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Despite countless surgical advances over the last several decades refining surgical approaches, repair techniques,

and tools to treat tendon and tendon-to-bone injuries, we are still left with repair solutions that rely on fairly crude

underlying mechanical principles. Musculoskeletal soft tissues have evolved to transfer high loads by optimizing stress

distribution profiles across the tissue at each length scale. However, instead of mimicking these natural load transfer

mechanisms, conventional suture approaches are limited by high load transfer across only a small number of anchor

points within tissue. This leads to stress concentrations at anchor points that often cause repair failure as the sutures

cut longitudinally through the fibrous tendon tissue like a wire cutting through cheese. Most tendon reconstruction

ruptures occur within the first several weeks to months after repair, indicating that the initial strength of the repair is

critical for its success. Over time under favorable conditions, the healing response can strengthen the repair sufficiently

to function under typical physiologic forces.

Here, we developed adhesive-based technologies to distribute load transfer more effectively across tendon and tendon-

to-bone repairs, thus reducing peak stress and enabling repairs to sustain higher load before failure. First, we hypoth-

esized that using the lateral surfaces along the length of suture to transfer load in shear would improve repair strength.

We evaluated the mechanical principles of an adhesive-coated suture using a shear lag model to identify properties

of suitable adhesives. Examination of the design space for an optimal adhesive demonstrated requirements for strong

adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. When this design

space was compared to real material properties in an Ashby plot, the model anticipated theoretical load transfer im-

provements of more than 7-fold over current tendon suture repairs using optimal elastomeric adhesives. We validated

these model predictions experimentally using idealized single-strand pullout tests and clinically relevant flexor tendon

repairs in cadaver canine flexor tendon. Clinically relevant repairs performed with Loctite 4903 cyanoacrylate-coated

suture had significantly higher strength (17%) compared to standard repairs without adhesive. Notably, cyanoacrylate

provided strong adhesion with high stiffness and brittle behavior, and was therefore not an ideal adhesive for enhancing
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suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal

adhesive, demonstrated the potential for the proposed approach to improve outcomes for treatments requiring suture

fixation.

We expanded this approach to assess the potential of adhesive films to increase the load tolerance of tendon-to-bone

repairs. We hypothesized that adhesive films would redistribute load over the tendon footprint area where tendon

inserts into bone, instead of focusing stress at just a few anchor points where suture from bone anchors punctures

through tendon. Based on a shear lag model corroborated by a finite element model to establish the limits of the shear

lag assumptions for thick or stiff adhesives, desirable adhesives again required compliance and high strength under

shear loading. Models predicted an opportunity to increase transfer across tendon-to-bone repairs by over 10-fold. To

rapidly evaluate adhesive mechanical properties for both applications using relevant tissue adherends, we developed a

new method for consistent lap shear testing using tendon and bone planks. We validated shear lag predictions using

this idealized test scenario and further assessed the ability of adhesives to provide additive benefit to rotator cuff repair

strength using a clinically relevant human cadaver rotator cuff repair model with and without adhesive. Using this

idealized adhesive testing platform, we demonstrated the potential of the proposed approach to improve outcomes in

arthroscopic repair settings by applying a catechol-derived, marine mussel-mimetic adhesive with relevant mechanical

properties that binds under water. Further study is needed to optimize adhesive binding properties and assess this

approach in preclinical surgical tendon-to-bone repair scenarios.

Finally, we developed a new approach to deliver adhesives and biofactors in tendon repairs using sutures with a porous

outer sheath. These porous sutures were mechanically non-inferior to conventional sutures in single strand tests and

clinically relevant tendon repairs. The porosity dramatically increased the suture surface area, which we conjectured

would facilitate adhesive interdigitation and strong binding. Furthermore, this porous suture enabled growth factor

or other bioactive factor addition to the inside of the suture for increased loading capacity and sustained release over

the first 14 days, determined using connective tissue growth factor. In a clinically relevant canine in vivo injury and

repair model, we assessed the effects of porous suture delivery of CTGF on the proliferative stage of repair at 14 days.

This approach is hypothesized to act as a “biological adhesive,” increasing repair strength by modulating healing and

encouraging tissue ingrowth into the suture pores. Taken together, these technologies represent dramatic departures

from the traditional mechanical principles underlying tendon and tendon-to-bone repair, enabling large improvements

in surgical repair strength without significantly changing the procedure in the operating room.
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Chapter 1

Introduction

Portions of this chapter were previously published in: Linderman SW, Gelberman RH, Thomopoulos S, Shen H. Cell

and Biologic-Based Treatment of Flexor Tendon Injuries. Operative Techniques in Orthopaedics. 26(3):206–215,

2016, DOI: 10.1053/j.oto.2016.06.011

Tendon, ligament, and tendon-to-bone insertion sites are frequently injured tissues that directly impact people’s ability

to function in their daily lives, generating a significant burden on society. Despite many decades of improvements to

surgical repair techniques, surgical tools and materials, and pre- and post-operative care, musculoskeletal soft tissue

repair failure rates remain high. These repairs are required to withstand high forces to accommodate normal function.

Most repair ruptures occur within the first several weeks following repair, before the tissue can heal adequately to

improve load tolerance. The odds of successful tendon-to-bone repair are even slimmer due to the inherent material

property mismatch, which concentrates stress on the injured site.

Previous surgical repair gains have derived from the use of stronger materials and more effective tissue grasping tech-

niques that distribute load transfer over a larger area, thereby reducing stresses. However, these gains have plateaued,

while failure rates remain unacceptably high. Much of orthopedic soft tissue pre-clinical research now focuses on

delivering bioactive factors and scaffold matrices to guide the healing process, aiming to strengthen repairs and create

a normal tissue over several weeks following repairs. While these approaches hold great opportunity to modulate the

healing response and guide tissue regeneration, they rely on the tissue remaining well apposed by the surgical repair

without gap formation between the tissue ends or tissue retraction from the injury site. Furthermore, biofactor thera-
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pies rely on optimized delivery approaches to provide sustained biofactor delivery without unnecessary tissue damage

or tissue bulking during surgical delivery or the biological response to the reparative agent. This doctoral disserta-

tion presents a means to reduce stress concentration and improve the overall strength of repairs using adhesive-coated

sutures (Chapter 2) and adhesive films (Chapter 3) with low shear stiffness but high shear strength to distribute load

transfer over larger areas. Chapter 4 presents a suture with a porous outer sheath to facilitate adhesive binding and

delivery. In addition to direct application of adhesives for strength improvements at early post-surgical time points,

porous sutures facilitate delivery of biofactors directly to the injury site without introducing additional damage or

unnecessary bulking to the repair. Chapter 5 discusses steps to implement these technologies in clinical repairs, and

describes opportunities for combining these approaches with other promising therapies to improve orthopedic soft

tissue repair.

1.1 Clinical significance of tendon and ligament injury

Musculoskeletal injuries are a leading cause of disability and pain, with over 50 million injuries per year costing over

$125 billion annually [1, 2]. Approximately 35-45% of these injuries involve tendons and ligaments [3]. Muscu-

loskeletal injuries cause pain and limit strength and movement, thus impairing patients’ ability to perform activities

of daily living, work, and otherwise maintain quality of life [4, 5]. Decreased activity from disability can lead to

other significant health concerns, including depression and weight gain. Musculoskeletal injuries fuel entire indus-

tries, including physical therapy, occupational therapy, and orthopedic surgery. Several clinically important examples

of tendon and ligament injuries are discussed below. Tendinopathies can be classified by size (partial or full thick-

ness), location (tendon midsubstance or tendon-to-bone interface), environment (intrasynovial or extrasynovial), and

chronicity (acute or chronic) [6, 7]. Each classification generates important considerations for treatment.

Flexor digitorum profundus tendon: Among the most common and challenging hand injuries, intrasynovial flexor

tendon transections have motivated over five decades of research designed to improve primary operative and reha-

bilitation techniques [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Finger lacerations are the most common upper extremity

injury encountered in the emergency room, with an incidence of 221 per 100,000 person-years or 1 in 452 people

per year [18], mostly caused by glass or knives [19]. As such, flexor tendon injuries are typically acute transections

without chronic degenerataion. Even small lacerations < 2 cm presenting to the emergency room often cause deep

tendon injuries (∼60% of cases) [19]. Major repair technique advances by Kessler [16], then Pennington [17], and
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then Winters and Gelberman [11] have changed zone II intrasynovial flexor digitorum profundus (FDP) tendon treat-

ment from an inoperable “no man’s land” [15] to a common surgical procedure. Following several decades of repair

[11, 16, 17, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] and rehabilitation [30, 31, 32] improvements, we have reached

a plateau in zone II flexor tendon repair outcomes with current methods. Clinical outcomes remain highly variable,

necessitating alternative approaches [10, 33, 34].

Rotator cuff: Rotator cuff tears, a quintessential example of tendon-to-bone attachment site injuries, are one of the

most common causes of shoulder pain and upper extremity disability [35], affecting over 17 million individuals in

the US [6]. Shoulder pain presents over 4.5 million times annually in the U.S. [36]. Approximately half of the U.S.

population over 60 years old has a rotator cuff tear [37, 38], leading to over 500,000 repairs of symptomatic shoulders

annually [39]. Most tears involve the supraspinatus tendon [6]. Re-tear rates following surgery are quite high, starting

at 20% for young, healthy athletes and increasing as high as 94% for elderly patients with large or massive tears

[40, 41]. These high post-repair rupture rates, combined with asymptomatic tears, lead to a large disparity between

the prevalence of injury and the surgical repair rates. Rotator cuff tears can be classified as acute (e.g., sports injury)

or chronic following years of degeneration. Chronic rotator cuff tendon injury is typically accompanied by fatty

infiltration, which negatively impacts the mechanical properties and healing capacity of the tissue [42]. Nevertheless,

economic analyses have demonstrated that rotator cuff repair is cost effective for all ages and generates net cost savings

for patients younger than 61 years old [4]. Repair is clinically recommended for all symptomatic, full thickness rotator

cuff tears [43].

Knee ligaments: The anterior cruciate ligament (ACL), in the intrasynovial environment within the knee, plays an

important role in knee stability by preventing anterior movement of the tibia relative to the femur. It is commonly

injured by valgus stress while landing or planting in sports that require a twisting or pivoting motion. The medial

collateral ligament (MCL) and occasionally the meniscus are commonly injured at the same time (“unhappy triad”

[44, 45]). There is an incidence of approximately 200,000 ACL injuries leading to 100,000 reconstructions in the

U.S. annually. This is affiliated with $2.7 – $4.3 billion in medical costs annually, due largely to rehabilitation and

long term osteoarthritis [5]. Instead of attempting a primary suture repair, current treatments remove the torn ACL

and implant a bone–tendon–bone graft from the middle third of the patellar tendon, the hamstring tendon, or allograft

tissue [46]. Bone–patellar tendon–bone grafts are most successful in the ACL since they include natural biological

fixation to subchondral bone; however, there is a high incidence of iatrogenic donor site morbidity [47, 48, 49]. As

many as 78% of patients develop osteoarthritis within 14 years [50]. Tears in the extrasynovial MCL, by contrast, heal
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in nearly all patients with non-operative management [46].

Achilles tendon: The Achilles tendon is the largest and strongest tendon in the body, but is still susceptible to

overuse injury [51]. Achilles tendinopathy includes strain, tendon midsubstance rupture, and tendon avulsion injuries.

Most ruptures occur in the midsubstance, 2 – 6 cm proximal to the insertion into the calcaneus [52]. Approximately

8 – 18 per 100,000 people rupture their Achilles tendon each year, mostly commonly due to acute or chronic sports

injuries in middle aged men [51, 53]. Achilles tendinopathy has substantial morbidity, impacting patients’ ability

to walk, or participate in physical activities. The re-rupture rate is only approximately 3.5% for these midsubstance

repairs [54, 55, 56], making Achilles repair one of the more successful tendon repairs discussed here. Still, given the

essential nature of the Achilles for physical activity, improved repair techniques reducing rupture rates even further

would have a substantial impact on patient morbidity.

1.2 Natural healing response

1.2.1 Tendon midsubstance

Similar to healing paradigms in other tissues, tendons follow three successive, overlapping stages of healing: acute

inflammation (days 0–7 post injury), proliferation (days 3–14), and remodeling (days 10+) [57, 58, 59]. Healing

outcomes vary greatly between intrasynovial and extrasynovial tendons. Intrasynovial tendons or tendon segments are

enclosed within a synovial sheath, which contains synovial fluid as a lubricant and nutrition source [6]. Intrasynovial

tendons are commonly located in regions where the tendon goes through a pulley to exert force on a joint which it

is crossing, before inserting further distally into bone. Intrasynovial ligaments pass directly through joint spaces that

require lubrication. The flexor tendon and ACL are examples of intrasynovial tendons and ligaments, respectively.

Extrasynovial tendons and ligaments (e.g., patellar tendon, Achilles tendon, MCL) lack a synovial sheath or lubricant,

but instead have higher vascularity for nutrition [60].

The zone II flexor tendon provides an example of intrasynovial healing [61]. The tendon lies within a synovium-lined

fibro-osseous sheath that extends from the distal aspect of the palm to the distal aspect of the A4 pulley (Figure 1.1A,B).

Intrasynovial flexor tendons are paucicellular [62] and hypovascular [63, 64], with limited blood supply delivered by

long and short vinculae originating from the digital arteries and supplying the tendon segmentally (Figure 1.1C)

[65]. In addition, the tendon receives nutrients and lubrication from the synovial fluid produced by the tendon sheath
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Figure 1.1: (A and B) “Lateral and palmar views of a finger depict the components of the digital flexor sheath. The
sturdy annular pulleys (A1, A2, A3, A4, and A5) are important biomechanically in keeping the tendons closely applied
to the phalanges. The thin, pliable cruciate pulleys (C1, C2, and C3) collapse to allow full digital flexion.” (C) “The
blood supply to the flexor tendons within the digital sheath. The segmental vascular supply to the flexor tendons is
by means of long and short vincular connections. The vinculum brevis superficialis (VBS) and the vinculum brevis
profundus (VBP) consist of small triangular mesenteries near the insertion of the FDS and FDP tendons, respectively.
The vinculum longum to the superficialis tendon (VLS) arises from the floor of the digital sheath of the proximal
phalanx. The vinculum longum to the profundus tendon (VLP) arises from the superficialis at the level of the proximal
interphalangeal joint. The cutaway view depicts the relative avascularity of the palmar side of the flexor tendons in
zones I and II compared with the richer blood supply on the dorsal side, which connects with the vincula.” This figure
was reprinted with permission from [25].

[10, 58]. As healing intrasynovial tendon has few intrinsic cells and has limited vascularization, there is little intrinsic

healing from tendon fibroblasts until delayed time points. At early time points, cell proliferation and matrix synthesis

are dominated by cells that migrate to the injury site (Figure 1.2) [58, 59, 66]. As a result, zone II flexor tendon injuries

have substantially poorer healing outcomes following operative repair than do tendon injuries to extrasynovial flexor

tendons [15, 10, 22].

Acute inflammation in the first several days after tendon injury attracts circulating inflammatory cells to the injured

tendon [68, 69, 59]. This inflammatory infiltrate is dominated by polymorphonuclear cells during the first day, espe-

cially in the fibrin clot that forms at the repair site, followed by a transition to macrophages and monocytes by the third

day [57]. Activated macrophages exhibit two phenotypes: M1 and M2. The M1 macrophages, prevalent during acute

inflammation [70, 71], promote extracellular matrix deposition (scar formation) and inflammation [69, 72], bridging

the transected tendon ends but also leading to adhesions. Following acute inflammation, the proliferative phase of

healing ensues. In addition to M1 macrophages [69], there is an increase in the number of fibroblast-like cells syn-

thesizing extracellular matrix at the proliferative phase [57]. Most of the fibroblast-like cells are likely derived from

epitenon cells [57] and resident tendon fibroblasts [73]. Morphologic studies of repaired canine tendons at 7 days after
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Figure 1.2: (A) Schematic of intrasynovial tendon healing, showing infiltration of fibroblasts from the outer and inner
surfaces of tendon (black arrows). Adhesions between the outer surface of tendon and the sheath can reduce range of
motion (white block arrows). (B) Representative histologic sections of healthy and repaired canine flexor tendons 1, 3,
and 9 days post-operatively. The sections were stained with H&E and viewed under bright field for cell identification.
An overview of a representative section from each time point is shown to the left (4× objective, 2 mm scale bar).
High magnification images (20× objective, 200 mm scale bar) of the section outlined in blue are shown to the right.
Inflammatory cells are seen infiltrating the repair site via the tendon surface on Day 1. The inflammatory response
decreases over time and fibroblasts invaginate and fill the repair by Day 9. New blood vessel formation on the tendon
surface is evident on Day 9. Figure (A) reprinted from [67, 6]. Figure (B) modified from [57], with permission.
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tendon transection and repair show that regions with well coapted collagen fibers had a stronger endotendon response

compared to those where the gap only had a few fibrinous strands serving as a scaffold for epitenon cell migration

[59]. New blood vessels emerge at the surface of canine tendons 9 days following suture [57]. By 14 days, repaired

canine tendon stumps show spontaneous neo-vascularization [59]. The final phase, remodeling, lasts many weeks to

months, during which M1 macrophages subside and M2 macrophages appear. M2 macrophages suppress inflamma-

tion, promote matrix deposition, and facilitate tissue remodeling [74, 69, 70]. Reorganization of the granulation tissue

at the repair site leads to improved tendon strength in tendon repairs that survive without gap formation. Intrasynovial

tendon healing frequently leads to adhesion formation between the tendon surface and the surrounding sheath, increas-

ing gliding resistance and decreasing range of motion (Figure 1.2A). Synovial fluid may directly inhibit the healing

response as well [75].

Extrasynovial tendons heal by a similar sequence of events; however, extrinsic healing is greatly accelerated by the

increased tissue vascularity. Extrasynovial tendons generally operate in a less confined space, so adhesion formation

is less of a problem for joint motion. This accelerated healing response strengthens tendons and often leads to better

repair outcomes [60].

1.2.2 Tendon-to-bone

Tendon-to-bone healing, e.g., for rotator cuff tears, has an added challenge compared to tendon midsubstance in that

the healing tissue needs to bridge two tissues with vastly different mechanical properties. The healthy tendon enthesis

facilitates load transfer from tendon to bone in several ways, including by (i) distributing force over a relatively

large footprint area to reduce local stresses, (ii) using a compliant transitional fibrocartilaginous tissue to optimize

stress concentrations and toughen the attachment [76, 77, 78, 79], and (iii) interdigitating fibrocartilage with bone

[80]. Unfortunately, the natural healing process forms a fibrovascular scar [81, 82] that fails to recreate these stress-

dissipation mechanisms. Repairs do not approach normal mechanical strength, even many months after surgery [83].

Instead, large quantities of mechanically inferior scar tissue remain at the interface between tendon and bone [82].

Rotator cuff tendon repair is one of the most common orthopaedic procedures, since the high mobility of the shoulder

joint makes these tendons particularly susceptible to injury. In addition to the challenges inherent to healing the inter-

face between tissues with different mechanical properties, rotator cuff tears frequently coincide with fatty infiltration

and muscular atrophy [84]. Full-thickness tears lead to further muscle degeneration and retraction, fibrosis, and de-

creased collagen expression that worsen with the size and chronicity of injury [85, 86, 87]. This baseline of already
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inferior tissue further impairs repair outcomes [42, 88].

ACL primary repair, which is both intrasynovial and ligament-to-bone, has such poor healing outcomes that instead

reconstructions attempt to circumvent the challenges associated with ligament-to-bone healing by implanting bone–

tendon–bone grafts, as discussed above [48, 49]. The bony plugs then heal with adjacent bone via a callus [89, 46].

This approach leads to im proved functional repair outcomes locally, though donor site morbidity remains a problem.

1.3 Current surgical repair techniques

1.3.1 General tendon healing and repair themes

The natural healing for different tendon repair categories emphasizes several important themes that guide operative

management:

1. Extrasynovial tendon heals better than intrasynovial tendon [90, 60, 91, 92]. Controlled motion is important to

prevent adhesion formation in intrasynovial tendons [65, 13], but is less important in extrasynovial tendons and

ligaments such as the MCL [46] which can still function with higher gliding resistance. Extrasynovial tendon

allows faster blood vessel infiltration and robust tendon matrix production [6].

2. Bone-to-bone units have improved healing capacity compared to intrasynovial tendon or ligament midsubstance,

due to increased vascular supply and inherent ability to mend after fractures through callus formation [89].

3. Tendon-to-bone healing is difficult, requiring healing between tissues with vastly different tissue properties

[82, 77, 93]. The normal transitional tissue at the enthesis (i.e., tendon-to-bone junction) is typically lost during

injury and/or surgically removed prior to repair. Fibrovascular scar does not recreate natural tissue gradations

and stress dissipation mechanisms, and repaired tissue never reaches the same strength [6].

4. Frayed tendon or ligament ends are difficult to repair, especially in an intrasynovial environment such as the

ACL. Debridement reduces tendon length and applies tension across the repaired tissue. Thus, sharp transections

have better post-operative outcomes than injuries that fray the tendon stumps [6].

5. Many tendon repairs exhibit a critical danger period of approximately 6 weeks during the healing process [12,

33]. Rotator cuff re-tears typically occur within the first 3–6 months following operation [94, 95]. After this

point, the remodeling stage of healing often sufficiently stabilizes the repair to limit the risk of re-rupture [7].
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Patient care with rehabilitation and use of a repaired tendon likely exacerbates this effect: patients that overload

repairs are likely to have failures, while more cautious patients may avoid these adverse events.

Readers are referred to a review by Butler, Juncosa, and Dressler on the “functional efficacy of [the] tendon repair

process” for a detailed description of considerations for tendon suture and repair assessment [96].

The technologies developed throughout this dissertation are applicable to tendon and tendon-to-bone repair generally,

with additional potential applications in other soft tissue surgeries. In the following sections we focus on the flexor

digitorum profundus tendon and the rotator cuff tendons to provide case studies of particular tendon and tendon-to-

bone repairs, respectively, that would benefit from improved treatment alternatives.

1.3.2 Focused example: Flexor digitorum profundus tendon repair and rehabilitation

General considerations and themes: The two primary factors leading to poor results in flexor tendon repair are

adhesion formation within the digital sheath and repair-site elongation and rupture. Adhesions severe enough to limit

range of motion occur in up to 40% of flexor tendon repairs [97]. While adhesions can be decreased with passive mo-

tion rehabilitation [13, 98], they still occur frequently, even with closely controlled techniques [32, 99]. Experimental

studies report repair-site elongation and gap formation preventing satisfactory healing in up to 48% of canine FDP

tendons undergoing state-of-the-art operative repairs. In a clinically relevant, controlled canine repair model, repair

site gap formation during the first six postoperative weeks did not correlate with formation of intrasynovial adhesions

or loss of digital motion [100]. In clinical settings, surgeons pursue a balance between repair and rehabilitation ap-

proaches promoting tendon strength and digital excursion [58]. Flexor tendon repair complications are attributed to

a slow accrual of repair-site strength and stiffness and to an increase in gliding resistance within the digital sheath

during the first few weeks following tendon suture [66, 101, 59, 100, 102, 103, 58, 104, 105]. The healing of pauci-

cellular, hypovascular intrasynovial tendon appears to be limited by the relatively low levels of collagen synthesis and

remodeling during the early stages of healing [106, 65].

Surgical repair: Prior approaches have focused on improving surgical technique and rehabilitation in order to reduce

the risk of repair site elongation and adhesion formation. Investigators, including Kessler, Winters and Gelberman,

Tajima, Becker, and Savage have extensively varied the configuration of the core suture strands, altering the number

of strands crossing the repair site and changing core suture caliber and material to produce a mechanically competent
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repair (Figure 1.3) [10, 25]. If the repair is not sufficient to maintain tendon coaptation while proliferation and re-

modeling occurs, the repair will elongate or rupture. Canine studies consistently show that repairs that minimize gap

formation and maintain closely coapted fibers have improved healing results, while those with gaps of greater than 3

mm between the tendon ends have insufficient healing and lack accrual of repair site strength over time [100, 59].

In addition, investigators have varied the pattern and depth of placement of the circumferential epitenon suture to

maximize repair strength and tissue re-apposition while simultaneously debulking the tendon by smoothing the surface

[10, 21, 20, 22, 23]. Suture technique innovations with larger caliber suture and larger number of strands bear the most

load [11]; however, increased bulk of the repair site can reduce tendon gliding. Repairs with slightly smaller suture

caliber but increased numbers of grasping points improve strength while limiting bulking [107]. Locking suture loop

configurations also increase tendon holding capacity, improving repair strength [108, 109, 24, 17] (as discussed and

improved in Appendix A), though some types of locking configurations may strangulate tissue.

Rehabilitation: Passive range of motion: The improved surgical techniques then allowed for the testing of con-

trolled motion rehabilitation strategies to mitigate the risk of adhesion formation and maintain range of motion without

endangering gap formation between the repaired tendon stumps. Rehabilitation variables consist of low levels of ten-

don excursion and in vivo tendon force (up to 3 mm of excursion and 5 N of force [30]. Greater magnitudes of

tendon excursion does not appear to enhance healing further [31, 32] for this tendon repair type with current surgi-

cal approaches. However, this may be partially limited by gap formation under current repairs. If repair strength

was improved, more aggressive rehabilitation could be evaluated to determine if rehabilitation could stimulate faster

healing.

These studies have led to a plateau in zone II flexor tendon repair outcomes with current suture methods, necessitating

alternative approaches. Repair failures typically occur by suture pullout through the tendon tissue, like a wire cutting

through cheese, as described in detail in Appendix A.

1.3.3 Focused example: Rotator cuff tendon repair

General considerations and themes: The rotator cuff muscles and corresponding tendons are essential for gleno-

humeral joint stability in the shoulder. The complex loading environment combined with common degeneration of

rotator cuff tendons with age leads to high tear prevalence. As with other surgical repairs, rotator cuff repairs aim to

create a strong connection between the repaired tissue with minimal gap formation in order to facilitate healing [85].
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Figure 1.3: Techniques for flexor digitorum profundus tendon midsubstance end-to-end repair. This figure was
reprinted with permission from [25]. Despite surgical technique improvements, clinical outcomes following FDP
suture remain highly variable.
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While healthy rotator cuff tendons effectively transfer load by inserting into a large footprint area on the humeral head

using a specialized fibrocartilaginous transition tissue (i.e., enthesis), surgical repairs merely hope to hold the tendon

in close proximity to the footprint using compression from suture. Tendon-to-bone healing requires biomechanical

forces across the repair [110, 111], and immobilization leads to shoulder stiffness and discomfort [112, 113], but re-

habilitation is challenging to implement without damaging the structural integrity of the repair [114]. Furthermore,

patient compliance with rehabilitation protocols that require patients not to use their arm may be limited. Due to

concerns over micro-motion or overt repair anatomic failure limiting healing, most orthopaedic surgeons recommend

controlled passive motion for the first several weeks following repair [85]. Since current rotator cuff repairs have high

anatomic failure rates [41, 40], surgical outcomes instead frequently focus on pain reduction as a means to improve

shoulder use [115]. Improved surgical approaches that prevent micro-motion at the healing repair site during use of the

arm, in addition to simply maintaining macroscopic tendon-to-bone apposition where the tissue passes under sutures,

should greatly improve the tissue healing capacity.

Surgical repair – Arthroscopic vs. open repair: Over the last two decades, improvements in surgical treatment

of rotator cuff tears have largely focused on transitioning from fully open surgical fields to “mini-open” [116] repairs

with limited deltoid-splitting to fully arthroscopic repairs [85, 117, 118]. Traditional open surgical treatments allowed

transosseous suture repair, which was the gold standard based on strength and tendon reapposition to the footprint.

However, open surgeries lead to large scars, significant damage to the deltoid muscle, and limited visualization of

articular surface of the tendon [85]. Mini-open repairs reduce deltoid damage and scar formation, and facilitate

accelerated rehabilitation, while maintaining the fairly straightforward surgical approach [118]. Fully arthroscopic

surgeries are quickly becoming the gold standard due to decreased infection rates, preservation of the deltoid, and

improved visualization to resolve other pathology during the surgery [85, 119]. However, arthroscopic repairs are

much more technically challenging, potentially more time consuming, and costly [120]. Arthroscopic devices have

dramatically improved, but still come with increased risk of device failure compared to mini-open techniques [121]. In

cases with complicated tears, less experienced surgeons may have higher success with mini-open or open techniques.

Nevertheless, the substantial benefits of arthroscopic repairs indicate that any improvements on current treatment must

be compatible with the confined, fluid-filled, arthroscopic environment.

Surgical repair – Single-row vs. double-row repair: Early arthroscopic approaches applied a simple single-row

suture technique (Figure 1.4A,B), largely because of speed and simplicity in the technically challenging arthroscopic

setting. However, this approach demonstrated high anatomic failure (i.e., re-tear) rates [40] and inferior mechanical
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Figure 1.4: Schematics of (A) traditional single-row and (C) traditional double-row arthroscopic rotator cuff tendon
repairs compared with improved variants (B,D). As a modification to the traditional single-row construct, triple-loaded
suture anchors (B) have been developed to increase the number of suture passes required to secure the tendon back
to its footprint. The transosseous-equivalent double-row technique (D) crosses the medial and lateral suture limbs to
reinforce repairs. Double-row repairs increase mechanical fixation strength and reappose a larger percentage of the
tendon-to-bone footprint than single-row repairs. Figure reprinted from [122] with minor modification.
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properties compared to transosseous open repairs. Single-row repairs left half (average 52.7%) of the tendon-to-bone

footprint uncovered [123]. Double-row suture configurations (Figure 1.4C,D), which include a medial and a lateral

row of suture anchors, increase mechanical fixation strength and reappose a significantly larger percentage of the

rotator cuff tendon footprint area [123, 124, 125, 126, 85, 127]. This strength improvement corresponds to decreased

gap formation and increased resistance to cyclic displacement [128, 129, 130, 131]. This improvement in strength

comes at both a financial and a physical cost: surgical repair times significantly increase [131], and the bone anchors

can spatially crowd the humeral head and interfere with each other [85]. High levels of non-physiologic compressive

force on the tendon from the sutures risks tissue strangulation and necrosis [132, 133]. Most importantly, there is

substantial debate about whether increased macro-scale fixation strength of double row repairs improve functional

outcomes. Several randomized controlled studies were unable to find a difference in functional outcomes between the

repair types [134, 135, 136], though some clinicians have argued that no rigorous, adequately powered studies have

been performed [122]. While single row repairs may be sufficient for small tears that only affect a small portion of the

tendon insertion site, double row repairs are likely more appropriate for large tears that encompass the entire tendon or

multiple rotator cuff tendons. In either repair style, repair failures commonly occur at the musculotendinous junction

where the proximal suture anchors puncture through the tendon [133]. High stresses concentrated on these points, in

addition to micro-motion between the tendon and the underlying bone [137], likely negatively impacts healing and

causes anatomic failure of repairs.

1.4 Experimental approaches to improve outcomes

1.4.1 Experimental flexor digitorum profundus tendon repair

Animal models - FDP tendon

The most commonly used animal models for studying flexor tendon repair and tendon rehabilitation [138, 25] are the

canine, mouse, horse [139, 140, 141], rabbit [142], and chicken [143, 144, 145, 146]. The canine model for zone II

FDP tendon laceration and repair has been extensively used since 1962 [147, 8]. Canine flexor tendons are similar

to human flexor tendons in both anatomy and function [148, 138], as well as in response to tendon injury, repair,

and rehabilitation [31, 10]. The canine FDP tendon size is approximately one half the size of a human FDP tendon.

Approximate size match enables surgeons both to perform surgical repairs identical to those performed clinically and
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to achieve similar time-zero mechanical strength to that seen in humans [149, 150]. The canine zone II FDP tendon

repair surgical model allows direct testing of surgical modifications and biological approaches before performing

clinical trials in humans [32, 31, 151, 152, 153, 154, 155]. Due to these advantages, we employed the canine flexor

tendon model ex vivo and in vivo in this dissertation as a prototypical intrasynovial tendon repair model with immediate

clinical implications (Chapter 2 and Chapter 4).

Several groups are currently investigating murine models for flexor tendon repair [156, 68, 157, 158, 73, 159, 160].

These models offer high genetic versatility and low cost, enabling in vivo studies of the healing response, biology

of adhesion formation [68, 73, 159], and effects of biological interventions [157]. However, the models and hy-

potheses tested need to be considered carefully due to anatomic and technical challenges that limit clinical relevance.

Specifically, the small size of the tendon requires a simpler surgical technique using 8–0 caliber or smaller suture.

Furthermore, to prevent repair rupture, all murine models to date require either partial laceration, which modifies the

healing process, or proximal unloading. Wong and colleagues perform a partial laceration in zone II in the murine

digit [68]. Other groups opted to fully or partially lacerate the extrasynovial zone III tendon and perform proximal

transection to protect the repair [160, 73, 158], leading to large scar formation between tendon ends [159]. Finally,

rehabilitation postoperatively cannot be controlled due to the small size of the animal. Despite these limitations, the

availability of transgenic mouse models opens up possibilities for mechanistic basic science experiments, including

cell lineage tracing, gene deletion, and cell ablation.

Biomechanical approaches

Some new approaches in the canine model seek to increase time-zero strength by increasing interaction between

the suture and tendon tissue. Crosslinking agents including 1-ethyl-3-(3-dimethylaminopropyl) carbo-diimide hy-

drochloride (EDC) and cyanoacrylate have been used on suture in canine flexor tendon on transverse suture passes,

perpendicular to the tendon longitudinal axis, to increase suture-tendon interactions and crosslink the tendon tissue

immediately adjacent to the suture [161, 153]. These mechanical approaches offer an opportunity to improve repair

strength, which should facilitate improved healing, but do not inherently do anything to decrease adhesions. In con-

trast, surface treatments using lubricin have been able to inhibit adhesion formation; however, this improvement in

range of motion sacrifices repair strength, tempering our enthusiasm [162, 163, 157, 151, 164]. We build on work to

increase tendon–suture interactions in this dissertation (Chapter 2).
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Biological approaches

Biological approaches, such as the application of growth factors and mesenchymal stem cells (MSCs), will likely

augment mechanical improvements in next generation therapies. The major goals of biological treatments are to

(i) limit deleterious inflammatory effects and disordered bulk scar formation, (ii) stimulate matrix synthesis within

the tendon midsubstance, and (iii) block adhesion formation at the tendon surface. Some of these approaches are

discussed as potential combinatorial approaches in Chapter 5.

A number of recent reports have indicated that biological approaches, such as the application of growth factors and

mesenchymal stem cells (MSCs), have the potential to improve tendon and ligament repair [103, 105, 165, 166, 151,

167]. By introducing cells into the paucicellular intrasynovial flexor tendon milieu and inducing a developmental

paradigm between the repaired tendon ends, biological approaches attempt to accelerate healing and regenerate nor-

mal tissue. Multipotent MSCs from a variety of adult tissues have an excellent capacity to differentiate into the relevant

tissue-specific phenotype and to provide potent immunosuppressive and anti-inflammatory effects [168, 169]. How-

ever, MSC delivery in isolation has been ineffective in improving the strength and stiffness and in reducing adhesion

formation following the repair of intrasynovial tendons in vivo [151]. Similarly, likely due to the paucity of tendon

fibroblasts in the region of repair, growth factor application in isolation has been unsuccessful in stimulating enhanced

tensile properties following tendon suture, although some improvements have been achieved in digital range of motion

[105, 103, 155]. This has led to more recent focus on combinations of growth factors, cells, and specialized delivery

approaches to improve flexor tendon repair.

