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X-ray computed tomography (CT) is an important and effective tool in medical and indus-

trial imaging applications. The state-of-the-art methods to reconstruct CT images have had

great development but also face challenges. This dissertation derives novel algorithms to

reduce bias and metal artifacts in a wide variety of imaging modalities and increase perfor-

mance in low-dose scenarios.

The most widely available CT systems still use the single-energy CT (SECT), which is

good at showing the anatomic structure of the patient body. However, in SECT image

reconstruction, energy-related information is lost. In applications like radiation treatment

planning and dose prediction, accurate energy-related information is needed. Spectral CT

has shown the potential to extract energy-related information.
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Dual-energy CT (DECT) is the first successful implementation of spectral CT. By using two

different spectra, the energy-related information can be exported by reconstructing basis-

material images. A sinogram-based decomposition method has shown good performance in

clinical applications. However, when the x-ray dose level is low, the sinogram-based decom-

position methods generate biased estimates. The bias increases rapidly when the dose level

decreases. The bias comes from the ill-posed statistical model in the sinogram-decomposition

method. To eliminate the bias in low-dose cases, a joint statistical image reconstruction

(JSIR) method using the dual-energy alternating minimization (DEAM) algorithm is pro-

posed. By correcting the ill-posed statistical model, a relative error as high as 15% in the

sinogram-based decomposition method can be reduced to less than 1% with DEAM, which

is an approximately unbiased estimation.

Photon counting CT (PCCT) is an emerging CT technique that also can resolve the energy

information. By using photon counting detectors (PCD), PCCT keeps track of the energy

of every photon received. Though PCDs have an entirely different physical performance

from the energy-integrating detectors used in DECT, the problem of biased estimation with

the sinogram-decomposition method remains. Based on DEAM, a multi-energy alternating

minimization (MEAM) algorithm for PCCT is proposed. In the simulation experiments,

MEAM can effectively reduce the bias by more than 90%.

Metal artifacts have been a concern since x-ray CT came into medical imaging. When there

exist dense or metal materials in the scanned object, the image quality may suffer severe

artifacts. The auxiliary sinogram alternating minimization (ASAM) algorithm is proposed

to take advantages of two major categories of methods to deal with metal artifacts: the

pre-processing method and statistical image reconstruction. With a phantom experiment, it
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has been shown that ASAM has better metal-artifact reduction performance compared with

the current methods.

A significant challenge in security imaging is that due to the large geometry and power

consumption, low photon statistics are detected. The detected photons suffer high noise and

heavy artifacts. Image-domain regularized iterative reconstruction algorithms can reduce

the noise but also result in biased reconstruction. A wavelet-domain penalty is introduced

which does not bring in bias and can effectively eliminate steaking artifacts. By combining

the image-domain and wavelet-domain penalty, the image quality can be further improved.

When the wavelet penalty is used, a concern is that no empirical way, like in the image-

domain penalty, is available to determine the penalty weight. Laplace variational automatic

relevance determination (Lap-VARD) method is proposed to reconstruct the image and

optimal penalty weight choice at the same time.
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Chapter 1

Introduction

1.1 Background

1.1.1 X-ray computed tomography systems

X-ray source and collimation

Nearly all medical CT scanners use the rotating anode design and are oil-cooled to reduce

heat damage to the anode. Most CT scanners continuously excite the x-ray tube during

the data acquisition process. Some CT scanners can be operated in pulse mode, and by

switching the tube current, such as between 90 kVp and 140 kVp, a dual-energy scan can

be conducted. A major concern is that even with limited usage, the x-ray tube wears out

quickly. Regular calibration is needed to ensure accurate measurement.

Different x-ray CT systems require different fan- or cone-beam geometry. Collimation to

form the beam shape is accomplished by putting two lead pieces in front of the x-ray source.

Between these two lead pieces, there is an adjustable slit to control the thickness of the
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beam. In single-slice CT systems, the thickness covers only a single detector slice, and in

multi-slice CT systems, a larger slit allows the beam to cover multiple detector slices.

The ideal x-ray CT requires a mono-energetic source. However,conventional x-ray sources

generate beams with continuous spectra. The low energy photons are undesirable because

they are more likely to be absorbed in the patient’s body. They contribute to the patient

radiation dose but do not contribute to image formation. To have a better approximation to

a mono-energetic source, the lower energy photons are filtered before the x-ray beam enters

the patient’s body. Figure 1.1 shows the relative intensity of x-ray photons in different

propagating stages.

Figure 1.1: Relative intensity of x-ray photons.

CT detector

Most modern x-ray CT systems use solid-state detectors (SSD). The typical design of SSD

contains two major components. The first one is a scintillator which interacts with x-ray
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photons and generates photoelectrons by the photoelectric effect. These photoelectrons

then get de-excited and emit visible light. Typical materials from which scintillators are

made include cadmium tungstate, sodium iodide, bismuth germanate, and cesium iodide.

The second major component of SSD is the photo-diode which collects the visible light

emitted from the scintillator. Photon-diodes convert the light into electric current. The

x-ray intensity is presented by the integrated current signal strength. This kind of detector

is also called an energy-integrating detector.

Another category of x-ray detector which has recently gotten great attention and develop-

ment is the energy-resolved detector. Energy-resolved detectors work in a photon-counting

mode that keeps track of the energy of every detected photon. A detailed introduction will

be presented in Chapter 3.

Gantry

The gantry of a CT system holds the x-ray tube and detectors in opposite directions from

the center so that they can be rotated around the patient and acquire the measurement data

at the same time. To reduce the patient dose, the gantry should rotate rapidly. A typical

scanning time of a 2-D scan is under 1 second. The continuous rotation requires a high

standard in mechanical and electrical design.
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1.1.2 CT image reconstruction

Data formation

When an x-ray photon with energy E penetrates the scanned object, the survival probability

of this x-ray photon follows Beer’s law,

P (E) = e−µ(E)l, (1.1)

where µ(E) is the linear attenuation coefficient of the object at energy E, and l is the path

length this x-ray photon passes through. If the incident number of photons with energy E is

Iin(E), then following the survival probability, the expected number of survived photons is

Iout(E) = Iin(E)e−µ(E)l. (1.2)

However, as shown in Figure 1.1, a mono-energetic x-ray source is not practical in CT

systems. With the most widely used energy-integrating detectors, the measurement signal

measures the photon flux integrated over the whole spectrum. The ideal air-scan normalized

transmission signal of the yth source-detector pair is modeled as

Id(y)

I0(y)
=

∫
E
I0(y, E)D(E)e−

∫
y µ(r,E)drdE∫

E
I0(y, E)D(E)dE

, (1.3)

where D(E) is the detector-response function, µ(r, E) is the linear attenuation coefficient

at position r,
∫
y
µ(r, E)dr is the line integral of the attenuation coefficient along the yth

source-detector pair, and I0(y) is the air-scan intensity, which requires a separate calibration

scan.
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The transmission model above can be rewritten as

Id(y)

I0(y)
=

∫
E

Ψ(y, E)e−
∫
y µ(r,E)drdE, (1.4)

where

Ψ(y, E) =
I0(y, E)D(E)∫

E′
I0(y, E ′)D(E ′)dE ′

(1.5)

is the normalized energy-fluence spectrum.

Analytic image reconstruction

Theoretically, the transmission signal model in (1.4) is correct, but is also mathematically

intractable to reconstruct the term µ(r, E) due to the presence of integration over energy.

To simplify the inverse problem, the concept of effective energy Ē is used, such that the

transmission model is simplified to

Id(y)

I0(y)
= e−

∫
r µ(r,Ē)dr (1.6)

Analytic image reconstruction methods to solve the inverse problem, including the most

widely used filtered backprojection (FBP) algorithm for 2-D scans and the FDK [1] algorithm

for cone-beam scans, can be applied directly on the transmission signal. If the FBP algorithm

is used, the reconstructed image is

µ(r, Ē) = FBP

(
− log

(Id
I0

))
. (1.7)

The choice of the effective energy Ē is important in the reconstruction. However, as shown in

Figure 1.1, the detected photons have higher effective energy because lower energy photons
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are more likely to be absorbed in the scanned object. A preprocessing step called beam

hardening correction is applied to the transmission data to account for the effective energy

mismatch between incident photons and the detected photons.

The FBP reconstruction with beam hardening correction is given by

µ(r, Ē) = FBP

(
− log

(
BH

(Id
I0

)))
. (1.8)

The reconstructed linear attenuation coefficient image µ is Ē related, which means that

even the same scanned object will have different µ(Ē) in different CT systems. An even

worse case is that the same detector, due to the regular x-ray tube calibration or x-ray tube

replacement, may produce different images for the same scanned object. To compare the

images from different scanners, the linear attenuation coefficient image is rescaled into CT

numbers in Hounsfield units (HU),

HU = 1000

(
µ(Ē)

µwater(Ē)
− 1

)
, (1.9)

where µwater(Ē) is the linear attenuation coefficient of water at effective energy Ē. Clearly,

HU = 0 for water, and HU = −1000 for air. In clinical scans, the largest CT numbers can

reach about 1000 for bony tissues. In industrial x-ray CT, the CT number can surpass 3000

for heavy metals.

Statistical image reconstruction

Besides the analytic reconstruction algorithm introduced above, statistical image reconstruc-

tion (SIR) algorithms have been developed to reconstruct the linear attenuation coefficient
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image. The general idea of SIR is to fit the measurement data into a known distribution

parameterized by the ground truth and formulate a maximum-likelihood estimation prob-

lem. Compared with the analytic algorithms, SIR takes the noise model into consideration.

Combined with the prior knowledge as the penalty term, SIR can effectively suppress the

noise level and reduce the artifacts.

For energy-integrating detectors, the signal statistics theoretically follow a compound Poisson

model. A modified Poisson model is used as an accurate approximation [2]. To minimize the

negative Poisson log-likelihood function, the alternating minimization (AM) algorithm [3, 4]

is used. The statistical model is that the transmission signals follows the Poisson distribution

with mean determined by Beer’s law, and its negative log-likelihood is given by

L(µ) =
∑
y

[q(y)− Id(y) log q(y)], (1.10)

where

q(y) = I0(y)e−
∫
r µ(r)dr. (1.11)

For computational purposes, q(y) is discretized as

q(y) = I0(y)e−
∑
x h(y|x)µ(x), (1.12)

where h(y|x) is the CT system matrix elements that represent the path-length contribution

of pixel (voxel) x to the source-detector pair y ray path. The operation
∑

x h(y|x)µ(x) is

also called forward-projection. 1

1In this dissertation, the system matrix computation in Chapter 2, 3, and 4 is done with the object-
constrained computed tomography (OCCT) software package developed by Dr. David G. Politte at Wash-
ington University School of Medicine. The system matrix in Chapter 5 is provided by Dr. Soysal Degirmenci.

7



Prior knowledge like neighborhood smoothness of images can be added to the negative log-

likelihood function as a penalty term,

L(µ) =
∑
y

[q(y)− Id(y) log q(y)] +R(µ). (1.13)

If the penalty term is treated as a prior distribution, a maximum a posteriori (MAP) esti-

mator is obtained by minimizing (1.13).

1.2 Contributions of this work

The main contributions of this dissertation include:

• Designed a DECT phantom experiment and showed that the traditional sinogram-

based decomposition method has a systematic error. The systematic error increases as

the radiation dose level decreases.

• Proved that the systematic bias in the sinogram-based decomposition method is due

to low photon statistics and lack of CT system geometry involvment.

• Proposed a JSIR framework using the DEAM algorithm. The DECT phantom experi-

ment demonstrated that DEAM could effectively eliminate the systematic error in the

sinogram-based decomposition method even in an ultra-low-dose scenario.

• Extended the dual-energy result into PCCT systems. Simulation studies showed that

PCCT also suffers from biased estimation with the sinogram-based decomposition

method.
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• Proposed a JSIR framework using the MEAM algorithm for PCCT. Simulation studies

showed that the bias could be effectively eliminated.

• Proposed the ASAM algorithm, which can incorporate the advantages of the pre-

processing methods and statistical image reconstruction algorithms to reduce the metal

artifacts.

• Proposed the wav-AM algorithm for low-dose x-ray CT scans. Explored the feasi-

bility of wavelet-domain regularization, and derived a dual-domain regularized image

reconstruction algorithm to generate an unbiased image with low noise and artifacts.

• Proposed a data-driven Lap-VARD algorithm that automatically determines the opti-

mal penalty weight choice for the wavelet-domain penalty.

1.3 Organization of this dissertation

Chapter 2 introduces the DEAM algorithm. The performance of DEAM is shown by a DECT

phantom experiment, in which the bias in the sinogram-domain decomposition method is

eliminated.

The DECT results are extended to PCCT in Chapter 3, the simulation results show that

the biased estimation with sinogram-based decomposition remains in PCCT and can be

eliminated by MEAM.

In Chapter 4, the ASAM is introduced to reduce metal artifacts. Through patient phantom

simulation and physical phantom experiment, ASAM is found to outperform the currently

used metal-artifact reduction methods.
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The wav-AM algorithm is proposed in Chapter 5. The wavelet-domain penalty can overcome

some challenges in the image-domain regularization. Combining the wavelet-domain penalty

and image-domain penalty can further improve the performance.

In Chapter 6, an automatic wavelet-domain penalty weight determination framework, Lap-

VARD, is proposed to determine the optimal penalty weight and reconstruct the image at

the same time.
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Chapter 2

Dual-energy x-ray CT alternating

minimization algorithm (DEAM)

2.1 Highlights

In this chapter, we introduce an iterative reconstruction algorithm for dual-energy x-ray CT

material decomposition. Compared with the current widely used sinogram-based decom-

position method, which has a large bias when the radiation dose level is low, the DEAM

generate nearly unbiased estimates.

2.2 Motivation

The use of the effective energy makes the CT image reconstruction problem much easier.

However, at the same time, the energy-related information of the linear attenuation coef-

ficient is lost. To accurately reconstruct the energy-related linear attenuation coefficient

µ(E), the idea of spectral CT was proposed. Dual-energy CT is the first implementation
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of spectral CT. The energy-related linear attenuation coefficient image can be reconstructed

by the sinogram-based decomposition method.

However, when the dose level is low, the widely used sinogram-based decomposition method

generates biased reconstruction. To reduce this bias, a joint-statistical image reconstruction

framework is proposed.

2.3 Notation

In this section, the notations used in this chapter are summarized.

• d: measured transmission data.

• Q: estimated mean of the transmission data.

• c: basis-material image.

• l: path length of basis material.

• I: air-scan source intensity.

• H: system matrix.

• y: source-detector pair index.

• x: image pixel (voxel) index.

• j: basis-material index.

• k: spectrum index.

• µ: linear attenuation coefficient
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2.4 Background

2.4.1 Dual-energy x-ray CT (DECT)

Dual-energy x-ray CT technique scans patients with two different x-ray spectra so that

additional information about the tissue properties are provided. Dual-energy scans generate

two spectra either by switching the x-ray tube voltage or by running two tubes at different

voltages. The settings of 80 kVp and 140 kVp are commonly used because these two spectra

provide the maximum difference and least overlap between the spectra. A tube voltage lower

than 80 kV is not recommended because the x-ray beam is attenuated by the patient body

too much, and sufficient photons cannot be detected. A tube voltage higher than 140 kV is

also not used due to hardware limitations. If necessary, extra filters can be used to harden

the high energy spectrum and further reduce the overlap between the high and low energy

spectra.

Current DECT systems still use energy-integrating detectors which do not provide energy-

related information. In the future, detectors with the ability to resolve the energy of each

photon, like the cadmium-based semiconductors used in photon-counting CT systems, can

be integrated to improve detector performance.

At present, DECT is implemented in various ways. Among them, sequential scanning,

dual-source CT, and fast voltage switching are commercially available. Sequential scanning

collects the data by performing the single energy scan twice with different tube voltages. The

dual-source CT uses two sets of sources with different tube voltage settings and detectors

arranged at an angular offset that operate at the same time to acquire the data with different

tube voltage settings. The fast voltage switching technique rapidly alternates the tube
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voltage between a high value and a low value. The data is collected twice for every projection

or at adjacent projections.

Because the tissue attenuation property is energy and material related, the additional energy

information provided by DECT enables the estimation of two independent material param-

eters that are insensitive to the x-ray spectra. This is a major advantage over single energy

CT because it uses the ”effective energy” which loses a lot of the spectral information.

2.4.2 Basis vector model (BVM)

The BVM assumes that the energy-dependent tissue attenuation coefficient µ(x,E) can be

represented by a linear combination of those of several basis materials,

µ(x,E) =
∑
j

cj(x)µj(E), (2.1)

where cj(x) is the basis-material j component weight at image pixel (voxel) x, and µj(E)

is the linear attenuation coefficient (LAC) of material j at energy E. The selection of basis

materials has been discussed by Williamson et al. [5] In this chapter, two basis materials,

polystyrene and an aqueous calcium chloride solution, are chosen.

2.4.3 Image-based decomposition

In the image-domain decomposition, the DECT measurements are reconstructed separately

based on the assumption that the beam hardening correction has been applied to the trans-

mission data of different energy measurements. Single-energy image reconstruction methods
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are used to reconstruct high- and low-energy images with their corresponding effective ener-

gies.

From the BVM, the LAC image can be decomposed as a linear combination of basis-material

constituent images

µk(x) =
∑
j

µj,kcj(x), (2.2)

where k ∈ {L,H} is the high- and low-energy measurement index, µj,k is the LAC of basis

material j at the corresponding energy k measurement, and cj(x) is the basis-material j

component image at pixel x.

Equation (2.2) can be rewritten in matrix form as

µ(x) = Mc(x), (2.3)

where µ(x) ∈ Rk is the reconstructed high- and low-energy LAC vector at pixel x, M is the

mixing matrix with the matrix element µj,k, and c(x) ∈ Rj is the basis-material component

vector at pixel x.

The basis-material component vector can be directly recovered by

c(x) = M−1µ(x). (2.4)

From (2.4), the basis-material component image c relies on accurate single image reconstruc-

tion results µ(x). A major problem in the image-domain sinogram decomposition method

is that even though the beam hardening correction can be applied to high- and low-energy

measurements, the beam hardening effect is not fully compensated.
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2.4.4 Sinogram-based decomposition method

The sinogram-domain decomposition method [6, 7] is a two-step approach to reconstruct the

basis-material images. In the first step, the basis-material sinograms are decomposed from

the dual-energy measurements. In the second step, the corresponding basis-material images

are generated via the FBP algorithm from the decomposed sinograms.

Let ψk(y, E), k ∈ {L,H} be the detector response-weighted spectrum of the low- and high-

energy scans for photon energy E and source-detector pair y, where E is discretized at 1

keV intervals. Let I0,k(y) be the corresponding air-scan detector response. For a scanned

object, the expected transmission sinogram can be modeled as

Qk(y) = I0,k(y)
∑
E

ψk(y, E)e−
∑
x h(y|x)µ(x,E), (2.5)

where µ(x,E) is the photon linear attenuation coefficient of energy E at image pixel x and

h(y|x) is the dual-energy CT system matrix element which represents the effective length of

the intersection between the ray path for source-detector pair y and image pixel x. Based

on the BVM, the sinograms of the two basis materials are defined as

lj(y) =
∑
x

h(y|x)cj(x). (2.6)

Although it has been proven that the signal statistics of energy-integrating detectors the-

oretically follow a compound Poisson model, our prior work shows that for clinical CT, a

modified Poisson model is an accurate approximation [8, 2]. With this approximation, we

assume the measurement dk(y) follows a Poisson distribution with mean equal to Qk(y).
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With (2.6), equation (2.5) can be rewritten as

Qk(y) = I0,k(y)
∑
E

ψk(y, E)e−
∑
j lj(y)µj(E). (2.7)

Based on the Poisson noise model, the maximum log-likelihood estimation (MLE) problem

with respect to lj(y) is defined as

min
lj(y)

∑
k

[Qk(y)− dk(y) logQk(y)]. (2.8)

By solving this MLE problem for each source-detector pair y independently, two basis-

material sinograms are generated. After the decomposition, the two corresponding images

of the basis-material weights cj(x) are obtained using the FBP algorithm. A clear advantage

of the sinogram-based decomposition method over the image-domain decomposition method

is that the beam hardening effect is incorporated into the statistical model in (2.5), and no

beam hardening correction is needed.

