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Abstract

In computational markets utilizing algorithms that establish a general equilibrium,
competitive behavior is usually assumed: each agent makes its demand (supply) decisions so
as to maximize its utility (profit) assuming that it has no impact on market prices. However,
there is a potential gain from strategic behavior via speculating about others because an
agent does affect the market prices, which affect the supply/demand decisions of others,
which again affect the market prices that the agent faces. Determining the optimal strategy
when the speculator has perfect knowledge about the other agents is a well known problem
which has been studied in oligopoly theory in economics. We describe the computation of
such a strategy, and focus on an issue that has received little attention in economics, but
which is of fundamental importance in computational markets: the revelation of demand
strategies that drive the market to the desired equilibrium.

The more realistic setting where the speculator has imperfect information about the
other agents is more delicate. We demonstrate how speculation under biased beliefs about
the other agents can result in considerable losses if traditional oligopoly strategies for perfect
information are used. Furthermore, we show how the optimal demand is computed from
probability distributions on the other agents’ supply/demand functions. We also theoreti-
cally show when an optimal revealed demand function can be constructed independently of
the probability distributions. Some pragmatics of choosing a demand function in the case
of imperfect information (particularly useful for construction of computational agents for
equilibrium markets) are given, and we show—with some empirical support—that it can
be relatively easy to construct demand functions that results in a gain from speculation,
even when estimation errors are large. Finally, game theoretic issues related to multiple
agents counterspeculating simultaneously are discussed.

*. This material is based upon work supported by the National Science Foundation under CAREER Award
IRI-9703122, Grant IRI-9610122, Grant II5-9800894, NUTEK’s Promodis program, and EnerSearch’s
owners: ABB, ECN, Iberdrola, IBM, PreussenElekira, and Sydkraft. A short early version containing
some of the results of this article appeared at the International Joint Conference on Artificial Intelligence
(Sandholm & Ygge, 1997).
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Figure 1: High-level view of an equilibrium morket mechanism.

1. Introduction

General equilibrium theory, a microeconomic market framework, has recently been suc-
cessfully adapfed for and used in computational multiagent systems in many application
domains, see e.g. (Wellman, 1993, 1994; Mullen & Wellman, 1995; Ygge & Akkermans,
1996; Yamaki, Wellman, & Ishida, 1996; Ygge, 1998; Cheng & Wellman, 1998; Kurose &
Simha, 1989). If provides a distributed method for efficiently allocating goods and resources
among agents. The methodology allows for striking efficient tradeoffs across multiple goods
and multiple agents.

1.1 The principles of equilibrium markets

The commodities in an equilibrium market can be physical, e.g. coffee and meat, or they
can be more abstract, e.g. parameters of an airplane design (Wellman, 1994), flows in a
traffic network (Wellman, 1993), electricity in a power network (Ygge & Akkermans, 1996),
or mirror sites on the Internet (Mullen & Wellman, 1995).

The basic form of an equilibrium market mechanism is shown in Figure 1. First the
auctioneer announces a new auction, possibly accompanied by some information for example
about expected prices. Then agents respond with demand functions, telling what change in
allocation they desire at different price alternatives (the demand may be negative, and hence
represent supply). Based on the functions submitted by the agents, the auctioneer tries to
establish a markef clearing price (or rather a set of prices) such that demand equals supply
for each commodity. Optionally the auctioneer may need to iteratively request further
demand and supply information from the agents before equilibrium can be established.
When an equilibrium price has been found, the commodities are reallocated among the
agents as described by their demands and the market clearing prices.

1.2 Agent behavior in equilibrium markets

In an equilibrium market, the optimal behavior of a self-interested agent is to submit a
demand function, which maximizes its utility after the trade has taken place. If an agent
has negligible effect on prices (and does not form a coalition with other agents of such size
that the coalition has any significant effect on prices), then clearly the optimal behavior of
the agent is to give a demand function, which maximizes the agent’s utility taken prices as
given. This agent behavior is referred to as price-taking or competitive (Varian, 1992, p. 25).
So far, competitive behavior has been a standard assumption in computational equilibrium
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markets (Wellman, 1993, 1994; Mullen & Wellman, 1995; Ygge & Akkermans, 1996; Yamaki
et al., 1996; Cheng & Wellman, 1998).

If an agent’s behavior does affect prices, the agent’s optimal behavior is no longer to
act competitively (Hurwicz, 1972; Roberts & Postlewaite, 1976). The assumption that an
agent’s behavior does not affect the prices is unrealistic in many practical applications of
equilibrium markets.

The case where an agent has perfect information about the revealed demand functions
of the other agents is well studied in economics, see e.g. (Mas-Colell, Whinston, & Green,
1995, Chapter 12). However, the convergence aspects discussed in this paper have received
little or no attention in economics. The more realistic case, where there is an uncertainty
about the demand function of the other agents, has more recently been in focus in eco-
nomics (Klemperer & Meyer, 1989) and is not as well understood.

1.3 Electricity markets — a prototypical application area

Electricity exchanges are an application area in which equilibrium markets are often used,
and for which they are quite well suited. For example, the main electricity market in
the Nordic countries, NordPool, see www.nordpool .no, is based on a mechanism in which
all participating agents submit demand functions for the respective hours, and a market
clearing price is established for each hour.

Because there are significant constraints in a power grid (having to do with transmission
losses as well as the fact that the current that enters any given node has to equal the current
that leaves that node), nodal pricing is usually used. That is, the prices are different at
different nodes of the network. Therefore, some players often have very significant market
power in specific parts of the network because they consitute a considerable portion of the
aggregate supply or demand at specific nodes (Borenstein & Bushnell, 1998; Ilic, 1999).
Such parties may want to use supply/demand strategies that capitalize on that market
power instead of using strategies that take prices as exogeneously given. Such strategic
acting is made more likely by the fact that the monetary stakes are large in electricity
markets while the computation capability that is required to speculate profitably is modest
and inexpensive. Put together, agents in electricity markets may be very advanced and use
complex strategies for utilizing their market power. This article provides an algorithmic
blueprint for constructing agents that profitably act strategically on behalf of the real-world
parties that they represent.

In electricity markets, each agent normally has some uncertainty about the demand
functions of the other agents. For example, although an agent with market power may
have very good estimates of the costs of production and utility of consumption of the other
agents, it may be hard to predict the behavior of these agents. ! For example, the other
agents might form different coalitions (se further the example in Section 4.2.3). In this
article we show how an agent with market power can reduce the risk of potential losses
because of speculation in the presence of uncertainty in such important settings by means
of relatively simple parameterized demand functions (Section 4.2.5). Furthermore, we give

1. The reason that it might be realistic to assume that the agent has good estimates of true costs and
utilities is that it often has knowledge about, for example, what other generators there are in a certain
area, and the characteristics of standard generators are commonly known.
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a realistic example where the uncertainty can be completely suppressed by means of our
Theorem 4.1.

1.4 Contributions of the article

The general equilibrium framework has been ubiquitously used in electronic markets be-
tween computational agents in a variety of applications, many of which are related to the
allocation of computational resources such as CPU-time, storage in distributed operating
systems, bandwidth, etc, (Wellman, 1993, 1994; Mullen & Wellman, 1995; Ygge & Akker-
mans, 1996; Yamalki et al., 1996; Cheng & Wellman, 1998). Until now, most of that work
has assumed that agents act as price-takers. However, it is clear that agents are not in
general motivated to act according to this assumption, but to act strategically.

Quite early on, economists studied how much an agent can gain by deviating from price-
taking behavior (Hurwicz, 1972; Roberts & Postlewaite, 1976). More recently this issue has
been investigated also in the presence of uncertainty (Klemperer & Meyer, 1989). Thus,
determining the gain from strategic behavior in these different settings in not new, though
it has received relatively limited attention in the construction of equilibrium markets.

This article focuses on the construction of speculative demand functions. That is, it
deals with how an agent can benefit from deviating from price-taking behavior in different
market settings. Though some contributions (e.g. Theorem 4.1} are interesting from a pure
economics perspective, the focus is on dealing with issues that have a practical value for
constructing computational agents for equilibrium markets. The main high-level questions
that we address are the following;:

o What kind of strategic demand functions can an agent use to make the market algo-
rithm converge to a solution that maximizes the speculator’s gain, and looks like a
real general equilibrium to the other market participants and the auctioneer?

» What methods can an agent use to construct such a strategic demand function algo-
rithmically?

The answers vary depending on the number of goods, the other participants’ demand func-
tions, the speculator’s information, efc.

Compared to the existing literature on oligopoly efc. in economics, which aims at describ-
ing and explaining real world phenomena among human market participants, this article
investigates the use of equilibrium mechanisms for actually constructing markets (particu-
larly computational markets for multiagent systems). The main implication of this is that
whereas the work in economics pays little attention to how equilibrium is reached from
the perspective of speculation, this issue is of central importance for our purposes. The
speculator needs to be careful not to preclude the market from converging under the given
market algorithin that is used for finding the equilibrium. We determine demand revelation
strategies that drive the market to an equilibrium that maximizes the speculator’s gain
and looks like a real general equilibrium to the other agents. This holds for most market
algorithms that can be used for finding an equilibrium. This convergence question is one
type of interesting interplay between speculation strategies and computation.

Another type of interesting interplay between speculation strategies and computation
arises from the agent trying to compute its optimal strategy. We show how to do this both
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for complete and for incomplete information. We also look at the size of the losses that
an agent can suffer if it uses biased information as if that information were exact. More
interestingly, we present Theorem 4.1 which states sufficient conditions on the uncertainty
of the demand of others such that the speculator can construct an optimal demand function
independently of the probability distribution of this uncertainty. In connection with this,
Theorem 4.2 gives sufficient conditions for enabling the construction of a demand function
that fulfills the convergence requirements of most equilibrium market algorithms.

Some pragmatics of choosing a demand function under imperfect information are also
given, suitable for cases where the optimal demand function cannot be computed (for com-
putational reasons and/or when there only is some rough "gut feeling” about risks and
the demands of the other agents). We show—with some empirical support—that it can be
relatively easy to construct demand functions that are significantly better than traditional
strategic demands from oligopoly theory, and which result in a gain from speculation, even
when estimation errors are rather large.

In all, we believe that the methodology presented in this article is important for build-
ing software agents that act in equilibrium markets. It is also useful for builders of the
computational markets themselves where the participating agents represent self-interested
real world parties who can tailor their agents so as to take advantage of the other agents in
the system.

1.5 Organization of the article

‘The article is organized as follows. First, a background—introducing the formalism and the
economic concepts required for the rest of the paper—is given Section 2. The main sections
of the article—Section 3 and Section 4—deal with the construction of demand functions for
the case of perfect and imperfect information respectively. Relevant game theory related to
simultaneous speculation by multiple agents is discussed in Section 5. Section 6 presents
conclusions. The computation of the optimal demand with perfect information is demon-
strated on a specific example in Appendix A, and different market algorithms (mechanisms)
for general equilibrium markets are discussed in Appendix B.

2. Background

This section presents the notation for equilibrium markets and introduces the microeco-
nomic theory that is needed to understand the rest of the article. Those readers that are
very familiar with equilibrium markets and microeconomics may safely skip this section
after having consulted the notational conventions captured in Table 1 of Section 2.5.