Delivery of biofactors: Several biofactor delivery approaches have been investigated to improve healing after flexor

tendon suture. The simplest delivery method, systemic drug delivery, has not been widely adopted clinically due to

low bioavailability at the tendon and concern of side effects. Oral nonsteroidal anti-inflammatory drugs (NSAIDs, e.g.,

ibuprofen) have been used, with varying results, to limit adhesions experimentally and clinically [170, 171, 172, 173].

Local bolus delivery of cells [174] or growth factors [175, 176] by simple injection has yielded limited results, since

few cells graft to host tissue without a supporting scaffold and the delivered growth factor is rapidly cleared from the

repair site [177]. Recent studies have shown that biological interventions require controlled spatiotemporal delivery to

the repair site to improve tendon healing [178, 105, 179, 180, 181].

In order to effectively deliver cells and growth factors to the repair site, two major tissue engineering paradigms

have been investigated using a variety of scaffold biomaterials. Approaches typically either interpose cell- and/or
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growth factor-seeded scaffolds between the repaired tendon stumps [93, 182, 183] or deliver scaffolds on the surface

of the repaired tendon [184, 151]. Interposition delivers factors directly to the injury site where they are needed for

repair, but scaffolds may form a barrier between the tendon stumps that is detrimental for healing [185]. Our group

has explored scaffold delivery in a longitudinal slit made within the canine flexor tendon, enabling factor delivery

to the injured site while retaining tendon stump coaptation. The slit was found to have injurious mechanical effects,

however, that must be overcome before improvement in healing can be achieved [186, 167, 155]. Alternatively,

scaffolds placed on the surface of tendon adjacent to the repair site deliver factors to the general vicinity but rely on

biofactor diffusion or migration to impact the repair itself. Furthermore, scaffolds wrapped around the tendon may

induce adhesions or cause excessive bulking that limits tendon gliding within the fibro-osseous sheath. To minimize

adhesion formation, lubricating biomaterials such as lubricin and hyaluronic acid [151, 162, 157, 163, 187, 188, 189]

and anti-mitotic drugs such as 5-fluorouracil [66, 190] have been successfully utilized in animal models. While these

materials improve tendon gliding, some studies have shown deleterious effects on repair strength [162, 151, 191].

Other materials including silicone, polyethylene, and cellophane have been used clinically as an artificial sheath to

reduce adhesions, but have not gained widespread acceptance in the United States [9, 192, 193, 10].

Biomaterial selection is crucial to the function of tissue engineered scaffolds. Fibrin delivery systems with heparin-

bound growth factors have enabled sustained drug delivery during healing [194, 195, 155, 105, 178, 167, 186], as

have some microsphere-based approaches [196, 197, 198]. Here, we describe more recent work on these materials

in Chapter 5 [199]. The scaffold backbone is also essential for promoting stem cell integration and differentiation.

Scaffold mechanical properties and fiber diameter influence cell activity and differentiation [200]. Synthetic polymer

approaches using electrospun polylactic co-glycolic acid (PLGA) nanofiber scaffolds have provided a strong, fibrous

backbone and delivered viable cells and growth factors to the repair site (Figure 1.5). However, these scaffolds release

acidic byproducts that increase the proinflammatory cytokine IL-1β and negatively impact healing [186, 167]. Natu-

rally occurring polymers, including collagen- and fibrin/heparin-based delivery systems, have been explored for their

enhanced biocompatibility. Future delivery approaches should be biocompatible, appropriate for cell seeding, able to

provide sustained growth factor delivery, and have appropriate surgical handling characteristics for implantation into

the relatively dense tendon tissue. One such new approach is developed here in Chapter 4 for adhesive and biofactor

delivery.

Growth factor treatments: The growth factors bone morphogenic protein (BMP) 12, BMP13, and BMP14, (a.k.a.,

GDF7, GDF6, and GDF5, respectively) which are expressed in developing tendons and ligaments, have been shown
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Figure 1.5: A representative PLGA-fibrin scaffold with 11 alternating layers of aligned electrospun PLGA nanofiber
mats separated by fibrin containing adipose-derived MSCs. (A) Micrograph showing the scaffold in vitro; the PLGA
was labeled with FITC (green), the fibrin was labeled with Alexa Fluor 546 (red) and the adipose-derived MSC nuclei
were labeled with Hoescht 33258 (blue) (scale bar = 200 µm). (B) Micrograph showing the scaffold in vivo 9 days
after implantation in a canine flexor tendon repair (scale bar = 100 µm). (C) A schematic of the layered scaffold is
shown. Figure modified from [167], with permission.

to have the greatest potential for improving tendon healing [165, 201, 202, 203, 204, 205]. These BMPs act by

inducing tenogenesis in stem cells in vitro via Smad 1/5/8 phosphorylation [201, 204, 165, 206]. BMP12 effectively

increased the expression of the tendon markers scleraxis and tenomodulin in canine adipose-derived mesenchymal

stromal cells (ASCs) in vitro at both mRNA and protein levels [165]. Consistent with these results, BMP12 induced

scleraxis promoter driven-GFP and tenomodulin expression in mouse ASCs. BMP12 administration concurrently

reduced expression of the bone marker osteocalcin, but not the osteogenic transcription factor runx-2. There was a

mild increase in the expression of the cartilage matrix gene aggrecan, though still to considerably lower levels than

those detected in tendon fibroblasts. BMP14 had similar but less potent effects [165]. However, these factors alone,

without concurrent cell delivery, have not been sufficient to improve repair strength. Hayashi et al. interposed collagen

gels with BMP14 without cells between cut ends of canine FDP tendon under in vitro tissue culture conditions, but

this did not significantly change ultimate healing strength or stiffness compared to repaired controls [166]. Similarly,

adenoviral-mediated gene transfer of human BMP13 did not improve healing in a rat rotator cuff repair model [207].

Several other growth factor approaches have attempted to promote cell proliferation and matrix synthesis in order to

improve flexor tendon healing. I refer the reader to a review article that I recently published on the topic for more

information [208].

A promising recent growth factor approach is based on connective tissue growth factor (CTGF), which has been

shown to induce MSC differentiation into tendon fibroblasts and/or chondrocytes [209, 210, 211]. Similar to BMP12,

in vitro CTGF effectively increased the expression of the tenocyte lineage markers scleraxis and tenomodulin, as well

as the fibroblast proteins collagen I and tenascin-C [210]. During rat rotator cuff healing, CTGF is highly expressed
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in the tendon midsubstance and at the tendon-to-bone insertion for several weeks following injury [212]. In chicken

flexor tendons, CTGF is relatively highly expressed in normal tendons and throughout healing [213]. CTGF and cell

combination studies are described below, and form the basis of the work described in Chapter 4 delivering CTGF in

vivo in a canine flexor tendon injury and repair model using sutures with porous outer sheaths to increase loading

capacity.

Cell treatments: As noted above, early enthusiasm for cell therapy, based on patellar tendon [174, 214] and Achilles

tendon [215] results, has been largely unsuccessful in rotator cuff [216] and flexor tendon animal models. In two

studies using a canine in vitro tissue culture model, interposition of a multilayered collagen patch seeded with bone

marrow-derived MSCs into the repair site did not improve flexor tendon healing mechanics compared with control

repairs without interposed patches [166, 217]. MSC implantation in vivo in rabbits decreased adhesions but did not

improve biomechanical properties 3 or 8 weeks after surgery [218]. Racehorses that received direct injection of

bone marrow-derived MSCs during superficial digital flexor tendon repair had reduced re-injury rates compared with

historical controls [219, 220, 221]; however, the equine superficial digital flexor tendon has substantially different

functional, structural, and material properties from human FDP tendon [222, 139].

Cell-growth factor combination treatments: Though cells and growth factors in isolation have not markedly im-

proved flexor tendon healing, combination therapies offer greater potential to improve outcomes. While interposition

of bone marrow-derived MSCs only or BMP14 only did not improve repair mechanics in an in vitro canine flexor ten-

don tissue culture model, the combination of MSCs with BMP14 or platelet-rich plasma on collagen patches improved

strength and stiffness [166, 217]. This approach, combined with surface lubricin for in vivo canine flexor tendon re-

pairs to decrease adhesions, unfortunately resulted in substantially worse repair strength 42 days after repair [151].

Similarly, application of adipose-derived MSCs in combination with BMP12 in an in vivo canine zone II flexor tendon

repair using PLGA and fibrin scaffolds led to increased total collagen compared to repairs with acellular scaffolds, but

did not improve tensile properties at 28 days after surgery compared to the acellular group. The delivery method used

in these studies was a critical component driving the outcomes: the PLGA-fibrin scaffolds had a deleterious effect that

may have counteracted any beneficial effects from the MSCs and/or BMP12 [186]. A previous study delivering the

same PLGA-fibrin scaffolds containing MSCs and PDGF-BB demonstrated retained cell viability after 10 days, but

also mild inflammatory reactions, possibly due to the PLGA scaffold (Figure 1.5) [167].

Connective tissue growth factor and cell combination approaches have not been thoroughly evaluated in flexor tendon
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in vivo, but CTGF-based approaches show promise in other tendon repair scenarios. Tendon-derived CD146+ stem

cells cultured with CTGF promoted tenogenic differentiation in vitro [223]. Tendon-derived stem cell sheets stimulated

with CTGF promoted improved anterior cruciate ligament graft healing and biomechanics in vivo in rats, including

improved osteointegration [224]. Similarly, cell sheets with CTGF and ascorbic acid enhanced biomechanical and

histology-based outcomes at 8 weeks in an in vivo rat patellar tendon repair model. While this work is in a rat model

that is far from a clinically relevant scenario, it is an intriguing for additional study. Further studies introducing CTGF

and/or BMP growth factors on biocompatible matrices, possibly with cells, will be important for defining the next

generation of therapies for flexor tendon repair. In Chapter 4, we employed porous sutures to delivery CTGF in a

sustained, biocompatible fashion directly to the interior of repaired tendons.

1.4.2 Experimental rotator cuff repair

Animal models

Similar to flexor tendon research, several animal models have been employed to study rotator cuff injury and repair.

The most commonly used animal models are rat [225, 226, 227, 228, 229, 230], goat [83], sheep [231, 132], and

rabbit [232, 233, 234]. Goats and sheep are the animal models with rotator cuffs closest in size to human rotator

cuffs. However, unlike humans, they lack a coracoacromial arch and the tendon is extrasynovial [235]. The rat model

developed by Dr. Louis Soslowsky is structurally and physiologically the most similar to a human shoulder, and has

been used for over 20 years [225]. While the rat model allows for basic science studies of biological and simple

mechanical treatments, the small size prohibits repairs that truly mimic the human mechanical loading scenario [235].

Furthermore, all of these animal models are quadripeds, resulting in different loading requirements on the shoulder

compared to humans. Due to these limitations in animal models, we elected to study mechanical impacts of adhesive

films in human cadaver rotator cuff repairs in Chapter 3.

Biological approaches and delivery scaffolds

Due to poor healing rates in rotator cuff repair, there has been an intense research focus on delivery of biological

factors (in addition to the surgical modifications discussed above) as a means to improve the healing process [236].

Clinicians and patients are desperate for ways to improve repair outcomes, especially since improved holding strength

by compression with double-row repairs has not shown definitive evidence of improved repair outcomes. Platelet-rich

20



plasma (PRP) injections received great interest over the last decade as a potential means to induce cell migration into

the repair site, differentiation, and proliferation [237, 238]. Autologous PRP contains many growth factors implicated

in tendon-to-bone development and repair, including PDGF and VEGF [236]. However, despite clinical enthusiasm

and several trials evaluating efficacy in patients, use of PRP has limited scientific basis or evidence of success [238,

239, 240].

More refined biological approaches to treat rotator cuff tears follow the typical tissue engineering paradigms, as out-

lined above for flexor tendon repair. Appropriate spatiotemporal delivery of cells and growth factors, integrated into

scaffolds with relevant biophysical properties, has potential to mimic developmental paradigms to guide the healing

process [235, 236, 241, 242, 243, 228]. Biological factors that have been evaluated in research settings of tendon-to-

bone repair include transforming growth factor-β3 (TGF-β3) to stimulate cell proliferation [244, 228, 245] and bone

morphogenic proteins BMP-2 [245] and BMP13 [207] to stimulate bone formation at the repair site [212]. While

MSCs did not have a positive effect on repairs when used alone [216], MSCs did stimulate improved mechanical prop-

erties in rats following transduction with the scleraxis [246, 6], a transcription factor involved in tendon development

(as discussed above for flexor tendon) [241]. Other interesting tissue engineering approaches seek to bridge the dis-

parate mechanical properties of tendon and bone using multiphasic scaffolds, each phase with its own cell and growth

factor seeding [93, 47]. While these and related approaches [247] are moving in the right direction to bridge tendon and

bone mechanical properties, a review recently emphasized the need to optimize scaffold properties [248]. Iterations

on these approaches have substantial potential to impact clinical rotator cuff repairs. Unfortunately, any single-factor

therapy is likely insufficient in the complicated biological and mechanical milieu of the healing rotator cuff [6, 236].

The intricate requirements for biological and mechanical factor delivery timed spatially and temporally during the re-

pair process, as well as the regulatory requirements to approve such therapies, indicates that these therapies are likely

still several years from clinical application. While specific biological approaches to enhance tendon-to-bone repair are

largely outside the scope of this dissertation, they still offer an interesting opportunity for future combinatorial therapy

approaches with porous sutures or adhesive biomaterial films as more research establishes which biofactors are most

important. This is analogous to the combinatorial approaches discussed for tendon midsubstance repair in Chapter 4

and Chapter 5.
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Figure 1.6: Approximate stress distributions for standard clinical tendon (A) and tendon-to-bone (C) repairs vs. repairs
augmented with mechanically optimized, adhesive biomaterials (B,D). Adhesives were hypothesized to use increased
surface area for load transfer, reducing peak stresses and improving overall repair mechanics. Stress is indicated by
red (A,B) or green (C,D) shading.

1.5 Thesis aims and hypotheses

While modern repair techniques are sufficient to hold together many tissues, tendon and ligament repairs have elon-

gation and rupture rates as high as 48% for flexor tendon [33, 100, 249, 250] and 94% for rotator cuff [40, 41,

251, 39, 252]. These repair failures lead to reoperations, worsening injuries, and even permanent disability [253].

Musculoskeletal tissue reconstructions such as tendon or ligament repair demand high biomechanical strength to ac-

commodate activities of daily living without risking rupture. Improved orthopaedic surgical repair mechanics facilitate

improved tissue healing and regained function. Unfortunately, surgical suturing is a crude mechanical solution. Su-

tures are in tension along their length, but the load is predominantly transferred to the surrounding tissue where sutures

bend at anchor points (Figure 1.6A). Tendon-to-bone repairs are even worse from a mechanical perspective: almost

all of the force transferred from muscle to bone concentrates across two anchor points, where the suture from a bone

anchor punctures through the tendon (Figure 1.6C). This fails to recreate natural load transfer mechanisms across this

interface. In both cases, high stress concentrations at these anchor points lead to repair failure [254, 152, 255]. Im-

proved repair schemes would minimize stress concentrations and increase repair strength, reducing rupture and gap

formation between the repaired tissues [33, 100].
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Here, we propose to improve surgical repair outcomes through adhesive biomaterial approaches. Our global hypothesis

is that mechanically optimized adhesive biomaterials that redistribute load transfer over larger physiologically-relevant

surface areas will reduce stress concentrations, thereby improving load tolerance of repaired tendons (Figure 1.6B,D).

Aim 1: Assess potential of adhesive-coated sutures to transfer load along suture length. To test this hypothesis,

we derived and employed a shear lag mechanical model to predict load transfer along adhesive-coated sutures for

tendon midsubstance repair (Chapter 2) in order to guide research on elastomeric adhesives suitable for use in clinical

settings. We validated this model using idealized and clinically relevant cadaver repairs.

Aim 2: Assess potential of adhesive films between tendon and bone to augment surgical repair strength. We

then extended this model from tendon midsubstance repairs using adhesive-coated sutures to tendon-to-bone repairs

using adhesive films (Chapter 3). Following idealized and clinically-relevant validation, we established a protocol for

rapid, repeatable testing of adhesive mechanical properties while binding bone and tendon planks.

Aim 3: Develop implementation strategies to deliver adhesive on suture surfaces. The goal was to advance

mechanically optimized adhesives that bind strongly to tissue and to sutures, and whose mechanical properties lie

within the range predicted by our mechanical models to improve repair site strength, toward clinical implementation

for tendon midsubstance or tendon-to-bone insertion repairs. To achieve this, we collaborated on development of

sutures with porous outer sheaths to increase adhesive or biofactor loading capacity and binding strength. We then

evaluated the mechanical and biological potential of loaded porous sutures to improve tendon repair ex vivo and in an

in vivo canine flexor tendon injury and repair model (Chapter 4). Finally, we postulated on future directions to advance

these technologies individually and in combination with biological approaches to improve tendon midsubstance and

tendon-to-bone repair outcomes (Chapter 5).
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Chapter 2

Enhanced tendon repair through

adhesive-coated sutures

Portions of this chapter were previously published in: Linderman SW, Kormpakis I, Gelberman RH, Birman V, Wegst

UG, Genin GM, Thomopoulos S. Shear lag sutures: Improved suture repair through the use of adhesives. Acta

Biomater. 23:229-39, 2015. PMID: 26022966. [256]

2.1 Abstract

Suture materials and surgical knot tying techniques have improved dramatically since their first use over five mil-

lennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture

anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range

of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The me-

chanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space

for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of

the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of su-

tures coated with flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive

Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Ad-
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PBS Phosphate buffered saline x position along suture
τ(x) shear stress in the adhesive layer τave average shear stress
τfail failure shear stress of adhesive-coated suture σ̄s(x) normal stress in suture normalized by normal stress at x = 0
Es suture elastic modulus E∗s suture elastic modulus normalized by tendon elastic modulus
Et tendon elastic modulus Ga adhesive shear modulus
G∗a adhesive shear modulus normalized by tendon elastic modulus
L suture purchase length Lintersect suture length where asymptotic limits for load

transfer intersect
Ps normal force in suture at the interface, x = 0 Pk resultant normal force in suture at the anchor point
rs suture radius r∗t tendon radius normalized by suture radius
rt tendon radius ρ∗t effective radius of tendon, normalized by suture radius
ta adhesive thickness t∗a adhesive thickness normalized by suture radius
βs characteristic (inverse) length scale χ variable related to geometry and material properties

related to geometry and material properties

Table 2.1: Abbreviations and variables used throughout Chapter 2.

hesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept,

cyanoacrylate-coated sutures were then used to perform flexor digitorum tendon repair in cadaver tissues. The repairs

performed with adhesive-coated suture had significantly higher strength compared to the standard repairs without ad-

hesive. Notably, cyanoacrylate provided strong adhesion with high stiffness and brittle behavior, and was therefore

not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically

relevant setting, even using a non-ideal adhesive, demonstrated the potential for the proposed approach to improve

outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant

adhesive within the optimal design space described by the model.

2.2 Introduction

Sutures are an age-old technology: they have been used for wound closure for over 5 millennia, dating back to sutures

used in ancient Egypt, as described in the Edwin Smith Papyrus from 3000 – 1600 BC [257, 258, 259]. While

many improvements in suture materials and intricate knot tying techniques have been introduced over the years, the

core method of directly sewing tissues together remains a crude mechanical solution. Sutures typically work in pure

tension along most of their length. Tension is transferred to the tissue only at anchor points (Figure 2.1). High

stress concentrations at these anchor points can lead to sutures breaking or cutting through the surrounding tissue.

This phenomenon limits the maximum force that can be transferred across the repair site. While current suturing

techniques are sufficient to maintain the integrity of many surgical repairs, musculoskeletal tissue reconstruction (e.g.,

tendon and ligament repair) typically demand strong biomechanical resilience to accommodate activities of daily

living without risking rupture. For example, repair-site elongation and rupture rates of up to 48% have been described

after flexor tendon repair, even with modern suturing and rehabilitation protocols [250, 100, 20, 260]. Rotator cuff
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Adhesive-coated suture

Distributed
stresses

Standard repair (no adhesive)

Stress
concentrations

Figure 2.1: An 8-stranded Winters-Gelberman suture repair technique is shown for human flexor digitorum profundus
tendon repair [11]. Red shading indicates location of load transfer. Current suturing techniques generate stress con-
centrations at anchor points where the suture bends within tissue. Adhesive-coated sutures could distribute that load
transfer along the entire length of the suture, reducing peak stresses and improving overall repair construct mechanics.

repairs, which require reattachment of materials with disparate mechanical properties (tendon and bone), have recently

reported failure rates as high as 94% [40, 41, 118]. Improved suturing schemes would allow for the transfer of greater

loads across the repair site, reducing rupture and gap formation between the repaired tissues and improving healing

outcomes, not only by strengthening repairs but also by enabling more aggressive rehabilitation protocols. By holding

the tissues together for longer time intervals, mechanical solutions that prevent gap formation and development could

provide more time for the biological healing response to generate a strong, organized tissue instead of disorganized

scar [100, 11, 261].

Here, a new approach is proposed to augment standard suturing technology. Conventional sutures have a relatively

large surface area passing through the tendon that is currently not utilized for load transfer. We envisioned a modified

suture with an adsorbed or covalently bound adhesive that tightly binds collagen along the suture’s length, thereby

reducing stress concentrations and better distributing load (Figure 2.1). We hypothesized that adhesives along the

length of the suture would transfer load more effectively than conventional suture without adhesive. This improvement

in load transfer is expected to result in an improvement in overall repair construct mechanical properties. Note that

achieving the full strength of an uninjured tendon is unnecessary, as tendons are over-designed and are typically able

to accommodate many times more load than is applied physiologically [179, 262, 263]. We aim to generate functional

repairs that are sufficient to accommodate in vivo loads and enhanced rehabilitation protocols. We focus here on single

stranded sutures or pseudomonofilament sutures, including multiple fibers within an outer casing, because these are

used surgically for flexor tendon repair [11].

In order to predict the ability of adhesive-coated sutures to improve load transfer, we employed a shear lag model

[264, 265, 266, 267] of suture within a cylindrical tissue (e.g., a tendon). Using this model, we identified desirable
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adhesive mechanical properties to improve load transfer across a repair site. We then biomechanically tested sutures

coated with adhesives to validate the model and experimentally assess the capacity to improve load transfer.

2.3 Theory

2.3.1 Terminology

Throughout this chapter, “suture” refers to the core strand of suture, “adhesive” refers to the adhesive layer, “assembly”

and “adhesive-coated suture” refer to the combination of suture with adhesive surrounding it, and “repair” refers to

the complete tissue repair, including several strands of adhesive-coated suture and a region of tissue in which these are

embedded.

2.3.2 Shear lag model

A shear lag model was studied to identify adhesives with desirable properties for suture repair (Appendix 2.A). The

model predicted load sharing between the sutures and an idealized isotropic, homogeneous repaired tendon.

The load Ps on an assembly that would cause adhesive failure was estimated from the following expression for the

shear stress τ(x) as a function of the position, x, along a suture (Figure 2.2):

τ(x)

τave
=

βsL

χ sinh (βsL)

[
(χ− 1) cosh (βs(x− L))−

(
Pk
Ps
χ− 1

)
cosh (βsx)

]
(2.1)

where τave = Ps

2πrsL
is the average shear stress; L is the suture purchase length (i.e., the length of the straight section

of the suture within the connected section of the tendon); Pk is the resultant normal force in the suture at the anchor

point (the knot at x = L); Ps is the normal force in the suture at the interface (x = 0); and χ and the characteristic

(inverse) length scale βs relate to the geometry and material properties:

χ = 1 +
ρ∗2t
E∗s

(2.2)

β2
s =

1

r2
s

2G∗a
t∗a

(
1

ρ∗2t
+

1

E∗s

)
(2.3)

where ρ∗2t = r∗2t −(1 + t∗a)
2, in which r∗t and t∗a are, respectively, the tendon radius and adhesive thickness normalized
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Adhesive-coated suture in tendon (axisymmetric model):

P Prsuture = rs

tadhesive = ta

rtendon = rt

0
r

Cross section:

“s” = Suture: rs,Es

Tendon repair interface Anchor point

“a” = Adhesive: ta,Ga

“t” = Tendon: rt,Et

Right half:

L0
x

P

rs,Es ta,Ga

rt,Et

r

σs(0)Ps

πrs
2 =

Figure 2.2: Diagram of adhesive-coated suture assembly within a cylindrical tissue, such as tendon, used to conduct
shear lag analysis. Ps is the tensile load carried by the suture at the interface between repaired tissues (i.e., at x = 0).
Pk is the load at an anchor point or knot, where the suture bends within the tissue (x = L). This load, when too high,
leads to the assembly cutting through surrounding tissue and to rupture of the repair.

by the suture radius rs; and E∗s and G∗a are, respectively, the suture elastic modulus and adhesive shear modulus

normalized by the tendon elastic modulus Et. The peak shear stress in the adhesive occurs at the interface x = 0

(Figure 2.3). Equating this to the adhesive failure shear stress, τfail, and solving (2.1) for the case of Pk = 0 yields:

(
Pmax
2πr2

s

)
= τfail

L

rs

sinh (βsL)

βsL

χ

(χ− 1) cosh (−βsL) + 1
(2.4)

Note that τfail could be limited by failure at the interfaces with adherends (i.e., suture or surrounding tissue) or failure

within the adherends themselves. This solution is nearly bilinear, with two asymptotes (Figure 2.4, Figure 2.5):

lim
L→∞

(
Pmax
2πr2

s

)
= τfail

[
E∗s t

∗
a

2G∗a

(
1 +

E∗s
ρ∗2t

)] 1
2

(2.5)

lim
Ga→0

(
Pmax
2πr2

s

)
= τfail

L

rs
(2.6)

For a given suture, the first limit (L → ∞) shows that the force a suture can carry increases monotonically with

decreasing adhesive shear modulus G∗a. Below a critical adhesive shear modulus, however, the second limit (Ga → 0)
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shows that a cut-off exists that depends upon the suture length. Therefore, the optimum strength involves as compliant

of an adhesive as possible provided that the suture length is sufficient:

L ≥ Lintersect ≡ rs
[
E∗s t

∗
a

2G∗a

(
1 +

E∗s
ρ∗2t

)] 1
2

(2.7)

As a test case for a clinically relevant suture repair scenario, the model was analyzed using realistic tendon and suture

material properties and a variety of realistic suture lengths and adhesive properties for a typical flexor digitorum

profundus clinical repair: L = 13 mm, rt = 2 mm, Et = 200 MPa, ta = 100 µm, rs = 100 µm, and Es = 2 GPa

[107, 268, 269, 270, 271, 272, 273].

2.4 Materials and methods

2.4.1 Ex vivo surgical repair model

To experimentally assess the ability of adhesives to improve load transfer, a number of adhesive coatings were added to

single pseudo-monofilament polycaprolactam (a.k.a. nylon 6) 4-0 suture strands (Supramid, S. Jackson, Inc., Alexan-

dria, VA) and inserted into tendon tissue prior to preforming pullout tests. Single strands without knots were chosen

to isolate the effects of the adhesive and mimic the mathematical model as closely as possible. The following adhe-

sives were examined: highly flexible cyanoacrylates (Loctite 4903 and 4902, based on ethyl and octyl cyanoacrylate

[274, 275]; Henkel Corporation, Düsseldorf, Germany), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel, based

on ethyl cyanoacrylate [276], Henkel Corporation, Düsseldorf, Germany), rubber cement (Elmer’s Rubber Cement;

Elmer’s Products, Inc., Columbus, OH), rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rub-

ber & Gasket Adhesive; 3M, St. Paul, MN), BioGlue (CryoLife Inc., Kennesaw, GA), and polydopamine [277, 278]

(Sigma Aldrich, St. Louis, MO). Henkel does not release the exact chemical composition of their products. Of these

adhesives, only BioGlue is FDA approved for use inside the body. These commercially available adhesives were

chosen solely to assess the concept proposed here, not to promote the use of any particular adhesive clinically. Loc-

tite 4903 and 4902 have shear moduli of 538 MPa and 399 MPa, respectively [279]. BioGlue, rubber cement, and

rubber/gasket adhesives [280] have shear moduli on the order of 0.5 - 5 MPa [281, 282, 283]. Suture was passed

through cadaveric canine hindpaw flexor digitorum profundus tendons using a French eye needle. All tendons tested

in this study were from hindpaws of healthy female adult mongrel dogs from 20-30 kg in weight (Covance Research,
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Princeton, NJ), taken postmortem from an unrelated project. Canine intrasynovial flexor tendons have been used ex-

tensively by our group and others since the early 1960s as a reliable model of human tendon repair; we expect the

results from this model to be comparable to those that would be obtained from human flexor tendon reconstructions

[100, 284, 285, 286, 13, 138, 12, 105]. Tendons had elliptical cross sections with major and minor radii approximately

3 mm and 1 mm, respectively. The tendon was first dissected away from surrounding tissue and a complete transection

was made in Zone II [61] perpendicular to the long axis of the tendon. Suture was passed from the side of the tendon

10 mm from the site of transection toward the laceration interface. The suture was pulled through the tendon so that

only a single suture strand remained within the tendon. In the adhesive-coated suture tests, the adhesive was injected

onto the suture and the suture was pulled into place, dragging the adhesive into the tendon. Adhesive that accumulated

on the side of the tendon was cleared with gauze soaked in phosphate buffered saline (PBS). The assembly within

the tendon was wrapped in PBS-soaked gauze in an airtight tube and then allowed to cure overnight at 4 ◦C before

biomechanical testing. This curing procedure was chosen to ensure that the postmortem tissue ex vivo would not rot

or deteriorate.

To assess the ability of adhesive to improve load transfer in a clinically relevant setting, cadaveric canine hindpaw

flexor digitorum profundus tendons with Zone II lacerations [61] were repaired using an 8-strand Winters-Gelberman

repair [11] (n = 11; Supramid 4-0 suture; S. Jackson Inc., Alexandria, VA), as diagrammed in Figure 2.1 and described

previously [107]. Control repairs without adhesive were compared to repairs with Loctite 4903-coated suture. Loctite

4903 was chosen based on results of single suture pullout tests described above. All surgeries were performed by

IK, an orthopaedic hand surgeon. For adhesive-augmented repairs, sutures were passed through the tendon following

usual surgical technique, then for each suture pass, Loctite 4903 was injected onto the suture strands using a syringe

immediately prior to pulling the adhesive-coated suture into its final position. The outside of the tendon was cleaned

with PBS-soaked gauze to remove any excess adhesive. Repairs were completed with a continuous, nonlocking

peripheral stitch using 5-0 nylon suture, as performed clinically [250, 11, 22, 21]. The repaired tendon and distal

phalangeal bone were wrapped in PBS-soaked gauze in an airtight tube and then allowed to cure overnight at 4 ◦C to

prevent tissue deterioration before biomechanical testing.

2.4.2 Biomechanical testing

Samples were brought to 37 ◦C prior to biomechanical testing. For single suture strand pullout tests, any suture and

adhesive outside of the lateral tendon was first dissected away. This experimentally ensured that the effect was due to
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adhesive along the length of the suture instead of adhesive accumulated at the suture entrance point. Samples were

then tested in uniaxial tension on a materials testing frame (ElectroPuls E1000; Instron Corp., Norwood, MA, chosen

because of a low noise load cell suitable for distinguishing milli-Newton level forces). The tendon was clamped in

a stationary grip so 15 mm of tendon length was exposed. Suture was carefully placed in a jig consisting of a low

friction spool and a clamp grip, which was pulled upward at 0.3 mm/s to apply tension to the suture. The gauge length

between the tendon and suture grips was 8.5 cm for all samples at the start of the test. Pullout (failure) force of single

adhesive-coated suture strands within tendon tissue were determined from the force-elongation curves.

Clinical repairs of cadaveric flexor digitorum profundus tendons were tested as described previously [287, 288, 103,

105]. After preconditioning, samples were pulled in uniaxial tension using a material testing machine (5866; Instron

Corp., Norwood, MA, chosen because of a high capacity load cell) at 0.3 mm/s until failure. Strain was determined

optically to determine when a physiologically relevant 2 mm gap formed between the repaired tendon ends. Imme-

diately prior to testing, tendons were stained with a speckle pattern of freshly prepared VerHoeff stain to provide a

surface texture for optical tracking. Elongation measurements from the material testing machine were synced with

optical recordings from a high resolution camera at a frame rate of 4 Hz (illunis, Minnetonka, MN), similar to de-

scribed previously [30]. Optical tracking of points proximal and distal to the laceration interface enabled accurate

determination of local tissue strain. From the force-elongation curves, maximum force, force required to create a 2

mm gap in the repair (a clinically relevant measure of repair strength [100]), and stiffness (slope of the linear region)

were determined. From the force-strain curves, strain at 20 N force (approximating strains at physiologically relevant

load levels [289, 99]) and resilience (area under the curve until yield) were determined.

2.4.3 Statistics

Statistical analysis for all experiments was performed by non-parametric Wilcoxon rank-sum using MATLAB. Statis-

tical significance was set at p < 0.05 unless otherwise noted.
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Figure 2.3: Shear stress vs. position along the length of a suture is shown. (A) The peak shear stress decreases as
the adhesive shear modulus decreases because compliant adhesives distribute loads over a longer distance than stiffer
adhesives. (B) A typical repair with Supramid or other sutures is unbalanced in the shear lag sense (i.e., ρ∗2t > E∗s ,
orange line, Ga = 1 GPa), resulting in higher peak stresses. If a 38x stiffer suture were available to balance the
adherends (black line, still using Ga = 1 GPa), the peak stress would drop by a factor of 8.5. In these calculations
Pk = 0 N, so that all of the load carried by the suture was transferred to the surrounding tissue via the adhesive.

2.5 Results

2.5.1 Shear lag model analysis

Shear lag modeling predicted that adhesive coatings on sutures would improve load transfer compared to conventional

sutures for a certain range of properties (white band, Figure 2.4). Mechanically desirable adhesives would be compliant

in shear while maintaining high binding and shear strengths. Compliant adhesives allow greater deformation, thereby

distributing loads over a larger length than stiff adhesives (Figure 2.3a). This distribution reduces stress concentrations

at the suture anchor points, leading to an adhesive-coated suture assembly that carries greater load before failure. In

addition to adhesive properties, the maximum shear stress in the adhesive is minimized by balancing the adherends

[290] (i.e., tissue and suture) so that E∗s = ρ∗2t (Appendix 2.A). These adherends are not balanced with current

Supramid surgical suture and tendon. When adherends (tendon and suture) are balanced by assuming 38-fold stiffer

suture, the peak stress is 8.5-fold lower than in conventional suture repair (Figure 2.3b).

