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ABSTRACT OF THE DISSERTATION 

Approaches to Understanding the Function of Intrinsic Activity and its Relationship to 

Task-evoked Activity in the Human Brain  

 

by 

DoHyun Kim 
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Professor Maurizio Corbetta, Chair 

 

 Traditionally neuroscience research has focused on characterizing the topography and 

patterns of brain activation evoked by specific cognitive or behavioral tasks to understand human 

brain functions. This activation-based paradigm treated underlying spontaneous brain activity, 

a.k.a. intrinsic activity, as noise hence irrelevant to cognitive or behavioral functions. This view, 

however, has been profoundly modified by the discovery that intrinsic activity is not random, but 

temporally correlated at rest in widely distributed spatiotemporal patterns, so called resting state 

networks (RSN). Studies of temporal correlation of spontaneous activity among brain regions, or 

functional connectivity (FC), have yielded important insights into the network organization of 

the human brain. However, the underlying fundamental relationship between intrinsic and task-

evoked brain activity has remained unclear, becoming an increasingly important topic in 

neuroscience. An emerging view is that neural activity evoked by a task and the associated 

behavior is influenced and constrained by intrinsic activity. Additionally, intrinsic activity may 

be shaped in the course of development or adult life by neural activity evoked by a task through a 
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Hebbian learning process. This thesis aims to reveal correspondences between intrinsic activity 

and task-evoked activity to better understand the nature and function of intrinsic brain activity. 

We measured in human visual cortex the blood oxygen level dependent (BOLD) signal with 

fMRI to analyze the multivoxel activity patterns and FC structures of intrinsic activity, and 

compare them to those evoked by natural and synthetic visual stimuli. 

In chapter 1, we review previous evidence of an association between intrinsic and task-

evoked activity across studies using different experimental methods. Two experimental strategies 

from the literature were adapted to our own experiments. First, from anesthetized animal studies 

of intrinsic activity in visual cortex, we set out to measure macro-scale multi-voxel patterns of 

spontaneous activity fluctuations as they relate to visually driven patterns of activity (Chapters 2 

and 4). Second, from inter-subject correlation studies of visual activity driven by natural stimuli, 

we measure relationships between intrinsic and evoked activity, specifically in relation to their 

topographic similarity at the network level (Chapter 5). 

In Chapter 2 to 4, we establish a multivariate-pattern analysis (MVPA) approach to 

evaluate patterns of intrinsic and task-evoked activity. The main idea is that patterns of activity 

induced by behaviorally relevant stimuli over long periods of time would be represented in 

spontaneous activity patterns within the same areas. To test the idea, in Chapter 2, we compare 

the overall degree of pattern similarities between resting-state activity patterns, frame-by-frame 

(framewise), and visual-stimulus evoked activity patterns for natural (face, body, scenes, man-

made objects) and synthetic (phase and position scrambled) object images during low-level 

detection task. We found that the variability, not the mean, of pattern similarity was significantly 

higher for natural than synthetic stimuli in visual occipital regions that preferred particular 

stimulus categories. Chapter 3 extends the static categorical pattern similarity measure of 
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Chapter 2 into a temporal correlation measure. We built pattern-based FC matrices for different 

stimulus categories (e.g. a face specific multivoxel pattern) in regions that preferred particular 

stimulus categories (e.g. FFA, STG), and showed that the occurrence of a specific categorical 

pattern generalizes across category specific regions. These pattern-based FCs resemble that of 

resting-state FC of the same regions supporting that resting state patterns are related to category-

specific stimulus-evoked multivoxel activity patterns. In Chapter 4, we repeat the analysis used 

in Chapter 2 with language stimuli. Language stimuli (alphabetic letters and English words) are 

interesting as they are learned through intensive training as kids learn to read. Therefore, they 

represent a non-natural category of stimuli that is, however, highly trained in literate individuals. 

The visual stimuli used in Chapter 2 to 4 are designed specifically for a laboratory 

environment that does not correspond to realistic ecological environments. In Chapter 5, to 

overcome this limitation, we use the more naturalistic visual experience of movie-watching and 

compare the whole-brain FC network structure of movie-watching and of resting-state. We show 

the whole-brain FC structure evoked by movie-watching is partly constrained by the resting 

network structure. 

In conclusion, our experiments show that the link between intrinsic activity and task-

evoked activity is not only limited to inter-regional interactions (as in regular resting-state FC), 

hence potentially reflecting anatomical connectivity or modulations of excitability between 

cortical regions, but extends to multivoxel patterns that carry information about specific stimulus 

categories. This result supports the notion that intrinsic activity constrains task-evoked, not only 

in terms of topography or activation levels, but also in terms of the information states that are 

represented in cortex. 
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Chapter 1: General Introduction and Background 

1.1 Is Intrinsic activity a simple noise signal?  

Traditional neuroscience research has focused on characterizing the topography and the 

patterns of brain activation evoked by specific cognitive or behavioral tasks to understand human 

brain functions. Inter-trial variability of task-evoked brain activation is one universal feature 

observed across different signals (single unit, local field potentials, EEG, fMRI). Since 

spontaneously fluctuating activities in primary sensory areas were observed in the absence of a 

stimulus, the origin of inter-trial variability was explained as superimposed spontaneous neuronal 

background activity on a fixed task-evoked response (Arieli et al. 1995 and 1996). Averaging 

across trials, therefore, has been a common technique to increase the signal-to-noise of evoked 

responses, and remove spontaneous activity regarded as background noise. (Aguirre et al. 1998; 

Tsodyks et al. 1999; Engel et al. 2001; Varela et al. 2001; Schroeder and Lakatos, 2009; Raichle, 

2010; Henriksson et al. 2015).  

Despite its ubiquity and strength, spontaneous brain activity, also known as intrinsic 

activity, for many years was not of primary interest to physiologists mainly interested in 

characterizing evoked responses. Still, even many years ago, there were clues for a potential 

functional role. For instance, recordings from local field potentials (LFP) and single neurons 

showed synchronous ongoing activity patterns among neighboring neurons, which is against an 

assumption of pure stochastic noise (Arieli, et al. 1992; Abeles et al. 1995). 

The traditional neurophysiological stance of dealing with intrinsic activity as noise has 

been profoundly modified by the discovery that intrinsic activity is not random, but is temporally 

correlated in widely distributed spatiotemporal patterns, even in the absence of a task (i.e. rest), 
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so called resting state networks (RSN). Since the initial report of Biswal (Biswal et al. 1995), the 

fMRI literature has shown that the topography of the temporal covariance structure of resting 

BOLD activity is similar to the topography of various cognitive and behavioral task-evoked 

responses (Raichle et al. 2001; Fox et al. 2005; Nir et al. 2006; Smith et al. 2009; Power et al. 

2010 and 2011; Yeo et al. 2011; Carl D Hacker et al. 2013; Mennes et al. 2013; Cole et a., 2014).  

One interpretation of such correspondence is that there is a reciprocal relationship 

between evoked and spontaneous activity. On the one hand, in the course of development and 

experience, task states are sculpted into resting state patterns through a Hebbian learning process 

(Fiser et al. 2004; Albert et al. 2009; Hasson et al. 2009; Lewis et al. 2009; Tambini et al. 2010; 

Raichle 2011; Petersen and Sporns 2015). On the other hand, spontaneous activity patterns 

represent a repertoire of neural states replaying a subset of states of specific task neuronal 

ensembles over time. These patterns may constrain task states by providing spatiotemporal priors 

that encode common or behaviorally relevant patterns of activity. 

In the next sections, I will review previous studies directly comparing either local task-

evoked and intrinsic brain activity patterns, or population whole brain task-evoked and intrinsic 

activity patterns.  

 

1.2 Intrinsic activity to task-evoked activity in animal 

studies. 

The direct comparison of spatial patterns of intrinsic activity and task-evoked activity 

was initially carried out using optical imaging techniques. The pioneering studies of Grindvald, 

Arieli, and colleagues used voltage-sensitive dye (VSD) imaging simultaneously with other 
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electrophysiological methods (e.g. local field potential and electroencephalogram) to understand 

the nature of the variability of stimulus-evoked responses, in relation to spontaneous activity 

(Arieli et al. 1995 and 1996). They measured VSD signals in early visual cortex (area 17 and 18) 

of cats during the presentation of high contrast drifting gradients, and when the eyes were 

patched. Area 17 and 18 are retinotopically organized and tuned for bars, gratings, and edges. 

Traditionally, it was thought that the majority of inputs was retinal via the geniculo-calcarine 

pathway. Arieli and colleagues showed that spontaneous ongoing neuronal activity were not 

independent random processes, but rather reflected the correlated response of many cortical 

neurons. Moreover, they showed that the magnitude of the stimulus-evoked response could be 

predicted from the amplitude of the preceding ongoing activity. In later work (Fiser et al. 2004) it 

was shown that the mean and variability of stimulus-evoked responses to visual stimuli, 

especially natural ones, was indistinguishable from the mean and variability of intrinsic activity 

in primary visual cortex. 