2.1 Formal definition of an equilibrium market

An equilibrium market has a finite number of commaodity goods g € [1,2,...,k]. We make
the standard assumptions that the amount of each commodity is unrestricted, and each
commodity is arbitrarily divisible, i.e. continuous as opposed to discrete. Different clements
within a commodity are not distinguishable, but different commodities are distinguishable
from each other. The market also has prices p = [p1,p2,...,pk], where Py € N is the price
of commodity g.
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Without loss of generality, one commodity (let its index be the highest one, k) is regarded
as a numeraire, the unit price of which is one, i.e. pp = 1. This way the prices of all other
commodities can be expressed in terms of this commeodity. For example, we can use US
dollars as this commodity and then say that the price of something else is, e.g., $7 per unit.
When participating in an equilibrium market, each agent submits (parts of and/or samples
of) a net demand function, denoted z;(p), 2z; : R*~! — R¥~1, where 4 denotes an agent.’
Thus, the net demand function describes the demand for & — 1 commodities at k& — 1 prices
(the remaining price being fixed). For example, 2z;([1,2,1]) = [~1,3,0] means that at the
prices 1, 2, and 1 for commodities 1, 2, and 3 respectively, agent ¢ wants to sell 1 unit of
commodity 1 and buy 3 units of commodity 2 for 5 units of commodity 4 (—1-142-3 = 5).
Maybe the agent wants to sell one gallon of gas and buy three gallons of milk for $5. This
example describes a consumer exchanging some commodities for others, but z can be used
for denoting production as well (a produced unit is a negative demand of one).

The process of submitting parts of the demand function may be iterated if the market
clearing price vector is outside the region captured by the submitted demand functions. One
such process is the basic price tAtonnement process (Appendix B) in which point, Zig(Pg),
Zig ' N = N, for the respective commodities, g, are sent to an auctioneer. Each of those
demands is based on the current prices of the other commodities. That is, if those other
prices change, a set of new demand functions may need to be submitted.

Once the auctioneer has established a market clearing price, say p*, defined by

20 =0, g = [1.h~1), )

each agent will receive (or deliver) z;,(p}) of each of the k — 1 commodities, g, and
Zg;& —zig(pg)p; of the k:th commodity.

The analysis in this article is based on the assumption that a mechanism is used that
establishes a market price for each commodity such that supply meets demand, and that
reallocation is performed after these prices have been established, see Figure 1. There
are many market algorithms that can be used to find such an equilibrium. Clearly, if no
such equilibrium exists, no algorithm can find it. In this article we analyze the gains and
losses of strategic behavior via speculation. We do this by analyzing the equilibrium. If
an equilibrium does not exist, the agents will not achieve a resource reallocation, and in
that case, the gains and losses of speculation are not well defined. The equilibrium-based
analysis makes our results independent of the market mechanism—as long as the agents
exchange commodities only after an equilibrium has been reached. This allows our results
to hold for most market algorithms that have been used to find an equilibrinm. An overview
of useful market algorithms for finding equilibria, the algorithms’ convergence properties,
and other computational aspects is presented in Appendix B.

2. In a market with & commodities, it is possible to regard the net demand function as a mapping R* — R*.
However, if one price is fixed (which can always be done without loss of generality) and the demand of
the kth commodity is given by the budget constraint {discussed later), treating k— 1 dimensions is always
sufficient. Throughout the article, whenever k& — 1 commodities are considered, the kth commodity is
assumed to be implicitly given by the above rules, with pp = 1.
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2.2 Basic general equilibrium theory

A market in the general equilibrium framework can have two types of agents, consumers
and producers. Each consumer 7 has a wutility function w;(x;) which encodes its prefer-
ences over different consumption bundles x; = [241, %2, ..., z5,]7, where ziy € Ny is con-
sumer ¢'s allocation of commodity g. Each consumer ¢ also has an initial endowment
ei = [en,emn,.. ., 64", where eig € R4 is his endowment of commodity g. The excess
(net) demand of consumer i for commodity g is

Zig (p) = Tig (p) — Eig. (2)

In the context of general equilibrium, z,(p) is agent i's optimal choice/allocation at the
given prices p (cf. Equation (5) below), and z,(p) hence denotes the agent’s optimal change
in allocation.

The producers—if any—can use some commodities to produce others. Let the vector
Yi = [, 2, -y yjk]T be the production vector, where y;, is the amount of commodity
g that producer j produces. Net usage of a commodity is denoted by a negative number.
A producer’s capability of turning inputs into outputs is characterized by its production
possibilities set ¥, which is the set of feasible production vectors. The profit of producer j
Is p-y;, whereyj € ¥;. The producer’s profits are divided among the consumers according to
predetermined proportions which need not be equal (one can think of the consumers owning
stocks of the producers). Let 6;; be the fraction of producer j that consumer ¢ owns. The
producers’ profits are divided among consumers according to these shares. The consumers
are assumed to have no say-so in the producers’ production decisions.® For presentation
uniformity with the case of the consumer, we define the excess demand of producer 7 (its
optimal change in allocation at given prices, cf. Equation (6) below) to be

2jg(P) = —yjs(P)- (3)

Prices may change, and the agents may change their consumption and production plans,
but actual production and consumption only occur once the market has reached an equi-
librium. The market (p*,x*,y*) is said to be in a general (Walrasian) eguilibrium if

I markets clear: for each commodity, production plus endowments equals consumption.
Formally,
S = Yo+ Yj and @
i i P

IT each consumer, i, consumes a bundle of commodities such that she could not afford
another bundle of higher utility given her initial endowments, the current prices, and
the profits she receives from producers. Formaily,

Xj = arg max ui(x;), and (5)
' XERY | prxiSpreit) ], fipTey; ,

3. Typically share holders will have a say so in the management of the company which has (long term)
effects on the production decision. However, they do not participate in the day-to-day operation of the
production which affects the short term equilibrium (Takayama, 1985) that we study in this article.
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IXI each producer, j, uses the feasible production vector that maximizes his profits given
the prices:
yi = arg mex P"-Y; (6)

General equilibrium solutions have some very desirable properties. First of all, if agents
act competitively as price takers, each general equilibrium is Pareto efficient, i.e. no agent
can be made better off without making some other agent worse off (Mas-Colell et al., 1995).
This means that there is no possible search methodology for finding solutions to the agents’
problem such that every agent is better off than in the general equilibrium.

The solution is also stable against collusion. Each general equilibrium with no producers
is stable in the sense of the core solution concept of coalition formation games: no subgroup
of consumers can increase their usilities by pulling out of the equilibrium and forming their
own market (Mas-Colell et al., 1995).4

Unfortunately, in some settings no general equilibrium exists. As an example, suppose
there is a market in which a producer has two machines, each with different marginal costs
and some minimal base production. If only the least expensive machine is switched on, it
might be the case that the price that the demand side is willing to pay is higher than the
marginal cost for the second machine. However, the result of switching both machines on
can be that there is too much supply and therefore market price drops below the marginal
cost for the second machine. Hence, there is no price such that supply equals demand.

However, sufficient conditions for existence of an equilibrium can be stated on the excess
demand functions z(p):

Proposition 2.1 (Existence of equilibrium) Let

k
Sk—1={pemi:ngm1}.

g=1

Ifz (=3%;2:): S¥ 1 R¥ is o continuous function that satisfies Walras’ law, p-z(p) =0,
then there ezists some p* in SF~1 which is a Walrasien equilibrium (Varian, 1992, pp. 319-
322).

The conditions of Proposition 2.1 are violated if demand is discontinuous. This can
occur for example in network bandwidth allocation when an agent’s utility jumps as the
threshold for being able to participate in a video conference is reached. A second example
of this is a scenario where a producer is able to produce either commodity 4 or commodity
B at the same cost. As soon as the market price of A exceeds the market price of B, she
would therefore produce A, and vice versa. Then, as soon as the price of A is only slightly
higher than the price of B, the producer will only sell A. This would cause the price of A
to fall below that of B, and the provider would prefer to switch to producing B.

Even if an equilibrium exists, it might not be unique. It is casy to construct examples
that have multiple equilibria, see e.g. (Kehoe, 1991, pp. 2066). However, there is an easily
understood sufficient condition for uniqueness:

4. The situation becomes more complex if producers are present: for example, if a set of consumers colludes,
and they own part of a producer via the shares, what can the coalition produce? This issue is discussed
further for example in (Ellickson, 1993).
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Proposition 2.2 (Uniqueness of equilibrium under gross substitutes) An eguilibrium
is unique if the aggregate demand for each commodity is nondecreasing in the prices of the
other commodities (Mas-Colell et al., 1995).

For example, as the price of spaghetti increases, consumers have to convert to satisfying
their hunger with less expensive foods. It follows that the demand of tagliatelle increases.
Thus, spaghetti and tagliatelle are gross substitutes.

On the other hand, the conditions of this proposition are not always met. For example,
as the price of bread increases, the demand of butter decreases. Such complementarities are
also common in production, where the producers often need all of the inputs to create the
outputs.

The following proposition is somewhat more general and covers Proposition 2.2 (Mas-
Colell et al., 1995, p. 623).

Proposition 2.3 An eguilibrium is unique if 2(p) = 0 and {5 - 2(p) > 0 for all p not pro-
portional to P.°

Proof. Assume that p is a market clearing price (which is not proportional to p). Then
P - z(p) = 0, which violates the precondition { - z{p) > 0. Hence the proposition holds. O

The basic general equilibrium framework does not account for externalities. In consump-
tion externalities, one agent’s consumption affects another agent’s utility. In production
externalities, one agent’s production possibilities set is directly affected by another agent’s
actions.

Some mechanisms to attack externality problems include taxes and viewing some of the
externality issues as commodities themselves (Varian, 1992, Chapter 24).

2.3 Acting competitively vs. acting strategically

Classically in equilibrium markets, the agents are assumed to act competitively: they treat
prices as exogenous. This means that each agent makes and reveals its demand (supply)
decisions truthfully so as to maximize its utility (profit) given the market prices—assuming
that it has no impact on those prices. The idea behind this price-taking assumption is
that the market is so large that no single agent’s actions affect the prices. However, this is
paradoxical since the agents’ declarations completely determine the prices. The price-taking
assumption becomes valid as the number of agents approaches infinity: with infinitely many
agents (each of small size), each agent is best off acting competitively since it will not affect
the prices.

However, in markets with a finite number of agents, an agent can act strategically,
and potentially achieve higher utility by over/under representing its demand (Malinvaud,
1985, pp. 220-223), (Hurwicz, 1972). In doing so, the agent has to speculate how its

5. This is under the assumption that both z and p are given in k dimensions and that no price is considered
fixed. If one price is fixed (which can always be done without loss of generality), the ”proportional to”
changes to "equal to”, which is a stronger claim. If k dimensions are used and no price is fixed, then all
price vectors proportional to P result in the same equilibrium in terms of allocations.
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misrepresentation affects the market prices, which are simultaneously affected by how other
agents respond to the prices which changed due to the first agent’s strategic actions.

Under the assumnption that each agent acts competitively, the outcome of the market
mechanism described in Section 2.1 is equivalent to the general equilibrium (cf. Section 2.2).
However, in markets with a finite number of agents, competitive behavior need not be
optimal. Then there may be a difference between the revealed demand, z (of Section 2.1),
and the competitive demand, z (of Equation (2) and Equation (3)), since there can be a
profit from revealing a demand that deviates from the competitive demand. The outcome
of the market of Section 2.1 is then not a (competitive) general equilibrium.®

In accordance with existing literature on equilibrium markets, e.g. (Cheng & Wellman,
1998}, we allow ourselves to call the revealed demand the net ezcess demand. We, however,
denote it by z, rather than just z, since z is often used to denote competitive demand.

One should carefully keep in mind that the different properties of net demand and general
equilibrium found in the economics literature do not always apply to equilibrium markets.
For example, some of the desirable properties, such as Pareto efficiency and coalitional
stability, are lost if agents act strategically instead of competitively. Often, the less the
agents deviate from competitive behavior, the closer the market outcome of an equilibrium
market will be to the competitive general equilibrium. Investigating the agents’ motivation
for deviating from competitive behavior is one of the main themes of this article.

On the positive side we have that much of the theory in economics focuses directly
on the demand functions. For example, Propositions 2.1, 2.2, and 2.3 were based only on
properties of the demand functions and do not assume competitive behavior. It follows that
they hold for z as well as for z. Therefore, the theorems can directly be used for telling
whether or not an equilibrium exists and is unique in a given collection of demand functions.
The propositions may also be used by auctioneers as requirements on submitted demand
functions. For example, in the main Nordic electricity exchange, NordPool, the demand
functions submitted for the respective future hours must be continuous (NordPool, 1998),
and therefore the equilibrium is guaranteed to exist.”