2.5 Dual-energy joint statistical image reconstruction

In the previous section, the sinogram-based material decomposition method was introduced.

The basis-material images are reconstructed from the basis-material sinograms. It has been

shown by Fu et al. [9] that using the transmission pre-log data has an advantage over using

the post-log attenuation sinogram especially when the dose level is low. In this section,

instead of using the two-step sinogram-based decomposition method, a joint statistical image

reconstruction (JSIR) framework using the dual-energy alternating minimization algorithm
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is proposed to reconstruct the basis-material images directly from the low- and high-energy

transmission data.

2.5.1 Statistical model

In order to directly reconstruct the basis-material image c, with BVM, the line-integral of

LAC for source-detector pair y is rewritten as

µ(y, E) =
∑
j

µj(E)
∑
x

h(y|x)cj(x). (2.9)

Due to the presence of h(y|x), the assumption that each of the basis-material sinogram pixels

lj(y) is independent is not valid anymore. The maximum log-likelihood estimation (MLE)

problem becomes

min
c

∑
k

∑
y

[Qk(y, c)− dk(y) logQk(y, c)], (2.10)

where

Qk(y, c) = I0,k(y)
∑
E

ψk(y, E)e−
∑
j µj(E)

∑
x h(y|x)cj(x). (2.11)
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2.5.2 Alternating minimization

Instead of solving problem (2.10), the following problem is solved

min
p,q

F (p, q) =
∑
y

∑
k

∑
E

I(pk(y, E)||qk(y, E)) (2.12)

=
∑
y

∑
k

∑
E

pk(y, E) log
pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E)

s.t.
∑
E

pk(y, E) = dk(y)

qk(y, E) = I0,k(y)ψk(y, E)e−
∑
j µj(E)

∑
x h(y|x)cj(x).

Theorem 2.1. Solving problem (2.12) is equivalent to solving problem (2.10).

The proof of Theorem 2.1 is in Appendix A.2.

To minimize the cost function with respect to p, only the terms that contain p are considered

min
p
Fp(p) =

∑
y,k,E

[
pk(y, E) log

pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E)

]
, (2.13)

s.t.
∑
E

pk(y, E) = dk(y).

After solving the Lagrangian multiplier, the minimizer of problem (2.13) is

pk(y, E) =
qk(y, E)∑
E qk(y, E)

dk(y). (2.14)

From the definition of q in 2.12, q is a function of c. Minimizing the cost function with

respect to q is equivalent to minimizing the cost function with respect to c. After solving

p when q is kept fixed, only the terms that contain c are considered to minimize the cost

19



function with fixed p,

min
c
Fc(c) =

∑
y,k,E

−pk(y, E) log qk(y, E) + qk(y, E)

=
∑
y,k,E

[
I0,k(y)ψk(y, E)e−

∑
j µj(E)

∑
x h(y|x)cj(x) + pk(y, E)

∑
j

µj(E)
∑
x

h(y|x)cj(x)
]
.

(2.15)

In (2.15), the values of cj(x) are coupled with each other. The direct computation of the

gradient with respect to c would require a huge amount of computation, which is not feasible.

Instead of directly computing the gradient of the cost function, the covex decomposition

lemma [10]

Lemma 2.1. Let f(x) be a convex function, then

f(
∑
i

xi) ≤
∑
i

rif(
1

ri
xi) (2.16)

s.t.
∑
i

ri =1, ri > 0.

is used to decouple c. Based on the fact that f(x) = e−x is a convex function, a surrogate

function of the original cost function will be generated, and it is of the form

F̂c(c) =
∑
y,k,E

[
q̂k(y, E)

∑
j,x

µj(E)h(y|x)

Zj(x)
e−Zj(x)

(
cj(x)−ĉj(x)

)
+pk(y, E)

∑
j

µj(E)
∑
x

h(y|x)cj(x)

]
,

(2.17)

where

q̂k(y, E) = Ik(y, E)e−
∑
j,x µj(x)h(y|x)ĉj(x), (2.18)

Zj(x) =
∑
y,E

µj(E)h(y|x). (2.19)
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ĉj(x) is the current estimate of cj(x) and Z is a parameter that guarantees convergence. The

surrogate function’s derivative with respect to cj(x) is

∂F̂c
cj(x)

=
∑
y,k,E

[
− q̂k(y, E)µj(E)h(y|x)e−Zj(x)

(
cj(x)−ĉj(x)

)
+ pk(y, E)µj(E)h(y|x)

]
. (2.20)

Setting this derivative equal to zero gives

e−Zj(x)
(
cj(x)−ĉj(x)

)
=

∑
y,k,E pk(y, E)µj(E)h(y|x)∑
y,k,E qk(y, E)µj(E)h(y|x)

. (2.21)

The final cj(x) update equation is

cj(x) = ĉj(x)− 1

Zj(x)
log

(∑
y,k,E pk(y, E)µj(E)h(y|x)∑
y,k,E qk(y, E)µj(E)h(y|x)

)
. (2.22)

Equation (2.22) gives a closed-form update for the basis-material images. However, when

the scanning dose level is low, the image quality suffers heavy noise. To suppress the noise,

a neighborhood smoothing penalty is added to the surrogate function. In this chapter, a

Huber-type penalty is selected with the form [11, 12]

R(c) =
∑
j

∑
x

∑
x̃∈Nx

wxx̃φ
(
cj(x)− cj(x̃)

)
, (2.23)

where

φ(t) =
1

δ2

(
δ|t| − log(1 + δ|t|)

)
. (2.24)

Nx is the set of neighborhood of pixel x, and the corresponding weights wxx̃ are equal to

the inverse distance between pixels x and x̃. One advantage of this penalty is that when t is

close to 0, φ(t) performs like the quadratic function |t|2, and when t is far away from 0, φ(t)

performs like the total variation penalty |t| [13]. The parameter δ controls the transition
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point between the quadratic region and the linear region. Another advantage of this Huber-

type penalty is that it is twice continuously differentiable at 0, while the total variation

penalty does not have a continuous second order derivative.

The regularized DEAM cost function is

min
c
F̂c(c) =

∑
y,k,E

[
q̂k(y, E)

∑
j,x

µj(E)h(y|x)

Zj(x)
e−Zj(x)

(
cj(x)−ĉj(x)

)
+pk(y, E)

∑
j

µj(E)
∑
x

h(y|x)cj(x)

]
+ λR(c). (2.25)

The basis-material image pixels cj(x) are coupled in the penalty term φ(cj(x)−cj(x̃)). Again,

the convex decomposition lemma is used to decouple them. The resulting cost function is

min
c
F̂c(c) =

∑
y,k,E

[
q̂k(y, E)

∑
j,x

µj(E)h(y|x)

Zj(x)
e−Zj(x)

(
cj(x)−ĉj(x)

)
+pk(y, E)

∑
j

µj(E)
∑
x

h(y|x)cj(x)

]
+ λ

∑
j

∑
x

∑
x̃∈Nx

φ
(
2cj(x)− ĉj(x)− ĉj(x̃)

)
.

(2.26)

The corresponding first and second order derivatives of the decoupled cost function are

∂F̂c
∂cj(x)

=
∑
y,k,E

[
− q̂k(y, E)µj(E)h(y|x)e−Zj(x)

(
cj(x)−ĉj(x)

)
+ pk(y, E)µj(E)h(y|x)

]
+λ

∑
x̃∈Nx

wxx̃
2cj(x)− ĉj(x)− ĉj(x̃)

1 + δ|2cj(x)− ĉj(x)− ĉj(x̃)|
(2.27)
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and

∂F̂ 2
c

∂2cj(x)
=
∑
y,k,E

q̂k(y, E)µj(E)h(y|x)Zj(x)e−Zj(x)
(
cj(x)−ĉj(x)

)
+λ

∑
x̃∈Nx

wxx̃
2(

1 + δ|2cj(x)− ĉj(x)− ĉj(x̃)|
)2 , (2.28)

The pseudo-code of the DEAM algorithm is presented in Algorithm 1.
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Algorithm 1: Dual-energy alternating minimization algorithm

Initialize cj(x), and compute the corresponding q̂k(y, E) and p̂k(y, E).
if without penalty then

for n = 0 to N − 1 do
foreach j do

Set cj(x)(n) as the current estimate.
Update q̂k(y, E) with (2.18).
Update p̂k(y, E) with (2.14).
Update cj(x)(n+1) with (2.22).

end

end

end
if with penalty then

for n = 0 to N − 1 do
foreach j do

Set cj(x)(n) as the current estimate.
Update cj(x)(n+1) with Newton’s method, and the first order and second
order derivatives are from (2.27) and (2.28).

end

end

end

2.6 Physical phantom experiment

2.6.1 Experimental setup

A customized phantom was used to test the performance of the DEAM algorithm. The

phantom is water based and has a cylindrical shell with a diameter of 215 mm as shown

in Figure 2.1. Liquid samples were contained in plastic bottles with a diameter of 31 mm

and they were mounted to an out-of-field platform inside the phantom. To get an accurate

reference linear attenuation coefficient for quantitative assessment, four pure liquid materials,

water, propanol, ethanol, and butanol were selected.
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Figure 2.1: Image of the test phantom used in the experiment (back view). The phantom
is water based and contains 4 sample inserts.

The test phantom was scanned on a Philips Brilliance Big Bore CT scanner (Philips Medical

System, Cleveland, OH) using an axial protocol with 0.75 mm × 4 collimation to minimize

the influence of scatter. The low energy scan used a spectrum with 90 kVp, and the high

energy scan used a spectrum with 140 kVp. Raw transmission sinograms, with the vendor’s

beam-hardening corrections disabled, were exported. To test the accuracy with respect

to the dose level, the (90/140 kVp) scans were performed at four dose levels: high (400

mAs/200 mAs), medium (200 mAs/100 mAs), low (50 mAs/25 mAs), and ultra-low (15

mAs/mAs). The central axis spectra of these two scans were determined using the well-

validated equivalent spectrum method [14, 15, 16] where the detector-response weighted

spectra were determined by fitting the Birch-Marshall model [17] to the measurement beam
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transmission profiles through stacks of high purity aluminum and copper filters with varying

thickness. Details of the experimental setup were described by Evans et al. [16].

In both the sinogram-basd decomposition method and the DEAM algorithm, the recon-

structed image has a pixel size of 0.98 mm × 0.98 mm and a slice thickness of 3 mm. The

raw sinograms were exported from the scanner and were preprocessed by the tool provided

by the vendor without beam hardening correction. In the DEAM algorithm, the parameters

were set to be δ = 100 and λ = 5 for a trade-off between noise reduction and resolution

which is slightly higher than the scanner’s resolution for typical soft-tissue contrast. The

background events were assumed to be zero for this narrow-beam collimation protocol.

2.6.2 Performance assessment

The basis-material images cj(x) were reconstructed with both the sinogram-based decom-

position method and the DEAM algorithm. In this experiment, polystyrene and 23% CaCl2

aqueous solution were used as the basis materials, which have been proven to parameterize

the LAC to within 1-2% accuracy [5, 18, 19]. The LAC were computed based on the BVM

model according to

µ(x,E) = µ1(E)c1(x) + µ2(E)c2(x), (2.29)

where c1 and c2 are the basis-material images of polystyrene and CaCl2 aqueous solution,

and µ1 and µ2 are the corresponding LAC. The reconstructed LAC were compared with the

reference ground-truth values. The ground-truth values of water and other sample materials

were from the National Institute of Standards and Technology (NIST) XCOM database [20].
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To better show the results quantitatively, the CT numbers were computed based on

HU(E) = 1000

(
µ(E)

µwater(E)
− 1

)
. (2.30)

2.6.3 Results

The reconstructed CT number images using both the sinogram-based decomposition method

and the DEAM algorithm are shown in Figure 2.2. All CT number images were computed

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: (a) - (d) show the reconstructed CT number images with the sinogram-based
deomposition method at 60 keV and at different dose-level settings: (a) 400 mAs/200 mAs,
(b) 200 mAs/100 mAs, (c) 50 mAs/25 mAs, and (d) 15 mAs/15 mAs for the 90 kVp and
140 kVp scans respectively. (e) - (h) show the reconstructed CT number images with the
JSIR method at the corresponding dose-level settings.
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at 60 keV, which is approximately the effective energy of clinical scans. With decreased dose

level, a direct observation is that the noise increases with both methods. In this experiment,

all the transmission sinograms were normalized with respect to the air scan, and the same

parameters λ and δ were used in the DEAM algorithm. To further reduce the noise level, a

large λ is required at the cost of loss of resolution. In our previous study, it was demonstrated

that compared with the sinogram-based decomposition method, the DEAM algorithm has

superior performance in noise reduction and artifact suppression [19].

To assess the quantitative accuracy of both methods, four homogeneous regions in the sample

inserts were selected which are shown in Figure 2.3. The average LAC of these four regions

Figure 2.3: Four homogeneous regions selected inside the sample inserts.

were computed in forms of CT numbers over a spectral range from 30 keV to 140 keV.

We compared the CT numbers with the reference values from the NIST XCOM database,

and the relative errors are shown in Figure 2.4. In high-dose and medium-dose levels, the

sinogram-based decomposition method and the DEAM algorithm have very similar accuracy

performance, and the average relative errors are close to 0 which means both methods are
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.4: (a) - (d) show the relative error in CT numbers using the sinogram-based de-
composition method at 60 keV and at different dose-level settings: (a) 400 mAs/200 mAs,
(b) 200 mAs /100 mAs, (c) 50 mAs /25 mAs, and (d) 15 mAs / 15 mAs for the 90 kVp and
140 kVp scans respectively. (e) - (H) show the relative error using the JSIR method at the
corresponding dose-level settings. The viewing windows are [-300, 300] HU.

nearly unbiased estimators. When the dose level further decreases to the medium-dose

setting, 90 kVp with 50 mAs and 140 kVp with 25 mAs, the relative error of the butanol,

ethanol, and propanol show significant positive increase especially in the lower energy range.

However, the DEAM algorithm shows that all the relative errors of these samples are within

±1% even in the lower energy range. In the most extreme ultra-low dose case, 90 kVp with

15 mAs and 140 kVp with 15 mAs, the sinogram-based method generates huge positive bias

which can be as high as 15% in the lower energy range. Using the DEAM algorithm, the

relative error of the samples show no significant biases and the maximum values are kept

within ±2.5%. This experiment shows that the sinogram-based decomposition method is a
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biased estimator, and with a decrease in the dose level, the sinogram-based decomposition

method has rapidly increased positive bias. The proposed DEAM algorithm, however, is

a nearly unbiased estimator, and even in the ultra-low dose dual-energy scans, the DEAM

algorithm can still generate very accurate results.

2.6.4 Discussion

Low photon statistics

In the physical phantom experiment, it was shown that the sinogram-based decomposition

method is a biased estimator, and the bias is determined by the dose levels. In the sinogram-

based decomposition method, the basis-material images are reconstructed from the basis-

material sinograms with the FBP algorithm. Because the FBP algorithm is a linear operator,

the biases in the images correspond to the biases in the basis-material sinograms. For a

single source-detector pair, we assume that the scanned object is a uniform CaCl2 aqueous

solution with fixed length l0. Assuming a mono-energetic x-ray source with energy E is

used, the ground truth of the line integrated LAC is µ(E) = µCaCl2(E)l0. It is proven in

Appendix A.1 that the estimated value of the reconstructed LAC has a positive bias, which

is E(µ̂(E))−µ(E) ≥ 0. Also from Appendix A.1, the sinogram-based decomposition method

generates biased estimates and the bias decreases when the dose level increases.

A Monte-Carlo simulation was used to show the relationship between bias and the dose

level. The decomposed sinograms have a systematic bias which leads to the bias in the

basis-material image [21]. A pair of 90 kVp and 140 kVp detector-response weighted spectra

were used. The basis materials were chosen to be polystyrene and CaCl2 aqueous solution.

The scanned object was 250 mm of polystyrene. With 1 million Monte-Carlo trials for each
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Figure 2.5: Monte-Carlo simulation of the relative estimation error with respect to different
dose levels.

dose level from 20 to 200 mAs and with a 90 kVp spectrum (with the dose level of 140 kVp

spectrum set computed accordingly), the relative estimation error of the LAC is shown in

Figure2.5. With the increased dose level, the relative error monotonically decreases.

Beam hardening - photon starvation at lower energies

Another observation in the physical phantom experiment is that bias is also energy depen-

dent. The bias is more prominent in the lower energy range and decreases with increased

energy. This phenomenon is due to the beam hardening effect [19]. Lower energy photons

are more likely to be absorbed in the phantom. The result is that the detectors detect very

few low-energy photons, and the spectrum at the detectors shifts towards higher energies.

Based on the discussion in section 2.6.4, this photon starvation at lower energies results in

more substantial bias at lower energies. To compensate the photon starvation at low en-

ergies, while keeping the total dose level constant, a spectrum with lower effective energy
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(a) (b)

Figure 2.6: Monte-Carlo simulation of different spectra: (a) shows four detector response-
weighted spectra; (b) shows the relative error with five sets of dual-energy scans.

should be used. However, this spectrum will cause lower total photon counts due to the

beam hardening effect, which will increase the bias.

A Monte-Carlo simulation was used to demonstrate the impact of the spectrum and the

beam hardening effect. The scanned object was still 250 mm polystyrene. Four detector

response-weighted spectra were employed. The normalized spectra of 90 kVp, 120 kVp, 140

kVp and 140 kVp after 0.25 mm tin filtration with effective energies of 60 keV, 66 keV, 78

keV, and 93 keV are shown in Figure 2.6(a). Five sets of dual-energy scans with the same

total photon intensities were simulated: 90 kVp/120 kVp, 90 kVp/140 kVp, 90 kVp/140

kVp with the tin filer, 120 kVp/140 kVp with tin filter, and 140 kVp/140 kVp with tin

filter. The average relative errors of the five scans are shown in Figure 2.6(b). To maximize

the number of detected photons, the pair of highest effective energy 140 kVp/140 kVp with

the tin filter was used. This pair has the largest relative error in low energy range due to the

extreme photon starvation from beam hardening effect in this energy range. To compensate
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for the low photon statistics at the lower energy range, the pair of 90 kVp/120 kVp was

used. Compared with the pair of 140 kVp/140 kVp with the tin filter, the bias in the low

energy range of below 50 keV is reduced. However, due to having the overall lowest number

of detected photons, the bias in the higher energy range is significant. The other three pairs

all have good bias reduction, and a direct observation is that the relative bias decreases when

the effective energy gap between the two spectra increases. In this simulation, the pair 90

kVp/140 kVp with tin filter, which has the largest effective energy gap of 33 keV, has the

best performance.

Though it has been shown that the effective energy gap should be as large as possible, the

low energy spectrum requires a very high tube current to get sufficient transmission data,

which will wear out tubes rapidly [22]. There is no need to go lower than 90 kVp.

Effect of system geometry

In the sinogram-based decomposition method, the sinograms are decomposed by solving

problem (2.8) independently for each source-detector pair y. The underlying assumption

is that the measurement of each basis-material line integral is independent. However, this

assumption is not valid. Within a fixed scanning angle (projection slice), we can assume

all the projections are independent because there is no overlap between these projections.

However, when the gantry rotates to another scanning angle, the projection slice is correlated

with the previous one. The sinogram pixels are independent within a single projection slice

but are correlated between different projection slices because their projection ray path may

intersect and share a common image pixel. This can be explained by the forward-projection
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model

lj(y) =
∑
x

h(y|x)cj(x). (2.31)

In the DEAM algorithm, the forward-projection model is involved in the statistical model.

If we take the forward-projection model as a constraint, the minimization problem of (2.10)

is equivalent to the following minimization problem,

min
c

∑
k

∑
y

[Qk(y, c)− dk(y) logQk(y, c)], (2.32)

s.t. lj(y) =
∑
x

h(y|x)cj(x).