Later studies included a direct comparison of the spatial patterns of intrinsic activity vs. 

task-evoked patterns. Specifically, activity patterns in anaesthetized cat V1 evoked by oriented 

gratings were spatially matched to patterns of spontaneous activity (Tsodyks et al. 1999; Kenet et 

al. 2003). In the study of Kenet et al. (2003), VSD signals were used to continuously monitor 30s 

long periods of activity in cat area 18 either in the presence or absence of full field oriented 

grating visual stimuli. The distribution of spatial correlation coefficients between ongoing 

spontaneous activity maps and orientation selective stimulus-driven maps was significantly 

wider than the spatial correlation coefficient distribution between simulated control maps and 

orientation maps. Across recordings, in about 20% of time frames the spontaneous activity map 

matched the orientation map based on a significant correlation threshold of ρ=0.25 (P<0.01). 



4 

 

A direct comparison of spatial activity patterns for ongoing and stimulus evoked activity 

in visual cortex has been recently extended to anesthetized monkeys (Omer et al. 2018). Omer 

and colleagues measured the spatial correlation between activity patterns derived from sets of 10 

sec resting state, and difference activity patterns obtained by stimulating with orthogonally 

oriented gratings (i.e. 0/90 degree pair vs. 45/135 degree pairs). The resulting distribution of 

correlation coefficients was compared to a null control distribution obtained by flipping the 

stimulus-evoked pattern. Both real and null distributions were centered on zero, but the real 

orthogonal orientation distribution showed wider positive and negative tails. Since orthogonally 

oriented gratings should activate different columns, a straightforward interpretation is that the 

wider positive/negative distribution reflects this opposing functional organization in cortex. 

Interestingly, however, Omer et al. found that real and null distributions completely overlapped 

when the monkey was awake. Still, the authors argued, based on time resolved measures, for a 

significant match of spatial cortical activity patterns between spontaneous and orientation 

selective maps, but on a smaller spatial and faster temporal scale. 

 

1.3 Intrinsic activity to task-evoked activity in fMRI 

literatures. 

Human resting-state studies have used fMRI to measure the temporal correlation of the 

blood oxygenation level dependent (BOLD) signal between brain regions. These studies have 

shown overall that spontaneous activity in the brain is correlated in space between neighboring 

voxels and in time between regions that show similar temporal fluctuations of the BOLD signals. 

Regions that show temporally correlated signals at rest (functional connectivity, FC) define 
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resting-state networks (RSN) (Fox et al. 2005; He et al. 2008; Nir et al. 2008; Smith et al. 2009; 

Power et al. 2010 and 2011; Yeo et al. 2011; Gordon et al. 2016). 

There is indirect evidence of a functional relationship between spontaneous activity 

patterns and task-evoked activity. 

First, RSNs are topographically matched to the topography of networks recruited by 

different sensory, motor, and cognitive tasks. The functional characterization of different RSNs 

as sensory (visual, auditory), motor, or cognitive (e.g. default, dorsal attention, ventral attention, 

etc.) is based on the spatial correlation of activity in cortex (Biswal et al. 1995; Lowe et al. 1998; 

Corbetta and Shulman, 2002; Greicius et al. 2003; Fox et al. 2006; Dosenbach et al. 2007; 

Nelson et al. 2010; Power et al. 2010). Other networks have been named ad-hoc, often ignoring 

the overlap with previously described networks (e.g. salience vs. ventral attention or cingulo-

opercular) (Seeley et al. 2007). Finally, other networks are based on different criteria, partly 

data-driven like ICA or using task-related definitions, e.g. task positive vs. negative networks 

(Fox et al. 2005; Golland et al. 2008). 

In most case, the spatial overlap between an RSN and task network has been studied in a 

small number of networks, or small number of conditions (Greicius et al. 2003; Fair et al. 2007; 

Fox et al. 2007; Buckner et al. 2013; Hermundstad et al. 2013; Mennes et al. 2013). A robust 

comparison of resting state FC and task-evoked FC was conducted for 265 functional regions 

with 64 distinct task states and revealed a very high overall topographic similarity of ρ = 0.90 

(Cole et al. 2014). However, this high degree of similarity should not be overstated. In fact, 

recent work from our lab has shown that this high similarity depends on residual spontaneous 

fluctuations that were not properly removed by temporal averaging. The similarity, once residual 
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fluctuations are removed, is only moderate (ρ = 0.60-0.7), and consistent rest-task differences in 

connectivity can be identified (Kim et al. 2018). 

A stronger link between task and spontaneous activity comes from experiments in which 

the intensive repetition of a paradigm (hundreds to thousands of trials) induces alterations of FC 

within/between task-driven circuitries. This has been shown for motor, visual, memory, and 

neuro-feedback paradigms (Albert et al. 2009; Lewis et al. 2009; Tambini et al. 2010; Harmelech 

and Malach 2013). These learning-related FC changes indicate a role of task patterns in 

entraining resting patterns. 

Recent work also suggested long-term, experience-dependent influences on FC in visual 

cortex. FC between different visual areas is increased in ROIs that have overlapping receptive 

fields (Heinzle et al. 2011; Raemaekers et al. 2014; Wilf et al. 2017) or represent similar 

eccentricities (Arcaro et al. 2015). These effects could also reflect structural connections. 

Wilf et al. (2017), additionally, reported that FC in visual cortex from movie viewing, 

after removal of intrinsic activity, was more similar to resting FC than FC from iso-eccentricity 

stimulation, iso-polar stimulation, or predictions based on retinotopic, polar angle or eccentricity 

distance. These findings, therefore, indicate that resting state activity patterns are not only due to 

low level visual features, but also reflect behaviorally relevant stimuli as in the viewing of 

movies. 

Finally, models built from resting-state FC predicted task-evoked activity maps – 

suggesting neural activity evoked by a task is influenced and constrained by intrinsic activity. 

Models of activity flows over resting-state FC networks were trained, and predicted large-scale 

cognitive task activation networks. (Cole et al. 2016; Ito et al. 2017). Meanwhile, models trained 
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using resting-state FC predicted individual differences in novel cognitive task performances or 

task-evoked activation maps (Baldassarre et al. 2012; Tavor et al. 2016). 

While the above reviewed animal literatures and human fMRI literatures showed 

evidences of the closed-loop relationship between intrinsic activity and task-evoked activity, 

methodological limitations exist in both experimental methods. Animal studies were conducted 

within a primary visual area with only low-level visual stimuli presented; therefore, the findings 

could not be extended to higher-level cognitive or behavioral tasks. In contrast, the fMRI studies 

comparing FC topographies for intrinsic and task-evoked activity were limited since the FC 

measurement is based on the temporal correlations of the BOLD signals averaged over time at 

the level of entire ROIs, or voxel-wise but with no regard to high level stimulus categories. In 

this thesis we propose a complementary experimental strategy to test the relationship between 

rest and task-evoked activity. Based on the animal studies, we adapted multivariate-pattern 

(MVPA) techniques to identify behaviorally relevant activity patterns for specific naturalistic set 

of stimuli, and then used these patterns to study the spatial patterns of activity at rest.  

 

1.4 Analyzing task-evoked activity patterns in fMRI 

Human ventral-occipital temporal cortex (VOTC) is known for containing information 

about visual stimuli. Several regions in VOTC show stronger activation for specific object 

categories such as faces (Allison et al. 1994; Kanwisher et al. 1997; Ishai et al. 2000;), body 

parts (Downing et al. 2001; Grossman and Blake 2002), places (Aguirre et al. 1998a and 1998b; 

Epstein and Kanwisher 1998; Ishai et al. 2000), tools (Martin et al. 1996; Chao et al. 1999; 

Beauchamp et al. 2002), and words (Cohen et al. 2000; Hasson et al. 2002; Grossman et al. 

2002). A recent review by Grill-Spector and Weiner (2014) thoroughly describes information 
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contents within the human VOTC in terms of color, eccentricity bias, visual field maps, 

expertise, and object categories (Grill-Spector and Weiner 2014).  

Traditional task-evoked activation studies in fMRI literature were limited in analyzing 

the magnitude and profile of activation due to both slow temporal and low spatial resolutions. 

Univariate statistic measurement of task-evoked activations, therefore, was a first step in 

understanding brain function. With technological developments in fMRI, it was possible to 

obtain images at higher spatiotemporal resolution that allowed a shift from a univariate to a 

multivariate statistical framework (Haxby et al. 2001 and 2006; Cox and Savoy 2003; 

Kriegeskorte et al. 2007 and 2008). Multivariate pattern analysis (MVPA) assumes that 

information is encoded in patterns of neural activity; therefore, by decoding these patterns it is 

possible to distinguish different stimuli. MVPA classifications of categorical stimuli (e.g. faces 

and places) allowed for high accuracy of classification (Haxby et al. 2001, 2006, and 2011; Cox 

and Savoy 2003). Also, representational similarity analysis (RSA), based on the correlation 

distance of different multivariate pattern of activation, showed a hierarchical representational 

space of animate and inanimate stimuli, with sub-spaces for human faces, human bodies, animal 

faces, animal bodies, natural objects, and artificial objects (Kriegeskorte et al. 2008).  