2.4 A method for analyzing the potential gains from speculation

The goal of a self-interested consumer is to find a consumption bundle that maximizes its
utility. To find the optimal bundle when acting in an equilibrium market, the consumer
must speculate how other agents respond to prices. This is because its demand decisions
affect the prices, which affect the demand and supply decisions of others, which again affect
the prices that the consumer faces. Using the model of other agents, the consumer computes
its optimal demand decisions. The other agents may also be speculating (in the same or
some other way). That is included in the agent’s model of the other agents.

8. Strategic behavior by an agent can also cause the market allocation to be outside of the core, i.e. not
coalitionally stable.

7. In NordPool, the demand functions for different hours are sent separately and no iterations are performed
after the prices for the respective hours have been established, i.e. 82;,(P)/dpn = 0, g # h is imposed by
the mechanism. Due to the high correlation between financial (long term) and spot {short term) market
prices, this market works relatively well anyway, even if 0z;,(p)/dpn # 0, g # h for most agents {Wolak,
1998; Ygge, 1999). Under the assumption that there exists a price so high that there is an excess supply
and that there is a price so low that there is an excess supply, the equilibrium hence exists.

10
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Let there be n agents in addition to the speculating agent, s, that we investigate. The
excess demand of these n agents for commodity g is

Z3(p) = z,(P) (7)

i=1
We do not make any restricting assumptions about how these n agents make their sup-
ply/demand decisions which determine the excess demands. In particular, we do not assume
that they act competitively. The speculating agent that we investigate uses its information
about zj(p) as the basis of its strategic behavior as is now described.
The total excess demand with the speculating agent included is

2y(p) = z5(P) + z4,(P) (8)
Once the market has reached an equilibrium, excess supply meets demand, i.e. 24(P) =0
for every commodity ¢g.8 Substituting this into Equation (8) gives

ze5(p) + 25 (P) = 0 (9)

2.4.1 CASE A: SPECULATING CONSUMER
A solution to the following maximization problem gives the highest utility that a speculating
consumer can possibly obtain.

max us(xs(p)) s.t. (10)

Tse(p) > 0 (consumer does not produce)

Tsg(P) = esg — 25 (p) (supply meets demand)

P-2,(P)< D G p-yr(p) (budget constraint)

heproducers

This is obtained provided that the equilibrium is unique and the market mechanism finds
it {this is discussed further in Section 3).

2.4.2 CASE B: SPECULATING PRODUCER

"The goal of a self-interested producer is to find the production vector that maximizes its
profits.® Again, this requires a model of how others react to prices because the producer’s
production decisions affect the prices, which affect the demand and supply decisions of
others, which again affect the prices that the producer faces. A solution to the following
maximization problem gives the highest profit that a speculating producer can obtain.

max p-ys(p) sit. (11)

ve(p) € Y (feasible production plan)
Ysg = 24 (p) (supply meets demand)

8. This holds even if agents are strategically—assuming that the market algorithm finds an equilibrium.
The equilibrium reflects how the speculating agent is acting strategically, and how the other agents have
reacted to the new price vector that came about due to the strategic agent’s actions.

9. This makes the standard assumption that the producer is able to alter its production plan costlessly dur-
ing the search for equilibrium. If the computational cost of replanning the production is non-negligible,
this may not be the case.

11
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This is obtained provided that the equilibrinm is unique and the market mechanism finds
it. The last equality turns into > if free disposal for both inputs and outputs is possible.

We call the solution to the applicable optimization problem above (depending on whether
the speculator is a producer or a consumer)} p*.
2.5 Notation

The notation used in this article is summarized in Table 1.

symbol interpretation
t and g (indices) These indices denote an agent and a commodity,
respectively.
k The number of commodities in the market.
i The number of agents in the market.
P = [p1,02,-- -, Pk A price vector, where p, is the price of commodity g.
u(3x) An agent’s utility for allocation x.
e=ley, e, .., e The endowment (initial allocation).
X = 121, %9,...,Tg] The allocation after the trade.
z(p) = [z1(p), 22(p), - . ., 2x(P)] An agent’s competitive demand.
Z(p) = [2:(p), 22(P), - . ., 2,(P)] | An agent’s revealed demand.

Table 1: Nototion of this article.

3. Constructing a speculative demand function under perfect information

This section shows what strategies a speculator with perfect information should use so as
to drive the market to a solution that maximizes his gain and looks like a (competitive)
general equilibrium to the other agents. As defined by Equation (10) or Equation (11), the
determination of the speculator’s highest possible profit involved a maximization over price
vectors p. However, the fact that the speculator does not directly control the price vector—
because prices are affected by others’ excess supply and demand decisions as well-——makes
optimal speculation more difficult. In particular, the speculator is only in control of his
revealed excess demand (or supply). Therefore, the speculator would like to choose his Zg
so as to drive the market to his desired price vector p*. In other words, an agent’s best
strategy is to declare an excess demand function such that the market will converge to the
prices that are optimal for him. More formally, when perfect information is available, an
agent’s best strategy—even if the other agents are not acting competitively, and some of
them are producers—is to declare an excess demand function with the property

z,4(P") = —25(P") (12)

for each commodity g, and which has a form such that the particular algorithm for searching
for the market equilibrium converges to p*.

12
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If the market algorithm were guaranteed to {ind the equilibrium if one exists, the spec-
ulator could simply use a strategy, z,(p), that satisfies

zsg(P") = —z4(p") and
z,4(P) # —z5(p) if p # p* (13)

to get his most desired outcome, p*. There are several centralized algorithms with such
guarantees of finding an {approximate) equilibrium. The first was Scarf’s algorithm {Scarf,
1967), and several improvements have been made since, see (Kehoe, 1991; Ellickson, 1993).
However, most distributed equilibrium market algorithms—such as the tatonnement
schemes discussed in Appendix B-—use iterative schemes for approaching the equilibrium.
Under such schemes some speculative excess demand (or supply) functions z,(p) lead the
algorithm to converge to p* while others might cause the algorithm to not converge even if
z,(p) satisfies Equation (12). Now we will discuss convergence of the market to the specu-
lator’s desired solution. In particular, we want to analyze what conditions the speculator’s
excess demand (or supply) function needs to satisfy so that the market converges. For
pedagogic reasons, the topic is covered from more specific settings to more general ones.

3.1 The case of two commodities

Having computed the optimal speculative solution, p}, we would like to describe the strategic
behavior leading to this solution under any particular market mechanism used. Before
continuing we need to introduce the notation %:9(:—’:1. For now, let us define it as follows---

later in the article {in Theorem 4.2) we will generalize this definition. We write 6—{;;—?1 <0
if f(x) is non-increasing in z;, and we write %l 2 0if f(x) is non-decreasing in ;.
If py is established via an algorithm whose only requirement for finding the equilibrium

is 6z1(p1)/6p1 < 0, and we have that 627 (p1)/dp1 < 0 (i.e. excess demand in the market
without the speculator is non-increasing with increasing price), we see that if

2a(o) = ~27(0]) and 22221 <, (14)
1

then there is a single solution for p; = pj, and that solution will be found by the algorithm.
An example market algorithm with this convergence requirement is binary search, which is
carried out on one of the prices (the other one is fixed, e.g. to 1, without loss of generality).
The WALRAS market simulation uses that algorithm (Cheng & Wellman, 1998).

It turns out that simple excess demand revelation strategies exist for the speculator
which guarantee that an equilibrium will be reached where the speculator’s maximal gain
from speculation—that was derived in Section 2.4-—materializes. For example, it turns out
that two classic bid types from microeconomics satisfy Equation (14): the Cournot quantity
bid and the Bertrand price bid (Varian, 1992). The Cournot bid is given by

2s1(p1) = —21(p}), (15)

13
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where 27(p7) is the speculator’s (perfect) estimate of zP'(p}). The Bertrand bid can be
approximated by

C, . El<p_{—e .
z2ap) =-ZEN+{ C—m - —9%, pi—e<p <pi+e (16)
_C: P >p{+61

where pf is the speculator’s perfect estimate of p], C is a large positive constant, and € is a
small positive constant. That is, by selecting a sufficiently large C' and a sufficiently small
€, the market clearing price will be arbitrarily close to pi.

3.2 Multiple commodities under gross substitutes

The reasoning of how to drive a market to the desired equilibrium extends easily to a
market with more than two commodities. If p is established via an algorithm whose only
requirements for finding the equilibrium are §z;(p)/dp; < 0 and éz;(p)/dp; > 0, i # j {e.g.
WALRAS or the basic price tdtonnement algorithm which is reviewed in Appendix B), and
we have that 827 (p)/dp:; < 0 and 6z}(p)/dp; > 0, ¢ # j, then Equation (14) should be
generalized to

no 6z54(p) 0z9(P)
Zeg(P") = ~23(p") and —5;:»» < ( and % >0,g#h (17)

Again, the following simple speculation strategies satisfy these conditions (as in the two
commodity case, g # k):

Esg(pg) = —E?(Pz), (18)
or -
C, Py < Dy — ¢ .
Esg(pg): C_(pg_ﬁ)%: 'P;_Emgpggp;‘i'f (19)

This means that optimal speculation is computationally trivial if the speculator knows
the others’ excess supply and demand decisions, and if the market would have satisfied the
convergence condition (Equation (17)) had the speculator not been present. To construct its
optimal excess demand function, the speculator does not need to know the others’ complete
excess demand functions. The speculator only needs to know the others’ aggregate excess
supply and demand decisions at the particular price point, p*, to which the agent wants to
drive the market, see Equation (10) and Equation (11).

3.3 The general case

Many algorithms for finding an equilibrium, for example basic price tatonnement (Propo-
sition B.1), are guaranteed to find an equilibrium, P, if

z(P) = 0 and P - z(p) > 0 for all p not proportional to . (20)

This is a strictly weaker requirement than gross substitutes (Mas-Colell et al., 1095). The
proportionality condition collapses to an equality condition when one of the prices is fixed,
e.g. pr = 1 as before, which does not lose generality since prices are only relative anyway.

14
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Say that Equation (20) is a sufficient convergence condition for the algorithm in question.
Now, the speculator can drive the market to the price point p* that maximizes his gain by
using a strategy z,(p) that satisfies

z,(p*) = —2"(p") and p* - [z,(p) + 2"(p)] > 0 for all p # p*. (21)

Next we derive a simpler (but somewhat more restrictive) condition that suffices to
guarantee that Equation (21) is satisfied.

Proposition 3.1 Assume that the algorithm converges if Equation (20) holds. Assume
also that

z"(p™) =0 and p™ - 2"(p) > 0 for all p # p™. (22)

In other words, if the speculator would not participate, there would be some market clearing
price point, P™*, and the market would reach it. Now, the speculator can drive the market
to the price point p* that mazimizes his gain by using o strategy z,(p) that satisfics

2s(p") = —2"(p") end p* - 2,(p) > (P™ — p*) - 2*(p) for all p # p". (23)
Proof. The equality in Equation (21) is trivially satisfied by the equality in Equation (23).

What remains to be shown is that the inequality in Equation (23) satisfies the inequality
in Equation (21):

P" - z,(p) > (P™ - p") - 2"(p)
= p*-z,(p) > (™ -p") 2" (p) —p™ - 2"(p)
& p'zp)>—-p*-2"(p)
& p*-lz(p) +2(p)] > 0

This completes the proof. O

The simplicity of Conditions (21) or (23) makes optimal speculation easy when the spec-
ulator knows the aggregate excess demand function of the others, and once the speculator
has determined to which price point, p*, he wants to drive the market.

However, the extremely simple speculation strategies which were adequate in the case
of gross substitutes (Equation (15) and (16)), do not in general satisfy the inequalities in
Conditions (21) and (23). This is is not surprising: when there is more structure in the
others’ aggregate excess demand, such as gross substitutes, the speculator can capitalize on
that structure by using simpler strategies.

