet can execute multiple channels of closed-

loop signaling and control.  This work has been performed in parallel with a scientific project 

investigating the ability to reorganize small cortical networks based on artificially-induced spike-timing 

dependent plasticity. 

 

A brief report of these results has appeared previously in abstract form (Burns and Barbour 2009). 
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Chapter 2 Design and Implementation 

The work presented in this thesis covers two bases-firmware and hardware.  The hardware 

consists of a headstage, signal conditioning circuitry, and computing hardware to discern 

neural waveforms of interest from noise.  The firmware is an abstract design facilitating 

waveform discrimination, program flow, and data storage implemented in the C language.  

Together, these two pieces form the basis for an extensible low-power BCI. 

 

2.1 Firmware 

In the design of digital computing systems, there is a distinct separation of role and facility 

between hardware and software.  Hardware provides the actual computing logic with which 

algorithms are processed.  In a modern desktop personal computer, hardware components 

include the central processing unit (CPU), external memory (either read-only memory (ROM) 

or random-access memory (RAM)), input/output peripherals such as serial transceivers and 

graphics displays and power management devices, just to name a few.  Typically, the desktop 

PC runs an operating system (OS) to intelligently manage the hardware and provide an 

abstraction of the hardware, easing the development of user applications.  The OS and user 

applications can be changed at will and are thus considered software.  

 

It is more difficult to define firmware.   Like its name suggests, firmware exists between the 

hardware and software, but even this statement depends on the application.  In desktop PCs, 

firmware can be found in the booting hardware (Doran 2003) and contains code to initialize 

important hardware components and ensure proper loading of the OS, which then assumes 

control the hardware until shutdown.  After the PC has been built and shipped, the user will 

rarely need to change this firmware, though many operating systems do provide the ability.  In 

this instance, firmware acts more like hardware. 
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In embedded applications though, firmware takes on a role more similar to software.  The 

exact definition of an embedded application is difficult to pin down, but these applications can 

be thought of products requiring computing resources while the user not recognizing the 

device as a typical computer (Edwards, Luciano et al. 1997).  Examples of typical embedded 

applications are automated teller machines, home DVD or stereo systems, remote controls 

and the engine controller module found in all modern automobiles.  These systems contain 

firmware implementing required functionality in the same way that individual applications do 

on a PC.  The firmware runs in a self-contained environment and cannot easily be changed in 

production systems without reprogramming.  Programming firmware into a computing 

environment requires a host computer to physically transfer the binary code into memory and 

can be extremely costly or impossible once a product has shipped, depending on the 

hardware. 

 

Wherever firmware lies along the hardware-software continuum, it must absolutely be robust, 

error-tolerant, and if possible, self-healing.  It is notoriously difficult to diagnose and fix errors 

yet integral to any application requiring digital computing resources.   

 

Like software and hardware, there are many engineering decisions when designing and 

implementing firmware.  Factors dependent on these choices include speed of the compiled 

code, responsiveness to external signals, program size (when actually implemented in the 

processor), source code maintainability and program extensibility.  With constrained 

resources, the engineer cannot maximize all of these qualities at once but must balance these 

with the demands of the application.    

 

Perhaps the first and most important choice when designing firmware is architecture.  Laying 

a strong foundation allows the firmware to accumulate functionality over time with minimal 

restructuring.  Luckily, there are few options for this choice.  Firmware is generally architected 

in one of two ways – on top of a real-time operating system (RTOS) or as a run-loop (RL). 

 

A RTOS is designed with the same goals as a desktop OS.  Generally, the RTOS abstracts the 
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hardware by providing resources for computing to the programmer.  RTOSs often define data 

structures such as threads, queues, semaphores and timing capabilities much like desktop 

operating systems.  On the other hand, because they are targeted at much smaller processors 

(both in physical size and memory), real-time operating systems must be orders of magnitude 

smaller in code size than their desktop brethren.  As such, real-time operating systems lack 

much of the functionality taken for granted in modern desktop operating systems such as a 

choice of file systems, graphical capabilities or wide peripheral support simply because these 

requirements are not needed in a small embedded application.  Real-time operating systems 

are often very efficient and extremely responsive to external events.  This responsiveness to 

events garners the “real-time” prefix.  These systems can be designed to deterministically 

operate within certain time constraints, ensuring event processing will occur within a known 

period after the event occurs. Real-time operating systems provide the same layer of 

abstraction as the desktop counterpart, thus ensuring code written against particular real-time 

operating systems will run on any hardware platform the real-time operating systems supports.   

 

There are two major disadvantages to using real-time operating systems, however.  Layers of 

abstraction, while beneficial to the programmer, create figurative levels between the “iron” 

(e.g. actual hardware) and code and can decrease performance.  This disadvantage is 

particularly troublesome when designing applications such as the current one where fast code 

execution is vital.  The second disadvantage is that real-time operating systems increase the 

size of the firmware.  Modern compilers are adept at minimizing data structures and the size 

of outputted code, but it should be obvious that having to compile an RTOS along with the 

application code will increase the total programs size.  This is becoming less of an issue as 

memory capacity increases in microprocessors and microcontrollers, however. 

 

A run-loop based architecture is much simpler than that of a real-time operating system.  

Many simple embedded applications can be modeled as simply a system waiting for some 

event (a timer, user input, etc.), executing code when the event occurs, and then sleeping until 

the next event.  From this description, the run-loop metaphor should be obvious.  The 

program idles at a place in code until an event occurs, the event is handled, and the code 
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returns to an idle state.   

 

The run-loop architecture requires very little overhead, so the application code has almost full 

use of all hardware resources.  Because relatively few events are being monitored, firmware 

with this architecture is as responsive to external events as the processor itself.  The little code 

overhead to maintain the loop results in very small code bases and also helps in source code 

maintainability.  Because the programmer knows explicitly which code will execute at each 

event, the program can be designed orthogonally. 

 

The run-loop architecture is ideal for small, focused designs in which few events need 

monitoring.  As the variety of events grows in an application, the problem of scheduling 

(making intelligent decisions about what code to execute when) increases, especially when 

events occur concurrently.  Many combinations of events cannot be adequately tested, leading 

to obscure firmware bugs appearing only in production code. Real-time operating systems 

excel when the application requires monitoring of many events while run-loops are more ideal 

for simpler applications.  Because of the scheduling problem, run-loop architectures can be 

extended only so far before a real-time operating system should be considered.   

 

Compared to other digital electronics, a processor for discriminating neural signals is relatively 

simple.  Obviously, neural signals recorded from the brain must be transformed (at some 

specific sampling rate) into digital signals for manipulation in microprocessors.  The sampling 

event is a natural place to awaken the device and discern the signal for a waveform of interest.  

It is also the only event that needs to be monitored.  Therefore, the firmware in this thesis is 

based on the run-loop architecture. 

 

To increase usability among different research groups, the firmware has been factored into 

two parts.  The first part is a library providing a framework for organizing incoming neural 

data and how to process such data.  The second portion is an application built upon this 

library for detecting single-unit action potentials with no user interaction. 
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2.1.1 Library 

Requirements 

As mentioned earlier, any abstraction can decrease code performance.  It is the price 

programmers pay when using high level languages.  C code is slower than pure assembly 

language and interpreted languages such as Perl or Python are slower than C code.  When 

portions of a program require the utmost performance characteristics, lower-level languages 

should be used.   

 

Often-used functions or capability are often packaged into groups of source code termed 

libraries.  Libraries can implement many different kinds of functionality in any language, and 

newly written programs can a library’s functionality without “having to re-invent the wheel”.  

Libraries expose their capability through a set of classes or functions named the API 

(Application Programming Interface).  The benefit to the library writer is that he/she need 

only maintain the API from revision to revision and users can upgrade to better versions 

without having to change existing code. The benefit to library users is that they need not 

worry about the internals of library, merely that calling the functions will have their intended 

(and hopefully documented) consequences.  It should be obvious that libraries are a useful 

tool for programmers. 

 

A product of this research thesis is a library implementing a minimum set of requirements to 

be useful to other engineers implementing brain-computer interfaces.     

This library provides resources for storing incoming neural data and provides facilities to 

process the data in an arbitrary manner.  The data storage techniques should maintain 

performance across large and small buffers.  The overhead for maintaining data processing 

functions should be lightweight (i.e. there is little penalty for calling the data processing 

functions) and should facilitate swapping processing functions as neural signals are non-

stationary and different characteristics of the neural waveform may call for different 

processing techniques.  Ultimately, the library should be easy to use and provide a simple, 

well-designed API. 
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Buffer 

Brain-computer interfaces, no matter the application, deal with a multitude of incoming data.  

Almost universally, the data takes the form of electrical signals arising from cells in the central 

or peripheral nervous system.  These analog electrical signals are transformed through 

microelectrodes, amplified, and mapped into the digital domain with specialized Analog-To-

Digital circuitry.  Once in the digital domain, the neural signals are more easily manipulated 

and useful in computation. 

 

However, our nervous systems are constantly producing these signals, so they must be stored 

for sometime, processed, and then either saved for future analysis or discarded.  In computing 

terms, they must be placed into a buffer.  A buffer is a data structure designed to store 

disparate pieces of data, maintain logical order between all the pieces of data and facilitate data 

processing.  In this application, the incoming data is logically ordered by the time at which the 

signal occurred; thus the buffer stores a finite amount of previously recorded neural data. 

 

Depending on the processing involved on the data (which may vary from application to 

application), the required size of the buffer will vary.  Some time-amplitude algorithms may 

only require a size approaching the temporal width of an action potential, while more complex 

algorithms require a larger buffer.  No matter the size, the buffer should deterministically 

provide constant times for insertion and traversal throughout its use in the program.   

 

A buffer is inherently a type of list of which there are many implementation choices.  The 

major delineation between list implementations is static data or dynamic data.  Static data is 

stored on the program stack and therefore access time is very fast.  However, stack variables 

must be declared at compile time and cannot change in size during the course of the program 

at run time.  Dynamic data types are stored in the heap, a block of memory used by the C 

runtime system.  These variables are allocated and de-allocated during run time and can 

therefore grow or shrink as new storage is needed.  However, using variables in the heap 

requires a pointer dereference, thus incurring a time penalty.  Pointer dereferencing is 

extremely fast on modern hardware, but the penalty still exists.  Also, allocation and de-
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allocation can be very time-consuming, so these routines should be kept to a minimum. 

 

If code execution speed is important and data structure size is known at compile time, then a 

static structure should be used, but this has caveats. A high-level language such as C allows the 

usage of functions, or blocks of code declared once and used throughout the program.  

Functions receive arguments and may return outputs; most non-trivial functions will receive 

some data structure as input.  The C language uses a function evaluation strategy known as 

“call-by-value”.  The caller (the piece of code using a particular function) passes arguments to 

the function, and the runtime system copies these arguments into a new memory block only 

the function can use.  When the function completes, this memory block is discarded and the 

return variable is copied to the caller.   

 

This evaluation strategy increases code security by hiding variables only used in a function, but 

the copying of a large data structure (in this case, the buffer) can also severely degrade code 

performance.  As such, dynamic memory is often used in large systems because functions only 

need to copy the pointer variable that tracks the data structure in the heap.   

 

Because data will constantly be inserted and removed from the buffer in this application, 

continually allocating memory for each datum inserted and de-allocating the removed datum 

point would incur stresses on the runtime system, also decreasing performance.  A more 

optimal design is to allocate all memory at system start up and merely re-write the newer data 

at indices holding older data.  This design is known as a circular buffer.  There is no explicit 

beginning or end of the buffer, but rather pointers are used to track the newest and oldest 

data points.  To insert a new data point, the piece of memory referenced by the oldest pointer 

is overwritten, and the pointers are incremented.  Because the only cost of insertion in a 

circular buffer is the pointer increments and is not related to the size of the buffer, this runs in 

O(1) time. 

 

To dereference the buffer in a temporally coherent manner (that is, to “view” the buffer from 

the oldest datum to the newest), a temporary pointer can dereference the beginning pointer’s 
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data and increment/dereference the next point until the temporary pointer equals the pointer 

referencing the newest datum.  Like any list traversal, this requires O(N) time.   

 

However, computer memory is 1-dimensional.  To lookup a piece of memory, the only 

information required is the address.  When an array is allocated, the returned piece of memory 

is a contiguous block of memory.  To add the circular semantics of the buffer described above 

to the linear array, some logic is required.  During the insertion, if either pointer references a 

piece of memory beyond the range of the array, the pointer should be changed to point to the 

beginning of the array.  This branching logic incurs a slight performance penalty that will 

actually decrease as the size of the buffer increases.  That is, for large buffers, the “wrapping” 

of the pointer from the end to the beginning of the array will occur less often.  The pointers 

tracking the beginning and end of the buffer as well as the end of the array represent some 

storage overhead in the buffer, but this overhead is minimal to capture the circular buffer 

semantics.   Some data storage structures include methods for removing data, often to 

minimize required storage.  Because data is continually written over in the circular buffer and 

the only memory ever needed is allocated at once, there is little need for this functionality.  

The methods and design of the circular buffer is depicted graphically in Figure 2.1 below. 
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Buffer at creation
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Figure 2.1. Buffer Design and Algorithms 

Graphical depiction of the design and methods of the buffer. 
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Channel Structure 

In BCI applications, the channel structure abstracts specific data converted from a specific 

hardware component (often a microelectrode) and how the channel should be processed.  In 

purely recording applications, the converted data might be the only required information to 

retain.  For example, incoming data could be instantly transmitted to some external data 

logging device (a personal computer) and no processing is required on the BCI itself.  

However, there is a trend towards closed-loop applications (Jackson, Moritz et al. 2006) 

 

One can imagine the signal processing occurring on the data logging machine and any 

detected control event could be relayed back to the BCI in a sort of server/client 

configuration.  In this configuration, there is transmission overhead that places an upper 

bound on the responsiveness of the system to biological events.  For applications that do not 

require high levels of responsiveness, this may be acceptable.  However, for closed-loop BCI 

applications that require almost real-time responsiveness to biological events, signal processing 

must be performed on the device itself.  Microprocessor performance per area has 

exponentially increased for many generations of devices and is predicted to increase in such a 

fashion for at least the next decade (Moore 1965).  What was not possible a decade ago 

regarding onboard signal processing is now available.   