Problem (2.32) is the constrained version of problem (2.8) and can be solved by

min
p,q

F (p, q) =
∑
y

∑
k

∑
E

I(pk(y, E)||qk(y, E)) + β
∑
j

I
(
lj(y)||

∑
x

h(y|x)cj(x)
)

(2.33)

s.t.
∑
E

pk(y, E) = dk(y)

qk(y, E) = I0,k(y)ψk(y, E)e−
∑
j µj(E)lj(y),

with the line integral alternating minimization algorithm (LIAM) [23]. The parameter β

penalizes the discrepancy between the estimated line integrals and the forward projections

of the component images. When β = 0, the forward-projection model (2.6) is completely

ignored, and problem (2.33) is equivalent to the sinogram-based decomposition method.

When β → +∞, the discrepancy between the line-integral lj(y) and the forward-projection∑
x h(y|x)cj(x) must go to zero, and problem (2.33) is equivalent to the original DEAM

problem (2.12). By the choice of β, LIAM provides an intermediate state between the

sinogram-based decomposition method and DEAM, and β controls the influence of the
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forward-projection model. A phantom simulation was performed to assess the relationship

between bias and parameter β.

In this simulation, a thorax slice of the International Commission on Radiological Protection

(ICRP) phantom [24] was scanned. The system geometry of a Philips Brilliance Big Bore CT

scanner was used. The low-energy scan used a spectrum of 90 kVp, and the high energy scan

used a spectrum of 140 kVp. Two low-dose levels, 40 mAs/40 mAs and 20 mAs/20 mAs,

were simulated. In this simulation, polystyrene and 23% CaCl2 aqueous solution were used

.
(a)

.
(b)

Figure 2.7: (a) The ground truth CT number image at 50 keV; (b) LIAM reconstructed CT
number image at 50 keV of the 40 mAs/40 mAs scan with parameter β = 1. The viewing
windows are [-200, 400] HU.

as the basis materials. The basis-material component images were reconstructed with LIAM.

Based on the BVM, the LAC images were computed and then presented in the form of CT

numbers. To quantitatively track the impact of the parameter β in LIAM, a homogeneous

region was selected to compute the relative error as shown in Figure 2.7(a). In Figure 2.8,
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.
(a) 20 mAs/ 20 mAs scan

.
(b) 40 mAs/ 40 mAs scan

Figure 2.8: Impact of β on relative error.

when β = 0, which is equivalent to the sinogram-based decomposition method, the relative

error can be as high as 8.5% for the 20 mAs/20 mAs scan and 4% for the 40 mAs/40 mAs

scan. With the increase of β, which means a smaller discrepancy between the basis-material

line integral and the forward projection of the basis-material component image is allowed,

the relative error dramatically decreases. When β is large enough, which is an approximation

to DEAM, the relative error is close to zero. The lack of including the effects of the system

geometry is the major factor causing the bias in the sinogram-based decomposition method.

With DEAM, which directly reconstructs the basis-material component images, the bias can

be effectively eliminated.
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2.7 Summary

Dual-energy CT systems can extract the energy-related information by doing material de-

composition. The conventional sinogram-based decomposition has a significant bias when

the dose level is low. The reason for this bias is the photon starvation and lack of system

geometry involvement. The DEAM algorithm modifies the statistical model by involving the

forward projection into the statistical model and increasing the photon statistics. In a physi-

cal phantom experiment, the DEAM algorithm was shown to be a nearly unbiased estimator

which can effectively eliminate the systematic bias in the sinogram-based decomposition

method even in an ultra-low-dose scenario.

37



Chapter 3

Multi-energy alternating

minimization algorithm (MEAM) for

photon-counting CT (PCCT)

3.1 Highlights

In this chapter, based on the DEAM algorithm in the previous chapter, the multi-energy

alternating minimization algorithm for photon-counting CT system is introduced to further

explore the available energy information.

3.2 Motivation

In the previous chapter, it was shown that the energy information in the x-ray CT scan

can be extracted by the usage of a dual-energy scan. In the past decade, another x-ray CT

modality, PCCT, has been greatly developed. Compared with conventional CT systems, the
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PCCT systems can provide additional energy dependent information which enables material

decomposition [25], reduces radiation dose [26], reduces beam hardening effects, and gives

higher signal-to-noise ratio [27].

The most common PCCT material decomposition method separates the steps of material

decomposition and image reconstruction. In sinogram-based decomposition [28], material

separation is performed prior to the basis-material reconstruction. In the image-based de-

composition [29, 30], images from different energy bin measurements are reconstructed first,

and then the decomposition is applied. Separating these steps has the flaw that the geom-

etry and statistical information are not fully used as stated in Chapter 2. With decreased

radiation dose, the material decomposition has dramatically increased bias.

In this chapter, we present a joint image statistical framework using the multi-energy alter-

nating minimization algorithm (MEAM) for PCCT systems. The basis material images are

reconstructed directly from the spectral measurements. In a patient phantom simulation,

the MEAM algorithm effectively eliminates the bias caused by photon starvation.

3.3 Notation

In this section, the notations used in this chapter are summarized.

• d: measured transmission data.

• Q: estimated mean of the transmission data.

• µ: linear attenuation coefficient

• c: basis-material image.
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• l: path length of basis material.

• I: air-scan source intensity.

• H: system matrix.

• y: source-detector pair index.

• x: image pixel (voxel) index.

• j: basis material index.

• k: energy bin index.

3.4 Background

3.4.1 Photon-counting detectors (PCDs)

Most clinical systems use conventional energy-integrating detectors which collect the inten-

sity of x-ray beams, but the energy-integrating detector lacks the ability to resolve the energy

spectrum of an x-ray beam, which gives extra information about the scanned object. With

energy-integrating detectors, the widely used dual-energy CT systems [31, 32, 33] can track

the energy information by using a combination of high/low energy spectrum scans. PCDs

with the ability of energy discrimination can collect the x-ray photons in different energy

bins simultaneously. With PCDs, the PCCT system can extract the energy information from

a single x-ray spectrum, which reduces the radiation dose compared with the dual-energy

CT scan. The advantages of PCCT also include reduced noise [34], improved contrast [35],

and better tissue identification [36].
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However, the measurement data of the PCDs are affected by several major factors that

degrade the measurement. The first one is called the pulse pileup effect [35, 37], which

happens when multiple photons are detected by the detector within a short period of time.

The electrical pulse of these photons overlap each other and result in loss of counts and

distorted energy measurements. With the development of PCDs, the time resolution has

been improved, but due to physical limitations, this distortion cannot be eliminated. Two

major correction methods have been proposed to deal with this pulse pileup effect [38, 39].

The first one is to calibrate the measurements to compensate for the spectral distortion

which requires an extensive amount of measurements [40, 38, 41]. The other one is the

model-based compensation method which uses a small number of parameters to model the

spectral distortion due to the pileup effect [42].

The second major factor in distorting the measurement is that when an incident photon

interacts with the detector, one or multiple electrical charges can be generated through the

photoelectric effect, Compton scatter, and the reabsorption of K-escape photons [42]. If the

electrical charge is generated near the detector pixel boundaries, the charge will be split and

detected by multiple detector pixels at lower energies. These factors can be summarized in

a probability distribution for an x-ray photon of energy E0 to be detected by the detector

at energy E. This distribution is called the spectral response function (SRF) [42, 43]. To

increase the photon statistics, the energy spectral measurement is always binned into several

energy bins. By summing the SRF within every single energy bin, the corresponding energy

bin detection probability distribution, bin response function (BRF), is obtained.
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3.4.2 Sinogram-based decomposition

Statistical model

The attenuation properties of matter for x-ray CT are material and energy dependent. Com-

pared with traditional x-ray CT systems, the additional energy information provided by

PCCT enables the derivation of material information (i.e., material decomposition). Let

dk(y), k ∈ 1...K denote the transmission measurement of energy bin k at the yth source-

detector pair. Following Lange and Carson [44], the data are modeled as independent Poisson

random variables with the probability distribution

Pr[dk(y) = n] =
Qk(y)n

n!
e−Qk(y), (3.1)

where

Qk(y) = I(y)

∫ Ekmax

E=Ekmin

∫
E′
D(E,E ′)S(E ′)e−µ(y,E′)dE ′dE, (3.2)

where I(y) is the air-scan x-ray photon intensity at the yth source-detector pair, S(E) is

the normalized spectrum, D(E,E ′) is the SRF, µ(y, E) is the integrated linear attenuation

coefficient (LAC) at the yth source-detector pair and at energy E, and Ek
min and Ek

max are

energy thresholds for energy bin k. Function (3.2) can be simplified by

Dk(E
′) =

∫ Ekmax

E=Ekmin

D(E,E ′)dE, (3.3)

which is the BRF. The simplified (3.2) is

Qk(y) = I(y)

∫
E

Dk(E)S(E)e−µ(y,E)dE. (3.4)
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Material decomposition model

Based on the BVM introduced in Chapter 2, each material can be decomposed into a linear

combination of J basis materials with their respective linear attenuation spectrum µj(E),

according to

µ(y, E) =
J∑
j=1

µj(E)lj(y), (3.5)

where uj(E) is the linear attenuation coefficient of basis material j at energy E, lj(y) is the

line integral length of material j at the yth source-detector pair. The requirements for the

selection of the basis materials are the same as stated in Chapter 2, and the same polystyrene

and calcium chloride aqueous solution are chosen to be the basis materials.

Maximum likelihood estimation

Assuming the dk(y) form a set of independent Poisson random variables with means Qk(y),

for each source-detector pair y, the basis-material line integral lj(y) can be estimated by

minimizing the negative log-likelihood with arbitrary data dk(y), or

min
{lj(y),j=1,2,...,J}

L
(
d1(y), ..., dK(y)|lj(y)

)
= min
{lj(y),j=1,2,...,J}

K∑
k=1

[
Qk(y)− dk(y) logQk(y)

]
, (3.6)

where Qk(y) is defined in (3.2). By solving problem (3.6) independently for each y, the

maximum likelihood estimates of the basis-material sinogram pixels lj(y)ML are obtained.

Because the number of basis materials is limited, Newton’s method can be directly used

to solve the minimization problem. After the basis-material sinograms are decomposed,

conventional reconstruction using filtered backprojection is used to generated basis-material

images.
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3.5 Multi-energy joint statistical image reconstruction

In the previous section, the sinogram-based material decomposition method was introduced.

However, this method generates large bias when the dose level is low as will be shown in the

following simulation section. Because the FBP algorithm is a linear operator, this bias comes

from the biased estimation of the basis-material sinograms. It has been shown that using the

pre-log transmission data can achieve notably better quantitative accuracy than the post-

log attenuation data in low-dose CT reconstruction [9]. Instead of reconstructing the basis-

material images using FBP with biased basis-material sinograms, the joint statistical image

reconstruction (JSIR) framework using the multi-energy alternating minimization algorithm

is proposed to reconstruct the basis-material images directly from the transmission data.

3.5.1 Statistical model

In order to directly reconstruct the basis-material image c, equation (3.5) is rewritten as

µ(y, E) =
J∑
j=1

µj(E)
∑
x

h(y|x)cj(x), (3.7)

where h(y|x) is the CT system matrix element. Due to the presence of h(y|x), each source-

detector pair is not independent any more, and the new minimization problem becomes

min
c
L
(
d1(y), ..., dK(y)|c

)
= min

c

∑
y

K∑
k=1

[
Qk(y, c)− dk(y) logQk(y, c)

]
, (3.8)

where

Qk(y, c) = I(y)

∫
E

Dk(E)S(E)e−
∑J
j=1 µj(E)

∑
x h(y|x)cj(x)dE. (3.9)
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3.5.2 Alternating minimization

Instead of solving problem (3.8), the following problem is solved

min
p,q

F (p, q) =
∑
y

∑
k

∑
E

I(pk(y, E)||qk(y, E)) (3.10)

=
∑
y

∑
k

∑
E

pk(y, E) log
pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E)

s.t.
∑
E

pk(y, E) = dk(y)

qk(y, E) = Ik(y, E)e−
∑
j µj(E)

∑
x h(y|x)cj(x),

where dk(y) is the measurement of bin k for the yth source-detector-pair, and Ik(y, E) is

defined as the detector-response weighted spectrum, so

Ik(y, E) = I(y)Dk(E)S(E). (3.11)

Theorem 3.1. Solving problem (3.10) is equivalent to solving problem (3.8).

The proof of this theorem is in Appendix A.3.

To minimize the cost function with respect to p, only the terms that contain p are considered

min
p
Fp(p) =

∑
y,k,E

[
pk(y, E) log

pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E)

]
, (3.12)

s.t.
∑
E

pk(y, E) = dk(y).
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After solving for the Lagrangian multiplier, the minimizer of problem (3.12) is

pk(y, E) =
qk(y, E)∑
E qk(y, E)

dk(y). (3.13)

From (3.10), q is a function of c. Minimizing the cost function with respect to q is equiv-

alent to minimizing the cost function with respect to c. Only the terms that contain c are

considered to minimize the cost function with fixed p, or

min
c
Fc(c) =

∑
y,k,E

−pk(y, E) log qk(y, E) + qk(y, E)

=
∑
y,k,E

[
Ik(y, E)e−

∑
j µj(E)

∑
x h(y|x)cj(x) + pk(y, E)

∑
j

µj(E)
∑
x

h(y|x)cj(x)
]
.

(3.14)

In (3.14), the values of cj(x) are coupled with each other, so the convex decomposition

Lemma 2.1 is used to decouple them. The resulting surrogate function is

F̂c(c) =
∑
y,k,E

[
q̂k(y, E)

∑
j,x

µj(E)h(y|x)

Zj(x)
e−Zj(x)

(
cj(x)−ĉj(x)

)
+pk(y, E)

∑
j

µj(E)
∑
x

h(y|x)cj(x)

]
,

(3.15)

where

q̂k(y, E) = Ik(y, E)e−
∑
j,x µj(x)h(y|x)ĉj(x), (3.16)

Zj(x) =
∑
y,E

µj(E)h(y|x). (3.17)

ĉj(x) is the current estimate of cj(x) and Z is a parameter that guarantees convergence. For

the surrogate function (3.15), the derivative with respect to cj(x) is

∂F̂c
cj(x)

=
∑
y,k,E

[
− q̂k(y, E)µj(E)h(y|x)e−Zj(x)

(
cj(x)−ĉj(x)

)
+ pk(y, E)µj(E)h(y|x)

]
. (3.18)
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Setting this derivative equal to zero gives

e−Zj(x)
(
cj(x)−ĉj(x)

)
=

∑
y,k,E pk(y, E)µj(E)h(y|x)∑
y,k,E qk(y, E)µj(E)h(y|x)

. (3.19)

The final cj(x) update equation is

cj(x) = ĉj(x)− 1

Zj(x)
log

(∑
y,k,E pk(y, E)µj(E)h(y|x)∑
y,k,E qk(y, E)µj(E)h(y|x)

)
. (3.20)

The equation above gives a closed-form update of the basis-material images. However, with

low-dose levels, the image quality will be degraded by high noise. Regularization is used to

suppress noise. Again, a Huber-type penalty is selected with the form [11, 12]

R(c) =
∑
j

∑
x

∑
x̃∈Nx

wxx̃φ
(
cj(x)− cj(x̃)

)
, (3.21)

where

φ(c) =
1

δ2

(
δ|c| − log(1 + δ|c|)

)
. (3.22)

Nx is the set of neighborhood pixels of pixel x. The weights wxx̃ are equal to the inverse

distances between x̃ and x. An advantage of this penalty choice is that it is twice continuously

differentiable at 0. δ is a tuning parameter which defines the range where φ(c) performs like

a quadratic function |c|2, and outside this region, φ(c) performs like |c|. In this chapter, δ is

set to be 20.
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The regularized MEAM cost function is

min
c
F̂c(c) =

∑
y,k,E

[
q̂k(y, E)

∑
j,x

µj(E)h(y|x)

Zj(x)
e−Zj(x)

(
cj(x)−ĉj(x)

)
+pk(y, E)

∑
j

µj(E)
∑
x

h(y|x)cj(x)

]
+ λR(c). (3.23)

Due to the presence of the penalty term, there is no longer a closed-form update. Instead,

Newton’s method is utilized to update the basis-material images. The penalty term φ
(
cj(x)−

cj(x̃)
)

couples the values of cj(x) and cj(x̃), so the convex decomposition lemma is used again

to decouple them. The forms of the first order and second order derivatives of the decoupled

cost function are

∂F̂c
∂cj(x)

=
∑
y,k,E

[
− q̂k(y, E)µj(E)h(y|x)e−Zj(x)

(
cj(x)−ĉj(x)

)
+ pk(y, E)µj(E)h(y|x)

]
+λ

∑
x̃∈Nx

wxx̃
2cj(x)− ĉj(x)− ĉj(x̃)

1 + δ|2cj(x)− ĉj(x)− ĉj(x̃)|
(3.24)

and

∂F̂ 2
c

∂2cj(x)
=
∑
y,k,E

q̂k(y, E)µj(E)h(y|x)Zj(x)e−Zj(x)
(
cj(x)−ĉj(x)

)
+λ

∑
x̃∈Nx

wxx̃
2(

1 + δ|2cj(x)− ĉj(x)− ĉj(x̃)|
)2 , (3.25)

The pseudo-code for the MEAM algorithm for PCCT is presented in Algorithm 2.
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Algorithm 2: Multi-energy alternating minimization algorithm

Initialize cj(x), and compute the corresponding q̂k(y, E) and p̂k(y, E).
if without penalty then

for n = 0 to N − 1 do
foreach j do

Set cj(x)(n) as the current estimate.
Update q̂k(y, E) with (3.16).
Update p̂k(y, E) with (3.13).
Update cj(x)(n+1) with (3.20).

end

end

end
if with penalty then

for n = 0 to N − 1 do
foreach j do

Set cj(x)(n) as the current estimate.
Update cj(x)(n+1) with Newton’s method, and the first order and second
order derivatives are from (3.24) and (3.25).

end

end

end
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3.6 Patient phantom simulation

3.6.1 Simulation setup

A virtual patient phantom was used to compare the quantitative accuracy of the sinogram-

based decomposition method and the MEAM algorithm. The patient phantom was a pelvis

abdomenal slice from the ICRP adult female phantom [24]. The proprietary geometry of the

Philips Brilliance Big Bore CT scanner (Philips Medical Systems, Cleveland, OH) with 816

detectors per detector row and 1320 source positions per rotation was used in this simulation.

The photon-counting detector SRF and BRF were generated from the Photon Counting

Toolkit (PcTK)[43]. The radius of the electronic charge cloud is ρ0 = 24 µm , the electronic

noise parameter δe = 4 keV, the PCD size in channel-row dpix = 225 µm, the PCD thickness

dz = 1600 µm, and 5 measurement bins with thresholds E1 = 20 keV, E2 = 40 keV, E3 =

55 keV, E4 = 70 keV, E5 = 90 keV were generated. Charge sharing and electronic noise were

simulated, and the pulse pileup effect was not taken into consideration. The BRFs of 5

energy bins are presented in Figure 3.1. In this simulation, a source spectrum of 120 kVp

was used, and the dose levels were set to be 30 mAs, 50 mAs, 100 mAs, and 200 mAs to test

the quantitative performance with different dose levels.

3.6.2 Performance assessment

The basis-material images cj(x) were reconstructed with both the sinogram-based decom-

position method and the MEAM algorithm. In this simulation, polystyrene and 23% CaCl2

aqueous solution were used as the basis materials, which was proven to parameterize the

LAC to within 1-2% accuracy [5, 18, 19]. The LAC were computed based on the BVM
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Figure 3.1: The bin response functions of 5 bins from PcTK

model according to

µ(x,E) = µ1(E)c1(x) + µ2(E)c2(x), (3.26)

where c1 and c2 are the basis-material images of polystyrene and CaCl2 aqueous solution,

and µ1 and µ2 are the corresponding LAC. The reconstructed LAC were compared with the

reference ground-truth values. The ground-truth values of water and other sample materials

were from the NIST XCOM database [20]. To better show the results quantitatively, the CT

numbers were computed based on

HU(E) = 1000

(
µ(E)

µwater(E)
− 1

)
. (3.27)
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3.6.3 Sinogram-based decomposition results

In this subsection, the results using the sinogram-based decomposition method are shown.

