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ABSTRACT OF THE THESIS

Superpixel Segmentation of Outdoor Webcams to Infer Scene Structure

by

Rachel Tannenbaum

Master of Science in Computer Science

Washington University in St. Louis, 2009

Research Advisor: Professor Robert Pless

Understanding an outdoor scene’s 3-D structure has applications in several fields,

including surveillance and computer graphics. Scene elements’ time-series brightness

gives insight to their geometric orientation; and thus the 3-D structure of the overall

scene. Previous works have studied the time-series brightness of individual pixels.

However, there are limitations with this approach. Pixels are often quite noisy, and

can require a lot of memory. This thesis explores the use of superpixels to address

these issues. Superpixels, an approach to image segmentation, over-segment a scene

but attempt to ensure that each segment lies on only one scene element. Applying

superpixels to webcams reduces the effect of noise on pixels’ time-series brightness,

and conserves memory by reducing the number of pixel “entities”. This thesis explores

methods of solving for a superpixel’s surface normal, and demonstrates that the time

at which maximum brightness is achieved serves as a basic indicator of geographic

orientation.
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Chapter 1

Introduction

Understanding an outdoor scene’s 3-D structure has several useful applications. In

our political environment with great concern over terrorism threats, surveillance is

an important element of maintaining national security. An increasing number of

surveillance cameras provides an overwhelming stream of images, requiring efficient

techniques to review and process this data. In particular, it is important to detect

people and specific objects, and determine whether they represent a threat. A scene’s

3-D structure may give insight to the type of scene it is, the scale of particular ob-

jects, and where potentially important objects, such as cars or people, could possibly

appear. Another application lies in computer graphics: a real-world scene’s geometric

structure may be useful for rendering the scene in 3-D.

Much can be learned about a scene’s structure by analyzing images of the scene

throughout a period of time. Conveniently, image sequences can be easily obtained

from thousands of webcams (if not more) that are publicly available on the internet.

This thesis uses several scenes from AMOS, an archive of images taken from over one

thousand outdoor webcams [6].

Webcam videos give strong cues to understand a scene’s 3-D, geographic structure.

A scene’s structure manifests itself in how a pixel varies in brightness throughout

the day. In outdoor scenes, for example, eastward facing walls are bright in the

morning. In general, a pixel’s brightness over time tells us the geographic orientation

of the surface on which it lies. Previous works have looked at attributes of a pixel’s

brightness over time, such as its brightness extrema (a function of a pixel’s peaks

and troughs in brightness) [9] or components in shadow or sunlight [20]. This thesis
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Figure 1.1: A sample webcam image Figure 1.2: Superpixel segmentation

demonstrates that the time at which maximum brightness is achieved serves as a

basic indicator of geographic orientation.

3-D scene structure has been heavily studied on the pixel level; in other words, the

orientation of the object on which a particular pixel lies [9, 3]. However, there are

limitations with this approach. First, considering individual pixels requires a lot

of memory. Webcam images have hundreds of thousands of pixels, sometimes over

one million. This requires a lot of memory when doing computations on several

images of a scene, especially when explicitly looking at the time-series values of pixels

throughout the video. Second, individual pixels are often quite noisy, especially with

jpeg compression artifacts.

This thesis explores the use of superpixels to address these issues. Superpixels, intro-

duced by Ren and Malik as a method for image segmentation, over-segment a scene,

but attempt to ensure that each segment lies on on only one object, surface, or scene

element [19]. An example superpixel segmentation is shown in Figure 1.

Superpixels are a robust measure of brightness. Individual pixels may be noisy, but

taking the median over all of a superpixel’s interior pixels is more reliable. In ad-

dition, the number of pixels in an image is high even at low resolutions, but using

superpixels greatly reduces the number of pixel “entities” to store. For example, a

scene containing one million pixels can be segmented into one thousand superpixels.

This thesis explores methods of solving for a superpixel’s surface normal, and intro-

duces a software system in which an input scene is segmented into superpixels and

surface normals are calculated.
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Chapter 2

Previous Work

Superpixels have been used in several applications, including 3-D scene structure.

We review some uses for superpixels, as well as methods for their calculation. In

addition, time-lapse videos have also been used for determining 3-D structure, among

other applications.

2.1 Superpixels

Superpixels were introduced by Ren and Malik as a preprocessing step in their seg-

mentation algorithm [19]. They have since been widely used for image segmentation

and labeling [1, 7, 21, 2, 10].