 

Because microelectrodes inserted into the brain will pick up units of varying levels of isolation, 

it is important to process each channel independently.  The waveforms of interest will vary in 

shape on each microelectrode, so while the same algorithm may be used to detect waveforms 

across all channels, each instance of a channel should use its own specific variables.  To 

implement this functionality, a group of function pointers was designed to facilitate any user-

implemented waveform detection algorithm. 

 

In the same way pointers are used to reference data not explicitly declared at compile time, 

function pointers are used to reference functions not explicitly known at compile time.  To 

the hardware CPU, the only difference between data and instruction is how the memory is 
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interpreted; this is handled by the compiler.  A function pointer is declared as a normal 

variable but includes syntax for the output type and argument list.  This function pointer can 

be assigned to any declared function whose input and output signature matches those of the 

function pointer.   The function pointer can then be used to call the function instead of the 

name given by the programmer, which is discarded by the compiler after all.   

 

Function pointers allow for flexibility in code that can benefit performance when runtime 

information can be used to make more informed decisions about information processing than 

the programmer can at compile time.  There is no performance penalty for using function 

pointers because most mature compilers treat the function identifier (e.g. the function name) 

as a function pointer.    Function pointers can be changed like any variable, so a program can 

potentially use one of many implemented functions to perform a task.  This system of binding 

functionality at runtime instead of compile time is commonly referred to as a callback. 

 

The channel structure presented in this work is designed to be used within a run-loop 

architecture that operates for the entire period the brain-computer interface is operating.  For 

example, each loop iteration could be coupled to an analog-to-digital conversion on every 

channel.  There is a single method associated with the channel structure, insert_and_process().  

As its name implies, this method receives the channel structure pointer and datum point most 

recently converted by the A/D circuitry.  The method inserts the datum point into the buffer 

(as discussed in the previous section) and processes the channel with three function pointers.   

 

The first function pointer references a function that is used to search the buffer for the 

waveform of interest.  The function does not necessarily need to process the buffer in the 

time domain; it merely returns a logical “yes” or “no” whether the desired biological event 

occurred within the current buffer.  If, and only if, the first function returns true will the 

second function pointer be called.  This function should define any action taken because of 

the biological event.  If called, this function is processed directly after the first.  The latency 

between the biological event and the required action is then proportional to system clock 

period.  This latency is not programmable however; though this capability is certainly possible 
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and is discussed in the proceeding section.  After the action function returns, a third function 

pointer is provided if the user needs to perform any additional processing that doesn’t 

explicitly fit in the other two functions.   This function is optional, though, and can be a blank 

stub.  Program flow is shown in Figure 2.2. 
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Figure 2.2. Channel Program Flow 

Upon device wake up, the newly acquired data is inserted into the buffer.  The buffer is then 

searched for the waveform of interest using trigger_finder. If found, trigger_action is called.  

Finally, clean_up is called, though that implementation is optional.  After processing, the device 

returns to a low-power sleep state. 
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The channel structure also provides a third type of pointer, the void pointer.  The void pointer 

can be used to reference any type of data.  Its use is often discouraged for security reasons 

because arbitrary code can be inserted into otherwise normal behaving programs, but it 

provides useful functionality in the system presented here.  The user can design a data 

structure of their choosing and bind it to the channel through this void pointer.  Each of the 

three functions described above can then use the data in the structure.  This usage will be 

more thoroughly discussed in the next section. 

 

This library has been designed not only for easy usage, but also to adapt to a wide variety of 

brain-computer interface applications.  It provides the basic functionality for any application 

and does not exclude the use of any detection algorithm.  Because it is so general, the library 

alone is not suitable for any specific application.  Researchers looking to use the library must 

build a layer atop the library implementing the specific algorithms for waveform detection and 

action.  A widely-used application in the field currently is the detection of single-unit action 

potential waveforms. 

 

2.1.2 Application for Automatic Action Potential Detection 

Requirements 

For numerous reasons, the detection and classification of single-unit action potential 

waveforms is useful in brain-computer interfaces.  As the most discrete unit of information 

transmission in the nervous system, the spike trains of single-unit action potentials confer a 

high amount of information (Salinas and Sejnowski 2001).  Detecting these pulses is useful for 

many scientific and clinical applications. 

 

The small microprocessor used in this work provides no out-of-the-box capability for 

incoming or outgoing communication.  As such, the device should operate autonomously with 

no need for user input.  Especially as the channel count increases in brain-computer 

interfaces, the reliance on human operators to tune detection algorithms while detecting single 
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units online should decrease. 

 

The voltage trace of an action potential recorded from a microelectrode displays a 

characteristic shape, first quantitatively studied by Hodgkin and Huxley (Hodgkin and Huxley 

1945).  The width in time of the action potential is around 1 ms and the peak-to-peak voltage 

can range from tens of microvolts to more than a millivolt depending on the electrode 

impedance and geometry to the cell (Joyner, Westerfield et al. 1980).  Because even implanted 

microelectrodes can move in relation to neurons in the soft tissue of the brain, the shape of 

the recorded action potential from the same neuron can change over time and is therefore 

non-stationary. 

 

A wide range of algorithms for detecting and classifying single-unit action potentials have 

been devised and each provides specific advantages and disadvantages.  Each algorithm can 

ultimately be judged for its tradeoffs between computational complexity, accuracy, and to a 

lesser extent, latency in detection.  The scientific pursuit will determine the optimal detection 

algorithm by placing a lower bound on required accuracy and device constraints will place an 

upper bound on the available computational resources.   

 

The simplest algorithm is a voltage threshold such that any waveform crossing the threshold 

(which may be above or below the mean value of the signal) is considered an occurrence of an 

action potential.  This algorithm is perhaps the easiest to compute and also the most 

susceptible to false positives.  The recorded signal may contain many types of noise, common 

sources including power lines and subject movement.  This noise can often wash out the 

extracellular action potential, thereby ruining the efficacy of the simple threshold.  For 

recorded signals with relatively high signal-to-noise ratios (SNR), a simple threshold may 

perform adequately.  However, the threshold must be initially set and because neural signals 

are not stationary, the threshold may need to be altered at some point during the detection.  

While quick to compute and easy to implement, the threshold algorithm rarely provides an 

optimal balance between accuracy and complexity. 
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Time-amplitude windows provide the next level of increasing accuracy and complexity.  The 

window is often used in conjunction with a threshold to define voltage points the signal must 

exceed (a lower window) or pass below (a higher window).  Buffer ranges can be open (with 

one point being the minimum or maximum of the dynamic A/D range) or closed (where both 

points are defined within the dynamic A/D range).  A variation on the time-amplitude 

window is the template method.  The algorithm uses a defined waveform to match incoming 

data.  If the summed difference across every point falls below a threshold, an event is 

detected.  The template method is essentially the time-amplitude window method with many 

windows of variable width (proportional to the tolerated error).   

 

Both the time-amplitude window and template methods require initial values to begin 

detection, like the threshold method.  There are numerous methods that improve detection 

accuracy but require increasing amounts of computational resources.  Such methods include 

Principal-Component Analysis (PCA) and the non-linear energy operator.  Online and offline 

detection methods are reviewed by Lewicki (Lewicki 1999).  More complex algorithms 

increase accuracy at the expense of computational time.  In high channel-count applications, 

these algorithms can only be used if there are available computational resources.  Obviously, 

the available resources depend on the power constraints of the design.   

  

Regardless of the spike detection algorithm, in order to maintain a portable library the 

algorithm must not depend on proprietary hardware features of a given microprocessor 

architecture.  To this end, the algorithm should not require expensive computations such as 

digital signal processing routines or multiplication.  It may sound odd to not rely on 

multiplication to implement spike detection algorithms, but small, low-power hardware 

architectures don’t always include hardware blocks for multiplication.  The C language 

requires implementation for this operation; therefore the compiler will link software routines 

to handle multiplication in such hardware.  These software routines, while heavily optimized 

by the hardware manufacturer, are orders of magnitude slower to execute than hardware 

multipliers. 
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This work utilizes time-amplitude windows to detect neural waveforms.  As discussed above, a 

spike detection algorithm in an embedded device should detect waveforms automatically.  In 

this work, the algorithm to acquire the typical waveform shape and then begin detection is 

split into three parts, 1) setting the threshold, 2) defining the template, and 3) hunting. 

 

Threshold 

To place constraints in the automatic detection algorithm (and simplify the implementation), 

the initial assumption is that the extrema of the waveform lie outside the signal mean plus or 

minus some threshold.  To determine when the waveform crosses one of these thresholds 

(whether above or below the mean in A/D space), a threshold must first be set.  To determine 

the threshold placement, the algorithm immediately captures the first 2 ms worth of data 

points on the channel.  The mean and peak-to-peak voltage is calculated using the following 

equations:µ =
Σ
N

 where µ is the mean, ∑ denotes the summation of all points captured in 2 

ms, N is the number of points; andVpp = max(buffer) −min(buffer) .  Standard deviation can 

be approximated by σ =
Vpp

N
, where N is 4≤N≤8 (Smith 1998). With the upper (mean plus 

standard deviation) and lower (mean minus standard deviation) thresholds set, a particular 

waveform can be found within the buffer whenever a particular point crosses the threshold.  

The more temporally older the critical point is set, the more of the entire waveform will be 

contained in the buffer.  It should be noted that buffers should be more temporally wide than 

the signal of interest.  For example, the buffer used in detecting single-unit action potentials 

should contain at least one millisecond’s worth of data, the actual number of points being 

proportional to the sampling (insertion) rate.  

 

Template 

With the thresholds set, a new phase of signal processing begins.  As a point in the buffer 

crosses the threshold, the entire buffer is copied into memory.  This operation occurs sixteen 

times to create a matrix of waveforms. One dimension represents time while the other 
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represents instance of detected waveform.  When this matrix is filled, the corresponding 

voltage (in A/D space) is averaged to create a template by which new spikes can be compared 

against.  It may seem a contradiction that above multiplication was determined a flaw in a 

portable library and yet the average is computed here, which uses a multiplication.  A digitally 

represented number can be divided or multiplied by a power of 2 by right-shifting or left-

shifting the number a given amount of places, respectively.  For example, a division by 16 is 

equal to a right-shift by 4 places (24 = 16) while a multiplication by 8 is equal to a left-shift by 

3 places.  The bit-shift is defined in every microprocessor instruction set and is extremely 

quick to compute.  It is the otherwise portable multiplication routine across all hardware 

platforms, but is only useful for specific multiplicands or divisors.   

 

Though this average is as temporally wide as the buffer and the template method could be 

used to detect spikes, the template method can be overly expensive.  In this design, the 

minima and maxima are determined and two windows are created at the points.  The windows 

have open ranges to decrease the computational complexity (passing the window only requires 

one comparison, not two). 

Hunting 

With the lower and upper windows set by the template phase, waveform detection is 

implemented by checking if the waveform currently held in the buffer passes both windows.  

This is essentially two integer comparisons and is extremely fast to compute.  This algorithm 

may appear simple, but can be very accurate for even moderately isolated single units.  To 

increase the number of channels that can concurrently be processed, the time spent 

computing each channel should be minimized as much as possible. 

Implementation Details 

The above discussion presents the general algorithm for automatic single-unit detection 

implemented in the current work.  Specific details of the current implementation may 

elucidate how to adapt specific algorithms for future work. 
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Each phase of signal processing (thresholding, templating and hunting) is implemented as 

three functions designed to operate together with an external data structure.  These three 

functions and user data pointer are discussed in the section above entitled “Channel 

Structure”.   In this implementation, the user data structure contains smaller, more specific 

data structures used solely in their specific signal processing scheme.  There is a threshold data 

structure that tracks the mean and thresholds and this structure is written to during the 

threshold phase and then used in the template phase.  The template data structure is defined 

by the large matrix of data points as well as an auxiliary pointer used to track the current point 

of insertion.  The window group structure uses the template structure to place the upper and 

lower windows.  The window group structure is then read when hunting.  With the brief 

overview of how data is organized, we can examine the actual implementation more deeply. 

 

When the device is powered on, numerous hardware pieces specific to the microcontroller are 

configured.  Of most importance is the onboard A/D converter which is set to sample all 

channels every 125 µs for a sampling rate of 8 ksamples/s.  The device is also placed into a 

low-power mode between channel processing and the next cycle.  For more details on the 

specific hardware settings, see the “Microcontroller” subsection in Section 2.2.  Once these 

settings are configured, the firmware then allocates all memory structures.  After allocation, an 

internal timer used to drive the A/D converter begins cycling.  The device now runs in the 

loop described previously until it is powered off. 

 

Each channel begins with its function callbacks pointing to functions that implement the 

threshold phase.  The trigger_finder function always returns logical true.  The trigger_action 

function copies the newest datum point into a 16 point vector.  When this vector has been 

filled, clean_up performs the following calculations.  The mean and an approximation of the 

standard deviation are calculated as discussed previously.  Thresholds are set above and below 

the mean by a constant factor of standard deviation, which is set at one.  For recorded 

waveforms with large noise, this factor should be increased.  At this point, the thresholds have 

been set, and the clean_up function alters the channel’s function pointers to point to the next 

three functions implementing the template algorithm.  This is summarized in the following 
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pseudo-code: 
if (TRUE) 
 Insert newest data in buffer to 2-ms wide array 
if (array is filled) 
 Compute mean, standard deviation 
 Set lower and upper thresholds 
 Set channel's function pointers to the template functions 

 

The trigger_finder function in this phase returns true when the second point in the buffer 

exceeds the upper or falls below the lower threshold.  When this occurs, the trigger_action 

function copies the buffer into the next row of an 8 x 16 matrix, each row representing an 

action potential, and each column representing a discrete time point.  When this matrix is 

filled, the clean_up function averages the 16 points at each time point to create an 8 point 

average of the action potential.  This average is searched for the maximum and minimum 

points, after which a window data structure is created containing these two time and voltage 

points.  The channel’s function pointers are then set to point to the block of functions 

implementing the hunting functions.  This is summarized in the following pseudo-code: 
if (buffer point crosses threshold) 
 Copy buffer into matrix 
if (matrix is filled) 
 Average each index in the matrix 
 Find the maximum and minimum points in the average 
 Set windows at these time/voltage points 
 Set channel's function pointers to the hunting functions 

 

The hunting algorithm’s trigger_finder uses the window data structure to search for action 

potentials.  If the buffer passes through the two windows (only at the specific time points), 

then trigger_action flips a bit in an output data structure.  This data structure implements 

counters to control delay between the action potential’s detection and actual output, the width 

of the output pulses and a refractory period to stop multiple outputs for a single action 

potential.  The following pseudo-code summarizes the hunting phase: 
if (buffer passes through both windows) 
 Enable output 
if (output is enabled) 
 Decrement delay counter 
 if (delay counter times out) 
  Do output action 
  Decrement output counter 
  if (output counter times out) 
   Turn off output 
   Decrement refractory counter 
    if (refractory counter times out) 
     Reset all counters 
     Disable output 
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Figure 2.3 graphically summarizes each phase of the algorithm. See Appendix A for a full 

listing of the source code. 