In general, a market can have multiple equilibria, and the speculator would like to make
sure that the market converges to one of the ones that maximize his gain, not to one of the
other ones. In markets that satisfy gross substitutes with the speculator included, this is not
a concern since such markets can have at most one equilibrium (Proposition 2.2). However,
in more general settings, the speculator should make sure that his strategy, z,(p), satisfies
z:(p) = —2"(p) only at the price vector(s) to which he wants the market to converge.
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4. Constructing a speculative demand function under imperfect
information

"This section extends the discussion to include the impact of biased beliefs and uncertainty
on the speculating agent’s strategy. Above, when an excess demand function was chosen
based on perfect information, the exact form of the function was unimportant as long as
it fulfilled Condition (21) or (23). However, if the speculating agent cannot estimate z?
perfectly, its outcome will depend on the function chosen. In what follows, we analyze the
choice of a demand function under biased beliefs or uncertainty.

4.1 Convergence to a market equilibrium

Independently of how the Zgq function is chosen, the possible market outcomes can be
determined by solving Equation (9). If no solution exists, no algorithm can find it, and if
multiple equilibria exist, an analysis that is specific to the market algorithm is required to
find out which one will be reached.

The convergence criteria under imperfect information are, of course, the same as un-
der perfect information, i.e. the criteria described in Sections 3.1 — 3.3 are still valid.
In the case of monotonically decreasing demand and gross substitution, i.e. Sections 3.1
and 3.2, uncertainty causes no problems in terms of convergence: if the demand of the
speculator is monotonically decreasing (and if the commodities are gross substitutes in the
multi-commodity case) based on imperfect information about the other agents, they will of
course still be monotonically decreasing (and gross substitutes) regardless of the estimation
error about the others’ demand. Thus, under the assumption that the other agents fulfill
the requirements of monotonically decreasing demand and gross substitution and that the
speculator fulfills Equation (17), the market equilibrium will be established as in the case
of perfect information.

For the general multi-commodity case of Section 3.3, however, things are more compli-
cated. Imperfect information can cause the speculator to create a demand that leads to
nonconvergence of the market. Specifically, to guarantee convergence of the market to his
desired equilibrium using Condition (21), the speculator would have to choose z,(p) so that
z,(p*) = —2"(p*) and p* - [z,{p) + 2"(p)] > O for all p # p*, which depends on the others’
aggregate demand function, z*(p). The following example shows that if the speculator
uses biased information to construct his speculative demand, the market may not converge
even if an equilibrium exists under the constructed speculation, and the market would have
converged had the speculator not participated in it.

Example. Let k& = 3, and let p3 = 1. Say that the market algorithm used is basic price
tatonnement. This means that the market searches for market clearing prices using the
following price adjustment rule (this is discussed further in Appendix B):

dpg
Say that the other agents’ aggregate demand without the speculator is

21(p@®) = (p2—p3") — (1 — %)
23(p@)) = —(p1—pt) — (p2 — P5*), (25)
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where p™* is the market clearing price vector i the speculator did not participate. Then
the price trajectory of the market without the speculator is given by

d *
% = (p2—p3") — (pr — p{")

d :

TE = (o -5 — (22 - ) (26)

Moving to a coordinate system where z = py — p§* and y = p; — p?* this can be written as

dy
T T+ ay
d
&—? = —y+azx. (27)
where @ = —1. This pair of differential equations can be solved generally as follows (Sim-
mons, 1972). First, eliminate dt:
dy z+ay

= X 2
dr ar—vy (28)

This is solved by introducing polar coordinates » and ¢ defined by z = rcos§ and y = rsin#.
Since

r? = z?+9y® and 6 =tan™? ?—;-,
we see that
rdT =1z 41 dy and rzdg = mdy
dz Yz dz ~ Cdz Y

Using these equations, Equation (28) can be written as

dr

@ = ar,
S0

r=ce®, (29)

If @ < 0 this represents a spiral that converges counterclockwise to z = 0,y = 0, ie.
P2 = py", pr = pT*. If @ > 0 this represents a spiral that diverges clockwise from that point.
If @ = 0, this represents a circle centered at that point. The constant, ¢, depends on the
starting point, i.e. what initial prices the price tdtonnement algorithm uses.

So, since a = —1 in the market without the speculator, the market would converge to
p1 = pY", p2 = p§*. Now, the speculator wants to drive the market to an equilibrium with
prices p*. One way he can do this is by constructing total aggregate demands that lead
to a converging spiral according to Equation (29). For example, the speculator can set the
total aggregate demands as

20) = (o215~ £(o1 ~p})
Z®E) = (1)~ 52—} (30)

This would make the market converge to p1 = p},ps = p} according to Equation (29) since
1
a = -3 < 0.

17
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However, say that the speculator has the following biased beliefs about the others’
aggregate demand:

zZi{p(®) = (p2—p8") — 2(p1 —p1")
Z(p(t) = ~—(p1—p7") —2(p2 — 2%"). (31)

So, the speculator still believes that the market would converge to ps = py*, ;o= pt by
Equation (29} if he would not participate, but the spiral would be different than the actual
one since the believed ¢ is —2 while actually a == —1.

The speculator constructs his demand function using the target aggregate demand
(Equations (30)), and his beliefs of the others’ aggregate demand (Equations (31)) as fol-
lows:

za(P(?)) = Z(p(t) — 2 (p(t) = —p3 +p5* + 1.5py + 0.5p7 — 2p"
zo(p(t)) = Z(p(t)) —23(p()) = pf — pI* + 1.5p2 + 0.5p4 — 2p%". (32)

As discussed above, the speculator designed the target demand so that this speculation
would make the market converge to p*.
However, the actual total demand with the speculator is now

z(p@E) = za(p(t)) +28{p(t)) = p2 — p5 + 0.5p1 + 0.5p; — p7*

23(p(8)) = ze2(p(t)) + 25(P(t)) = —p1 + pi + 0.5py -+ 0.5p5 — p3~. (33)
This pair of equations can be rewritten as
1
z(pt)) = =(@—4)+ 5(171 - B)
1
zPE) = =-(m-B)+ §(P2 ~ 4), (34)
where
3 3pi + 4p5 + 2p7 — 4pf”
5
A = 2B —2p] —ph+ 295" (35)

Therefore, the market will diverge in a spiral since ¢ = % > 0. An equilibrium exists now
at p1 = B, pa = A, but it is unstable: the basic price tdtonnement algorithm will not find
it unless the algorithm happens to be started exactly at that setting of prices.

Figure 2 illustrates the setting numerically when the market would converge to Pt = 3,
py" = 2 if the speculator would not participate, and the speculator’s desired solution is
pi=4,p;=>5.

In batch mode market algorithms where each agent submits an entire demand function
up front, such divergence problems can easily occur. On the other hand, in iterative algo-
rithms, the agents post only parts of the demand curve to the auctioneer at every iteration,
and at the beginning of each iteration, the auctioneer posts new prices for the agents to ob-
serve. In the iterative algorithms, the speculator can observe the divergence, which signals
to him that his estimate of the others’ aggregate demand function is incorrect. Then the
speculator can try to gather additional information of the others to get a better estimate,
and try to avoid nonconvergence.
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Figure 2: Left: Convergence of the prices to p} = 4, p§ = 5 in basic price tdtonnement as
the speculator designed. The curve represents particular starting prices—defined
by 6 = 0,c = 400—that are far from p*. Right: The speculator’s strategy causes
the market to diverge because the speculator had biased information of the others’
aggregate demand function. The curve represents particular starting prices—
defined by 0 = 0,c = 0.001—that are close to the new equilibrium p; = B,
po == A,

4.2 Deriving the demand function

Imperfect information about the other agents can be of many forms. Here we will investigate
two different forms: the case were the speculator has biased belief (i.e. is not aware that it
has imperfect information), and the case were the speculator has probability distributions
of the relevant parameters of the other agents.

Now we demonstration of the reasoning via a simple example. Let the market have
no producers. In such pure exchange markets, the consumers just reallocate their initial
endowments among themselves. The set of agents is similar to the one described by Hu
& Wellman (1996, 1998). Specifically, we let every agent—except for the speculating one
that we investigate—be a competitive agent with constant elasticity of substitution, i.e. an
agent having a utility function of the form

1
s

wlx) = (Z az-gxgg) , (36)
g=1

where we have chosen oy = 1 and p = % Since these agents act competitively, and the
speculating agent is assumed to have perfect information, the analysis of this example is
mechanism independent as long as the resources are reallocated after equilibrium (Equa-
tion (9)) has been reached.

For simplicity and readability, we use only two commodities (k = 2). The endowments
are the same for all the competitive agents and they are 2 for commodity 1 and 1 for
commodity 2. We let the speculating agent have the utility function

us(x) = i In(zsg), (37)
g=1
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and an endowment of 1 for both commodities. Those readers that are relatively unfamiliar
with economic oligopoly theory are encouraged to study the derivation of an optimal strat-
egy for this example under perfect information in Appendix A. An understanding of the
perfect information case significantly simplifies the understanding of the case of imperfect
information, which we will present next.

We now use an error /uncertainty model with two free variables, ¢, and €p. The speculat-
ing agent’s estimate of the utility function of the competitive agents is (cf. Equation (36))*

.__1'—
Tlx) = (1 + ea)al 7 + 255+ ) 0559 (38)

4.2.1 BIASED BELIEFS AND NAIVE DEMAND FUNCTIONS

In this section we show that strategies that are optimal in the setting with perfect infor-
mation, e.g. the classical Cournot and Bertrand models, can be devastating in the setting
with biased beliefs, even when the beliefs are only slightly biased.

Note that dz)(p1)/dp1 < 0 holds for this example if the Cournot and Bertrand bids
are used, independent of the size of the error. Hence, provided that the speculator stops
learning about 27{(p1) at some point in time, and hereby fixes z,; (p1), any market algorithm
whose only requirement for finding an equilibrium is that 8z, (p1)/0p: < 0, is guaranteed
to converge.)! An example of such an algorithm is binary search, which is also used in
WALRAS (cf. Appendix B).

The results of using the Cournot bid in our example market are illustrated in Figure 3
and Figure 4. With two competitive agents, the speculator is worse off by speculating than
by acting competitively whenever |e,| > 4%.

Next, the outcome of Berirand bids in the presence of biased information is shown
in Figures 5 and 6. It is clear that with this type of bid the situation is even worse for
the speculator. With two competitive agents, the speculator is worse off by speculating
whenever le,| > 0.15%. With a hundred competitive agents, the potential losses from
speculation as a result of biased information are drastic already when |e,| > 0.005%.

Generally we can say—with some empirical support from the above simulations—that
when the speculator’s market share is significant, the gain from speculation is relatively
large even with some estimation error. But as the speculator’s market share decreases, the
gain from speculation decreases and the potential losses increase significantly, even if the
information is only slightly biased.

4.2.2 FINDING THE OPTIMAL DEMAND FUNCTION IN THE GENERAL CASE

Clearly the demand functions of the previous sections (Cournot and Bertrand bids) are
rather naive and they are unreasonable in the presence of imperfect information, cf. (Klem-
perer & Meyer, 1989). However, determining the optimal demand function for certain

10. If the speculating agent can learn about the other agents and change its excess demand during the market
process, the error might decrease during this process. The error described here is the error remaining
when the process terminates.