Shear lag modeling also predicted that maximum load transfer would increase with increasing adhesive-coated suture

length. However, varying the ratio of suture length to Lintersect demonstrates that adhesive-coated sutures approach

the limit for maximum load transferred when the suture length, L, is 2-3 times Lintersect (Figure 2.5a). The length
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Figure 2.4: Contour map of maximum load transferred across the repair by an adhesive-coated suture strand, cal-
culated from a wide array of theoretical adhesive shear moduli and adhesive failure shear stresses (i.e., strengths)
given properties described in the methods, and overlaid with real material properties for several material types
[279, 280, 281, 282, 291, 292, 293]. Maximum load transfer isoclines were normalized by the strength of healthy
human flexor tendons (Ptendon ≈ 1000 N) [294]. Maximum load transfer occurred with an infinitely compliant and
infinitely strong adhesive, toward the upper left corner of this contour plot. Current flexor tendon repairs carry ap-
proximately 10 N per suture strand, so relevant adhesive coatings would have failure loads above this level. Adhesive
mechanical properties that are not expected to improve load transfer are shaded red (lower portion). Note that the
suture strand itself breaks above approximately 15.5 N for Supramid 4-0 or 23.5 N for Supramid 3-0 suture [107], so
adhesive failure loads above this level would not further improve load transfer (shaded green, upper portion). Also
note that shear modulus and failure shear stress are related for a given real material, so not all theoretical combinations
are realistic.
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of suture used is limited surgically by the particular tissue being repaired. Suture length of 13 mm was used in the

model to make results relevant to flexor digitorum profundus tendon repair (Figure 2.5b) [22]. A contour map of

maximum load transfer given various adhesive properties was generated using this length (Figure 2.4). Properties of

several real materials were then overlaid on this contour map to identify promising candidate materials. Only a small

fraction of the material classes shown are relevant materials; the remainder are included for comparison as is standard

with an Ashby plot, and to highlight the importance of appropriate adhesive material selection. Assuming a compliant

adhesive (Ga = 100 kPa) with a strong shear strength (τ = 10 MPa) and the current clinical suture length of 13 mm,

maximum load transfer per strand would approach 70 N of force. For the typical 4- and 8-strand methods used in

flexor tendon repair, this would result in theoretical improvements of up to 280 N and 560 N, ∼4-fold and ∼8-fold

improvements over current methods, respectively.

2.5.2 Ex vivo experimental results

Biomechanical tests of single strands of adhesive-coated suture within tendon tissue supported the model prediction

that adhesive coatings can increase force required to pull out a suture. Loctite 4903, a “flexible” cyanoacrylate,

improved the maximum load to pull out a single suture strand in tendon from 0.076 N (± 0.104 N standard deviation)

without adhesive to 3.24 N (± 2.11 N; p = 3.11 ∗ 10−4) with an adhesive-coated suture strand (Figure 2.6). The more

compliant adhesives tested did not meaningfully increase the maximum load necessary to pull out the suture, likely

because of poor binding to suture and tissue.

The strongest single strands of adhesive-coated suture in tendon were further evaluated in a clinically relevant 8-

stranded cadaveric canine flexor tendon repair. Since the results for Quicktite, Loctite 4902, and Loctite 4903 were

comparable, the choice amongst them was arbitrary from the mechanics perspective. In the clinically relevant ex vivo

repairs, Loctite 4903-coated sutures increased maximum load transfer by 17.0% (Control = 72.7 ± 11.3 N; Loctite

4903 = 85.0 ± 8.6 N; p = 0.009) and load to create a clinically relevant 2 mm gap by 17.5% (Control = 59.2 ± 8.8 N;

Loctite 4903 = 69.5 ± 11.2 N; p = 0.032) compared to standard 8-stranded suture repairs without adhesive coatings

(Figure 2.7; n = 11 per group). Resilience, stiffness, and strain at 20 N applied force did not change significantly

(Table 2.1).

35



0 0.5 2.51 1.5 2 3 3.5 4 4.5 5
L

Lintersect

P
m

a
x
(L

)

P
m

a
x
(∞

)
0

0.2

0.4

0.6

0.8

1.0(A)

10-6 10-5 10-4 10-3 10-2 10-1

L = Length of suture [m]

100

10+1

10+2

10-3

10-2

10-1

P
m

a
x
 =

 L
oa

d 
at

 w
hi

ch
ad

he
si

ve
 fa

ils
  [

N
]

(B)

Figure 2.5: Increasing suture length increases maximum load carried by assembly, i.e., load causing adhesive to fail,
only until a point. Above a transitional suture length, load capacity is governed by an asymptote independent of suture
length. (A) Maximum load carried by an assembly, Pmax, as a function of suture length, L, with respect to the length
Lintersect. Maximum load is normalized by the maximum load transferred by an infinitely long suture, Pmax(∞). At
L = Lintersect, the maximum load is 76.0% of the asymptotic maximum load for an infinitely long suture. Note that
this is an invariant curve that is true for any combination of ta, Ga, Es, rs, Et, and rt that yields a particular value
of Lintersect. (B) Maximum load carried by an assembly as a function of suture length for particular suture, tendon,
and adhesive material and geometric properties relevant to flexor tendon repair. Here the adhesive failure shear stress
τfail = 10 MPa, adhesive shear modulus Ga = 100 kPa, adhesive thickness ta = 0.1 mm, and Pk = 0 N. Current
suture length used in flexor tendon repair is 13 mm into each tendon end, as denoted by the dashed line.

Resilience Stiffness Strain at 20 N

Repair with Loctite 4903-coated suture 9.12 ± 2.46 N 27.2 ± 4.4 N/mm 8.00 ± 1.36%
Control repair (no adhesive) 7.39 ± 2.22 N 24.0 ± 7.0 N/mm 8.81 ± 2.91%
p-value 0.108 0.251 0.438

Table 2.2: Repair resilience, stiffness, and strain at 20 N load are shown for a cadaveric canine flexor digitorum pro-
fundus tendon repair using standard clinical surgical technique (8 stranded repair with 4-0 Supramid suture) compared
with the same repair style where suture was coated with Loctite 4903 (cyanoacrylate adhesive). Modified resilience
shown here is calculated from the force-strain curve.
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Figure 2.6: (A) Maximum loads resisted by single 4-0 Supramid suture strands coated with nothing (traditional su-
ture), CryoLife BioGlue, Dopamine, Elmer’s rubber cement, 3M rubber and gasket adhesive 1300 (neoprene), Loctite
Quicktite (cyanoacrylate), Loctite 4902 or Loctite 4903 (flexible cyanoacrylates) in cadaveric canine flexor digitorum
profundus tendon. The middle line within the box plots represents the median, the outer edges denote the 25 percentile
and 75 percentile samples, and the whiskers extend to the extreme data points. Outliers are denoted by (+). Asterisks
denote statistically significant differences compared to traditional suture (* p < 0.05, ** p < 0.01). (B) Schematic of
testing setup for single strand adhesive-coated suture pullout from tendon. (C) Representative force-elongation curve
for Loctite 4903-coated suture pullout.
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Figure 2.7: Tendon repair load tolerance with and without adhesive. (A) Schematic of testing setup for clinically
relevant repairs with adhesive-coated suture. (B) The plot shows load creating a 2 mm gap and maximum load for a
cadaveric canine flexor digitorum profundus tendon repair using standard clinical surgical technique (8 stranded repair
with 4-0 Supramid suture, green) compared with the same repair style where suture was coated with Loctite 4903
(cyanoacrylate adhesive, blue with hash marks). The middle line within the box plots represents the median, the outer
edges denote the 25 percentile and 75 percentile samples, and the whiskers extend to the extreme data points. Outliers
are denoted by (+). Overbars and asterisks denote statistically significant differences (* p < 0.05, ** p < 0.01). (C)
Representative force-strain curve for 8-stranded repair with Loctite 4903-coated suture.
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2.6 Discussion

Although adhesives, especially cyanoacrylates [295], have been used for decades in surgical repairs to replace or

augment suture for closing the skin and other tissues [296, 297], their application has been almost entirely limited to

the interface between the aligned tissues. The application of adhesive to the lateral faces of sutures has never been

reported for a tissue that works in tension. To our knowledge, only one previous study used adhesive-soaked sutures,

reporting an increase in re-bonding strength of repaired meniscal tissue under compression compared to either suture

alone or adhesive alone [298]. We hypothesized that the load distribution along sutures and the load tolerance of the

repaired tissues could be optimized using a mechanical model that predicts load transfer as a function of adhesive

mechanical properties. Modeling and ex vivo experimental results demonstrated that adhesive-coated sutures have the

potential to improve the strength of tensile tissue repairs, especially with the development of adhesives with optimal

mechanical properties.

The modeling indicated that adhesives that are compliant in shear facilitate load transfer from the suture to the tendon

by lowering stress concentrations (Figure 2.3). This strategy is somewhat analogous to the tendon enthesis, where a

compliant interfacial zone between tendon and bone [76, 77, 78] has been shown to optimize stress transfer and is

hypothesized to toughen the interface [79]. Similarly, a collagen-binding adhesive that directly attaches to the suture

via a small compliant layer in between the suture and the collagen would be expected to better distribute load to

minimize stress concentrations, enabling more effective load transfer across the repair. Finally, we note that compliant

interfaces between fibers and matrix are associated with additional modes of toughening through crack deflection

[299]; this can lead to toughening of the repair as a whole through decreased sensitivity to flaws that might otherwise

lead to failure [300, 301].

Adhesives with a broad range of physical properties are expected to improve load repair strength. When the derived

isoclines are plotted over the properties of real materials, as in a standard Ashby plot [292, 291, 293], the model

highlights a range of potential materials with appropriate mechanical properties (Figure 2.4). Many of these are not

biocompatible, but elastomers such as polychloroprene, polyurethane rubber, and natural rubber do have appropriate

shear moduli and shear strength to be used as base materials for adhesive development. Some biological materials,

e.g., those based on elastin, could also be valuable for creating bio-adhesives. Note that the shear strength used in this

model may be limited by either bulk failure within the adhesive material or interfacial failure between the adhesive

and adherends (i.e., suture and tendon). Therefore, both the bulk adhesive mechanical properties and the strength of

adhesion are crucial factors for successful application of this approach.
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The proof-of-concept experiments performed here demonstrate substantial improvements in load transfer across single

strand pullout and clinically relevant tendon repairs, even though Loctite 4903 used in these tests is a stiff cyanoacrylate

that is far from ideal according to the shear lag model. The 3.24 N ± 2.11 N failure load found experimentally for

a single strand of cyanoacrylate-coated suture within tendon tissue (Figure 2.6) very closely matches the predicted

maximum load for cyanoacrylates from the shear lag model (Figure 2.4). The 17% improvement in load tolerance

for a complete 8-stranded repair (Figure 2.7), amounting to improvement of 10–15 N, could substantially decrease

rupture rate in flexor tendon repairs. The expected load transfer for clinically relevant repairs comes partially from

the shear lag load transfer through adhesive and partially from the basal strength of a suture repair with knots. This

17% improvement in load transfer across a clinically relevant repair represents 47% of the additive improvement

expected for an 8-strand repair based on the single strand experiments.1 We hypothesize that this discrepancy is due

to imbalanced load sharing among strands in the surgical repair. Perfectly balanced repairs are not possible even for

the highly trained orthopaedic hand surgeons who performed the procedures in this study because they require that

(i) all strands have the exact same tension applied to them when surgical knots are tied, (ii) the strands be perfectly

aligned with the longitudinal axis of the tendon, and (iii) the tendon be loaded perfectly longitudinally. Therefore,

some strands will carry more load than others in clinically relevant repairs, reducing the maximum load transfer.

The compliant adhesives tested here did not substantially improve load transfer as anticipated by overlaying their bulk

material properties on the shear lag model (Figure 2.6). This discrepancy highlights the importance of compatibility

between the different materials (i.e., suture, adhesive, and tendon) and the resulting interfacial shear strengths. Overall

shear strength could be limited by any of three factors: (i) the interfacial shear strength between suture and adhesive,

(ii) the interfacial shear strength between adhesive and surrounding tissue, and (iii) the bulk shear strength of the

adhesive material. This study experimentally evaluated the model using several commercially available adhesives

without prior knowledge of their binding strength to Supramid (polycaprolactam) sutures or tendon tissue. Notably,

these commercially available adhesives were not optimized to adhere to suture and tissue, whereas strength parameters

used in the model represented an optimal scenario where the interfacial shear strengths were at least as strong as bulk

shear strength of the adhesives. Poor binding strength of these commercially available adhesives to suture or tissue

might have limited the failure shear stress and efficacy for load transfer. While we tested Supramid sutures because of

their surgical use in flexor tendon repair, different suture materials may have improved compatibility with particular

adhesives. In addition, multifilament sutures have increased surface area for adhesive integration and binding, serving

as a potential mechanism to increase interfacial failure shear stress.

1Each pass of an 8-stranded Winters-Gelberman repair includes 2 strands of a looped suture. Therefore, the 8 strands are bundled in 4 groups of 2
strands. If an adhesive-coated bundle of 2 strands is assumed to act as a single unit for transferring load in shear, then the load transfer improvement
observed in clinically relevant repairs represents 94% of the expected additive improvement based on single strand experiments.
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Since adhesives were simply injected onto the suture surface before the suture was pulled into tissue, the compliant

adhesives may have sheared off of the suture when pulled into place, before adequately curing could take place. One

limitation of this experimental validation is the lack of suitable visualization of adhesive within the tissue along the

length of the suture. We hope to overcome this limitation in future work. The modeling performed here is applicable

even for thin adhesive layers compared to the tissue and suture width. Furthermore, the methods described above

ensure that the effects seen experimentally were due to adhesive along the length of the suture instead of adhesive at

the entry point into tissue (Figure 2.6).

Despite these limitations, the single-strand pullout results for cyanoacrylates were accurately predicted by the mathe-

matical model. This is possibly because Henkel publishes lap shear strength for cyanoacrylates instead of block shear

strength, so the shear data includes interfacial adhesive strength. Additionally, cyanoacrylates are highly reactive com-

pounds that may generate sufficient interfacial adhesive strength via covalent bonding with suture and with tendon that

they were instead limited by failure within the adhesive bulk.

The promising mechanical improvement seen in these proof-of-concept studies with sub-optimal adhesives is still an

order of magnitude below the predicted improvement that could be achieved with an optimal adhesive. While current

repairs are not strong enough to sustain physiologic loading in all patients, even modest mechanical improvements are

expected to make a substantial difference clinically. Therefore, we anticipate this technology will be useful clinically

even if we only see half of the maximum expected improvement based on single-strand testing for a specifically engi-

neered compliant adhesive material. Note that we do not suggest the specific adhesives tested in this proof-of-concept

study be used clinically. Rather, these results provide a foundation for the further development of adhesives with the

desirable mechanical properties predicted here, material compatibility with sutures and tissue, delivery methods that

mitigate adhesives shearing off of suture, and appropriate biocompatibility for use in patients.

This shear lag model describes the importance of adhesive mechanical properties for creating a successful adhesive-

coated suture; however, most currently used adhesives are not designed for this purpose. Specifically engineering an

adhesive material to bind suture and surrounding tissue tightly, while maintaining compliance to shear stress, could

lead to substantially improved adhesive-coated sutures. In addition to having appropriate mechanical properties once

in place, an ideal adhesive-coated suture should be inert for storage and surgical handling before it is placed into the

body. We envision several potential approaches to generate adhesive coatings that only activate when in place within

tissue.

The shear lag model used in the current study employed several simplifying assumptions. First, shear lag models
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treat the displacement field as one-dimensional. Only displacements along the long axis of the tendon/suture were

considered. This approximation has, however, proven effective for a broad range of fibrous composites [265, 302,

303]. Second, the adhesive layer was considered to be very thin. For a thicker layer, deformation of the adhesive

must be considered explicitly, accounting for both axial displacements varying through the thickness as well as radial

displacements, especially for highly compliant adhesives. Third, the stress field in the suture was assumed to be

independent of radial position, an approximation valid only for relatively stiff sutures. Because non-absorbable sutures

used in tendon repair can be assumed rigid in tension in the range of the failure forces of the repair, this approximation

should be acceptable, especially for estimates of load transfer. Despite limitations listed above, this simplified model

of suture-tendon interaction allows for adequate determination of the design space for an adhesive-coated suture for

tissue repair. When used in combination with an Ashby plot showing real material properties [292], this model can

identify promising base materials for adhesive-coated suture development.

2.7 Conclusion

Strengthening surgical repairs should lead to improved healing outcomes for mechanically sensitive tissues, such as

tendon. Our models and proof-of-concept experiments suggest that coating sutures with adhesives that are appropri-

ately designed hold promise for achieving repairs that have higher levels of resistance to gap formation and catastrophic

failure. While Loctite 4903 shows promising results that would be valuable clinically, it is far from an ideal adhesive

according to the model due to its high shear modulus. We intend to develop biocompatible adhesives with optimized

mechanical and chemical properties to further increase load transfer and improve clinical repairs for tendon, ligament,

and other tissue injuries.
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2.10 Supplemental material

2.10.1 Shear lag analysis of an adhesive suture

The shear lag model applied was analogous to the [264] and [265] double lap joint solutions, and to the [266] axisym-

metric solution (cf. Section 2.10.2). We present a derivation here to highlight our approximations and how adhesive

properties arise in the final expression.

The model was based upon the free body diagram in Figure 2.S1) and the following assumptions: (a) the suture,

adhesive, and tendon are linear elastic materials; (b) viscous effects are negligible; and (c) radial displacements,

strains, and stresses are small. The latter is appropriate for a thin adhesive layer. These validity of these assumptions

has been established in composites with short [302, 265] and long fibers (e.g., [303]), and by comparison to solutions in

which these assumptions were not made [304, 305]. We note as well that, although adhesives often exhibit nonlinearity

and viscoelasticity, the linear analysis is adequate and useful for the target design range in which the adhesive is not

close to failure.
L0

FBD of section of repair

Pσs(x)

σt(x)

σs(x) σs + dσs

τ

dx

τ

dx

σt(x) σt + dσt

τ

dx

FBD of di�erential elements
of each component:

Figure 2.S1: Free body diagram showing an axisymmetric model of adhesive-coated suture within a cylindrical tendon
tissue. Simultaneously analyzing a section of the repair (left) and each component independently (i.e., suture, adhesive,
and tendon; right) allows derivation of a shear lag model to estimate shear stress within the adhesive. Note that this
model reduces to a one-dimensional set of equations along the x-axis.
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The differential equation governing the normal stress in the suture at position x is [265, 266]:

d2σ̄s(x)

dx2
− β2

s σ̄s(x) +
β2
s

χ
= 0 (2.8)

where σ̄s(x) is normal stress in the suture normalized by the stress Ps/πr2
s at x = 0, and βs and χ are defined in the

main text. Solving and applying the boundary condition σ̄s(0) = 1 at the interface between repaired tendon ends and

σ̄s(L) = Pk/Ps at the anchor or knot yields:

σ̄s(x) =
1

χ
+

(
1− 1

χ

)
cosh (βsx) (2.9)

+
sinh (βsx)

sinh (βsL)

(
Pk
Ps
− 1

χ
+

(
1

χ
− 1

)
cosh (βsL)

)

Inserting this into the equilibrium equation yields an expression for the shear stress τ(x) (Equation 2.1).

Note that, as with lap joints (e.g. [290]), parametric analysis of Equation 2.1 confirmed that peak stress is minimized

if the inner and outer adherends (tendon and suture) are “balanced” so that E∗s = ρ∗2t (Figure 2.3). This is not the

case for current Supramid surgical suture and tendon. Balancing requires a 38-fold stiffer suture, and would reduce

the peak stress by a factor of 8.5 (assuming geometry and material properties used in the main text).

2.10.2 Derivation from Nairn’s (1997) general, optimized shear lag solution

[266] presented a general shear lag solution for n concentric, transversely isotropic cylinders that sustain an average

axial stress of σ0. We verify in this appendix that, for the case of n = 3 an expression analogous to that of Sec-

tion 2.10.1 can be derived from this solution. Nairn’s governing equation for the interfacial shear stress τrz(r) at

suture/adhesive interface is:

2

[
−τrz(rs)

(
1

E∗s
+

1

E∗a(t∗2a + 2t∗a)

)
+

(1 + t∗a)τrz(rs + ta)

E∗a(t∗2a + 2t∗a)

]

= −τ ′′

rz(rs)

[
1

4G∗s
+

(1 + t∗a)2

2G∗a(t∗2a + 2t∗a)

(
(1 + t∗a)2

t∗2a + 2t∗a
ln (1 + t∗a)− 1 +

t∗2a + 2t∗a
2(1 + t∗a)2

)]

+
(1 + t∗a)3τ

′′

rz(rs + ta)

2G∗a(t∗2a + 2t∗a)

(
1

t∗2a + 2t∗a
ln (1 + t∗a)− 1 +

t∗2a + 2t∗a
2(1 + t∗a)2

)
(2.10)
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where G∗s is the shear modulus of the suture normalized by the elastic modulus of the tendon and all other variables

are as defined in Section 2.10.1. For the adhesive/tendon interface,

2

[
τrz(rs)

E∗a(t∗2a + 2ta)
− (1 + t∗a)τrz(rs + ta)

(
1

E∗a(t∗2a + 2ta)
+

1

ρ∗2t

)]

=
τ

′′

rz(rs)

2G∗a(t∗2a + 2t∗a)

(
(1 + t∗a)2

t∗2a + 2t∗a
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t∗2a + 2t∗a
2

)

−(1 + t∗a)τ
′′

rz(rs + ta)

[
1

2G∗a(t∗2a + 2t∗a)

(
1

t∗2a + 2t∗a
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)

+
r∗2t

2G∗t ρ
∗2
t

(
r∗2t
ρ∗2t

ln
r∗2t

(1 + t∗a)2
− 1 +

ρ∗2t
2r∗2t

)]
(2.11)

where G∗t is the shear modulus of the tendon normalized by the elastic modulus of the tendon.

We model the case of a thin adhesive layer (t∗a � 1) that is compliant compared to the suture and tendon (G∗a � G∗s

and G∗a � G∗t ). We also assume that the shear stress to be uniform throughout the adhesive layer, as is reasonable for

a thin layer. Thus, τrz(rs) ≈ τrz(rs + ta) and τ
′′

rz(rs) ≈ τ
′′

rz(rs + ta).

Making the two assumptions noted above and rewriting the above equations in the form

τ
′′

rz − β2
Nτrz = 0

yields:

β2
N ≈

1

r2
s

2G∗a
t∗a

(
1 + t∗a
ρ∗2t

+
1

E∗s

)
(2.12)

which is equal to the expression in Equation (2.2) for t∗a � 1.
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Chapter 3

Enhanced tendon-to-bone repair through

adhesive films

Portions of this chapter were previously published in: Linderman SW, Golman M, Gardner TR, Yoon D, Birman V, Ahn

K, Genin GM, Thomopoulos S. Enhanced tendon-to-bone repair through adhesive films. Acta Biomater. 70:165-176,

2018. PMID: 29427745. [306]

3.1 Abstract

Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load

transfer mechanisms of the native enthesis. Instead of using a large footprint area to distribute load, surgical repairs

concentrate shear stress on a small number of points where sutures connected to bone anchors penetrate through

tendon tissue. Expanding on the approach described in Chapter 2 to distribute load over the length of adhesive-coated

sutures, here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive

films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a

repair. The mechanical properties of suitable adhesives were identified using a shear lag model, corroborated by a

finite element model to establish the limits of the theoretical scaling law for thick or stiff adhesives. Examination of

the design space for an optimal adhesive demonstrated that strong adhesion and low stiffness are needed to maximize
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the strength of the repair construct. Adhesives with optimized properties can theoretically improve load transfer across

tendon-to-bone repairs by over 10-fold, decreasing the chance of rupture. To rapidly evaluate adhesive properties with

relevant adherends and assess adhesive usefulness for tendon-to-bone repair, we developed a new method for lap shear

testing using tendon and bone planks. Using this idealized lap shear testing method, we experimentally validated

the mechanical models for a relevant range of adhesive stiffnesses and strengths. As a clinically relevant proof-of-

concept, multipartite adhesives were then applied to ex vivo human supraspinatus repairs in cadaver tissues. The

cadaver repairs performed with and without adhesives suggested that the adhesive provided an additive improvement

in repair strength. Finally, a catechol-derived, marine mussel-mimetic adhesive with relevant mechanical properties

that binds under water was applied to demonstrate the potential of the proposed approach to improve outcomes in

arthroscopic repair settings. Further study is needed to optimize adhesive binding properties and assess this approach

in pre-clinical surgical tendon-to-bone repair scenarios.

3.2 Introduction

The concept of enhanced tendon repair strength through improved load distribution is broadly applicable across various

surgical repair scenarios. In the previous chapter, adhesive-coated sutures were presented for tendon or ligament repair;

the approach took advantage of the previously unused lateral surfaces of sutures to transfer higher loads in small repair

areas (Chapter 2). In the current chapter, adhesion was added to repair sites with larger attachment areas, such as

those typical seen in tendon-to-bone repair. Although these repairs have the potential to transfer high loads across a

relatively large surface, current surgical repair techniques continue to rely on load transfer concentrated across a small

number of suture anchor points. We therefore investigated adhesive application to tendon-to-bone repairs in order to

PBS phosphate buffered saline THPC tetrakis (hydroxymethyl) phosphonium chloride
x position along adhesive lap L adhesive lap length
τ(x) shear stress in the adhesive layer τave average shear stress, i.e., P/wL
τfail failure shear stress of adhesive σ̄t(x) normal stress in tendon normalized by normal stress at x = 0
Eb bone elastic modulus x/L position along adhesive lap normalized by lap length
Et tendon elastic modulus E∗t tendon elastic modulus normalized by bone elastic modulus
Ga adhesive shear modulus G∗a adhesive shear modulus normalized by bone elastic modulus
tt tendon thickness t∗t tendon thickness normalized by bone thickness
ta adhesive thickness t∗a adhesive thickness normalized by bone thickness
tb bone thickness P normal force across joint far from insertion, i.e., x = 0 and x = L
Pmax force P causing joint failure Lintersect lap length where asymptotic limits for load transfer intersect
χ variable related to geometry β characteristic (inverse) length scale

and material properties related to geometry and material properties

Table 3.1: Abbreviations and variables used throughout Chapter 3.
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improve strength across the tendon-to-bone repair site.

Tendon-to-bone repair presents a challenging mechanical problem: repairs require high strength and resilience to

accommodate forces from activities of daily living and to avoid repair site elongation or rupture; the strong anchor

sutures used for repairs cause stress concentrations that limit attachment strength. This is compounded by stress

concentrations associated with the mismatch between compliant tendon and stiff bone [307]. The healthy tendon

enthesis facilitates load transfer from tendon to bone in several ways, including by (i) distributing force over a relatively

large footprint area to reduce local stresses, (ii) using a compliant transitional fibrocartilaginous tissue to minimize

stress concentrations and toughen the attachment [76, 77, 78, 79], and (iii) using randomness of composition and

structure where fibrocartilage interdigitates with bone to distribute stress during failure [80].

Surgical repairs have high failure rates, possibly because they not only fail to recreate these resilience mechanisms, but

also introduce stress concentrations at sutures. For example, rotator cuff healing after repair is notoriously challeng-

ing, with post-repair rupture rates ranging from 20% for young, healthy athletes with small tears to as high as 94% for

massive tears in elderly patients [40, 41]. These failure rates are not surprising from a mechanical perspective. While

current double-row suture bridge repair techniques apply compression to the tendon over a large portion (78%) of the

bony footprint [308], almost all of the force from muscle to bone is transferred in shear across only two anchor points,

where the suture from a bone anchor punctures through the tendon near the musculotendinous junction (Figure 3.1A).

These stress concentrations, coupled with possible vascular compromise in the same region due to strangulation from

inappropriately tensioned repairs [133], lead to the vast majority (86%) of rotator cuff repair ruptures by the tendon

pulling through the sutures at those anchor points [255]. Approaches that distribute shear stresses and increase strength

without causing tissue strangulation would theoretically decrease failure rates. Approximately half of the US popula-

tion over 60 years old has a rotator cuff tear, leading to over 500,000 repairs annually [39]. With a growing aging and

elderly population, improving on these failure rates is critical to reinstate shoulder function in these patients.

Here, an adhesive-film based approach is proposed to augment standard tendon-to-bone repairs, with a particular focus

on supraspinatus tendon rotator cuff repairs for proof-of-concept. This adhesive-based surgical augmentation mimics

the natural stress distribution across the repair site to improve repair strength and limit ruptures. We hypothesized that,

unlike conventional suture repairs with only a few anchor points (Figure 3.1A), this adhesive repair scheme would

reinstate load transfer over the entire tendon-to-bone insertion footprint (Figure 3.1B). This increase in load transfer is

expected to result in an improvement in overall repair construct mechanical properties, similar to the adhesive-coated

suture case examined in Chapter 2. As with flexor tendon repairs discussed previously, achieving the full strength of

a healthy tendon enthesis may not be necessary, since the enthesis can accommodate higher loads than are applied
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Figure 3.1: A double-row suture anchor technique is shown for repairing human supraspinatus tendon avulsions
[124]. Green shading indicates location and magnitude of load transfer. (A) Current repair techniques generate stress
concentrations at anchor points where the sutures from bone anchors puncture through the tendon, correlating with
tissue failure at those points [255]. (B) Adhesive films interposed between the tendon and bone could distribute load
transfer over the entire insertion footprint, similar to native tissue, thereby reducing peak stresses and improving overall
repair construct mechanics.

physiologically during non-traumatic activities. We therefore aim to generate functional repairs that are capable of

sustaining activities of daily living and enhanced rehabilitation protocols.

Following a similar approach to Chapter 2 [256], we employed a shear lag analysis to predict the ability of adhesive

interlayers to improve load transfer across a repaired tendon-to-bone enthesis. We then analyzed a finite element model

with the same geometric and material properties to establish the limits of the scaling law from shear lag analysis for

adhesive thickness and adhesive shear modulus. Using these models, we identified desirable adhesive mechanical

properties for use in adhesive films for tendon-to-bone repair. We then biomechanically tested adhesives between

tendon and bone planks and in human cadaver rotator cuff repairs to validate the models and assess adhesives’ potential

for clinical usefulness.
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Tendon–bone attachment:
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Figure 3.2: Diagram of an idealized tendon-to-bone insertion site, repaired with an interposed adhesive layer (A).
Simultaneously analyzing the free body diagrams (FBD) of a section of the repair (B) and each component indepen-
dently (i.e., tendon, adhesive, and bone; C) allows derivation of a shear lag model to estimate shear stress within the
adhesive. Note that this model reduces to a one-dimensional set of equations along the x-axis.

3.3 Theory

3.3.1 Shear lag model

As in Chapter 2 [256], a shear lag model was studied to (i) identify adhesives with desirable properties for tendon-

to-bone repair, and (ii) anticipate load transfer in idealized experiments to assess adhesive properties. The model

predicted load sharing across an idealized tendon-to-bone insertion site using an interposed adhesive layer at the

interface. The idealized repaired tendon and bone were both modeled as isotropic, homogenous tissue planks for this

one-dimensional model.

The model, following Volkersen [264] and Cox [265], is based on the free body diagram in Figure 3.2 and the following

assumptions: (i) the tendon, adhesive, and bone are linear elastic materials, (ii) viscous effects are negligible, and (iii)

thickness-axis displacements, strains, and stresses are small. The latter assumption is appropriate for thin adhesive

layers. These results are also corroborated by two-dimensional finite element modeling with different assumptions, as

described in the following section (3.3.2 Finite element model). While adhesives and tissues often exhibit nonlinearity

and viscoelasticity [76, 307, 309], the linear analysis is adequate and useful for order-of-magnitude stress estimates,

and for the target design range in which the adhesive is not close to failure.

As derived by Volkersen [264] directly from equilibrium, constitutive, and strain-displacement equations for the com-

ponents (i.e., tendon, adhesive, and bone, Figure 3.2C), the differential equation governing the normal stress in the
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Geometric properties SLA FEM Plank tests Human

L adhesive lap length 13 mm 13 mm 10 mm 13 mm
i.e., supraspinatus tendon insertion size (medial-lateral)

Lb,free free length of bone plank before grip — 26 mm 5 mm —
Lt,free free length of tendon plank before grip — 26 mm 25 mm —
w lap width ∞ ∞ 15 mm 20 mm

i.e., supraspinatus tendon insertion size (anterior-posterior)
tt tendon thickness 2 mm 2 mm 3.2 mm 2 mm
ta adhesive thickness [1 nm – 1 cm] [1 µm – 1 cm] ≈ 0.5 mm ≈ 0.5 mm
tb bone cortical shell thickness 7.5 mm 7.5 mm 7.5 mm 7.5 mm

Mechanical properties

P force applied to tendon to model shear and normal stresses 50 N 50 N to failure —
Et tendon elastic modulus 2 · 108 Pa 2 · 108 Pa — —
Eb bone elastic modulus 2 · 1010 Pa 2 · 1010 Pa — —
Ga adhesive shear modulus [103 – 1011 Pa] [104 – 1011 Pa] — —
Ea adhesive elastic modulus — 2Ga(1 + νa) — —
νt tendon Poisson’s ratio — 0.2 — —
νa adhesive Poisson’s ratio — 0.49 — —
νb bone Poisson’s ratio — 0.3 — —
τfail adhesive shear ultimate strength [103 – 1010 Pa] — — —

Table 3.2: Property values used throughout modeling and testing for shear lag analysis (SLA), finite element modeling
(FEM), idealized tendon-to-bone plank tests, and human cadaver supraspinatus repair tests. Model geometry was
chosen to replicate human rotator cuff supraspinatus anatomy as closely as possible [310]. Tendon and bone elastic
modulus and Poisson’s ratio were based on literature values [311, 312, 313].

tendon at position x is:
d2σ̄t(x)

dx2
− β2σ̄t(x) +

β2

χ
= 0 (3.1)

where σ̄t(x) is the dimensionless axial stress in the tendon, normalized by the stress P/wtt at x = L, and χ and the

characteristic (inverse) length scale β relate to the geometry and material properties:
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where E∗t and G∗a are, respectively, the Young’s modulus of tendon and the shear modulus of adhesive normalized

by the Young’s modulus of bone Eb; t∗t and t∗a are, respectively, the thickness of the tendon and the thickness of the

adhesive normalized by the thickness of the bone cortical layer tb; and w is the width of the attachment. Solving and

applying the boundary condition σ̄t(0) = 0 at the distal end of the insertion footprint and σ̄t(L) = 1 at the proximal

end of the insertion footprint yields (Figure 3.4):

σ̄t(x) =
1− cosh (βx)

χ
+

sinh (βx)

sinh (βL)

(
1 +

cosh (βL)− 1

χ

)
(3.4)
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Combining Equation 3.4 with the equilibrium equation for an infinitesimal segment of tendon, dσ̄t

dx = τ(x)
P/w , yields a

prediction for the shear stress distribution τ(x), normalized by the average shear stress τave = P
wL , as predicted by

Volkersen:
τ(x)

τave
=

βL

χ sinh (βL)
[cosh (β(L− x)) + (χ− 1) cosh (βx)] (3.5)

This shear lag model predicts that shear stress is highest at the edges of the lap joint, i.e., at positions x = 0 and x = L,

and that shear stress decreases exponentially toward more central positions (Figure 3.5). Note that as previously

demonstrated for lap joints (e.g. [290]), parametric analysis of Equation 3.5 confirmed that peak stress is minimized

if the adherends (tendon and bone) are “balanced” so that E∗t = (t∗t )
−1 (Figure 3.5). However, this is not possible

for the attachment of tendon to bone. Indeed, the material mismatch at a tendon-to-bone attachment leads to stress

concentrations and makes surgical repair particularly challenging.

For the geometric and material properties of a tendon-to-bone repair (Table 3.2), the peak shear stress occurs at position

x = L (Figure 3.5), with stress concentration factor τSCF (Figure 3.6):

τSCF =
τ

τave

∣∣∣∣
x=L

=
βL

χ sinh (βL)
[1 + (χ− 1) cosh (βL)] (3.6)

Equating the peak shear stress (at position x = L) to the failure shear stress value, τfail, yields the maximum load

transferred across the joint via the adhesive:

(
Pmax
w

)
= τfailL

sinh (βL)

βL

[
χ

(χ− 1) cosh (βL) + 1

]
(3.7)

This scaling law for maximum load transfer enabled prediction of desirable adhesive mechanical properties for surgical

use in tendon-to-bone repairs (Figure 3.7). The shear lag model theory herein is applicable to tendon- or ligament-to-

bone repairs generally, by simply updating the properties in (Table 3.2) according to the soft tissue-to-bone insertion

site of interest. Note that τfail could be limited by failure (i) within the adhesive bulk, (ii) at the interfaces with

adherends (i.e., the junction with the tendon or bone), or (iii) within the adherends themselves. This solution is nearly

bilinear, with two asymptotes (Figure 3.7):

lim
L→∞

(
Pmax
w

)
= τfail

χ

β(χ− 1)
= τfailtb

[
E∗t t

∗
t t
∗
a

G∗a
(1 + E∗t t

∗
t )

] 1
2

(3.8)

lim
Ga→0

(
Pmax
w

)
= lim
β→0

(
Pmax
w

)
= τfailL (3.9)
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For a given tendon-to-bone repair, the first limit (L→∞) shows that the force the repair can carry increases monoton-

ically with decreasing adhesive shear modulusG∗a. Below a critical adhesive shear modulus, however, the second limit

(Ga → 0) shows that a cut-off exists that depends on the length of the tendon-to-bone interface L. The intersection

between the two asymptotes defines a critical interface length (Equation S1, Figure 3.S1).