Thresholding Template Hunting
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Figure 2.3. Phases of Single-unit Detection Algorithm 

The role each function plays in each processing phase is graphically depicted.  The algorithm 

is described in pseudo-code above, and the actual source code is in Appendix A. 
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2.2 Hardware 

The firmware presented above is of little use in the physical world.  It must be implemented in 

a microcontroller for any of the algorithms to actually run.  This section describes the 

microcontroller, its auxiliary circuitry, and the other required hardware found on brain-

computer interfaces.  

 

2.2.1 Signal Conditioning 

Requirement 

The signals acquired from the brain are extremely small in both amplitude and power 

(Hodgkin and Huxley 1945).  To effectively use the dynamic range of the A/D converter, the 

biological signals should be amplified.  Also, the signal’s power should be increased; otherwise 

intermittent EMF signals will cause distortion, especially when the signal is transported over 

relatively long distances through cabling, as would be expected when transporting the signal 

from the brain to a backpack, where the device is meant to be housed. 

Bandpass Filter 

To accurately convert an analog signal to the digital domain through an A/D converter, care 

must be taken to ensure the analog signal does not contain frequencies greater than half the 

sampling rate of the A/D converter.  The optimal filter would possess a rectangular response 

in the frequency domain, perfectly shunting all signals falling outside of the pass band.  In 

practice, this is not possible for numerous reasons.  Digital filters can closely approximate 

perfect filters (nearly to the float error the hardware platform) but can be prohibitively 

expensive in time and energy.  Analog filters cannot perform with such accuracy as digital 

filters without requiring large physical space, but are more energy efficient.   

 

If an action potential is transformed into the frequency domain, the majority of the signal 
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power lies between 300 and 3000 Hz (Pattle 1971).  To reduce the unwanted frequencies 

(which represent sources of noise) and satisfy the Nyquist Theorem, a 4-pole Butterworth 

band pass filter was designed using Sallen-Key topology.   

   

There exist a few different filter designs, each with their advantages and disadvantages.  The 

Chebyshev filter provides a steeper roll-off (the transition from the pass band to the stop 

band), though there can be significant ripple in the pass band.   These filters also do not 

provide linear phase responses, which can be significant when reconstructing signals.  Bessel 

filters provide optimally linear phase responses at the expense of a very slow roll-off.   Elliptic 

filters provide the steepest roll-off but there is large rippling in both the pass and stop bands.  

Butterworth filters provide a balance between no pass band rippling, but with slower roll-off 

performance (Butterworth 1930).    

 

The Sallen-Key filter topology is simple and particularly suited for low-cost, power-efficient 

operational amplifiers (Karki 2002).  Each two-pole stage requires four passive components 

and one active operational amplifier.  Putting these stages in series increases the poles for the 

filter and thus increases the roll-off.  The low-pass four-pole filter is designed with a cutoff 

frequency at 3000 Hz, while the high-pass four-pole filter’s cutoff frequency is designed at 300 

Hz.  The incoming signal enters the highpass stage first so amplified low frequencies do not 

saturate the operational amplifier.  The filters with component values are shown in Figure 2.4.  

 

Amplification 

Implicit in Figure 2.4 is the circuit gain.  Action potentials are rarely larger than + −1 mV in 

amplitude.  As such, a gain of 1500 has been designed into the component values so + − 1 

mV signals will fill the entire range of the A/D converter.  In practice, signals will not 

approach the 1 mV amplitude because relatively low-impedance electrodes are used. 
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Figure 2.4. 4-Pole Butterworth Sallen-Key Bandpass Amplifier/Filter 

Circuit for the described amplifier/filter used to condition incoming neural signals before 

A/D conversion.  The four operational amplifiers are implemented in one 16-pin package, the 

Texas Instruments TLV2375 low-power operational amplifier. 
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2.2.2 Stimulation 

This engineering project has been developed in parallel with a scientific hypothesis that 

artificially-induced spiking can induce long term plasticity in biologically relevant neural 

networks.  As such, a small, efficient stimulator is needed on board to create stimulation 

currents to pass to neurons. 

Requirement 

The most widely-used modern technology to stimulate nerve cells is electrical stimulation.  

Bio-electrically speaking, nerve cells depolarize when current is drawn out of the cell 

membrane and into the microelectrode (a negative current relative to the electrode).  So as to 

not deposit metal in tissue, an equal and opposite positive pulse should accompany the 

negative pulse to reverse the chemical reaction occurring at the electrode-tissue interface 

(Brummer and Turner 1975).  This waveform is called the biphasic pulse.  A stimulator must 

thus be able to swing in both directions to produce the required waveform.   

 

Current injection can occur with either a voltage source or current source.  Ohm’s Law 

describes the relationship between current and voltage as such: V = I*Z, where V is the 

voltage, I is the current flow, and Z is the impedance across the point that voltage is 

measured.  On a bench top, with a simple resistor providing the impedance, this relationship 

is simple. To the stimulator, the impedance is measured between the positive and negative 

output terminals.  In a biological environment, this includes the microelectrode and tissue.  

The microelectrode impedance will not change significantly through an experiment, but tissue 

impedance can.  Therefore, at the beginning of an experiment a certain voltage may provide 

adequate current injection to stimulate nerve cells, but it is not guaranteed to always be the 

case.  The more robust method is to provide a known quantity of current at all times, 

regardless of the impedance (Stoney, Thompson et al. 1968). 
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Improved Howland Current Pump 

When the load is single-ended and bipolar current is required, the Improved Howland Current 

Pump is a proven, simple design.  The circuit can be found in Figure 2.5.  The resistors form a 

bridge about which the operational amplifier is forced to push current into the load (Pease 

2008).    The current output through the load is given by  

Iload =
VIN1 −VIN 2

R13

 when
R14

R15

=
R11

(R12 + R13)
. 

 

To achieve the desired biphasic waveform, the input pins are tied to general purpose I/O pins 

on the microcontroller.  Thus, when one pin is held at high voltage and the other low, one 

polarity will be generated.  When the pins are flipped in voltage, the opposite polarity will be 

generated, and the current pump will create the opposite current. 
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Figure 2.5. Improved Howland Current pump 

From (Pease 2008).  These component values are generic and must be calculated for a 

particular application, but this is the general circuit used to deliver stimulation pulses in this 

design. 
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Voltage Boost 

Of course, Ohm’s Law still applies for the generation of current.  Therefore, the operational 

amplifier will need to be biased with large enough positive and negative voltages to allow it to 

generate the desired current.  By Ohm’s Law, to produce 30 µA through a 500 kΩ 

microelectrode, the operational amplifier will require + − 15 volts.  Due to the board’s size 

constraints, batteries supplying this voltage cannot be included in the design.  The voltage 

must be generated through a DC-DC boost converter.  These circuits can produce voltages 

higher than their input by manipulating power, which must be conserved.  By storing a small 

voltage with lots of current, the boost converter uses the excess current to increase voltage.  

They thus transform small voltage, high current loads into high voltage, low current loads of 

equal power.   

 

In this circuit, the boost converter needs to activate only just before stimulation, and the 

chosen boost converter IC provides a disable pin, that when drawn low, will disable the 

output.  This is particularly useful to save battery life as all boost converters use a relatively 

high amount of current and can drain a small battery quickly.  The circuit diagram for the 

boost converter and improved Howland current pump is shown in Figure 2.6.  
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Figure 2.6. Voltage Boost and Improved Howland Current Pump. 

The implemented Improved Howland Current Pump and voltage boost circuit.  The voltage 

boost IC is the Linear Technology LT1615 and the operational amplifier used in the current 

pump is the Texas Instrument TLV7302. 
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2.2.3 Power Supply 

A fully tether-less BCI obviously cannot include a power line to the wall.  Some sort of power 

source is necessary to provide energy to the microcontroller and related circuitry.  This power 

source should provide a balance between size and operating life for the BCI.   

Requirements 

Modern electronics cannot be powered simply from a battery.  While a battery provides a 

good source of portable energy, the output voltage can be extremely noisy.  Digital electronics 

require very stable supply voltages to operate accurately.  Therefore, it’s necessary to employ a 

voltage regulator to create a clean voltage source.  Voltage regulators come in two types, (1) 

linear and (2) switching.  Linear regulators produce extremely clean voltage outputs, but are 

inefficient.  Switching regulators consume very little power but the output voltage source can 

be somewhat noisier.  Linear regulators also require less passive components, which can be 

useful for smaller designs.   

Power Source 

The design is driven by a ½ AA battery (Tadiran Model TLL-5902).  This power source 

provides 3.6V of unregulated voltage with a maximum continuous drain of 50 mA.  It can 

provide 100 mA for brief periods of time.  This battery is ideal because it provides a more 

than twice voltage at half the size of a normal AA battery.  Not only can the board be smaller, 

but the overall weight will be much smaller.  This particular battery contains about 1100 mA-

H of power.   

Voltage Regulator(s) 

Two voltage regulators are used in this design. The first is the main voltage regulator that 

provides 3.0V of regulated power to the digital and analog ICs.  The second voltage regulator 

provides 1.5V of regulated power that is used to ground the animal. Because the animal is 

grounded at this midpoint in the supply voltage, the signals coming from its brain are biased 

halfway in the A/D dynamic range.  The two regulators used are the TPS79030 and the 
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TPS79015.  The power supply circuit is shown below in Figure 2.7.  

 

 
Figure 2.7. Power Regulator Circuit 

The circuit defining the battery and voltage regulators.   
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2.2.4 Headstage 

Requirements 

Head stages are important pieces of hardware in neural data acquisition systems that help combat noise 

issues by amplifying and/or buffering the signal close to its source. The microcontroller used in our 

design is intended to be headstage-independent. To employ the full dynamic range of the A/D 

converter, voltage signals from the headstage should not exceed Vdd or fall below GND and be biased 

around half Vdd. Triangle Biosystems (Durham, NC, USA) produces popular electrode/headstage 

systems suitable for implanted designs for small animals (Hampson, Collins et al. 2009; Rolston, Gross 

et al. 2009). 

 

2.2.5 Microcontroller 

Arguably the most important piece of hardware in this design, the microcontroller performs 

all relevant processing tasks.  As semiconductor manufacturing processes shrink, many 

hardware blocks such as flash memory, peripheral communications, and A/D converters can 

be integrated in a single IC, providing a complete system.  Modern microcontrollers provide 

an efficient, low-power solution to many embedded computing tasks in which a full operating 

system or microprocessor is not required.  Power consumption, CPU efficiency, size, and the 

programming/debugging environment are key design factors when choosing microcontrollers.  

I have chosen Texas Instruments MSP430F5438 microcontroller, and subsequent discussion 

will focus on its capabilities. 

Power Consumption 

In battery-powered applications such as this design, the most important characteristic is power 

usage.  The power consumption of the microcontroller is dependent on two factors, the 1) 

manufacturing process at which it is implemented, and 2) the usage.  As users of the 

microcontroller, the first point is out of the scope of our capabilities.  The usage, however, is 

completely within our control.  The MSP430 platform provides a complex power-

management unit (PMU) that provides varying degrees of power consumption modes.  The 
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most consuming mode is termed the active mode, in which all clocks are running, the CPU is 

actively processing data, and all peripheral hardware blocks are capable of running.  At the 

opposite spectrum is a sleep mode in which the only power consumed is used to keep 

memory in the correct state and run one clock.    

 

Independent of the power mode, the operating frequency can be modulated.  Power 

consumption is obviously proportional to clock speed, i.e. the microcontroller will consume 

more power the faster it runs.  To conserve power, it may seem obvious to decrease clock 

speed, but such is not the case in this situation.  After all channels have been processed for a 

single loop iteration, the device is placed into the sleep mode.  The device consumes such little 

power in this mode that it is actually beneficial to operate the device at its maximum clock 

speed when processing the channels.  By reducing the time spent actively processing (and 

therefore using the power-hungry CPU) and maximizing time spent in sleep mode, power 

usage can be minimized.   

CPU Efficiency 

The MSP430F5438 CPU is a 16-bit, reduced instruction set computer (RISC) designed with a 

von Neumann architecture.  The CPU only implements 27 total instructions which allows for 

more efficient execution.  The von Neumann architecture can pose a bottleneck because both 

data and instructions transferred to the CPU through the same physical bus.  The pipeline 

between CPU and memory must therefore move both the instruction and operand before the 

CPU can compute the result.  The Harvard architecture provides parallel pathways for both 

data and instructions and is found in competing microcontrollers (Smith 1998).   

  

On-Board Peripherals 

The MSP430F5438 provides many useful peripherals for this application.  The 12-bit A/D 

converter (ADC) employs a successive approximation algorithm to convert analog waveforms 

to discrete values.  When triggered to sample and convert, the input voltage is locked (termed 

‘sample and hold’).  For the next 12 clock cycles of the ADC, the signal is compared against a 
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successively halved value to implement a binary search that eventually produces a 12-bit 

discrete value of the analog voltage.  A reference voltage is required in this algorithm to 

normalize the input.  Assuming the input signal and reference voltage are measured against the 

same ground, the ADC conversion can be modeled as the following:Out = round(
Vin

Vref

⋅ 2N )  

where N is equal to the bit depth of the ADC.       

 

The quantization error of the MSP430F5438s SAR ADC is half the least significant bit which 

can be found with the following equation:Qerror =
Vref

2N .  Therefore, the least significant bit 

represents ~700 µV and the largest quantization error is less than 400 µV.  