11. However, the speculator can of course have estimation errors that are so large that the speculator cannot
afford to pay for the bids that it makes, i.e. the speculator is limited by its budget constraint. For
example, if the agent tries to set a price that is far from the competitive price using a Bertrand bid with
a large number of competitive agents, the cost in terms of z; may be enormous.
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Figure 3: Gains and losses from speculation under biased information with a Cournot bid
as a function of e, ond €, for n=2.
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Figure 4: Gains and losses from speculation under biased information with a Cournot bid
as o function of €y for ¢, =0 and n € [1,2,5,10,100]. The higher the value of n,
the lower the possible gain and the greater the loss when beliefs are biased. Hence
the top curve corresponds to n =1 and the bottom curve corresponds to n = 100.
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Figure 5: Gains and losses from speculation under biased information with o Bertrand bid
as a function of e, and €, for n = 2.
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Figure 6: Gains and losses from speculation under biased information with o Bertrand bid
as a function of ¢y for e, = 0 and n € [1,2,5,10,20,30]. The higher n is, the
lower is the possible gain, and the greater is the loss when beliefs are biased. Hence
the top curve corresponds to n = 1 and the bottom curve corresponds to n = 30.
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probability distributions is very hard in the general case. Already with our very simple
exarnple, finding the optimal demand function (based on maximization of expected utility)
requires the solution of

1
00 oo a;‘i:’_p(2m+1}
Hla'XZsl(Pi) f-—oo f-n-oo In (1 —-n (le'_ﬁ(aTL _,0_1_ -2 +
1

1_IPP{J_ +1)

=
In (1 +nm ( - p1(2m+1) - 2)) Jol€a) folep)dende,
P

17 (e T 4)

(39)

such that zg(p1) + 27 {p1) =0,

where a1 = 1+ €q, p = 0.5+ €5, fa(ca) is the probability distribution of ey, and f,(e,) is
the corresponding distribution for €,.'2

Solving the above problem can be very complicated, especially with more complicated
demand functions of the other agents, a more complicated utility function for the speculator,
realistic probability distributions, and larger numbers of commodities (i.e. k> 2). In this
example we only modeled uncertainty about the utility of the other agents, but assumed
perfect knowledge about their behavior, i.e. that they act competitively. This need not
be the case in general. We will not discuss the general case further here since it is mainly
a matter of different aspects of numerical analysis, but investigate a particular setting in
which an optimal demand function can be relatively easily established, and then discuss
some more pragmatic approaches to speculation.

4.2.3 CASES WHERE THE OPTIMAL DEMAND FUNCTION IS INDEPENDENT OF THE
PROBABILITY DISTRIBUTION

What makes the solution of Equation (39) so complicated is that when determining the
optimal 2, (p;) for each relevant price'?, p;, many different points in the uncertainty space
must be considered. To give a very simple example, assume that in the above error model
two possible errors, (e5,¢}) and (e2,€2) result in the same optimal price, pf, but that
201, €a,65) # 27 (0}, €51 €5). Then z,;(p1) must be some type of compromise based on the
probabilities of (e}, €}) and (€2, E!%). However, if the setting is such that no ” compromises”
are required, the problem becomes significantly easier. The following theorem captures this
reasoning formally.

Theorem 4.1 Let a and o be variable assignments denoting certain values of uncertain
parameters of the other agents. If p*(a) = p*(¢’) = z™(p*(a),a) = 2*(p*(a), &), then it is
possible to construct an optimal demand function independently of the probability of a vs.
the probability of a'.

Proof. Constructive proof: Let the demand of the speculating agent for each price, p, be
computed as follows. It need not be the case that for every p, there exists an a such that
p*(a) = p. For all p for which no such a exists, z,(p) can be set to any value such that

12. fj:o fol€a)dea = f_moo folep)de, =1
13. Here, "each relevant price” means every price at which a demand is requested by the auctioneer. This
15 not limited to the simple one dimensional case discussed in the example.

23



SANDHOLM & YGGE

the market algorithm converges to p, c¢f. Figure 8. For every p for which there exists an a
such that p*(a) = p, choose z,(p) = —z"(p, f(p)), where 2*(p, f(p)) is the demand of the
other agents at price p and variable assignment f(p), and f(p) is the variable assignment
for which p*(f) = p. From the precondition p*(a) = p*(a’) & z"(p*(a),a) = z"(p*(a),a’)
we then have that it is possible to construct an f(p) and a z,(p) which is optimal for every
possible market clearing price. O

We now demonstrate how this theorem can be applied to the above example. In our
analysis here we limit ourselves to ¢, > —1 and —0.5 < ¢, < 0.5 since going outside
these borders would make the estimate of the utility function of the competitive agents
(Equation (38)) non quasi-concave and that would have a big, yet rather uninteresting,
impact on the analysis. Going back to our example, it turns out that ¢, == 0 or ¢, = 0
fulfills p*{a) = p*(a’) & 2z"(p*(a),a) = 2"(p*(a),a’). (See Figure 7 for the case where
€p = 0). Therefore, if the speculator knows either {en = 0,¢, € (—0.5,0.5)} or {e, €
(—1,00),€, = 0}, it can use a very simple algorithm (Algorithm 1) to determine z,; (p1).24
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Figure 7: The optimal demand when e, = 0 is plotted together with —z"(p, e,) for a number
of different €, values.

Despite the somewhat naive nature of Algorithm 1 (including binary search in two
dimensions}, it is relatively efficient and the computation of z,; for a specific price is a
matter of a few milliseconds with a regular 300MHz uniprocessor computer. If required, the
computations can be sped up significantly by the use of a Newton-Raphson method (see
e.g. (Press, Teukolsky, Vetterling, & Flannery, 1994)) as that would not only decrease the
number of iterations of each search, but also easily take advantage of previous estimations
of p] when enfering the second repeat-loop of Algorithm 1. We ran Algorithm 1 on a large
number of different prices for ¢, = 0 and for ¢, = 0. The optimal curves of these two cases
are plotted in Figure 8.

14. See also the €' + + code available on-line (Section 6.
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//Let € represent e, or €, depending on which one is set to zero.
€maz = initial max guess; €m;, = initial min guess
Repeat

£ —
— Emox—Ctmin
€ 2

p7*** = initial max guess; p7" = initial min guess
Repeat
EE __TTiT
pl = A
e Bus(p®) . .
if ua;ggfl—) is sufficiently above zero®®
P =i
. Gus(py) . .
if —I—apl is sufficiently below zero
Py =p1

Until %ﬂ is sufficiently close to zero
if pI — p1 is sufliciently above zero
€max = €
if p7 — p1 is sufficiently below zero
Emin = €
Until pj is sufficiently close to py
za{p1) = —21(p1,€)

Algorithm 1: FINDING THE OPTIMAL DEMAND, 2,1, AT A SPECIFIC PRICE p; WHEN ¢, = 0
OR €, == 0. NOTE THAT THE PARTIAL DERIVATIVE (%ﬂ) NEED NOT EXIST:
A NUMERICAL APPROXIMATION OF THE CHANGE IN UTILITY PER CHANGE
IN PRICE AND A CONTINUOUS % IS SUFFICIENT.

In the example above, there was uncertainty only about the utility functions of the other
agents (cf. Equation (38)). However, a and o’ in Theorem 4.1 can just as well represent
uncertainty about the strategies of the other agents, as will be shown in the following
example. In this example we investigate speculation by a producer in a simple electricity
market with only two commodities (k = 2}; electricity of a specific time period and money.
The producer has a production cost of 1—10(—2:1)2 (in terms of the money z,'% where z is a
consumed amount of the power. The producer has the following beliefs about the market:

e There are five identical consumers and one producer in the market.

e The utility of each consumer is u(x) = 100 — (z1 — 10)2 + 25, and the endowment of
each consumer is zero.

16. The actual cost and utility functions of this example have been chosen for their simplicity. The main
important and realistic feature is that marginal cost increases in the region under investigation, and that
marginal utility decreases in the same region.
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Figure 8: The optimal demand curves for e, = 0 and for e, = 0 (error in p and error in
o respectively). The reason that the demand with error in p covers relatively few
points is that in the error range investigated (—0.5 < ¢, < 0.5), p} can only be
within the plotted area. The demand outside this region can be set to any value
such that the market algorithm converges.

» The consumers plan to collude. They will bid so as to optimize against the producer’s
competitive behavior. In their speculative demand, the consumers will base their bid
on the v~ 3 approach (described below in the Section 4.2.5), with 8 = 0.

» With a certain probability, each consumer will deviate from the collusive agreement
and instead bid its competitive demand, in order obtain a higher utility than if keeping
the agreement.

From the above data we would like to construct the producer’s optimal demand (supply)
function. As we will see, we can rely on Theorem 4.1 and construct an optimal demand
function independent of the probability that a consumer will deviate from the collusive
agreement. By using the method of Section 2, we find that the optimal outcome for the
coalition is a price of 5§ (compared to the competitive equilibrium which yields a price
of 6.67). By using the v — 2 parameter method of Section 4.2.5, each consumer’s revealed
demand for obtaining this price is 2(p) = 2(10—%) (the competitive demand would be z(p) =
10 — £). Thus, the demand facing the producer is: z(p) = j (%(10 - g)) + {5 — )10 -B),
where 7 can have any integer value from zero to five—corresponding to the number of
consumers that deviate from the collusive agreement. As can be seen directly from Figure 9,
Theorem 4.1 is applicable.

"The optimal price and the corresponding supply for the different values of j are {the
syntax of the data is ( j, price, demand )): (0,17.14,7.14), (1,17,7), (2,16.84,6.84) ,
(3,16.67,6.67), (4,16.47,6.47), and (5,16.25,6.25). These points (capturing all possible
values of j) define the optimal demand curve for the producer. This optimal demand is
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Figure 9: The optimal demand (supply) function for the producer in a case of uncertainty
about strategies of the consumers in the electricity trade example of Section 4.2.3.

plotted in Figure 9. Hence, irrespective of whether the consumers decide to break the
collusion or not, the producer will always have an optimal response to their choice.

4.2.4 CASES WHERE THE OPTIMAL DEMAND FUNCTION IS DECREASING WITH PRICE

Theorem 4.1 described the conditions under which a demand function can be constructed

"independently of the probability distribution of the error. However, in some markets there
may be restrictions on the shape of the demand functions that an agent is allowed to submit
to the auctioneer (such as in the NordPool electricity market, as was discussed earlier in the
article). This means that there might be cases where it is possible to construct & demand
function that is optimal independent of the probability distribution of the error, buft this
function cannot be used due to the restrictions. As described in previous sections, one
typical restriction is that demand must be non-increasing in price. We now give sufficient
conditions for the optimal demand function to be decreasing in price.

Theorem 4.2 If

1. ug is quasi-concave'” , and

2. E—f%ﬂ < 0 for all possible variable assignments, and

3. pila1) < pi(az) (this is just a matter of naming), and

17. Having a quasi-concave utility function is equivalent to having convex preferences. An agent’s preferences
are convex if all iso-utility curves (i.e. the set of different allocations having the same utility} are convex,
see e.g. (Takayama, 1985, pp. 181-182).
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. R 820, 827{p1,
4. sign (2 (p3(ar), 1)} *® = sign (2} (5(az), an)) = —ELpLea) > Seilpie)

min(p}(a1), pi(as)) < pr < p§(ag),?

then z5 (pi(a1), a1) > 25 (pi(az), az) end pilar) < pi(as).

Proof.  From preconditions (1) and (2) we have z,(pf,a;) = 0 = z4(pt, @) = 0;
zs1(pf,a:) < 0 = 24(pi,0:) < 0; and 24 (95, a:) > 0 = 2z (pf,0:) > 0. Hence, all cases
except 27 (pf(a1),a1) > 0A 27 (pf{a2), az) > 0 and 27 (pf(a1),a1) < O A 25 (p§(az), a2) < 0
are trivial. We show the proof for the latter case. The proof for the former case is analogous.
From preconditions (1), (2), and (3) we have MRS(p§(a1), a1} < MRS(p$(az), a2).>’ For
this case, the gain from speculation is obtained by lowering z,,. (In other words, monop-
sony (and few customer market) prices are lower than competitive prices, because of lower
revealed demand.) Hence, as can be seen from the MRS discussion above, pi(a1) > pi(asz)
requires that the effect on prices by lowering z,; must be greater with as than with a; in
the interval min(pi(ai1),pi(a2)) < p < p§(a2)). From precondition (4) we have that this
cannot be the case. Now (2), (3) and (4) directly imply z¥ (pi(a1)) > 25 (pi(az)). D

4.2.5 PRAGMATICS OF CHOOSING A DEMAND FUNCTION

We believe that the theory presented above is useful for analyzing the possible gains from
speculation in equilibrium markets, and for constructing advanced computational agents for
participating in such markets. The examples above show that Theorem 4.1 and Theorem 4.2
can be useful. However, they do not apply in all cases. In this section we discuss some
pragmatic alternative methods for constructing speculative demand functions in cases where
they do not apply. It seems reasonable to assume that in many practical markets, an agent
has some—possibly rough—estimate of the aggregate properties of the other agents, and
some feeling for how much risk it is willing to take in speculating. In such settings it is
not obvious how to construct a reasonable demand function in regions that are far from the
expected market price. In this section we introduce a basic demand function that can be
tailored to different degrees of speculation and risk. We believe that such a demand could
be very useful in practice and that it could serve as a basis for an agent that learns about
its competitors during the search for equilibrium (cf. (Wellman & Hu, 1998)). It makes
sense that the more information the learner obtains about its environment, the more it can
speculate and the larger risk (of loosing if it is really wrong) it can take in order to gain
more. This is easily captured by adjusting parameters in the proposed demand function.