3.3.2 Finite element model

To establish the limits of the scaling law described in the previous section (3.3.1 Shear lag model), we evaluated a

two-dimensional finite element model in the commercial package COMSOL Multiphysics (COMSOL, Inc., Burling-

ton, MA USA). This finite element model was developed by Mr. Mikhail Golman, M.S., using the same geometric

and material properties as the shear lag model and evaluated with a range of adhesive thicknesses and shear moduli

(Table 3.2, Figure 3.S2). The tendon, adhesive, and bone were modeled as linear elastic materials for direct compari-

son to the shear lag model. The adhesive layer was discretized into 8,000 triangular finite elements sized from 1 – 50

µm. The interfaces between adhesive and tendon or bone were modeled as perfectly fused unions, with the same mesh

nodes in each section. Far from the adhesive joint, the bone was held fixed from movement or rotation in the x or y

directions. The tendon boundary was constrained to stay vertical and loaded in the x direction with a 50 N force to

simulate muscular contraction (Table 3.2, Figure 3.S2).

3.4 Materials and Methods

3.4.1 Idealized ex vivo repairs

Lap shear tests are a standard method to determine adhesive mechanical properties for engineering applications; how-

ever, the applications described herein (Chapter 2 and Chapter 3) require binding to biological tissues instead of metal

or plastic adherends. To evaluate how the performance of the adhesive system depends upon the adhesive strength

between the adherends and the stiffness of the adhesive material, a modified lap shear test was developed. A series

of idealized tendon-to-bone plank repairs was performed using 1/8” thick bovine deep digital flexor tendon planks

adhered to 1/4” thick bovine femur cortical bone planks (both planks were 15 mm wide, with 10 mm overlap length;

Table 3.2). Fresh-frozen bovine deep digital flexor tendons (age 14-30 months; Animal Technologies, Tyler, TX) were

leveled into planks while embedded in Tissue-Plus optimum cutting temperature compound (OCT, Fisher HealthCare,
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Waltham, MA) using a freezing stage (BFS-30MP, Physitemp, Clifton, NJ) sledge microtome (Leica 1400, Buffalo

Grove, IL) to plane both sides to a uniform, desired thickness, similar to previously described methods [314]. The

desired thickness was measured using a sacrificial layer of polytetrafluoroethylene (PFTE, commonly called “Teflon”,

McMaster-Carr, Elmhurst, IL) on the microtome alongside the tendon samples. After being leveled into planks, sam-

ples were frozen in PBS-soaked gauze and stored at -20 ◦C. Samples were thawed overnight at 4 ◦C and trimmed to 15

mm wide with a razor blade before use. The width was chosen based on the size of bovine deep digital flexor tendons,

and to maintain a high width-to-thickness aspect ratio ∼ 5 : 1. Pilot experiments performed on tendon samples planed

on only one side had high variability in shear strength, likely due to variable tissue curvature, necessitating planing

samples on both sides. Fresh-frozen bovine femurs obtained from a local butcher were cut into bone planks using a

diamond wafer blade (IsoMet, Buehler, Lake Bluff, IL). In addition, to rapidly assess adhesive mechanical properties

with relevant adherends for use in either tendon-to-bone repair or on adhesive-coated sutures, a series of idealized

tendon-to-tendon plank repairs were performed using two 1/8” thick bovine deep digital flexor tendon planks but no

bone planks.

Effects of adhesive stiffness: To experimentally assess the impact of varying adhesive stiffness without modify-

ing interfacial binding strength, a series of multipartite adhesive systems was evaluated. Each multipartite adhesive

consisted of a 1/16” thick bovine tendon to provide a compliant bulk, attached to the adjacent tendon and bone us-

ing 50 µL of a flexible cyanoacrylate on each interface (Loctite 4903, based on ethyl and octyl cyanoacrylate [275];

Henkel Corporation, Düsseldorf, Germany) to provide the necessary bond strength. The 1/16” thick tendon bulk was

first treated with PBS containing 0 mM, 20 mM, or 100 mM tetrakis (hydroxymethyl) phosphonium chloride (THPC,

Sigma Aldrich, St. Louis, MO) for 15 minutes to assess the impact of a two-fold stronger adhesive bulk material

(n = 6 each).1 After treatment with THPC, the 1/16” tendon bulk was washed twice in excess PBS (40 mL) on a

rocker for 5 minutes before use in the multipartite adhesive system. Two tendon plank samples in this experimental

series were discarded because the samples were discolored and dramatically stiffer than the other samples, likely due

to dehydration and oxidation at some point during the tendon plank processing (a.k.a., “freezer burn”). There were at

least n = 5 samples in each final group. The adherends and the 1/16” thick tendon bulk pieces were blotted dry with

Kimwipes (Kimberly-Clark Professional, Roswell, GA) three times before applying cyanoacrylate. This was cured

for 3 hours at room temperature under 100 kPa compressive pressure, wrapped in PBS-soaked gauze, before lap shear

testing.

In addition to evaluating the multipartite adhesive directly, the elastic modulus of tendon planks treated with THPC

1THPC covalently crosslinks amine groups in proteins.
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was determined by direct tensile testing. A series of 1/8” thick tendon planks, treated with PBS containing 0 mM,

20 mM, or 100 mM THPC for 15 minutes before two washes in PBS, was mechanically evaluated (n = 4 each). Two

samples were discarded due to discoloration and stiffness before testing, leaving at least n = 3 samples per group.

Catechol-derived adhesives: Given the advances in arthroscopic surgical repairs over the last two decades, any

adhesive applied to a tendon-to-bone repair will need to function in an underwater environment. In collaboration with

Professor Kollbe Ahn at the University of California in Santa Barbara, we tested a series of marine mussel-mimetic,

catechol-derived adhesive polymers [315] in our idealized tendon-bone and tendon-tendon plank single lap shear

model. These polymers are high molecular weight and elastomeric, with catechol-derived chemical binding groups.

After thawing the 1/8” thick tendon samples at 4 ◦C overnight, then trimming them to 15 mm wide and 60 mm long,

100 µL of high molecular weight adhesive homopolymer (no crosslinking polymer) or heteropolymer (including a

crosslinking polymer for bulk shear strength upon curing) was applied to a 15 mm wide by 10 mm long tendon plank

segment on each plank, all while fully submerged in PBS at pH 7.4. In a different group of samples, the polymer

was applied to a wet but not submerged tendon to avoid polymer dissipation in the fluid bath during application.

After waiting 30 seconds for partial gelation and phase change, the samples were pressed together under a 100 kPa

compressive pressure and re-submerged in PBS, as described above. Samples were cured in PBS either overnight at

4 ◦C, or over 72 hours at 37 ◦C to induce oxidation and stronger binding, before biomechanical testing.

3.4.2 Human cadaver rotator cuff repairs

To assess the potential for adhesive application in a clinically relevant rotator cuff repair setting, paired human cadaver

rotator cuff samples were dissected. Human cadaver shoulders were obtained from Anatomy Gifts Registry (Anatomic

Gift Foundation, Inc., Hanover, MD). Supraspinatus tendons were dissected away from the humeral head to ensure

full detachment, then tendons were repaired with an open, double-row suture bridge technique, in a paired fashion

either with or without the multipartite adhesive system described above (Loctite 4903 with a 1/16” thick bovine flexor

tendon plank compliant interlayer; n = 2 per group). Repairs were performed by Dr. William Levine, an experienced,

fellowship-trained orthopaedic surgeon at Columbia University specializing in the shoulder. To assess the strength

of the multipartite adhesive system without suture, the infraspinatus tendons from the same cadaver samples were

dissected away from the humeral head, then adhered the tendons to their insertion sites using the same adhesive

system before mechanically testing to failure. Tissue was kept hydrated using PBS-soaked gauze throughout this

process, once it was dissected. After repair, the humerus and rotator cuff tendons and muscles were carefully dissected
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from the scapula and surrounding tissue and stored at 4 ◦C overnight before biomechanical testing the following day.

3.4.3 Biomechanical testing

Idealized tendon-tendon and tendon-bone plank repairs were tested similar to previously described protocols for testing

flexor tendons [287, 288, 103, 105]. After 5 cycles of triangular-ramp preconditioning to 1 mm displacement, samples

were pulled in uniaxial tension using a material testing machine (5866; Instron Corp., Norwood, MA, chosen because

of a high capacity load cell) at 0.3 mm/s until failure. Video of the test was recorded for optical strain tracking.

Immediately prior to testing, tendons were stained with a speckle pattern of freshly prepared VerHoeff stain to provide

a surface texture for optical tracking. Elongation measurements from the material testing machine were synced with

optical recordings from a high resolution camera at a frame rate of 30 Hz (Google Nexus 6p, Mountain View, CA),

similar to described previously [30, 256]. Optical tracking of points on the tendon and bone immediately surrounding

the interface enabled accurate determination of semi-local tissue strain. This allowed for more accurate adhesive

material property assessment, without confounding the viscoelastic effects or strain-energy storage of the tendon plank

proximal to the interface. From the force-elongation curves, maximum force and yield force were determined. From

the force-strain curves, strain at 20 N force (approximating strains at physiologically relevant load levels [289, 99]),

modulus (slope of the linear portion), and resilience (area under the curve until yield) were determined.

Human cadaver rotator cuff repairs were tested with an MTS 858 Bionix (MTS Eden Prairie, MN, USA) testing

system at Columbia University’s Carroll Laboratory, similar to previously described methods [316]. Briefly, dissected

samples were returned to room temperature and secured in black pipe with two orthogonal bolts and Rockite cement.

The pipe was secured very close to the humeral head to prevent flexion. The insertion site was speckle-coated with

VerHoeff stain to facilitate optical tracking. The rotator cuff muscle being tested was secured in a frozen clamp using

liquid CO2. The humerus was angled so the muscle was being pulled in line with the direction of the tendon fibers

at the insertion. Supraspinatus samples (repaired with double-row suture ± adhesive) were first preconditioned with

10 haversine cycles from 1 – 25 N at 0.5 Hz, followed by a ramp to 10 N at 1 N/s and then a hold at constant load

for 5 seconds. Infraspinatus samples (repaired with adhesive only) were preconditioned with 10 haversine cycles from

1 – 5 N at 0.5 Hz, followed by a ramp to 2.5 N at 1 N/s and then a hold at constant load for 5 seconds. After this

preconditioning regimen, samples were pulled in uniaxial tension to failure at 0.5 mm/s with time, force, and MTS

grip displacement data measured at a 20 Hz sampling rate. Video was simultaneously recorded from front and side

views at 30 Hz. Optical tracking of points on the tendon and bone immediately surrounding the interface, performed
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using custom MATLAB code, enabled accurate determination of semi-local tissue strain, as with idealized plank tests.

3.4.4 Biomechanics analysis

Fully automated biomechanics analysis was performed using a custom MALAB code following the algorithm given

in the flow chart in Figure 3.3. Modulus, stiffness, and rigidity were calculated using random sample correlation

(RANSAC) based on Ke Yan’s 2011 implementation2 to quickly find the best fitting line of sufficient bin width. Data

is first trimmed to remove data before 10% of max stress and after 95% of max stress to isolate the region of interest.

Two points were selected at random and a line was drawn between them, for n = 1000 iterations. All data points

within a threshold range of 0.5% of the robust fit stress at the 80th percentile were counted as within an acceptable

range of the best fit line. Of the n iterations, the iteration with the most inliers was deemed the best fit. This approach

represents a “robust” fit, which minimizes the effect of outlier points on the best fit line compared to a least squared

errors fit. This is confirmed by visual inspection. The “yield” point was determined as the point where the smoothed

data first deviated from the RANSAC fit line by 0.1% of the expected stress.

3.4.5 Statistics

Statistical analysis for all experiments was performed by non-parametric Wilcoxon rank-sum using MATLAB, as some

results were not normally distributed. Statistical significance was set at p < 0.05, unless otherwise noted.

2https://www.mathworks.com/matlabcentral/fileexchange/30809-ransac-algorithm-with-example-of%
2Dfinding-homography
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Figure 3.3: Biomechanical analysis flowchart, describing how custom MATLAB code analyzed mechanical and video
data.

3.5 Results

3.5.1 Shear lag and finite element models

Shear lag and finite element modeling revealed an ideal design space for adhesive mechanical properties to improve

load transfer across tendon-to-bone repairs (Figure 3.7, band inside blue dotted box, including the elastomer material

class). As with adhesive-coatings on sutures (Chapter 2), mechanically desirable adhesives should be compliant in

shear while maintaining high binding and shear strengths. Higher deformation of compliant adhesives facilitates

load distribution over larger lengths than stiff adhesives, reducing the peak stress (Figure 3.5, 3.4). Similarly, thick
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adhesives allow higher deformation than thin adhesives, reducing the shear stress concentration factor. Shear lag

analysis predicted stress concentration factors of approximately 1 − 200 for the experimentally relevant ranges of

adhesive shear modulus and thickness (Ga = 104 − 108 Pa and ta = 1 µm − 1 mm, respectively) (Figure 3.6).

While these models assumed a 13 mm adhesive interface length based on rotator cuff anatomy, note that much shorter

adhesive lengths are expected to transfer nearly the same load (Figure 3.S1).

While shear lag analyses generate simple, closed form solutions, the simplifying assumptions described in the Theory

section (3.3.1 Shear lag model) lead to inaccurate stress predictions at edges (x = 0 and x = L) and in cases of

stiff or thick adhesives layers. The finite element predictions of normal stress distribution in the tendon and shear

stress distribution in the adhesive (Figure 3.4B and 3.5B, respectively) closely resembled the shear lag predictions for

compliant adhesive layers (Figure 3.4A and 3.5A), but deviated for adhesive shear moduli greater than ∼ 108 − 109

Pa. However, the predicted peak shear stress (i.e., at position x = L for shear lag predictions, slightly in from position

x = L for finite element predictions) remained similar for the two models even forGa > 108 Pa, and only substantially

deviated for Ga ≥ 1010 Pa. The finite element model corroborated the shear stress concentration factor predictions

from shear lag analysis for adhesives up to 1 mm thick (Figure 3.S3).

A contour map of maximum load transfer given various adhesive properties was generated from Equation 3.7 using an

adhesive thickness of 0.5 mm (Figure 3.7). Properties of several real materials were then overlaid on this contour map

to identify promising candidate materials. Only a small fraction of the material classes shown are relevant materials;

the remainder are included for comparison as is standard with an Ashby plot, and to highlight the importance of

appropriate adhesive material selection. Assuming a compliant adhesive (Ga = 1 MPa) with a strong shear strength

(τ = 10 MPa) and the average adult supraspinatus tendon insertion geometric properties (Table 3.2), maximum load

transfer through would approach 3,000 N. This would result in theoretical improvements of up to ∼10-fold over

current methods using a double row suture anchor repair, causing repair strength to be limited by tissue strength. The

maximum load transfer prediction herein uses supraspinatus tendon insertions as an example to calculate values, but

it is relevant for surgical connective tissue-to-bone attachments throughout the body.

3.5.2 Ex vivo experiments

Biomechanical tests of idealized tendon-to-bone planks in lap shear using multipartite adhesives (comprised of 1/16”

tendon plank interlayers with Loctite 4903 at interfaces) matched model predictions of maximum load (Figure 3.8).

To evaluate a range of adhesive stiffnesses, the 1/16” tendon plank interlayers were first treated with 0 mM, 20 mM,
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Figure 3.4: Normal stress in the tendon vs. position, normalized, as predicted by shear lag modeling (A) and finite
element modeling (B) for a range of adhesive shear moduli from 100 kPa to 1 GPa. Since the finite element model is
two-dimensional, the maximum normal stress through the thickness (σ̄t,xx) is plotted in (B)
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Figure 3.5: Shear stress in the adhesive vs. position, normalized, as predicted by shear lag modeling (A) and finite
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or 100 mM THPC for 15 minutes. Elastic modulus of bovine flexor tendon planks, tested in tension, increased

with THPC treatment concentration by 76% for 20 mM THPC and 112% for 100 mM THPC, as expected (n = 4

per group, Figure 3.9A). When applied in idealized lap shear tests, multipartite adhesive interlayers treated with 0

mM, 20 mM, and 100 mM THPC yielded maximum average shear stresses
(
τave = P

wL

)
of 324 kPa (± 61 kPa

standard deviation, n = 5), 433 kPa (± 132 kPa, n = 6), and 494 kPa (± 90 kPa, n = 5, p = 0.008), respectively,

(Figure 3.9C). This represented a 52% higher failure shear stress and 88% higher yield shear stress (p = 0.064,

Figure 3.9D) with strengthened adhesive bulk interlayers crosslinked with 100 mM THPC, as predicted by shear lag

analysis (Figure 3.7). Failure occurred within the tendon plank in all samples with THPC-crosslinked interlayers, as

expected since crosslinking strengthened and stiffened the interlayer, leaving the tendon plank as the weakest point.

In comparison, some samples without THPC crosslinking failed within the tendon plank while others failed in the

interlayer, since the tendon plank and interlayer were approximately the same strength.

The multipartite adhesive system was further evaluated in human rotator cuff biomechanical tests to evaluate a clinically-

relevant loading scenario (Figure 3.10). Cadaver infraspinatus repairs with adhesive only (no sutures) had a maximum
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shear stress of 115 kPa (± 10 kPa, n = 4), 35% of the strength of idealized plank tests (Figure 3.9). This equated

to a maximum load of 34.5 N (± 3.0 N), or approximately 10% of the strength of a typical rotator cuff tendon repair

[132]. Finally, the multipartite adhesive system was assessed in clinical-style human cadaver supraspinatus tenotomy

and repair to assess adhesive strength contributions in parallel to a suture repair. Pilot studies in cadaver human

supraspinatus tendons, repaired with double-row suture bridge and multipartite adhesive between the supraspinatus

tendon and humeral head, yielded approximately 40 – 50 N stronger repairs than paired contralateral control repairs

(Figure 3.S4, 3.S5, 3.S6, and 3.S7). This estimated load improvement is similar to loads carried by infraspinatus

tendons adhered without suture, indicating that the adhesive had an additive effect on the strength of the double-row

suture bridge repair.

After validating the shear lag model in idealized and clinically-relevant ex vivo experimental scenarios with various

stiffnesses of multipartite adhesives, we explored novel adhesives with the potential for clinical application. A series

of idealized tendon-to-tendon plank lap shear tests was performed using catechol-derived adhesive polymers binding

in a hydrated environment (PBS) to assess the adhesive’s capacity for arthroscopic use. While homopolymer samples

(no crosslinker) and heteropolymer samples (containing crosslinker) that were evaluated without oxidation did not

carry meaningful load (0.0 – 1.5 N), heteropolymer samples that were allowed to oxidize by remaining at 37 ◦C for

72 hours had several fold higher failure load (4, 6, 18 N), approaching levels that would be clinically meaningful.
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Figure 3.9: (A) Elastic modulus of 1/8” thick THPC treated tendon planks tested in tension (no adhesive or repair).
(B) shear modulus, (C) Maximum shear stress, and (D) yield shear stress (τave) of multipartite adhesive evaluated
in idealized lap shear tests and cadaver infraspinatus tendon insertion repairs. Stronger adhesive materials (100 mM
THPC-crosslinked) failed at 52% greater average shear stress. The middle line within the box plots represents the
median, the outer edges denote the 25 percentile and 75 percentile samples, and the whiskers extend to the extreme
data points. Outliers are denoted by (+). Asterisks denote statistically significant differences compared to idealized
lap shear tests for 0 mM THPC group (* p < 0.05, ** p < 0.01, *** p < 0.001, & p = 0.064).
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for infraspinatus repairs with adhesive only.
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3.6 Discussion

Current operative techniques for rotator cuff tendon repair rely on load transfer across only a few points where su-

ture anchors into bone (Figure 3.1). Variations on this approach have reached a limit for mechanical fixation, where

increased numbers of strands or anchor points do not lead to improved outcomes (e.g., most studies have shown that

single-row repairs and double-row repairs are equivalent clinically [317]). Recent research has instead focused on

biological augmentation to facilitate improved tendon-to-bone healing instead of fibrovascular scar tissue [318], but

mechanical fixation remains inadequate for holding the tissues together long enough for healing to occur. We hypothe-

sized that, similar to adhesive-coatings on sutures for tendon repair (Chapter 2), tendon-to-bone repair mechanics could

be enhanced through better load distribution across the repair site, using an adhesive biomaterial that is simultaneously

strong and compliant in shear. Modeling and ex vivo experimental results demonstrated that an adhesive interposed

between tendon and its bony footprint has the potential to dramatically improve the strength of tendon-to-bone re-

pairs using feasible adhesive material properties. This increase in strength, combined with anticipated decreases in

interfacial micro-motion from the use of an adhesive, should improve tendon-to-bone healing.

The shear lag model indicated that mechanically desirable adhesives would be of millimeter-scale thickness and com-

pliant in shear while maintaining high binding and shear strengths. This combination of properties minimizes stress

concentration and maximizes load transfer across the repair (Figure 3.6 yellow shaded region, and Figure 3.7 green

shaded region). Compliant, thick adhesives allow greater deformation, thereby distributing loads over a larger length

than stiff, thin adhesives (Figure 3.4, 3.5). This is analogous to a native, fibrocartilaginous tendon enthesis, where a

compliant zone optimizes stress concentrations and toughens the interface [76, 77, 78, 79]. The derived load transfer

isoclines, based on rotator cuff geometric and material properties (Table 3.2), indicate that adhesives with a wide range

of theoretical material properties are expected to improve repair strength. When these isoclines are overlaid on real

material properties, as in a standard Ashby plot [292, 291, 293], the model highlights materials with the appropri-

ate properties to improve repair strength (Figure 3.7, region in blue dotted box). Due to the relatively large surface

area compared to adhesive-coated sutures (Figure 2.4 on page 34), adhesive films would generate meaningful repair

strength improvements using a much broader range of adhesive mechanical properties. For example, the entire class

of elastomeric materials have appropriate mechanical properties to improve repair strength. Therefore, we are ex-

ploring biocompatible, adhesive elastomeric materials as potential bio-adhesives to improve repair strength. Optimal

adhesive materials are expected to improve load transfer by over 3,000 N, or 10-fold the strength of current repair tech-

niques (Figure 3.7). While this provides a large theoretical opportunity, an improvement of even 100 N (i.e., 22.5%

of the strength of double-row suture bridge repairs) that reduces local stress concentrations would provide a clinically
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meaningful improvement to surgical repairs [319, 320].

The shear lag model used here is one-dimensional, with several limiting assumptions (detailed in the Theory section,

3.3.1 Shear lag model) that lead to errors predicting stress distribution around edges and for stiff, thick adhesives

on the same thickness order of magnitude as the adherends [266]. Therefore, we employed a finite element model

that confirmed that the shear lag model was inaccurate for thick adhesives (ta > 1 cm) and stiff adhesives (Ga >

approximately 1 GPa; Figure 3.S3). This finite element modeling corroborated the shear lag predictions for adhesives

in the desirable range, i.e., compliant, strong adhesives with millimeter-scale or lower thickness. To further refine

modeling predictions, future models could incorporate (i) non-linear elastic material assumptions and (ii) cohesion

within the adhesive instead of assuming catastrophic failure [321, 322], especially to predict sensitivity to flaws in the

adhesive material. Nevertheless, the current model provides sufficient predictions of load transfer to guide adhesive

material development.3

In order to evaluate adhesive properties with relevant adherends and assess adhesive usefulness for tendon-to-bone

repair, we developed a new method for lap shear testing using tendon and bone planks (Figure 3.8). Tendon plank

were fabricated using a sliding microtome to create highly uniform, geometrically standardized planks. Similarly,

bone planks were manufactured using a diamond blade to create precisely-sized samples. This protocol enabled rapid

testing of adhesive properties via lap shear with relevant adherends for clinical application. However, note that the

failure shear strength, τfail, used in the shear lag model can be limited by: (i) the bulk adhesive strength (cohesion),

(ii) the interfacial binding strength to the surrounding tissue, and/or (iii) the ability of the surrounding tissue to

accommodate load transfer (e.g., through distributing shear stress among tendon fibers). Since the adherends are

relevant to the repair setting, the failure shear stress measured in these lap shear experiments is reflective of the failure

shear stress of the adhesive.4

Proof-of-concept experiments demonstrated substantial improvements in load transfer for multipartite cyanoacrylate

adhesives in idealized tendon-to-bone plank tests and human cadaver rotator cuff repairs. Off-the-shelf cyanoacrylate

adhesives (Loctite 4903) are far more stiff than the ideal predicted by the shear lag model. Therefore, we used a

3The shear lag model employed herein is one-dimensional and ignores loads that are not directly in line with the tendon (considered isotropic,
linear elastic herein). This is a major simplification of the rotator cuff, where the high degrees of freedom during rotation and other movements
would apply multi-dimensional load to the supraspinatus attachment. However, (i) the majority of that load will be carried by other muscles and
ligaments and (ii) the adhesive and repair are able to withstand some load in off-axis directions.

4The shear strength used in the shear lag modeling to predict load tolerance was the failure shear stress τfail at the local, material level. The
shear stress measured in idealized plank tests was averaged over the interface (τave). The optical tracking performed in the experiments used
semi-local strain determination, which is more relevant than grip-to-grip strain measurements since it does not include the strain-energy stored in
tissues outside the repair site. However, this analysis did not include a local strain assessment to determine the peak shear stress within the adhesive
layer. Such local assessments have been effectively used for tracking strains and detecting cracks forming in biological tissues [323]; however,
they are difficult to measure in thin adhesive layers due to insufficient number of pixels. Regardless, they are largely unnecessary for determining
adhesive efficacy.
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multipartite adhesive comprised of an interlayer (1/16” plank of bovine flexor tendon) adhered to tendon and bone

using Loctite 4903 to assess a more relevant adhesive shear modulus range. The 324 kPa ± 61 kPa failure shear stress

found experimentally in idealized plank tests (Figure 3.9A), equating to a 84.3 N ± 15.8 N failure load over a 2.6 cm2

supraspinatus insertion footprint, closely matched the predicted maximum load from the shear lag model (Figure 3.7,

yellow circle). Furthermore, when the tendon plank interlayer was stiffened and strengthened by crosslinking with

100 mM THPC for 15 minutes, the experimental results (494 kPa ± 90 kPa, equating to 128.5 N ± 23.4 N) again

closely matched the theoretical predictions. Thus, based on idealized plank tests, even the fairly stiff, off-the-shelf

cyanoacrylate-based adhesives carry enough load to improve repair strength by approximately 25 – 40% over a 2.6

cm2 supraspinatus repair footprint, when used in conjunction with current repair techniques [132]. That 25 – 40%

increase in load tolerance could substantially decrease repair rupture risk during activities of daily living, thereby

facilitating improved healing.

In human cadaver rotator cuff experiments using the infraspinatus tendon, the load transferred by the adhesive was 115

kPa ± 10 kPa (Figure 3.9), equating to 34.5 N ± 3.0 N, or 35% of the anticipated load from idealized plank tests. It is

likely that the human rotator cuff tenotomy and adhesion experiments demonstrated lower strength than the idealized

plank tests due to the irregular, curved bony surface causing microscopic stress concentrations and the non-idealized

adhesive application and testing conditions. Furthermore, the adhesive only cured for approximately 2 hours in the

cadaver experiments, compared to overnight in the idealized plank tests, which may have further limited strength. The

cadaver supraspinatus repairs with and without adhesive demonstrated approximate repair strength increases commen-

surate with the expected additive improvement based on load transferred in the adhesive-only repairs (Figure 3.10).

This analysis was complicated by surgical issues with bone anchor placement in two of the four supraspinatus repairs

(one adhesive and one control shoulder repair, from different pairs). Repeat suture anchor placement led to weaker

attachments, with failure in one case by the anchor pulling out of the bone instead of the tendon or suture breaking.

Comparing the control repairs from different samples, the sample without any surgical issues failed at 344 N (Sample 2

right, Figure 3.S6) while the sample with surgical issues failed at 308 N, or 36 N less (Sample 1 left, Figure 3.S4). The

adhesive sample without any surgical issues failed at 394 N (Sample 1 right, Figure 3.S5), while the adhesive sample

with surgical anchor issues failed at 348 N (Sample 2 left, Figure 3.S7). This data suggests that the adhesive treatment

improved repair strength by approximately 40 – 50 N, indicating that adhesives provide additive strength improvement

over the current suture repairs based on predictions from the infraspinatus adhesive-only experiments. Especially given

the experimental issues with suture anchor placement, a more thorough assessment with more samples and without

suture anchor failures is necessary to evaluate the adhesive’s impact at the rotator cuff.
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Taken as a whole, the multipartite adhesive experiments with and without THPC treatment provide evidence that (i)

the shear lag model accurately predicted load transfer across tendon-to-bone for a relevant range of adhesive shear

moduli (100 kPa - 1 MPa, Figure 3.9C), and (ii) clinical style repairs demonstrate approximately one-third of the

additive load tolerance improvement expected based on the shear lag model and idealized tests. Even this sub-optimal

multipartite adhesive material enabled load tolerance increases on the necessary order to improve rotator cuff repair

outcomes. Optimal adhesive materials are expected to increase load transfer by approximately 10-fold compared to

current repairs.

It is interesting to note that the proposed combination of a compliant, strong adhesive layer with a suture repair resem-

bles bonded-bolted joints in composite structures that have been considered in engineering since 1985 [324]. Kelly

conducted and experimentally validated a three-dimensional finite element analysis, which concluded that bonded-

bolted joints with a thick, low-modulus adhesive layer effectively distribute load transfer between the adhesive and

the bolts [325]. High-modulus adhesives provided a stiffer load path and thus transferred the majority of the load,

minimizing the value of the bolts and making the joint more susceptible to crack propagation [325]. Thus, previous

studies of bonded-bolted joints and the shear lag model employed here both indicate that compliant, strong adhesives

are desirable. The strength of bonded-bolted joints exceeded that of bonded or bolted counterparts by 52% and 127%

in experimental assessments, respectively [326]. The combination of adhesive bonds and bolts increases joint strength

while minimizing peeling stresses and fracture cracks [327].

The mechanical models and experiments here provide the theoretical underpinnings of a previous study showing

that a biological adhesive secreted by the Australian frog Notaden bennetti increased the strength of cadaver sheep

infraspinatus repairs by approximately 70 – 80 N, or 2-fold, over a 16.4 ± 0.2 mm by 13.2 ± 0.1 mm infraspinatus

insertion site [328]. Indeed, this robust improvement follows the same mechanical principals outlined here: the protein-

based frog adhesive is elastic (Ga = 402± 7 kPa) with approximately 65% of the adhesive strength of cyanoacrylate

and a high shear strength (τfail = 1.7 MPa between wood adherends) [329, 330]. The adhesive set in approximately

30 – 60 seconds and could work while hydrated [328]. While this frog-secreted adhesive, secreted and immediately

applied in the operating room, is not clinically applicable in its current form, it further provides proof-of-concept

validation that adhesives that are compliant in shear and strong can substantially improve repair strength.

In addition to the adhesive mechanical properties defined here, clinically useful adhesives for many tendon-to-bone

repair styles need to work in an arthroscopic setting (underwater environment). Therefore, a series of elastomeric poly-

mers with marine mussel-derived, catechol-based binding domains were evaluated. These adhesives were adhered to

tissues when fully submerged in PBS to activate catechol binding chemistry and to mimic the arthroscopic environ-
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ment. As expected, homopolymer adhesives (i.e., no crosslinker to stabilize cohesive strength of the polymer) did not

carry clinically relevant loads in the idealized plank tests. Heteropolymer adhesives that were allowed to oxidize and

crosslink carried 4-18 N of load. This is on the same order of magnitude as the cyanoacrylate-based multipartite adhe-

sive tests, but with a much more clinically applicable adhesive. Further studies are needed to assess catechol-derived

and other elastomeric bio-adhesives using the simple, standardized lap shear testing protocol described herein to hone

adhesive binding and crosslinking chemistries for clinical application.

Translating this theoretical and experimental foundation into a clinically useful adhesive for tendon-to-bone repair will

require co-optimization of several properties, including the adhesive mechanical properties defined here, biocompat-

ibility, degradation in vivo, adhesive curing in a hydrated environment, and production cost [331]. While this study

applies particularly to the time of repair and does not consider the healing process, results from many studies in ortho-

pedic repair indicate that time zero strength properties correlate with long-term repair outcomes, e.g., [319, 320]. Ideal

adhesives could either be biologically inert or guide the healing response as with a tissue engineering approach [332]:

the same biomechanical design principles apply to minimizing stress concentrations for tissue engineered biomaterials

at interfaces between soft and hard tissues. Current adhesive approaches to orthopedic repair primarily use bone ce-

ments (e.g., [333]), cyanoacrylate- [334, 335, 336, 337, 338] or methacrylate-based chemistries [339, 340, 341, 342],

which may be appropriate for fracture repair but are significantly more stiff than desirable for tendon-to-bone repair.

Furthermore, biocompatibility is limited unless all free acrylate moieties are consumed. At the other extreme, fibrin

glues such as TISSELL (Baxter) form compliant clots but do not provide sufficient strength [343, 344]. Mussel-

inspired, catechol-derived adhesives offer versatile, high-strength binding in hydrated environments which may be

engineered into compliant, energy-dissipating, and possibly bioactive biomaterial matrices [345, 346, 347, 348, 349].

In addition to manipulating the chemical binding moiety, several recent studies of interest have incorporated carbonate,

calcium phosphate, or mineral trioxide groups, as well as bone morphogenic protein 2, to enhance integration into bone

[339, 350, 351, 352]. While these approaches are promising, there are no adhesives successfully used clinically for

tendon-to-bone repair. We hope this work may serve to inform further bioadhesive development to maximize benefit

to soft tissue-to-bone repairs.

3.7 Conclusion

Strengthening tendon-to-bone repairs is essential to enable adequate healing and functional recovery, particularly

for the rotator cuff, where repair outcomes are poor. Modeling and experimental validation indicate that adhesive
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films can augment current surgical approaches by transferring stress between tendon and bone over the entire enthesis

footprint area, instead of relying only on a small number of anchor points. Even the sub-optimal multipartite adhesives

evaluated here for model validation led to load tolerance improvements that are attractive for rotator cuff repair. Future

studies investigating compliant, strong adhesive biomaterials have promise for enhancing rotator cuff repair strength

and enabling the requisite tissue apposition for healing.
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3.9 Supplemental Material

The shear lag analysis employed here assumes tight contact between the adhesive and the adjacent bone or tendon.