 

The ADC circuitry in the MSP430F5438 can maximally convert 200 ksamples/s (Texas 

Instruments 2009) but is set to sample every 125 µs in this application (for a rate of 8 

ksamples/s).  A hardware timer is used to generate this clock source.  The clock runs in 

parallel to any processing in the CPU and is not stopped during the low-power sleep state.  

This clock wakes up the ADC circuitry when it reaches zero.  The ADC circuitry converts 

samples for all channels and generates its associated interrupt.  It is in the ADC interrupt that 

processing takes place.  When the interrupt finishes, i.e. all the channels have been processed, 

the microcontroller returns to the sleep state. 

 

The MSP430F5438 also contains numerous hardware capabilities for peripheral 

communication.  Interfacing the microcontroller with some sort of data transmission device 

could be accomplished with any number of communication interfaces such as SPI, I2C, or 

UART.  Areas of improvement and future development are discussed in Chapter 4. 

Programming 

The entire source for this project has been written in C for a few reasons.  First, C is the most 

prolific language and there exists a C compiler for every microcontroller platform.  Thus, 

because the library and application have been written in C, this source is extremely portable to 

other platforms.  There also exist C compilers for normal desktop computers, for instance 
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the freely available GNU Compiler Collection (http://gcc.gnu.org).  A majority of the 

development of this work was actually done by compiling the code for a Windows machine, 

and setting the program to parse a text file of simulated digital values for a train of action 

potentials.  The ability to cross-compile this code readily facilitates new algorithm 

development for future implementations.  Of course, some development must be tested in the 

actual microcontroller, for instance the optimal settings for hardware blocks.  As those 

settings are tuned for a particular microcontroller, though, there will be little need to change 

them. 

 

When using source code written in a high-level language such as C, the chosen compiler can 

have drastic effects on the performance of the code.  The compiler transforms human-

readable source code to machine code, a binary string representing all data and instructions.  

The more proven and reliable the compiler, the more efficient and smaller the generated 

machine code will be.  Texas Instruments provides a toolset for the MSP430 platform 

including the compiler, assembler, archiver, and linker.  This toolset was used to generate code 

for the microcontroller while the GNU Compiler Collection was used to generate x86 code 

running on a Windows personal computer. 

 

Debugging 

Debugging source code in full-fledged computing environment such as Windows can be 

difficult.  Hence, debugging running code on a microcontroller that possesses orders of 

magnitude less I/O and communication resources can present lots of challenges.  Luckily, 

Texas Instruments makes available their MSP430 Flash Emulation Tool USB Debugging 

Interface.  This small device connects to a personal computer through a USB port and 

connects the integrated development environment (IDE) to the microcontroller running the 

program. With this combination, compiled code can be programmed onto the microcontroller 

and be verified to work.  Breakpoints can be set and individual registers and memory can be 

monitored during runtime.  Without this toolset, debugging would be much more difficult.   
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2.3 Discussion 

I have outlined the design and implementation choices one faces when designing a small, low-

power, extensible brain-computer interface.  To be of use and test my design, I also created an 

algorithm to automatically detect single unit action potentials.  This is but one application in 

the growing field of brain-computer interfaces.  It is my belief that the library discussed above 

provides everything a new BCI designer would need to begin development of a new device 

using an off-the-shelf microcontroller. 

 

There is nothing explicitly novel about any of the hardware designs I’ve presented.  They are 

included to provide a complete system and should be tuned for each particular application.  

The novel approach of this work is to generalize the handling of neural data, allow for a wide 

variety of processing techniques across all channels and decrease the cost of development for 

new brain-computer interface devices.  
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Chapter 3 Testing and Validation 

3.1 In-Silico 

To test the basic viability of the code, the source was compiled on a Windows desktop 

computer using the Cygwin package (http://www.cygwin.com).  This package provides a 

substantial Linux API, which is helpful in compiling C applications on Windows without 

having to use Microsoft’s development tools. 

3.1.1 Testing Method 

About one minute’s worth of previously recorded single unit action potentials were scaled and 

manipulated in MATLAB (Mathworks, Inc.) to reflect actual values from the A/D converter 

(i.e. they were scaled to the A/D range and biased) and written to a text file.  The desktop 

application (see PNCS_App_desk.c in Appendix A) was configured to read this text file, 

process the data as described in Chapter 2 and output various debugging information to 

console.  The program also writes to an output file with a “0” if there was no spike detected 

and a “1” if a spike was detected.  Both text files were loaded into MATLAB and examined. 

 

3.1.2 Expectations and Actual Results 

The printed debugging information was captured and is below. 
Setting baseline... 
Baseline set. 
Baseline: 
Mean: 2040 SD:259  
Upper: 2558 Lower: 1522  
Learning... 
Learning complete. 
Full Templates: 
2128 2407 3037 3555 2901 2008 1379 966 721 682 872 1155 1462 1751 1958 2113 
2049 2309 2834 3454 3043 2228 1634 1283 1058 911 877 947 1104 1351 1644 1913  
2162 2432 3029 3503 2775 1887 1331 906 698 768 988 1291 1569 1799 2016 2187  
2086 2322 2812 3488 3135 2226 1520 990 694 595 683 953 1284 1609 1908 2114  
2103 2370 2889 3427 2927 2151 1587 1228 1013 904 902 986 1192 1454 1687 1889  
2117 2396 2975 3458 2902 2144 1595 1266 1092 1001 980 1083 1308 1525 1730 1913  
2174 2446 3001 3407 2818 2025 1344 899 665 632 765 1049 1373 1674 1935 2132  
2070 2276 2580 3209 3289 2571 1893 1356 1025 811 748 853 1073 1349 1620 1870  
2155 2481 3127 3469 2728 1898 1303 877 657 725 972 1282 1586 1838 2046 2169 
2133 2363 2810 3417 3108 2313 1704 1281 954 798 798 904 1139 1442 1688 1862  
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2189 2467 2870 3427 3034 2244 1610 1139 852 692 700 857 1109 1410 1725 1988  
2077 2333 2696 3225 3062 2403 1843 1466 1234 1063 1012 1067 1173 1325 1544 1733  
2119 2395 2934 3393 2843 1996 1317 862 618 589 711 961 1300 1645 1916 2141  
2078 2287 2586 3218 3303 2580 1884 1293 904 731 716 836 1108 1401 1678 1930  
2191 2459 2970 3400 2855 2039 1349 864 590 526 695 979 1310 1640 1952 2193  
2056 2224 2630 3321 3259 2413 1686 1182 838 650 691 915 1248 1585 1862 2052  
Mean template: 
2117 2372 2861 3398 2998 2195 1561 1116 850 754 819 1007 1271 1549 1806 2012  
Max Window:Index: 3 Value: 3398 Direction: 1 
Min Window:Index: 9 Value: 754 Direction: 0 
Hunting... 
Hunting complete. 
Baseline run time: 0.000000 sec  
Learn run time: 0.031000 sec  
Hunt run time: 2.063000 sec  
 
 

The thresholds and average templates are all automatically set, and hunting through 60 s of 

data takes about 2 s.  Obviously, the program works and is fast.  Figure 3.1 reveals how well 

the program detects action potentials.  The outputted “1”s have been scaled to fit on the 

graph.  The initial few action potentials are not detected because they were used for the 

template phase. 
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Figure 3.1. In Silico Testing of Library and Desktop Application 

The simulated neural waveform (red) imposed on pulses (blue) output by the application into 

a text file.  The early action potentials were missed because those waveforms were used for 

templating. 
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3.2 Benchtop Simulation 

3.2.1 Testing Method 
To test the efficacy of the firmware/hardware combination in detecting single-unit activity, we first 

simulated extracellular action potential waveforms through a National Instruments data acquisition 

board (National Instruments PCI-6229) controlled by MATLAB (Mathworks, Inc.). Using single-unit 

data recorded in our laboratory from awake common marmosets (Callithrix jacchus), we delivered the 

waveforms through a hardware breakout box (National Instruments BNC-2090A) and connected the 

waveforms to the A/D pins on the microcontroller. At the time, the microcontroller was housed in a 

breakout board connected to a debugger (MSPFET430UIF, Texas Instruments). The National 

Instrument board also recorded pulses from the microcontroller during each playback/recording 

session. A pulse from the microcontroller signified the detection of an action potential. In the current 

implementation, four channels of single-unit data can readily be detected in real time. All channels 

process data independently and can detect action potentials of differing shape and size. A 10 s session 

of four-channel recording is displayed in Figure 3.2.  
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Figure 3.2. Four Channels of Simultaneously Processed Data 

The microcontroller can accurately decode four channels of neural waveforms simultaneously.  The 

waveforms (red) was prerecorded from our primate model, the common marmoset (Callithrix jacchus) 

and delivered to the microcontroller through the analog output of a National Instruments Data 

Acquisition Card.  The microcontroller’s response (blue) represents action potential detection.  The 

waveforms and response were recorded on the same National Instruments card.  All channels were 

sampled by the National Instruments card at 20.8 ksamples/s.  The plots on the right depict the 

latency between action potential and detection, which is less than 1 ms for each channel. 
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3.2.2 Expectations and Actual Results 
The automatic action-potential algorithm detailed earlier found around 85% of the action potentials on 

a given channel in our initial tests for a miss rate of ~15% and a false positive rate of 0%. A possible 

solution to increase detection of true spikes (at the risk of increasing the number of false positives) is 

to relax the constraints on the time-amplitude windows, i.e. decrease the upper window amplitude and 

increase the lower window amplitude. Ultimately, the BCI application will determine the required 

accuracy in action-potential detection. 

 

3.3 Discussion 

Of course, if the shape of the action potential is known a priori at compile time, appropriate windows 

can be hard coded.  I chose to implement a more flexible approach due to the general instability of 

single-unit recording. As single units are invariably lost from day to day during an experiment, simply 

resetting the microcontroller will restart the threshold, template, and hunting sequences. This approach 

lessens the burden on the operator to continually place time-amplitude windows to optimally 

discriminate action potentials.   
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Chapter 4 Conclusion 
This thesis presents the design and implementation of a generalized firmware platform upon which 

brain-computer interfaces (BCIs) can be built using off-the-shelf microcontrollers. Current implantable 

BCI designs generally lack extensibility and customization, thus limiting their usefulness (Mojarradi, 

Binkely et al. 2003; Harrison, Kier et al. 2009; Raghunathan, Gupta et al. 2009; Rizk, Bossetti et al. 

2009). The basic firmware platform presented here can reduce design and development time of future 

BCIs by abstracting data storage and program flow. This abstraction allows researchers to focus 

development efforts upon their specific application, namely waveform detection and the action to be 

taken upon detection.  

4.1 Advantages/Disadvantages 

 

A BCI implemented with a general-purpose microcontroller will maintain certain advantages over BCIs 

implemented with ASICs. Firmware written in the industry standard C language reduces programming 

difficulty for new users and developers. Comparatively, designing ASIC circuits is time-consuming, 

expensive, and difficult for those without extensive training.  Many microcontroller makers provide 

rich integrated development environments (IDEs) to assist in program development and debugging. 

Also, many companies provide development boards for their microcontrollers, accelerating 

application-specific development for these general devices. Due to the portability of the C language, 

specific BCI development can begin even before a microcontroller has been selected. The firmware 

can be compiled on any operating system and tested as a standalone program, as shown above.  

 

The re-programmability of the microcontroller adds immense value to this specific brain-computer 

interface (An, Park et al. 2007). As a BCI experiment proceeds, external factors may require changes to 

existing functionality or call for a completely new functionality. If the changes required are within the 

capability of the firmware, then this new functionality can be implemented in the same implant quickly. 

Once the new functionality is integrated into the existing firmware, the device can then be 

reprogrammed in a matter of seconds and the experiment can continue. Currently published BCI 

designs do not provide the ability to add features on this time scale (Mavoori, Jackson et al. 2005; Ye, 

Wang et al. 2008; Rizk, Bossetti et al. 2009). 
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Applications such as artificially-induced plasticity (Jackson, Mavoori et al. 2006) require low latency 

between the actual action potential, its detection and the action taken. The common practice of spike 

detection and sorting in a remote computer is ill-suited for closed-loop application. There is an 

inherent time delay in wireless transmission of data to the remote computer, processing, and then the 

reception of control signals—especially when transmission bandwidth is limited in low-power devices 

and/or with high channel counts (Bossetti, Carmena et al. 2004). A 50 ms delay may be tolerable in 

some applications, but a generalized platform should set the lower bound of response time much 

lower to increase usefulness.  

 

When input/output is not available or too computationally expensive, intelligent on-board algorithms 

are needed for the automatic detection of action potentials. These algorithms must trade off detection 

latency with hit rate (or, equivalently, miss rate) and false positive rate. A completely automated initial 

algorithm is presented here that displays a miss rate of about 15% and a false positive rate of 0% for 

well-isolated single units, all with a detection latency of about a millisecond from spike onset. Shorter 

detection latency could be achieved at the expense of false positive rate. The requirements of the 

application and the quality of signals extracted from the tissue interface will ultimately determine the 

best compromise for these parameters. Because of the ease of reprogramming, this firmware platform 

can readily accommodate a wide variety of applications. 

 

The automatic spike detection algorithm presented here was designed to explore the effectiveness of 

using general purpose microcontrollers in BCI designs.  Depending on the nature of the signal from 

implanted microelectrodes, this algorithm may be severely overkill (i.e. the signal-to-noise ratio (SNR) 

is high and a simple threshold would be effective) or woefully inadequate (i.e. the amplitude of the 

noise approaches that of the action potential or there are multiple single-unit action potentials on the 

microelectrode).  Nonetheless, this algorithm demonstrates the flexibility and extensibility of the 

firmware design.  It should also be apparent that this design is not limited to only detecting single-unit 

action potentials.  If a signal can be translated to the digital domain and an algorithm can be devised to 

detect the signal, then this firmware library can accommodate such a sensor design.   

 

ASIC-based BCI designs will always hold some advantages over general-purpose BCI designs. Off-the-

shelf general purpose microprocessors are implemented in industry-standard packages without the 

capability of hardware customization. ASIC manufacturers can print any size ASIC, and therefore 

custom ASIC BCIs can be very small. The entire device presented in (Harrison, Kier et al. 2009) 
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measures 5.4 by 4.7 mm2 compared to the MSP430F5438 alone at 13 x 13 mm2. The size issue limits 

microcontroller-based designs to usage in moderately sized mammals (rats, marmosets, and larger). 