Ren and Malik use normalized cuts in their original superpixel segmentation algo-

rithm. Subsequent superpixel algorithms include “TurboPixels”, which offer a signif-

icant speedup over normalized cuts in higher resolution images [11], and “Superpixel

Lattices” which constrain superpixels to conform to a grid [13]. This thesis uses

Mori et al.’s superpixel code, which is based on normalized cuts, and incorporates

Gestalt-cue based image boundary detectors [14, 12].

2.2 Superpixels for 3-D Scene Structure

Hoiem et al. employ superpixels to segment scenes into three structural components:

the ground, sky, and anything that stands on the ground (buildings, trees, cars,
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etc). As an interesting application, they use this segmentation technique to create

automatic “photo pop-ups” from a scene. [5, 4].

2.3 Time-Lapse Videos for 3-D Scene Structure

Time-lapse video data has been used in many applications, including computing in-

trinsic images [22] and geolocating webcams [6]. Kim et al. use time-lapse data to

compute a camera’s response function and exposure values [8]. Jacobs et al. also

use time-lapse data to compute camera calibration and 3-D scene depth, using cloud

shadows [16]. Narasimhan et al. built a large database (WILD) containing images

of a scene taken every hour for a year. They take advantage of the varying weather

conditions captured in the images, and compute the camera’s calibration, and the

depth of scenes [15, 17].

In “Factored Time Lapse Video”, Sunkavalli et al. compute a matrix factorization of

pixels into shadow, illumination, and reflectance components [20]. Their factorization

allows the user to select pixels with a particular surface normal. In “Clustering

Appearance for Scene Analysis”, Koppal and Narasimhan cluster pixels by surface

normal [9]. They gather time-lapse data by randomly moving a light source around

indoor scenes, and additionally include some outdoor scenes. They analyze a pixel’s

appearance profile, or its brightness over time. Specifically, they show that pixels with

similar brightness extrema, a function based on the peaks and troughs in brightness,

have similar surface normals. This clusters pixels by surface normal, but does not

report what the surface normal is at a particular location.

This thesis also looks at appearance profiles, though of a superpixel rather than an

individual pixel. We define the appearance profile of a superpixel as the median ap-

pearance profile of its interior pixels. In addition, rather than looking at a superpixel’s

brightness extrema, which is a function of all peaks and troughs in its brightness, this

thesis shows that the global maximum alone is a good indicator of surface normal. It

also attempts to improve upon Sunkavalli’s work for scenes with noisier data.
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Chapter 3

Applying Superpixels to Webcams

Two problems can arise when segmenting a single scene into superpixels. First, noise

in an image can affect the segmentation. Second, an arbitrary snapshot may contain

objects that are not “true”, consistent components of a scene. For example, a large

shadow or car can appear in a snapshot, and can influence the segmentation to include

a boundary around it, potentially at the expense of bounding true objects in the scene.

Figure 3.1 (a) shows a single snapshot where cars and large shadows are present. The

generated boundary probability image has high probabilities of boundaries around

the cars, and the shadow that is cast over the red brick building on the left side of

the image. Thus, in the superpixel segmentation, there are borders around the cars,

and the boundary between the building and the pavement is misplaced because of

the shadow (shown highlighted in the bottom image).

Taking the median image from one day is an improvement over a single snapshot.

Figure 3.1 (b) shows a median image of snapshots taken throughout one day. This

eliminates elements that appear in only a few images, such as cars and cast shadows.

However, the cars in the parking lot remain in the image, since they are present in all

images from that day. The segmentation is a slight improvement over the first one.

It correctly bounds the bottom of the right red brick building, but it poorly segments

the white building behind it.

In Figure 3.1 (c), the median is taken over all images from five days. Now, elements

that are present throughout one day but absent in others, such as the cars in the

parking lot, are eliminated. However, the median image that results is somewhat

dark, and the resulting boundary probability image does not recognize some of the

5



Figure 3.1: Segmenting webcam images into superpixels

intra-object boundaries. For example, the part of the probability boundary image

corresponding to the right brick building is quite dark. As a result, the walls of this

building are poorly segmented.

Finally, in Figure 3.1 (d), the same median image is shown, but the probability

boundary image is the mean over the probability boundary images of all snapshots

throughout the five days. Now, since boundary probability images of brighter snap-

shots are incorporated, the intra-object boundaries have higher probabilities. The

resulting segmentation is accurate, as the superpixels do not cross boundaries. In

particular, both the right obrick building and the white building behind it are cor-

rectly segmented. Thus, superpixel segmentations are often more robust on webcam

6



videos than on single images, particularly in scenes with temporary elements, such as

cars, people, or cast shadows.