Tight contact may not occur between layers in a surgical setting, e.g., due to non-ideal adhesive application. However,

13 mm of continuous overlap length is not necessary to improve load transfer. Intuitively, even several discrete binding

zones would distribute stress concentrations over larger areas than the few suture puncture points that are currently

used clinically. This intuition is supported mathematically: the critical adhesive binding interface length is dictated by

the intersection between the two load transfer asymptotes given in Equation 3.8 and 3.9:

Lcritical ≡
χ

β(χ− 1)
= tb

[
E∗t t

∗
t t
∗
a

G∗a
(1 + E∗t t

∗
t )

] 1
2

(S1)

At the critical interface length, the load transfer is 76% of the load transfer expected for an infinitely long adhesive

interface (Figure 3.S1). At twice the critical interface length, the load transfer approaches that of an infinitely long

adhesive interface (96%). For geometric and material properties given in Table 3.2 for shear lag analysis, and assuming
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Figure 3.S1: Maximum load transfer, Pmax, normalized by maximum load transferred by an infinitely long adhesive
interface, Pmax(∞), as a function of adhesive interface length, L, with respect to the critical interface length Lcritical.
Increasing adhesive interface length increases maximum load transfer, i.e., load causing the adhesive to fail, only until
a point. Above a critical interface length, load capacity is governed by an asymptote independent of interface length
(Equation 3.8). Note that this is an invariant curve that is true for any combination of Ga, ta, Eb, tb, Et, and tt that
yields a particular value of Lcritical.

an adhesive thickness of 0.5 mm and adhesive shear modulus of 100 MPa, this critical interface length is 1.4 mm. Less

thick adhesive layers have a shorter critical interface length. A series of discontinuous, short adhesive binding points

should therefore still improve load transfer nearly as predicted in Figure 3.7.

Figures 3.S4, 3.S5, 3.S6, and 3.S7 show biomechanical tests of supraspinatus repairs with and without multipartite

adhesive. All of these figures follow the same layout: (Left) Frames from the side and front view videos at the start

of mechanical testing demonstrate positioning, overlaid with (+) symbols at optical tracking points. (Right) Stress-

interface strain curves (solid lines) show with strain calculated from optically tracked points on the supraspinatus

tendon and the bone immediately adjacent to the repair interface, from front and side videos. Dashed lines: fitted line

for modulus; •: Yield stress position. (Bottom) Table of key test results, using side view strain tracking for yield stress,

modulus, and resilience calculations.
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Figure 3.S4: Human cadaver supraspinatus double-row suture anchor repair, without adhesive, for Specimen 1 left
shoulder. This repair required repeated suture anchor placement due to incorrect initial positioning. Key results (table)
are calculated from strain tracking performed on the side view video.
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Figure 3.S5: Human cadaver supraspinatus double-row suture anchor repair, with multipartite adhesive, for Specimen
1 right shoulder. This repair did not have any surgical issues. Key results (table) are calculated from strain tracking
performed on the side view video.
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Figure 3.S6: Human cadaver supraspinatus double-row suture anchor repair, without adhesive, for sample Specimen
2 right shoulder. This repair did not have any surgical issues. Key results (table) are calculated from strain tracking
performed on the side view video.
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Figure 3.S7: Human cadaver supraspinatus double-row suture anchor repair, with multipartite adhesive, for Specimen
2 left shoulder. This repair required repeated suture anchor placement due to incorrect initial positioning. Key results
(table) are calculated from strain tracking performed on the side view video.
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Chapter 4

Adhesive and bioactive factor delivery via

sutures with porous sheaths

Portions of this chapter were previously published in:

Li J, Linderman SW, Zhu C, Liu H, Thomopoulos S, Xia Y. Surgical Sutures with Porous Sheaths for the Sustained

Release of Growth Factors. Adv Mater. 2016 Jun;28(23):4620-4. PMID: 27059654. [353]

Linderman SW, Shen H, Yoneda S, Jayaram R, Tanes ML, Sakiyama-Elbert SE, Xia Y, Thomopoulos S, Gelberman RH.

Effect of Connective Tissue Growth Factor Delivered Via Porous Sutures on the Proliferative Stage of Intrasynovial

Tendon Repair. J Orthop Res. 2018 Jul;36(7):2052-2063. PMID: 29266404. [354]

4.1 Abstract

The previous chapters analyzed mechanical models and experimental applications of adhesives for tendon and tendon-

to-bone repairs. In the current chapter, we developed a novel approach to deliver adhesives and bioactive factors in

tendon repairs using porous sutures. Standard Supramid (pseudomonofilament nylon) sutures were modified to create

micrometer-sized pores in the outer sheath without modifying the inner, load-bearing nylon fibers. Importantly, this

process did not detrimentally affect suture mechanical properties in either single suture strand tests or in cadaver canine
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flexor digitorum profundus tendon repairs. The porosity dramatically increased the suture surface area, facilitating ad-

hesive interdigitation and strong binding. In addition, this porous suture enabled growth factor or other bioactive factor

addition to the inside of the suture for sustained release over time. While previous suture coating approaches had in-

sufficient loading capacity to deliver substantial levels of factors to repair sites, the porous suture approach enabled

loading several fold higher amounts of a growth factor. Using connective tissue growth factor (CTGF) as a model

growth factor, release kinetics in vitro demonstrated an initial burst of 0.50 – 1.25 ng CTGF
(cm suture)(day) followed by sustained

delivery of 0.15 ng CTGF
(cm suture)(day) through day 14, corresponding to concentrations of 60 – 150 ng/mL daily burst and

10 – 20 ng/mL daily sustained release from suture within 3 mm of a theoretical flexor tendon repair site. In vitro

experiments confirmed that growth factor-loaded porous sutures retained bioactivity and did not have any negative

impact on cell viability in culture. In vivo repairs with CTGF-laden sutures were mechanically competent and did not

show any evidence of adhesions or other negative inflammatory reactions based on histology, gene expression, or pro-

teomics analyses at 14 days following repair. CTGF-laden sutures induced local cellular infiltration and a significant

biological response immediately adjacent to the suture, including histological signs of angiogenesis and collagen de-

position. There were no evident widespread biological effects throughout the tendon substance. There were significant

differences in gene expression of the macrophage marker CD163 and anti-apoptotic factor BCL2L1; however, these

differences were not corroborated by proteomics analysis. In summary, this study provided encouraging evidence of

sustained delivery of biologically active CTGF from porous sutures without signs of a negative inflammatory reaction.

Future studies will evaluate porous sutures with adhesive materials, with and without embedded bioactive factors, to

improve the mechanical and biological response following flexor tendon repair. This work represents a novel, highly

translational approach to modify the mechanics and biology of healing with almost no changes to the surgical repair

approach. Furthermore, porous sutures can be readily adapted as a delivery tool for other surgical repair settings.

4.2 Introduction

Implementation of adhesive coatings on sutures to improve tendon and other soft tissue repair strength requires specif-

ically designed delivery approaches to maximize efficacy. Previous chapters established the mechanical engineering

theoretical basis and proof-of-concept experimental validation for adhesive-coated sutures (Chapter 2) and adhesive

films, and identified potential adhesive biomaterial approaches to obtain the desired mechanical properties (Chapter

3). The current chapter describes a suture with a porous outer sheath to facilitate adhesive delivery and increase load

transfer between the suture and surrounding tissue. While sutures have a large lateral surface that can be used to deliver
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adhesives or other biofactors, that surface was not designed for this application. To the contrary, suturing advances

for tendon or tendon-to-bone repair optimize material strength and grasping techniques, but typically seek to avoid

binding to the lateral surfaces, thereby creating poor suture choices for coating with adhesives [355]. Suture surfaces

are typically designed with minimal friction to facilitate surgical handling for suture passage and reduce the collateral

damage to tissue from the trauma of suture passage. Polytetrafluoroethylene-coated sutures (PTFE, a.k.a. teflon) are

marketed to reduce inflammation and prevent bacterial adhesion, especially for stitches that contact the skin or mu-

cosal surfaces [356, 357], analogous to intrauterine devices that have slick, monofilament threads to reduce bacterial

infiltration [358]. While adhesives can still provide benefit on standard surgical suture, as shown in Figure 2.7, new

suture delivery approaches are needed to optimize suture–adhesive interfacial strength.

Existing suture coating approaches are usually directly anti-adhesive, as with PTFE, or deliver antimicrobial agents

or growth factors to repair sites. These approaches are not designed to maximize binding or transfer load along the

lateral surface. Some previous research explores tissue ingrowth into surgical implants, such as porous tantalum for

hip and knee implants [359, 360] and “mesh sutures” for abdominal hernia repair [361]1, as a method to strengthen

repairs. Tissue ingrowth is a possible mechanism for strength improvement of polyfilament sutures compared to

monofilament sutures, in addition to the strength improvements inherent to braided threads. Tissue ingrowth would

cause interdigitation of tissue and suture material, facilitating a stronger bond analogous to the interface between

tendon and bone in an enthesis [80].

In addition to delivering adhesive materials to improve stress distribution within tendon suture, sutures are aptly suited

to deliver bioactive factors. Current delivery approaches used in tissue engineering research typically place scaffolds

or inject fluid containing biofactors at one of the following locations: (i) at the tendon surface [199], which risks

forming deleterious adhesions to surrounding tissues unless carefully performed; (ii) at the repair interface [93, 47],

which could act as a barrier to tissue regrowth across the repair; or (iii) within the injured tissue, which causes excess

tissue damage compared to a conventional repair [167, 186]. Sutures, on the other hand, have potential to deliver

biofactors immediately within and surrounding the repair site following surgery, without introducing additional defects

or materials that may cause inflammation, such as poly(lactic-co-glycolytic acid) [167, 186]. Prior work on local

delivery of biofactors via sutures has primarily focused on coating the surface of a solid suture thread with a biofactor

or biofactor-containing material [362, 363, 364, 365, 366, 367]. However, this approach has two major disadvantages.

First, almost all of the biofactor is exposed to surrounding tissue, leading to rapid bolus release of biofactor. Even

with carrier materials, most reported release profiles from sutures remain relatively short, over only several days

1“Mesh sutures” described by Souza et al. are polypropylene strips, not cylindrical sutures.
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Figure 4.1: Porous sutures have high surface area and loading capacity, which can be used to deliver adhesives and/or
biofactors to an injury site within a tendon.

[365, 366, 367]. Second, solid sutures have limited loading capacity on the surface, so it is challenging to obtain

sufficient biofactor release to have a significant impact. Biofactors are typically restricted to thin coating layers, which

can easily peel off during handling for the reasons discussed above that also limit adhesive–suture interfacial binding

strength. While prior suture delivery approaches have yielded only marginal success [365, 366, 367], new approaches

that increase loading capacity and enable sustained delivery have the potential to guide the healing process. Growth

factors that promote the proliferative stages of repair, especially those that stimulate connective tissue extracellular

matrix production and tendon regeneration such as connective tissue growth factor (CTGF) [209, 223, 368], provide

an opportunity to directly promote tissue ingrowth into the suture and tissue healing at large to improve load tolerance

of the healing repair.

Here, we aimed to modify the lateral surfaces of commercially available sutures to create a suture with improved

properties for delivery of adhesive biomaterials or other biofactors, without compromising the mechanical integrity

of the suture. First, we modified the surface of pseudo-monofilament nylon sutures to create a porous outer sheath,

without impacting the inner suture fibers. We evaluated these sutures for biomechanical properties, loading capacity

and release profiles, and in vivo impact at 14 days in a canine flexor digitorum profundus tendon transection and repair

model, as shown in Figure 4.1.
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4.3 Methods and Materials

4.3.1 Preparation and visualization of modified, porous sutures

N.B.: Porous suture development was performed by Jianhua Li in the laboratory of Professor Younan Xia at Georgia

Institute of Technology.

To create surgical sutures with porous outer sheaths, pristine pseudo-monofilament surgical sutures (Supramid 4–0,

HEA40, S. Jackson Inc., Alexandria, VA) were treated with a swelling and freeze-drying procedure. Before treatment,

the commercially available sutures had a cable-type structure consisting of fine inner nylon-6,6 filaments enclosed by

a nylon-6 sheath with a smooth surface. The commercially available sutures were soaked in a 500 mM CaCl2 solution

in methanol for 24 hours at room temperature to induce swelling of the outer sheath as Ca2+ ions formed coordination

bonds with the carbonyl groups on nylon-6, breaking the hydrogen bonds between adjacent nylon chains [369]. By

controlling the incubation time and CaCl2 concentration, most of the swelling was restricted to the sheaths only before

Ca2+ began to attack the inner filaments (supplemental data shown in [353]). Afterward, the swollen sutures were

quickly frozen in liquid nitrogen (-196 ◦C) to crystallize and phase-separate the solvent molecules from the polymer

chains. Then samples were freeze-dried in a vacuum overnight, which eventually produced a highly porous structure

once the solvent molecules had been removed by sublimation [370, 371, 372]. Since all reagents used in this process

were water soluble, their residues were readily removed by rinsing several times with water.

The swelling and freeze-drying approach caused the ≈ 10 µm outer sheath of cable-type, pseudo-monofilament nylon

sutures to become porous, while the inner packed fibers remained intact with very few pores, as shown by scanning

electron microscopy images before and after modification (SEM, Figure 4.2A,B). The pristine suture showed a smooth

surface, which facilitated surgical handling and suture passage with low friction. In contrast, the modified suture had

a highly porous surface, with pore sizes in the range of 0.5 – 5 µm (Figure 4.2C,D). The micrometer-sized pores were

generated through the entire cross section of the sheath. Varying Ca2+ concentration controlled porosity and pore size

(data shown in supplemental material of [353]).

4.3.2 Biomechanical testing

Single-strand mechanical tests: The unmodified and porous sutures were first biomechanically evaluated as indi-

vidual strands in uniaxial tension using a material testing machine (5866; Instron Corp., Norwood, MA), as described
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Figure 4.2: SEM images of the (A,B) cross sections and (C,D) side surfaces of the unmodified (A,C) and porous (B,D)
sutures. Scale bars: 50 µm in panels (A,B) and 2 µm in panels (C,D). Figure reproduced with permission from [353].

previously [107] (n = 7 for unmodified sutures and n = 6 for modified, porous sutures). A suture was carefully

placed in a jig consisting of a low-friction spool and a clamp grip, which was pulled upward at 1.0 mm/s to apply

tension to the suture. The gauge length between the suture grips was 110 mm for all the samples at the beginning of

the test. Maximum stress, yield strain, strain at maximum stress, and modulus were determined from the stress-strain

curves using a custom MATLAB script as described in Section 3.4.4, simply using MTS grip data without any optical

strain analysis.

Clinical-style repair biomechanics: Cadaver canine forepaw samples were obtained post-mortem from an unrelated

study, stored at -20 ◦C, and thawed at 4 ◦C immediately before use. Flexor digitorum profundus (FDP) tendons were

sharply transected in Zone II and repaired with unmodified or porous sutures 4–0 Supramid core sutures using an 8-

stranded Winters-Gelberman technique followed by a 5–0 proline running epitenon suture, following the same methods

as in Section 2.4.1 performed by highly experienced orthopaedic hand surgeons (n = 10 for modified, porous sutures

and n = 11 for unmodified sutures). Dr. Richard Gelberman performed the ex vivo repairs with porous sutures and Dr.

Susumu Yoneda performed the ex vivo control repairs with unmodified sutures using the same technique. Following

clinical-style repairs, cadaver FDP tendons were biomechanically evaluated following the methods as in Section 2.4.2.
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Adhesive-coatings on porous sutures: To experimentally assess the ability of porous sutures to delivery adhesives

to improve load transfer, the flexible cyanoacrylate Loctite 4903 (n = 4 per group, based on ethyl and octyl cyanoacry-

late [274, 275]; Henkel Corporation, Düsseldorf, Germany) or a catechol-derived heteropolymer adhesive (n = 3 per

group, courtesy of Dr. Kollbe Ahn at University of California in Santa Barbara, previously evaluated in idealized

tendon-to-bone plank tests in Chapter 3) was applied to single psuedomonofilament nylon sutures (unmodified, U)

or nylon sutures that were first modified to have a porous outer sheath (porous, P). This idealized adhesive testing

method, described in Section 2.4.1, was shown to be predictive of strength improvements in clinically relevant cadaver

tendon repairs in Chapter 2. Single unmodified or porous nylon 4–0 suture strands were passed through cadaver ca-

nine hindpaw flexor tendon tissue by Dr. Susumu Yoneda by using a looped 4–0 suture with a needle to pull the tested

suture segment into place. Cadaver canine hindpaw samples were obtained from healthy female adult mongrel dogs

from 20–30 kg in weight (Covance Research, Princeton, NJ), taken postmortem from an unrelated study and frozen

at -20 ◦C before use. The tendon was first dissected away from surrounding tissue and a complete transection was

made in Zone II [61] perpendicular to the long axis of the tendon. Suture was passed from the side of the tendon 10.0

– 12.0 mm from the site of transection toward the laceration interface. The suture was pulled through the tendon so

that only a single suture strand remained within the tendon. The adhesive was injected onto the suture on the side

of the tendon and the suture was pulled into place, dragging the adhesive into the tendon. For the catechol-derived

heteropolymer groups, after adhesive was injected onto the suture, the suture was placed in an oxidizing solution of

100 mM sodium (meta)periodate (NaIO4, Sigma Aldrich, St. Louis, MO) in PBS for 60 seconds before pulling into

the tendon to stimulate catechol oxidation and prime for binding. Adhesive that accumulated on the side of the tendon

was cleared with gauze soaked in phosphate buffered saline (PBS). The assembly within the tendon was wrapped in

PBS-soaked gauze with excess PBS in an airtight tube and then allowed to cure for 12 hours at room temperature

followed by 12 hours at 4 ◦C before biomechanical testing. This curing procedure was chosen to facilitate catechol

oxidation and binding, while also limiting the risk that postmortem tissue ex vivo would rot or deteriorate.

Samples were brought to 37 ◦C prior to biomechanical testing. Any suture and adhesive outside of the lateral tendon

was first dissected away. This experimentally ensured that the effect was due to adhesive along the length of the

suture instead of adhesive accumulated at the suture entrance point. Samples were then tested in uniaxial tension

on a materials testing frame (ElectroPuls E1000; Instron Corp., Norwood, MA, chosen because of a low noise load

cell suitable for distinguishing milli-Newton level forces). The tendon was clamped in a stationary grip so 15 mm of

tendon length was exposed. Suture was carefully placed in a jig consisting of a low friction spool and a clamp grip,

which was pulled upward at 0.3 mm/s to apply tension to the suture. The gauge length between the tendon and suture

grips was 8.5 cm for all samples at the start of the test. Pullout (failure) force of single adhesive-coated suture strands
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within tendon tissue were determined from the force-elongation curves.

4.3.3 Biofactor loading and in vitro evaluation

Dye loading and visualization: N.B.: Porous suture dye loading and visualization experiments were performed by

Jianhua Li in the laboratory of Professor Younan Xia at Georgia Institute of Technology.

After modifying sutures to create a porous outer sheath, sutures were infiltrated with dyes and biofactor molecules to

evaluate loading capacity. A small, water-soluble dye (Rhodamine B, Sigma Aldrich, St. Louis, MO) and a larger

dye-labeled protein (FITC-BSA, Sigma Aldrich) were separately loaded onto unmodified and porous sutures within a

fibrin matrix. Suture samples were first sterilized using 75% ethanol, then immersed in Tris-buffered saline (TBS, pH

7.2) containing 20 mg/mL fibrinogen and either Rhodamine B or FITC-BSA overnight at 4 ◦C. The fibrinogen- and

dye-loaded sutures were then soaked in TBS containing 2 U/mL thrombin, 40 mM CaCl2, and the same concentration

of dye used in the previous step at room temperature for 2 hours. Laser confocal fluorescence microscopy (Zeiss LSM

700) was used to resolve distribution of the dyes and dye-labeled proteins in each suture.

Following porous modification, biofactor molecules readily infiltrated into the voids among the inner suture filaments

via the interconnected pores created in the outer sheath. This was validated for small and large molecules using

the small, water-soluble dye Rhodamine B (Figure 4.3B) and a large dye-labeled protein, FITC-BSA (Figure 4.3D),

visualized by fluorescence micrographs of the cross-sections of loaded sutures. Both the dye and dye-labeled protein

could be clearly observed filling the voids among inner filaments of porous modified sutures. In contrast, the smooth

outer sheath of unmodified sutures prevented biofactor penetration. Dyes were only observed on the outer surface of

unmodified sutures (Figure 4.3A,C). This result indicates that the dense sheath surrounding the filaments of unmodified

sutures could not be penetrated by small or large molecular species, whereas the highly porous sheath of modified

sutures could be used to access the voids among the inner filaments. The capillary action caused by the interconnected

porous structure, in combination with the concentration gradient of molecules in solution, effectively drove molecules

through the pores and into the voids inside the sutures (Figure 4.3E,F).

CTGF/HBDS loading: Modified, porous sutures created at Georgia Institute of Technology, lyophilized after being

washed with distilled water several times (i > 5), were shipped to Washington University in St. Louis and loaded

with recombinant human CTGF, produced in E. coli (BioVendor, Asheville, NC). CTGF was loaded in a heparin/fibrin

delivery system (HBDS) for sustained release, as described previously [167, 194, 178]. The lyophilized sutures were

86



Figure 4.3: Sutures with porous sheaths showed a much higher loading capacity for both (A,B) small molecules (Rho-
damine B) and (C,D) proteins (FITC-labeled BSA), as indicated by (A–D) confocal fluorescence and (E,F) scanning
electron micrographs taken from the cross sections of (A,C,E) unmodified and (B,D,F) modified sutures. The fibrin
matrix and dye are evident in the voids among the inner filaments of the modified suture. In contrast, dye is nearly
absent from the interior of the pristine suture. Scale bars: 50 µm in panels (A–D) and 10 µm in panels (E,F). Figure
reproduced with permission from [353].
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first sterilzed with poly(ethylene oxide) gas, then care was taken to maintain sterility before use. Sutures only came

into contact with sterile solutions (0.2 µm filtered) in a sterile biosafety cabinet, using autoclaved surgical instruments

and sterile surgical gloves. All pipette tips, tubes, and tools were either silanized or rinsed with TBS containing 0.1%

bovine serum albumin (BSA) prior to use to block inadvertent protein binding.

To coat with CTGF/HBDS, sterile sutures were first either cut into 15 mm pieces for in vitro release profile evaluation

or left as 30 cm looped suture with a needle for in vivo surgical implantation. Sutures or suture segments were then

submerged in TBS (pH 7.4) containing 0.1% w/v BSA (Sigma Aldrich), 20 mg/mL human fibrinogen (plasminogen

depleted, > 95% clottable proteins; EMD Millipore), and CTGF/HBDS components at 4 ◦C overnight to enable the

components to permeate the porous suture and reach equilibrium at the desired CTGF/HDBS levels. The fibrinogen-

and CTGF/HBDS-loaded sutures were then immersed in TBS containing 0.1% w/v BSA, 20 U/mL thrombin (Sigma

Aldrich), and 13.7 mM CaCl2 for 2 hours at 37 ◦C to crosslink. Suture samples were washed by rinsing in TBS with

0.1% w/v BSA to remove unbound CTGF before collecting release profiles in vitro or implanting suture in vivo.

The CTGF/HBDS components used for the two loading steps included: (i) a bi-domain HBDS peptide, (ii) heparin

(Sigma Aldrich H3393), and (iii) CTGF at a
[
4 : 1 : 1

135

]
stoichiometric molar ratio, calculated based on final CTGF

concentrations (10, 20, 30, 40, 50, or 100 µg/mL for in vitro release studies, n = 2 per group; 0 or 30 µg/mL for in

vivo surgical studies). The HBDS peptide consisted of a factor XIIIa substrate derived from α2-plasmin inhibitor at the

N-terminus and a C-terminal heparin-binding domain from anti-thrombin II [167, 105, 106, 178, 103, 195] (sequence

dLNQEQVSPK(βA)FAKLAARLYRKA-NH2, where dL denotes dansyl leucine, purity > 95%; GenScript, Piscat-

away, NJ). The bi-domain peptide was covalently cross-linked to fibrin during polymerization by the transglutaminase

activity of factor XIIIa. The peptide electrostatically immobilized heparin to the matrix, which in turn immobilized

the heparin-binding growth factor, CTGF, preventing diffusion away from the matrix. While there were small sample

numbers at each loading concentration, several CTGF concentrations within a small range were evaluated to enhance

reliability and enable identification of the optimal CGTF loading concentration for in vivo use.

CTGF release profile: After loading porous suture for in vitro release, 15 mm suture segments were incubated in 70

µL of TBS containing 0.1% w/v BSA in a 0.6 mL tube at 37 ◦C. All 70 µL of solution was collected at each time point

and replaced with fresh TBS with 0.1% w/v BSA. The collected aliquots were placed in a silanized tube, centrifuged

for 3 minutes at 16,100 g, and stored at -80 ◦C before the amount of CTGF was quantified using an enzyme-linked

immunosorbent assay (BioOcean, Shoreview, MN), performed following the manufacturer’s instructions, except using

TBS with 0.1% w/v BSA for all dilution buffers to maintain a consistent buffer. The absorbance was read with a

88



microplate reader (Cytation 5 Plate Reader, BioTek, Winooski, VT) and the concentration of CTGF from each sample

was determined from a calibration curve derived from CTGF solutions with known concentrations.

4.3.4 Canine flexor tendon injury and repair model

Ten 1- to 2- year-old female mongrel dogs (20 – 30 kg) were used in this study (Covance, Denver, Pennsylvania),

and all procedures were approved by the institutional Animal Studies Committee. Animal housing and welfare was

provided by the institutional Division of Comparative Medicine. The effects of porous sutures loaded with or without

CTGF were assessed in paired intrasynovial flexor tendon repairs in canines (Figure 4.1), performed on two digits

of one paw per animal (n = 10 tendons per group). The FDP tendons of the medial and lateral right forepaw digits

(2nd or 5th digits) were sharply transected at the level of the proximal interphalangeal joint (within Zone II) and

repaired using a porous core suture, loaded as described above with all HBDS components with or without CTGF

at a 30 µg/mL soaking concentration (CTGF+ group and CTGF− control group, respectively). All repairs were

performed as described previously [186, 199, 103, 155, 167], using an 8-stranded Winters-Gelberman core suture

technique followed by a 5–0 nylon epitenon suture [11]. Controlled passive motion exercise was applied to the digits

postoperatively to replicate the clinical scenario. The paws were flexed fully and then extended to the limits of the

extension block for 5 minutes daily, 6 days per week [65].

The corresponding left digital flexor tendons served as normal controls (Normal group). All animals were euthanized

14 days after repair. Of the 10 repaired tendons within each repair group and normal controls, 6/10 were longitudinally

transected into two parts consisting of approximately 2/3 and 1/3 of the tendon volume, within 5 mm on either side of

the repair site. The smaller part was used for proteomics analysis and the larger part was used for RNA isolation and

subsequent gene expression analysis. The remaining tendons (4/10) were used for histological study and transmission

electron microscopy. One tendon (CTGF− group, histological sample) formed a gap greater than 3 mm and was

therefore excluded along with the paired tendon from the same animal (CTGF+ group). Some comparisons also used

historical controls from different animals in other studies using the same model, including: (i) a repair with unmodified

nylon 4–0 core suture (Repair-only group) and (ii) a repair with unmodified suture that was also treated with an

autologous adipose-derived stem cell (ASC) sheet at the surface of the flexor tendon, then sealed with hyaluronic acid

to prevent cell sheet movement or adhesion formation to the intrasynovial sheath (ASC group).
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4.3.5 Histology and transmission electron microscopy

Histological section preparation: For morphological assessment, a 20 mm tendon fragment was obtained from each

repaired tendon, with the transection site in the middle. The tendon fragments were trimmed at both ends to generate

a center piece (10 mm in length) and two end pieces (5 mm in length). The center pieces and end pieces were used

for histology and transmission electron microscopy (TEM), respectively. The histological samples were fixed in 4%

paraformaldehyde overnight. After washing and dehydrating, the histology samples were embedded in paraffin and

serial coronal paraffin sections (5 µm thick) were prepared [199, 373]. Hematoxylin and eosin (H&E), Russell-Movat

pentachrome (American MasterTech, Lodi, CA), or reticular staining were performed. Reticular staining was chosen

to assess vascular ingrowth since it is a well characterized stain, and there are no validated CD34 antibodies available

for the canine. Immunohistochemical staining for CD146 and Ki67 was also performed to label for tendon-resident

CD146+ stem/progenitor cells and proliferating cells, respectively.

Cell counting protocol: Histological slides from the middle of the flexor tendon thickness, prepared with H&E

staining, were used to assess cell counts near the suture surface (n = 3 tendons per group, paired by animal). Digital

slides were analyzed blindly using a custom MATLAB script that manually identified the tendon laceration interface,

then divided each side into thirds (approximately 3 mm long each) for cell counting. The script automatically identified

the suture sections by thresholding the grayscale image, with user oversight. This enabled accurate calculation of the

area of the tissue section within 70 µm of the suture surface, which was used to create output images for cell counting

and also used for normalization. Cells in each section were counted manually in ImageJ and normalized by tissue area.

Normalized cell counts from corresponding segments on each side of a slide were averaged as a single experimental

sample.

Transmission electron microscopy (TEM): Ultrathin cross sections (90 ∼ 100 nm) of flexor tendon were prepared

from the TEM samples. Cross sections were taken from the TEM tendon sample end closest to the transection site to

ensure that the samples included suture material. TEM images were taken at 2,500× and displayed at approximately

1,250× magnification. Collagen fibrils were automatically identified by thresholding the image with a custom MAT-

LAB script, and fibril diameter and distance from the 10 closest neighboring fibrils (a measure of fibril density) were

calculated.
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4.3.6 Gene expression

Total RNA isolation, cDNA synthesis, and gene expression assays were performed as described previously [199, 373,

165]. The gene expression profile in repaired tendons 14 days after repair was determined using TaqMan R© real-time

PCR (Applied Biosystems, Woolston, UK) by the Washington University Genome Technology Access Center using

the BiomarkTM HD system (Fluidigm, San Francisco, CA). The relative abundance of target genes in repaired digits

was analyzed with the comparative Ct (2−∆∆Ct) method using GAPDH and PPIB as endogenous reference genes.

All gene expression results are shown as fold changes compared to the average gene expression levels in contralateral

non-operated, normal digits (2nd and 5th) from the same animal. All TaqMan primers and probes used in this study

were obtained from Applied Biosystems (Foster City, CA).

4.3.7 Proteomics

Protein sample preparation and quantitative proteomics analysis were performed by the Proteomics Core Laboratory

at Washington University using a tandem-mass-tag-based assay, as described previously [373]. The PROC MIXED

models (SAS Institute, Cary, NC, USA) were applied to proteomics data to identify proteins differentially expressed

between three different conditions (Normal, CTGF−, CTGF+). Protein functional classification was performed on

selected proteins using the UniProt Knowledgebase (UniProtKB, http://www.uniprot.org).

4.3.8 Statistics

All data are shown as box plots, with the median and range (minimum, 25th percentile, 75th percentile, and maximum),

unless otherwise noted. For in vitro single strand and ex vivo cadaver flexor tendon biomechanics data, non-inferiority

of porous sutures was evaluated using a one-sided t-test to determine whether the difference between the means was

less than an acceptable equivalence margin, δ, with α = 0.05 [374]. This is equivalent to assessing whether the

90% = (1− 2α)100% confidence interval for the difference between the means contains the equivalence margin. For

cell counts, a 2-way analysis of variance (ANOVA) was performed to compare normalized cell counts grouped by

CTGF delivery and position, followed by Fisher’s least significant difference post hoc tests. For collagen fibril size

comparisons, three representative TEM images per group were combined and fibril diameters were compared with an

unpaired Wilcoxon rank-sum test. For gene expression, paired Wilcoxon signed-rank tests were used to compare the

fold change compared to normal for CTGF− and CTGF+ groups. Changes that yielded 0.05 < p < 0.1 are marked
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as nonsignificant (N.S.). For proteomics data, an ANOVA was used to compare relative protein abundance between

groups. The obtained p-values were further corrected using Benjamini-Hochberg’s method.

4.4 Results

4.4.1 Biomechanical results

Single-strand mechanical properties: The mechanical properties of single suture strands, with and without modi-

fication, were evaluated as shown in the schematic in Figure 4.4A. The two groups of stress–strain curves show similar

patterns (Figure 4.4B), indicating that the modification did not have a substantial impact on the mechanical properties

of the sutures. The maximum stress increased slightly, from 506.6 ± 17.2 MPa for the unmodified sutures to 530.4

± 14.5 MPa for the porous sutures (p < 0.05, Figure 4.4C), likely due to the formation of Ca2+-nylon 6 complexes

[369]. The moduli of unmodified and porous sutures were 1.49 ± 0.03 GPa and 1.59 ± 0.13 GPa, respectively (Fig-

ure 4.4D). The strain at maximum stress and yield strain of the porous sutures increased by ≈ 16% when compared to

the unmodified sutures (p < 0.05) (Figure 4.4E,F). Almost all of the difference in the stress–strain curves occurred at

low stresses (σ < 150 MPa, which are applied when surgeons tension the suture. As expected, the lack of modification

to the inner filaments of the suture resulted in retention of mechanical properties, despite the creation of pores in the

outer sheath.

Clinical-style repair biomechanics: After confirming non-inferiority of the porous sutures compared to unmodified

sutures in single-strand tests [353], the uncoated porous sutures were evaluated in full clinical-style, cadaver flexor

tendon repairs (Figure 4.5A). For each measured mechanical property, the 95% confidence intervals for difference

between the means and the percentage change between groups are listed in Table 4.1. The loads creating a 2 mm

gap, failure loads, repair rigidities, repair resiliencies, and strains created by a physiologically relevant 20 N load are

displayed for each group in Figure 4.5 B, C, D, E, and G, respectively. Load versus strain curves for all samples are

shown in Figure 4.5F. The maximum load and resilience of repairs were comparable between groups, indicating porous

sutures were appropriate for in vivo use. There was a statistically significant 22% decrease in load to create a 2 mm

gap using porous sutures; however, the decrease was not clinically meaningful since repairs remained substantially

stronger than functional requirements for controlled rehabilitation and normal grasp strength (approximately 35 N)

[375]. Similarly, the 25% decrease in rigidity and 17% increase in strain created by a 20 N load were statistically
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Figure 4.4: Tensile mechanical testing of the pristine and modified sutures: (A) mechanical testing schematic, (B)
stress–strain behavior, (C) maximum stress, (D) modulus, (E) strain at maximum stress, and (F) yield strain. N = 7
for the pristine samples and n = 6 for the modified samples; ∗p < 0.05 (by t-test) indicates significant difference
between the two types of samples. Data in (C–F) is displayed as mean ± standard deviation. Figure reproduced with
permission from [353].

but not clinically significant. Of note, porous sutures were mechanically non-inferior to historical control repairs with

unmodified sutures.