ASIC designs can also consume much less power than microcontroller-based designs. General purpose 

microprocessors include extraneous hardware blocks that are often not needed in BCIs, thus 

representing wasted power and space. Modern central processing units found in today’s 

microcontrollers and microprocessors are highly optimized but are still designed to implement an 

instruction set. ASICs found in BCIs have no such requirements and can therefore use a reduced 

transistor count.   

4.2 Scalability  

 

The portability of the presented firmware makes possible not only a great many applications, but also 

its use in widely varying devices. In the context of low-powered BCIs, the firmware can be targeted at 

small microcontrollers.  The MSP430 platform is specifically designed for ultra-low power usage.  If 

the power constraints in the BCI design are relaxed, then a more efficient, high-power microcontroller 

could be employed.  For instance, the microcontrollers used in current smart phones not only include 

more efficient CPUs but also integrated graphics processors.  These graphic processors are extremely 

optimized for matrix and vector operations and could be employed for powerful spike detection 

algorithms.  Such algorithms exist but have only been implemented in the larger graphics processors 

found in personal computers (Wilson and Williams 2009). 

 

One could also imagine a rack-mounted design employing a higher power microprocessor capable of 

monitoring many channels in real time. The MSP430F5438 used in this design operates at 18 MHz. 

Even assuming no gain in processing efficiency, a two order-of-magnitude increase in clock speed 

would allow for more channels than many commercial recording systems. Rack-mount systems could 

also include high-density storage for action-potential shape and times as well as serial (USB, Firewire) 

or Ethernet communication to desktop PCs. 

 

This firmware could also be used as the back end for a software application if targeted against a 

modern operating system and run on a desktop PC. Operating systems abstract the hardware layer and 

increase processing overhead, but increase the number of machines that can run the software. Desktop 

PCs do not have the memory constraints of embedded microcontrollers, but such a program would 

still benefit from a lightweight, efficient back end for memory storage. Of course, this back end 
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would be portable across Windows, Macintosh, and Linux OS platforms. 

 

It’s not out of the realm of possibility to think about using actual smart phones as the processing 

hardware in BCI designs.  They may be too large to include in a backpack design, but for tethered 

designs in which implanted electrodes are chronically connected to the BCI through the cage, this 

could be very feasible.  Smart phones such as the Apple iPhone or Motorola Droid provide not only 

extremely capable hardware, but also mature OSs to develop the BCI application.  Rich user interfaces 

could be designed to monitor neural waveforms on each channel and data could be offloaded through 

the high-bandwidth WiFi communication protocol or stored on the solid-state disk in the device.  Both 

devices provide USB communication through which data could be transmitted from a small, custom 

board containing analog filters and ADC circuitry.   

4.3 Future Work 

 

Unlike the device presented here, many implantable BCI designs offload recorded data to a personal 

computer through a wireless data transmission interface such as IR (Jackson, Moritz et al. 2006) or RF 

(Rizk, Bossetti et al. 2009). Other members in Dr. Barbour’s lab are currently designing a wireless 

transmission board to extract waveform shape and spike time from our device to monitor the on-

board processing and control while leaving the autonomous behavior of the implant intact. Due to the 

extensible nature of our firmware, this integration will likely be straightforward. The ZigBee RF 

protocol is the current leading candidate protocol because of its low power usage and data throughput 

efficiency (Lee, Su et al. 2007). Communication could also allow the user to set spike detection 

parameters dynamically, possibly to isolate different units within a single channel of data. The normal 

closed-loop behavior of the implant would not be affected by this interface. Presently, this type of 

monitoring can be performed at the beginning of an experiment by connecting an interface cable to 

the header on the circuit board. Once the device is programmed it can then be disconnected and 

allowed to perform its task(s) autonomously while the animal moves about freely. 

 

Because the spike detection algorithms can easily be swapped for others at run time, one can imagine 

building procedures into the application layer that perform intelligent pattern recognition that would 

choose the least complex (and therefore, quickest executing) detection algorithm from a set of 

implemented algorithms based upon waveform statistics. From our perspective, BCI operators should 

not be required to adjust detection parameters manually for every channel, especially as the 
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number of channels increases. Users should be able to adjust parameters if algorithms fail, but as these 

pattern recognition algorithms mature, the need for user intervention will likely decrease. 

 

As the semiconductor industry continues expanding and improving microcontroller capabilities, the 

spike detection algorithms too expensive to run in current low-power BCI designs will eventually be 

implemented in small microcontrollers.  This work suggests that while specific spike detection 

algorithms are important in BCI designs, a flexible and well-designed architecture will provide room 

for expansion, customization and growth that is currently not possible in BCI designs.  As we explore 

the scientific questions and clinical applications that BCIs provide, those BCI designs most flexible will 

be most useful to investigators. 
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Appendix A Source Code 

A.1 Organization 

The source code for this project is divided into seven files: PNCS_App_desk.c, 

PNCS_App_msp.c, PNCS_App_common.h, SB_Objects.c, PNCS_common.h, 

PNCS_Channel.c, and PNCS_Q.c.  PNCS_App_desk.c and PNCS_App_msp.c are the 

highest level files defining the entry point for the code when compiled for Windows and the 

MSP430 platform, respectively.  PNCS_App_common.h and SB_Objects.c provide common 

global variables and application-level data structures.  PNCS_common.h provides common 

variables to the channel and buffer data structures, which are defined in PNCS_Channel.c and 

PNCS_Q.c. 

 A.2 PNCS_App_desk.c 

/** 
@defgroup Application App-Specific 
**/ 
#ifndef PNCS_APP_DESK_ 
#define PNCS_APP_DESK_ 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include "PNCS_App_common.h" 
#include "PNCS_common.h" 
#include "SB_Objects.c" 
 
PNCS_Channel *c0; 
SB_Data *d0; 
FILE *fin; 
FILE *fout; 
void (*TAL) (PNCS_Q *, void *); 
bool (*TFL) (PNCS_Q *, void *); 
void *(*CUL) (void *); 
void (*TAH) (PNCS_Q *, void *); 
bool (*TFH) (PNCS_Q *, void *); 
void *(*CUH) (void *); 
void (*TAB) (PNCS_Q *, void *); 
bool (*TFB) (PNCS_Q *, void *); 
void *(*CUB) (void *);  
void (*Off_Action)(SB_Output *); 
void (*On_Action)(SB_Output *); 
 
 
void Trigger_Action_Baseline (PNCS_Q *q, void *data) { 
 insert_baseline(((SB_Data *)data)->b, (void *)get_data_at_ind(q,0)); 
} 
 
 
bool Trigger_Finder_Baseline(PNCS_Q *q, void *data) { 
 if ( *(Q_TYPE *)get_data_at_ind(q,0) != 0) { 
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  return TRUE; 
 } 
 else return FALSE; 
} 
  
void * Clean_Up_Baseline (void *data) { 
 if ( ((SB_Data *)data)->b->filled == TRUE) { 
  process_baseline(((SB_Data *)data)->b); 
  ((SB_Data *)data)->channel->trigger_action = TAL; 
  ((SB_Data *)data)->channel->trigger_finder = TFL; 
  ((SB_Data *)data)->channel->clean_up = CUL;     
 } 
 if (fout != NULL) { 
  fprintf(fout, "%d\n", 0 ); 
 } 
 return NULL;  
} 
  
/**  
@author  sburns 
@param  data - the user data inserted in the channel. 
@remark  Copy the current q into. 
@ingroup Application 
**/ 
void Trigger_Action_Learner (PNCS_Q *q, void *data) { 
 copy_q(q, ((SB_Data *)data)->t); 
} 
 
 
/** 
@author  sburns 
@param  q - queue currently held in the channel this is called within. 
@param  data - data structure that was hooked into the channel during creation.  
Dereference this correctly or else... 
@remark  Uses defined thresholds to determine if a waveform is of interest. 
@remark  If the direction has not been set (no spikes yet), then waveform must simply 
cross upper or lower threshold. 
@remark  If the direction has been set, then the must waveform must cross the correct 
threshold (upper threshold for upward going spikes, vice versa for downward going). 
@ingroup Application 
**/ 
bool Trigger_Finder_Learner(PNCS_Q *q, void *data) { 
 const void *d = get_data_at_ind(q, THRESHOLD_INDEX); 
 if ( ((SB_Data *)data)->t->refrac == FALSE ) { 
  if ( ((*(Q_TYPE *)d >= ((SB_Data *)data)->b->upper_threshold ) || (*(Q_TYPE 
*)d <= ((SB_Data *)data)->b->lower_threshold )) && (*(Q_TYPE *)d != 0 ) ) { 
   ((SB_Data *)data)->t->refrac = TRUE; 
   return TRUE; 
  }  
  else { 
   return FALSE; 
  } 
 } else { 
  return FALSE; 
 } 
} 
 
/** 
@author  sburns 
@param  data - hooked data structure in PNCS_Channel. 
@return  whatever data structure could be needed in main program. 
@remark  This Clean_Up is used when the Channel is "learning", i.e. filling the 
template. Also changes the channel into hunting mode. 
@ingroup Application 
**/ 
void * Clean_Up_Learner (void *data) { 
 if ( ((SB_Data *)data)->t->refrac == TRUE) { 
  ((SB_Data *)data)->t- >curr_refrac_count--; 
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  if ( ((SB_Data *)data)->t->curr_refrac_count == 0 ) { 
   ((SB_Data *)data)->t->curr_refrac_count = ((SB_Data *)data)->t-
>refrac_count; 
   ((SB_Data *)data)->t->refrac = FALSE;  
  } 
 }  
 if ( ((SB_Data *)data)->t->filled == TRUE) { 
  make_mean(((SB_Data *)data)->t); 
  ((SB_Data *)data)->wg->win_min = make_min_window(((SB_Data *)data)->t); 
  ((SB_Data *)data)->wg->win_max = make_max_window(((SB_Data *)data)->t); 
  ((SB_Data *)data)->channel->clean_up = CUH; 
  ((SB_Data *)data)->channel->trigger_action = TAH; 
  ((SB_Data *)data)->channel->trigger_finder = TFH; 
 } 
 if (fout != NULL) { 
  fprintf(fout, "%d\n", 0 ); 
 } 
 return NULL; 
} 
 
/**  
@author  sburns 
@param  data - the user data inserted in the channel. 
@remark  Simply enabled the SB_Data 
@ingroup Application 
**/ 
void Trigger_Action_Hunter (PNCS_Q *q,void *data) { 
 if (!(((SB_Data *)data)->out->refrac_on)) { 
  enable(((SB_Data *)data)->out);  
 } 
} 
 
/** 
@author  sburns 
@param  q - queue currently held in the channel this is called within. 
@param  data - data structure that was hooked into the channel during creation.  
Dereference this correctly or else... 
@remark  Very simple window-based method...First value must break a threshold, second 
value must be greater (the waveform is increasing), and the last value must be less than a 
the final window.  Window values are specific to each channel through the SB_Data. 
@ingroup Application 
**/ 
bool Trigger_Finder_Hunter(PNCS_Q *q, void *data) { 
 if (accept_wg(q, ((SB_Data *)data)->wg) ){ 
  return TRUE; 
 } else { 
  return FALSE; 
 } 
} 
 
 
/** 
@author  sburns 
@param  data - hooked data structure in PNCS_Channel. 
@return  whatever data structure could be needed in main program. 
@remark  The hunting clean_up print 1's and 0's. 
@ingroup Application 
**/ 
void * Clean_Up_Hunter(void *data) { 
 process_output(((SB_Data *)data)->out); 
 return NULL;  
} 
 
 
void Action_On(SB_Output *out) { 
 fprintf(fout, "1\n");  
} 
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void Action_Off(SB_Output *out) { 
 fprintf(fout, "0\n");  
} 
 
 
/** Main function for reading spikes.txt and outputting spikes_proc.txt**/ 
int main(int argc, char * argv[]) { 
 clock_t base_start, base_stop, hunt_start, hunt_stop, learn_start, learn_stop; 
 fin = fopen("etc/spikes.txt" , "r"); 

if (fin == NULL) { 
  printf("Error in input file opening."); 
  return 1;  
 } 
 fout = fopen("etc/spikes_proc.txt", "w"); 
 if (fout == NULL) { 
  printf("Error in output file opening."); 
  return 1; 
 } 
 Q_TYPE data = 0; 
 TAB = Trigger_Action_Baseline; 
 TFB = Trigger_Finder_Baseline; 
 CUB = Clean_Up_Baseline; 
 TAL = Trigger_Action_Learner; 
   TFL = Trigger_Finder_Learner; 
   CUL = Clean_Up_Learner; 
 TAH = Trigger_Action_Hunter; 
   TFH = Trigger_Finder_Hunter; 
   CUH = Clean_Up_Hunter; 
   On_Action = Action_On; 
   Off_Action = Action_Off; 
 d0 = new_data(1, 0, NUM_TEMPLATE, Q_SIZE, 0, BASELINE_LENGTH, On_Action, Off_Action); 
   c0 = new_channel(Q_SIZE, TAB, TFB, CUB); 
 if (d0 == NULL || c0 == NULL) { 
  printf("Error in data allocation."); 
  return 1; 
 } 
 sync(c0, d0); 
 long int i = 0; 
 long int num_samples = 1547852; 
 printf("Setting baseline...\n"); 
 base_start = clock(); 
 while (d0->b->filled == FALSE) { 
  fscanf(fin, "%u", &data); 
  insert_and_process(c0, &data); 
  i++;  
 } 
 base_stop = clock(); 
 printf("Baseline set.\n"); 
 print_baseline(d0->b); 
 printf("Learning...\n"); 
 learn_start = clock(); 
 while ( d0->t->filled == FALSE) { 
  fscanf(fin, "%u", &data); 
  insert_and_process(c0, &data); 
  i++; 
 } 
 learn_stop = clock(); 
 printf("Learning complete.\n"); 
 /**print diagnostics**/ 
 print_template(d0->t); 
 printf("\nMax Window:"); 
 print_window(d0->wg->win_max); 
 printf("\nMin Window:"); 
 print_window(d0->wg->win_min); 
 /**Switch to hunting mode done in CUL**/ 
 printf("Hunting...\n"); 
 free_template(d0->t); 
 hunt_start = clock(); 
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 while (i < num_samples) { 
  fscanf(fin, "%u", &data); 
  insert_and_process(c0, &data); 
  i++;  
 } 
 hunt_stop = clock(); 
 printf("Hunting complete.\n"); 
 printf("Baseline run time: %f sec \n", (double)(base_stop - base_start)/CLOCKS_PER_SEC); 
 printf("Learn run time: %f sec \n", (double)(learn_stoplearn_start)/CLOCKS_PER_SEC); 
 printf("Hunt run time: %f sec \n", (double)(hunt_stop - hunt_start) /CLOCKS_PER_SEC); 
 return 0; 
} 
#endif 