Figure 3.2 shows three sample segmentations. In each of them, the median image and

mean probability boundary image were used in calculating the segmentations. Note

that superpixels almost never cross object boundaries.

Figure 3.2: Sample segmentations
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Chapter 4

Using Superpixels to Infer Scene

Structure

Inferring scene properties using superpixels is more robust than using individual pix-

els. This thesis examines superpixels’ appearance profiles, which we define as the

median of all interior pixels’ appearance profiles. A superpixel’s appearance profile

is usually much smoother than that of its interior pixels. In addition, the profile is

often a more representative sample of the underlying surface’s brightness over time,

as there may be high variance between its interior pixels. We demonstrate that the

time at which a superpixel plot reaches its global maximum allows us to calculate

the north and east components of the superpixel’s surface normal, which we call a

partial normal. In addition, using the entire appearance profile, we can calculate the

superpixel’s complete surface normal, i.e. its north, east, and upward components.

4.1 Superpixel Appearance Profiles

Figure 4.1 shows four superpixels and their appearance profiles. The top images show

a scene with a superpixel highlighted in red. The plots immediately below show the

appearance profile of a sample pixel within the highlighted superpixel. The next plot

shows the appearance profiles of all pixels within the superpixel. Finally, the bottom

plot shows the appearance profile of the superpixel, which is the median of all interior

pixel appearance profiles.
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Note first that individual pixel plots can be bumpy. Since surface normals are even-

tually calculated from the time at which global maximum in brightness is reached,

bumpiness in individual curves could affect this measure and result in an innacurate

surface normal calculation. The variance in individual pixel plots may also cause

inaccurate max times. Using the superpixel appearance profile rather than individual

pixel appearance profiles reduces the effect of both issues. Observe in Figure 4.1, the

superpixel appearance profiles are smooth, and are a robust indicator of the individual

pixel plots.

Figure 4.1: Appearance profiles of superpixels versus interior pixels. Each column
shows a scene with a superpixel highlighted in red. The second row shows the ap-
pearance profile of a sample pixel within the highlighted superpixel. The third row
shows the appearance profiles of all individual pixels within the superpixel. The
fourth row shows the superpixel’s appearance profile.
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4.2 Expected Brightness of a Surface

Given a normal !N for a surface, we can predict the surface’s expected brightness

throughout a day. According to the Lambertian lighting model, the intensity I of

surface’s brightness is given by

I = ba + b !N · S (4.1)

where b is the albedo of the surface, a is the ambient light, and S is the direction

of sunlight. Assuming that ambient light, and the intensity of sunlight |S| remain

constant throughout the day, the surface is brightest when !N · S is largest; i.e., when

the sunlight is most in the direction of the surface’s normal.

We consider only sunny days in this thesis, since clouds and rain may block the path

of sunlight. We look at images taken about every half hour between sunrise and

sunset. This amounts to about 25 frames per scene; which is a large enough sampling

rate to yield smooth brightness curves, while not so large as to take up too much

memory. We exclude nighttime images, since the sun is not directed toward the scene

so there is no additional information about surface normals to be gained. Also, at

night, there is often artificial illumination from street lamps, etc., that could cause

artifial peaks in appearance profiles.

Note Figure 4.1 (a) and (d) have brightness plots that reach their peak in the morning.

Thus, we would expect the highlighted superpixels to have surface normals with large

east components. Geolocating the webcams that generated the images verifies that

this is in fact true [6], and as we will show in our results, our algorithm does calculate

surface normals with high east components for those particular superpixels.

4.3 Calculating Partial Normals

Based only on the time at which a superpixel reaches its global maximum brightness,

we can calculate the superpixel’s partial normal, or north and east components. Given

the time alone, we know only when a superpixel is brightest, but not how bright it

is at that time. Thus, two superpixels could be brightest at the same time, but one

10



could be brighter than the other. For example, consider a superpixel on an east-facing

building wall, and another superpixel on a slanted roof attached to that wall. They

both are brightest at the same time, namely when sunlight is facing east. However,

the wall will be brighter at that time, since its normal is facing directly east, while

the roof’s normal contains a larger upward component. Thus, if we assume vertical

walls (i.e. assume the up component of normals is 0), we can calculate the east and

north components.