Surgical handling was notably different between the unmodified suture and the uncoated porous sutures in cadaver

tendon. While the unmodified sutures have a smooth surface that enabled low-friction suture passage, porous sutures

had substantially higher surface area that increased friction during suture passage. That difference was likely exacer-

bated by using cadaver instead of living tissue. The high porous suture friction was ameliorated by dripping PBS onto

the suture before passage. It was expected that coating the porous sutures with CTGF/HBDS would fill the pores with

fibrin hydrogel, reduce the effective surface area, and further decrease friction. Indeed, the friction experienced by the
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Figure 4.5: Tensile mechanical testing of the unmodified sutures (black) and porous sutures (green) in an 8-stranded
Winters-Gelberman flexor digitorum profundus tendon repair: (A) mechanical testing schematic, (B) load to create a
2 mm gap, (C) maximum load, and (D) rigidity, (E) modified resilience, (F) load versus strain curves for all samples,
with representative curves bolded, and (G) strain at 20 N applied load. N = 10 per group for the unmodified sutures
and for the porous sutures. Overbars and asterisks denote statistically significant differences (∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, n = 10 − 11). Mechanical properties of repairs with porous sutures were modestly decreased and
similar to historical control data [108, 256].

surgeon when passing sutures through tendon was qualitatively lower during in vivo experiments using porous sutures

coated with CTGF/HBDS than it was during ex vivo experiments with uncoated porous sutures.
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Measurement Unit Mean ± Standard Deviation 95% Confidence Interval Percent Change
Unmodified Porous

Load creating a 2 mm gap N 70.0 ± 15.5 54.9 ± 6.1 [-20.6, -9.7] - 22%
Maximum load N 82.8 ± 10.6 74.1 ± 8.0 [-17.6, +0.1] N.S.
Rigidity N/(mm/mm) 419 ± 73 316 ± 51 [-163, -44] - 25%
Resilience N·(mm/mm) 9.1 ± 2.4 8.5 ± 4.1 [-3.6, +2.5] N.S.
Strain created by a 20 N load % 7.81 ± 1.47 9.11 ± 1.15 [+0.07, +2.55] + 17%

Table 4.1: Mechanical properties of 8 stranded Winters-Gelberman flexor digitorum profundus tendon repairs with
unmodified sutures or porous sutures. N.S.: Not significant.

Adhesive-coatings on porous sutures: After demonstrating mechanical properties comparable to conventional su-

tures, porous sutures were evaluated for adhesive delivery capacity in idealized single strand biomechancial tests.

While this pilot study did not include sufficient numbers of samples to see statistical significance (n = 4 for Loctite

4903 and n = 3 for catechol derived adhesives, per group), porous sutures had higher average suture pullout loads

trending toward significance for both adhesive types (Figure 4.6).
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Figure 4.6: Tensile mechanical testing of the unmodified (U) and porous (P) sutures in single strand adhesive pullout
tests from canine flexor digitorum profundus tendon repair. (A) mechanical testing schematic, (B) maximum load for
Loctite 4903 and catechol heteropolymer tests. N = 4 per group for the Loctite 4903 samples and n = 3 per group
for catechol heteropolymer samples.
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CTGF Soaking Precipitate Formation
Concentration

10 µg/mL No visible precipitate20 µg/mL
30 µg/mL Very slight precipitate, disappeared within 1–2 seconds
40 µg/mL Definite precipitate, disappeared after 5–10 seconds
50 µg/mL Most, but not all, precipitate re-dissolved over time

100 µg/mL Substantial precipitate did not re-dissolve

Table 4.2: Precipitate formation in loading buffer containing fibrinogen + CTGF/HDBS components.

4.4.2 Ex vivo CTGF loading and release

A major objective of this study was to increase suture’s adhesive binding capacity and biofactor loading capacity to

drive a biological effect. To evaluate potential for sustained release of biofactors from porous modified sutures, sutures

were loaded with various concentrations of CTGF in a heparin/fibrin based sustained delivery system (HBDS; 10, 20,

30, 40, 50, 100 µg/mL CTGF soaking concentration). Sutures demonstrated sustained release of CTGF over at least 14

days in vitro (Figure 4.7). Loading capacity was partially limited by CTGF and HBDS component precipitation when

higher concentrations were used during loading (Table 4.2). Therefore, while the CTGF loaded into the soaking buffer

progressively increased with each subsequent concentration, the effective concentration decreased when precipitate

formed above ≈ 30 µg/mL CTGF. The maximum CTGF release was observed from porous suture segments loaded

with 30 – 50 µg/mL CTGF/HBDS solution, where precipitate formation was limited but the loading concentration was

still high. All samples in the 30 — 50 µg/mL CTGF loading concentration range yielded consistent release profiles.

Therefore, 30 µg/mL was selected for in vivo experiments to minimize any unintended effects from precipitate forma-

tion. Porous sutures loaded in 30 µg/mL CTGF/HBDS demonstrated burst release of 0.50 – 1.50 ng CTGF
(cm suture)(day) for the

first few days, followed by sustained release of approximately 0.15 ng CTGF
(cm suture)(day) through day 14. Since approximately

70 mm of suture is delivered within 3 mm of the repair site in the traversing strands and the terminal knot, this release

level corresponded to concentrations of 60 – 150 ng/mL daily burst delivery and 10 – 20 ng/mL daily sustained release

from suture within 3 mm of the tendon laceration site.

4.4.3 In vivo biological effects of CTGF-laden porous sutures

Flexor digitorum profundus tendon transections and repairs were performed with porous modified sutures loaded with

0 or 30 µg/mL CTGF in HBDS. CTGF delivery within the repaired flexor tendon was achieved without adhesion or
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Figure 4.7: Cumulative CTGF release profiles for porous sutures loaded with a range of CTGF soaking concentrations
(10–100 µg/mL) within a heparin/fibrin-based delivery system (HBDS), in vitro (n = 2 per group, averaged). Porous
sutures loaded with HBDS + CTGF showed an initial burst followed by sustained release over the first 14 days. The
30 µg/mL CTGF group was the highest loading concentration that did not form precipitate in solution.

repair-site gap formation upon dissection at 14 days in the CTGF+ group. In one of the 20 repaired tendons, a > 3.0

mm gap was noted (CTGF− group, histological sample), and was therefore excluded along with the paired tendon.

There were no macroscopic indicators of inflammation or other deleterious effects at 14 days, such as wound dehis-

cence, pus formation, swelling in the digit and tendon sheath, blood within the sheath, or redness on the volar tendon

surface. There were no or only very mild adhesions. This result positively contrasts with our historical experience,

where canine flexor tendon repairs are highly sensitive to inflammatory stimuli [57, 186].

Histological assessment with H&E demonstrated high quality repairs with little difference between groups at low

magnification (Figure 4.8, top). However, normalized cell counts under higher magnification demonstrated increased

cellularity immediately surrounding the suture tracks (within 70 µm, Figure 4.8C–F, quantified in Figure 4.8G, p

= 0.022 for CTGF effects and p = 0.003 for position effects, n = 3 per group), especially at the repair interface.

There were also higher cell counts far from the repair interface in each of the three CTGF+ samples than their paired

CTGF− controls, though the variability precluded post hoc significance (Figure 4.8G). Pentachrome stains [376, 377]

demonstrated increased staining for new collagen (yellow) instead of mature collagen (red) in CTGF+ samples than

CTGF− controls, both at a macroscopic level and near the suture surface (Figure 4.9A–D). Reticular staining indicated

likely angiogenesis surrounding CTGF+ sutures far from the repair interface (Figure 4.9H). While CD146 staining did

not show apparent differences between groups (Figure 4.S1), we note that it is challenging to see differences with this
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staining method since TSPCs are rare in vivo, and < 1% of isolated tendon cells stain for CD146 [223]. Many, but not

all, cells near CTGF+ suture surfaces stained for Ki67, while few cells stained for Ki67 near CTGF− suture surfaces

(Figure 4.S2). This Ki67 staining pattern indicates that the increased cellularity near the CTGF+ suture surface was

likely due to a combination of increased cell migration and cell proliferation.

TEM images showed cell activity immediately adjacent to the CTGF+ suture, with a clear layer of glycoproteins

surrounding the CTGF− suture (Figure 4.10A,C) but not the CTGF+ suture (Figure 4.10B,D). Collagen fibrils adjacent

to the CTGF+ suture were 33% smaller and 23% closer to their nearest 10 neighboring fibrils than fibrils near CTGF−

suture, on average (p < 0.001 for both measures). The smaller, more densely packed collagen fibrils near CTGF+

suture are indicative of newly synthesized collagen or a different collagen subtype compared to CTGF− control repairs

(Figure 4.10E). CTGF-laden sutures also had some sites where collagen appeared to be penetrating the porous suture

surface (Figure 4.10D, arrows).

Gene expression did not demonstrate large differences between CTGF+ sutures and CTGF− control porous sutures,

each normalized to contralateral non-operated tendons (Figure 4.11). There were 64% (N.S.), 52%, and 52% (N.S.)

increases in the expression fold change of the monocyte/macrophage M2 marker CD163, the anti-inflammatory cy-

tokine IL10, and the anti-apoptotic factor BCL2L1, respectively, due to CTGF. There were 24% and 19% (N.S.)

decreases in the expression fold change of collagen 2 and IL6, respectively. However, despite this anti-inflammatory

and anti-apoptotic gene expression increase, expression levels of collagen 1 and 3 and tenogenic markers scleraxis

and tenomodulin were similar between groups. There were no significant differences in the expression of the matrix

metalloproteinase MMP9 or the cytokine related genes IL1-RN or IL4.

Proteomics analysis identified 512 proteins from normal and suture repaired flexor tendons. Compared to normal

tendons, the relative abundances of 129 proteins were modified after tendon injury and suture repair in the presence

or absence of CTGF, while no apparent differences in protein abundances were detected between the two suture

treatments. Consistently, principal component analysis separated normal tendons from sutured tendons, but did not

separate treatment groups with and without CTGF according to the first three principal components (Figure 4.12).

Further characterization of the 129 modified proteins using the Panther Classification System revealed the function

of 108 proteins (Table 4.S1 and Table 4.S2). Only a small percentage of proteins were engaged in immune system

processes (4.9%) and biological adhesion (2.5%) that potentially impact tendon healing. There were no differences

in inflammatory protein levels (e.g., NCF2, PTGR1, SOD3) between the tendons repaired with CTGF+ or CTGF−

porous sutures and historical repair-only controls with unmodified suture [373].
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Figure 4.8: Histologic sections from canine FDP tendon 14 days after surgery with porous suture controls (A,C,E,
no CTGF) or sutures containing CTGF (B,D,F), stained with H&E. (G) Normalized cell counts within 70 µm of the
suture surface or within the repair interface region for paired samples. CTGF and position had significant effects on
cell activity in the local region near the suture, as determined by 3-way ANOVA. ∗p < 0.05 by Fisher’s least significant
difference post hoc analysis (n = 3 per group).
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Figure 4.9: Histologic sections from canine FDP tendon 14 days after surgery with porous suture controls (A,C,E, no
CTGF) or sutures containing CTGF (B,D,F), stained with pentachrome stain (A–D) or reticular stain (E–H). Tendons
repaird with CTGF-laden sutures had increased staining for new collagen (yellow pentachrome stain) and evidence of
likely capillary formation (reticular stain) throughout the tissue, especially adjacent to the suture. (H) The accumu-
lation of cells in a cylindrical pattern in the tendon midsubstance is atypical for the avascular zone of flexor tendons,
suggesting angiogenesis. (C,D,G,H) are 10× higher power views of the whole-tendon slides above them (A,B,E,F,
respectively). Sections (A,E and B,F) were paired repairs from the same animal.
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Figure 4.10: Transmission electron microscopy images of canine FDP tendon 14 days after surgery. Sutures appear
black on the left side of each micrograph. (A,C) Porous suture controls lacking CTGF had large collagen fibrils
anda clear glycoproteinaceous layer next to the suture. (B,D) CTGF-laden porous sutures induced increased cellular
responses (B) and decreased collagen fibril size (D) compared to controls. (E) Histogram of collagen fibril diameters,
combining n = 3 representative TEM images per group. CTGF-laden porous sutures induced a 33% decrease in
average fibril diameter surrounding the suture (p < 0.001, n = 2 tendons per group).
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Figure 4.11: Gene expression fold changes in repaired tendons using porous suture loaded with or without CTGF
compared to normal, non-operated contralateral digits for (A) macrophage/monocyte marker CD163, (B) anti-
inflammatory cytokine IL10, (C) anti-apoptitic factor BCL2L1, (D) extracellular matrix protein COL2A1, (E) cytokine
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signed-rank test (n = 6 per group).
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4.5 Discussion

While adhesive coatings on sutures have potential to reduce stress concentrations and improve load tolerance of soft

tissue repairs, e.g., tendon repairs (Chapter 2), current sutures are not designed to facilitate adhesive binding. Existing

approaches to coat sutures with antimicrobial agents or growth factors yield thin layers that are usually weakly bound

to the suture and may be stripped off the suture with passage through tissue. Here, we developed and implemented

sutures with micrometer-sized porous outer sheaths to aid adhesive binding and biofactor delivery (Figure 4.2). Porous

sheaths simultaneously allow adhesive interdigitation with suture, likely toughening the interface [80], and increase

the surface area available for binding. This approach enables adhesive to directly contact the load-bearing elements of

the suture by penetrating through pores into the voids between inner filaments.

Furthermore, the porous structure provides an opportunity for delivery of growth factors, which can stimulate tissue

ingrowth into the suture during healing in a process similar to strategies using porous structures for abdominal hernia

repair [378, 379] and bone implants [380, 381, 359, 382]. Tissue ingrowth into suture should have a strengthening

effect on the repair by facilitating load transfer between suture and the surrounding tissue along the suture length,

following a similar mechanical principle to adhesive coatings. Sutures have several additional attractive properties for

growth factor delivery in tendon repair. First, they are commonly used in conventional repairs and therefore do not

require additional material that could damage tissue or cause inflammation. Second, the suture strands and knot reside

within the tendon midsubstance and the repair interface, where growth factors may directly stimulate cell migration,

differentiation, and matrix synthesis. Third, neovascularization and cell infiltration within tendon has been shown to

occur along suture tracks [383], so growth factor delivery along these tracks may accelerate and guide these processes.

Over the last two decades, several experiments have evaluated growth factor delivery on sutures for intrasynovial

flexor tendon [384], Achilles tendon [385, 386], and rotator cuff tendon [367] repair, with mixed preliminary success.

None of these approaches have progressed to clinical use. Prior approaches have focused on coating the surface of

a solid suture with growth factors. Solid suture, however, has limited surface area and exposes the growth factor

directly to the surrounding tissue. As a result, bolus release of growth factor typically occurs within a few hours to

days following application [367, 365, 366, 387]. Furthermore, the growth factor dose is markedly limited since the

thin coatings contain very low volumes. In addition, thin surface films are often weakly bound, so growth factor

are easily stripped off of the suture during implantation [353]. Despite these challenges, suture remains a promising

delivery approach, provided that methods can be developed for the administration of increased dosages over sustained

time-courses following repair.
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This work demonstrates a simple, versatile approach to modify currently existing suture materials to improve lateral

surface area for adhesive binding. One key requirement for this approach is that the modification does not reduce the

strength of the suture material or the surgical repair. Nylon sutures, modified with porous outer sheaths, retained suf-

ficient mechanical properties for surgical use, as demonstrated by non-inferiority compared to commercially available

sutures in biomechanical assessments of single suture strands (Figure 4.4). The mechanical properties of clinical-

style repairs using porous sutures were reduced by some measures but still within 25% of controls (Figure 4.5). This

difference is partially attributable to surgeon-to-surgeon variability, given that the mechanical properties of porous

suture repairs were non-inferior to controls using the same techniques for other studies (Chapter 2, Appendix A). The

modestly altered mechanical properties were sufficiently close to controls and non-inferior to historical data elsewhere

in this thesis to assuage concerns over surgical implementation. The time zero biomechanics results described here

are sufficient to withstand passive range of motion and normal hand function (approximately 35 N) [375] throughout

the healing process. Importantly, only one tendon out of twenty had gapping (5%, in the CTGF− group), despite our

previous experience of ∼15% rupture rates in this model (and clinically) when using regular sutures [186, 373].

In order to demonstrate the ability of porous sutures to carry and deliver relevant factors (e.g., adhesives, growth

factors), sutures were first loaded with small molecule (rhodamine B) or large protein (BSA-FITC) dyes encapsulated

in fibrin-network gels (Figure 4.3). Dyes penetrated through the interconnected pores in the outer sheath of suture,

into the voids between the inner suture fibers. This increased loading capacity by several-fold compared to unmodified

sutures, where dyes only surrounded the outer sheath. Porous sutures were then compared to unmodified sutures for

adhesive delivery. The pilot experiment performed here did not include sufficient numbers of samples to make strong

statistical comparisons (n = 3 and n = 4), but the porous sutures did display a higher average suture pullout load for

both adhesive types tested (Figure 4.6). It is important to note that while porous sutures can increase adhesive delivery

and interfacial strength, these idealized pilot mechanical tests are somewhat challenging to interpret since the increased

surface area inherently increases friction and pullout force compared to unmodified suture. This surface area effect

on friction would be particularly notable for tests of adhesives bearing low loads. Furthermore, if the adhesive-coated

suture fails instead within the adhesive bulk or at the interface with tendon, then the single strand tests would not be

sensitive to increases in adhesive–suture interfacial strength.

In addition to being used to evaluate chemical adhesive delivery, porous sutures were impregnated and coated with

a sustained delivery system [195, 155] to deliver CTGF. CTGF has been shown to stimulate extracellular matrix

production [223, 209], acting as a biological “adhesive coating” analog to improve the interaction between suture and

tendon and to promote healing generally. CTGF has been shown to improve tendon repair outcomes in a rat patellar
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tendon model [223, 209]. CTGF acts by stimulating CD146+ tendon progenitor cell proliferation and inhibiting

inflammation. This stem/progenitor cell proliferation leads to additional aligned collagen matrix production during the

proliferative stages of repair. In this study, porous sutures soaked in 30 µg/mL CTGF/HBDS demonstrated maximal

growth factor release, sustained over at least 14 days (Figure 4.7). Approximately 70 mm of suture is estimated to

be within 3 mm of the transection and repair site, based on repairs containing 8 suture strands plus the suture length

contained in the terminal surgical knot, which is buried in the repair at the interface between tissues. This suture length

is sufficient to deliver a burst of 60 – 150 ng CTGF/mL tendon volume within 3 mm of the repair site, followed by

sustained release over the first 14 days of approximately 10 – 20 ng CTGF/mL tendon volume, which is at the lower

end of the effective range used in vitro [209].

The promising ex vivo mechanical and biological characteristics of the porous sutures encouraged us to assess their

efficacy in a clinically relevant in vivo canine flexor tendon repair model. The porous sutures, with and without

growth factor, did not elicit an inflammatory response at 14 days following surgical repair based on histological,

gene expression, and proteomics evaluations. Based on historical experience with this animal model, proteomics has

been particularly sensitive for identifying inflammatory effects [186, 199, 373]. The lack of significant differences

in inflammatory protein markers between porous suture groups with and without CTGF and historical controls using

unmodified suture indicates that this porous suture delivery approach is non-inflammatory and not deleterious to the

repair. This safe, targeted, sustained delivery approach represents a significant improvement compared to previous

growth factor delivery strategies for tendon repair [186, 208, 345].

Histological assessment provided encouraging indications of local biological effects around the suture surface in the

CTGF+ group. Cell numbers increased at the repair interface and along the suture track of CTGF-laden sutures,

indicating increased local cell migration and/or proliferation (Figure 4.8, Figure 4.S2). The most pronounced cellular

effect along the suture strand-tendon interface was in regions distant from the repair site. This pattern was expected

based on typical neovascularization patterns following intrasynovial flexor tendon repair: since the canine lacks a

vinculum longum and the repair was performed in the middle of a 3 cm avascular zone, neovascular ingrowth occurs

progressively from the proximal and distal stumps toward the repair interface [383]. Furthermore, CTGF was delivered

along the entire length of the suture, so we expect effects both at the repair site where the suture knot is buried and along

suture distant from the repair interface. Pentachrome and reticular stains also indicated increased collagen production

and angiogenesis in areas adjacent to the CTGF-laden porous sutures compared to porous sutures without CTGF

(Figure 4.9). Light and transmission electron microscopic sections provided evidence of cellular alignment along the

suture surface and possible tissue ingrowth into the porous suture structure (Figure 4.8, Figure 4.9, and Figure 4.10).
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Tissue ingrowth into porous structures for abdominal hernia repair [378, 379] and bone implants [380, 381, 359, 382]

has been shown to strengthen the repair. Similarly, tissue ingrowth into suture would have a strengthening effect on

tendon repair by facilitating load transfer between suture and the surrounding tissue along the suture length.

There are several limitations to this study of in vivo CTGF delivery on porous sutures. It is possible that the CTGF

dosage we employed was insufficient to induce a substantial effect throughout the healing tendon. We performed a

dose-response study and selected the loading concentration that led to the greatest in vitro CTGF release. Despite

dose maximization, in vitro CTGF release was at the lower end of a biologically effective range in culture. Potential

opportunities for increasing CTGF effects include increasing the suture pore size in order to create greater capacity

within the suture sheath, developing an alternative sustained release system to achieve higher loading yield, or utilizing

a modified version of CTGF. Effective CTGF levels are determined not only by flux into the tendon, but also by

clearance out of the tissue (half-life) and by potency of the released growth factor. Similarly, protein engineering

approaches to modify the binding site may generate a CTGF protein drug with higher binding affinity to the cell

surface receptor and more potent effect. The delivery approach could be revisited using an alternative growth factor,

though side effects from pleiotropic growth factors require careful monitoring. Finally, this study evaluated effects at

a time point within the proliferative stage of repair. The biological effects seen locally around the suture may induce

a larger effect over time as those cells continue to proliferate and produce matrix. While 14 days may be too short

for functional outcome measurement in this clinically relevant model, it does provide data that encourages functional

biomechanical assessment at later time-points.

While porous sutures offer benefits for adhesive or biofactor binding and delivery, as well as opportunities for tissue

ingrowth, there are several potential limitations that need to be further assessed before clinical use. First, surgical

handling challenges while passing the higher friction suture may lead to additional, unnecessary tissue damage during

repair. While uncoated porous sutures have high surface area for adhesive binding and generate high friction when

passed through tissue, the coating decreases the effective surface area and smooths the surface to nearer the level of

a conventional suture. Future work should assess the level of friction of unmodified, uncoated-porous, and coated-

porous suture strands passing through tendon tissue, similar to the single-strand biomechanical tests in (Chapter 2).

Second, the increased surface area of polyfilament sutures compared to monofilament sutures may increase inflamma-

tory effects and bacterial adhesion. Porous sutures may therefore increase infection risk, especially if used in stitches

that contact the skin, epithelial, or mucosal surfaces, analogous to the infection dangers of the original intrauterine de-

vices due to polyfilament strings enabling bacterial migration into the uterus. This infection risk is less of a concern in

internal, sterile environments such as those for tendon repairs. Furthermore, the lack of detectable inflammation argues
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against clinical impact of these concerns. Third, adhesive infiltration into the voids between inner suture strands could

deleteriously stiffen sutures, limiting surgical handling ability. This potential effect will need to be evaluated with

particular adhesive and suture combinations prior to clinical use. Despite these concerns, this approach for generating

sutures with porous outer sheaths remains promising for delivery of adhesives, biofactors, or combinatorial therapies

directly into repair sites without introducing additional foreign materials or surgical defects.

4.6 Conclusion

In this chapter we developed sutures with porous outer sheaths in order to deliver adhesives for mechanical benefit,

biofactors to modulate the healing response, or combinatorial therapies including both adhesives and biofactors. The

mechanical properties of these sutures are comparable to unmodified sutures. Future studies are needed to directly

apply bioadhesive materials, such as those developed in Chapter 3, to sutures with porous sheaths. This chapter

demonstrated the first in vivo use of a new approach to deliver biologically active factors into the repair site, success-

fully mitigating the inflammatory concerns that were noted with prior biofactor delivery approaches [388, 167, 186].

While whole-tendon biological effects were not seen in this experiment, the findings noted here showed encouraging

local biological effects that warrant future investigation to increase biofactor delivery from suture with porous outer

sheaths. This simple, versatile suture modification method is a general technique that can enhance suture functionality

without compromising mechanical properties. This delivery approach can be applied to different suture types, tissue

repairs, or biofactors. Indeed, porous sutures may facilitate improved binding and loading capacity of coated materials

for local delivery of antimicrobial factors, anti-inflammatory factors, anti-coagulant factors for vascular repair, or other

biologically active factors in a wide array of surgical applications.
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Figure 4.S1: Histologic sections from paired canine FDP tendons 14 days after surgery with porous suture controls
(A,C,E no CTGF) or sutures containing CTGF (B,D,F), immunohistochemically stained for CD146. Higher magnifi-
cation sections near suture (C,D) and at the repair interface (E,F) exhibit mostly nonspecific staining of tissue stroma
instead of specific staining of individual cells. There were no apparent differences between groups. However, it is
challenging to see clear differences with this staining method since TSPCs are rare in vivo, and <1% of isolated
tendon cells stain for CD146.

110



Figure 4.S2: Histologic sections from paired canine FDP tendons 14 days after surgery with porous suture controls
(A,C, no CTGF) or sutures containing CTGF (B,D), immunohistochemically stained for Ki67. There was increased
cellularity near CGTF+ sutures compared to controls, consistent with quantified cell counts from H&E stains (Fig-
ure 4.8G). In addition, many cells near CTGF+ suture surfaces stained positive for Ki67 (D), while few cells near
CTGF− sutures stained for Ki67 (C). Since many, but not all, cells near CTGF+ sutures stained positive for Ki67,
the increased cellularity near the suture surface was likely due to a combination of increased cell migration and cell
proliferation.
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[CTGF− control]: unique [CTGF+]: unique [CTGF− control] and [CTGF+]:

E2QSZ5 CANLF J9NYX1 CANLF G1K267 CANLF F1PR66 CANLF
E2RQ14 CANLF RS3 CANLF E2QWN7 CANLF J9PBN6 CANLF
B4YY02 CANLF F1PIC7 CANLF F1PRU3 CANLF F1PQN5 CANLF
F1PKX2 CANLF PEBP1 CANLF Q5W425 CANLF F1Q1H3 CANLF
E2RD95 CANLF E2R4J1 CANLF E2RNR0 CANLF F6XIK8 CANLF
E2QUY2 CANLF E2RGQ5 CANLF F6V234 CANLF J9NVC6 CANLF
E2R7T5 CANLF F1P6P2 CANLF PGS2 CANLF J9P1J5 CANLF
J9NYC0 CANLF F6V790 CANLF F6Y3P9 CANLF E2RAL0 CANLF
F6XWS5 CANLF F1Q129 CANLF F1P9U4 CANLF J9NTG7 CANLF
E2RL80 CANLF F1P790 CANLF F1PHK9 CANLF F1PIJ6 CANLF
F1P6B7 CANLF E2RD86 CANLF F1Q432 CANLF F1PQM7 CANLF
E2R416 CANLF F1Q3Y0 CANLF F1PEK5 CANLF E2RLY5 CANLF
F1PMH6 CANLF FRIL CANLF LMAN2 CANLF F1PFM6 CANLF
F1PSS2 CANLF F6XRY2 CANLF E2R0T6 CANLF E2R612 CANLF
F1PFZ5 CANLF MYH9 CANLF F1PLN5 CANLF F1PTL1 CANLF
A0A097HUC9 CANLF F1P7Y6 CANLF E2QRS3 CANLF F1PB08 CANLF
F1PXT8 CANLF J9P923 CANLF E2RSI6 CANLF E2QU08 CANLF
F1PKX3 CANLF E2RIV1 CANLF E2RJE0 CANLF E2R9R2 CANLF
J9NZK5 CANLF F6V659 CANLF F1PBI6 CANLF F1Q133 CANLF
J9P8M2 CANLF E2RLA2 CANLF MYOC CANLF F1PLV6 CANLF
F1P679 CANLF ENPL CANLF E2R5B9 CANLF F1P975 CANLF
TPSN CANLF G1K2D8 CANLF F2Z4Q7 CANLF E2RB37 CANLF
E2R0I9 CANLF E2RHM4 CANLF E2RGD3 CANLF F1PJP5 CANLF
E2RHY7 CANLF E2QSF4 CANLF F1PAS8 CANLF E2R6K5 CANLF
Q4KKT6 CANLF FRIH CANLF F1PR39 CANLF E2QZA8 CANLF
J9P315 CANLF J9NV93 CANLF E2RC23 CANLF F1PL97 CANLF
E2R2G1 CANLF APOA1 CANLF CATK CANLF H9GWB4 CANLF
E2RAN6 CANLF E2R4L7 CANLF E2RAP5 CANLF F1Q147 CANLF

A7E3K7 CANLF E2QZ50 CANLF
F1PGH3 CANLF E2RNB0 CANLF
F1PXG4 CANLF F1PM26 CANLF
F2Z4Q1 CANLF E2R413 CANLF
F1PW10 CANLF F6UYJ9 CANLF
E2RPQ6 CANLF F1PPZ2 CANLF
E2RSC5 CANLF F1PEI2 CANLF
F1PIA3 CANLF F1PUX4 CANLF
CATC CANLF

28 28 73

Table 4.S1: Proteins expressed by only tendons in the CTGF− group, by only tendons in the CTGF+ group, or by
tendons in both groups.
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

F1PQN5 CANLF Uncharacterized
protein; CFL1;
ortholog

Cofilin-1
(PTHR11913:SF17)

non-motor actin binding protein
(PC00165)

A7E3K7 CANLF Predicted
NADPH
oxidase-2; Nox2;
ortholog

Cytochrome b-245 heavy
chain (PTHR11972:SF60)

oxidase (PC00175)

F2Z4Q1 CANLF 40S ribosomal
protein S4;
RPS4X; ortholog

SUBFAMILY NOT NAMED
(PTHR11581:SF3)

ribosomal protein (PC00202)

RS3 CANLF 40S ribosomal
protein S3;
RPS3; ortholog

40S ribosomal protein S3
(PTHR11760:SF9)

ribosomal protein (PC00202)

F1PIJ6 CANLF Uncharacterized
protein; PPA1;
ortholog

Inorganic pyrophosphatase
(PTHR10286:SF3)

pyrophosphatase (PC00196)

E2RLY CANLF Uncharacterized
protein; LAP3;
ortholog

Cytosol aminopeptidase
(PTHR11963:SF30)

F1PM26 CANLF Uncharacterized
protein; CD109;
ortholog

CD109 antigen
(PTHR11412:SF136)

expressed by CD34+ acute myeloid
leukemia cell lines, T-cell lines, activated
T lymphoblasts, endothelial cells, and
activated platelets

E2RQ14 CANLF Annexin;ANXA5;
ortholog

Annexin A5
(PTHR10502:SF26)

F1PJP5 CANLF Uncharacterized
protein; STT3A;
ortholog

Dolichyl-
diphosphooligosaccharide–
protein glycosyltransferase
subunit STT3A
(PTHR13872:SF1)

glycosyltransferase (PC00111)

E2RAN6 CANLF Uncharacterized
protein; FBP1;
ortholog

Fructose-1,6-bisphosphatase
1 (PTHR11556:SF11)

carbohydrate phosphatase (PC00066)

J9NVC6 CANLF Uncharacterized
protein;
unassigned;
ortholog

Ig heavy chain V-III region
23 (PTHR23266:SF204)

FRIL CANLF Ferritin light
chain;FTL;
ortholog

Ferritin light chain
(PTHR11431:SF47)

storage protein (PC00210)

continued on next page
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continued from previous page

Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

F1PIA3 CANLF Uncharacterized
protein; FBN1;
ortholog

Fibrillin-1
(PTHR24039:SF22)

annexin (PC00050); calmodulin
(PC00061); cell adhesion molecule
(PC00069); extracellular matrix
glycoprotein (PC00100); extracellular
matrix structural protein (PC00103);
signaling molecule (PC00207)

E2RNB0 CANLF Histone H2A;
H2AFX;
ortholog

Histone H2AX
(PTHR23430:SF199)

histone (PC00118)

F1PUX4 CANLF 60S acidic
ribosomal
protein P0;
RPLP0; ortholog

60S acidic ribosomal protein
P0-related
(PTHR21141:SF3)

ribosomal protein (PC00202)

E2RLA2 CANLF Uncharacterized
protein; P4HA1;
ortholog

Prolyl 4-hydroxylase subunit
alpha-1
(PTHR10869:SF101)

J9P315 CANLF Uncharacterized
protein; LRP1;
ortholog

Prolow-density lipoprotein
receptor-related protein 1
(PTHR44025:SF2)

F1P9U4 CANLF Uncharacterized
protein;
DPYSL2;
ortholog

Dihydropyrimidinase-related
protein 2
(PTHR11647:SF56)

hydrolase (PC00121)

E2R6K5 CANLF Histone
H3;H3F3B;
ortholog

Histone H3.3
(PTHR11426:SF179)

histone (PC00118)

E2RJE0 CANLF Uncharacterized
protein; COMP;
ortholog

Cartilage oligomeric matrix
protein (PTHR10199:SF88)

E2QUY2 CANLF Uncharacterized
protein;
ABRACL;
ortholog

Costars family protein
ABRACL
(PTHR22739:SF0)

E2QRS3 CANLF Uncharacterized
protein; CHAD;
ortholog

Chondroadherin
(PTHR44607:SF1)

Chondroadherin is a cartilage matrix
protein thought to mediate adhesion of
isolated chondrocytes

F1PR66 CANLF Uncharacterized
protein;
LAMA4;
ortholog

Laminin subunit alpha-4
(PTHR44537:SF1)

E2R4L7 CANLF Serine
hydroxymethyl-
transferase;
SHMT2;
ortholog

Serine
hydroxymethyltransferase,
mitochondrial
(PTHR11680:SF17)

methyltransferase (PC00155)

continued on next page
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

CATC CANLF Dipeptidyl
peptidase 1
(Frag-
ment);CTSC;
ortholog

Dipeptidyl peptidase 1
(PTHR12411:SF354)

cysteine protease (PC00081)

F6Y3P9 CANLF Uncharacterized
protein; GSN;
ortholog

Gelsolin (PTHR11977:SF29) non-motor actin binding protein
(PC00165)

F6V790 CANLF Uncharacterized
protein; CILP;
ortholog

Cartilage intermediate layer
protein 1 (PTHR15031:SF3)

F1P790 CANLF Histone H2A;
HIST3H2A;
ortholog

Histone H2A type 3
(PTHR23430:SF59)

histone (PC00118)

J9NYC0 CANLF Uncharacterized
protein; MFAP4;
ortholog

Microfibril-associated
glycoprotein 4
(PTHR19143:SF225)

signaling molecule (PC00207)

J9P923 CANLF Uncharacterized
protein; PTRF;
ortholog

Polymerase I and transcript
release factor
(PTHR15240:SF3)

transcription factor (PC00218)

F1P6B7 CANLF Annexin;ANXA1;
ortholog

Annexin A1
(PTHR10502:SF17)

Annexin A1 both suppresses
phospholipase A2, thereby blocking
eicosanoid production, and inhibits
various leukocyte inflammatory events
(epithelial adhesion, emigration,
chemotaxis, phagocytosis, respiratory
burst, etc.).