A.3 PNCS_App_msp.c 

/** 
@defgroup Application App-Specific 
**/ 
 
#ifndef PNCS_APP_MSP_ 
#define PNCS_APP_MSP_ 
#include <stdio.h> 
#include <stdlib.h> 
#include "PNCS_App_common.h" 
#include "PNCS_common.h" 
#include "SB_Objects.c" 
#define __MSP430F5438__    /** TODO: KEEP THIS define up-to-
date**/ 
#include <msp430.h> 
 
/** 
@author  sburns 
@remark  Current operating frequency 
@todo  Keep up to date. 
@ingroup Application 
**/ 
#define CYCL_FREQ  17981000 
 
/** 
@author  sburns 
@remark  Sampling frequency (Hz) 
@ingroup Application 
**/ 
#define SAMPFREQ 8000 
 
/** 
@author  sburns 
@remark  Used by the timer 
@ingroup Application 
**/ 
#define PERIOD (CYCL_FREQ / SAMPFREQ) 
 
PNCS_Channel *c0; 
PNCS_Channel *c1; 
PNCS_Channel *c2; 
PNCS_Channel *c3; 
SB_Data *d0; 
SB_Data *d1; 
SB_Data *d2; 
SB_Data *d3; 
bool (*TFL)(PNCS_Q *, void *); 
void (*TAL)(PNCS_Q *,void *); 
void *(*CUL)(void *); 
bool (*TFH)(PNCS_Q *, void *); 
void (*TAH)(PNCS_Q *,void *); 
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void *(*CUH)(void *); 
void (*TAB) (PNCS_Q *, void *); 
bool (*TFB) (PNCS_Q *, void *); 
void *(*CUB) (void *);  
void (*On_Action)(SB_Output *); 
void (*Off_Action)(SB_Output *); 
 
void Trigger_Action_Baseline(PNCS_Q *q, void *data) { 
 insert_baseline(((SB_Data *)data)->b, (void *)get_data_at_ind(q,0)); 
} 
 
bool Trigger_Finder_Baseline(PNCS_Q *q, void *data) { 
 if ( *(Q_TYPE *)get_data_at_ind(q,0) != 0) { 
  return TRUE; 
 } 
 else return FALSE; 
} 
  
void * Clean_Up_Baseline (void *data) { 
 if ( ((SB_Data *)data)->b->filled == TRUE) { 
  process_baseline(((SB_Data *)data)->b); 
  ((SB_Data *)data)->channel->trigger_action = TAL; 
  ((SB_Data *)data)->channel->trigger_finder = TFL; 
  ((SB_Data *)data)->channel->clean_up = CUL;     
 } 
 return NULL;  
} 
 
/**  
@author  sburns 
@param  data - the user data inserted in the channel. 
@remark  Copy the current q into. 
@remark  Also determines the direction of spike (only initially though). 
@ingroup Application 
**/ 
void Trigger_Action_Learner (PNCS_Q *q, void *data) { 
 copy_q(q, ((SB_Data *)data)->t); 
} 
 
/** 
@author  sburns 
@param  q - queue currently held in the channel this is called within. 
@param  data - data structure that was hooked into the channel during creation.  
Dereference this correctly or else... 
@remark  Uses defined thresholds to determine if a waveform is of interest. 
@remark  If the direction has not been set (no spikes yet), then waveform must simply 
cross upper or lower threshold. 
@remark  If the direction has been set, then the must waveform must cross the correct 
threshold (upper threshold for upward going spikes, vice versa for downward going). 
@ingroup Application 
**/ 
bool Trigger_Finder_Learner(PNCS_Q *q, void *data) { 
 const void *d = get_data_at_ind(q, THRESHOLD_INDEX); 
 if ( ((SB_Data *)data)->t->refrac == FALSE ) { 
  if ( ((*(Q_TYPE *)d >= ((SB_Data *)data)->b->upper_threshold ) || (*(Q_TYPE 
*)d <= ((SB_Data *)data)->b->lower_threshold )) && (*(Q_TYPE *)d != 0 ) ) { 
   ((SB_Data *)data)->t->refrac = TRUE; 
   return TRUE; 
  }  
  else { 
   return FALSE; 
  } 
 } else { 
  return FALSE; 
 } 
} 
 
/** 
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@author  sburns 
@param  data - hooked data structure in PNCS_Channel. 
@return  whatever data structure could be needed in main program. 
@remark  This Clean_Up is used when the Channel is "learning", i.e. filling the 
template.  
@remark  Resets the refractory period when necessary. 
@remark  Also changes the channel in hunting mode. 
@ingroup Application 
**/ 
void * Clean_Up_Learner (void *data) { 
 if ( ((SB_Data *)data)->t->refrac == TRUE) { 
  ((SB_Data *)data)->t->curr_refrac_count--; 
  if ( ((SB_Data *)data)->t->curr_refrac_count == 0 ) { 
   ((SB_Data *)data)->t->curr_refrac_count = ((SB_Data *)data)->t-
>refrac_count; 
   ((SB_Data *)data)->t->refrac = FALSE;  
  } 
 } 
 if ( ((SB_Data *)data)->t->filled == TRUE) { 
  make_mean(((SB_Data *)data)->t); 
  ((SB_Data *)data)->wg->win_min = make_min_window(((SB_Data *)data)->t); 
  ((SB_Data *)data)->wg->win_max = make_max_window(((SB_Data *)data)->t); 
  ((SB_Data *)data)->channel->clean_up = CUH; 
  ((SB_Data *)data)->channel->trigger_action = TAH; 
  ((SB_Data *)data)->channel->trigger_finder = TFH; 
 } 
 return NULL; 
} 
 
/**  
@author  sburns 
@param  data - the user data inserted in the channel. 
@remark  Simply enabled the SB_Data 
@ingroup Application 
**/ 
void Trigger_Action_Hunter (PNCS_Q *q, void *data) { 
 if (!(((SB_Data *)data)->out->refrac_on)) { 
  enable(((SB_Data *)data)->out);  
 } 
} 
 
/** 
@author  sburns 
@param  q - queue currently held in the channel this is called within. 
@param  data - data structure that was hooked into the channel during creation.  
Dereference this correctly or else... 
@remark  Very simple window-based method...First value must break a threshold, second 
value must be greater (the waveform is increasing), and the last value must be less than a 
the final window.  Window values are specific to each channel through the SB_Data. 
@ingroup Application 
**/ 
bool Trigger_Finder_Hunter(PNCS_Q *q, void *data) { 
 if (accept_wg(q, ((SB_Data *)data)->wg) ){ 
   return TRUE; 
 } else { 
  return FALSE; 
 } 
} 
 
void Action_On(SB_Output *out) { 
 P1OUT |= (out->on_bit); 
} 
 
void Action_Off(SB_Output *out) { 
 P1OUT &= ~(out->on_bit); 
} 
 
/** 
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@author  sburns 
@return  User generated output. 
@param  data - is of the same type that was inserted as user_data in the channel 
that is using this function. Dereference it accordingly. 
@ingroup Application 
**/ 
void * Clean_Up_Hunter (void *data) { 
 process_output(((SB_Data *)data)->out); 
 return NULL; 
} 
 
/** 
@author   sburns 
@remark   Place all processor dependent settings in this method, is called 
before any looping occurs. 
@remark   When adding a channel, add it to the ADC12 channel sequence, set it 
in P6SEL and P1DIR 
@ingroup  Application 
**/ 
void Initialize() { 
 WDTCTL = WDTPW + WDTHOLD;                  // Stop WDT 
 //CLOCK 
 UCSCTL0 = 0x00;                            // Set lowest possible DCOx, MODx 
   UCSCTL1 = DCORSEL_6;                       // Select range for 12MHz operation  
   UCSCTL2 = 0x224;                            // Set DCO Multiplier for 16MHz (17.9 
MHz) 
   UCSCTL4 = SELS_3 + SELM_3;                 // Set MCLK = SMCLK = DCOCLK 
   P11DIR = BIT2 + BIT1 + BIT0;                 // P11.2,1,0 to output 
direction 
 P11SEL = BIT2 + BIT1 + BIT0;                 // P11.2 to output 
SMCLK, P11.1 
   //ADC12 Settings 
   ADC12CTL0 = ADC12SHT0_0  + ADC12ON + ADC12MSC;    // 
Sampling time, ADC12 on, Multiple sample/conv. 
   ADC12CTL1 = ADC12SHP + ADC12SHS_1 + ADC12CONSEQ_1;          // Use pulse mode, 
timerA0 output signal, single sequence 
   ADC12MCTL0 = ADC12INCH_0;                       
   ADC12MCTL2 = ADC12INCH_2; 
   ADC12MCTL4 = ADC12INCH_4; 
   ADC12MCTL6 = ADC12INCH_6 + ADC12EOS; 
   ADC12IE = BIT6; 
   ADC12CTL0 |= ADC12ENC; 
   //PORT DIRECTIONS 
 P6SEL |= 0xFF;                             // P6 ADC option select 
 P1DIR |= 0xFF;                               // P1 Output used by 
SB_Data and Clean_Up 
 //TimerA0 settings 
   TA0CTL = TASSEL_2 + MC__UP;     //SMCLK, Up to CCR0, 
   TA0CCTL0 = OUTMOD_4;      //Toggle mode 
   TA0CCR0 = PERIOD / 2;      //using toggle mode, 
divide by two to achieve same freq 
} 
 
int main(void) { 
 P1OUT = 0; 
 P2DIR |= 0xFF; 
 TFL = Trigger_Finder_Learner; 
 TAL = Trigger_Action_Learner; 
 CUL = Clean_Up_Learner; 
 TFH = Trigger_Finder_Hunter; 
 TAH = Trigger_Action_Hunter; 
 CUH = Clean_Up_Hunter; 
 TFB = Trigger_Finder_Baseline; 
 TAB = Trigger_Action_Baseline; 
 CUB = Clean_Up_Baseline; 
 On_Action = Action_On; 
   Off_Action = Action_Off; 
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 d0 = new_data(1, BIT1, NUM_TEMPLATE, Q_SIZE, 0, BASELINE_LENGTH, On_Action, 
Off_Action); 
 d1 = new_data(1, BIT2, NUM_TEMPLATE, Q_SIZE, 0, BASELINE_LENGTH, On_Action, 
Off_Action); 
 d2 = new_data(1, BIT4, NUM_TEMPLATE, Q_SIZE, 0, BASELINE_LENGTH, On_Action, 
Off_Action); 
 d3 = new_data(1, BIT6, NUM_TEMPLATE, Q_SIZE, 0, BASELINE_LENGTH, On_Action, 
Off_Action); 
 c0 = new_channel(Q_SIZE,TAB,TFB,CUB); 
 c1 = new_channel(Q_SIZE,TAB,TFB,CUB); 
 c2 = new_channel(Q_SIZE,TAB,TFB,CUB); 
 c3 = new_channel(Q_SIZE,TAB,TFB,CUB); 
 sync(c0,d0); 
 sync(c1,d1); 
 sync(c2,d2); 
 sync(c3,d3); 
 P4DIR |= 0xFF; 
 Initialize(); 
 _BIS_SR(GIE + LPM0_bits); 
} 
 
// ADC12 interrupt service routine 
#pragma vector=ADC12_VECTOR 
__interrupt void ADC12_ISR (void) 
{ 
 P4OUT |= BIT0; 
 insert_and_process(c0, (void *)&ADC12MEM0); 
 P4OUT &= ~BIT0;  
 P4OUT |= BIT1; 
 insert_and_process(c1, (void *)&ADC12MEM2); 
 P4OUT &= ~BIT1;  
 P4OUT |= BIT2; 
 insert_and_process(c2, (void *)&ADC12MEM4); 
 P4OUT &= ~BIT2;  
 P4OUT |= BIT3; 
 insert_and_process(c3, (void *)&ADC12MEM6); 
 P4OUT &= ~BIT3; 
    ADC12CTL0 |= ADC12ENC; 
    ADC12IFG = 0; 
} 
 
#endif 

A.4 PNCS_App_common.h 

#ifndef PNCS_APP_COMMON_H_ 
#define PNCS_APP_COMMON_H_ 
 
 
#ifdef PNCS_APP_DESK_ 
/** 
@author  sburns 
@remark  When set, program will log information to standard output.  Clear for 
release compilation. 
@ingroup Application 
**/ 
#define DEBUG 1 
 
/** 
 
@author  sburns 
@remark  Use this definition in new_data and new_channel.   
@todo  Keep this inilne w/ SAMPFREQ (to catch around 1ms). 
@ingroup  Application 
**/ 
#define Q_SIZE 16 
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#endif 
#ifdef PNCS_APP_MSP_ 
/** 
@author  sburns 
@remark  When set, program will log information to standard output.  Clear for 
release compilation. 
@ingroup Application 
**/ 
#define DEBUG 0 
 
/** 
@author  sburns 
@remark  Use this definition in new_data and new_channel.   
@todo  Keep this inilne w/ SAMPFREQ (to catch around 1ms). 
@ingroup  Application 
**/ 
#define Q_SIZE 8 
#endif 
 
 
 
/** 
@author  sburns 
@remark  This type must be kept in agreement with the platform it's deployed on. 
@ingroup Application 
**/ 
#define Q_TYPE unsigned int 
 
 
 
 
 
/** 
@author  sburns 
@remark  Use in new_template 
@ingroup Application 
**/ 
#define REFRACTORY_CYCLES (Q_SIZE * 2) 
 
/** 
@author  sburns 
@remark  Use this definition in new_data. 
@todo  Keep update w/ Q_SIZE. 
@remark  Power of 2 <= 256. 
@ingroup Application 
**/ 
#define NUM_TEMPLATE 16 
 