-1, =<0
18 sign(x)=¢ 0, =2=0

1, z>0
19. The interpretation of%f—rf;‘) > 5%3—:-}—,;1:}""" Say &P is flm, ., zibe L xE)—FT, ., 2y, k) 2
gz, Tt g ak) — gl@, L By T, 2T So.'L'j(§ 27 T alt L gyt e L Pt e > 0.
tUglz,

20. MRS is the marginal rate of substitution defined as "‘5"?["3’"%"2—)' (Mas-Colell et al., 1995). {As before, the
Zn
partial derivative need not exist. A numerical approximation suffices.) Furthermore, MRS(p$(a1),q1) is

the marginal rate of substitution at z = (—z7(pf, a1), p121 (B, @1)).
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Further investigations are, however, required to produce solid arguments for the usefulness
of this demand in conjunction with learning.

The proposed demand function is based on the competitive demand——which is a reason-
able choice if the agent has very limited information about its competitors. The risk factor,
B, is used as follows:

7 = 1= (1= ) #®ape), (40)

where ,yg is a speculation factor. The definition of the risk factor, 3, could also be extended
to one risk factor per commodity, f, in Equation (40). The revealed demand, z,(p), is
given by

gsg(p) = YgZsg (p)1 (4‘1)

where zs(p) again is the demand resulting from competitive behavior of the agent that we
are observing. Hence with 'yg =1 or = 00, competitive behavior is obtained.
The interpretation of the above is that the speculation is reduced if the price is far from

the expected optimal price, p*, and approaches 'yg when the price approaches p*. Rea-
- (p")

sonably, 'yg € [min(_—ib%, 1),max(7§m, 1)], and 8 > 0. That is, for every price, the
revealed demand should be between the competitive demand and the (estimated) optimal
demand, and the distance between the competitive demand and the revealed demand should
decrease with increased distance between the actual market clearing price and the estimated
market clearing price. We now demonstrate the concept on our example. If ¢, # 0 and
€p 7 0, it is impossible to determine an optimal demand independently of the probability

distribution of the error. First the demand function is plotted for 7_2 = %i% and a num-
ber of different values of 8, Figure 10. In other words, if the estimate of 2" coincides with
the actual value at the market price, the maximal gain from speculation is obtained, and
different risks for losses caused by biased beliefs are modeled by 3. Note that requirements
on the demand function might hinder the speculator from independently choosing 'yg and 3.
As seen from Figure 10, too high a 8 causes the demand to increase with price in a certain
region, and this might cause some algorithms not to converge to the desired outcome.

‘The result of using a demand such as the one in Figure 10 is shown in Figures 11 and

12. In both cases ) = _zir(léf)*)’ and n = 2. In Figure 11 the agent uses # = 0. This
enables the agent to gain from speculation also when there are moderate errors. If errors
are larger, however, the speculator loses in utility compared to acting competitively.

In Figure 12 the agent uses J = 25. In this case it still obtains the maximal gain from
speculation if there is zero error, but with increasing error the utility rapidly approaches
the utility resulting from competitive behavior. Thus, the area in which a gain is obtained
is reduced, but, for this example, there is no risk of a significant loss, independent of the
size of the error (e, €,).

For this example it is relatively easy to construct demand functions that result in a
gain compared to competitive behavior, even for significant uncertainty. The benefits of
this new parameterized demand function compared to traditional oligopoly demands from
economics become apparent when comparing Figures 3-6 to Figures 11 and 12. For example,
with the Bertrand bid and with n = 2 the error for which there is no longer a gain from
speculation is approximately |eq| = 0.15%. The corresponding error with our new pragmatic
demand function is approximately —50% < e, < 500%, with @ = 0. Thus, compared to
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Figure 10: A pragmatic approach to choosing a demand function. 'yg = —i{p(f‘)) and

8 = 0,25,100,400,1500 or 5000. A small B means a larger segmeni where
the speculative demand deviates from the competitive demand, i.e. greater risk,
but also a greater chance of profit when errors are moderate, cf. Figure 11 and
Figure 12. The top curve is the competitive demand and hence the other curves
are ordered from bottom to top by increasing f.
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Figure 11: The result of the demand of Figure 10 with 'yg = —sz, 8=10 andn =2,

existing methods, this new parameterized demand provides a relatively simple way to obtain
significant gains from speculation at relatively low risk.
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Figure 12: The result of the demand of Figure 10 with 79 = o)

, B=25, andn=2.

5. Strategic behavior by multiple agents

So far in this article we discussed a setting where one agent (or a coalition of agents)
is generating a best-response strategy to some fixed strategies of the others. We did not
assume that the others act competitively as price-takers (except in the example), but we did
assume that the others’ strategies are fixed, i.e. they do not depend on what strategy the
speculator chooses. However, it might be that the speculator cannot treat others’ strategies
as fixed because the others would like to tailor their strategies to the specific strategy that
the speculator chooses. If the others are rational, they would like to generate a best-response
like that.

The analysis of the case where the choice of one agent affects the choices of the other
agents cannot be performed as generally as the analysis in the previous sections of this
paper. Unless the bids are given in batch mode where each agent submits its entire bid
at once, the analysis will unavoidably reflect what type of information is sent to agents
at different times, to what extent agents commit to previous bids, etc. Analyzing the
construction of demand functions when the demand functions of the other agents cannot
be assumed to be fixed is beyond the scope of this article. Instead we will merely describe
some of the most important tools from economics and game theory for performing such
mechanism-dependent analysis.

The agents’ strategies are said to be in Nash eguilibrium (Nash, 1950; Mas-Colell et al.,
1995) if each agent’s strategy is his best response to the others’ strategies.?! This can be
viewed as a necessary condition for robustness against manipulation in settings where all
agents can act strategically. In mechanisms with multiple steps one can also strengthen the

21. Stated in another way, 1. each agent optimizes his strategy to his beliels of the others’ strategies, and 2.
his beliefs abaut the others’ strategies are correct. A relaxation of this, called self-confirming equilibrium,
maintains 1., but relaxes 2. by requiring that the agent’s beliefs about the others’ strategies are correct
only on the path of play (Fudenberg & Levine, 1993}, The question of learning to play according to
a Nash equilibrium of a game under imperfect information, when the same game is repeated infinitely
many times, is studied further for example in (Kalai & Lehrer, 1993).
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Nash equilibrium solution concept in different ways by requiring that the strategies stay
in equilibrium at every step of the game. For example, the perfect Bayesion equilibrium
requires that the agents’ strategies and beliefs are in equilibrium at every point of the game
given that agents update their beliefs using Bayes rule (Mas-Colell et al., 1995; Kreps,
1990).

Unlike our analysis, the Nash equilibrium outcome is specific to the market mechanism.
Important factors impacting the Nash equilibrium—and therefore also the outcome—are
the order in which bids are submitted (see e.g. Stackleberg vs. Cournot models (Mas-
Colell et al., 1995)), whether the bids are sealed or open (Sandholm, 1996a), whether the
mechanism is iterative (the agents can change their excess demand between iterations)
or not, whether trades occur during the market algorithm (Sandholm, 1993; Sandholm
& Lesser, 1995; Sandholm, 1996b) or only after a general equilibrium has been reached,
whether the agents can decommit from their agreements by paying a penalty (Sandholm &
Lesser, 1996; Sandholm, Sikka, & Norden, 1999; Sandholm & Zhou, 1999), etc.

In some markets, a Nash equilibrium might not exist or it might not be unique. Also, in
general, existence and uniqueness of a general equilibrium (where agents act competitively)
for a market does not imply existence and unigueness of a Nash equilibrium. Furthermore,
even if both the Nash equilibrium and the general equilibrium exist, they do not coincide
in general. This can be shown with a simple example that has only two agents and one
commodity (Ellickson, 1993).

A considerable amount of research has gone into constructing mechanisms that sup-
port a general equilibrium outcome in Nash equilibrium or in its refinements. In exchange
economies with complete information—i.e. where every agent knows all the parameters of
the economy—this can be achieved relatively easily (Moore, 1992). However, in the more
realistic settings where agents have private information, the mechanism designer has a much
harder task even in economies with no producers. The fact that agents have incentives to re-
veal speculative excess demand functions in the straightforward direct revelation mechanism
was observed early on (Hurwicz, 1972). More recently it has been shown that truth-telling
in an exchange economy can in general be obtained in strategy-proof equilibrium only by a
mechanism that fixes the price ratios at which commodities can be exchanged (Barbera &
Jackson, 1995). The mechanism designer has to fix the ratios in advance without knowing
the agents’ types. It follows that the outcome is not Pareto efficient in general because some
efficiency improving trades cannot occur at those price ratios. Furthermore, the inefficiency
does not disappear as the number of agents increases.

‘The mechanism designer’s task becomes easier if she (and the agents playing the game)
know the agents’ priors, and the agents are Bayesians. The allocations that can be im-
plemented in Bayes-Nash equilibrium in such settings have been characterized by Jack-
son {1991).

Another approach to the mechanism design problem is wirtual implementation: requir-
ing that the mechanism only guarantees that the desired outcome is achieved in equilibrium
with probability I — ¢, and with probability ¢ some other outcome will occur. Virtual im-
plementation via iterated elimination of dominated strategies was studied in the incomplete
information setting in (Abreu & Matsushima, 1991). Recently it was shown that almost any
outcome of the incomplete information game can be virtually implemented in Bayes-Nash
equilibrium (Duggan, 1997).
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We argue that for each mechanism proposed for implementation of equilibrium markets
including self-interested computational agents, a thorough game theoretic analysis should
be attempted. However, as discussed above, game theoretic solution concepts sometimes
run into non-existence and non-uniqueness problems. In addition, some mechanisms are
difficult to analyze game theoretically. For example, in WALRAS, the agents might change
their excess demand functions during the computation of the equilibrium. Then some agents
may deliberately send false bids to generate more iterations of the market process in order
to learn more about other agents’ excess demand/supply functions. If many agents are
involved in such probing, time can become an important factor. Some agents might reveal
progressively more of their competitive excess demands in order to speed up the convergence
(as it might be urgent for them to get the resources traded), while others might extend the
probing in order to maximize their benefit from the trade.??

Once the other agents’ strategies are known (e.g. from a game theoretic equilibrium
analysis), the methods of this article can be used to analyze the speculating agent’s strategy
alternatives. The methods are mechanism independent, and they can be used to estimate
the potential gains from speculation in any particular setting, as well as to determine how
far from the optimal strategy a particular strategy is—as long as the other agents’ strategies
can be fixed conceptually. This does not mean that they need to be known with certainty.

In this article we studied how a speculating agent can maximize its profit given the
demand functions of the other agents. When an agent has the possibility to collude with
others—i.e. to coordinate the speculative demand function revelations with others—it is
essential to be able to evaluate the possible gains from collusion, and to determine joint
strategies that drive the market to the desired equilibrium. This can be done with ezactly
the same methods as for a single speculating agent, i.e. the methods presented in this article
apply directly. The sole difference is that the object of maximization is the sum of the profits
of the colluding agents instead of that of any single agent. The same holds for computing
the maximal gain that can be obtained by deviating from a collusive arrangement.