The above studies showed that human VOTC contains a number of category specific 

regions, and that patterns of activity within these regions code for the preferred stimulus 

category. By ‘code’ I mean that these patterns can be used for accurate classification of stimulus 

categorization. It is reasonable to assume that this organization reflects not only genetic factors, 

but also structural connectivity (Saygin et al. 2011; Osher et al. 2016), as faces are coded in more 

foveal sub-regions that are in turn connected with each other across multiple regions. Also, to 

some extent, patterns of task activation underlie individual experience. For instance, the analysis 
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of visual words is entrained in cortex through training in reading, putatively, through a Hebbian 

learning process. 

 

1.5 Issues addressed in this thesis, general strategy, and 

plan of dissertation 

Based on this background, we are interested in evaluating the potential role of 

spontaneous activity in encoding information states. Specifically, we propose that one of the 

functions of spontaneous activity is to maintain on-line behaviorally relevant information states, 

and that these states, entrained by thousands of exposures in the course of development and 

experience, will be statistically related to task evoked patterns. Spontaneous activity states can 

function as a prior in space (e.g. a manifold) or in time (e.g. a neural trajectory) from which task 

states can originate. Our strategy is to test this hypothesis by showing that information states, as 

coded in stimulus-evoked activity for different stimulus categories, are also represented at rest 

within a cortical region. 

In order to control for spurious correlations between task-evoked and rest patterns, we 

plan two different controls. One, categorical stimuli that activate high-level visual cortex (faces, 

objects, bodies) will be compared to low level control stimuli (phase and position scrambled 

stimuli) that will drive earlier visual regions. If resting activity codes for behaviorally relevant 

patterns, then we shall observe a topographic difference at rest between high- and low-level 

regions. Two, we also plan to control for stimulus selectivity in resting state patterns by 

comparing within a region specialized for one category (e.g. FFA for faces) whether resting state 
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patterns that are more similar to faces are more common that resting patterns that are more 

similar to another category (e.g. bodies, or scenes). 

An important theoretical point is whether the emergence of a particular stimulus state in 

one area at rest corresponds to an isolated random event, or whether multiple regions show 

simultaneously the same state. This would be consistent with a distributed information state 

representing a particular stimulus. For instance, at one point in time, the whole visual cortex may 

be more likely to code for faces than other stimuli.  Accordingly, if resting activity is 

representing information widely in cortical space over time, then we shall find significant 

temporal correlation of activity patterns, coding for a specific stimulus category, across multiple 

visual regions. Also, in this case, activity patterns over time and across regions should be 

stronger for stimulus preferred than non-preferred categories. 

Finally, static pictures do not correspond to realistic ecological stimulation. Hence, we 

plan to compare rest and task patterns during more natural visual stimulation, as during movie 

watching. Movie watching is a popular paradigm in neuroimaging and can be used to analyze 

similarities of activations across subjects (Hasson et al, 2004; Hasson and Malach 2004). 

Another application is the study of semantic organization, which has been shown to be 

distributed in cortex (Huth et al. 2012; Stansbury et al. 2013). Additionally, Wilf et al. (Wilf et 

al. 2017) have shown that in early visual cortex, resting FC patterns are better accounted for by 

movies than by standard retinotopic stimuli, while Strappini et al. (Strappini et al. 2018) have 

shown that in higher-level visual cortex, resting FC patterns are better accounted for by movies 

than by static pictures of objects. To overcome the limitation of laboratory environment 

conditioned visual stimuli, therefore, we used the more naturalistic visual experience of movie-

watching in a separate analysis. 
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This thesis is organized as follows. Chapter 1 is introductory. In Chapter 2, I first 

establish an approach to compare multi-vertex resting-state activity pattern and multi-vertex 

stimuli-evoked activity pattern in laboratory conditions. The visual stimuli used in Chapter 2 are 

categorical object images that are prevalent in everyday life. Each categorical stimulus exemplar 

is presented on a grey background and has its corresponding control stimulus, preserving some 

local or global visual properties. We investigate the relationship between intrinsic and extrinsic 

activity in terms of an artificial static parameter from spatial correlation coefficient distributions 

computed across entire resting-state BOLD frames within regions in human visual cortex. The 

regions of interest (ROIs) used in this chapter include previously reported classical categorical 

visual regions of face fusiform area (FFA), extrastriate body area (EBA), lateral occipital (LO), 

parahippocampal place area (PPA), transverse occipital sulcus (TOS).  

Chapter 3 describes analyses aimed at identifying stimulus states that are widely 

represented in cortex. The inter-regional temporal correlation computed from multivoxel 

similarity timeseries for a category template will be compared across both regions that are more 

or less specific for that category. We demonstrate a coherent brain resting state representing one 

stimulus category. 

In Chapter 4, we repeat the analysis used in Chapter 2 with language stimuli since 

alphabetic letters and English words are stimuli that are not ecologically prevalent but are 

explicitly trained over time.  

In Chapter 5, we compared a whole-brain FC structure evoked by movie-watching to a 

whole-brain resting-state FC structure to overcome the limitation of laboratory conditioned 
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categorical visual stimulus used in previous chapters. We demonstrate that the whole-brain FC 

structure evoked by movie-watching is partly constrained by the resting network structure. 
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Chapter 2: Categorical object recognition activity and 

intrinsic activity in visual cortex 
 

2.1 Abstract 

 The relationship between spontaneous and task-evoked brain activity is an increasingly 

important topic in neuroscience. Here, we ask if spontaneous multivoxel activity patterns in 

human visual cortex correspond to patterns evoked by naturalistic (e.g. faces), and non-

naturalistic (e.g. phase-scrambled faces) visual stimuli. We determined the regions that preferred 

particular object categories during localizer scans, combined those regions into ‘joint-ROIs’, and 

measured multivoxel patterns in the joint-ROIs for each stimulus class during separate task 

scans.  We then spatially correlated these stimulus-evoked multivoxel patterns to the multivoxel 

pattern measured in each frame of resting-state scans. The mean correlation coefficient was 

essentially zero for all regions and stimulus categories, indicating that resting activity patterns 

were not biased toward a joint-ROI’s preferred stimulus.  However, the spread of correlation 

coefficients (positive, negative) was significantly greater for the preferred stimulus. Therefore, 

spontaneous activity patterns, at specific time points, positively or negatively matched preferred 

stimulus evoked activity patterns, both within and across regions. We conclude that spontaneous 

multi-voxel activity patterns are linked to stimulus-evoked patterns in human visual cortex. 

 

2.2 Introduction 

 The functional role of spontaneous brain activity in human behavior is an increasingly 

important topic in neuroscience. An emerging view is that the neural activity evoked by a task 
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and the associated behavior is influenced and constrained by ongoing neural activity (Tsodyks et 

al. 1999; Fiser et al. 2004; Fox et al. 2007; Cole et al. 2016; Tavor et al. 2016) an idea that 

contrasts with a long-standing view that spontaneous activity is random, and only important as a 

mechanism for facilitating forward transmission of information processing (Shadlen and 

Newsome 1994). Many studies have now shown that spontaneous activity is highly structured in 

space and time (Biswal et al. 1995; Greicius et al. 2003; Kenet et al. 2003; He et al. 2008; de 

Pasquale et al. 2010; Power et al. 2011; Yeo et al. 2011).  Imaging of neural activity at a scale 

that extends across many cortical columns has shown that the macro-scale pattern of spontaneous 

neural activity within a sensory area in an anesthetized animal mirrors the pattern of activity 

evoked by stimulation of a specific visual feature (Kenet et al. 2003; Omer et al. 2018). 

Moreover, stimulus-evoked activity can be predicted from the ongoing activity that occurs before 

or coincident with stimulus onset (Arieli et al. 1996; Tsodyks et al. 1999). 

On a more global scale, human imaging studies have shown that widely distributed 

regions that are co-activated during a task show temporally correlated activity at rest(Biswal et 

al. 1995; Fox et al. 2005; Smith et al. 2009). For example, human frontal eye field (FEF) and 

dorsal intraparietal sulcus (IPS) or superior parietal lobule (SPL) are routinely co-activated in 

tasks that involve oculomotor or visuospatial attentional demands and also show highly 

correlated activity at rest(Fox et al. 2006). In fact, the blood-oxygenation-level-dependent 

(BOLD) activity in large groups of regions at rest are highly correlated, forming what are termed 

resting-state networks (RSNs) that are associated with particular functions (e.g. dorsal attention 

network) (Power et al. 2011; Yeo et al. 2011). The measurement of interregional correlations at 

rest, functional connectivity magnetic resonance imaging (fcMRI), has become a primary tool for 

measuring spontaneous interactions between brain regions. Moreover, a growing body of work is 
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using fcMRI to understand and assess brain damage and disease (He et al. 2007; Sheline and 

Raichle 2013; Sharp et al. 2014; Gao and Wu 2016). 