The result with 200 mAs dose level is presented in Figure 3.2. In Figure 3.2(a) and (b),

the decomposed basis images of polystyrene and calcium chloride aqueous solution are pre-

sented. The ground truth image of the LAC at 60 keV is shown in Figure 3.2(c), and the

reconstructed LAC image is shown in Figure 3.2(d). At 200 mAs, the reconstructed LAC

(a) (b) (c) (d)

Figure 3.2: With 200 mAs dose level, (a) the decomposed image of polystyrene, (b) the
decomposed image of calcium chloride aqueous solution. The viewing windows are [-0.2 1].
(c) The ground truth image of the ICRP phantom linear attenuation coefficient at 60 keV,
(d) the reconstructed image of the linear attenuation coefficient with the sinogram-based
method at 60 keV. The viewing windows are [-300 300] HU.

image shows low artifacts and noise. To further study the performance of the sinogram-based

decomposition method, the LAC image were reconstructed with 30 mAs, 50 mAs, and 100

mAs. These images, combined with the 200 mAs reconstruction, are shown in Figure 3.3.

A direct observation is that with decreased dose level, the noise level increases and streak

artifacts begin to emerge. To quantitatively assess the performance of the sinogram-based

decomposition method, three homogeneous regions of interest (ROI) were selected to com-

pute the average bias spectra inside these regions, which are highlighted by the red boxes

in Figure 3.2(c). In Figure 3.4, the biases spectra of these three homogeneous regions are
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(a) (b) (c) (d)

Figure 3.3: The reconstructed LAC images with various dose levels: (a) 200 mAs, (b) 100
mAs, (c) 50 mAs, and (d) 30 mAs. The viewing windows are [-300 300] HU.

(a) (b) (c) (d)

Figure 3.4: The average LAC biases of ROIs with various dose levels: (a) 200 mAs, (b) 100
mAs, (c) 50 mAs, (d) 30 mAs.

presented. When the dose level is as high as 200 mAs, as shown in Figure 3.4(a), the bias

is within 2 HU across the spectrum, in which case the bias can be ignored. In the 100 mAs

case, the biases of three ROIs have a minor positive shift, but still stay within a 5 HU limit.

If the dose level is reduced to 50 mAs, significant positive bias in all three ROIs can be seen

and they exceed 5 HU when the energy is below 60 keV. In the ultra low-dose case of 30

mAs, the positive bias further increases. In this simulation, it has been demonstrated that

with the sinogram-based decomposition method, when the dose level is reduced, a positive

bias emerges.
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3.6.4 MEAM results

The unregularized MEAM algorithm results using the same simulation data are shown in

Figure 3.5, Figure 3.6, and Figure 3.7. Figure 3.5(a) and (b) show the decomposed basis-

material images. Compared with the sinogram-based decomposition method results in Figure

3.2(a) and (b), MEAM suppresses the streak artifacts in the basis-material images. The

(a) (b) (c) (d)

Figure 3.5: With a 200 mAs dose level, (a) the decomposed image of polystyrene, (b) the
decomposed image of calcium chloride aqueous solution. The viewing windows are [-0.2
1]. (c) The ground truth image of the ICRP phantom linear attenuation coefficient at 60
keV, (d) the reconstructed image of the linear attenuation coefficient with MEAM without
regularization at 60 keV. The viewing windows are [-300 300] HU.

reconstructed LAC image at 60 keV is presented in Figure 3.5(d), which shows low noise

and artifacts. The reconstructed LAC image at 60 keV with different dose levels are shown

in Figure 3.6, and the corresponding three homogeneous regions bias spectra are shown in

Figure 3.7. With high-dose levels (200 mAs and 100 mAs), the MEAM generated nearly

unbiased estimates just like the sinogram-based decomposition method. However, when

the dose level decreased to 50 mAs and 30 mAs, the sinogram-based method generated large

biases across the spectrum, and the MEAM results show that the bias can still be constrained

to within a very tight window of ±5 HU.
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(a) (b) (c) (d)

Figure 3.6: The reconstructed LAC images with various dose levels: (a) 200 mAs, (b) 100
mAs, (c) 50 mAs, (d) 30 mAs. The viewing windows are [-300 300] HU. All images were
reconstructed without regularization.

(a) (b) (c) (d)

Figure 3.7: The average LAC biases of ROIs with various dose levels: (a) 200 mAs, (b) 100
mAs, (c) 50 mAs, and (d) 30 mAs.

It has been shown that the unregularized MEAM algorithm can dramatically reduce the

bias even in an ultra-low-dose scenario; however, the high noise with low dose is still a

major concern. To suppress the noise, the image-domain neighborhood penalty was used.

The reconstructed LAC images at 60 keV are shown in Figure 3.8, and their corresponding

homogeneous regions bias spectra are shown in Figure 3.9. The noise clearly gets reduced

without sacrificing edge resolution, and the bias spectra are still kept close to 0.
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(a) (b) (c) (d)

Figure 3.8: The reconstructed LAC images with various dose levels: (a) 200 mAs, (b) 100
mAs, (c) 50 mAs, (d) 30 mAs. The viewing windows are [-300 300] HU. All images were
reconstructed with the same intensity-normalized regularization.

(a) (b) (c) (d)

Figure 3.9: The average LAC biases of ROIs with various dose levels: (a) 200 mAs, (b) 100
mAs, (c) 50 mAs, (d) 30 mAs.

3.7 Discussion

From the simulation results, it can be seen that the sinogram-based method generates large

bias in the reconstructed LAC images when the dose level is low. Because FBP is a linear

operator, then the bias corresponds to the biased decomposed basis-material sinograms. For

a single source-detector pair, assuming the scanned object is a uniform calcium chloride

aqueous solution with fixed length l and the x-ray beam is mono-energetic with energy E,

the ground truth of the line integral of LAC is µ(E) = µCaCl2(E)l. From the discussion in the

previous chapter, the estimated value of the reconstructed LAC has a positive bias, which
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is E(µ̂(E)) > µ(E). From the discussion in the dual-energy CT scan chapter and the proof

in Appendix A.1, the sinogram-based decomposition methods generate biased estimates and

the bias decreases with decreased dose level.

A Monte-Carlo simulation was used to show the relationship between the bias and dose level

for sinogram-based decomposition methods. The same spectrum and BRF as in the above

simulation were used. The basis materials were still chosen to be polystyrene and calcium

chloride aqueous solution. The scanned object was 250 mm of polystyrene. With 1 million

Monte-Carlo trials for each dose level from 20 mAs to 200 mAs, the relative estimation error

of the LAC is shown in Figure 3.10. It is clear that with the increase of the dose level, the

relative estimation bias monotonically decreases.

Figure 3.10: The Monte-Carlo simulation of the relationship between relative error and dose
level.

Aside from photon starvation due to low-dose levels, another factor that leads to the bias,

as stated in Chapter 2, is the lack of accounting for the system geometry in the sinogram-

decomposition method. The basis-material sinograms are decomposed by solving problem
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(3.6) independently for each source-detector pair y. The assumption here is that each basis-

material sinogram pixel is independent of each other. However, this assumption is not valid

due to the presence of the forward- projection model

lj(y) =
∑
x

h(y|x)cj(x), (3.28)

such that some source-detector pairs may share a common pixel x. In the MEAM algorithm,

the forward model is directly incorporated, and basis-material images are reconstructed from

the statistical model.

3.8 Summary

Like the dual-energy scan introduced in the previous chapter, the PCCT system is also able

to derive energy-related information by material decomposition. The conventional PCCT

sinogram-based decomposition also suffers a large bias due to photon starvation and lack of

accounting for the system geometry. The MEAM algorithm modifies the statistical model

by incorporating the system geometry and can effectively eliminate the systematic bias in

the sinogram-based decomposition method even in the ultra-low-dose scenario.
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Chapter 4

Auxiliary sinogram alternating

minimization (ASAM) algorithm

4.1 Highlights

In this chapter, the possibility of enforcing a penalty constraint on the post-log attenuation

which traditionally serves as the data input will be explored. In this way, the classic in-

terpolation method to reduce metal artifacts can be incorporated in the iterative algorithm

framework.

4.2 Motivation

Modern x-ray CT imaging is able to produce high resolution images and is applied in many

areas like medical imaging [4, 45, 46] and security imaging [47] [48]. The attenuation coeffi-

cients of materials are reconstructed to get an anatomical image of the patient for medical

applications or the contents of luggage for security applications. However, when there exist
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dense or metal materials in the scanned object, the image quality may suffer severe artifacts.

Several categories of methods to reduce metal artifacts have been developed [49]. Among

them, the sinogram-based preprocessing method [50] and iterative reconstruction algorithms

[51] are two effective ones. However, there is still no systematic way to take advantage of

both methods. To deal with this problem, we developed a constrained optimization scheme

to synchronize these two methods and further improve metal-artifact reduction. We use pe-

nalized discrepancies in the measured sinogram, the auxiliary sinogram, and image domain

to accomplish this, adapting the dual-domain optimization method from Chen et al. [23] to

address metal-artifact reduction.

4.3 Notation

In this section, the notations used in this chapter are summarized

• d: measured transmission data.

• µ: reconstructed image.

• S: auxiliary sinogram.

• I: air-scan source intensity.

• H: system matrix.

• C: set of sinogram pixels not affected by the metal object.

• C̃: set of sinogram pixels affected by the metal object.

• i: source-detector pair index.
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• j: image pixel (voxel) index.

4.4 Background

4.4.1 Causes of metal artifacts

Streak artifacts due to metal are prevalent in CT images. They are caused by several

mechanisms. Some are due to the metal itself; some are related to limited scanner resolution

and the motion of the scanned object.

Beam hardening

Beam hardening is a common phenomenon in x-ray CT scans. Instead of the ideal mo-

noenergetic x-ray beam, the realistic beam emitted from the source tube has a spectrum

spread over a range of energies. When the x-ray beam penetrates an object, the lower en-

ergy part is more likely to be absorbed compared to the higher energy photons. Thus, the

effective energy of the x-ray beam increases, i.e., the beam is hardened. When the image

is reconstructed without beam hardening correction, this mismatch results in the so-called

interpetrou lucency artifact [52].

This problem is more severe for materials with relatively high atomic number such as bones

or metal endoprostheses in patients. Compared with low-atomic-number materials (i.e., soft

tissues), materials with high atomic number have a steeper decrease in attenuation coefficient

with increased energy. Even if the scanned object is homogeneous, the different path length

of x-ray beams will cause the cupping effect as shown in Figure 4.2. The other resulting
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Figure 4.1: The x-ray spectra in different stages in CT scans. The spectrum detected by
the detectors has the highest effective energy.

artifacts include dark streaks connecting high attenuation objects, dark shades around metal

material, and streaks coming out of the high attenuation objects [53].

(a) (b)

Figure 4.2: Cupping effect due to beam hardening.
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Scatter

In x-ray CT, we assume each x-ray photon travels a straight path through the scanned

object and hits the detector. However, when an x-ray photon is scattered, it deviates from

its original path and contributes to the measurement at other detectors. When the primary

photon count at a detector is low, the scatter-to-primary ratio (SPR) increases, and scatter

becomes the main source of artifacts. For highly attenuated x-ray beams, scatter causes

more photons to be detected than expected. Therefore, in the attenuation sinogram, these

metal traces have much lower values than the ground truth [54]. If the FBP algorithm, which

is a linear operator, is used to reconstruct the image, the underestimation in the attenuation

sinogram will result in an underestimation in the reconstructed image. The corresponding

artifacts look similar to those caused by beam hardening with dark streaks between dense

materials and dark shades around them.

Poisson noise

The measurement noise at the detector can be modeled by a Poisson process. When the

primary photon count is low, this Poisson noise may cause notable artifacts. The artifacts

may contain dark and bright streaks in the direction of greatest attenuation and result in

low contrast in the soft tissues. One possible way to suppress the Poisson noise is to increase

the x-ray source exposure. In modern CT scanners, when dense or metal objects are in the

field of view of projection, a temporary x-ray tube current increase is applied by adaptive

x-ray tube modulation [53].
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Other factors

Other factors that may result in artifacts include miscalibration between x-ray sources and

detectors, the limited resolution of the CT scanner that therefore cannot have a clear bound-

ary identification for high contrast objects, and motion during a CT scan.

4.4.2 Current methods to reduce metal artifacts

Various types of metal-artifact reduction (MAR) have been developed [55, 56, 57, 50, 58, 59].

They can generally be classified into two categories: the preprocessing method and the

iterative algorithm.

Preprocessing method

The preprocessing method has been widely used for more than 30 years. The basic idea is that

the measurement with the greatest attenuation is heavily influenced by the factors we have

stated above, so instead of using this part of the measurement, surrogate data is manually

generated and used to help with the image reconstruction. The simplest example is linear

interpolation [55]. First, the dense or metal part is identified from an initial reconstructed

image with FBP [60], then we forward project this part to get its corresponding partial

sinogram, and the nonzero entries in this partial sinogram are noted as metal traces to

be interpolated. Then in the original sinogram, we linearly interpolate the metal traces

and get a corrected sinogram. Thus we can reconstruct a new image with reduced metal

artifacts. In this way, we can reduce the dark and bright streaks and shadows around metal

objects. However, there is a clear drawback of this method, because we completely ignore
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the metal traces and this loss of information will result in a blurring of edges in the image.

The harsh separation between metal and non-metal traces may introduce new streaks in the

final reconstructed image. Several improved methods have been proposed based upon this

basic linear interpolation method in order to get more accurate surrogate data, for example,

smooth interpolation [56], the segmentation and reprojection method [57, 59], nonlinear

sinogram smoothing [58], and normalized metal-artifact reduction (NMAR) [50]. However,

in all of these preprocessing methods, the problem of loss of information remains. Another

concern is that these methods do not compensate for the underestimation caused by high SPR

in the metal-affected channels. In this chapter, we use NMAR as the default preprocessing

method for performance comparison.

Iterative algorithm

Instead of using the attenuation sinogram, we use the full photon count measurement and

model it as Poisson random variables [61, 62]. Compared with the preprocessing methods,

the usage of the pre-log measurement can achieve notably better quantitative accuracy and

reduce the artifacts caused by low-dose measurements [9]. Also, the iterative algorithm is a

completely different method for reducing the metal artifacts compared than the preprocessing

methods. One clear advantage is that it uses all of the measured data. The iterative

algorithm addressed in this chapter is the alternating minimization (AM) algorithm[4][51].

Another advantage of the iterative algorithm is that we can include prior knowledge like

smoothness in the region of interest to turn the AM algorithm into a penalized optimization

problem to suppress the noise in the image [63, 64]. However, the idea of interpolating the

metal traces was not applied in the AM algorithm.
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4.5 Auxiliary sinogram alternating minimization algo-

rithm

Both the preprocessing method and the AM algorithm can reduce metal artifacts and have

their limitations and disadvantages. A natural idea is to combine these two methods sys-

tematically. In the present study, we introduce the auxiliary sinogram domain such that

the interpolation method can be applied in the iterative reconstruction algorithm without

changing the raw measured data. A weighting parameter on the metal traces is introduced

to emphasize the data that are not affected by the metal and down-weight the data affected

by the metal. In this way, we avoid loss of information, in which the data affected by the

metal is fully ignored [51], and the underestimation caused by high SPR is compensated for

by the use of the auxiliary sinogram.

4.5.1 Data model

Let di,i∈[1...M ] denote the transmission measurement at the ith source-detector pair. Following

Lange and Carson [44], we model the data as mutually independent Poisson distributions

Pr[di = n] =
Qn
i

n!
e−Qi (4.1)

for n = 0, 1, 2, .... and i ∈ 1, 2, ...,M , in which

Qi = Ii exp

(
−
∑
j

hijµj

)
, (4.2)
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where Ii is the source flux of the ith source-detector pair, j is the image pixel index, and hij

is the scanner’s point spread function (PSF) generated from the system geometry.

In AM, we reconstruct the image directly from the measurement,

D
AM−−→ U,

while the preprocessing methods are sinogram-based and use linear methods like FBP to

reconstruct the image

L
FBP−−→ U,

where Li = − log(di
Ii

) represents the attenuation sinogram for the ith source-detector pair.

The difference in the input domain is one of the obstacles we mentioned earlier that prevents

the use of preprocessing method and the AM algorithm at the same time.

4.5.2 Statistical model

A new parameter S called the Auxiliary Sinogram is introduced, which serves as an inter-

mediate state between the raw transmission sinogram d and the reconstructed image µ.

D −−→ S←−−→ U.

The term of the forward projection of the image,
∑

j hijµj, is replaced by a single auxiliary

sinogram pixel Si. From equation (4.1) and (4.2), the connections between di, Si, and µ are

shown as

Pr[di = n] =
Q(Si)

n

n!
e−Q(Si), (4.3)
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where

Q(Si) = Ii exp(−Si), (4.4)

Si =
∑
j

hijµj. (4.5)

I-divergence is used to measure the discrepancy between the measurement data and auxiliary

sinogram and form the reconstruction problem as

min
S

∑
i

I
(
di||Q(Si)

)
= min

S

∑
i

[
di log

di
Q(Si)

− di +Q(Si)

]
(4.6)

s.t. Si =
∑
j

hijµj.

To solve this problem, instead of forcing the equality constraint, the constraint Si =
∑

j hijµj

is softened and turned into a penalty term. As described in the previous study of the

line integral alternating minimization (LIAM) algorithm by Chen et al. [23], instead of

reconstructing the image by minimizing the discrepancy between the measurement data and

the mean estimates, a tunable discrepancy between the auxiliary sinogram and the measured

sinogram is added. Using I-divergence as a discrepancy measure, we reformulate our problem

as

min
S,µ

F (S, µ) = min
S,µ

∑
i

I
(
di||Q(Si)

)
+ β

∑
i

I

(
Si||

∑
j

hijµj

)
, (4.7)

where the weight β controls the trade-off between accuracy for the measurements and the

auxiliary sinogram. Theoretically, if we let β → ∞, problem (4.7) is equivalent to problem

(4.6). So by this dual-domain minimization problem we are able to overcome the obstacle of

different input domains for preprocessing methods and the AM algorithm. Also, it is easy

to apply the idea of emphasizing the accurate data traces that are not affected by metal

and down-weight the metal traces. As in the preprocessing method, the metal pixels are
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segmented from an initial image reconstructed by FBP. Then these metal pixels are forward

projected to generate a metal-only sinogram. The non-zero sinogram pixels in the metal

only sinogram are defined as C̃. The non-metal sinogram pixels are denoted as C. The

generation of set C and C̃ are illustrated in Figure 4.3.

Figure 4.3: From the raw data, an uncorrected image is generated. By thresholding, the
metal pixels are segmented. After the forward projection, the set of metal traces C̃ is defined.
The other sinogram pixels are defined as non-metal traces C.

By this separation, problem (4.7) is reformulated as

min
S,µ

F (S, µ) = min
S,µ

∑
i

αiI
(
di||Q(Si)

)
+ β

∑
i

I

(
Si||

∑
j

hijµj

)
, (4.8)

where

αi =


1 i ∈ C

α0 i ∈ C̃,
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where α0 is a weighting parameter that controls the balance between metal sinogram pixels

and non-metal sinogram pixels. For the inaccurate metal sinogram pixels, a low weight is

imposed; and if we make α0 → 0, the metal traces are completely ignored just as in [51].