F1PKX2 CANLF Uncharacterized
protein;
ABI3BP;
ortholog

Target of Nesh-SH3
(PTHR23197:SF10)

F6V659 CANLF Uncharacterized
protein; DDX1;
ortholog

ATP-dependent RNA
helicase DDX1
(PTHR24031:SF307)

RNA helicase (PC00032)

E2RNR0 CANLF Uncharacterized
protein; OGN;
ortholog

Mimecan
(PTHR24373:SF122)

extracellular matrix protein (PC00102);
receptor (PC00197)

F1PHK9 CANLF Uncharacterized
protein; LAMC1;
ortholog

Laminin subunit gamma-1
(PTHR10574:SF270)

extracellular matrix linker protein
(PC00101); receptor (PC00197)

F1P679 CANLF Uncharacterized
protein; ACTR3;
ortholog

Actin-related protein
3-related
(PTHR11937:SF175)

actin and actin related protein (PC00039)

continued on next page
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

F1Q3Y0 CANLF Profilin;PFN1;
ortholog

Profilin-1
(PTHR13936:SF14)

E2R0T6 CANLF Uncharacterized
protein; HSPA8;
ortholog

Heat shock cognate 71 kDa
protein (PTHR19375:SF239)

PGS2 CANLF Decorin; DCN;
ortholog

Decorin (PTHR44053:SF2)

F1PEK5 CANLF Uncharacterized
protein; SEPT2;
ortholog

Septin-2 (PTHR18884:SF67) cytoskeletal protein (PC00085); small
GTPase (PC00208)

F1P975 CANLF Uncharacterized
protein; CAPN2;
ortholog

Calpain-2 catalytic subunit
(PTHR10183:SF268)

annexin (PC00050); calmodulin
(PC00061); cysteine protease (PC00081)

PEBP1 CANLF Phosphatidyl-
ethanolamine-
binding protein
1; PEBP1;
ortholog

Phosphatidylethanolamine-
binding protein 1
(PTHR11362:SF28)

E2R2G1 CANLF Uncharacterized
protein;
ANGPTL7;
ortholog

Angiopoietin-related protein
7 (PTHR19143:SF40)

signaling molecule (PC00207)

LMAN2 CANLF Vesicular
integral-
membrane
protein VIP36;
LMAN2;
ortholog

Vesicular integral-membrane
protein VIP36
(PTHR12223:SF28)

membrane traffic protein (PC00150)

F1PFM6 CANLF Uncharacterized
protein;
COL6A1;
ortholog

Collagen alpha-1(VI) chain
(PTHR44172:SF3)

B4YY02 CANLF Adenylate kinase
isoenzyme 1;
AK1; ortholog

Adenylate kinase isoenzyme
1 (PTHR23359:SF59)

nucleotide kinase (PC00172)

E2RSI6 CANLF Uncharacterized
protein; EZR;
ortholog

Ezrin (PTHR23281:SF13) actin family cytoskeletal protein
(PC00041)

F1P6P2 CANLF Transgelin;
TAGLN2;
ortholog

Transgelin-2
(PTHR18959:SF41)

non-motor actin binding protein
(PC00165)

E2QZ50 CANLF Adenylyl
cyclase-
associated
protein; CAP1;
ortholog

Adenylyl cyclase-associated
protein 1 (PTHR10652:SF1)

actin family cytoskeletal protein
(PC00041)

continued on next page
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

E2QSZ5 CANLF Coronin;
CORO1A;
ortholog

Coronin-1A
(PTHR10856:SF18)

non-motor actin binding protein
(PC00165)

F1Q147 CANLF Uncharacterized
protein;
MYO1C;
ortholog

Unconventional myosin-Ic
(PTHR13140:SF255)

G-protein modulator (PC00022); actin
binding motor protein (PC00040); cell
junction protein (PC00070)

J9NZK5 CANLF Uncharacterized
protein; LOX;
ortholog

Lysyl oxidase homolog
1-related (PTHR19331:SF4)

oxidase (PC00175); receptor (PC00197);
serine protease (PC00203)

APOA1 CANLF Apolipoprotein
A-I; APOA1;
ortholog

Apolipoprotein A-I
(PTHR18976:SF11)

E2RL80 CANLF Uncharacterized
protein; PRELP;
ortholog

Prolargin
(PTHR24373:SF152)

extracellular matrix protein (PC00102);
receptor (PC00197)

F1PL97 CANLF Protein disulfide-
isomerase;
P4HB; ortholog

Protein disulfide-isomerase
(PTHR18929:SF101)

F1PSS2 CANLF Uncharacterized
protein; THBS4;
ortholog

Thrombospondin-4
(PTHR10199:SF92)

Thrombospondin family members are
adhesive glycoproteins that mediate
cell-to-cell and cell-to-matrix
interactions. This protein forms a
pentamer and can bind to heparin and
calcium.

F1PIC7 CANLF Uncharacterized
protein; HSPA5;
ortholog

78 kDa glucose-regulated
protein (PTHR19375:SF144)

E2RAP5 CANLF Uncharacterized
protein; TNMD;
ortholog

Tenomodulin
(PTHR14064:SF3)

membrane-bound signaling molecule
(PC00152)

E2RC23 CANLF Uncharacterized
protein;
PCOLCE;
ortholog

Procollagen C-endopeptidase
enhancer 1
(PTHR44264:SF2)

J9P1J5 CANLF Uncharacterized
protein; DSTN;
ortholog

Destrin (PTHR11913:SF18) non-motor actin binding protein
(PC00165)

E2RHY7 CANLF Uncharacterized
protein;
SERPINH1;
ortholog

Serpin H1
(PTHR11461:SF27)

serine protease inhibitor (PC00204)

continued on next page
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

E2QU08 CANLF Uncharacterized
protein; ASS1;
ortholog

Argininosuccinate synthase
(PTHR11587:SF2)

ligase (PC00142)

E2RSC5 CANLF Uncharacterized
protein; TLN2;
ortholog

Talin-2 (PTHR19981:SF1) actin family cytoskeletal protein
(PC00041); cell adhesion molecule
(PC00069)

E2RD86 CANLF Protein disulfide-
isomerase;
PDIA3; ortholog

Protein disulfide-isomerase
A3 (PTHR18929:SF132)

E2QZA8 CANLF Uncharacterized
protein;
FKBP10;
ortholog

Peptidyl-prolyl cis-trans
isomerase FKBP10
(PTHR10516:SF247)

calcium-binding protein (PC00060);
chaperone (PC00072); isomerase
(PC00135)

F1PBI6 CANLF Uncharacterized
protein; THBS1;
ortholog

Thrombospondin-1
(PTHR10199:SF78)

MYH9 CANLF Myosin-
9;MYH9;
ortholog

Myosin-9
(PTHR13140:SF317)

G-protein modulator (PC00022); actin
binding motor protein (PC00040); cell
junction protein (PC00070)

TPSN CANLF Tapasin; TAPBP;
ortholog

Tapasin (PTHR23411:SF5) immunoglobulin receptor superfamily
(PC00124)

F1PLV6 CANLF Fibulin-1;
FBLN1; ortholog

Fibulin-1 (PTHR44476:SF1)

E2R413 CANLF Uncharacterized
protein; CAPG;
ortholog

Macrophage-capping protein
(PTHR11977:SF13)

non-motor actin binding protein
(PC00165)

F1PTL1 CANLF Uncharacterized
protein;
RAD23A;
ortholog

UV excision repair protein
RAD23 homolog A
(PTHR10621:SF0)

damaged DNA-binding protein
(PC00086)

E2QSF4 CANLF Uncharacterized
protein; TUBB;
ortholog

Tubulin beta chain
(PTHR11588:SF61)

tubulin (PC00228)

F2Z4Q7 CANLF Uncharacterized
protein;
SERPINF1;
ortholog

Pigment epithelium-derived
factor (PTHR11461:SF84)

serine protease inhibitor (PC00204)

F6XIK8 CANLF Uncharacterized
protein;
SYNCRIP;
ortholog

Heterogeneous nuclear
ribonucleoprotein Q
(PTHR44088:SF3)

ribosomal protein (PC00202)

J9NTG7 CANLF Uncharacterized
protein; CD55;
ortholog

Complement
decay-accelerating factor
(PTHR19325:SF317)

continued on next page
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

F1PFZ5 CANLF Uncharacterized
protein; MFGE8;
ortholog

Lactadherin
(PTHR44122:SF1)

F1Q133 CANLF Uncharacterized
protein;
COL4A1;
ortholog

Collagen alpha-1(IV) chain
(PTHR24023:SF854)

E2RGD3 CANLF Uncharacterized
protein; TWF2;
ortholog

Twinfilin-2
(PTHR13759:SF2)

non-motor actin binding protein
(PC00165)

F1PLN5 CANLF Uncharacterized
protein; FMOD;
ortholog

Fibromodulin
(PTHR24373:SF127)

extracellular matrix protein (PC00102);
receptor (PC00197)

F1P7Y6 CANLF Uncharacterized
protein; NID2;
ortholog

SUBFAMILY NOT NAMED
(PTHR44583:SF1)

E2R416 CANLF Uncharacterized
protein; LUM;
ortholog

Lumican
(PTHR24373:SF119)

extracellular matrix protein (PC00102);
receptor (PC00197)

F1PAS8 CANLF Superoxide
dismutase
[Cu-Zn]; SOD3;
ortholog

Extracellular superoxide
dismutase [Cu-Zn]
(PTHR10003:SF59)

oxidoreductase (PC00176)

E2R9R2 CANLF Uncharacterized
protein;
LOC612644;
ortholog

Cytochrome c oxidase
subunit 6B1
(PTHR11387:SF16)

oxidase (PC00175)

E2R5B9 CANLF Uncharacterized
protein; GSTM3;
ortholog

Glutathione S-transferase
Mu 3 (PTHR11571:SF133)

E2QWN7 CANLF Uncharacterized
protein; LCP1;
ortholog

Plastin-2
(PTHR19961:SF35)

non-motor actin binding protein
(PC00165)

E2R4J1 CANLF Uncharacterized
protein; LAMB2;
ortholog

Laminin subunit beta-2
(PTHR10574:SF36)

extracellular matrix linker protein
(PC00101); receptor (PC00197)

MYOC CANLF Myocilin;MYOC;
ortholog

Myocilin
(PTHR23192:SF33)

receptor (PC00197); structural protein
(PC00211)

E2RPQ6 CANLF Uncharacterized
protein; DPT;
ortholog

Dermatopontin
(PTHR15040:SF2)

extracellular matrix protein (PC00102)

F6XRY2 CANLF Uncharacterized
protein; EEF2;
ortholog

Elongation factor 2
(PTHR42908:SF10)

G-protein (PC00020); hydrolase
(PC00121); translation elongation factor
(PC00222);translation initiation factor
(PC00224)
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

ENPL CANLF Endoplasmin;
HSP90B1;
ortholog

Endoplasmin-related
(PTHR11528:SF73)

CATK CANLF Cathepsin K;
CTSK; ortholog

Cathepsin K
(PTHR12411:SF55)

cysteine protease (PC00081)

J9NV93 CANLF Peptidyl-prolyl
cis-trans iso-
merase;unassigned;
ortholog

SUBFAMILY NOT NAMED
(PTHR11071:SF400)

isomerase (PC00135)

F1PQM7 CANLF Tetraspanin;
CD9; ortholog

CD9 antigen
(PTHR19282:SF163)

cell adhesion molecule (PC00069);
membrane-bound signaling molecule
(PC00152); receptor (PC00197)

FRIH CANLF Ferritin heavy
chain; FTH1;
ortholog

Ferritin heavy chain
(PTHR11431:SF37)

storage protein (PC00210)

F1PPZ2 CANLF Ribonuclease A
B1; RNASE4;
ortholog

Ribonuclease 4
(PTHR11437:SF10)

endoribonuclease (PC00094); enzyme
modulator (PC00095); hydrolase
(PC00121)

E2R612 CANLF Uncharacterized
protein;
EFEMP1;
ortholog

EGF-containing fibulin-like
extracellular matrix protein 1
(PTHR44074:SF2)

G1K267 CANLF Uncharacterized
protein;
unassigned;
ortholog

Heat shock 70 kDa protein
1A-related
(PTHR19375:SF223)

E2RAL0 CANLF Uncharacterized
protein;
ARHGDIB;
ortholog

Rho GDP-dissociation
inhibitor 2
(PTHR10980:SF15)

G-protein modulator (PC00022);
signaling molecule (PC00207)

E2RIV1 CANLF AP complex
subunit beta;
AP2B1; ortholog

AP-2 complex subunit beta
(PTHR11134:SF9)

membrane traffic protein (PC00150)

E2R7T5 CANLF Uncharacterized
protein;
ALOX15;
ortholog

Arachidonate
15-lipoxygenase
(PTHR11771:SF33)

oxygenase (PC00177)

F1PEI2 CANLF Uncharacterized
protein; CKAP4;
ortholog

Cytoskeleton-associated
protein 4 (PTHR45161:SF1)

E2RB37 CANLF Uncharacterized
protein; PDIA6;
ortholog

Protein disulfide-isomerase
A6 (PTHR18929:SF38)

continued on next page
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Gene ID Gene Name/
Gene Symbol

Panther Family/Subfamily Panther Protein Class

E2RGQ5 CANLF Uncharacterized
protein; RPS10;
ortholog

40S ribosomal protein
S10-related
(PTHR12146:SF0)

ribosomal protein (PC00202)

F1PKX3 CANLF Uncharacterized
protein; F13A1;
ortholog

Coagulation factor XIII A
chain (PTHR11590:SF42)

acyltransferase (PC00042)

H9GWB4 CANLF Uncharacterized
protein;
LOC100855471;
ortholog

Collagen alpha-2(VI) chain
(PTHR44172:SF1)

F1Q129 CANLF Uncharacterized
protein;
COL4A2;
ortholog

Collagen alpha-2(IV) chain
(PTHR24023:SF588)

F1PB08 CANLF Uncharacterized
protein; SEPT9;
ortholog

Septin-9 (PTHR18884:SF47) cytoskeletal protein (PC00085); small
GTPase (PC00208)

F6V234 CANLF Uncharacterized
protein; PLS3;
ortholog

Plastin-3
(PTHR19961:SF32)

non-motor actin binding protein
(PC00165)

Table 4.S2: Panther protein class description for proteins in Table 4.S1.
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Chapter 5

Implementation and future directions

5.1 Improved tendon repair through increased suture-tendon interactions

Over the last several hundred years, surgical suture improvements have focused on enhancing suture material strength,

surgical handling, degradation profiles, and stitching techniques to best grasp and re-appose the tissue. However,

conventional suture approaches are limited by high load transfer across only a small number of anchor points within

tissue, leading to stress concentrations that often cause repair failure (Figures 2.1 and 3.1). Increasing the physical

interaction between tendon and suture has the potential to improve repair load transfer, enabling better coaptation of

tendon stumps and reduced tendon repair rupture rates, as theoretically and experimentally evaluated in Chapter 2.

This work established a range of desirable adhesive material properties to facilitate load transfer between the tendon

and the suture. In doing so, this thesis provided a theoretical basis and design direction to the literature on improved

suture-tendon interactions.

Improved suture-tissue interactions have substantial potential to improve orthopedic repair strength. In addition to the

direct application of adhesive to suture to improve load transfer in repairs under tensile loads, as described here, a

previous study reported improved compressive properties in meniscus repairs when non-optimized adhesive coatings

were added to the repair sutures compared to repairs with suture alone or adhesive alone [298]. Pursuing a similar

goal, the experimental crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl) carbo diimide hydrochloride (EDC) has

been coated onto sutures to crosslink flexor tendon tissue immediately adjacent to the suture, with some success
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[153, 161]. While EDC treatment likely did not significantly impact load transfer between tissue and suture along

the length of the suture in the monofilament, the crosslinking agent was able to stiffen and strengthen the surrounding

tendon tissue at the suture anchor points to improve tissue tolerance of stress concentrations. This benefit may have

been due to either reduction of the mismatch between tendon and suture stiffness, thereby balancing the adherends of

the repair (Figure 2.3), or increased resistance to suture cutting through the tissue. Zhao and colleagues also applied

cyanoacrylate specifically to transverse suture passes within tendon tissue and saw improved load tolerance on single

strand pullout tests. They hypothesized that cyanoacrylate reduced micro-motion between the suture and tendon at

suture anchor points, and thus reduced the propensity for suture to saw through the surrounding fibrous tendon tissue

and cause repair failure by suture pullout [153]. These approaches have both been limited by concerns of inflammation

and limited efficacy due to potential cytotoxic effects and sub-optimal material properties.

Another suture material modification that can lead to increased suture-tissue interaction uses barbs on the sutures

to grip tissue along the suture length. Barbs act to grip tissue at discrete locations, approximately every millimeter,

analogous to the continuous bonds formed by adhesive coatings along the entire surface. The first barbed sutures

were applied to canine flexor tendons, initially acting as stiff spears with hooks that were pushed into the tendon

instead of being pulled through tissue trailing a needle [389, 390]. More recent approaches [391, 392, 393], includ-

ing the QuillTM Knotless Tissue-Closure Device (Angiotech Pharmaceuticals, Vancouver, BC, Canada) and V-LocTM

Absorbable Wound Closure Device (Covidien Healthcare, Mansfield, MA), include uni- or bi-directional barbs cut

into surgical suture threads, enabling the suture to be pulled into tissue for rapid closure without tying knots. Barbed

sutures have been successfully used for many obstetrics and gynecological applications [394, 395, 396] and some

plastic surgery applications [397], but have only generated mixed results in flexor tendon repair [398, 399]. Barbed

sutures offer several advantages, including the ability to reduce tissue stress concentrations by transferring load at

periodic points along the suture length, reduce tissue foreign-body irritation at bulky knots, and avoid the potential

suture slippage or tissue necrosis from poorly tied knots. However, they also have several disadvantages that limit ap-

plication. A meta-analysis of barbed suture used in 8 types of surgical operations indicated increased tissue irritation

and complication risk [397]. Furthermore, cutting barbs into monofilament suture inherently decreases the suture fiber

strength by introducing mechanical defects and stress risers. The decreased suture strength is a major drawback for

high-load orthopedic applications. Nevertheless, the successful surgical implementation of barbed sutures to increase

suture-tissue interaction to transfer load in some operative settings is a promising sign for the surgical potential of

adhesive-coated sutures.

In addition to modifying suture materials to increase suture-tendon interaction, we and others have increased inter-
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action at grasping points through the use of various types of locking stitches. A half-hitch loop technique described

in Appendix A increased tendon grasping more than previous lock types [17, 24, 109], leading to repair strength im-

provements [108]. While locking stitches strengthen the suture-tendon interaction at locking points, reducing rupture

risk, the repairs continue to rely on load transfer at only a few points. In addition, some locking stitch patterns risk

tissue strangulation, causing necrosis, or excessive repair bulk, stimulating adhesion formation and reducing range of

motion. Thus, increasing suture-tendon interaction has generated some improvements for repair mechanics, but both

barbed sutures and locking stitches have substantial disadvantages for orthopedic repair.

The two major approaches developed and evaluated by this thesis work, adhesive coating and porosity allowing tissue

ingrowth, both offer means to increase suture-tendon interaction without the negative consequences of barbed suture

or locking stitches. Tissue ingrowth into porous structures, similar to ingrowth into porous bone implants [359, 360]

or meshes for hernia repair [361], locks the structure in place and facilitates load transfer along the length. This is

functionally equivalent to a biological ‘adhesive’ that forms over time during healing, forming a strong interface similar

to roots grasping soil. Even fibrotic, scar tissue deposition throughout the porous suture material would be sufficient

to mechanically distribute load transfer over the suture length. Thus, porous sutures may act as scaffolds for tissue

regrowth. While extracellular matrix deposition occurs locally around cells, by binding the suture at several points,

the healing tendon should be able to use the suture as a mechanical bridge to transfer loads over longer distances than

the individual fibers of new matrix can traverse. Therefore, porous sutures have the potential to accelerate the rate at

which matrix deposition and reorganization can strengthen the repair site. When porous sutures carry biofactors such

as connective tissue growth factor embedded within the suture to stimulate matrix production, there is even greater

potential to accelerate the healing matrix ingrowth into the suture.

While matrix deposition takes days to weeks to increase repair-site load tolerance, providing increasing benefit over

time, adhesive coatings act immediately upon curing and then lose strength over time as the interfacial bonds and the

bulk adhesive material are degraded. The adhesive layer only needs to hold the repair together in the short term, not

indefinitely, since the repairing tissue will increase load tolerance over time. These inversely related trends create an

opportunity for continued strong repair biomechanics: at early time points, a compliant adhesive interdigitated with

porous suture can form a strong bond that distributes load over the suture length, then that bond can be replaced by

tissue ingrowth into the suture over time. Biofactors embedded within adhesive-coated porous sutures may be able to

guide this transition from tendon-adhesive-suture load transfer to tendon-suture direct load transfer along the suture

length, in addition to facilitating generation of bridging fibers between the re-apposed tendon and/or bone surfaces.
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5.2 Development of novel adhesive biomaterials

Novel adhesive biomaterials need to satisfy several design criteria to be useful clinically. First, the shear lag models

studied here demonstrate the need for adhesives that are compliant and strong in shear, similar to elastomeric materials.

Second, while most industrial adhesives work best in dry environments, biological adhesives need to work in hydrated

environments. Arthroscopic surgeries require adhesives to work while fully submerged in saline. Third, adhesives

need to pass through tissue easily and then bind strongly once in place. Fourth, adhesives need to be biocompatible

and avoid stimulating inflammation or creating toxic degradation products. Eventual clinical use requires simple

implementation by surgeons and hospitals, including inexpensive production, reasonable handling properties, and a

sufficient shelf life ideally without requiring special storage conditions. While either direct mechanical benefit or

biological stimulation for longer-term repair improvement would be useful independently, as discussed above, ideal

products would simultaneously provide mechanical and biological benefit to facilitate tendon and tendon-to-bone

healing as the adhesive begins to degrade. Meeting these specific criteria would help a new adhesive meet the five

general, overarching criteria outlined by Spotnitz and Burke for new medical technologies: safety, efficacy, useability,

cost, and approval by regulatory agencies [400, 295].

There are several potential adhesive material and coating approaches that achieve these desired properties for sur-

gical use. As described in Chapter 3, we will continue to study marine mussel-mimetic, catechol-derived adhesive

chemistries on elastomeric molecular backbones in order to obtain strong interfacial binding in hydrated environments

with a compliant adhesive material. By modifying the elastomeric component molecular weight and crosslink den-

sity, effectively changing the length and stiffness of the molecular spring between the adhesive catechol moieties, we

can tune the adhesive mechanical properties for adhesive film or adhesive-coated suture applications. If needed, we

can introduce crosslinking agents such as tetrakis hydroxymethyl phosphonium chloride (THPC) and functionalize

the elastomeric linker with amine groups to create additional crosslinks, stiffening the adhesive material. Since cat-

echol moieties rely on oxidation to strengthen chemical bonds following the initial saline-driven gelation and loose

binding [315], future work should explore a variety of chemical oxidizing agents such as sodium periodate and more

biocompatible, biologically derived oxidizing agents with catechol-derived adhesives.

Bio-inspired adhesives are interesting because of their ability to work in hydrated environments to bind tissues. In

addition to catechol-based adhesives assessed here, a compliant, strong adhesive exudate from the dorsum of the Aus-

tralian frog Notaden bennetti has been shown to improve load transfer in sheep infraspinatus repairs [328] as predicted

by shear lag models (Chapter 3). This prior work further demonstrates the value of this concept for clinical application
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of mechanically-optimized adhesives in tendon-to-bone repairs. While that particular adhesive has biocompatibility

concerns when used in its secreted form [401], and would not be clinically applicable since it requires immediate

secretion from a frog before application within 60 seconds [330, 328], it provides another highly promising avenue for

synthetic, bio-inspired adhesive development. The porous structure of the frog adhesive network described by [329]

could provide additional mechanical benefit by allowing tissue ingrowth, as discussed above for sutures with porous

outer sheaths.

Additional adhesive approaches include using elastomeric hydrogels bound to tissue with binding peptides or acrylate

chemistry. Albumin-derived adhesives are compliant and may be a useful base with optimized interfacial binding (e.g.,

bovine albumin-glutaraldehyde adhesives including BioGlue, CryoLife Inc., Kennesaw, GA; egg-albumin adhesives

including Mayer’s Albumin) [295, 402]. Poly(ethylene glycol) diacrylate hydrogels have potential to tune elastic prop-

erties by changing the PEG linker length, while maintaining the binding strength of acrylate moieties [403, 404, 405].

A recent review by Bouten and colleagues provides an overview of adhesive materials used in clinical applications

[295]. Furthermore, silk fibroin from the Bombyx mori silkworm has been developed into elastomeric biomateri-

als that could be functionalized for adhesive application [406, 407]. While existing silk hydrogels are not strong

enough to transfer sufficient load [406] (Figure 5.1A), we have successfully stiffened the hydrogels to an appropriate

bulk mechanical property range by partially re-crystallizing in 50–100% methanol (Figure 5.1B-D) for 60 minutes

before testing the hydrogels in double lap shear. Future studies could develop adhesive materials using a partially

re-crystallized silk hydrogel as a biocompatible bulk scaffold material, building from work by David Kaplan’s group

at Tufts University in order to enable concurrent biofactor delivery within the silk fibroin matrix.
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Figure 5.1: (A) Silk fibroin hydrogels, created following previously described protocols [407], were evaluated in
double lap shear while adhered to poly(vinyl chloride) plastic platens using cyanoacrylate. (B) Representative shear
stress – strain curves are shown for silk hydrogels partially recrystallized with various concentrations of methanol for
one hour. (C) Maximum stress and (D) shear modulus increased with recrystallization, but there was no difference
seen with increased methanol concentration above 50%. ** p < 0.01 by t-tests.

128



5.3 Implementation of adhesive approaches for tendon repair

Surgical implementation of adhesives for tendon repair as coatings on sutures or for tendon-to-bone repair as adhesive

films requires first honing adhesive mechanical properties as discussed above, then evaluating biocompatibility. The

idealized biomechanical tests performed here, which evaluate adhesives on single suture strands in tendon or in simple

lap shear between tendon and bone planks, provide relevant, rapid testing protocols for assessing the usefulness of

new adhesive materials. Future work should use these or similar testing models to evaluate adhesive protection and

activation schemes, so sutures or films can be stable and non-binding until they are in place within tissue, and only

then form a strong bond. We envision opportunities to activate adhesives by (i) temperature, using phase change ma-

terials to coat the adhesive-suture and only release the adhesive at body temperature, (ii) optical activation, possibly

using near-infrared light to penetrate tissue and stimulate chemical agents within the adhesive once it is in place, and

(iii) chemical priming by bringing the adhesive-suture or film into contact with priming agents immediately before

surgical implantation. In addition, future studies should further evaluate theoretical improvements in adhesive–suture

interfacial strength through adhesive interdigitation into suture pores. One simple experiment to evaluate this hypoth-

esis could compare the pullout force required for porous and regular single suture strands, with or without adhesive

coating, and passed longitudinally through tendon tissue ex vivo. Similarly, an in vitro tendon tissue culture experi-

ment could compare the strength of biological bonds formed between suture and the surrounding tissue over time as

tissue grows into sutures. By changing the calcium chloride concentration used to generate porous sutures, the pore

size can be modulated [353] to assess the impact of pore diameter on tissue ingrowth and adhesive interdigitation

strength. In addition to modifying suture surface morphology before loading, porous sutures could be further chemi-

cally modified before coating with an adhesive to prime the suture for adhesive binding. However, although adhesive

interdigitation and strengthened chemical attachment may increase interfacial binding strength with the suture, this

local improvement will have minimal impact on repair strength if the strength of a given adhesive is instead limited

by the bulk strength, adhesive-tissue interfacial binding strength, or the ability of the tendon to successfully distribute

load between adjacent fibers near the adhesive without failure.

5.3.1 Biocompatibility testing in vitro

Adhesive biomaterials that improve load transfer of cadaver canine flexor digitorum profundus tendon reconstructions

or rotator cuff repairs should to be further evaluated for biocompatibility in vitro and in vivo. Demonstrating bio-

compatibility in culture and in small animal models is necessary prior to testing in clinically relevant large animal
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models and translating clinically. In order to assess cellular responses to adhesive biomaterials, primary mouse, rat, or

canine fibroblasts isolated from tendons should be co-cultured with the biomaterials in vitro as described previously

[165]. Biomaterial components should be evaluated in whole and in part (with and without sutures) to elucidate the

cellular response in the adhesive-influenced environment. After co-culture, biocompatibility experiments should eval-

uate cells under light microscopy for cell density and morphological changes, then assess changes in proliferation,

cell death, matrix synthesis, inflammation, and general tendon marker gene expression using quantitative real-time

RT-PCR (qRT-PCR), as described previously [165, 167, 57]. Protein expression for proliferation and matrix synthesis

should be assessed using Western blots. Based on a power analysis assuming historical coefficients of variations of

approximately 35% for gene and protein expression assays and 25% for cell proliferation and apoptosis assays, and

a paired t-test statistical comparison, sample sizes of n = 10 per adhesive compound evaluated would provide the

ability to statistically detect differences of 35% or greater in gene and protein expression and 25% or greater in cell

proliferation and apoptosis assays (α = 0.05, 1− β = 0.8).

5.3.2 Biocompatibility testing in vivo

The most promising adhesive biomaterials from in vitro testing should be evaluated for toxicology and inflammatory

reactions in vivo through subcutaneous injection or implantation in rats [408, 409]. After approximately 10 days to

allow the animal to react to the adhesive through the inflammatory and early proliferative stages of healing, experiments

should assess overall body weight, local tissue reactions including collagen deposition, inflammatory cell recruitment,

and overall cellular response in the in vivo setting histologically. qRT-PCR can be used to examine gene expression of

inflammation-associated genes including IL-1β and TNFα, inflammation response genes including iNOS and PGE2,

angiogenesis-associated genes including bFGF and PDGF, fibrosis-associated gene TGF β1, and ECM-related genes

type I collagen, type III collagen, hyaluronic acid synthase, lubricin, and decorin. Assuming coefficients of variation of

approximately 7% for body weight, 35% for gene expression assays, 25% for cell/proliferation and apoptosis related

assays, and 25% for parameters derived from histology, and using a paired t-test statistical comparison, power analyses

predict that use of 8 animals each for histology, cell proliferation, gene expression, and body weight provides the ability

to detect differences of at least 29%, 29%, 41%, and 9%, respectively (α = 0.05, 1 − β = 0.8). Since individual

animals can be assigned to either histology or both cell proliferation and gene expression analysis, 16 animals should

be sufficient to evaluate an adhesive compound for in vivo biocompatibility.

If adhesive biomaterials tested for biocompatibility cause a severe inflammatory response, as determined by high cell
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death and inflammatory marker expression, as well as histological assessment, the components of the biomaterial

should be individually assessed for biocompatibility. After determining which component is driving the immunogenic

response, that component could be replaced with an alternative component. If that still causes severe inflammatory

responses, we will modify the offending material component to mitigate inflammation.

5.3.3 Large animal preclinical surgical models

Adhesive-coated sutures that exhibit appropriate mechanical and biocompatibility profiles should be evaluated in a

large animal preclinical surgical model to determine clinical viability, as we have done for porous sutures (Chapter 4).

Since adhesive approaches are predominantly aimed at improving the mechanical properties of repairs, rodent surgical

models are too far removed from the clinical scenario to provide substantial benefit. The canine flexor digitorum

profundus tendon model has been a gold standard for preclinical evaluation of intrasynovial tendon repairs since the

1960s [285, 284]. Canine flexor tendon structures, sizes, and surgical techniques are very similar to those in humans.

This intrasynovial model is sensitive to inflammatory concerns [186], and demands a clinically relevant difference to

demonstrate a substantial impact [167, 20, 100, 11]. Unlike previous biological factor approaches evaluated in the

canine flexor tendon [106, 155, 388, 287], adhesives are expected to work quickly to improve repair biomechanics.

Therefore, instead of waiting until 28 days to assess biomechanical properties, as we have done previously [186],

canine repairs evaluated as early as 3 days after repair would be a useful indicators of both early inflammatory activity

effects and biomechanical benefits. Since a major factor limiting clinical flexor tendon repair is adhesion formation

with the intrasynovial sheath (which limits range of motion), it is especially important to evaluate potential adhesion

formation resulting from adhesives.

Following preclinical evaluation, clinical application would likely require commercialization through coordination

with orthopedic device and suture companies. Given the large potential benefit and the clinical need for improved

flexor tendon and rotator cuff repairs, as just two example cases for adhesive-coated sutures and adhesive films, re-

spectively, this technology investment is commercially justified. We performed a rudimentary cost-benefit analysis of

publicly available data published by the U.S. Centers for Medicare and Medicaid Services (Part B National Summary

Data File, previously known as BESS), which indicated that the immediate cost savings available for reducing flexor

tendon repair failures is over $1 million annually, solely for surgical costs during repeat operations. This does not

account for any less direct medical costs or indirect costs from lost time at work, inability to perform activities of

daily living, etc. The rotator cuff market is far greater, totaling approximately $500 million annually for repairs that
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mechanically fail, even though most people with a rotator cuff tear do not receive surgical treatment partially due to

high failure rates. In addition to pursuing applications of adhesive-coated sutures and adhesive films within tendon

and tendon-to-bone repairs, the same technologies could potentially be applied to other tissues throughout the body

that are susceptible to mechanical failure, such as abdominal hernia repair.

5.4 Alternative approaches

The primary work of this thesis focused on adhesive sutures, adhesive films, and sutures with porous sheaths as

mechanically-focused technologies to improve orthopedic repair strength. These simple approaches are clinically

attractive because repairs can be improved without substantially changing the surgical procedure. Importantly, these

technologies can be used in combination with other biologic approaches being developed to modulate healing. In

parallel to the work described throughout this dissertation, we and others have developed biological approaches to

modulate the healing response in the intrasynovial flexor tendon [199, 186, 164, 151, 410]. The following section

describes cellular and biofactor approaches that could readily be combined with the adhesive suture approach described

earlier in the thesis.

5.4.1 Adipose-derived progenitor cell sheets

N.B.: Adipose-derived stem cell sheet development was led by Dr. Hua Shen. I was a collaborating scientist on the

project, involved with study design, surgical experiments, data analysis, and writing.

Portions of this section have been previously published in [199]: Shen H, Kormpakis I, Havlioglu N, Linderman SW,

Sakiyama-Elbert SE, Erickson IE, Zarembinski T, Silva MJ, Gelberman RH, Thomopoulos S. The effect of mesenchymal

stromal cell sheets on the inflammatory stage of flexor tendon healing. Stem Cell Res Ther. 2016 Sep 27;7(1):144.

Autologous ASC sheet preparation and surgical delivery: One exciting avenue to modify the biologic response

during intrasynovial flexor tendon healing is to deliver cells directly to the surface of the repair during surgery. Previous

attempts have been limited by two factors: (i) the intrasynovial tendon environment is extremely sensitive to forming

adhesions with surrounding tissue that limit range of motion [388, 32, 99, 97], and (ii) cells in liquid media do not stay

in place at the repair site. However, recent studies have demonstrated that autologous ASCs, co-cultured with M1 (pro-
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inflammatory) macrophages, induced a macrophage phenotypic switch to the M2 (anti-inflammatory) subtype [411],

suggesting therapeutic potential if the delivery challenges could be overcome. As described in detail in [199], we

overcame these limitations by delivering autologous adipose-derived mesenchymal stromal cells (ASCs) on a collagen

sheet, then sealing the cells in position and protecting from surface interactions with the exterior synovial sheath

using a hyaluronic acid hydrogel (HA; Biotime, Inc., Almeda, CA). Briefly, subcutaneous adipose tissue was obtained

2 weeks prior to tendon repair for ASC isolation, performed as described previously [165]. Collagen sheets were

prepared using 1 mL of collagen solution (pH 7.2) containing 2 mg/mL type I collagen from rat tail tendon (Corning

Life Sciences, Bedford, MA), added to a ring-shaped silicone insert (φ19 mm). This was incubated at 37 ◦C for 1

hour to gel. After equilibrating collagen sheets overnight in cell media (α-MEM containing 10% fetal bovine serum

and 100 U/mL penicillin-streptomycin), passage 3 ASCs were plated on top of the collagen at a cell density of 10,000

cells/cm2. The resulting ASC sheet was cultured for 3–4 days with media changes every other day before surgical

implantation.

Cell sheets were then assessed in a clinically relevant canine intrasynovial flexor digitorum profundus tendon injury

and repair model. Following core and peripheral suture repair of the tendon, the collagen–ASC sheet was placed

on the surface of the flexor tendon with the ASC-loaded side facing the tendon and the collagen facing the tendon

sheath (Figure 5.2A). This was immobilized in position using an HA hydrogel consisting of thiol-modified hyaluronan

crosslinked in situ with poly(ethylene glycol) diacrylate in PBS (Figure 5.2B). The HA hydrogel was mixed and

allowed to gel for 5 minutes in the operating room immediately before application to the tendon surface over the

cell sheet. This waiting period caused the HA hydrogel to obtain the appropriate viscosity to conform to the repair

but not drip off the tendon surface. After application, the repair was left open for an additional 5 minutes to ensure

complete gelation and proper adhesion of the hydrogel, before the incision was surgically closed. All repaired digits

received controlled passive mobilization starting 24 hours after surgery as described previously [57, 388]. Animals

were euthanized 7 days after repair.