The methods of this article can also be used when game theoretic analysis fails. Es-
pecially when speculation is based on expected actions of other agents—instead of a game
theoretic equilibrium analysis of best-response strategies—the theory of speculation under
biased beliefs is highly applicable.

6. Conclusions

In computational markets utilizing algorithms that establish a general equilibrium, compet-
itive behavior has usually been assumed: each agent makes its demand (supply) decisions
s0 as to maximize its utility (profit) assuming that it has no impact on market prices. How-
ever, there is a potential gain from strategic behavior via speculating about others because
an agent does affect the market prices, which affect the supply/demand decisions of others,
which again affect the market prices that the agent faces.

22. Some work has addressed non-competitive behavior in WaLRAS (Hu & Wellman, 1996; Wellman & Hu,
1998), although there was only one speculating agent in the experiments, and this agent was limited to
simple linear price prediction about how its actions affect the prices (instead of the more deliberative
speculations presented in this article). Further analysis is required to determine whether the speculator’s
optimal strategy can be captured in that simple model. This need not be the case because the optimal
strategy may involve some more “aggressive” behavior, e.g. the probing described above.
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We presented a method for computing the maximal advantage of speculative strate-
gic behavior in equilibriumn markets. It is computed from the other agents’ excess sup-
ply/demand functions (classic competitive behavior by the other agents is a special case of
this). The method enables one to analyze how much an agent could gain or lose by specu-
lating in a particular system, and it is also useful when evaluating different strategies since
it allows one to determine how close to the optimal strategy they are. Our analysis is not
specific to a particular market mechanism, but applies to most existing market mechanisms
and ones fo come. Specifically, it applies to all market mechanisms where the exchanges
are carried out after an equilibrium is reached. More importantly, we also constructed ex-
cess demand revelation strategies that guarantee that an agent can drive the market {0 an
equilibrium where the agent’s maximal advantage from speculation materializes. In other
words, the additional constraint that the market mechanism will converge is satisfied by
the speculative demand revelation.

In the presence of imperfect information about the others’ aggregate excess demand,
constructing an optimal demand function is rather delicate. We demonstrated how classical
oligopoly demands (the Cournot quantity bid and the Bertrand price bid) may lead to
significant losses even when an agent’s beliefs are only slightly biased. Furthermore, we
showed how the optimal demand is computed from probability distributions of the behavior
of the other agents, and we discussed the difficulties associated with that approach. We
also presented conditions when an optimal demand function can be constructed regardless
of the probability distribution of the estimation error. It was shown how to compute the
optimal demand curve in such a setting and an algorithm for doing that was introduced
and exemnplified. Some pragmatics of choosing a demand function in the case of imperfect
information were given, and we showed that it can be relatively easy to construct demand
functions that result in a gain from speculation even when estimation errors are rather large.
Finally, we discussed the mechanism dependent game theoretic issues related to multiple
agents counterspeculating. As discussed, recent advances in game theory have a lot to say
about that setting.

We believe that computational agents representing self-interested real world parties will
deviate from competitive behavior in practice if they can benefit from doing so. Almost
all previous work on computational equilibrium markets has assumed that agents act as
price-takers, although that is not what a rational agent would do. We hope that this article
can serve as a blueprint for building agents that act efficiently on behalf of the real-world
parties that they represent. The methods of this article enable this by showing how an agent
with imperfect information about others should construct demand functions that strike a
tradeoff between the potential gains from speculation and the risk that is associated with
it, while considering the convergence of the market mechanism.

Source code

For the salke of reproducibility, the C' + + source code of the program used for obtaining the
numerical values shown in Table 2, Figure 13, and Figures 3-12 is downloadable through
the world-wide web from

www.enersearch.se/ygge
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Appendix A. The possible gain from speculation in a specific example
with perfect information

In this appendix we derive the maximal gain that is obtainable via speculation under perfect
information about the others in the example market of Section 4.2. We get, e.g. from {Well-
man, 1994}, and the definition of excess demand, that the excess demand of the competitive

agents is
2p1+ 1 )
2'(p)=n (———w— —-2]. 42
21(p) oo £ 1) (42)

Because prices are only relative, we can set one of the prices arbitrarily, e.g. pp can
be set to 1, ie. pg == 1. From the budget constraint (p - z(p} = 0} we then get z;(p) =
Eg 1P g(p), Le. 28(p1) = —p127(m). Using this with Equation (37) and Equation (42),

we get
us(x(pr)) = In(1-n (75 —2))+ (43)
n{l+n %%—Qpl

From Equation (37) we see that x5, must be greater than zero. If the speculating agent
chooses to minimize pi, it should sell as much of z; as possible and thus, as seen from the
expression for x4 in Equation (43), and the requirement that x5 > 0, we have

1 n 1 2
> min . . 44
PL=p 2(2n+1)+\/2n+1+(2(2n+1)) (44)
Analogous reasoning for x5 shows that
< ez i"i‘ 1(1_1)4_(1)2 (45)
N e ) dn

If n approaches infinity, both pf*" and p'%® approach \/g =2 (.707. Therefore, with an
infinite number of agents, the speculator cannot afford to affect the price in any way.
The first derivative of us, Equation (43), with respect to p; is

Jus -1 (2 1 2p1 +1 2p1 +1 )
- g -1 o2 - 3
O 1— (p—l(ﬂpiﬁ—l) - 2) np+1) pim+1)  pilp+1)

(46)

1 2 2p +1 )

n — —
2p1+1 ( 2
1—n(-§ﬁ—zp1) p+1 (m+1)

It turns out that lim min+ g—;—;f > (0 and lim - g—ﬁ < 0, that a—“i is continuous and

P1+p] PL—p] "
that the solution to 3—:; = () is unique in the interval pJ*" < p; < p’i"“. Therefore, the
optimum, pj, is obtained by solving g%f = 0.

‘The results of optimal strategic behavior are compared to the results of competitive
behavior by the same agent. When the agent acts competitively, the excess demand (with

Ug) I8 2y = — 1. Sefting the aggregate excess demand to zero gives n (;1%1% - 2) +

239
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%1%3"5{}- — 1 =0. Solving for the competitive price gives p§ = 321% The results are shown

in Table 2.23

n| pi™t | pet 21 pi | us(py) | us(pf)
104343 | 1.281 | 0.7601 | 0.7746 | 0.01746 | 0.01626
2 0.5403 | 1.000 | 0.7402 | 0.7454 | 0.02202 | 0.02152
5| 0.6303 | 0.8262 | 0.7227 | 0.7237 | 0.02614 | 0.02602
10 | 0.6667 | 0.7670 | 0.7154 | 0.7157 | 0.02788 | 0.02784

20 | 0.6863 | 0.7372 | 0.7114 | 0.7115 | 0.02884 | 0.02884
30 | 0.6931 | 0.7272 | 0.7100 | 0.7160 | 0.02918 | 0.02918
100 [ 0.7029 | 0.7131 | 0.7080 | 0.7080 | 0.02967 | 0.02967

Table 2: Acting strategically vs. acting competitively. n is the number of agents acting
competitively. pT™ is the price for 1 in the market when the speculating agent sells
as much 1 as possible. pT*®* is the price for x; in the market when the speculating
agent sells as much xo as possible. pi is the market price as a consequence of
strategic acting. pf is the market price as o consequence of competitive acting by
the same agent. The values us are the corresponding utilities for the agent under

observation.

In Figure 13, the utility is plotted for the situations where the agent acts strategically
and where it acts competitively. As expected (see e.g. (Roberts & Postlewaite, 1976)),
the larger the number of agents, the smaller the gain from strategic behavior, and the less
reason not to act competitively. In this example, already when the number of competitive
agents is around five, the gain from strategic behavior is negligible. The two important
conclusions from this exercise are: 1) there is always a positive gain, and 2) the gain from
speculation often decreases rapidly with the number of agents.

23. Since utility is invariant to positive affine transformations (i.e. multiplying by a positive constant
and adding a constant) (Mas-Colell et al., 1995} one should be careful when discussing degrees of
improvernent.
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Figure 13: Comparison of strategic and competitive utility, us(pf) and us(p$). The hor-
izontal azis shows a number of interesting values rather than a specific scale.
We see that the larger the number of agents, the smaller the gain from strategic
behavior.

Appendix B. Algorithms for finding a market equilibrium

The operational motivation behind market mechanisms is that the agents can find an ef-
ficient joint solution—which takes into account tradeoffs between agents and the fact that
the values of different commodities to a single agent may be interdependent—while never
centralizing all the information or control. There are many algorithms that can be used
to search for an equilibrium, with different levels of decentralization. The most common
algorithm for this purpose is the basic price tdtonnement process (Algorithm 2} which is a
steepest descent search method. It is an iterative mechanism, and the trades, production,
and consumption occur only after the process has converged. At each iteration, the auction-
eer sets a vector of prices. Then all agents have to declare a vector of how much they are
willing to buy and sell of each commodity at the current prices. Based on this information,
the auctioneer updates the price vector for the next iteration.

Clearly, if no equilibrium exists, no algorithm can find it. Furthermore, sometimes the
price tdtonnement algorithm fails to find an equilibrium even if equilibria exist. However,
there are sufficient conditions that guarantee that an equilibrium is found if it exists. One
such sufficient condition is the gross substitutes property which was used in Proposition 2.2.
More generally,

Proposition B.1 (Convergence) The basic price tdtonnement algorithm convergences to
an equilibrium if p* 3, z;(p)} > 0 for oll p not proportional to a market clearing price vector
p* (Mas-Colell et al., 1995).%

24. If one price is fixed (which can always be done without loss of generality) the proportionality condition
reduces to an equality.
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Algorithm for the price adjustor:
pg =1 for all g € [1..k]
Set Ay to a positive number for all g € [1..k — 1]
(How to select A; is described separately.)
Repeat
Broadcast p to all agents
Receive a net demand vector g; from each agent 7
Forg=1tok—-1
Pg = Pg + Ag X Zig
Until |37, Zig| <eforall g € [1..k — 1]
Inform all agents that an equilibrium has been reached
Algorithm for agent 4:
Repeat
Receive p from the adjustor
Announce to the adjustor a demand vector z; € §Rff_"1
representing the agents revealed desires
Until informed that an equilibrium has been reached
Exchange and consume or produce

Algorithm 2: DISTRIBUTED BASIC PRICE TATONNEMENT ALGORITHM.

Strictly speaking, the convergence guarantee only applies to the continuous variant
where prices are adjusted according to

dp
d_f = }‘Q - g‘ig(p):
1

not to the more realistic discrete step version (Algorithm 2). However, these results suggest
that even the discrete variant often converges—e.g. under gross substitutes—as long as
the A-multipliers in the algorithm are sufficiently small. There are standard methods to
choose Ay so that the algorithm neither ”overshoots” the equilibrium nor is so small that
convergence is impractically slow. A simple version of a backtracking algorithm which has
proven very useful in practice is now presented. First, let Line 3 in Algorithm 2 read:

Set Ay = 1 for all g € [1..k ~ 1]
g

Next, replace Line 8 of Algorithm 2 by Algorithm 3. In Algorithm 3 r denotes the current
iteration. Line 5 in Algorithm 3 tests if the current step-size ”overshoots the equilibrium
too far”, i.e. the demand changes sign and there is no significant decrease in the absolute
value of the demand. If the current step-size is too large, it is divided by two. Again, there
are more sophisticated ways to do this, but this is a simple way that has worked well in
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done = false
Repeat
Py = ol + A 2y 245 (0))
if sign(32; 244 (py)) # sign(F; éig(PEH)) AN éig(p§+1)| > 0.9 3; 24 (01
Ag = 2Ag/2
Pyt =1}
else
done = true
A, <05
Ag =24
Until done

Algorithm 3: SIMPLE BACKTRACKING ALGORITHM FOR DETERMINATION OF STEP-SIZE.

practice. Loosely we can say that Algorithm 3 resembles a binary search for the proper step-
size, whereas more sophisticated methods are more Newton-like, also in the determination of
the proper step-size. For a detailed description of such methods, see e.g. Press et al. (Press
et al., 1994, p. 385). The complexity of each price update of the basic price tatonnement
is O(nk) (the backtracking not included) where n is the number of agents, and k& is the
number of commodities.