The relationship between resting and task-evoked activity in fMRI studies has been 

conceptualized in terms of the correspondence between resting and task networks defined by 

inter-regional correlations (Cole et al. 2014; Kim et al. 2018), or between resting networks and 

patterns of task co-activation (Smith et al. 2009).  Also, recent studies have examined whether 

task activation can be predicted from resting functional connectivity (FC) (Cole et al. 2016; 

Tavor et al. 2016). Here, we discuss a conceptualization more related to the animal work noted 

above, which provides novel insight into why rest-task correspondences occur and thus, the 

function of spontaneous activity. This conceptualization posits that statistical regularities in the 

external and internal (motor planning, cognitive routines) environment result in similar 

distributions of the neural states encoding those regularities (Fiser et al. 2010). Resting states in 

turn reflect these high-information neural states through a Hebbian learning process (Lewis et al. 

2009). Studies have shown that performing a task changes FC in subsequent resting epochs 

(Albert et al. 2009; Hasson et al. 2009; Tambini et al. 2010).  Conversely, an individual’s pattern 

of FC at rest predicts their performance on a subsequent task (Baldassarre et al. 2012). Therefore, 

interactions between resting states and task states form a complete or closed cycle that may 

reflect the functional significance of spontaneous interactions between regions in everyday life: 

resting activity affects task-evoked neural activity and behavioral performance, which in turn 

affects resting FC through a Hebbian process (Fig. 2.1a). According to this conceptualization, 

resting-state activity provides a useful prior or scaffold of biological states that can be modified 

for performance of different tasks. A related conceptualization focuses on the ‘internal’ 

environment and posits that the spontaneous interactions between regions, as in resting FC, are 
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due to connectivity patterns that are coded as synaptic efficacies in cortical networks and reflect 

an individual’s cognitive traits or biases (Harmelech and Malach 2013; Strappini et al. 2018). 

To evaluate these ideas, however, one must move beyond measures of overall FC 

between regions and instead test for the presence and connectivity of resting multi-voxel patterns 

that conform to the neural patterns associated with states of the internal and external 

environment. Multi-voxel analyses of fMRI task signals have shown that neural states or patterns 

of local activity during tasks do in fact carry information about stimulus categories, retrieved 

memories or cognitive processes such as attention (Haxby et al. 2001; Haynes and Rees 2005; 

Kamitani and Tong 2005; Kriegeskorte et al. 2006; Serences and Boynton 2007; Kriegeskorte et 

al. 2008; Greenberg et al. 2010; Kuhl and Chun 2014) and can be modulated by learning. 

A representational function for resting activity might seem surprising since the brain 

appears capable of coding a huge, almost unlimited number of states. However, studies of the 

motor system indicate that the brain partly deals with the large number of possible hand 

movements through synergies (Schieber and Santello 2004; Santello et al. 2013) that reduce 

dimensionality. Studies of human hand movements under experimental and naturalistic 

conditions (Santello et al. 1998; Ingram et al. 2008) have isolated a small number of principal 

components that code for large amounts of variance and distinguish a variety of movements. 

Moreover, a recent fMRI study reported that these components map onto multi-voxel patterns of 

movement-evoked BOLD activity in regions of motor and premotor cortex, SMA, SPL, and 

anterior IPS (Leo et al. 2016). The existence of these modal axes or synergies increases the 

plausibility that resting activity might encode these biologically important representations. A 

similar idea can be extended to other domains. For example, multi-voxel patterns in temporal-

occipital cortex vary along general features of object categories such as animacy (Martin et al. 
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1996; Chao et al. 1999; Kriegeskorte et al. 2008; Sha et al. 2015) or, in literate adults, sensitivity 

to orthography (Cohen et al. 2000; Dehaene et al. 2004; Binder et al. 2006; Vinckier et al. 2007). 

Here we tested the hypothesis that multi-voxel patterns of resting state activity in visual 

cortex are related to the multi-voxel patterns evoked by naturalistic (e.g. faces) and non-

naturalistic (e.g. phase-scrambled faces) visual stimuli. We determined this relationship in high-

level regions of visual cortex that show preferences for object categories, and are presumably 

sensitive to the higher-order features/statistics that define naturalistic objects. We also tested 

regions in early visual cortex that are more influenced by low-level features. These latter features 

occur in naturalistic objects but are also present in phase-scrambled and grid-scrambled objects 

in which the higher-order features/statistics that define natural categories have been removed.   

Subjects received resting scans, localizer scans, and task scans. Localizer scans determined the 

tested ROIs and task scans identified the multi-voxel ‘representational’ patterns evoked by the 

different object categories. These representational patterns were then correlated with the multi-

voxel patterns measured on each frame of resting-scans. The resulting distribution of correlation 

coefficients indicated the extent to which resting activity patterns matched stimulus-evoked 

patterns. 

We specifically contrasted whether resting state multivoxel patterns 1) corresponded 

better to multivoxel patterns evoked by some ecological object categories (e.g. faces) than others 

(e.g. tools) and/or 2) corresponded better to patterns evoked by object categories than 

corresponding controlled stimuli (e.g. phase-scrambled faces or tools). 
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2.3 Methods 

2.3.1 Participants 

 The study included 16 healthy young adult volunteers (10 female; age 21 – 35 years-old) 

with no prior history of neurological or psychiatric disorders. All participants were right-handed 

native English speakers with normal or corrected-to-normal vision. All participants gave 

informed consent to take part in the experiment, and the study was approved by the Institutional 

Review Board (IRB) of Washington University in St. Louis School of Medicine. 

 

2.3.2 Stimuli 

Nine categories of color images subtending 8o x 8o of visual angle were included in 

event-related ‘task’ fMRI scans. Seven categories consisted of images that are often encountered 

in the environment: human faces, human bodies, mammals, chairs, tools, scenes, and words. 

Stimuli, excluding the word category, were obtained from Downing et al. 2006 (Downing et al. 

2006). Faces, bodies and mammals served as animate categories, and chairs, tools and scenes as 

inanimate categories (Kriegeskorte et al. 2008). Word stimuli were included for exploratory 

analyses and results for those stimuli will not be considered in this paper.  

Two control stimulus categories were constructed from the above stimuli used in the 

experiment, excluding the word stimuli. A low-level control consisted of phase-scrambled 

stimuli that preserved the spatial frequency amplitude spectrum of the intact-stimulus images. An 

intermediate-level control consisted of grid-scrambled stimuli that included basic visual 

properties of the intact-stimulus images such as line segments and connectors. For the low-level 

control condition, 2D phase-scrambled images of the exemplars from the 6 categories were 
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generated by applying the same set of random phases to each 2-dimensional frequency 

component of the original image while keeping the magnitude constant (Watson et al. 2016).  

Exemplars from all six intact-stimulus categories except real word stimuli were 2D phase-

scrambled, yielding a total of 144 2D Phase-scrambled stimuli. For the intermediate-level control 

condition, grid-scrambled images of exemplars from the six intact-stimulus categories were 

generated by sub-dividing each image into a 10 x 10 grid (each grid is 0.8o x 0.8o) and randomly 

rearranging the individual grid segments.  

Color images of exemplars from seven categories were included in localizer scans: 

human faces, human bodies, objects (chairs and tools), scenes, words, false font character strings 

and phase scrambled images. The categories for the localizer scans differed slightly from the 

categories for the task scans since the former was only used to define the regions of interest 

(ROIs). ROIs related to the false font and word stimuli will not be considered in this paper.  

Stimuli were presented using the Psychophysics Toolbox package (Brainard 1997) in MATLAB 

(The MathWorks). Stimulus images were projected onto a screen and were viewed through a 

mirror mounted on the head coil. All stimuli were presented centrally on a gray background. 

 

2.3.3 Scanning Procedure 

 The study consisted of two separate sessions, each conducted on a separate day. In 

session one, subjects received 3 resting state runs, 2 localizer runs, and 8 task runs. In session 2, 

subjects received 2 resting state runs, 2 localizer runs, 8 task runs, and 2 post-task resting state 

runs. One subject had a total of 13 task runs over the two sessions instead of 16 (Fig. 2.1b).  
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Resting state runs. Participants received a total of 7 resting state scans, each lasting 5 min 

(300 TRs). During a scan the participant was asked to maintain fixation on a cross that was 

displayed at the center of the screen during the entire run. Five resting scans (3 for first session 

and 2 for second session) were conducted before any localizer or task scans to collect stimulus-

free intrinsic activities. For the second session only, two additional 5 min resting state scans were 

conducted after the task scans to investigate potential post stimuli-driven effects on intrinsic 

activity. The results from the post-task resting scans will not be discussed here. 