These in vivo canine FDP tendon surgical experiments demonstrated that GFP-labeled ASCs were still present at the

repair site 7 days following repair (whole-mount tendons, Figure 5.2C-E) and some cells infiltrated into the tendon

tissue, especially at the gap between the re-apposed tendon stumps (Figure 5.2F). There were no gaps greater than 3

mm were no apparent adhesions in any of the repairs at dissection.

Real-time quantitative RT-PCR: TaqMan RT-PCR was used to determine the gene expression profile in repaired

tendons after sacrifice (n = 5 tendons per group). Tendon fragments flanking the repair site (± 5 mm) were dissected
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Figure 5.2: Application of an ASC sheet in tendon repair. (A,B) Representative photographs showing the process
of applying (A) an ASC sheet and (B) HA to a sutured FDP tendon. (C) Representative photograph showing a FDP
tendon 7 days after ASC sheet repair. (D) Representative fluorescent image of a whole-mount FDP tendon repaired
with a GFP-expressing ASC sheet. (E,F) Representative fluorescent image of a longitudinal section of a FDP tendon
repaired with a GFP-expressing ASC sheet. (F) Enlarged image of the boxed region in (E). Arrows, site of tendon
repair; open arrowheads, GFP-expressing cells in the tendon substance. This figure is reprinted under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) from [199].
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Figure 5.3: Change in expression of genes associated with macrophage polarization in FDP tendons 7 days post-
operatively. (A) M2 stimulator gene IL-4, (B and C) M2 marker genes MRC1 and CD163, and (D) downstream
effector gene VEGFA. ∗p < 0.05 between indicated groups. # p < 0.05 compared with normal tendons. HA:
hyaluronan, ASC: adipose-derived mesenchymal stromal cell. This figure is modified from [199] under the terms of
the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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and longitudinally split as described above, then they were diced into small pieces and flash-frozen in liquid nitrogen.

Tendon fragments were pulverized with a Mikro-Dismembrator (Sartorius). Total RNA isolation, cDNA synthesis,

and gene expression assays were performed as described previously [199]. All TaqMan primers and probes used in

this study were purchased from Applied Biosystems. GAPDH and PPIB were used as endogenous reference genes.

A one-way analysis of variance (ANOVA) followed by Student-Newman-Keuls’s post-hoc testing (when appropriate)

was performed to compare gene expression among the three repair groups. Two-tailed Student’s t-tests and Mann-

Whitney rank sum tests were used to compare the repair and normal groups for normally and non-normally distributed

data, respectively. All statistical analyses were performed using SigmaStat 3.5 (Systat Software Inc., Chicago, IL,

USA). The significance level was set at p < 0.05.

RT-PCR analysis of markers of macrophage polarization demonstrated a shift toward M2 macrophages (Figure 5.3).

ASC sheets substantially increased expression of the M2 stimulator gene IL-4 by 258-fold compared to repair alone,

while there was no significant difference in the expression of M1 stimulator genes IFNG, IL-1B, TNFA, and IL-6. The

expression of M2 marker genes MRC1 and CD163 was higher in ASC-treated tendons than in tendons from other

repair groups. ASC sheet treatment also increased expression of the angiogenic factor VEGFA, in FDP tendons, which

was significantly reduced after suture repair compared with normal. This combination of M2 stimulator, marker, and

effector genes consistently indicates an anti-inflammatory, M2 macrophage phenotype following ASC sheet treatment.

We hypothesize that this anti-inflammatory effect will lead to more ordered cell proliferation and extracellular matrix

production, thus improving repair healing quality and rate.

5.4.2 Microsphere-based biological factor delivery

In order to evaluate the impact of these ASC sheets on the proliferative stages of repair at 14 days, ASC sheets with

and without gelatin microspheres containing the tenogenic growth factor bone morphogenic protein-12 (BMP12, a.k.a.

GDF7) were surgically implanted following flexor tendon injury and repair (Figure 5.4).

Sustained delivery of BMP12 via gelatin microspheres: Gelatin microspheres were synthesized as previously de-

scribed [197, 412], by Phuong N. Dang in Professor Eben Alsberg’s research group at Case Western Reserve Univer-

sity. Low (19.5 ± 5.65%) and high crosslinked (65%) microspheres were generated by crosslinking dry microspheres

in 1% w/v aqueous genipin solution (Wako Chemicals USA, Inc., Richmond, VA) in distilled water at room tempera-

ture for 2 and 24.5 hours, respectively. To load BMP12, lyophilized microspheres were UV-sterilized for 10 minutes
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and rehydrated in BMP12/PBS solution (pH 6) at varied concentrations for 2 hours at 37 ◦C. Unloaded control mi-

crospheres were soaked in PBS without BMP12. At pH 6, positively charged BMP12 and negatively charged acidic

gelatin form complexes, facilitating microsphere loading [413, 414]. To determine BMP12 release kinetics, BMP12

was biotinylated with EZ-Link Sulfo-NHS-Biotin kit (Thermo Fisher Scientific) according to the manufacturer’s pro-

tocol except for substituting the manufacturer’s buffer with 50% (v/v) propylene glycol containing 1 M NaCl, 50 mM

HEPES (pH 7.0) to stabilize BMP12. The resulting biotin-BMP12 was loaded to either high or low crosslinked micro-

spheres at a concentration of 2 µg BMP12/mg micropsheres as described above. BMP12 release from microspheres

was performed in PBS (pH 7.0) at 37 ◦C for 2 weeks and determined by measuring BMP12 contents in PBS at varied

time points via dot blot for biotin and using biotin-BMP12 as a protein standard. As most of BMP12 was released

from the low crosslinked microspheres within the first three days after loading and the high crosslinked microspheres

enabled a steady 20 – 40 ng daily release of BMP12 over a 14-day period during pilot studies (Figure 5.5), the high

crosslinked microspheres were used in the subsequent in vivo studies.

ASC + BMP12 cell sheet creation: Collagen–ASC sheets were prepared from autologous subcutaneous fat col-

lected 2 weeks before surgery, as described above. To deliver BMP12-loaded microspheres and ASCs in vivo, high

crosslinked microspheres were loaded with BMP12 at a concentration of 4 µg BMP12/mg microsphere. One mg of

BMP12-loaded or unloaded microspheres were added to type I collagen (Corning Inc., Bedford, MA) solution (1 mL

of 2 mg/mL, pH 7.2). The resulting suspension was allowed to gel at 37 ◦C for 1 hour in a round cast to generate a

thin microsphere-containing collagen sheet (φ 19 mm × 500µm thick). Passage 3 ASCs were subsequently cultured

on the collagen sheet at a density of 16,000 cells/cm2 for 3 – 4 days in vitro and then applied in vivo as shown in

Figure 5.2A,B. All repaired digits received controlled passive mobilization starting 24 hours after surgery as described

previously [57, 388]. Animals were euthanized 14 days after repair.

ASCs

BMP12-microspheres

Collagen

Cell sheet
(ASC-BMP12-Collagen)

FDP tendon repair: Applying cell sheet and
   hyaluronic acid coat1 2

A B

Figure 5.4: Cell sheets were generated for in vivo delivery of ASCs and BMP12. (A) The procedures for generation
and in vivo delivery of cell sheets are illustrated. Hyaluronic acid (HA) was used to secure cell sheet at the repair site.
(B) A representative photograph shows a cell sheet applied to a repaired flexor digitorum profundus tendon (FDP).
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Figure 5.5: Pilot study demonstrating BMP12 growth factor release kinetics from highly crosslinked gelatin micro-
spheres. High crosslink microspheres exhibited sustained release over the first two weeks in vitro.

Effects of sustained BMP12 delivery with ASC sheets: RNA was isolated and TaqMan RT-PCR was used to de-

termine the gene expression profile in repaired tendons after sacrifice as described above (n = 6 tendons per group

for gene expression). Compared to analysis at 7 days (Figure 5.3), RT-PCR analysis of markers of macrophage po-

larization at 14 days demonstrated only a moderate overall inflammatory response, as predicted for the proliferative

stage of repair. At 14 days, the ASC-only group did not continue to demonstrate a statistically significant shift toward

M2 macrophages, possibly due to lower total inflammatory cell counts following the anti-inflammatory effect seen at

7 days (Figure 5.6). However, there was a substantial shift toward M2 macrophages in the ASC + BMP12 treatment

group. ASC sheets containing BMP12 microspheres substantially increased expression of the M2 stimulator gene

IL-4 and the M2 marker gene CD163 compared to repair alone or the repair with ASC sheets but no BMP12 (Fig-

ure 5.6A,B). This late-stage anti-inflammatory impact of BMP12 did not change collagen production levels compared

to other groups (Figure 5.6C). Future work on gene expression and proteomics analyses for these samples, as well as

later stage studies assessing biomechanical properties, would help elucidate if and how the anti-inflammatory effect

seen at 7 and 14 days with ASC and ASC + BMP12 treatment, respectively, impacts tendon healing and functional

outcomes.
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Figure 5.6: Pilot study demonstrating BMP12 growth factor release kinetics from highly crosslinked gelatin micro-
spheres. High crosslink microspheres exhibited sustained release over the first two weeks in vitro.

5.4.3 Combinatorial therapy approaches

The adhesive delivery approaches developed in this thesis do not substantially change how repairs are technically

performed in the operating room. Since sutures are introduced into repairs regardless, porous sutures coated with

adhesives or growth factors could theoretically be combined with the cell sheet therapies described here (Figure 5.7).

Such combination therapies offer an opportunity to provide synergistic benefit through early mechanical strength from

the adhesive and later biologic stimulation. Future work could also explore these combinatorial approaches as a means

of improving tendon or tendon-to-bone repair. By simultaneously delivering CTGF as in Chapter 4 and cell sheets as

described here, CTGF could induce ASCs or ASC-influenced cells to extend matrix into the suture material and across

the transected surface. This type of approach could simultaneously provide the biological instructions and the cells

needed to carry out those instructions within the otherwise paucicellular intrasynovial tendon environment. However,

these combinatorial approaches would add substantial complexity to the repair from the scientific, regulatory, and

clinical application perspectives. Cell therapies requiring modification of autologous cells are particularly challenging,

since they require multiple operations and intense care to avoid deleterious stimulation of the autologous tissue before

re-implantation. Therefore, combinatorial approaches would need thorough in vitro and in vivo validation to ensure

that neither factor independently or in combination negatively impacts repair outcomes.
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ASCs

Collagen

Cell sheet
(ASC-BMP12-Collagen)

FDP tendon repair: Applying cell sheet and
   hyaluronic acid coat1 2

Cell delivery

Porous suture

Porous suture - loaded with
adhesive or biofactor

Adhesive or
biofactor solution

Growth factor delivery
FDP tendon repair with loaded porous suture

tendon transectionsheathskin

FDP tendon repair: Applying cell sheet and
   hyaluronic acid coat1 2

FDP tendon repair:  Adhesive-coated suture + Cell sheet

Combination therapy

Figure 5.7: Schematic of an envisioned combinatorial therapy approach to deliver mechanically augmented sutures
in addition to anti-inflammatory cell sheets. Combined biological and mechanical approaches could greatly improve
repair healing. However, it is important to remember that combined approaches are inherently more complicated from
scientific, clinical, regulatory perspectives, and could actually lead to negative effects due to added foreign material or
unanticipated negative interactions.

5.5 Conclusions

Taken as a whole, this thesis presents a theoretical basis and experimental proof-of-concept for versatile adhesive

approaches to improve the mechanical strength and toughness of tendon, tendon-to-bone, and potentially other soft

tissue repairs by several fold. We have highlighted desirable adhesive material properties as well as potential adhesive

biomaterials with appropriate properties. In order to evaluate adhesive candidates, we developed rapid testing plat-

forms that are predictive of clinical-style repair strength improvements. Furthermore, we developed a simple delivery

mechanism using sutures with porous outer sheaths to enhance delivery capacity and mechanical binding of chemical

adhesives or biological factors. These simple technologies can theoretically be applied in combination with biologi-

cal approaches being developed here and elsewhere, though such combined approaches would complicate technology

development, preclinical and clinical testing, and regulatory approval. Future work assessing adhesive materials for

application in either adhesive-coated (porous) sutures or adhesive films could theoretically provide greater than 500%

repair strength improvements, eliminating a major source of orthopaedic repair failures.
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Appendix A

Enhanced zone II flexor tendon repair

through a new half hitch loop suture

configuration

Ioannis Kormpakis*, Stephen W. Linderman*, Stavros Thomopoulos, Richard H. Gelberman
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This chapter was published in PLoS One, 2016 Apr 21;11(4):e0153822. doi: 10.1371/journal.pone.0153822 [108].

This work is under an open access Creative Commons Attribution (CC BY) license, and is free to copy, distribute, or

reuse with appropriate citation.

A.1 Abstract

This study evaluated the impact of a new half hitch loop suture configuration on flexor tendon repair mechanics.

Cadaver canine flexor digitorum profundus tendons were repaired with 4- or 8-strands, 4–0 or 3–0 suture, with and

without half hitch loops. An additional group underwent repair with half hitch loops but without the terminal knot.

Half hitch loops improved the strength of 8-strand repairs by 21% when 4–0, and 33% when 3–0 suture was used, and
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caused a shift in failure mode from suture pullout to suture breakage. 8-strand repairs with half hitch loops but without

a terminal knot produced equivalent mechanical properties to those without half hitch loops but with a terminal knot.

4-strand repairs were limited by the strength of the suture in all groups and, as a result, the presence of half hitch loops

did not alter the mechanical properties. Overall, half hitch loops improved repair mechanics, allowing failure strength

to reach the full capability of suture strength. Improving the mechanical properties of flexor tendon repair with half

hitch loops has the potential to reduce the postoperative risk of gap formation and catastrophic rupture in the early

postoperative period.

A.2 Introduction

Despite improved operative technique and postoperative rehabilitation, the outcomes of intrasynovial flexor tendon

repair are highly variable [415, 11, 12, 100, 416]. The most commonly manifested complications of tendon repair

are gap formation, repair-site failure, and adhesion formation between the repaired tendon and synovial sheath [31].

Typically, complications are noted within the initial few weeks following suture repair and depend, to a considerable

extent, on the initial biomechanical properties of the repair [20]. Improving the biomechanical properties of repaired

tendon is central to reducing the incidence of tendon rupture and gap formation, and for facilitating early controlled

mobilization.

The initial mechanical properties of repaired tendon depend on the suture material and caliber and the interaction

between the suture and tendon brought about by the repair technique [417, 418, 107, 250]. Numerous suture materials

and repair techniques have been described, including variations in core and peripheral suture caliber and purchase,

numbers of strands and knot placement [107, 419, 420]. The most commonly used surgical techniques employ a 3–0

or 4–0 caliber core suture and a 5–0 or 6–0 caliber peripheral suture. Typically, either four, six, or eight strands are

used and the final knot is placed either inside or outside the interface between the tendons stumps [420, 421].

Although prior studies have demonstrated the importance of suture caliber and suture strand number on the initial

mechanical properties of tendon repair [22], less consideration has been given to the mechanical effects created by

the core suture loops. In the current study, our objective was to assess the mechanical interaction between tendon

suture and Zone II flexor tendon (i.e., tendon grasping) as a function of the presence of a new style of half hitch

loops (A.K.A. pretzel links), in an alternating configuration with the classic grasping loops, compared to repairs using

grasping loops only. These half hitch loops form a small knot, gripping the tendon more than previously described

142



locking loops [17, 109]. Previous studies demonstrate that locking loops at every position lead to uneven tensioning

and premature failure of the repair, motivating our alternating loop configuration [422]. To investigate this premise,

we studied the effects of half hitch loops on 4- and 8-strand repairs performed with 3–0 and 4–0 suture. In addition,

we considered a knotless configuration of the 8-strand repair using half hitch loops. Our hypothesis was that increased

holding capacity between the tendon and the suture through the use of half hitch loops, in alternation with grasping

loops, would improve the initial mechanical properties of 4- and 8-strand repair configurations.

A.3 Materials and Methods

A.3.1 Study design

In this ex vivo study, ninety-four cadaveric canine flexor digitorum profundus tendons were transected in Zone II,

between the A2 and A4 pulleys. The tendons were divided into eight groups (Table A.1) with either 4-strand modified

Kessler or standard 8-strand repairs, with or without half hitch loops, using 3–0 or 4–0 suture. In addition, a group of

tendons was repaired with an 8-strand knotless modification with half hitch loops. All repairs were performed by an

orthopaedic hand surgeon. All tendons tested in this study were from hindpaws of healthy female adult mongrel dogs

20–30 kg in weight (Covance Research, Princeton, NJ), taken postmortem from an unrelated project. The unrelated

project, which investigated experimental approaches for forepaw flexor digitorum profundus tendon repair in vivo,

was approved by the Animal Studies Committee, Office of the Vice Chancellor for Research, Washington University

in St. Louis for RHG’s Animal Approval Protocol #20140115. All work performed herein followed the policies and

procedures for scientific research at Washington University in St. Louis, including the Research Integrity Policy by

the Research Ethics and Compliance Office, Office of the Vice Chancellor for Research, Washington University in St.

Louis.

A.3.2 Half hitch loop technique

The technical modification introduced here shares some characteristics with the 4-strand modified Kessler and the

8-strand Winters-Gelberman repairs. A core suture purchase of 1.2 cm and a peripheral suture purchase of 2 mm

was used (Figure A.1). Supramid 4–0 or 3–0 looped double-strand suture (S. Jackson Inc., Alexandria, VA) was

used for the core suture and 5–0 polypropylene was used for the peripheral suture. The repair consisted of half hitch
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Technique Strands Caliber N

Grasping 4 4–0 14
Hitched 4 4–0 12
Grasping 4 3–0 9
Hitched 4 3–0 9
Grasping 8 4–0 12
Hitched 8 4–0 12
Hitched knotless 8 4–0 12
Grasping 8 3–0 7
Hitched 8 3–0 7

Table A.1: Flexor tendon suture configurations.

and grasping loops of the core suture in an alternating fashion, which avoided the creation of consecutive hitches

(Figure A.1). This configuration is symmetric, with the same number of half hitch and grasping loops on the distal

and proximal stumps, medially and laterally. This setup facilitated even tensioning of the repair, where each half hitch

loop secured one stump while the adjacent grasping loop allowed gliding of the suture to occur. The sliding of one

loop in each pair allowed flexibility for balancing the tension of the suture strands by the surgeon, avoiding uneven

load bearing among the individual strands.

To perform the half hitch loop suture in a 4-strand repair, the first and third loops were tied (Figure A.1e). To accom-

plish the half hitch loop configuration in an 8-strand repair, two additional alternating half hitch loops were created

providing 4 hitches (second, fifth, seventh and eighth loops; Figure A.1f). In addition, a knotless version of the 8-

strand repair was performed in which the terminal knot was not tied and the free end of the suture was passed through

the tendon substance using a free needle. The surgeon must carefully pass the sutures in the final step of each half

hitch through the space created by the previous two passes in order to achieve a successful half hitch (Figure A.1c-d).

A.3.3 Biomechanical testing

Repairs were tested biomechanically using methods described previously [103, 105]. The proximal tendon was gripped

with a triangle-toothed grip and the distal phalanx was gripped in a custom grip. After preconditioning, repaired

tendons were pulled in uniaxial tension until failure on a material testing machine (5866; Instron Corp., Norwood,

MA). Failure mode (e.g., suture pullout or suture breakage) was recorded. The load to create a 2 mm gap (N),

maximum load (N), extension at 20 N and at maximum load (mm), strain at 20 N and at maximum load (%), stiffness

(N/mm) (the slope of the linear portion of the load–deformation curve), rigidity (N/%), and resilience (N strain) (the

area under the load–strain curve up to the yield point) were determined using a custom-written code in MATLAB
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Figure A.1: Suture configuration. (A-C) The three suture passes required to make a single half hitch loop are shown
sequentially as an end view from the transection interface, a side view, and a perspective view. This is a continuous
piece of suture, where suture coloration is artificially added to aid in following the suture path, going from blue to
purple. The suture diameter is enlarged two-fold for clarity. Looped suture is used surgically, but only one of each
pair of suture threads is diagrammed here for simplicity. (D) The complete half hitch loop configuration is enlarged
for clarity. (E-F) The locations of half hitch loops are shown in green for 4-strand modified Kessler (E) and 8-strand
Winters-Gelberman (F) repairs. In 8-strand repairs, the first four passes were performed on the dorsal side and the last
four passes were performed on the ventral side of the tendon.
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(Natick, MA), as described previously [256]. Load to create a gap of 2 mm between tendon stump ends (a threshold

level that leads to decreased repair strength and increased adhesions) was calculated by optically tracking regions

nearest to the repair site [100].

A.3.4 Statistics

Groups were compared using an analysis of variance (ANOVA) followed by a Tukey’s honest significant difference

test for pairwise comparisons when appropriate. An alpha level of p < 0.05 was set for statistical significance. Results

were plotted as mean ± standard deviations.

A.4 Results

A.4.1 Mechanical properties were improved when half hitch loops were incorporated into

8-strand repairs

The addition of half hitch loops significantly improved the overall mechanical properties of 8-strand repairs. Load to

create a 2 mm gap, maximum load, and resilience significantly increased in half hitch repairs compared to standard

8-strand repairs for 3–0 caliber suture, and maximum load and resilience significantly increased in half hitch repairs

compared to standard 8-strand repairs for 4–0 caliber suture (p < 0.05 for each comparison; Figure A.2). In contrast,

the mechanical properties of the 4-strand repairs, with and without half hitch loops, were not significantly different

(p > 0.05 for each comparison). Load to create a 2 mm gap, maximum load and resilience were not significantly

different when comparing the modified 4-strand Kessler repair with and without half hitch loops, regardless of su-

ture caliber (Figure A.2). Stiffness was similar for all half hitch repair groups compared to their respective controls

(Figure A.2). 4-strand repairs with half hitch loops had statistically greater strain and extension to maximum load

compared to modified Kessler repairs without half hitch loops (Table A.2).
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Figure A.2: Mechanical properties. Load creating a 2 mm gap, maximum load, and resilience were significantly
improved with the addition of half hitch loops in 8 strand repairs. (G: grasping, H: hitched, * p < 0.05, mean ±
standard deviations are shown).

Technique Strands Caliber Extension|20 N Strain|20 N Extension|Max Load Strain|Max Load Rigidity
(mm) (%) (mm) (%) (N/%)

Grasping 4 4–0 1.56 ± 0.32 10.4 ± 2.2 5.08 ± 2.31 33.7 ± 15.3 2.64 ± 0.60
Hitched 4 4–0 1.59 ± 0.33 10.6 ± 2.2 7.32 ± 2.70 48.7 ± 17.9 2.25 ± 0.75
Grasping 4 3–0 1.74 ± 0.24 11.5 ± 1.5 7.50 ± 2.43 49.5 ± 15.8 2.59 ± 0.60
Hitched 4 3–0 1.54 ± 0.36 10.2 ± 2.4 7.43 ± 3.09 49.3 ± 20.5 2.71 ± 0.66
Grasping 8 4–0 1.33 ± 0.43 8.8 ± 2.9 5.51 ± 1.97 36.6 ± 13.2 3.62 ± 1.07
Hitched 8 4–0 1.60 ± 0.64 10.6 ± 4.3 6.88 ± 2.42 45.7 ± 16.1 3.57 ± 1.06
Hitched knotless 8 4–0 1.13 ± 0.14 7.5 ± 0.9 7.42 ± 2.11 49.0 ± 13.8 3.14 ± 0.65
Grasping 8 3–0 1.10 ± 0.96 7.3 ± 6.4 7.23 ± 3.50 48.2 ± 23.3 3.37 ± 1.46
Hitched 8 3–0 1.23 ± 0.11 8.2 ± 0.7 6.39 ± 1.19 42.4 ± 7.9 3.75 ± 0.35

Table A.2: Mechanical properties of repairs (mean ± standard deviation).
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Figure A.3: Failure modes. Repairs completed with 4–0 caliber suture failed almost exclusively by suture breakage.
Increasing suture caliber from 4–0 to 3–0 led to a shift in failure mode from suture breakage to suture pullout. The
addition of half hitch loops shifted the failure mode in 3–0 suture caliber repairs back to suture breakage, indicating a
significant increase in suture-tendon interaction due to the hitches. (G: grasping, H: hitched, K: hitched knotless).

A.4.2 Failure mode shifted from suture pullout to suture breakage with the addition of half

hitch loops

When suture caliber was increased from 4–0 to 3–0, the failure mode of the standard 8-strand repairs without half hitch

loops shifted from suture breakage to suture pullout. When half hitch loops were added to the 8-strand repairs per-

formed with 3–0 caliber sutures, the failure mode shifted from suture pullout to suture breakage, indicating improved

tendon grasping by the suture due to the half hitch loops (Figure A.3). The predominant failure mode of 4-strand

repairs was suture breakage, regardless of suture caliber and the presence or absence of half hitch loops (Figure A.3).

A.4.3 The knotless configuration of the 8-strand repair with half hitch loops had equivalent

mechanical properties to a standard 8-strand repair with a knot

The mechanical properties of half hitch loop repairs were similar regardless of whether or not the final knot between

the tendon stumps was tied, indicating that the transfer of load occurred primarily at the half hitch loops, not at the

final knot (Figure A.4). Both knotted and knotless half hitch loop repair groups had significantly higher maximum

load and resilience compared to the standard 8-strand repair (p < 0.05 for each comparison).
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Figure A.4: Mechanical properties of knotless repairs. Load creating a 2 mm gap, maximum load, and resilience
significantly improved with the addition of half hitch loops. Knotless repairs were either equivalent (load creating a 2
mm gap) or improved (maximum load and resilience) compared to a standard Winters-Gelberman 8-strand repair (G:
grasping, H: hitched, * p < 0.05, mean ± standard deviations are shown).

A.5 Discussion

Prior studies have examined the effects of suture technique, suture material, and suture strand number on the time

zero mechanical properties of flexor tendon repairs [418, 22]. Previous studies investigating mechanical strength of

various terminal knot tying methods show improved strength using reversing half hitches [423, 424]. This common

surgical knot tying technique was a motivation for testing a similar half hitch suture configuration applied to the suture

loop instead of the terminal knot to improve tissue grasping at suture anchor points within the tendon. Few studies

have explored the effects of increased suture-tendon interaction (i.e., improved tendon grasping) through the use of

locking loops with the goal of improving mechanical properties of both 4- and 8-strand repairs. We are unaware of any

previous studies investigating a similar half hitch loop for flexor tendon repair to the version described herein. In an

in vivo study, Hatanaka et al. demonstrated that a locking suture configuration markedly enhanced ultimate strength

compared to a grasping suture configuration three weeks post repair [24]. Similarly, another study showed that 3–0

caliber 4-strand cross-stitch locked repairs had significantly greater fatigue strength than did non-locked repairs and

that the failure mechanism shifted from suture pullout to suture breakage [425]. On the other hand, Wong et al. showed

that the consecutive locks in 6-strand repairs caused uneven load bearing among the strands, motivating the alternating

half hitch and grasping loop approach described herein [422]. Employing a similar underlying principle, a recent study

demonstrated that the addition of an adhesive coating to sutures in 8-strand repairs increased maximum load by 17%

and load to create a 2 mm gap by 17.5% [256]. These results suggest that increasing the interaction between suture and

the tendon, whether through suture half hitch loops or adhesives or a combination thereof, can lead to an improvement
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in the mechanical properties of the repair.

Findings in the current experimental study indicate that the failure of tendon repair depends on both the strength of

the suture and its ability to grasp the tendon stumps. Increasing the number of strands and/or increasing suture caliber

only increases tendon repair strength if the suture is effective in grasping tendon substance. If suture pulls out of

tendon prior to breaking, the increased strength provided by additional suture material is not realized. An ex vivo

study showed that cadaver flexor tendon repairs tend to fail by suture pullout, particularly when they are performed

with 8-strands and higher caliber suture [22]. In our study, the utilization of half hitch loops in alternation with the

grasping loops increased grasping strength in 8-strand repairs through more effective load transfer between the tendon

and suture and through averting the uneven load distribution that results from consecutive locks or hitches. The effect

was most profound when the repairs were performed with 3–0 suture, as the failure mode shifted from suture pullout

to suture breakage. Furthermore, contrasting 8-strand repair groups indicated that the presence of an alternating half

hitch loop configuration appeared to be of greater importance than an increase in suture caliber. Maximum load and

load to 2 mm gap failed to increase significantly when increasing caliber from 4–0 to 3–0 suture. In contrast, 8-strand

half hitch repairs performed with 4–0 suture yielded similar maximum load values and statistically greater load to

2mm gap compared to classic 8-strand repairs performed with 3–0 suture. These findings indicate that the use of this

half hitch pattern has a greater influence on repair mechanics than does suture caliber.

Based on the improvements in repairs with half hitch loops, we explored a knotless technique and noted equivalent or

improved mechanical properties compared to the standard Winters-Gelberman 8-strand repair. This result highlights

the strength of the half hitch loops for transferring load across the repair site and could have significant implications for

the in vivo setting. Instead of relying on the terminal knot, the half hitch loops held the suture in the appropriate con-

figuration and prevented unraveling. Previous studies have examined the effects of knot placement on the mechanical

properties of the repair and on adhesions formation during healing. Momose et al. demonstrated that placing the knot

outside of the repair site improves tensile strength compared to placing the knot at the interface of tendons stumps (i.e.,

“inside” of the repair) [421]. However, this improvement in strength comes with a penalty: knot placement outside

of the repair also increases tendon gliding resistance and tissue irritation, leading to adhesion formation. In order to

minimize the effect of the knots, a number of knotless approaches have been introduced using barbed sutures, with

mixed outcomes [398, 399]. The knotless modification of the 8-strand repair shown here has the potential to com-

bine the benefits to gliding and surgical operation time of a knotless repair with the benefits to tensile strength of the

Winters-Gelberman repair technique.

While an improvement in mechanical properties was noted in the 8-strand repair group (increased load to create a 2 mm
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gap, failure load, and resilience), the mechanical properties of the 4-strand repairs was not significantly improved. We

note that 4-strand repairs failed predominantly by suture breakage, even when 3–0 caliber suture was used. Therefore,

the weakest component of the 4-strand repair appears to be the strength of the suture, not the tendon grasping strength.

There were several limitations to this study that may require further investigation. First, it is possible that the 8-

strand half hitch repair may cause injury to the dorsal vascular supply of tendon due to the dorsal placement of some

of the loops. However, dorsal placement has been shown to be well tolerated in prior in vivo studies at intervals

through 3 and 6 weeks post repair [31, 24]. Second, this study used canine cadaver tissue. Canine tendons may have

different mechanical properties compared to human tendons. However, this animal model has been shown to have

anatomic similarities to human tendons, in both ex vivo and in vivo experiments [147]. Third, we did not measure

the gliding properties of the repairs in this ex vivo proof-of-concept study. The addition of half hitch loops to the

repairs could affect gliding resistance, since more of the suture is laying on the tendon surface than in the traditional

configurations. The similarity of the half hitch repairs to existing methods decreases the likelihood that gliding will

be affected significantly. Future work should evaluate the work of flexion and gliding resistance prior to incorporating

half hitch loops into clinical practice.

The results of this study confirm the hypothesis that increased tendon grasping strength through the use of half hitch

loops, alternating with the grasping loops of the core suture, enhances the mechanical properties of 8-strand repairs,

particularly when the repairs are carried out with 3–0 suture. The approach, however, did not enhance the properties of

4-strand repairs. Repair site failure mode appears to be of prime importance in predicting the mechanical properties of

sutured intrasynovial tendon. In addition, the new half hitch loop configuration provided sufficient gripping capacity

to allow for a knotless modification to the classical 8-strand repair. This knotless technique should be further evaluated

in vivo for clinical utility.
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[56] M. Möller, T. Movin, H. Granhed, K. Lind, E. Faxen, J. Karlsson. Acute rupture of tendo achillis. Bone & Joint

Journal 2001;83(6):843–848.

[57] C.N. Manning, N. Havlioglu, E. Knutsen, S.E. Sakiyama-Elbert, M.J. Silva, S. Thomopoulos, R.H. Gelberman.

The early inflammatory response after flexor tendon healing: a gene expression and histological analysis. J

Orthop Res 2014;32(5):645–52.

[58] P.K. Beredjiklian. Biologic aspects of flexor tendon laceration and repair. J Bone Joint Surg Am 2003;85-

A(3):539–550.

[59] R.H. Gelberman, J.S. Vande Berg, P.R. Manske, W.H. Akeson. The early stages of flexor tendon healing: a

morphologic study of the first fourteen days. J Hand Surg Am 1985;10(6 Pt 1):776–784.

[60] S.O. Abrahamsson, R.H. Gelberman, S.L. Lohmander. Variations in cellular proliferation and matrix synthesis

in intrasynovial and extrasynovial tendons: An in vitro study in dogs. J Hand Surg Am 1994;19(2):259–265.

[61] H.E. Kleinert, C. Verdan. Report of the Committee on Tendon Injuries. J Hand Surg Am 1983;8(5):794–798.

157



[62] R.H. Gelberman, J.S. Vandeberg, G.N. Lundborg, W.H. Akeson. Flexor tendon healing and restoration of the

gliding surface. An ultrastructural study in dogs. J Bone Joint Surg Am 1983;65(1):70–80.

[63] G. Lundborg, F. Rank. Experimental intrinsic healing of flexor tendons based upon synovial fluid nutrition. J

Hand Surg Am 1978;3(1):21–31.

[64] S.A. Fenwick, B.L. Hazleman, G.P. Riley. The vasculature and its role in the damaged and healing tendon.

Arthritis Res 2002;4(4):252–60.

[65] R.H. Gelberman, D. Amiel, M. Gonsalves, S.L. Woo, W.H. Akeson. The Influence of Protected Pas-

sive Mobilization on the Healing of Flexor Tendons: A Biochemical and Microangiographic Study. Hand

1981;13(2):120–128.

[66] U. Khan, S. Kakar, A. Akali, G. Bentley, D.A. McGrouther. Modulation of the formation of adhesions during

the healing of injured tendons. J Bone Joint Surg Br 2000;82-B(7):1054–1058.

[67] S. Woo, K. An, C. Frank, G. Livesay, C. Ma, J. Zeminski, J. Wayne, B. Myers. Anatomy, biology, and biome-

chanics of tendon and ligament. In: J.A. Buckwalter, T.A. Einhorn, S.R. Simon, editors. Orthopaedic Basic

Science: Biology and Biomechanics of the Musculoskeletal System; Second ed. American Academy of Or-

thopaedic Surgeons; 2000, p. 581–616.

[68] J.K. Wong, Y.H. Lui, Z. Kapacee, K.E. Kadler, M.W. Ferguson, D.A. McGrouther. The Cellular Biology of

Flexor Tendon Adhesion Formation. Am J Pathol 2009;175(5):1938–1951.

[69] S.G. Dakin, D. Werling, A. Hibbert, D.R.E. Abayasekara, N.J. Young, R.K.W. Smith, J. Dudhia. Macrophage

sub-populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair. PloS

one 2012;7(2):e32333.

[70] K.B. Sugg, J. Lubardic, J.P. Gumucio, C.L. Mendias. Changes in macrophage phenotype and induction

of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair. J Orthop Res

2014;32(7):944–951.
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