Given a surface normal and the scene’s geographic location, we can calculate its

expected appearance profile. We first obtain the latitude, longitude, and offset from

GMT [6]. Given these, and the local times during which the images were captured,

we can obtain the azimuth and zenith angles of the sun throughout the day [18].

Geographic information is available for scenes from AMOS. We then calculate the

direction of sunlight S = (x, y, z), given the azimuth angle (φ) and zenith angle (θ),

at a given time as follows.

x = sin(θ)cos(φ) (4.2)

y = sin(θ)sin(φ) (4.3)

z = 0 (4.4)

Recall that for partial normals, we set z to 0. We test potential surface normals every

two degrees on the NE-plane for matching global max times; a total of 180 potential

normals. We test appearance profiles of N ·S for N every two degrees on the xy-plane.

Note that N · S may be negative if the sunlight direction is away from a building;

we set negative brightness values to 0. We return the normal with the closest global

max time to that of the the superpixel as the superpixel’s surface normal.

This has the advantage of a small speed-up over calculating the complete normals,

since we test every two degrees in only two dimensions (north, east) where calculating

complete normals tests every two degrees in all three dimensions. Depending on the

application, partial normals may be sufficient.

11



4.4 Calculating Complete Normals

Given the entire appearance profile, we may calculate the complete surface normal,

i.e. all three components, of a surface. We no longer constrain z to be 0, and we test

every two degrees in the entire 3-D space. Here, given zenith angle θ of the sun, the

z component of the direction of sunlight is

z = cos(θ) (4.5)

Rather than comparing just the time of maximum brightness, we compute an error

score between the entire appearance profiles of the superpixel and potential surface

normal. In particular, we use the sum of absolute value differences as our measure,

because they do not penalize heavily for large errors. It is important not to penalize

heavily for large errors in a few special cases, such as shadows. If a shadow is cast over

an object, that object will remain dark for the duration of the shadow. We discuss

shadows further in our results.

We return the surface normal that yields the smallest error score. Calculating the

complete normal takes slightly longer, but produces all three components of the sur-

face normal, which may be necessary depending on the application.
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Chapter 5

Visualization Tool

We present a software tool for easy visualization of surface normals. The tool has

two overall functions: viewing information for individual selected superpixels, and

querying for superpixels with normals within a specified range.

5.1 Viewing Information for Selected Superpixels

The user may choose either partial or complete normals to be calculated, in the

“Method” box. The user selects a superpixel to highlight in the top-left frame. When

the user selects a superpixel by clicking on it, a plot of the superpixel’s appearance

profile appears in the top-right frame. The user may also click on the appearance

profile plot to show the scene at the time defined by the x-coordinate of their click

location. This is useful if the user wants to investigate what is happening to a

superpixel at a particular time; for example, when there is a peak in its appearance

profile.

Upon selecting a superpixel, a plot of the best-matched surface normal’s expected

appearance profile appears in the bottom-right frame. Recall that when calculating

a superpixel’s partial normal, the best-matched normal is the one whose expected

appearance profile reaches its global maximum at the same time. When calculating

complete normals, the best-matched surface normal is the one for which the sum of

absolute value differences is smallest. Figure 5.1 shows a screenshot in which three

superpixels are selected.

13



Figure 5.1: Viewing appearance profiles for selected superpixels. Here, three super-
pixels are selected, shown highlighted in blue, green, and red.

The user may click a radio button in the “Superpixel surface normal” box to view the

corresponding-colored superpixel’s calculated normal. In Figure 5.1, the blue radio

button is selected, which corresponds to a superpixel on the white wall in the right

half of the image. The selected superpixel is also shown highlighted in blue in the

bottom-left frame. The normal is displayed in both Cartesian coordinates (x, y, z),

where x is North, y is East, and z is Up; and polar coordinates (zenith, azimuth),

where the zenith angle is the angle from the vertical and the azimuth angle is the angle

eastward from the north. The blue-colored superpixel’s surface normal is (.47, .88, 0)

in Cartesian coordinates, or (90◦, 62◦) in polar coordinates.

14



5.2 Surface Normal Queries

The user can also submit queries for superpixels with surface normals within a speci-

fied range. Depending on the user’s preference, the query can be entered in Cartesian

or polar coordinates. When querying by polar coordinates, the user may control

the precision with which surface normals match the query. In Cartesian coordinate

queries, the user explicitly sets a range for x, y, and z coordinates. The superpixels

matching the query are shown highlighted in the bottom-left frame. A sample query

is shown in Figure 5.2

Figure 5.2: A surface normal query in polar coordinates.
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Chapter 6

Results

In general, both the partial and complete normal calculations are reasonably accurate.