4.5.3 Regularized ASAM

S domain regularization

In the previous section, the idea of auxiliary sinogram was introduced to achieve the goal of

giving different weights for metal traces and non-metal traces, and also using the transmission

measurement as the input. However, the preprocessing method is not involved in ASAM

directly, and we implement this preprocessing in ASAM by putting a constraint on the S

domain, so now our problem becomes a constrained minimization problem,

min
S,u

F (S, u) = min
S,u

∑
i

αiI
(
di||Q(Si)

)
+ β

∑
i

I

(
Si||

∑
j

hijuj

)
(4.9)

s.t.R(S) ≤ ξ,

where R(S) accounts for different forms of constraints corresponding to methods like linear

interpolation, polynomial interpolation and smooth interpolation. We choose R(S) to be of

the form

R(S) =
∑
i∈C̃

∑
k∈Ni

wikφ(Si − Sk : δ), (4.10)

where

φ(x : δ) =
1

δ2

(
δ|x| − log(1 + δ|x|)

)
. (4.11)
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This Huber-type penalty has been introduced in Chapters 2 and 3. In this chapter, the

δ of the auxiliary sinogram domain regularization R(S) is set to be 50. Ni is the set of

neighborhood pixels around pixel i in the auxiliary sinogram. The weights wik control

the relative contribution of each neighboring pixel of i. Here, we choose an adjacent pixel

neighborhood around i and weights wik are equal to the inverse distance between pixels i

and k. This constraint only applies to metal traces, that is only to Si, i ∈ C̃ instead of the

whole auxiliary sinogram S.

Just like what we did for problem (4.6), we turn this constrained minimization problem into

a regularized minimization problem

min
S,µ

F (S, µ) = min
S,µ

∑
i

αiI
(
di||Q(Si)

)
+ β

∑
i

I

(
Si||

∑
j

hijµj

)
(4.12)

+ γ
∑
i∈C̃

∑
k∈Ni

wikφ(Si − Sk : δ).

When we increase the parameter γ → ∞, the solution for problem (4.12) is equivalent to

problem (4.9) with ξ = 0.

µ domain regularization

Because we have two domains to optimize, the µ domain can also be regularized. In fact,

this is more intuitive because a smooth image is desirable. Using a similar weighted total
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variation penalty, we get the following minimization problem

min
S,µ

F (S, µ) = min
S,µ

∑
i

αiI
(
di||Q(Si)

)
+ β

∑
i

I

(
Si||

∑
j

hijµj

)
(4.13)

+ γ
∑
j

∑
k∈Nj

mjkφ(µj − µk : δ),

where φ(µ : δ) is defined in (4.11), and mjk is defined as the inverse distance between

neighboring pixel j and k. For image-domain regularization, δ is set to be 500. This problem

is similar to maximum a-posteriori (MAP) estimation, where the penalty term serves as a

prior although we have a much more complicated data fitting term.

Dual-domain regularization

A great advantage of ASAM is that we can regularize both the auxiliary sinogram domain

and image domain at the same time. The introduction of variable S solves the conflict

that preprocessing and the AM algorithm require different input domains. The dual-domain

constrained optimization problem is formulated as

min
S,µ

F (S, µ) = min
S,µ

∑
i

αiI
(
di||Q(Si)

)
+ β

∑
i

I

(
Si||

∑
j

hijµj

)
(4.14)

s.t. R(S) ≤ γ,R(µ) ≤ θ,
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and the corresponding regularized ASAM cost function is given as

min
S,µ

F (S, µ) = min
S,µ

∑
i

αiI
(
di||Q(Si)

)
+ β

∑
i

I

(
Si||

∑
j

hijµj

)
+ γ

∑
i∈C̃

∑
k∈Ni

wikφ(Si − Sk)

+ θ
∑
j

∑
k∈Nj

mjkφ(µj − µk). (4.15)

4.5.4 Minimization iterations

Optimization problem (4.15) is a dual-domain minimization. Due to the existence of param-

eter α and the penalty terms, we need three steps for every iteration.

Optimize Si, i ∈ C

We fix the terms that do not contain Si, i ∈ C, then the problem (4.15) becomes

min
Si,i∈C

FC(S, µ) = min
Si,i∈C

∑
i∈C

αiI
(
di||Q(Si)

)
+ β

∑
i∈C

I

(
Si||

∑
j

hijµj

)
, (4.16)
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and it is in the same form as (4.7). However, the definition of i is limited to set C rather

than the set {1, 2, ...,M}, then

FC(S) =
∑
i∈C

αiI
(
di||Q(Si)

)
+ β

∑
i∈C

I

(
Si||

∑
j

hijuj

)

=
∑
i∈C

[
αi

(
di log

di
Q(Si)

− di +Q(Si)

)
+ β

(
Si log

Si∑
j

hijµj
− Si +

∑
j

hijµj

)]

=
∑
i∈C

[
αi

(
di log

di
Iie−Si

− di + Iie
−Si
)

+ β

(
Si log

Si∑
j

hijµj
− Si +

∑
j

hijµj

)]
.

(4.17)

We focus only on the terms involving S, then our problem becomes

FC(S) =
∑
i∈C

[
αi

(
− diSi + Iie

−Si
)

+ β
(
Si logSi − Si log

(∑
j

hijµj
)
− Si

)]
. (4.18)

Using Newton’s method, Si, i ∈ C is updated with

Si = Ŝi −
[
∂FC(Si)

∂Si
/
∂2FC(Si)

∂S2
i

] ∣∣∣∣
Si=Ŝi

, (4.19)

where Ŝi is the current estimate of Si. The first order derivative for Si, i ∈ C is given by

∂FC(Si)

∂Si
= −di − Iie−Si + β

(
logSi − log

∑
j

hijµj

)
, (4.20)

where all terms that do not depend on Si have been droped.
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The corresponding second order derivative is given by

∂2FC(Si)

∂S2
i

= Iie
−Si +

β

Si
. (4.21)

Optimize Si, i ∈ C̃

If we use dual-domain regularization, we take out the terms involving Si, i ∈ C̃ from (4.15),

then our problem is simplified to

min
Si,i∈C̃

FC̃(S, µ) = min
Si,i∈C̃

∑
i∈C̃

αiI
(
di||Q(Si)

)
+ β

∑
i∈C̃

I

(
Si||

∑
j

hijµj

)
+ γ

∑
i∈C̃

∑
k∈Ni

wikφ(Si − Sk).

(4.22)

The penalty term φ(Si−Sk) couples the values of Si and Sk. We use the convex decomposition

lemma [10] to decouple this penalty. The resulting cost function for updating Si, i ∈ C̃ is

F̃C̃(Si) =αiI
(
di||Q(Si)

)
+ βI

(
Si||

∑
j

hijµj

)
+ γ

∑
k∈Ni

wikφ
(

2Si − Ŝi − Ŝk
)
, (4.23)

where Ŝi is the current estimated auxiliary sinogram value at pixel i. In this way, we decouple

the cost function and we can update every single Si, i ∈ C̃ at the same time. Using Newton’s

method, Si, i ∈ C̃ is updated by

Si = Ŝi −

[
∂F̃C̃(Si)

∂Si
/
∂2F̃C̃(Si)

∂Si
2

] ∣∣∣∣
Si=Ŝi

. (4.24)
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The corresponding first order derivative
∂F̃C̃(Si)

∂Si
and second order derivative

∂2F̃C̃(Si)

∂Si
2 are

∂F̃C̃(Si)

∂Si
=− di − Iie−Si +

β

αi

(
logSi − log

∑
j

hijµj

)

+
γ

αi

∑
k∈Ni

wik
2Si − Ŝi − Ŝk

1 + δ
∣∣∣2Si − Ŝi − Ŝk∣∣∣ , (4.25)

∂2F̃C̃(Si)

∂Si
2 =Iie

−Si +
β

αiSi

+
γ

αi

∑
k∈Nj

wik
2(

1 + δ
∣∣∣2Si − Ŝi − Ŝk∣∣∣)2 . (4.26)

Optimize µj

The cost function containing µ is

Fµ(µ) = β
∑
i

I

(
Si||

∑
j

hijµj

)
+ θ

∑
j

∑
k∈Nj

mjkφ(µj − µk) (4.27)

µj and µk are also coupled [65], and we use the same convex decomposition lemma for

Si, i ∈ C̃ to decouple µ. But here, the coupling is not only in the penalty term but also in

the data fitting term, so the resulting decoupled cost function for updating µj is

F̃µ(µj) =β
∑
i

hijµj − β
∑
i

Si
∑
j

Zij log

((∑
ĵ

hiĵ

)
µj

)

+θ
∑
k∈Nj

mjkφ (2µj − µ̂j − µ̂k) , (4.28)

where

Zij =
hij∑
j

hij
.
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Zij is picked based on the criteria Zij ≥ 0 and
∑

j Zij ≤ 1, ∀i which guarantees the conver-

gence.

Now, we have a decoupled cost function of µ in both the data fitting term and the penalty

term, and since this new cost function is still convex with respect to µ, we can compute the

corresponding first order and second order derivatives

∂F̃µ(µj)

∂µj
=β
(∑

i

hij −
∑
i

Zij
Si
µj

+
)

+ θ
∑
k∈Nj

mjk
2µj − µ̂j − µ̂k

1 + δ |2µj − µ̂j − µ̂k|
, (4.29)

∂2F̃µ(µj)

∂µj2
=
β

µj

∑
i

Zij
Si
µ2
j

+ θ
∑
k∈Nj

mjk
2

(1 + δ |2µj − µ̂j − µ̂k|)2 . (4.30)

With (4.29) and (4.30),using Newton’s method, Si, i ∈ C̃ is updated with

µj = µ̂j −

[
∂F̃µ(µj)

∂µj
/
∂2F̃µ(µj)

∂µj2

] ∣∣∣∣∣
µj=µ̂j

. (4.31)

The overall pseudo-code for the regularized ASAM algorithm is presented in Algorithm 3.

Algorithm 3: Regularized ASAM

Initialize S(0), µ(0)

for n = 0 to N − 1 do
foreach i ∈ C do

Update S
(n+1)
i , i ∈ C with (4.19), where Ŝi = S

(n)
i , i ∈ C and µ = µ(n).

end

foreach i ∈ C̃ do

Fix Ŝi = S
(n+1)
i , i ∈ C, µ = µ(n).

Update S
(n+1)
i , i ∈ C̃ with (4.24).

end
foreach j do

Update µ
(n+1)
j with (4.31), where µ̂j = µ

(n)
j and Si = S

(n+1)
i , i ∈ C ∪ C̃.

end

end
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4.6 Patient phantom simulation

4.6.1 Simulation data generation

A virtual patient with metal inserts was simulated to evaluate the potential performance

of ASAM. The patient phantom is a pelvis slice from the ICRP adult female phantom [24]

as shown in Figure 4.4(a). Two titanium endoprostheses were inserted in the bone region.

The proprietary geometry of the Philips Brilliance Big Bore CT scanner (Philips Medical

Systems, Cleveland, OH) was used in this simulation. The synthetic sinogram was generated

for 90 kVp and 400 mAs. In this simulation, parameters are set to be α = 0.01, β = 500, γ =

3× 104, θ = 104.

4.6.2 Results

The reconstructed images from FBP, NMAR, and ASAM are presented in Figures 4.4(b), (c),

and (d), respectively. In the standard FBP result, there exist bright and dark streaks from the

titanium implants as well as an obvious dark band connecting these two implants. In Figure

4.4(c), the streaks are successfully removed with NMAR, but the shallow band between the

two implants still remains. In Figure 4.4(d), ASAM eliminates the streak artifacts and the

dark band from the image. Compared with the ground truth image, NMAR and ASAM

both reduce metal artifacts without sacrificing image quality.
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(a) (b)

(c) (d)

Figure 4.4: ICRP female adult pelvis phantom with titanium endoprosthesis. The ground
truth is presented in (a). (b) shows the FBP result without correction. (c) is the NMAR
result and (d) is the reconstructed image from ASAM. The viewing windows are [-300, 400]
HU.

4.7 Physical phantom experiment

4.7.1 Experimental setup

In this section, the data of a cylinder phantom with a diameter of 21.5 cm were collected

at 90 kVp (300 mAs) on the Philips Brilliance Big Bore CT scanner in the axial mode

with 816 detectors per detector row and 1320 source positions per rotation. The data were

collected by Dr. Dong Han at Virginia Commonwealth University. This physical phantom is

an acrylic cylinder that is filled with water and contains 12 bone and soft-tissue surrogates.
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Figure 4.5: Physical phantom, and two tungsten rods adhered to this phantom.

Two tungsten rods are attached to the outside of the phantom. The reconstructed image

is with pixel size 1 mm × 1 mm and slice thickness 3 mm. The reconstructed images are

presented in Figure 4.6.

The standard FBP reconstruction is shown in Figure 4.6(a). We can see two major artifacts:

the first is the dark streaks in the shade between two tungsten rods, and the second is streaks

originating from the tungsten rods. NMAR [50] was applied and the result is shown in Figure

4.6(b). A clear decrease in streak artifacts is achieved, but the dark streaks between the rods

remain. A possible reason for this underperformance is that the attenuation coefficient of

tungsten is so high that no proper prior image can be defined. Then, in Figure 4.6(c), the

result of the regularized alternating minimization (AM) with penalty weight λ = 3× 104 is

shown. The dark streaks around the tungsten rods are reduced, but there is no significant

improvement for the streaks between them. Finally, in Figure 4.6(d), we applied the ASAM

with parameters α0 = 0.01, β = 500, γ = 3× 104, and θ = 104. Both the shading effect and
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streaking artifacts are substantially eliminated, and the tungsten rod boundaries are clearly

shown.

(a) (b)

(c) (d)

Figure 4.6: Physical phantom data reconstructions from (a) filtered backprojection (FBP);
(b) normalized metal-artifact reduction (NMAR); (c) alternating minimization (AM) with
penalty weight λ = 3 × 104; and (d) ASAM with α0 = 0.01, β = 500, γ = 3 × 104, and
θ = 104. The viewing windows are [-300, 400] HU.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: ASAM reconstructions and profiles with different α0.

4.7.2 Results and discussion

Image-domain reconstruction

From the results in the previous section, we have proven that the ASAM algorithm is a

promising method to reduce different forms of metal artifacts. A convenient property of

ASAM is that for different phantoms, we only need to tune a minimal number of parameters

to get the best metal-artifact reduction. The two most important parameters are α0 and β.

α0 controls how much the measurement affected by the metal is emphasized. Two extreme

choices of α0 are 0 and 1. α0 = 0 means that the metal traces are completely ignored,

and α0 = 1 means no down-weighting is applied to the metal traces. In Figure 4.7, we

compare the ASAM reconstructions with different α0. In Figure 4.7(a), (b), (c), and (d),
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: ASAM reconstructions and profiles with different β.

the ASAM reconstructions with α0 = 0.01, 0, 0.1, and 1 are shown. All of the results are

reconstructed with β = 500, γ = 3 × 104, and θ = 104. In Figure 4.7(e), (f), (g), and (h)

the corresponding profiles of the image slices highlighted by the red lines are shown. When

α0 = 0, the reconstructed image is very close to the FBP result. The only minor image

quality improvement comes from the image-domain regularization. When α0 increases to

0.1, the metal artifacts begin to surface, and when α0 increases to 1, which means there is no

down-weight on the measurement affected by the tungsten rods, the metal artifacts become

significant, and the result is very similar to the AM result.

β is the parameter that controls the tolerance of the difference between the auxiliary sinogram

and the measurement sinogram. In Figure 4.8, we compare the ASAM reconstructions and
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(a) (b)

Figure 4.9: (a) is the tungsten free reference image, (b) is the ASAM reconstruction with
tungsten rods. The viewing window is [-200, 200] HU.

their single slice profiles with different β. In Figure 4.8(a), the metal artifacts are eliminated

with β = 500. In (b), when β decreases to 50, although the metal artifacts are reduced, some

resolution is lost and in the profile plot (e), the sample container edges are smoothed out. In

this case, a small β means the auxiliary sinogram is distorted too much from the measurement

sinogram. In Figure 4.8(c), β increases to 5000, and the metal artifacts between the two

tungsten rods are not corrected. Also, the corresponding profile plot (f) shows significantly

high noise and highly biased pixels brought on by the metal artifacts. A high β means a

little discrepancy between the auxiliary sinogram and measurement sinogram is allowed, and

the result is that little correction is done on the auxiliary sinogram domain which leads to

the retention of the metal artifacts.

A concern about the ASAM algorithm is that after the measurements affected by the metal

are down-weighted, the reconstruction image will suffer loss of information which may lead

to bias or higher noise. To evaluate the estimation accuracy of ASAM, we reconstruct the
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Samples Reference FBP AM ASAM
K2HPO4(29%) 521.585 473.852 486.760 510.045
K2HPO4(17%) 269.117 262.366 263.358 263.442

Ethanol -244.779 -246.500 -246.370 -244.976
Acetone -264.907 -265.642 -272.439 -267.788

CaCl2(7%) 135.767 120.572 133.046 128.823

Table 4.1: Mean value of 3 sample ROIs (HU)
.

same phantom scanned without tungsten rods with the AM algorithm, which has proven

to have good estimation accuracy [4], and use the reconstructed image as the reference as

shown in Figure 4.9(a). In Figure 4.9(a), the reference image is free of metal artifacts but has

an angular shift due to phantom rotation during the experiment. Five samples are selected:

K2HPO4 aqueous solution (29 % by mass), K2HPO4 aqueous solution (17 % by mass), pure

ethanol, pure acetone, CaCl2 aqueous solution (7 % by mass). For each sample, the ROI is

defined as a disk with radius 12 mm at the sample center. The mean values in HU of the five

sample ROIs are shown in Table 4.1. For K2HPO4(29%), which suffers the heaviest metal

artifacts, the ASAM has significant improvement in bias compared with the FBP and the

AM result. For the other samples that are less affected by the tungsten rods, the ASAM

has similar performance as the AM, which means that the ASAM is also an algorithm with

high estimation accuracy.

Another concern about the ASAM is the convergence speed. A comparison of time to

converge between the ASAM algorithm and the AM algorithm is plotted in Figure 4.10.

The asymptotic cost-function values are different because AM and ASAM have different

cost-function expressions. However, it is clear that ASAM has a faster decrease in the cost-

function value and nearly reaches its asymptotic limit far earlier than the AM algorithm.

This rapid convergence is because instead of enforcing the equality between the reconstructed
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Figure 4.10: The time required by AM and ASAM to converge.

auxiliary sinogram and the forward projection of the reconstructed image, a discrepancy is

allowed in the form of the term β
∑

i I(Si||
∑

j hijµj) in the cost function [23]. As for the

AM algorithm, the only time-consuming part in the ASAM algorithm is the forward- and

backward-projection computation. In this chapter, 33, 11, and 5 ordered subsets [66, 67]

were used sequentially to speed up the computation.

Sinogram-domain reconstruction

ASAM is a dual-domain algorithm. Besides the image-domain output µ, the auxiliary sino-

gram S is another output. By studying the auxiliary sinogram reconstruction, we can further

analyze the performance of the ASAM algorithm.

The reconstructed auxiliary sinogram S is plotted in Figure 4.11(a). The slice where two

tungsten rods align in the same projection angle is selected as highlighted with the red
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(a) (b)

Figure 4.11: (a) the reconstructed auxiliary sinogram, (b) the profile of a single sinogram
slice highlighted with a red line from channel 285 to channel 315.

line. The sinogram profile of this slice from channel 285 to channel 315, where the peak

value corresponds to where the tungsten rods are placed, is shown in Figure 4.11(b). Due

to the circular shape of the rods and the high attenuation of tungsten, the ground truth

shape of this peak value should be a sharp arc. However, the raw attenuation sinogram,

which is the blue curve, shows a flat top. This is because when the attenuation is high in

these channels, the scatter-to-primary ratio (SPR) dramatically increases, which results in

overestimation of the primary photons. When the SPR is high, the attenuation is underes-

timated, and the scatter causes the flat top in the raw sinogram. In NMAR, the tungsten

pixel values of the prior image are set from the FBP result, which is underestimated due to

the scatter. We can see that the arc shape is recovered with the NMAR method, but the

underestimation is not compensated as the red curve shows. With ASAM, a proper choice

of α0 to down-weight the metal projections can compensate the underestimation caused by
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scatter and recover the sharp arc shape as the yellow and purple curves show. When there

is no down-weighting, which means α0 = 1, the curve is underestimated and noisy. This is

because in function (4.22), the effective sinogram-domain penalty weight is γ
α0

, and α0 = 1

results in a low effective penalty weight compared with other small α0 choices. Also, this

sinogram reconstruction result demonstrates that the sinogram-domain penalty can serve as

the interpolation operator that approximately recovers the ground truth sinogram shape.