 

Localizer runs. Each session included 2 localizer runs (4 in total), each lasting 5 min and 

40s (340 TRs), and each localizer scan was presented in a blocked fMRI design. Each block of a 

localizer run contained 20 images of a single category, and those images were different from the 

images used in the task scans. A fully randomized sequence of eight blocks, consisting of the 7 

stimulus categories and a fixation block, was repeated twice within each run. At the beginning 

and the end of each run, an additional fixation block was presented for 4s and 16s.  Within each 

category block, images were presented for 300ms with an inter-stimulus interval (ISI) of 700ms. 

A fixation cross was continuously present at the center of the screen during the ISI and during 

fixation blocks. During category blocks, participants performed a minimally cognitively 

engaging task by pressing a button if the initially presented image was changed in size or 

position during the 300ms presentation.  

 

Task runs. Each session included 8 task runs (16 in total), each lasting 5 min and 15s 

(315 TRs). For each subject and for each run, stimulus presentation order and inter-stimulus 

intervals were fully randomized using Optseq2 (Dale 1999).  Each stimulus presentation lasted 
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for 300ms and the interval between stimuli was jittered between 3.7s and 8.7s. A fixation cross 

was continuously present at the center of the screen during the ISI. In each intact-stimulus 

category, there were 24 separate exemplars (e.g. 24 different faces) and each exemplar was 

repeated 4 times. In each scrambled category, there were 96 exemplars, each presented once. 

Participants performed a minimally cognitively engaging task by pressing a button if the 

presented image changed its size or position during a 300ms presentation, the same task as that 

performed during the localizer scans. 
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Figure 2.1. (a) The putative cyclic interplay between brain activity evoked by real-world experiences and 

resting-state activity. (b) Experimental design. 

 

2.3.4 Imaging parameters  

 Data were obtained from a Siemens 3T Prisma MRI scanner. Structural images for atlas 

transformation and lesion segmentation were acquired using T1-weighted magnetization 
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prepared-rapid gradient echo (MP-RAGE) (1 x 1 x 1 mm voxels; echo time [TE] = 2.36 ms, 

repetition time [TR] = 1700 ms, TI=1000 ms, flip angle = 8°) and T2-weighted fast spin echo 

sequences (1 x 1 x 1 mm voxels; TE = 564 ms, TR = 3200 ms). FMRI scans were collected using 

a gradient echo-planar sequence sensitive to BOLD contrast (TE = 26.6 ms, flip angle = 58°, 2.4 

x 2.4 x 2.4 mm voxels, 48 contiguous slices, TR = 1.0 s, and multiband factor of 4). 

 

2.3.5 fMRI pre-processing  

 fMRI data underwent pre-processing as previously described (Siegel JS et al. 2016). This 

included: (1) compensation for asynchronous slice acquisition using sinc interpolation; (2) 

elimination of odd/even slice intensity differences resulting from interleaved acquisition; (3) 

whole brain intensity normalization to achieve a mode value of 1000; (4) spatial realignment 

within and across fMRI runs; and (5) resampling to 2.4 mm cubic voxels in atlas space, including 

realignment and atlas transformation in one resampling step. Cross-modal (e.g. T2-weighted to 

T1-weighted) image registration was accomplished by aligning image gradients.  

Surface generation and processing of functional data followed procedures similar to 

Glasser et al (Glasser et al. 2013). First, anatomical surfaces were generated for each subject’s 

T1 MRI using FreeSurfer automated segmentation (Fischl et al. 1999). This step included brain 

extraction, segmentation, generation of white matter and pial surface, inflation of the surfaces to 

a sphere, and surface shape-based spherical registration to the subjects’ “native” surface to the 

fs_average surface. The left and right hemispheres were then resampled to 164,000 vertices and 

registered to each other (Van Essen et al. 2001). 

Data were passed through several additional preprocessing steps: (i) removal by 

regression of the following sources of spurious variance: (a) six parameters obtained by rigid 



30 

 

body correction of head motion, (b) the signal averaged over the whole brain (global signal 

regression), (c) signal from ventricles and CSF, and (d) signal from white matter; (ii) temporal 

filtering retaining frequencies in the 0.009–0.08-Hz band; and (iii) frame censoring (framewise 

displacement (FD) ≥ 0.5mm). The first four frames of each BOLD run were excluded. 

To account for magnitude variability between different task and resting state runs, the 

BOLD timeseries for each vertice were Z-normalized across time within the task and the resting 

state runs. This Z-normalization was not applied to the localizer scans. Also, it was not applied to 

the Task scans for a separate analysis described below in which task-evoked activation 

magnitudes were determined (see below, Task scans: multi-voxel activation patterns). 

 

2.3.6 Defining ROIs from localizer activation contrasts  

 ROIs were defined from univariate vertice-wise statistical contrasts on the localizer 

activation magnitudes for different categories. For example, face-selective areas were defined 

from the significant vertices for the contrast of faces minus objects, where objects consisted of 

chairs and tools. First, for each participant a general linear model (GLM) was applied to their 

functional localizer scans. The GLM consisted of separate regressors for each stimulus category 

(e.g. faces) using an assumed hemodynamic response function from the Statistical Parametric 

Mapping (SPM12), a baseline term, and a linear trend term. Condition contrasts were formed to 

identify vertices showing preferences for each category, using a scheme similar to that of Bracci 

and Op de Beeck (2016) (Bracci and Op de Beeck 2016): body-preferences (body > objects, i.e. 

chairs and tools), face-preferences (face > objects), scene-preferences (scene > objects ), intact-
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stimulus-preferences (face + body + scene + object (chair+tool) > phase-scrambled), and phase-

scrambled-preferences (phase-scrambled  > face + body + scene + object (chair+tool)).  

A group random-effect statistical Z-map for each contrast was then computed from the 

single-subject GLMs (see Figure 2.2a for the group z-statistic map for each contrast). The Z-

values obtained were sorted in magnitude. From the highest Z-values from the map, the group 

peak with the next highest Z-value was generated until the Z-value was <= 2.0. Group peaks had 

to be separated by at least 38.4mm (9.6 mm x 4) in the sphere mesh to prevent a vertex being 

assigned to multiple ROIs in a subject. ROIs were then defined separately for each participant 

based on the individual’s univariate statistical maps (Oosterhof et al. 2012; Wurm et al. 2016). 

From each group peak defined above, the corresponding peak for an individual subject peak was 

defined as the vertex with the highest Z-value within a sphere of 9.6 mm radius centered around 

the group peak in each subject’s sphere mesh. The single-subject ROI was formed from the 

vertices exceeding Z= 2.0 in a sphere of 9.6 mm radius centered around the peak in the subject’s 

mesh. All ROIs used in following analysis contained at least 175 vertices in at least 14 subjects. 

ROIs in individual subjects with less than 175 vertices were discarded.  

To remove differences in BOLD magnitude across MR frames, for each ROI a z-

normalization was applied across the vertices of each frame of the resting and task scans.  This 

within-frame Z-normalization was not applied to the localizer scans. Also, it was not applied to 

the Task scans for a separate analysis described below in which task-evoked activation 

magnitudes were determined (see below, Task scans: multi-voxel activation patterns) 
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Figure 2.2. (a) Group z-statistic Localizer maps. ROIs were separately defined for individual from their 

localizer maps using the group foci as a constraint (see Methods, Defining ROIs from localizer activation 
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contrasts).  (b) Three sets of category-preferential ROIs were defined for faces, bodies, and scenes using 

the object category (tools and chairs) as the baseline. The ROIs in each set were combined into a joint-

ROI after excluding regions with containing more than 50% of the early visual vertices in the group map. 

The early visual vertices in V1 to V3 were estimated from the Benson template (Benson et al. 2012). Two 

additional sets of ROIs were defined by contrasting all intact-stimulus categories (face, body, object, and 

scene) against the phase-scrambled condition. The positive contrast (i.e. face+body+object+scene > 

phase-scrambled) and negative contrast (i.e. face+body+object+scene < phase-scrambled) each yielded a 

set of ROIs that were combined, respectively, into a Intact-Stimulus joint-ROI and a Phase-Scrambled 

joint-ROI. The locations of the constituent ROIs for each of the five joint-ROIs are schematically shown 

based on the group locations. 

 

Two sets of ROIs were created for use in different analyses. The first set was created 

from the localizer-defined ROIs that preferred a particular target category (face, body, or scene) 

relative to the object category (chairs + tools). We grouped the vertices from the target-preferred 

ROIs into a single target-preferred joint-ROI.  To minimize the effect of retinotopically related 

low-level feature driven activity from the high-level categorical object gestalts (Strappini et al. 