/** 
@author  sburns 
@remark  Use in Trigger_Finder_Learner 
@ingroup 
**/ 
#define THRESHOLD_INDEX 2 
 
 
/** 
@author  sburns 
@param  
@return 
@remark 
@ingroup 
**/ 
#define BASELINE_LENGTH 32 
 
#endif /*PNCS_APP_COMMON_H_*/ 
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A.5 SB_Objects.c 

/** 
@defgroup Application App-Specific 
**/ 
 
#ifndef __SB_OBJECTS__ 
#define __SB_OBJECTS__ 
#include "PNCS_common.h" 
 
/** 
@author  sburns 
@remark  Simple struct to abstract a window for use in Trigger_Finder 
@ingroup Application 
**/ 
typedef struct { 
 Q_TYPE index;   /*!< Index >*/ 
 Q_TYPE value;   /*!< Window Value >*/ 
 bool above;    /*!< Direction >*/ 
} SB_Window; 
 
/** 
@author  sburns 
@param  ind - index that window is temporally placed at within PNCS_Q. 
@param   val - value representing voltage that signal is compared against 
@param  dir - type of window (down going or up going) 
@remark  Used to create SB_Window.  Caller must check for null pointer. 
@memberof<SB_Window> 
**/ 
SB_Window * new_window(Q_TYPE ind, Q_TYPE val, bool dir) { 
 SB_Window *window = malloc(sizeof(SB_Window)); 
 if (!window){ 
  return NULL; 
 } 
 window->index = ind; 
 window->value = val; 
 window->above = dir;  
 return window; 
} 
 
/** 
@author  sburns 
@param  q - PNCS_Q which holds data to be checked against the window. 
@param  w - SB_Window that checks the PNCS_Q. 
@remark  Simple logic. 
@memberof<SB_Window> 
**/ 
bool accept(PNCS_Q *q, SB_Window *w) { 
 Q_TYPE *val = (Q_TYPE *) get_data_at_ind(q,w->index); 
 if (((w->above == TRUE) && (*val >= w->value)) || ((w->above == FALSE) && (*val <= 
w->value))) { 
  return TRUE; 
 } 
 else return FALSE; 
} 
 
/** 
@author  sburns 
@param  w - window to be printed to stdout.  
@remark  Used for debugging. 
@ingroup Application. 
@memberof<SB_Window> 
**/ 
void print_window(SB_Window *w) { 
 if (DEBUG) { 
  printf("Index:\t%u\tValue:\t%u\tDirection:\t%u\n", w->index,w->value, w-
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>above);  
 }  
} 
 
/** 
@author  sburns 
@remark  Structure to hold both windows.  Pass the structure to an accept function. 
@ingroup Application 
**/ 
typedef struct { 
 SB_Window *win_min; 
 SB_Window *win_max;  
} SB_Window_Group; 
 
/** 
@author  sburns 
@return  Valid WG pointer or null 
@ingroup Application 
@memberof<SB_Window_Group> 
**/ 
SB_Window_Group * new_wg() { 
 SB_Window_Group *wg = malloc(sizeof(SB_Window_Group)); 
 wg->win_max = NULL; 
 wg->win_min = NULL; 
 return wg;  
} 
 
 
/** 
@author  sburns 
@param   q - PNCS_Q currently 
@param   WG - SB_Window_Group associated with channel 
@return  bool - t if both windows fit q, f otherwise 
@remark  Simplifies writing TFH. 
@ingroup Application 
@memberof<SB_Window_Group> 
**/ 
bool accept_wg(PNCS_Q *q, SB_Window_Group *WG) { 
 if (accept(q, WG->win_max) && accept(q, WG->win_min)) { 
  return TRUE; 
 } 
 else return FALSE; 
} 
 
 
 
/** 
@author  sburns 
@remark  Structure for storing an N (row) x M (column) matrix. When matrix is filled, 
a mean is computed, which is used to create optimal windows. 
@ingroup Application 
**/ 
typedef struct { 
 Q_TYPE *data;      /*!< Pointer to hold NxM matrix 
(linear)>*/ 
 unsigned long *mean;    /*!< Pointer to hold final mean >*/ 
 Q_TYPE *curr;      /*!< Pointer to next data to be 
filled >*/ 
 Q_TYPE *end;      /*!< Pointer to end of array, 
used for filled >*/ 
 unsigned int N;      /*!< number of rows >*/ 
 unsigned int M;      /*!< number of columns 
>*/ 
 bool filled;      /*!< filled? >*/  
 unsigned int N_pow2;    /*!< 2^N_pow2 = N, used in make mean 
for fast division >*/ 
 bool refrac;      /*!< Has a threshold recently 
been broken? >*/ 
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 unsigned int refrac_count;   /*!< Number of cycles before a spike 
will be reported after an initial >*/ 
 unsigned int curr_refrac_count;  /*!< Current count, if == to count, 
then current_spike == FALSE >*/ 
} SB_Template; 
 
unsigned int find_pow2(unsigned int N) { 
 unsigned int ans; 
 switch (N) { 
  case 1: { 
   ans = 0;  
   break; 
  }  
  case 2: { 
   ans = 1;  
   break; 
  }  
  case 4: { 
   ans = 2;  
   break; 
  }  
  case 8: { 
   ans = 3;  
   break; 
  }  
  case 16: { 
   ans = 4;  
   break; 
  }  
  case 32: { 
   ans = 5;  
   break; 
  }  
  case 64: { 
   ans = 6;  
   break; 
  }  
  case 128: { 
   ans = 7;  
   break; 
  }  
  case 256: { 
   ans = 8;  
   break; 
  }    
 } 
 return ans; 
} 
 
 
/** 
@author  sburns 
@param  N - number of rows 
@param   M - number of columns 
@memberof<SB_Template> 
**/ 
SB_Template * new_template(Q_TYPE N, Q_TYPE M) { 
 int i; 
 SB_Template *temp = malloc(sizeof(SB_Template)); 
 if (!temp) { 
  return NULL; 
 } 
 temp->N = N; 
 temp->M = M; 
 temp->data = malloc(N * M * sizeof(Q_TYPE)); 
 if (!temp->data){ 
  return NULL; 
 } 
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 temp->mean = malloc(M * sizeof(long)); 
 if (!temp->mean) { 
  return NULL; 
 } 
 temp->curr = temp->data; 
 temp->filled = FALSE; 
 for (i = 0; i < temp->M; i++) { 
  temp->mean[i] = 0;  
 } 
 temp->end = &(temp->data[temp->N * temp->M - 1]); 
 temp->N_pow2 = find_pow2(N); 
 temp->refrac_count = REFRACTORY_CYCLES; 
 temp->curr_refrac_count = temp->refrac_count; 
 temp->refrac = FALSE;         
    
 return temp; 
} 
 
/** 
@author  sburns 
@param   q - queue to be copied into template matrix 
@param  t - template to hold q 
@remark  Copy a PNCS_Q (one of interest) into the next row in matrix. 
@memberof<SB_Template> 
**/ 
status copy_q(PNCS_Q *q, SB_Template *t) { 
 int i = 0; 
 
 if (  t->filled == TRUE) { 
  if (DEBUG) { 
   printf("Error in copy_q.\n");  
  } 
  return ERROR;  
 } 
 for (; i < t->M; i++) { 
  *(t->curr) = *(Q_TYPE *)get_data_at_ind(q, i); 
  t->curr++;  
 } 
 if ( t->curr >= t->end) { 
  t->filled = TRUE;  
 } 
 
 return OK; 
} 
 
/** 
@author  sburns 
@param  t - SB_Template that has been filled. 
@remark  When full, the template means should be calculated to make the average 
waveform. 
@memberof<SB_Template> 
**/ 
status make_mean(SB_Template *t) { 
 int ii, jj; 
 if ( t->filled == FALSE) { 
  if (DEBUG) { 
   printf("Error in make_mean.\n"); 
  } 
  return ERROR;  
 } 
 t->curr = t->data; 
 for (ii = 0; ii < t->N; ii++) { 
  for (jj = 0; jj < t->M; jj++) { 
   t->mean[jj] += *(t->curr); 
   t->curr++; 
  } 
 } 
 for (ii = 0; ii < t->M; ii++) { 
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  t->mean[ii] = t->mean[ii] >> t->N_pow2; 
 } 
 return OK; 
} 
 
/** 
@author  sburns 
@param  t - template to build max window off. 
@return  an SB_Window that will look for the max peak of the waveform. 
@memberof<SB_Template> 
**/ 
SB_Window * make_max_window(SB_Template *t) { 
 unsigned int ind, max, i = 0; 
 ind = 0; 
 max = t->mean[0]; 
 for (i = 1; i < t->M; i++) { 
  if (t->mean[i] > max) { 
   ind = i; 
   max = t->mean[i]; 
  } 
 } 
 return new_window(ind, max-75, TRUE); 
} 
 
/** 
@author  sburns 
@param  t - template to build max window off. 
@return  an SB_Window that will look for the min peak of the waveform. 
@memberof<SB_Template> 
**/ 
SB_Window * make_min_window(SB_Template *t) { 
 unsigned int ind, min, i = 0; 
 ind = 0; 
 min = t->mean[0]; 
 for (i = 1; i < t->M; i++) { 
  if (t->mean[i] < min) { 
   ind = i; 
   min = t->mean[i]; 
  } 
 } 
 return new_window(ind, min+75, FALSE); 
} 
 
/** 
@author  sburns 
@param  t - template to be printed to stdout  
@remark  Used for debugging purposes.  Should only be called when template is full. 
@ingroup Application 
@memberof<SB_Template> 
**/ 
void print_template(SB_Template *t) { 
 if (DEBUG) { 
  Q_TYPE *curr = t->data; 
  unsigned long *pmean = t->mean; 
  int ii, jj; 
  if (t->filled == FALSE ) { 
   printf("Error in print_template, template is not full."); 
   return; 
  } 
  printf("Full Templates:\n"); 
  for (ii = 0; ii < t->N; ii++) { 
   for (jj = 0; jj < t->M; jj++) { 
    printf("%u\t", *(curr)); 
    curr++; 
   } 
   printf("\n"); 
  } 
  printf("Mean template:\n"); 
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  for (ii = 0; ii < t->M; ii++) { 
   printf("%ld\t", *(pmean)); 
   pmean++; 
  } 
 } 
} 
 
/** 
@author  sburns 
@param  t - template to be freed 
@remark  free the template 
@ingroup Application 
@memberof<SB_Template> 
**/ 
void free_template(SB_Template *t) { 
 free(t->data); 
 free(t->mean); 
 free(t); 
} 
 
typedef struct SB_Output SB_Output; 
 
/** 
@author  sburns 
@remark  Structure for grouping output parameters together 
@ingroup Application 
**/ 
struct SB_Output{ 
 bool enabled;     /*!< simple boolean.*/ 
 bool is_on;      /*!< set after delay and 
cleared after reset. >*/ 
 bool delay_on; 
 bool refrac_on; 
 char on_bit;     /*!< Currently, the pin on PORT1 that 
will be turned on*/ 
 int cycles;      /*!< constant value for how 
many cycles an action will be performed for.*/ 
 int current_cycles;    /*!< if enabled is true, action will 
be taken for this many more cycles*/ 
 int delay;      /*!< Delay between trigger and 
output >*/ 
 int current_delay;    /*!< current delay >*/ 
 int refrac; 
 int current_refrac; 
 void (*on_action)(SB_Output *); 
 void (*off_action)(SB_Output *); 
} ; 
 
 
/** 
@author  sburns 
@param   cycles - how many loops output pulse will be on. 
@param  bit - P2OUT pin 
@param   delay - amount of cycles before pulse is turned on after trigger. 
@return  Valid SB_Output structure or null 
@ingroup Application 
@memberof<SB_Output> 
**/ 
SB_Output * new_out(int cycles, char bit, int delay, void (*on_action)(SB_Output *),void 
(*off_action)(SB_Output *)) { 
 SB_Output *out = malloc(sizeof(SB_Output)); 
 if (out == NULL) { 
  return NULL;  
 } 
 out->enabled = FALSE; 
 out->current_cycles = cycles; 
 out->cycles = cycles; 
 out->delay = delay; 
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 out->current_delay = delay; 
 out->on_bit = bit; 
 out->is_on = FALSE; 
 out->refrac = Q_SIZE; 
 out->current_refrac = Q_SIZE; 
 out->refrac_on = FALSE; 
 out->on_action = on_action; 
 out->off_action = off_action; 
 return out;  
} 
 
 
/** 
@author  sburns 
@param  
@return 
@remark 
@ingroup 
**/ 
void enable(SB_Output *out){ 
 out->enabled = TRUE; 
 out->delay_on = TRUE;  
} 
 
/** 
@author  sburns 
@param  
@return 
@remark  Handle delay, then cycles, then refrac 
@ingroup 
**/ 
void process_output(SB_Output *out) { 
 if (out->enabled == TRUE) { 
  if (out->delay_on == TRUE) { 
   out->off_action(out); 
   out->current_delay--; 
   if (out->current_delay < 0) { 
    out->delay_on = FALSE; 
    out->current_delay = out->delay; 
    out->is_on = TRUE; 
   }  
  } 
  else { 
   if (out->is_on == TRUE ) { 
    out->on_action(out); 
    out->current_cycles--; 
    if (out->current_cycles < 0) { 
     out->is_on = FALSE; 
     out->current_cycles = out->cycles; 
     out->refrac_on = TRUE;  
    } 
   }  
   if (out->refrac_on == TRUE) { 
    out->off_action(out); 
    out->current_refrac--; 
    if (out->current_refrac < 0) { 
     out->enabled = FALSE; 
     out->refrac_on = FALSE; 
     out->current_refrac = out->refrac;  
    }  
   } 
  }  
 } 
 else { 
  out->off_action(out);  
 } 
  
} 
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/** 
@author  sburns 
@remark  Struct for determining level of noise at the onset of running the program. 
@remark  Sets upper and lower thresholds for spike detection after computing 
statistics. 
@ingroup Application 
**/ 
typedef struct { 
 Q_TYPE *data; 
 Q_TYPE *curr; 
 Q_TYPE *last; 
 unsigned int size; 
 unsigned int size_pow2; 
 bool filled; 
 unsigned long mean; 
 unsigned int sd; 
 unsigned int upper_threshold; 
 unsigned int lower_threshold; 
} SB_Baseline; 
 