Although the NMAR method can recover the arc shape, the underestimation results in the

dark shade between two tungsten rods, which is the significant difference between the ASAM

reconstruction and the NMAR reconstruction. The performance of NMAR heavily relies on

the choice of the prior image. In the experiment, the prior tungsten pixels from the FBP

reconstruction cannot compensate for the underestimation due to scatter. ASAM can be

viewed as an iterative version of NMAR. Instead of using an initial constant prior image,

the “prior image” is updated at every iteration in ASAM. Combined with the choice of αi,

the underestimation can be compensated for in ASAM.

4.8 Patient scan results

A patient was scanned on the Philips Brilliance Big Bore CT scanner (140 kVp, 300 mAs,

12 mm collimation) in the axial mode with 816 detectors per detector row and 1320 source

positions per rotation. The pixel size of the reconstructed image is 1 mm × 1 mm.

The patient has multiple dental fillings, which are made of high-density materials and have

irregular shapes. Compared with other tissues, dental enamel is the densest material in the

human body. Metal-artifact reduction, in this case, is very challenging.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Patient head-scan reconstructions: (a) FBP, (b) NMAR, (c) ASAM with α0 =
0.1, β = 500, γ = 3× 104, θ = 104. The viewing windows are [-200, 200] HU. (d), e, and (f)
are the corresponding reconstructions with viewing windows [-1000, 3500] HU.

Fig. 4.12 shows a slice through the jaw with multiple dental fillings. In Fig. 4.12(a), with

a narrow viewing window, the image generated with the FBP algorithm suffers heavy metal

artifacts. The tooth boundaries can hardly be identified. With a large viewing window as

shown in Fig. 4.12(d), the artifacts are along the direction where the dental fillings are

placed.
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Both NMAR and ASAM can effectively reduce metal artifacts, especially the dark shades

and streaks in the back of the teeth, and give a much better boundary identification of the

tooth boundaries. However, there are residual artifacts for both methods. This is because

the irregular shapes of the dental fillings make it difficult to define an optimal prior image

in the NMAR method and also the optimal definition of the set C̃ in the ASAM algorithm.

4.9 Summary

We introduced the new ASAM algorithm that uses an auxiliary sinogram domain to connect

raw measurement data and the reconstructed image. This auxiliary sinogram domain gives

us the flexibility to include prior knowledge which was previously available in the image

domain. By solving this dual-domain optimization problem, we can reconstruct significantly

more accurate and artifact-free images. Preprocessing methods and iterative reconstruction

algorithms are both powerful tools in reducing metal artifacts. The new ASAM algorithm

can integrate these two categories and avoid their incompatibilities that block the idea of

combining them. Their common drawback, that they ignore the metal traces data, which

leads to loss of information, is solved by the introduction of an auxiliary sinogram. We

use the parameter α0 to suppress the artifacts from these metal traces. By the choices of

parameters and the forms of penalties, we have the freedom to apply different interpolation

methods or even new preprocessing methods in the same scheme. In other words, our ASAM

is a general solution to preprocessing methods.
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Chapter 5

Wavelet alternating minimization

algorithm (wav-AM) for x-ray CT

5.1 Highlights

In the previous chapters, it was shown that the neighborhood penalties in different data

domains successfully reduce noise and suppress artifacts. However, in some x-ray CT appli-

cations, the performance of the traditional neighborhood penalty is limited, and a transform-

domain penalty is used. In this chapter, a wavelet domain penalty is introduced for security

x-ray scans to help reduce streak artifacts.

5.2 Motivation

In the previous chapters, it was shown that the quality of the reconstructed image is affected

by many factors. For example, if there exist dense or metal materials in the scanned object,
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the image suffers heavy artifacts. If the number of detected photons is low, reconstructed im-

ages have high noise. One of the widely used methods to reduce noise and suppress artifacts

is to use the statistical image reconstruction algorithm which is a regularized optimization

method. The penalty term contains the prior information about the image, which usually

promotes the smoothness of the image. Typical choices of the penalty term are total vari-

ation or Huber-type penalties [68, 12, 69]. The choice of the penalty weights controls the

balance between the data fitting term and the penalty term. A low penalty weight retains

the resolution but does not suppress the noise or artifacts. A high penalty weight can accom-

plish the goal of noise reduction and artifact suppression, but the trade-off is a possible loss

of detail in resolution, or over-smoothness. For low-dose x-ray CT scans, choosing a good

penalty weight is not only critical but also difficult. The contradictory requirements favoring

a low weight to improve some image characteristics and a high weight to emphasize other

characteristics make it difficult to find an optimal choice. To solve this problem, another

category of prior information of sparsity in the wavelet coefficient domain is used. Based on

this transform-domain penalty, the wavelet alternating minimization algorithm is developed,

which has the following properties:

• The data fitting term is still maximum Poisson log-likelihood estimation with the mean

determined by Beer’s law.

• The sparsity penalty in the wavelet domain is easy to formulate and easy to implement.

• The wav-AM algorithm can be extended to a dual-domain regularization problem where

another image-domain penalty is added.
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5.3 Notation

In this section, the notations used in this chapter are summarized.

• d: measured transmission data.

• y: estimated mean.

• u: reconstructed image.

• β: wavelet transform of the reconstructed image

• I: air-scan source intensity.

• H: system matrix.

• Ω: inverse wavelet transform matrix.

• Ω̂: wavelet transform matrix.

• i: source-detector pair index.

• j: image pixel (voxel) index.

• l: wavelet coefficient index.

5.4 Image-domain regularization

In the previous chapters, it was shown that minimizing the I-divergence between the mea-

sured data and the estimated mean is equivalent to maximizing the Poisson log-likelihood,
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and the problem is written as

min
u

∑
i

I(di||yi), (5.1)

where

yi = Iie
−

∑
j hijuj (5.2)

is the estimated mean following Beer’s law [70]. Because there exists no closed form solution

for this problem, the AM algorithm is used to solve this problem iteratively by minimizing

a surrogate function that approximates the original cost function. We simplify (2.22) to a

single-energy model, without the penalty term, uj is updated in a closed form

uj = ûj −
1

Z0

log

∑
i hijdi∑
i hijyi

, (5.3)

where ûj is the current reconstructed image pixel, and Z0 is a parameter that guarantees

convergence.

If an image-domain penalty is included in the cost function, there exists no closed form

update. Instead, the convex decomposition lemma is used to get the surrogate function

that approximates the penalty term. Then, Newton’s method is used to update the re-

constructed image. The penalty term contains prior information about the image, and the

edge-preserving Huber-type penalty is used in the following form

φ(x) =
1

δ2
(|δx| − log(1 + |δx|)), (5.4)

where δ is a parameter that controls the transition between a quadratic region (for small x)

and a linear region (for large x).
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The image domain regularized AM cost function is formulated as

f(u) =
∑
i

I(di||yi) + λ
∑
j

∑
k∈Nj

wijφ(uj − uk), (5.5)

where Nj is the set of neighborhood pixels or voxels of voxel j. The method for minimizing

the cost function (5.5) was introduced in Chapter 2.

5.5 Wavelet alternating minimization algorithm

5.5.1 Unregularized wavelet alternating minimization

Assume there exists a discrete orthogonal wavelet transform pair Ω ∈ RN×M and Ω̂ ∈ RM×N

such that

u = Ω× β (5.6)

and

β = Ω̂× u, (5.7)

where β ∈ RM is the vector of wavelet coefficients. Based on this transform pair, the function

(5.1) can be rewritten as

f(β) =
∑
i

[
di
∑
j

hij
∑
l

ωjlβl + Ii exp(−
∑
j

hij
∑
l

ωjlβl)
]
. (5.8)
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For simplicity, a new system matrix Ψ is defined as Ψ = H × Ω, such that ψil =
∑

j hijωjl.

The above cost function is reformulated as

f(β) =
∑
i

[
di
∑
l

ψilβl + Ii exp(−
∑
l

ψilβl)
]
, (5.9)

where ψil is the new system matrix element, and β is the wavelet coefficient that needs to

be reconstructed. Instead of directly minimizing function (5.9), a surrogate function is used.

However, extra caution should be taken that every element of H and u is non-negative.

But in function (5.9) either ψil or βl can be negative. Some modification is applied in the

derivation of the surrogate function. By the convex decomposition lemma [4]

f(β) =
∑
i

[
di
∑
l

ψilβl + Ii exp(−
∑
l

ψilβl)
]

=
∑
i

∑
l

diψilβl + q̂i exp(−
∑
l

ψil(βl − β̂l))

≤
∑
i

∑
l

diψilβl +
∑
i

∑
l

q̂iril exp(−ψil
ril

(βl − β̂l)), (5.10)

where q̂i = Ii exp(−
∑

l ψilβ̂l) is the forward projection of the current estimate. ril is a

parameter with constraints ril ≥ 0 and
∑

l ril ≤ 1. In this chapter, ril is defined as

ril =
|ψil|
Z0

, (5.11)

where

Z0 = max
i

∑
l

|ψil|. (5.12)
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The new surrogate function is

f̂(β) =
∑
i

∑
l

diψilβl +
∑
i

∑
l

q̂iril exp(−ψil
ril

(βl − β̂l))

=
∑
i

∑
l

diψilβl +
∑
i

∑
l

q̂i
|ψil|
Z0

exp(− ψil
|ψil|

Z0(βl − β̂l))

=
∑
i

∑
l

diψilβl +
∑

{i,l}∈C+

q̂i
ψil
Z0

exp(−Z0(βl − β̂l))−
∑

{i,l}∈C−
q̂i
ψil
Z0

exp(Z0(βl − β̂l)),

(5.13)

where C+ =
{
{i, l} : ψil ≥ 0

}
and C− =

{
{i, l} : ψil < 0

}
. In this way, the exponential term

is separated by the positivity of ψil.

To minimize the surrogate function (5.13), the first-order derivative is computed

∂f̂

∂βl
=
∑
i

diψil −
∑
i∈C+

q̂iψil exp(−Z0(βl − β̂l))−
∑
i∈C−

q̂iψil exp(Z0(βl − β̂l)). (5.14)

Let al =
∑

i∈C− −q̂iψil, cl =
∑

i∈C+ q̂iψil, bl =
∑

i diψil, xl = exp(Z0(βl − β̂l)). Then the

above function equal to zero gives

bl −
cl
xl
− alxl = 0⇔ alx

2
l − blxl + cl = 0, ifxl 6= 0. (5.15)

The solution is directly given by

xl =
bl ±

√
b2
l − 4alcl

2al
. (5.16)
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From the fact that xl = exp
(
Z0(βl − β̂l)

)
> 0, al < 0, and cl > 0, bl <

√
b2
l − 4alcl. The

only valid solution is

xl =
bl −

√
b2
l − 4alcl

2al
. (5.17)

The closed form update is

βl = β̂l +
1

Z0

log
bl −

√
b2
l − 4alcl

2al
. (5.18)

The algorithm of unregularized wavelet AM is shown below.

Algorithm 4: Unregularized wav-AM algorithm

Precompute Z0 and q(0). Initialize β(0).
for n = 1 to N do

foreach i do

Update q
(n)
i with q

(n)
i = Ii exp(−

∑
l ψilβ

(n)
l ).

end
foreach l do

Compute a
(n)
l , b

(n)
l , and c

(n)
l .

Update the estimate with β̂
(n+1)
l = β̂

(n)
l + 1

Z0
log

b
(n)
l −

√
b
(n)
l

2
−4a

(n)
l c

(n)
l

2a
(n)
l

end

end

5.5.2 Wavelet-domain regularization

Wavelet thresholding [71] is a widely used denoising technique in image processing, and the

underlining assumption is that the wavelet coefficient of the ground truth image is sparse

compared to the noisy image. This assumption serves as the prior knowledge in the form of
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an L1 penalty [72, 73]. The regularized wavelet alternating minimization cost function is

f(β) =
∑
i

I(di||yi) + γ
∑
l

|βl|. (5.19)

Because the penalty term is self decoupled, there is no need to decouple it and the surrogate

function for the regularized wav-AM is

f̂(β) =
∑
i

∑
l

diψilβl+
∑

{i,l}∈C+

q̂i
ψil
Z0

exp
(
−Z0(βl−β̂l)

)
−
∑

{i,l}∈C−
q̂i
ψil
Z0

exp
(
Z0(βl−β̂l)

)
+γ
∑
l

|βl|.

(5.20)

The corresponding first order derivative with respect to βl is

∂f̂

∂βl
=
∑
i

diψil−
∑
i∈C+

q̂iψil exp
(
−Z0(βl−β̂l)

)
−
∑
i∈C−

q̂iψil exp
(
Z0(βl−β̂l)

)
+γsgn(βl). (5.21)

Setting this first order derivative to zero gives

∑
i

diψil−
∑
i∈C+

q̂iψil exp
(
−Z0(βl− β̂l)

)
−
∑
i∈C−

q̂iψil exp
(
Z0(βl− β̂l)

)
+γsgn(βl) = 0. (5.22)

The sgn(β) is removed by the positivity of βl.

If βl ≥ 0, with the definitions of al, bl, cl, and xl, the wavelet coefficient is updated with

βl+ = max

(
β̂l +

1

Z0

log
bl −

√
b2
l − 4alcl

2al
, 0

)
. (5.23)

If βl < 0, with the definitions of al, bl, cl, and xl, the wavelet coefficient is updated with

βl− = min

(
β̂l +

1

Z0

log
bl −

√
b2
l − 4alcl

2al
, 0

)
. (5.24)
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Compared with the image-domain regularized AM, there exists a closed form update in

regularized wav-AM, which is a significant advantage in computation speed. The wavelet

domain regularized wav-AM is summarized in Algorithm 5.

Algorithm 5: Regularized wav-AM algorithm

Precompute Z0 and q(0). Initialize β(0).
for n = 1 to N do

foreach i do

Update q
(n)
i with q

(n)
i = Ii exp(−

∑
l ψilβ

(n)
l ).

end
foreach l do

Compute a
(n)
l , and c

(n)
l .

Let b
(n)
l =

∑
i diψil + γ, update β

(n)
l+ based on (5.23).

Let b
(n)
l =

∑
i diψil − γ, update β

(n)
l− based on (5.24).

Update β
(n+1)
l = max

(
β

(n)
l+ ,min(β

(n)
l− , 0)

)
.

end

end

5.5.3 Phantom simulation

In this subsection, the performance of the proposed wav-AM algorithm for x-ray CT is

examined with the simulated data. Four methods are compared: (1) the proposed unreg-

ularized wav-AM algorithm; (2) the regularized wav-AM algorithm with different choices

of the penalty weight γ; (3) the unregularized AM algorithm; and (4) the regularized AM

algorithm with different choices of the penalty weight λ.

The simulated data were generated from a FORBILD phantom [74] with Poisson noise, and

the mean is generated with transmission according to Beer’s law. The dose level is set to be

150 mAs which is typical for clinical systems. The image has size 256×256 pixels with pixel
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size 1 mm× 1 mm. The number of source-detector pairs is 21600. The wavelet transform is

chosen to be a Haar wavelet with 3 levels.

The reconstructed images are shown in Figure 5.1 and the detail structures in the red boxes

are shown in the upper-left corners. In Figure 5.1(a), the ground truth image is presented.

In Figure 5.1(b), the reconstructed image with the AM algorithm is shown, and since the

Haar wavelet transform with 3 levels is an orthogonal operator, it is also the reconstructed

image with the unregularized wav-AM algorithm. Clearly, noise can be seen in this image.

In Figures 5.1(c) - (e), the reconstructed images with regularized AM with penalty weights

2 × 104, 2 × 105, and 6 × 105 are shown. In Figure 5.1(c), the penalty weight is small and

the noise is still prominent. In Figure 5.1(d), the penalty weight choice is appropriate and

the detail resolution and noise reduction are kept at the same time. In Figure 5.1(e), the

penalty weight is increased to 6×105, The image is over-smoothed, and the detail structures

are blurred. In Figure 5.1(f) - (h), the reconstructed images with the wavelet regularized

AM algorithm are presented. In Figure 5.1(f), the penalty weight is 500, and the noise level

does not get sufficiently suppressed. In Figure 5.1(g), the penalty weight choice is set to

be 1000, and we have a good balance between smoothness and the detail resolution. If the

penalty weights increases to 2000 as in Figure 5.1(h), the detail structure resolution is lost

and a blocky effect on the edges can be seen.

To further compare the performance, the profiles of slice No. 199 which are highlighted with

red lines in Figure 5.1 are presented in Figure 5.2. Figure 5.2(a) shows the ground truth

profile. In Figure 5.2(b), the unregularized AM/wav-AM reconstruction result is shown, and

severe noise can be seen. From Figures 5.2(c) to (e), with increased penalty weight, the

noise level is reduced. However, the peak and valley contrast is also lost. The peak and

valley values shrink towards their average value. The smoothness is improved at the cost
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: Simulated data reconstructions: (a) the ground truth, (b) unregularized
AM/wav-AM, (c) regularized AM with λ = 2 × 104, (d) regularized AM with λ = 2 × 105,
(e) regularized AM with λ = 6× 105, (f) regularized wav-AM with γ = 500, (g) regularized
wav-AM with γ = 1000, and (h) regularized wav-AM with γ = 2000.

of peak and valley contrast resolution[75]. From Figures 5.2(f) to (h), with the increase of

the wavelet penalty weight γ from 500 to 2000, the noise level in the homogeneous region is

reduced, the peak and valley contrast is kept.

From this simulation, the wavelet penalty has shown a significant advantage over the tradi-

tional image-domain neighborhood penalty. With a large penalty weight in the neighborhood

penalty, the improvement in the smoothness is at the sacrifice of detail resolution and edge

contrast. The wavelet penalty can retain the detail resolution and edge contrast.

Quantitatively, the root mean square error (RMSE) and the peak signal-to-noise ratio

(PSNR) are compared and shown in Table 5.1. All these regularized algorithms improve

performance compared with the unregularized AM/wav-AM method. With the best choices
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Profiles of slice no. 199: (a) the ground truth, (b) unregularized AM/wav-AM,
(c) regularized AM with λ = 2× 104, (d) regularized AM with λ = 2× 105, (e) regularized
AM with λ = 6 × 105, (f) regularized wav-AM with γ = 500, (g) regularized wav-AM with
γ = 1000, and (h) regularized wav-AM with γ = 2000.

AM/wav-AM
Wavelet regularized AM Neighborhood regularized AM

γ = 500 γ = 1000 γ = 2000 λ = 2× 104 λ = 2× 105 λ = 6× 105

RMSE 20.29× 10−4 7.48× 10−4 6.95× 10−4 10.26× 10−4 12.18× 10−4 10.45× 10−4 12.10× 10−4

PSNR(dB) 26.74 34.79 35.72 32.15 30.95 31.79 29.88

Table 5.1: RMSE using traditional AM with different penalty weights and wav-AM using
different penalty weights.

in penalty weights, γ = 1000 and λ = 2× 105, the wavelet regularized AM outperforms the

traditional neighborhood regularized AM algorithm in both RMSE and PSNR, which is in

agreement with the observation in Figure 5.2.

5.5.4 Bag data experiment

In the simulated data experiment, although both the regularized AM and regularized wav-

AM can reduce the noise, an optimal choice of the penalty weight offers the best performance.
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However, in the following bad data experiment, it is shown that it is difficult to find an

optimal weight.

Data package were acquired from a SureScanTM x1000 explosive detection system which

scanned a NIST phantom inside a suitcase. The object of interest was a Delrin cylinder

wrapped with aluminum, copper, tin and lead. The geometry is shown in Figure 5.3 [20].

Figure 5.3: Geometry of the NIST A phantom. Figure courtesy of SureScanTM Corporation.