2018), initially generated group ROIs containing more than 50% of its constituent vertices 

located in early visual areas (V1 to V3) were excluded. The early visual vertices were estimated 

from surface topology using the template created by Benson et al. (Benson et al. 2012). For each 

group ROI contains less than 50% of early visual vertices, each subject’s individual ROI used its 

all constituent vertices since the early visual area estimations of V2 and V3 areas in Benson 

template was not stable. A second set of ROIs consisted of Intact-Stimulus ROIs (face + body + 

scene + object > phase-scrambled) and Phase-Scrambled ROIs (phase-scrambled > face + body 

+ scene + object). Intact-Stim and Phase-Scrambled ROIs were grouped, respectively, into an 

Intact-Stim joint-ROI and a Phase-Scrambled joint-ROI. Table 2.1 summarizes the mean MNI 

coordinate, mean Z-score for the obtained group peak, and mean number of vertices for all 

constituent ROIs in each joint-ROI. Figure 2.2b schematically indicates the position of all 

constituent ROIs in a joint-ROI based on their group-peak locations. Figure 2.2c shows the 
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location of all Phase-Scr ROIs superimposed on a surface map of V1-V3 using the template from 

Benson et al. (Benson et al. 2012). 

 
Table 2.1. Summary ROI information for all constituent ROIs used for generating a joint-ROI. 

 

 

2.3.7 Localizer scans: multi-voxel activation patterns  

 For each joint-ROI from each subject, the multi-vertex activation pattern for each 

stimulus category from the localizer scans was estimated. To accomplish this, a general linear 

model (GLM) was constructed using 7 category regressors, and baseline and linear trend 

regressors for each scan. Each category regressor was convolved with an assumed hemodynamic 
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response function. The output localizer β weight matrix was a categorical multi-voxel pattern of 

size Nc x Nv (Nc = Number of the localizer categories & Nv = Number of vertices belong to the 

ROI). The mean localizer categorical activation magnitude across vertices (a vector of size Nc x 

1) was computed from the obtained categorical β weight matrix for each category 

 

2.3.8 Task scans: multi-voxel activation patterns  

 For each joint-ROI from each subject, the multi-vertex activation pattern for each of the 

stimulus categories (except the word category) in the task scans was estimated via a GLM that 

included a category regressor for all stimulus presentations involving a particular category (Fig. 

2.3). In addition, the GLM included a target regressor for trials in which a stimulus was 

perturbed in size or position, and baseline and linear trend regressors for each scan. The category 

and target regressors were each convolved with an assumed hemodynamic response function, 

yielding a stimulus-evoked BOLD multi-voxel pattern for each category (e.g. the pattern outlined 

by the red square in Fig. 2.3) and for the target. In order to determine the task-evoked magnitude 

for each stimulus category, a β weight matrix was separately computed using spatially non-

normalized BOLD timeseries from the task scans. 

 

2.3.9 Determining similarity of resting multi-vertex patterns and stimulus-

evoked patterns 

 For each participant’s individual joint-ROI, we determined the degree to which the multi-

vertex pattern for a stimulus-evoked template for a category matched the multi-vertex pattern on 

each resting frame. In this procedure, illustrated in Figures 2.3, framewise intrinsic activity 
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patterns were obtained from independent resting-state scans. Next, for the averaged stimulus-

evoked pattern for a category (e.g. the prototype template for ‘scene’, Fig. 2.3), the template 

spatial pattern was spatially correlated with the resting activity pattern on a frame. This 

procedure was repeated across all resting frames, resulting in a distribution of correlation 

coefficients (one coefficient per resting frame) for a particular category prototype in a particular 

joint-ROI. The upper 90% value of each distribution, hereafter termed the U90-value, was then 

determined. The U90 value computed for a prototype template served as a measure of the 

relationship between resting activity patterns and the patterns evoked by a category mean. For 

analyses that involved the Intact-Stimulus and Phase-Scrambled joint-ROI rather than joint-ROIs 

that preferred a particular category such as faces, U90-values for the six intact-stimulus 

categories (face, body, mammal, chair, tool, scene) were averaged together to form a intact-

stimulus U90 value.   

 

2.3.10  Statistical analysis of U90 values 

 U90 values were analyzed via repeated measures ANOVAs and paired t-tests.  For 

example, the statistical significance of an overall dependence of U90 values for a joint-ROI on 

the stimulus category was determined by conducting repeated-measures ANOVAs with 

Category-Type as factors. Paired t-tests were conducted to test specific contrasts, with a 

Bonferroni-correction for multiple comparisons.  For example, U90 values for intact-stimulus vs. 

phase-scrambled stimuli were compared in the Intact-Stimulus joint-ROI. 
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Figure 2.3. (a) Definition of U90-values using a prototype template. At each vertex of each joint-ROI, the 

categorical β weights for all 96 stimulus presentations from each category were computed, producing a 

categorical stimulus-evoked pattern or prototype template for each category and joint-ROI (e.g. the scene 

pattern outlined in red). For each joint-ROI, the spatial correlation between the prototype template and the 

resting activity pattern on a single resting frame was measured, yielding a spatial correlation coefficient 

for that frame. This procedure was repeated for all resting-state frames, yielding a distribution of spatial 

correlation coefficients. The upper 90% value from this distribution, shown by the vertical red arrow, was 

used as a summary measure of the distribution. 

 

 

2.4 Results 

The primary goal of the experiment was to compare multi-vertex activity patterns in the 

resting state to stimulus-evoked activity patterns from a variety of stimulus categories, including 

those that might be considered more or less ‘ecological’ (e.g. photographs of faces, tools, and 
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scenes vs. phase-scrambled images of those stimuli). This comparison was conducted 1) in 

regions of higher-order visual cortex that preferred a particular object category (e.g. faces) 

relative to other categories (e.g. objects), and 2) in regions of visual cortex that either preferred 

intact-stimulus categories relative to the phase-scrambled category or showed the reverse 

preference.  

The stimulus-evoked spatial pattern or template for a category in a particular ROI was 

determined from the β weights estimated for a category regressor in the GLM for the task scans. 

Therefore, the stimulus-evoked template roughly reflected the average pattern of activation 

produced by different instances of the category. Instead of analyzing each localizer-defined ROI 

separately, we grouped each set of category-preferential ROIs for an individual into a single 

joint-ROI. The corresponding category template for the joint-ROI was the union of the templates 

for the constituent ROIs. For example, the scene joint-ROI included constituent regions such as 

PPA and TOS (see Table 2.1 for a complete listing), and the scene template for the joint-ROI 

consisted of the constituent scene templates for PPA, TOS, and so forth. For each category, the 

joint-ROI category template was spatially correlated with the activity pattern in the joint-ROI on 

each resting frame to determine a distribution of correlation coefficients over frames for the 

category and joint-ROI (Fig. 2.3). For each subject and category, the upper 90% value (U90 

value) of the distribution was then used as a summary measure of the relationship between the 

stimulus-evoked and resting patterns. 

U90 values are sensitive to the mean, variance, and skewness of the underlying 

distribution of correlation coefficients. However, for all categories and ROIs, the distribution of 

correlation coefficients that defined the U90-value was symmetric and centered very near zero. 

Figure 2.4b shows the cumulative distribution for all subjects of spatial correlation coefficients 
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across resting frames in face, body, and scene joint-ROIs for coefficients that were computed 

using the prototype face, body, and scene templates and the prototype phase-scrambled template. 

The distributions for intact-stimulus and phase-scrambled stimuli were symmetric and centered 

on zero, but had different spreads. For the five joint-ROIs (Body, Face, Scene, Intact-Stimulus, 

Phase-Scrambled) and eight stimulus categories (faces, bodies, mammals, tools, chairs, scenes, 

phase-scrambled, and grid-scrambled) the largest group averaged value of the distribution mean 

across the forty distributions of correlation coefficients was 0.011. Consequently, differences in 

U90 values between categories essentially reflected differences in the variance of the 

distributions of coefficients. U90-value has an advantage in understanding the relationship 

between the stimulus-evoked and resting patterns since the value is the actual spatial correlation 

coefficient value between the stimulus-evoked and resting patterns. In the results below, a larger 

U90 value indicates the presence of larger positive matches and negative matches of the resting 

pattern to the category-evoked pattern, rather than the (positive) degree of similarity. 

 

2.4.1 U90 values in joint-ROIs that prefer face, body, and scene categories 

 We conducted analyses that compared U90 values for a target category vs. other 

categories in individually-defined ROIs that preferred the target category, as determined by the 

localizer contrasts used to identify the ROIs. As an example, for the face target category 

preferred ROIs were defined from the localizer contrast face minus object. Instead of analyzing 

each ROI separately, we grouped each set of category-preferential ROIs for an individual into a 

single joint-ROI. We then correlated the category template with the activity pattern on each 

resting frame across the entire joint-ROI, and derived a single U90 value for the target-preferred 

joint-ROI. ROIs in early visual cortex, as defined using the Benson template for V1 – V3 
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(Benson et al. 2012), were not included in category-preferential joint-ROIs, similar to the 

exclusion in (Strappini et al. 2018).  