 
SB_Baseline * new_baseline(unsigned int size) { 
 SB_Baseline *base = malloc(sizeof(SB_Baseline)); 
 if (base == NULL) { 
  return base;  
 } 
 base->data = malloc(size * sizeof(Q_TYPE)); 
 if (base->data == NULL) { 
  free(base); 
  return NULL;  
 } 
 base->curr = base->data; 
 base->last = &(base->data[size - 1]); 
 base->size = size; 
 base->size_pow2 = find_pow2(size); 
 base->filled = FALSE; 
 base->lower_threshold = 0; 
 base->upper_threshold = 0; 
 base->sd = 0; 
 base->mean = 0; 
 return base; 
} 
 
 
/** 
@author  sburns 
@param  b - SB_Baseline struct 
@param  data - void * that is of type of data throught out all structures  
@remark  Simple insertion, flips bool when array is filled. 
@ingroup Application 
@memberof<SB_Baseline> 
**/ 
void insert_baseline(SB_Baseline *b, void *data) { 
 *(b->curr) = * (Q_TYPE *)data; 
 b->curr++; 
 if (b->curr > b->last) { 
  b->filled = TRUE;  
 } 
} 
 
 
/** 
@author  sburns 
@param   b - SB_Baseline that has already been filled 
@return  OK if all proceeds as planned, ERROR otherwise 
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@remark  Approximates standard deviation by knowing Vpp of noise is ~4 times standard 
deviation. 
@remark  creates thresholds by +- 8*std + mean 
@ingroup Application 
@memberof<SB_Baseline> 
**/ 
status process_baseline(SB_Baseline *b) { 
 unsigned int i, max = 0, min = 0; 
 if (b->filled != TRUE) { 
  return ERROR;  
 } 
 b->curr = b->data; 
 for (i = 0; i < b->size; i++) { 
  b->mean += *(b->curr); 
  if (*(b->curr) > max) { 
   max = *(b->curr);  
  } 
  if (*(b->curr) < min) { 
   min = *(b->curr);  
  } 
  b->curr++;  
 } 
 b->mean = b->mean >> b->size_pow2; 
 b->sd = (max - min) >> 3; 
 b->upper_threshold = b->mean + (b->sd << 1); 
 b->lower_threshold = b->mean - (b->sd << 1); 
 return OK; 
} 
 
/** 
@author  sburns 
@param  b - baseline to be printed to stdout 
@remark  simple debugging function 
@ingroup Application 
@memberof<SB_Baseline> 
**/ 
void print_baseline(SB_Baseline *b){ 
 if (DEBUG) { 
  printf("Baseline:\n"); 
  printf("Mean: %u\tSD:%u\t\n", b->mean, b->sd); 
  printf("Upper: %u\tLower: %u\t\n", b->upper_threshold, b->lower_threshold);
  
 } 
} 
 
 
/** 
@author  sburns 
@remark  Simple struct to keep track of an action over cycles. Provides customizable 
window values for each channel. 
@ingroup  Application 
**/ 
typedef struct { 
 SB_Output *out;    /*!< Struct coordinating output params 
>*/ 
 SB_Window_Group *wg;  /*!< Struct for holding both windows >*/ 
 SB_Template *t;    /*!< template to build windows>*/ 
 SB_Baseline *b;    /*!< baseline structure >*/ 
 PNCS_Channel *channel;  /*!< reference to encompassing structure>*/ 
} SB_Data; 
 
 
 
/** 
@author  sburns 
@param  cycles - how many cycles the action will take place for once started. Should 
be greater than 0, otherwise nothing would happen. 
@remark  If using this for pulses with sampling period resolution, pulse width will 
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be (cycles - 1) samples. May want to correct this in the future, but for now, it works. 
@param  bit - pin number on PORT1 that is tied to this data structure. 
@param  threshold - In this application, the threshold above which the waveform must 
pass initially. 
@param  win1 - The first window value.  Data must be greater than this. 
@param  win2 - The second window value.  Data must be less than this. 
@return  Initialized SB_Data or null pointer. 
@ingroup Application 
@memberof<SB_Data> 
**/ 
SB_Data * new_data(int cycles, char bit, int N, int M, int delay, unsigned int base_size, 
void (*on_action)(SB_Output *), void (*off_action)(SB_Output *)) { 
 SB_Data *SB = malloc(sizeof(SB_Data)); 
 SB_Template *temp = new_template(N, M); 
 SB_Window_Group *wg = new_wg(); 
 SB_Output *out = new_out(cycles, bit, delay, on_action, off_action); 
 SB_Baseline *b = new_baseline( base_size); 
 if (SB == NULL || temp == NULL || wg == NULL || out == NULL) { 
  if (DEBUG) { 
   printf("Failure to allocate an SB_Data."); 
   return NULL; 
  } 
 } 
 SB->t = temp; 
 SB->wg = wg; 
 SB->out = out; 
 SB->b = b; 
 return SB; 
} 
 
/** 
@author  sburns 
@param  SB - SB_Data to be deleted. 
@remark  Simple free. 
@ingroup Application 
@memberof<SB_Data> 
**/ 
void free_SB(SB_Data *SB){ 
 free(SB); 
} 
 
 
/** 
@author  sburns 
@param  c - channel to be attached to data 
@param  d - data to be attached to channel 
@remark  Before allocation, global pointers are null, so this synchronization should 
be done after allocating both channel and data. 
@ingroup Application 
**/ 
void sync(PNCS_Channel *c, SB_Data *d) { 
 c->user_data = d; 
 d->channel = c; 
} 
 
 
#endif 

A.6 PNCS_common.h 

/** 
@defgroup PNCS PNCS 
**/ 
 
 
/** 
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@ingroup PNCS 
**/ 
#ifndef PNCS_COMMON_H_ 
#define PNCS_COMMON_H_ 
 
typedef enum  er status; 
typedef enum {FALSE = 0, TRUE = 1} bool; 
typedef struct PNCS_Channel PNCS_Channel; 
#include "PNCS_Channel.c" 
 
extern void Trigger_Action(PNCS_Q *q, void *data); 
extern bool Trigger_Finder(PNCS_Q *q, void *data); 
extern void * Clean_Up(void *data); 
#endif 
 
 
 

A.7 PNCS_Channel.c 

/** 
@ingroup PNCS 
**/ 
 
#ifndef PNCS_CHANNEL_C_ 
#define PNCS_CHANNEL_C_ 
 
#include <stdlib.h> 
#include <stdio.h> 
 
#include "PNCS_Q.c" 
 
/** 
@author  sburns 
@remark  Main data structure of PNCS. 
**/ 
struct PNCS_Channel{ 
 PNCS_Q *buffer;         
 /*!< data queue*/    
 void (*trigger_action)(PNCS_Q * q, void *data);  /*!< callback function 
called after ratio amount of triggers have been found.*/  
 bool (*trigger_finder)(PNCS_Q *q, void *data);  /*!< function used to 
search for a trigger in the buffer.*/  
 void *(*clean_up)(void *data);       /*!< 
final function called in insert_and_process().*/ 
 void * user_data;        
 /*!< user-defined data that should be held by a single channel and used in callback 
functions */  
} ; 
 
 
/** 
@author  sburns 
@param   buffer_size - amount of data stored in the queue. 
@param  TA - a function pointer to an action the channel will perform when given 
enough triggers. 
@param  TF - a function pointer the channel uses to determine if a trigger is 
present. 
@param  CU - a clean up function always called at the end of every 
insert_and_process(). 
@param  data - pointer containing data that the user wants to bind to a channel. Can 
be accessed in callback functions. 
@return  memory containing a valid instance of PNCS_Channel or a NULL pointer. 
@remark  Up to client to check for null returned pointer. 
@memberof <PNCS_Channel> 
**/ 
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 PNCS_Channel * new_channel(int buffer_size, void (*TA) (PNCS_Q *q,void *data), bool (*TF) 
(PNCS_Q *q, void *data), void *(*CU) (void *data)) { 
 PNCS_Channel *C = malloc(sizeof( PNCS_Channel)); 
 if (!C) { 
  if (DEBUG) { 
   printf("Could not allocate memory for PNCS_Channel."); 
  } 
  return NULL; 
 } 
 C->buffer = new_Q(buffer_size); 
 if (!C->buffer) { 
  if (DEBUG){ 
   printf("Could not allocate PNCS_Q within PNCS_Channel."); 
  } 
  return NULL; 
 } 
 C->trigger_finder = TF; 
 C->trigger_action = TA; 
 C->clean_up = CU; 
 return C; 
} 
 
/** 
@author  sburns 
@param  C - channel to be freed. 
@remark  Frees the data queue, and the channel structure itself. 
@memberof<PNCS_Channel> 
**/ 
void free_channel(PNCS_Channel *C){ 
 free_Q(C->buffer); 
 free(C); 
} 
 
/** 
@author  sburns 
@param  C - channel to insert data into and then process 
@param  data - valid pointer of data (must be type held in the q) 
@return  returns the value of C->clean_up 
@remark  First inserts the data, then uses the trigger finder function to search the 
buffer, if that returns true trigger_action is called.  clean_up is called no matter what. 
@memberof<PNCS_Channel> 
**/ 
void * insert_and_process(PNCS_Channel *C, void *data){ 
 insert(C->buffer, data); 
 if (C->trigger_finder(C->buffer, C->user_data))  { 
  C->trigger_action(C->buffer, C->user_data); 
 } 
 return C->clean_up(C->user_data); 
} 
 
/** 
@author  sburns 
@param  C - channel to view 
@remark  Used for debugging purposes.  Compiles to a stub if DEBUG is set to zero. 
@memberof<PNCS_Channel> 
**/ 
void view_channel(PNCS_Channel *C){ 
 if (DEBUG) { 
  printf("Buffer:\n"); 
  view_Q(C->buffer); 
  printf("\n"); 
  C->trigger_finder(C->buffer, C->user_data); 
  C->trigger_action(C->buffer, NULL); 
  C->clean_up(C->user_data); 
 } 
} 
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#endif 
 

 

 

A.8 PNCS_Q.c 

/** 
@ingroup PNCS 
**/ 
 
#ifndef PNCS_Q_C_ 
#define PNCS_Q_C_ 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <stddef.h> 
 
/** 
@author  sburns 
@remark  Buffer structure that uses a dynamic array for minimal memory usage 
**/ 
typedef struct { 
 Q_TYPE Q_size;    /*!< size of queue*/ 
 Q_TYPE *first;    /*!< "first to be deleted", i.e. oldest data 
in buffer*/ 
 Q_TYPE *last;    /*!< last data point in array (not necessarily 
last data temporally) >*/ 
 Q_TYPE *data;    /*!< data array >*/ 
 
} PNCS_Q; 
 
 
 
 
/** 
@author  sburns 
@param  q - queue to request data from. 
@param  ind - index of requested data in standard C usage (0 for first, size-1 for 
last). 
@return  pointer to data. 
@remark  client should cast this appropriately to dereference.  
@memberof<PNCS_Q> 
@public 
**/ 
const void * get_data_at_ind(PNCS_Q *q, int ind) { 
 if ( (q->first + ind) <= (q->last) ) { 
  return (q->first + ind); 
 } 
 else return (q->first - (q->Q_size - ind)); 
} 
 
 
/** 
@author  sburns 
@param  q - q to be printed 
@return  the current state of the q is printed to standard output. 
@remark  Print the queue on standard output.  Only used for debugging purposes. 
Compiles to stub when DEBUG is set to FALSE. 
@memberof<PNCS_Q> 
@public 
**/ 
void view_Q(PNCS_Q *q) { 
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 if ( DEBUG ) { 
  int i = 0; 
  for (;i < q->Q_size;i++) { 
   printf("%d\t", *(Q_TYPE *) get_data_at_ind(q, i));  
  } 
  printf("\n"); 
 } 
} 
 
 
/** 
@author  sburns 
@param  q - queue to insert new data into 
@param  data - data to be inserted, inserted data type MUST be the defined Q_TYPE in 
PNCS_App.c 
@return  OK if insertion occurs normally, ERROR otherwise. 
@remark  Trusts the user that *data is the same type that the queue was initially set 
up to use.  
@memberof<PNCS_Q> 
@public 
**/ 
 
void insert(PNCS_Q *q, void *data) { 
 *(q->first) = *(Q_TYPE *)data; 
 (q->first)++; 
 if ( q->first > q->last ) { 
  q->first = q->data; 
 } 
} 
 
 
/** 
@author  sburns 
@param  size - amount of data points to be held in the queue at all times. 
@return  a pointer to memory containing an initialized q or null pointer. 
@remark  Calling function must check for null pointer. Returns a null pointer if 1) 
allocation for whole structure fails, or 2) allocation for data array fails. 
@memberof<PNCS_Q> 
@public 
**/ 
PNCS_Q * new_Q ( int size ){ 
 PNCS_Q *q = malloc(sizeof(PNCS_Q)); 
 if (q == NULL) { 
  return q; 
 } 
 q->Q_size = size; 
 q->data = NULL; 
 q->data = malloc(size * sizeof(Q_TYPE)); 
 if (q->data) { 
  q->first = q->data; 
 } 
 else { 
  q = NULL; 
 } 
 q->last = &(q->data[q->Q_size - 1]); 
 return q; 
} 
 
 
/** 
@author   sburns 
@param   q - PNCS_Q to be freed. 
@return   none 
@remark   Frees all the data locations in the array, frees the array, and then 
frees the entire structure. 
@memberof<PNCS_Q> 
@public 
**/ 
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void free_Q(PNCS_Q *q) { 
 free(q->data); 
 q->first = NULL; 
 free(q); 
 q = NULL; 
} 
 
 
/** 
@author  sburns 
@param  q - the q who's last data point is desired 
@return  pointer to the data (which can only be read) 
@remark  returns a pointer to the last data point that can only be read.the data type 
is the type of the q. 
@memberof<PNCS_Q> 
@public 
**/ 
const void * get_last(PNCS_Q *q) { 
 return get_data_at_ind(q,q->Q_size-1); 
} 
 
#endif /*PNCS_Q_C_*/ 
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