In Figure 5.4, the histogram of the source-detector pairs with respect to the number of

detected photons is plotted. It can be seen that the maximum number of detected photons

for any single source-detector pair is fewer than 2000, and a large portion of the source-

detector pairs have a minimal number of photon counts. The data is photon starved and

suffers heavy noise and artifacts. The methods introduced above were used to reconstruct

the 3-D volume.

In Figure 5.5, a lateral slice of the reconstructed volume with the regularized AM and

regularized wav-AM algorithms is illustrated. In Figure 5.5(a), the reconstruction with the
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Figure 5.4: Histogram of photon counts at source-detector pairs.

unregularized AM algorithm is shown. Prominent noise is present across the Derlin cylinder.

In Figure 5.5(b), (c), and (d), the reconstructed images with the regularized AM algorithm

with penalty weights λ = 1000, 5000, and 15000 are shown. With the increase of λ, the

noise is suppressed, but also over-smoothed. Figure 5.5(e) and (f) show the reconstructed

images with the regularized wav-AM and γ = 1000 and 3000. With the increase of γ, the

noise is also suppressed and the smoothness is improved. However, even with large γ, the

smoothness with wav-AM is not as good as the traditional regularized AM with a large

penalty weight λ.

Although with a large λ = 15000, smooth images can be reconstructed, there exist disad-

vantages because in some scenarios, the penalty weight cannot be allowed to be too large.

In Figure 5.6, the profiles of a single column are illustrated. The column is denoted as the

red line in Figure 5.5(a). In Figure 5.6(a), the profiles of the unregularized AM (λ = 0) and

regularized AM with λ = 1000, 5000, and 15000 are plotted. With λ increasing, the noise

level gets reduced at the expense of a dramatic drop in the peak value of the aluminum
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Lateral slice no. 186 of the reconstructed volume (a) with unregularized AM,
(b) with AM and λ = 1000, (c) with AM and λ = 5000, (d) with AM and λ = 15000, (e)
with wav-AM and γ = 1000, (f) with wav-AM and γ = 3000. Each transverse image has
172 slices. The images are cropped to the center half containing the case.

wrap. In Figure 5.6(b), a detail-amplified version of the profiles is shown. The aluminum

wrap with different λ have not only different values but also different widths. Large penalty

weights will generate biased reconstructions and lose the edge resolution.

The profiles for the wav-AM algorithm are shown in Figure 5.7. In Figure 5.7(a), profiles

have nearly constant peak values with increasing γ. In Figure 5.7, the edges between air and

the aluminum wrap, and the edges between the aluminum wrap and the Delrin cylinder have

almost the same sharpness and edge resolution. Even with different choices of γ, the mean
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(a) (b)

Figure 5.6: Profiles of the reconstructed images from the regularized AM algorithm. (a)
profile comparison of column no. 186 of lateral slice no. 99. (b) profile of the center area.

values of the reconstructed image are very close. The bias in the traditional image-domain

regularized AM algorithm is reduced with the wav-AM algorithm.

The following figures will show another disadvantage of the AM algorithm compared to wav-

AM. In Figure 5.8, the reconstructed images of slice no. 92 are shown. In Figure 5.8(a),

with the unregularized AM algorithm, there exist heavy streaks tangent to the boundary of

the Delrin cylinder, and dotted noise is visible across the entire region. When the penalty

term is added, as shown in Figures 5.8(b), (c), and (d), if the penalty weight is small like

λ = 1000 or 5000, there exist severe artifacts and noise. When λ is increased to 15000, the

streak artifacts finally get mostly suppressed. When the wav-AM algorithm is used with

γ = 1000 and γ = 3000 the streak artifacts are reduced dramatically.

From the bag data experiment, it was shown that the traditional AM algorithm generates

biased reconstructions if heavy penalties are used. However, if the penalty weight is not

large enough, there still exist unwanted artifacts and heavy noise. To solve this contradictory

requirement in the choice of penalty weight, we keep the penalty weight in the traditional
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(a) (b)

Figure 5.7: Profiles of the reconstructed images from the regularized wav-AM algorithm. (a)
profile comparison of column no. 186 of lateral slice no. 99. (b) profile of the center area.

AM algorithm small and add another wavelet penalty term which does not introduce bias

to handle the streak artifacts.

5.6 Dual-domain alternating minimization

5.6.1 Dual-domain regularization

As illustrated in [75], although we can use the sparsity of wavelet coefficients as prior knowl-

edge to reduce artifacts and suppress noise, the performance relies heavily on the choice

of penalty weight γ. A small weight gives minor improvement in the reconstructed image

quality. A large weight introduces blocky artifacts and loses the overall resolution. Finding

a proper penalty weight is difficult and time-consuming. There exist no blocky artifacts with

the regularized AM algorithm if the edge-preserving penalty is used. However, a small image

domain penalty weight cannot produce a smooth reconstruction. Although a large penalty
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Slice no. 92 of the reconstructed volume (a) with unregularized AM, (b) with
AM and λ = 1000, (c) with AM and λ = 5000, (d) with AM and λ = 15000, (e) with
wav-AM and γ = 1000, (f) with wav-AM and γ = 3000. Each transverse image has 172
slices. The images are cropped to the center half containing the case.
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weight can do so, it will generate a biased reconstruction at the same time. A dual domain

alternating minimization (dual-AM) algorithm is proposed to solve these contradictory re-

quirements.

The cost function for dual-AM is

f(u, β) =
∑
i

I(di||yi) + λR(u) + γK(β), (5.25)

where R(u) =
∑

j

∑
j∈Nk φ(uj−uk) is the image-domain neighborhood penalty, and K(β) =∑

l |βl| is the wavelet-domain penalty. Because the wavelet transform matrix Ω and its

inverse transform matrix Ω̂ are both orthogonal, this dual-domain optimization problem ca

be solved in either the image domain or the wavelet domain by

min
u

∑
i

I(di||yi(u)) + λR(u) + γK(Ω̂u), (5.26)

or

min
β

∑
i

I(di||yi(β)) + λR(Ωu) + γK(β) (5.27)

These two problems are equivalent and can be interchangeably converted by β = Ω̂u and

u = Ωβ. For the simplicity of computation, problem (5.26) is solved.

Due to the existence of Ω̂, penalty term K(Ω̂u) is self-coupled. It is hard to use the same

decoupling method as in the regularized AM algorithm. Instead, the sparse reconstruction

by separable approximation algorithm (SpaRSA) is used [76].

Because I(di||yi) and R(u) are both convex with respect to u, problem (5.26) can be refor-

mulated as

min
u
g(u) + γK(Ω̂u), (5.28)
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where g(u) =
∑

i I(di||yi)+λR(u). A sequence of iterates {u(n) : n = 0 , 1 , 2 , ...} is generated.

Problem (5.28) is solved by iteratively solving the following sub-problem,

u(n+1) = arg min
z

(z − u(n))
∂g(u)

∂u

∣∣∣
u=u(n)

+
αn
2
||z − u(n)||2 + γK(Ω̂z), (5.29)

where αn > 0. An equivalent form of the sub-problem (5.29) is

u(n+1) = arg min
z

1

2
||z − û(n+1)||2 +

γ

αn
K(Ω̂z), (5.30)

where

û(n+1) = u(n) − 1

αn

∂g(u)

∂u

∣∣∣
u=u(n)

. (5.31)

αn is taken as the second order derivative of g(u). By this definition,

u(n+1) = arg min
z

1

2
||z − û(n+1)||2 +

γ

αn
K(Ω̂z), (5.32)

where

û(n+1) = u(n) −
[
∂g(u)

∂u

]
/

[
∂2g(u)

∂u2

]∣∣∣∣
u=u(n)

(5.33)

is the Newton’s update for problem (5.5).

Because Ω is an orthogonal wavelet transform operator, equation (5.32) can be rewritten as

u(n+1) = arg min
z

1

2
||Ωz − Ωû(n+1)||2 +

γ

αn
|Ω̂z|, (5.34)

or

β(n+1) = arg min
z̃

1

2
||z̃ − β̂(n+1)||2 +

γ

αn
|z̃|, (5.35)
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where z̃ and β̂ represent the wavelet coefficients of z and û, respectively. It has been demon-

strated that the iterative shrinkage thresholding algorithm (ISTA) [77] provides a solution

β(n+1) =
(∣∣β̂(n+1) − γ

αn

∣∣)
+

sgn(β̂(n+1)) (5.36)

In this way problem (5.26) is solved in a two-step scheme. First, a traditional image do-

main regularized AM update is derived, and then the corresponding wavelet coefficients are

updated with (5.36).

Another advantage of the dual-domain AM algorithm is that there is no need for the matrix

form of the discrete wavelet transform operator Ω, and there is no need to compute the

forward matrix Ψ. A fast wavelet transform can be applied to accelerate the computation

of β = Ωu.

The dual-domain alternating minimization algorithm is summarized as

Algorithm 6: Dual-domain alternating minimization algorithm

Initialize u(0).
for n = 0 to N − 1 do

Solve the image-domain regularized AM with Newton’s method to update û(n+1).
Update the wavelet coefficients β(n+1) with (5.36).
Update u(n+1) with u(n+1) = Ωβ(n+1).

end

5.6.2 Bag data experiment

In this section, the same bag data as in Section 5.5.4 was used to demonstrate the per-

formance of the dual-AM algorithm. The reconstructed images of lateral slice No. 186 are

presented in Figure 5.9. In Figure 5.9(a), the regularized AM algorithm result with λ = 1000
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is shown. In Figure 5.9(b), the regularized wav-AM result with γ = 1000 is shown. In Figure

5.9(c), reconstructed with the dual-AM algorithm and λ = 1000, γ = 1000, the image has

the lowest noise level compared with (a) and (b). Compared with the images in Figure 5.5(c)

and (d), in which heavy penalty weights λ = 5000 and λ = 15000 were used, the image in

Figure 5.9 does not suffer the oversmoothing effect.

(a) (b) (c)

Figure 5.9: Slice no. 186 of the reconstructed volume: (a) the regularized AM algorithm
with λ = 1000, (b) the regularized wav-AM algorithm with γ = 1000, (c) the dual-AM
algorithm with λ = 1000 and γ = 1000.

In Figure 5.10, the profiles of the dual-AM algorithm results are compared with the reg-

ularized AM algorithm. In Figure 5.10(a), with λ = 1000 and γ = 1000 in the dual-AM

algorithm, the peak value of the profile is in agreement with the result of the regularized

AM algorithm with λ = 1000, and is significantly higher than the results with larger penalty

weights. In Figure 5.10(b), the center area of the profiles are magnified. The dual-AM

algorithm retains good edge preservation on the boundaries between different materials.

In Figure 5.11, the profiles of reconstructed image column no. 99 are compared with the

results of the wav-AM algorithm. In Figure 5.11(a), with λ = 1000 and γ = 1000 in the dual-

AM algorithm, the peak value is very close to the peak values from the wav-AM algorithm
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(a) (b)

Figure 5.10: Profiles of the reconstructed images with the dual-AM algorithm and the reg-
ularized AM algorithm: (a) profile comparison of column no. 186 of lateral slice no. 99, (b)
profile of the center area.

with γ = 1000 and γ = 3000. In Figure 5.11(b), in the center area of the profiles, the

dual-AM algorithm outperforms the wav-AM algorithm in noise reduction.

(a) (b)

Figure 5.11: Profiles of the reconstructed images from the dual-AM algorithm and the regu-
larized wav-AM algorithm: (a) profile comparison of column no. 186 of lateral slice no. 99,
(b) profile of the center area.
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The dual-AM algorithm can effectively suppress the artifacts shown in 5.8. In Figures

5.12(a) and (b), it is shown that increasing λ from 1000 to 5000 does not eliminate the

streak artifacts. From the experiment in the previous section, λ = 5000 generates over-

smoothed images. In Figure 5.12(c), the streak artifacts are dramatically reduced with the

dual-AM algorithm.

(a) (b)

(c)

Figure 5.12: Slice no. 99 of the reconstructed volume: (a) the regularized AM algorithm
with λ = 1000, (b) the regularized algorithm with λ = 5000, (c) the dual-AM algorithm
with λ = 1000 and γ = 1000.

From the experiments above, it was shown that the challenge of the contradictory require-

ments of penalty weight choices is solved by introducing another penalty term in the wavelet
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domain. The combination of image-domain penalty and wavelet-domain penalty can reduce

the noise and streak artifacts at the same time. With this combination of dual-domain penal-

ties, the penalty weight can be set relatively small, and in this way, the biased estimation

and over-smoothing when using the large penalty weight is avoided.

5.6.3 Computation cost comparison

As stated in [48], the determining factor of computation time in the AM algorithm and the

wav-AM algorithm is the time used to compute forward and backward projections. The

time used to compute these two projections is relevant to the complexity of the forward

projector H and Ψ. Usually, H is much sparser than Ψ which leads to the fact that for

every iteration, the AM algorithm takes less time than the wav-AM algorithm. This is

another reason why in the dual-AM algorithm, the cost function (5.26) is minimized in the

image domain instead of the wavelet domain. Still, in the dual-AM algorithm, the dominant

time-consuming computation is the image-domain forward and backward projection.

5.7 Summary

A new wavelet domain iterative algorithm was proposed. With the wavelet-domain penalty,

wav-AM can generate unbiased reconstruction and reduce noise and artifacts. To incorporate

the advantages of the image-domain penalty, the dual-domain alternating minimization al-

gorithm was proposed. From the bag data experiment, the dual-AM algorithm outperforms

the single-domain regularized algorithms in noise reduction and artifact suppression.
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Chapter 6

Penalty weight optimization – Laplace

prior variational automatic relevance

determination (Lap-VARD)

6.1 Highlights

In this chapter, an algorithm to find the optimal penalty weight choice is proposed. The

penalty weight is taken as a parameter of a prior Laplace distribution. Optimization of

this parameter using an automatic relevance determination framework results in a balance

between the sparsity and accuracy of signal reconstruction. The performance of Lap-VARD

is shown through a phantom simulation of x-ray CT.
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6.2 Motivation

In the previous chapter, the wavelet-domain penalty was proposed. The wavelet-domain

penalty can suppress image noise and reduce artifacts. However, the performance of the

wavelet-domain penalty relies heavily on the penalty weight choice. The image-domain

penalty weight, which is a direct trade-off between image resolution and noise, has been

studied for decades. In the wavelet domain, the relationship between the wavelet-domain

penalty weight and image quality is not straightforward. Instead of using an empirical choice

of the wavelet-domain penalty weight, Lap-VARD is proposed to find the optimal penalty

weight.

6.3 Notation

In this section, the notations used in this chapter are summarized.

• d: measured transmission data.

• y: estimated mean.

• u: reconstructed image.

• β: wavelet transform of the reconstructed image

• I: air-scan source intensity.

• H: system matrix.

• Ω: inverse wavelet transform matrix.
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• Ω̂: wavelet transform matrix.

• i: source-detector pair index.

• j: image pixel (voxel) index.

• l: wavelet coefficient index.

• µ: mean of the posterior Laplace distribution

• b: standard deviation of the posterior Laplace distribution

6.4 Lap-VARD

6.4.1 Wavelet-domain penalty

In single energy x-ray CT image reconstruction, under the Poisson noise assumption, the

maximum log-likelihood estimation cost function is

f(u) =
∑
i

−di log qi(u) + qi(u), (6.1)

where

qi(u) = Iie
−

∑
j hijuj , (6.2)

and u is the image to reconstruct, di is the measured transmission data at source-detector

pair i, qi is the estimated mean of the transmission data at source-detector pair i, Ii is the

air-scan intensity measured at source-detector pair i, and hij is the system matrix element

that represents the contribution of pixel j to source-detector pair i.
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The wavelet-domain penalty was introduced in Chapter 5. The wavelet sparsity penalty is

of the form

γ
∑
l

|βl|, (6.3)

where β is the wavelet coefficient of the reconstructed image u. β and u are connected by

the transform pair

u = Ω× β, (6.4)

and

β = Ω̂× u. (6.5)

With this transform pair, the regularized cost function becomes

f(β) =
∑
i

[
− di log qi(β) + qi(β)

]
+ γ

∑
l

|βl|, (6.6)

where

qi(β) = Iie
−

∑
j hij

∑
l ωjlβl = Iie

−
∑
l ψilβl . (6.7)

The new system matrix Ψ = H × Ω. Because the values of wavelet coefficients βl have a

large dynamic range, using a single penalty weight will not achieve the best performance.

Instead, the penalty term is redesigned as

∑
l

γl|βl|. (6.8)

The corresponding cost function is

f(β) =
∑
i

[
− di log qi(β) + qi(β)

]
+
∑
l

γl|βl|. (6.9)
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Due to the fact that the penalty weight vector γ is in a high dimensional space, there is no

empirical way to set the penalty weights. The automatic relevance determination (ARD)

[78, 79] framework is used to find the optimal γ.

6.4.2 Proposed method

In sparsity-driven problems, the basic idea is that when the prior knowledge that the image

of interest is sparse or sparse in some basis is known, fewer observations are needed to

reconstruct the image by using the significant components in the image [80]. A universal

method to seek a best sparse approximation is by using an L-1 penalty

min
x
L(x) = f(x) + λ|x|, (6.10)

where L(x) is the cost function, and f(x) is the data-fitting term. This is equivalent to the

L-1 regularization problem [81]

min
x
|x|, s.t. f(x) ≤ ε. (6.11)

In problem (6.10), the optimal solution shrinks to 0 as the penalty weight λ goes to +∞,

which means that the sparsity of vector x is controlled by the choice of λ. To get a balance

between sparsity and data fitting, the Lap-VARD is proposed to automatically update λ

iteratively.

Lap-VARD is inspired by the fact that if the data fitting term in (6.10) is the negative

log-likelihood

f(x) = − log p(y|x), (6.12)
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and let the prior of x be a zero-mean Laplace distribution p(x;λ) = 1
2λ
e−
|x|
λ , with E[x] = 0

and Var[x] = 2λ2. Problem (6.10) can be rewritten as

L(x) = − log p(y|x)− log p(x;λ). (6.13)

This problem becomes a maximum a posteriori (MAP) estimation [82]. Instead of maxi-

mizing the posterior probability over x, λ is taken as a hyper-parameter and the marginal

likelihood p(y;λ) is maximized,

max
λ

L(λ) = log p(y;λ) = log

∫
p(y|x)p(x;λ)dx. (6.14)

Based on (6.9), p(d|β) and p(β; γ) can be defined as

log p(d|β) =
∑
i

di log qi(β)− qi(β), (6.15)

and

log p(β; γ) =
∑
l

γl|βl|. (6.16)

The optimal γ, which is defined as γ∗, is given by

γ∗ = arg max
γ

log p(d; γ) = arg max
γ

log

∫
p(d|β)p(β; γ)dβ. (6.17)

To solve the maximization problem given above, the marginal log-likelihood is rewritten as

log p(d; γ) = −Eq(β) log[q(β))/p(d, β; γ)] + DKL[q(β||p(β|d; γ)], (6.18)
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where Eq(β) stands for the expected value with respect to q(β), and DKL is the Kullback-

Leibler (KL) divergence.

A variational method is used to maximize (6.18) iteratively [83]. Because the change of q(β)

does not affect the value of log(d|γ), at iteration n, we can set q(β)(n+1) = p(β|d, γ(n)) such

that DKL[q(β||p(β|d; γ)] = 0. Only the first term in (6.18) , which is called free variational

energy (FVE), needs to be maximized with respect to γ. The EM algorithm [83] can be

viewed as minimizing the FVE function by alternately updating q(β) and γ. However,

the posterior p(β|d, γ) has no closed-form expression. As in VARD [79], the form of the

posterior distribution is restricted. Here, we set the posterior to be a Laplace distribution

q(β) ∼ Laplace(µ, b) with E[β] = µ and Var[β] = 2b2.