Figure 2.4a shows the representational similarity matrix of measuring mean pattern 

similarity values among the all 8 categorical prototype templates across subjects in face, body, 

and scene joint-ROIs. The animate and inanimate representational hierarchical distinction 

(Kriegeskorte et al. 2008) was weakly depicted in Face- and Body-preferred joint-ROIs with 

stronger pattern similarities in animate categories. Table 2.2 shows the actual mean spatial 

correlation coefficients among face-, body-, and scene- prototype templates in face, body, and 

scene joint-ROIs. 

Figure 2.4c shows U90 values for a joint-ROI’s target category (green symbol), non-

target intact-stimulus categories (red symbols), grid-scrambled category (blue symbol) and 

phase-scrambled category (gray symbol). Separate repeated measures analysis of variance 

(ANOVAs) for each joint-ROI with Category (8 levels) as a factor indicated a significant main 

effect of Category in all joint-ROIs (Face: F(7,105)=3.33, p=0.003; Body: F(7,105)=6.02, 

p=6.56e-6; Scene: F(7,105)=6.36, p=3.04e-6). The black symbols indicate significant differences 

in the U90 value for the joint-ROI’s target category vs. each other category (paired t-tests; ‘+’ = 

Bonferroni-corrected, p<0.05, ‘++’ = Bonferroni-corrected, p<0.005, ‘*’ = uncorrected, p<0.05).  

Within the face joint-ROIs, U90 values were larger for the joint-ROI’s target category 

than for inanimate categories (chair, tool, scene) as well as for grid-scrambled objects. Within 

the body joint-ROIs, U90 values were larger for the joint-ROI’s target category than for 

inanimate categories (chair, tool, scene) as well as for grid- and phase-scrambled objects. Within 

the scene joint-ROI, U90 values were larger for scenes than for all other intact-stimulus 

categories as well as for grid- and phase-scrambled objects. These results demonstrate that in 
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higher-order visual regions that showed stimulus preferences for a particular category, U90 

values significantly differed between categories in a manner that partly reflected the higher-order 

grouping of animate vs. inanimate categories (Kriegeskorte et al. 2008) as well as the distinction 

between intact and scrambled objects. 
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Figure 2.4. (a) Each graph shows representational similarity matrix across all 8 categorical prototype 

templates for a joint-ROI. (b) Each graph shows for a joint-ROI the superimposed distributions of 
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correlation coefficients between stimulus-evoked and resting activity patterns over frames for the joint-

ROI’s target category (light green; e.g. Face in the Face-preferred joint-ROI) and for the phase-scrambled 

category (gray). The stimulus-evoked template for a category corresponded to a ‘prototype template’ 

(procedure outlined in Fig. 2.3. Overlapping sections of the two distributions are shown in dark green. 

The green and black lines have been fit to the distributions for the target and phase-scrambled categories, 

respectively, using the MATLAB program function ‘fitdist.m’. (c) Group-averaged U90 values for 

categories in preferred vs. non-preferred joint-ROIs. For each of three joint-ROIs, the graph plots U90 

values for the joint-ROI’s target category (green symbol; e.g. U90 values for the face joint-ROI), non-

target intact-stimulus categories (red symbols), grid-scrambled category (blue symbol), and phase-

scrambled category (gray symbol). Significance of a group paired t-test comparing the U90 values within 

the preferred joint-ROI for the target category vs each non-target category is indicated by black symbols 

(+ = Bonferroni-corrected p-val ≤ 0.05; ++ = Bonferroni-corrected p-val ≤ 0.005; * = uncorrected p-val ≤ 

0.05). 

 

 

Table 2.2. Mean spatial correlation coefficients among face-, body-, and scene- prototype templates in 

face, body, and scene joint-ROIs. 

 
 

2.4.2 U90 values in joint-ROIs that prefer phase-scrambled or intact-stimulus 

images 

 The above analysis focused on joint-ROIs that showed preferential responses to faces, 

bodies, or scenes relative to chairs and tools.  We also analyzed joint-ROIs in which stimulus-

evoked responses were stronger or weaker for the union of the intact-stimulus categories face, 

body, scene, and object (chair+tools) vs. phase-scrambled stimuli. The resulting ‘Intact-stimulus’ 

joint-ROI was located in lateral and ventral visual cortex while the ‘Phase-scrambled’ joint-ROI 

was located in medial visual regions (Fig. 2.2).  
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Figure 2.5b shows that in the Intact-Stimulus joint-ROI, the mean U90 value was larger 

for intact-stimulus than phase-scrambled objects but not grid-scrambled objects, which contained 

visual features such as contours, line terminators and junctions. Therefore, when higher-level 

visual regions were not segregated by category preferences, resting activity did not necessarily 

differentiate between intact-stimuli objects and scrambled objects that included lower-level 

visual features. The reverse pattern was observed for the Phase-Scrambled joint-ROI, with higher 

U90 values for grid- and phase-scrambled objects than intact-stimulus objects.  

Confirming the above observations, an ANOVA with ROI-type (Intact-Stimulus, Phase-

Scrambled) and category (intact-stimulus, grid-scrambled, phase-scrambled) as factors yielded a 

significant main effect of Category (F(2,30)=14.5, p=3.99e-5) and a significant interaction of 

ROI-type by Category (F(2,30)=11.5, p=0.0002). A sub-ANOVA with ROI-type (Intact-

Stimulus, Phase-Scrambled) and category (intact-stimulus, phase-scrambled) also yielded a 

significant interaction (F(1,15)=13.9, p=0.002), indicating that the critical interaction was not 

driven by the grid-scrambled objects. 
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Figure 2.5. (a) Each graph shows representational similarity matrix across all 8 categorical prototype 

templates for a joint-ROI. (b) Group-averaged U90 values in Intact-stimulus and Phase-scrambled joint-

ROIs are plotted for intact-stimulus, grid scrambled, and phase-scrambled categories. Black symbols 

indicate significant differences between the intact-stimulus category and each of the scrambled categories 

as determined by a group paired t-test (+ = Bonferroni-corrected p-val ≤ 0.05; ++ = Bonferroni-corrected 

p-val ≤ 0.005; * = uncorrected p-val ≤ 0.05). 
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2.4.3 U90 values correlate with activation strength  

 The previous analyses have shown that resting activity patterns showed higher U90 

values for the patterns evoked by stimulus categories, whether scrambled or intact-stimulus, 

which best activated the corresponding joint-ROI. Figure 2.6 shows for Face, Body, Scene, 

Intact-stimulus, and Phase-scrambled joint-ROIs the mean activation strengths during the Task 

(first column) and Localizer (second column) scans for each category, as defined from the β 

weights for the category averaged over subjects and the vertices of each joint-ROI. The task β 

weights used for the activation strength computation were separately computed from spatially 

non-normalized task BOLD timeseries (see Methods). The activation strengths in both the Task 

and Localizer scans followed the general pattern expected from the Localizer contrasts used to 

define the joint-ROIs. Since the Task scans were independent of the Localizer scans, the 

presence of the expected pattern in those scans provided an independent confirmation of the 

suitability of the Localizer-defined regions. 

To determine whether the U90 value for a category and joint-ROI was related to the 

category’s activation strength, for each subject and each joint-ROI, we computed the correlation 

coefficient across categories between the U90-value computed from the resting frames and the 

activation strength in the task or the localizer conditions. The group average correlation 

coefficient between U90 values and activation strengths for each Joint-ROI is shown in Figure 

2.6 (third column). Group one-sample t-tests indicated that the correlation coefficients were 

significant for both task and localizer scans in all Joint-ROIs. These results demonstrate that 

subjects showing a greater similarity between resting state and task patterns for different 

categories, i.e. larger U90 values for a category, also showed in general stronger task activation 

in the same ROI for that category. Hence, this result links category selective magnitude of 



47 

 

activation at the regional level, multivoxel category selective patterns of activation, and 

multivoxel patterns found at rest. 