However, the calculations are thrown off in certain cases, which we discuss below.

Here, we present a comprehensive analysis of one particular scene. See Appendix A

for surface normal queries on other scenes. Finally, we also compare our superpixel

results to results using individual pixels.

6.1 Partial Normals

Recall that partial normals operate under the “vertical wall hypothesis”, and thus

hold the z component equal to 0; or in polar coordinates, hold the zenith angle to

90◦. The scene shown in Figure 6.1 is geographically oriented such that the camera

is facing approximately SE; so walls facing the camera face NW, and perpendicular

walls facing the street face 90 degrees clockwise, or approximately NE.

Figure 6.1: Partial normal queries

16



Figure 6.1 (a) shows a cropped screenshot of superpixels with normals close to

(90◦, 70◦), or approximately NE. Note that the query returns the walls we would

expect, namely the ones facing the street. Also, under the vertical wall hypothesis,

the superpixels on the roof of the red building on the left side of the image are as-

sumed to be facing directly outwards, i.e. have a zenith angle of 90◦, so they too

are returned as part of the result. Similarly, Figure 6.1 (b) shows superpixels that

are facing approximately NW. Again, superpixels on the roof are returned as part of

the result. This query captures all of the superpixels we would expect, but it also

captures some superpixels that we might not expect to see – superpixels that lie on

trees. This is because trees are difficult to segment into meaningful superpixels; they

contain many leaves that may be small, have different surface normals, have space

between them, and move frequently due to wind or other weather conditions. Thus,

their appearance profiles may classify them as facing NW, but this is not a meaningful

result.

6.2 Complete Normals

In calculating complete normals, we test every two degrees in both zenith and azimuth

angle, i.e. we test every two degrees in the entire 3-D space. Figure 6.2 shows

polar surface normal queries for (90◦, 300◦) and (35◦, 300◦). Because we are querying

complete normals, we can distinguish between 90◦ and 35◦ in the zenith angles. For

(90◦, 300◦), we would expect to see vertical walls facing NW; and for (35◦, 300◦), we

would expect to see roofs or other non-vertical elements that also face NW.

Figure 6.2: Complete normal queries
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For the red building in the bottom right and the vertical wall of the red building on

the left, this holds. The vertical walls are highlighted for the (90◦, 300◦) but the roof

of the right building is not; as we would expect. The same roof is highlighted for the

(35◦, 300◦) query, whereas the vertical walls are not; as we would expect. However,

note that the left red building’s NW-facing roof is incorrectly classified.

In Figure 6.3, two superpixels are highlighted; one from the incorrectly classified NW-

facing roof (highlighted in blue), and one from the correctly classified NW-facing roof

(highlighted in green). The appearance profile plot has just been clicked on, and

the cursor indicates that the bottom-left frame is showing the scene at frame x = 6.

Notice that around frame x = 5, the blue appearance profile begins to decrease, but

the green appearance profile increases. We see from the 6th frame that this is because

the blue superpixel is under a shadow. Thus, the blue superpixel’s appearance profile

does not begin to increase until later than that of the green superpixel, so it is classified

incorrectly.

Figure 6.3: Misclassification of surface normal due to a shadow.

Shadows may also cause the misclassification of ground superpixels. Consider the

grass superpixels in this scene, one of which is highlighted in Figure 6.4. We see

in the appearance profiles that the blue-highlighted grass superpixel comes under a
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shadow from about frame 9 to frame 22. This causes its appearance profile to be

matched to the blue one shown, which is shifted to the right from the green, more

accurate, match.

Figure 6.4: A ground superpixel misclassified because of shadows

It is also worth noting circumstances that do not lead to incorrect surface normal

calculations. Figure 6.5 shows a street superpixel whose appearance profile contains

a sharp trough where a car passes through, as is seen in the frame on the bottom-left.

Even though that particular image is the median of several images taken at the same

time (hence the “ghost car” artifacts seen in the parking lot at the bottom left), some

cars are still predominant because of consistent traffic at that time and location over

multiple days; perhaps rush hour. However, the surface normal that is returned is

fairly accurate: the z (up) component returned is 0.85. Because we take the sum of

absolute value differences to match appearance profile curves, large errors such as the

ones at the sharp peaks where cars are passing, are not penalized heavily. A different

error measure, such as sum of squared differences (SSD) would penalize more for large

errors. Thus, short-duration shadows may not throw off the algorithm too badly, but
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as we saw in the case of the grass superpixels, long-duration shadows often cause an

incorrect appearance profile classification with this error measure.