The objective function is rewritten as

log p(d|γ, µ, b) =− Eq(β) log[q(β)/p(d, β; γ)] + DKL[q(β)||p(β|d; γ)]

=

∫
q(β) log p(d|β)dβ +

∫
q(β) log q(β)dβ −

∫
q(β) log p(β, γ)dβ

=
∑
i

(∏
l

1

1− (blΨil)

)
Iie
−

∑
l Ψilµl +

∑
i

di

(∑
l

ψilβl

)
+
∑
j

1

γj

(
bje
−
|µj |
bj + |µj|

)
+
∑
l

log(2γl)−
∑
l

log(2bl). (6.19)

log p(d|γ, µ, b) is convex with respect to µ for fixed b and γ, and is also convex with respect

to b for fixed µ and γ. Though log p(d|γ, µ, b) is not convex with respect to γ for fixed µ and

b, there exists only one stationary point for γ, and it is easy to show that this stationary is

the global minimizer when µ and b are fixed.

An alternating iterative algorithm is proposed to minimize function (6.19).
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Minimization with respect to γ

The minimizer γ∗ has an explicit expression

γ∗l = ble
− |µl|

bl + |µl|. (6.20)

Minimization with respect to µ

The terms in log p(d|γ, µ, b) that contain µ are

F (µ) =
∑
i

(∏
l

1

1− (blΨil)

)
Iie
−

∑
l Ψilµl +

∑
i

di

(∑
l

ψilβl

)
+
∑
j

1

γj

(
bje
−
|µj |
bj + |µj|

)
.

(6.21)

The parameters µl are coupled, so to update them in parallel at every iteration, the con-

vex decomposition lemma introduced in previous chapters is used again, and the resulting

surrogate function is

G(µ) =
∑
l

[(∑
i

Ψildiµl

)
+ θ+

l e
−Z0(µl−µ̂l) − θ−l e

Z0(µl−µ̂l) +
bl
γl
e
− |µl|

bl +
|µl|
γl

]
, (6.22)
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where

θ+
l =

∑
i∈C

(∏
i∈C

1

1− (blΨil)2

)
αilIie

−
∑
l Ψilµ̂l

θ−l =
∑
i∈Ĉ

(∏
i∈Ĉ

1

1− (blΨil)2

)
αilIie

−
∑
l Ψilµ̂l

Z0 =
|Ψil|
αil

= max
i

∑
l

|Ψil|

C ={(i, l)|Ψil > 0}, Ĉ = {(i, l)|Ψil ≤ 0}.

µ̂l is the current estimate. Given the convex surrogate function with decoupled µl, several

methods are available. To simply account for the discontinuous derivative of |µl|, the sub-

gradient method is chosen [84].

Minimization with respect to b

The terms in log p(d|γ, µ, b) that contain b are

F (b) =
∑
i

(∏
l

1

1− (blΨil)

)
Iie
−

∑
l Ψilµl +

∑
j

1

γj

(
bje
−
|µj |
bj + |µj|

)
−
∑
l

log(2bj). (6.23)

The minimizer b∗j does not have a closed-form expression. The parameters bj are coupled, so

the convex decomposition lemma is used again to generated the surrogate function

G(b) =
∑
l

1

γl

(
ble
− |µl|

bl

)
−
∑
l

∑
i

rilQil(b̂)
1

1− (b̃lΨil)2
Iie
−

∑
l Ψilµl −

∑
l

log(2bl), (6.24)
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where

∑
l

ril ≤1

Qil(b̂) =
∏
j 6=l

1

1− (b̂jΨij)2

b̃il =b̂l +
bl − b̂l
ril

. (6.25)

With this surrogate function, the Newton’s method is used find the minimizer b∗j at every

iteration.

µ is the estimated mean of the wavelet coefficients β, and γ corresponds to the penalty

weight. If the inverse wavelet transform is used such that the image is reconstructed with

β, the optimal penalty weight and its corresponding image are generated at the same time.

6.5 Phantom simulation

In this section, a phantom simulation is used to demonstrate the performance of Lap-VARD.

The simulation data is from Section 5.5.3. A FORBILD phantom [74] with image size

256 × 256 and pixel size 1 mm × 1 mm was used. The number of source-detector pairs is

21600. The wavelet transform is chosen to be a Haar wavelet with 3 levels. The dose level

is set to be 150 mAs which is typical for clinical systems.

The Lap-VARD result was compared with the unregularized AM algorithm, the image-

domain regularized AM algorithm, and the wavelet-domain regularized AM algorithm. The

reconstructed images are shown in Figure 6.1. The detail structures in the red boxes are

magnified in the upper-left corners.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Reconstructed images: (a) ground truth, (b) Lap-VARD, (c) VARD, (d) unregu-
larized AM, (e) wavelet-domain regularized AM with penalty weight 300, (f) wavelet-domain
regularized AM with penalty weight 1000, (g) image-domain regularized AM with penalty
weight 2× 105, and (h) image-domain regularized AM with penalty weight 6× 105.

Figure 6.1(a) shows the ground truth for the FORBILD phantom. In Figure 6.1(b), the image

was reconstructed with the posterior mean µ by the inverse wavelet transform. The estimated

image of the traditional VARD [79] is shown in Figure 6.1(c), which has low noise and good

resolution, but there are some isolated bad pixels. Figure 6.1(d) is the unregularized AM

result. In Chapter 5, it was shown that because the Haar wavelet transform is orthogonal,

the unregularized wavelet AM and the traditional unregularized AM are equivalent, and the

result shows a high noise level. Figure 6.1(e) and (f) are wavelet penalized AM algorithm

reconstructions with penalty weight 300 and 1000. In (e), the penalty weight is too low such

that the noise is still significant. In (f), a proper penalty weight is chosen, and low noise level

and high resolution are reached at the same time. Figure 6.1(g) and (h) are image-domain

regularized AM results with penalty weights 2 × 105 and 6 × 105. In (g), a proper choice
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of the penalty weight generated an image with low noise and high resolution. However, in

Figure 6.1(h), when a high penalty weight is used, the image is over-smoothed, and the detail

structures are blurred.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Profiles of column no. 199: (a) round truth, (b) Lap-VARD, (c) VARD, (d)
unregularized AM, (e) wavelet-domain regularized AM with penalty weight 300, (f) wavelet-
domain regularized AM with penalty weight 1000, (g) image-domain regularized AM with
penalty weight 2× 105, and (h) image-domain regularized AM with penalty weight 6× 105.

The profiles of column no. 199 which are highlighted with the red line in Figure 6.1 are

shown in Figure 6.2. Figure 6.2(a) shows the ground truth of the profile. In Figure 6.2(b),

the reconstruction with Lap-VARD is shown, which gives a quantitatively accurate recon-

struction in both the peak-valley contrast and smoothness. In Figure 6.2(c), the profile from

traditional VARD is plotted, which has a similar result as the Lap-VARD in smoothness

restoration and peak-valley contrast. However, a bad pixel can be seen at the same time.

The profile from the unregularized AM algorithm is shown in Figure 6.2(d); the peak-valley

contrast is kept, but the noise level is dramatically increased. Figure 6.2(e) plots the result

from wavelet regularized AM with penalty weight 300. Still, it shows a high noise level

which means the penalty weight is too low. In Figure 6.2(f), with a proper choice of penalty
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weight of 1000, the wavelet regularized AM shows comparatively higher noise level than the

Lap-VARD result. Figure 6.2(g) is the image-domain regularized AM result with penalty

weight 2× 105, and compared with Lap-VARD result, the noise level is significant. Another

severe problem is that the peak and valley values shrink towards their average value. In the

over-smoothed result, as shown in Figure 6.2(h), with a large penalty weight 6 × 105, the

peak and valley contrast further shrinks and the result is biased.

A quantitative error comparison is summarized in Table 6.1. The root mean square error

(RMSE) and peak signal-to-noise ratio (PSNR) with different algorithms are shown. In both

metrics, the Lap-VARD algorithm has the best performance.

Lap-VARD VARD AM wav-AM (γ = 300) wav-AM(γ = 1000) AM(λ = 2× 105) AM(λ = 6× 105)
RMSE 4.86× 10−4 7.09× 10−4 0.0020 9.45× 10−4 7.28× 10−4 0.0012 0.0010

PSNR(dB) 38.37 35.42 26.74 32.70 34.93 31.79 29.88

Table 6.1: RMSE and PSNR performances of different algorithms

6.6 Summary

The penalty weight choice has been a hot topic since the idea of using a penalty term was

developed. The traditional method to determine the penalty weight heavily relies on an

empirical experiment, which is time consuming. In this chapter, a data-driven algorithm is

proposed to derive the optimal penalty weight from the ARD framework. At the same time,

the image corresponding to the optimal penalty weight choice is reconstructed.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have shown that the DEAM algorithm can improve the statistical

model in the sinogram-based decomposition method and eliminate the corresponding bias.

With a more accurate basis-material image reconstruction, the proposed JSIR framework

has the potential to achieve better accuracy and precision on proton stopping power ratio

(SPR) estimation, which is important in proton therapy treatment planning, even when the

scan dose level is low.

Although it was demonstrated with a simulation that the JSIR framework also generates

nearly unbiased estimates in PCCT, the physical model of photon-counting detector is en-

tirely different from the energy-integrating detectors used in dual-energy CT systems. A

physical phantom experiment is needed to assess the JSIR framework in the photon-counting

CT systems. Another challenge in photon-counting CT systems is that when the radiation

dose increases, the pulse pile-up effect dramatically increases and heavily distorts the mea-

surement. Calibration has to be carried out to compensate for the distortion caused by the

pile-up effect. The trade-off between the pile-up effect and photon statistics is a crucial

consideration in determining the dose level in photon-counting CT systems.
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Another dose-related topic in spectral CT is that the PCCT system only requires a single

scan, and the DECT system requires high- and low-energy scans. Theoretically, the PCCT

system has the potential to cut the radiation dose in half compared with the DECT sys-

tem. This potential is determined by the photon-counting detector response, which is quite

different from the well-studied energy-integrating detectors and is worth further studying.

It was shown that ASAM takes advantage of both the iterative algorithm and the preprocess-

ing method and outperforms them in metal-artifact reduction. However, the metal-artifact

reduction performance is parameter related. In clinical settings, the raw data is more com-

plicated than the measured data in the physical phantom experiment. A general guideline

for the parameter choice or a data-driven framework to determine the parameters will be

the next step to improve the ASAM algorithm.

As was discussed in section 4.7.2, when the scanned object contains heavy metal inserts,

the measurements have an extensive dynamic range. In the photon-starved channels, the

primary photon statistics are low, and the scatter-to-primary ratio is high. This will result

in an underestimation of the attenuation. ASAM has the potential to compensate for the

underestimation and give a reference value for the scatter intensity.

A concern about the image-domain penalty is that when the noise level is high, a heavy

penalty is required at the cost of loss of resolution and even biased estimation. It was shown

that with the wavelet domain penalty, at the same reduction of noise and artifacts, the wav-

AM algorithm can generate unbiased reconstructions. Following the wav-AM algorithm, the

Lap-VARD algorithm is proposed to determine the optimal wavelet penalty weight which is

hard to derive with empirical experiments. In the next step, a physical phantom experiment

will be carried out to assess the performance. A challenge that limits the application of the

wav-AM and Lap-VARD is the cost of computing forward projection operator Ψ. In section
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5.5, Ψ is defined as Ψ = H × Ω, where H is the CT system matrix and is highly sparse,

and Ω is the wavelet transform matrix. The result is that Ψ has huge dimensions and is not

sparse. The forward projection requires huge storage space and is time-consuming. Instead

of precomputing Ψ and store it locally, an alternative way is to use parallel computing tools

like GPUs to compute the forward projection on-the-fly.
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Appendix A

Derivation of theorems

A.1 Proof of bias in the sinogram-based decomposition

method

In this appendix, we show that the sinogram-based decomposition method generates biased

estimates and the bias decreases when the dose level increases.

A.1.1 Mono-energy case

First, we show that the line attenuation coefficient estimation method has a positive bias

and this bias decreases when the dose level increases in the mono-energetic case. Assume a

mono-energetic x-ray beam with energy E1 and intensity I1 passes through a layer of basis

material with thickness l. Let µ(E1) be the linear attenuation coefficient of basis material 1

at energy E1. Under the Poisson noise assumption, the measured transmission is given by

d1 ∼ Poisson(y1), (A.1)
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with mean

y1 = I1e
−µ(E1)l. (A.2)

The maximum log-likelihood estimate of the linear attenuation coefficient is given by

µ̂1 = −1

l
log

d1

I1

. (A.3)

The expected value of this MLE value is defined as E(µ̂1) = E[−1
l

log d1
I1

]. From Jensen’s

inequality and the fact that − log(x) is a convex function with respect to x, we have E(µ̂1) ≥

µ(E1), and the equality is reached when I1 →∞.

Let f(d1) = −1
l

log d1
I1

. Then, the expectation value of f(d1) is given by

E[f(d1)] = E
[
− 1

l
log

d1

I1

]
. (A.4)

With Taylor series expansion at the point of y1 to the second order,

E[f(d1)] ≈ f(y1) +
∂f(y1)

∂d1

E[(d1 − y1)] +
1

2

∂2f(y1)

∂2d1

E[(d1 − y1)2]. (A.5)

Due to the fact that y1 is the mean of Poisson random variable d1, E[(d1 − y1)] = 0 and

E[(d1 − y1)2] = y1. Then,

E
[
− log

d1

I1

]
≈− 1

l
log

y1

I1

+
1

2

∂2f(y1)

∂2d1

y1

=µ(E1) +
1

2

1

y2
1

y1

=µ(E1) +
1

2y1

. (A.6)
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The linear attenuation coefficient estimation has a positive bias, 1/2y1, which has a inverse

relationship with the dose level.

A.1.2 Dual-energy case

Assume two mono-energetic x-ray beams with energies E1, E2 and intensities I1, I2 pass

through the same basis material with thickness l. Let µ(E1) and µ(E2) be the linear attenu-

ation coefficient of basis material at energies E1 and E2. Under the Poisson noise assumption,

the statistics of the data are given by

d1 ∼ Poisson(y1), d2 ∼ Poisson(y2), (A.7)

with the means

y1 = I1e
−µ(E1)l, y2 = I2e

−µ(E2)l. (A.8)

The maximum log-likelihood estimate of the thickness l is defined by

l̂ = arg min
l
d1µ(E1)l + d2µ(E2)l + I1e

−µ(E1)l + I2e
−µ(E2)l. (A.9)

Unlike the mono-energy case, l̂ does not have a closed-form solution. However, we can define

l∗1 and l∗2 to be the maximum log-likelihood estimates of the mono-energy scans

l∗1 = arg min
l
d1µ(E1)l + I1e

−µ(E1)l, (A.10)

and

l∗2 = arg min
l
d2µ(E2)l + I1e

−µ(E2)l, (A.11)
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both of which have closed-form solutions

l∗1 = − log
d1

I1

/µ(E1), l∗2 = − log
d2

I2

/µ(E2). (A.12)

From the fact that these two mono-energy scans cost functions are both convex with respect

to l, we have

min(l∗1, l
∗
2) ≤ l̂ ≤ max(l∗1, l

∗
2), (A.13)

which means that this simplified dual-energy estimate l̂ is strictly bounded by the mono-

energy estimates l∗1 and l∗2. From the discussion in the previous mono-energy case, l̂ decreases

when the dose level increases and converges to the ground truth value l. This proof can be

easily extended to continuous spectrum case.

A.1.3 Multi-energy case

The multi-energy case for photon-counting system is more complicated because more than

two energy bins measurements are obtained. However, it is also easier to analyze because

only one spectrum is used. For each energy on the spectrum, the analysis of section A.1.1

can be applied, and the optimal thickness estimate l∗E, E = 1, 2, ..., Emax can be derived.

Using the same analysis in section A.1.2, we have

min(l∗E, E = 1, 2, ..., Emax) ≤ l̂ ≤ max(l∗E, E = 1, 2, ..., Emax), (A.14)

which means that the multi-energy estimate l̂ is strictly bounded by the set of mono-energy

estimates. We still have the conclusion that l̂ decreases when the dose level increases and

137



converges to the ground truth value l. This proof can be extended to PCCT where the

energies across the spectrum are combined into several energy bins.

A.2 Proof of Theorem 2.1

Define a minimization problem

min
p

min
q
F = min

p
min
q

∑
y,k,E

I(pk(y, E)||qk(y, E)) (A.15)

s.t. ∑
E

pk(y, E) = dk(y), (A.16)

qk(y, E) = I0,k(y)

∑
E

ψk(y, E)e−
∑
j µj(E)

∑
x h(y|x)cj(x). (A.17)

The Lagrange function with respect to constraint (A.16) is

L(p, d) =
∑
y,k,E

pk(y, E) log
pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E) + λ

(∑
E

pk(y, E)− dk(y)
)

(A.18)

Let

∂L(p, d)

∂pk(y, E)
= log pk(y, E)− log qk(y, E) + λ = 0, (A.19)

and

∂L(p, d)

∂λ
=
∑
E

pk(y, E)− dk(y) = 0. (A.20)

Solving equations (A.19) and (A.20), the results are

λ = log

∑
E qk(y, E)

dk(y)
, (A.21)
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and

pk(y, E) = qk(y, E)
dk(y)∑
E qk(y, E)

. (A.22)

Substitute the minimizer (A.22) back into (A.2),

min
p

min
q
F = min

p
min
q

∑
y,k,E

I(pk(y, E)||qk(y, E))

= min
p

min
q

∑
y,k,E

pk(y, E) log
pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E)

= min
p

min
q

∑
y,k,E

qk(y, E)
dk(y)

qk(y, E)
log

dk(y)∑
E qk(y, E)

− qk(y, E)
dk(y)∑
E qk(y, E)

+ qk(y, E).

(A.23)

If we define

Qk(y) =
∑
E

qk(y, E), (A.24)

the above minimization problem becomes

min
p

min
q
F = min

p
min
q

∑
y,k

dk(y) log
dk(y)

Qk(y)
− dk(y) +Qk(y). (A.25)

Because problem (A.25) is independent of p and dk(y) is constant, problem (A.25) is equiv-

alent to

min
q
F = min

q

∑
y,k

Qk(y)− dk(y) logQk(y), (A.26)

which is problem (2.10).
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A.3 Proof of Theorem 3.1

Define a minimization problem

min
p

min
q
F = min

p
min
q

∑
y,k,E

I(pk(y, E)||qk(y, E)) (A.27)

s.t. ∑
E

pk(y, E) = dk(y), (A.28)

qk(y, E) =
∑
E

Ik(y, E)e−
∑
j µj(E)

∑
x h(y|x)cj(x). (A.29)

The Lagrange function with respect to constraint (A.28) is

L(p, d) =
∑
y,k,E

pk(y, E) log
pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E) + λ

(∑
E

pk(y, E)− dk(y)
)
. (A.30)

Let

∂L(p, d)

∂pk(y, E)
= log pk(y, E)− log qk(y, E) + λ = 0 (A.31)

and

∂L(p, d)

∂λ
=
∑
E

pk(y, E)− dk(y) = 0. (A.32)

Solving equations (A.31) and (A.32) gives

λ = log

∑
E qk(y, E)

dk(y)
, (A.33)

and

pk(y, E) = qk(y, E)
dk(y)∑
E qk(y, E)

. (A.34)
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Substitute the minimizer (A.34) back into (A.27),

min
p

min
q
F = min

p
min
q

∑
y,k,E

I(pk(y, E)||qk(y, E))

= min
p

min
q

∑
y,k,E

pk(y, E) log
pk(y, E)

qk(y, E)
− pk(y, E) + qk(y, E)

= min
p

min
q

∑
y,k,E

qk(y, E)
dk(y)

qk(y, E)
log

dk(y)∑
E qk(y, E)

− qk(y, E)
dk(y)∑
E qk(y, E)

+ qk(y, E).

(A.35)

If we define

Qk(y) =
∑
E

qk(y, E), (A.36)

the above minimization problem becomes

min
p

min
q
F = min

p
min
q

∑
y,k

dk(y) log
dk(y)

Qk(y)
− dk(y) +Qk(y). (A.37)

Because problem (A.37) is independent of p and dk(y) is constant, problem (A.37) is equiv-

alent to

min
q
F = min

q

∑
y,k

Qk(y)− dk(y) logQk(y), (A.38)

which is problem (3.8).
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