Within computational multiagent systems, Wellman has developed a general equilibrium
based simulation called WALRAS (Wellman, 1993). The tidtonnement process used in that
market environment differs from the classical price tdtonnement. In WALRAS the auctioneer
sends a price vector to the agents. Each agent then replies with demand functions for each
commodity, treating the prices of every other commodity as fixed. These demand functions
can be submitted asynchronously in arbitrary order. When an auctioneer has received one
or more new demand functions for a commodity, a new equilibriuin for that commodity is
computed and a new market clearing price is obtained. This new price is sent to the agents
and typically this causes the agents to revise and resubmit their demand functions for other
commodities. Under certain conditions, this process still converges to an equilibrium (Cheng
& Wellman, 1998). As in titonnement, trades in WALRAS only occur after the market
process has converged (close) to an equilibrium. Because of the asynchronous nature of
WALRAS, it is difficult to give relevant complexity measures. What can be said is that the
complexity of updating every price once using one demand function for each commodity
and for every agent is O(nk). Similarly, it is difficult to determine the complexity in terms
of the accepted error, but empirical results strongly suggest linear convergence, i.e. that
the number of iterations is O(—loge), where € is the error (Cheng & Wellman, 1998; Ygge,
1998).

A clear advantage of both basic price tAtonnement and WALRAS is their simplicity. The
implementation is straightforward, and following the price update for debugging purposes is
very easy. A disadvantage with both algorithms is convergence speed. It has been demon-
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strated that in some cases the convergence of WALRAS is too slow to be useful, even in
cases where it is guaranteed to converge (Ygge, 1998, pp. 76-77). One approach to signifi-
cantly speeding up the convergence—under the assumption that the demand functions are
reasonably smooth—is to use a Newton-Raphson algorithm. It uses derivative information
to adjust the size of the price changes. A standard version thereof updates the prices using
the following formula:

p =p' =X vz (p") - 2(p), (47)
where 141 and 4 denote iterations, A is a step size, and vz(p) is the gradient matrix defined
by Vz;(p) = a—%’%. A proper value for A can be determined at run-time by a backtracking
algorithm (Press et al., 1994, pp. 384 — 385).

As the computational task of the auctioneer includes summing the n demand functions
and solving the & — I linear equation system, the time of each update is O(nk%%) (Pan,
1984)*. Under certain smoothness assumptions and under the assumption that z is de-
creasing only if the prices are moving towards the market clearing prices, this Newtonian
price tdtonnement is guaranteed to converge with quadratic convergence, i.e. the required
number of iterations is O (log(—loge)), where e is the error (Press et al., 1994).

Compared to the basic price titonnement and the WALRAS algorithms, the Newtonian
price tatonnement requires partial derivatives of the demand functions, and imposes a heav-
ier computational burden on the auctioneer at each iteration. Furthermore, the size of the
message from each agent at each round is k ~ 1 + (k — 1)? (z(p*) and yz(p?), the latter
possibly inverted) which is relatively large compared to the alternatives. On the other
hand, partial derivatives can be easily and inexpensively numerically approximated and the
number of iferations is typically reduced so significantly that this algorithm is more efficient
both in terms of computation and communication (Ygge, 1998). The presented Newtonian
price titonnement requires significantly fewer iterations than the alternative methods be-
cause the step length is based on the partial derivatives and because all prices are updated
in parallel, i.e. it is a simultancous tAtonnement process (Takayama, 1985).

In addition to the above price tdtonnement methods, there is a corresponding quantity
tatonnement or Marshallian quantity adjustment method, (e.g. (Takayama, 1985, p. 297)):

% = 5y Dlgy) - S(ay)). (49
where D{q,) is the price that the demand side is willing to pay for quantity g, of commodity
g, and 5(gg) is the price at which the supply side is willing to sell quantity g, Essentially, if
the price at the supply side exceeds the price at the demand side, the transferred (produced)
quantity decreases and vice versa.

Traditionally, the tdtonnement methods have been used for analyzing the stability of
equilibrium and as an argument for why certain markets strive toward an equilibrium.
More recently, these basic mechanisms have been used as the algorithms for finding market
clearing prices in computational markets. Indeed, for example the WALRAS system is more
or less a direct implementation of basic price tAtonnement, with some extensions in terms
of, e.g., asynchrony. However, finding efficient algorithms based on quantity tAtonnement

25. One should bare in mind though that the type of algorithms with better asymptotic behavior than
standard methods (typically with complexity O(k®)) are normally uninterestingly slow for k < 300.
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is not as straightforward. In a real setting with more than two agents, it is not obvious
how to apply Equation (48). There may not be an obvious distinction between the supply
and demand sides: some agents may choose to buy or sell depending on the market price.
Furthermore, even if such a distinction is possible, it is nontrivial to distribute qq for the
respective sides so that each side announces only a single price. That is, when determining
S in Equation (48) (analogously for D) it has to be determined how g, is provided by
the different suppliers so that all production is performed at the same (reported) marginal
price. Determining this division of supply is significantly harder than defermining gy itself.
If one accepts a very broad generalization of quantity tdtonnement so that it includes any
algorithm in which the allocations of the agents are updated as a function of previous
allocations, it is possible to use quantity titonnement for finding an equilibrium. Such
generalizations are rather far from the original idea of quantity tAtonnement as captured by
Equation (48), and some times the terms resource-based or resource-oriented mechanisms
are used instead to denote algorithms that search for equilibrium with the resource as the
free search parameter, see e.g. (Kurose & Simha, 1989; Yege, 1998). As we show below,
useful quantity tdtonnement algorithms for realistic settings have little in common with
Equation (48) above.

The principles of quantity tatonnement differ fundamentally from the principles of price
tatonnement. Instead of asking an agent how much it is willing to buy or sell at a specific
price, one might ask it how much it is willing o pay for an infinitesimal additional amount
of each commodity (a set of prices) at the current allocation. That is, each agent, i, can be
viewed as holding a price function p,(z;), rather than a demand function z;(p). If there is a
bijective mapping between p,(z;) and z;(p) (ie. p; #p; ¢ 2} # 27), then the equilibrium
condition, }; z;; = 0, corresponds to

P, (m) <p, zg=z2l
P (7)) =Py, iy < 7g < 24 (49)
Py, () 2 P, Zg = Zig

where z. and z¥ are (revealed) lower and upper bounds of the net demand of agent 4. The
basic idea in quantity tédtonnement is to try different reallocations until Equation (49} is
fulfilled, instead of evaluating different prices until 3, Zig = 0 as in price tdtonnement.
One advantage of quantity titonnement is that the net total reallocated resource is
always kept at zero, i.e. every allocation in the search for the equilibrium is feasible.
Therefore, the algorithm is an anytime algorithm: it can be terminated at any time with a
feasible solution in hand.?® Another advantage is that the price functions used in quantity
{atonnement are more closely related to utility functions than the demand functions of price
tatonnement which results in higher computational efficiency. Most treatments of market-
based search only discuss the complexity of finding an equilibrium once the agents’ supply
and demand functions are known. However, it may be computationally complex for each
agent to generate its optimal supply/demand decision given the current prices. Solving
for the demand function from a given utility function and endowments can be a nontrivial
optimization problem. The price function, on the other hand, is merely the quotient of two

26. There are tecent ways to construct anytime algorithms also based on price titonnement under some
restrictions (Ygge & Akkermans, 1997).
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partial derivatives and can be inexpensively numerically estimated in one iteration (Ygge
& Alkkermans, 1998). Depending on the application, the advantage of being able to utilize
price functions instead of demand functions varies. In some cases the hard problem is to
come up with the utility function or production possibilities set. For example, if the agent
is a manufacturer, it may need to solve several planning and scheduling problems just to
construct its production possibilities set from which it has to choose the profit maximizing
production plan. Furthermore, each agent has to go through this local deliberation at every
iteration of the market protocol because prices change, and that affects what the optimal
plan for each agent is.

For the two commodity case a Netwonian quantity tdtonnement is given by (Ygge &
Akkermans, 1998, 2000):

n Pj("’rl)

E;i=o AN

T 1
Pi(zﬂ) - S T

j=0 p’ (=T
F=0 p3(274)

=2 — A (50)

P (#h
The quotient including the sums is a weighted average of all prices (weighted by the deriva-
tives of the prices), and the change in allocation is the difference between the price of the
agent under observation and this weighted average, divided by the derivative of the price
times a step size, A.

In the multi-commodity case the update algorithm is somewhat more complicated (Yeee
& Akkermans, 1998, 2000):

2+ = 2f — A~ op] (pf — (p)7), 51

where p] and ©Op}, are abbreviations for p;(z]), and (vpi(z{))_i, respectively. The term
(p)” is defined by

-1
(P)" = P+ VP (T OP5) - OPh X0, OB (05 - P3) (52)

and can be interpreted as the ezpected price. (\7p! is an abbreviation for p; (27).) This
would have been the market, clearing price if the current value of 7p had been independent
of the allocation (i.e. if pig(%;) had been linear functions).

From the above we see that even though the termination condition is the same, the
intermediate allocations, i.e. the path to the solution, will depend on the ordering of
agents. The final solution (as captured by Equation (49)) is the same though.

The update of z includes maftrix inversion, and the computation is done separately for
each of the n agents, so each iteration takes O(nk®1%) time (Pan, 1984). Since the algo-
rithm (under certain smoothness conditions) is a quadratic scheme, the required number of
iterations is O (log(—loge€)), where € is the error. The gradient matrices are typically com-
puted locally (analytically or numerically) by the participating agents and communicated
to the auctioneer.

A delicate issue in quantity titonnement is proper management of boundaries®” Ag
each step of the algorithm some z may end up outside its boundaries. For example, if a

27. In price titonnement this is managed locally by each agent. When posting a demand at a specific price,
the agent ensures that the demand does not violate its boundaries. Therefore, this is not a concern for
the auctioneer.
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consumer has a lower bound on 2 of 0 (e.g., it has no endowment and cannot produce),
but have a very low valuation compared to the other agents, it might be assigned a negative
value by the algorithm. Therefore, some mechanism is needed to manage the boundaries to
maintain feasible allocations. In this example, resource need to be reallocated from other
agents in order to obtain z; = 0 for the agent in question. The proper management of the
boundaries is rather complicated, and a thorough presentation is found elsewhere (Ygge &
Akkermans, 1998, 2000).

As seen from Equations (51) and (52), and because of the required management of
boundaries, quantity tdtonnement is relatively complicated conceptually. Because this type
of algorithms may speed up the computation in various applications, we recommend them
mainly for settings where simpler methods are too inefficient (Ygge, 1998, pp. 82-86).

In distributed environments with a large number of agents, naive implementations of
the algorithms above are not very efficient. In a recent approach, multiple auctioneers
were used in a hierarchy to better distribute the computational burden while keeping the
commuication low (Andersson & Ygge, 1998).

The general multi-commodity case in highly distributed environments is very compli-
cated and presumably application specific algorithms are required for very high efficiency.
For the two commodity case on the other hand, a recenf algorithm, CoTREE, provides
highly eflicient distributed computation, both for price and quantity titonnement (Ander-
sson & Ygge, 1998). The basic idea is distributed pairwise combinatorial aggregation of
demand/price functions in a binary tree, in which all producers and consumers are repre-
sented as leafs. Once all functions have been aggregated to one function (at the root node),
the equilibrium can be determined and the resource is recursively allocated downwards in
the tree.
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