Figure 6.5: Short-duration deviations, such as the trough in this profile, do not have
a significant effect on the surface normal result.

6.3 Comparison to Individual Pixel Normals

We apply the same algorithms for calculating partial and complete normals to in-

dividual pixels. Below, we show comparisons of pixel and superpixel normals for

a few example queries. The pixel surface normal results are often noisier than the

superpixel results; more so in some scenes than others.

Though in some cases, the pixel results may be as good, or almost as good, as the

superpixel results, superpixel normals are always faster to calculate. Recall that

there are about 1000 times as many pixels as there are superpixels, so superpixel

calculations are significantly faster.
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Figure 6.6: Scene 1: Partial normal query (North-West)

Figure 6.7: Scene 1: Complete normal query (North-West)

Figure 6.8: Scene 2: Partial normal query (South)
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Figure 6.9: Scene 3: Complete normal query (East)

Figure 6.10: Scene 3: Complete normal query (East)
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Figure 6.11: Scene 3: Complete normal query (North)

Figure 6.12: Scene 3: Complete normal query (North)
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Chapter 7

Conclusion and Future Work

In general, the partial normal algorithm yields good results assuming vertical walls,

and the complete normal algorithm gives good results for complete, 3-D normals.

The algorithm may fail in a few situations; most notably, long-duration shadows.

One area for future work may be to improve the error measure in appearance profile

classification to reduce the effect of shadows. Also, combining our results with those

of Hoiem et al. in “Automatic Photo Pop-up” [4] may produce more accurate results.

7.1 Reducing the Effect of Shadows

As shown in our results, long-lasting shadows may cause a misclassification of a

superpixel’s appearance profile. If we could reconstruct our images without shadows,

or detect where they are and simply ignore them, we might get better results than

with our current method which leaves them as they are, but tries not to penalize

heavily for them in our error measure. We could also look into taking the median

over several time-lapses of various days throughout the year, rather than a few time-

lapses that are all around the same day. At various points throughout the year, the

varying location of the sun could cast shadows in different directions, and hence the

shadows may cancel each other out.
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7.2 Combining with “Automatic Photo Pop-up”

Shadows have the greatest effect on ground pixels, since they are often surrounded

by many buildings. Recall “Automatic Photo Pop-up” segments a scene into three

components: sky, ground, and anything else (such as buildings); and creates a 3-D

photo popup. Their algorithm could be run as a preprocessing step to segment out

the ground and sky, and the remaining superpixels could be classified geographically

using our algorithm. Alternatively, we could generate a 3-D photo popup using their

algorithm, and define its geographic coordinate axis directions with our algorithm.
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Appendix A

Surface Normal Queries

Figure A.1: Scene 1: Partial normal query (North-East)

Figure A.2: Scene 1: Partial normal query (North-West)
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Figure A.3: Scene 1: Complete normal query (North-East). (a) Zenith = 90◦. (b)
Zenith = 45◦

Figure A.4: Scene 1: Complete normal query (North-West). (a) Zenith = 90◦. (b)
Zenith = 45◦

Figure A.5: Scene 1: Complete normal query (Up)
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Figure A.6: Scene 2: Partial normal query (South). Note that partial normals cannot
distinguish the ground from walls, since it holds the upward component of surface
normals to be 0. However, it distinguishes between the directions that vertical walls
face. Here, of all of the vertical walls, it only returns the left wall of the large building,
which is the only wall that faces south.

Figure A.7: Scene 2: Partial normal query (East)
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Figure A.8: Scene 3: Complete normal query (East)

Figure A.9: Scene 3: Complete normal query (North)

Figure A.10: Scene 3: Complete normal query (Up)
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Figure A.11: Scene 4: Complete normal query (East)

Figure A.12: Scene 4: Complete normal query (North)

Figure A.13: Scene 4: Complete normal query (Up)
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Figure A.14: Scene 5: Complete normal query (90◦, 5◦)

Figure A.15: Scene 5: Complete normal query (90◦, 12◦). This example shows how
precise surface normal calculations can be – here, these two queries’ azimuth angles
are only 7◦ apart.
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