 
Figure 2.6. The correlation between U90 values and activation strengths. The mean activation strength in 

Face, Scene, Body, Intact-Stimulus, and Phase-Scrambled joint-ROIs from the task and localizer scans for 
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all stimulus categories are plotted for in the first and second columns, respectively. The correlation 

between activation strengths and U90 values across all categories is shown for both task and localizer 

scans in the third column. Black symbols indicate the significance of each correlation coefficient, as 

determined by a group 1-sample t-test (+ = Bonferroni-corrected p-val ≤ 0.05; ++ = Bonferroni-corrected 

p-val ≤ 0.005; * = uncorrected p-val ≤ 0.05) 

 

 

2.5 Discussion 

The goal of the experiment was to determine in regions of visual cortex the relationship 

between resting multi-vertex activity patterns and the multi-vertex patterns evoked by 

naturalistic and non-naturalistic visual stimuli. To this end, the multi-vertex patterns of the 

evoked BOLD activity from common ecological stimulus category objects and from 

corresponding control stimuli such as phase-scrambled and grid-scrambled objects were 

correlated with resting multi-vertex patterns in brain regions independently defined using 

standard localizers. 

The overall result, discussed in more detail below, is that on average, resting activity 

patterns in regions of visual cortex were not more similar to the pattern evoked by one stimulus 

category as compared to another. However, the variability of resting state patterns in different 

category specific regions of visual cortex was more similar for preferred stimulus-evoked 

patterns. For instance, in regions tuned for faces, face specific multivoxel patterns were more 

likely to have a match in some resting frames than scene specific multivoxel patterns. 

Interestingly, the higher variance involved not only positive but also negative correlation values, 

as indexed by the U90 value (Fig. 2.4). Across subjects, the spread of match values was 

determined by how well a stimulus activated the region.  

Therefore, the spatial pattern of resting activity in a distributed set of regions varied in 

time along an axis that was best aligned with the spatial pattern of the regions’ preferred stimulus, 
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i.e. an axis with two endpoints, preferred- and not-preferred-stimulus values. In high-level visual 

regions showing categorical object preferences, U90 values were higher for the preferred object 

category (Fig. 2.4c). In regions of early visual cortex, which were more strongly activated by 

grid-scrambled or phase-scrambled objects than by real object categories (face, body, mammal, 

chair, tool, but not scene; Fig. 2.6), U90 values were greater for the scrambled control stimuli 

(Fig. 2.5). Therefore, also in early visual cortex that contains receptive fields tuned to lower 

visual properties (e.g. contrast, edges, orientation), the relationship between stimulus evoked 

patterns and resting state pattern variance was confirmed. 

Overall, these results are consistent with a general framework in which resting multivoxel 

patterns of activity within a brain region are affected by the past history of activity patterns 

evoked by the external and internal environment (Fiser et al. 2010; Harmelech and Malach 2013). 

They also show that resting activity patterns can potentially serve a representational function by 

carrying information about high- and low-level visual features. Interestingly, the variability of 

resting frames matches stimulus-evoked patterns both in terms of positive and negative 

correlation, consistently with recent study showing that the variability of response tuning is an 

important property of control in cortex (Lin et al. 2015). A region’s stimulus preference 

determines an axis along which the resting pattern maximally varies, and links the region’s 

multi-vertex pattern to the multi-vertex patterns of regions that show similar preferences. 

 

2.5.1 Low- and high-level visual correspondences at rest 

 Resting multivoxel patterns in visual areas were generally related to a region’s stimulus 

preferences, i.e. the stimuli that optimally activated the region. In many higher-level visual ROIs 

(Fig. 2.4c), these preferences favored particular categories over other categories or corresponding 
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scrambled control categories. However, in early visual cortex, these preferences favored stimuli 

that emphasized low-level features (Fig. 2.5). Grid-scrambled stimuli likely included a higher 

density of contours and line terminators/connectors/junctions than the original naturalistic 

images, while phase-scrambled images contained dense textures. Both features were also present 

in scene images (e.g. heterogeneous arrays of multiple small objects, wheat fields, clouds). 

Correspondingly, in the scene joint-ROI, phase-scrambled and grid-scrambled objects showed 

relatively high U90 values with respect to most single-object categories (Fig. 2.4c).  

The larger U90 values for scrambled control stimuli in early visual cortex do not 

contradict an overall framework in which resting activity patterns reflect the statistical 

distribution of features in the environment. Rather, this result suggests that resting activity 

patterns in regions that primarily extract low-level visual features are relatively independent of 

the patterns associated with higher-order features/statistics that define categorical objects. 

Therefore, the link between resting and evoked activity patterns can be driven by a variety of 

stimulus features that reflect local (e.g. contour-related features) or global (e.g. faces) stimulus 

characteristics depending on the tested region. 

 

2.5.2 Resting activity as a context-independent prior 

 An important rationale for postulating a representational function of resting activity is 

that limits on the information processing capacity of the brain may be mitigated by the 

incorporation of useful prior information. Appropriate priors will generally depend on context 

and therefore will change dynamically. The perceptual priors appropriate to walking alone 

through a forest vs. eating a family meal at the dinner table are quite different.  These putative 
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dynamic changes are thought to reflect generative models of the expected input via top-down 

pathways (Mumford 1992). 

Resting scans are usually conducted under conditions in which subjects lie in a dark tube 

while fixating a cross in an otherwise blank display, which would not seem a fertile context for a 

perceptual prior. However, some aspects of an appropriate prior may not heavily depend on 

context. Under the hypothesis that stimulus tunings reflect the statistical distribution of features 

in the environment (Fiser et al. 2010), perhaps coupled with additional constraints such as 

sparsity (Olshausen and Field 1996), the activation pattern corresponding to a region’s stimulus 

preference may serve as an appropriate context-independent prior for a region. In addition, utility 

might be maximized for a system by including category preferential areas that require less 

stimulus evidence to generate stimulus-evoked representations of biologically important 

categories. A category-appropriate resting pattern could provide an appropriate ongoing bias.   

However, in category-preferential regions we found increases in the variance but not the mean of 

the spatial match between resting and evoked activity.   

An alternative hypothesis is that the increase in variation for a region along the preferred-

stimulus/not-preferred-stimulus pattern axis is related to the critical dynamics of the region. 

Criticality refers to a state whose dynamics enables a transition to a different state(s) in response 

to a small perturbation, as in a phase transition.  Prior studies have suggested that resting activity 

conforms to critical states that are easily perturbed by stimulus or task inputs (Deco and Jirsa 

2012; Tagliazucchi et al. 2012; Chialvo 2010). The alignment of spatial resting patterns along the 

preferred stimulus/not preferred stimulus axis for a region, coupled with criticality, may better 

enable departures from the resting state along that axis and lead to better or faster discrimination 

along that axis. The axis itself may be determined by the joint influences of structural 
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connectivity and resting functional connectivity (FC). Category specific activations are related to 

distinct structural connectivity fingerprints (Saygin et al. 2011; Osher et al. 2016), while recent 

studies have demonstrated mappings between resting FC and voxelwise activation patterns (Cole 

et al. 2016; Tavor et al. 2016). Resting FC is influenced not only by structural connectivity 

(Honey et al. 2009) but also by prior experience (Albert et al. 2009; Hasson et al. 2009; Lewis et 

al. 2009; Tambini et al. 2010), the latter effect thought to be mediated by changes in synaptic 

weightings. 

The description of the poles of the axis of maximal variation in resting activity patterns as 

preferred-stimulus and not-preferred-stimulus is one of several possible interpretations.  For 

example, van Loon and colleagues (van Loon et al. 2018) studied multivoxel patterns in a region 

of posterior fusiform cortex that was activated during visual search tasks. Subjects searched 

through two successive displays, where the target object for the search through each display was 

different. When subjects searched through the first display, the target objects for both the first 

and second displays could be decoded. However, the pattern that drove decoding of the second 

target object was the negative of the pattern that drove decoding of the same object when it 

served as the first target object. The authors concluded that positive and negative poles of the 

spatial pattern axis corresponded to current vs prospective working memory representations. 

Therefore, opposing spatial activity patterns may reflect a variety of functional codes. 

 

2.5.3 Comparison with animal studies 

 The present work was motivated by the pioneering studies of Grindvald, Arieli, and 

colleagues (Arieli et al. 1996; Tsodyks et al. 1999; Kenet et al. 2003), who used optical imaging 

in anaesthetized cats to show that activity patterns in V1 evoked by oriented gratings spatially 
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matched patterns of spontaneous activity (Kenet et al. 2003). This work was recently extended to 

monkey by Omer and colleagues (Omer et al. 2018), who correlated spontaneous activity 

patterns with the differential activity pattern evoked by orthogonally oriented gratings, and 

compared the resulting distribution of correlation coefficients to a control distribution. 

In anaesthetized monkeys, both distributions were centered on zero and the stimulus-

evoked distribution had larger positive and negative tails. Presumably, the symmetric distribution 

reflected the columnar organization of orientation selectivity, since orthogonal gratings would 

activate disjoint columns. Therefore, the differential spread of the two distributions reflected the 

similarity of resting and stimulus-evoked patterns. Interestingly, awake monkeys showed evoked 

and control distributions that completely overlapped, although the authors indicated that FC 

analyses demonstrated a similar match of resting and evoked pattern but on a smaller spatial 

scale and faster timescale.  

In the present work, the distributions of correlation coefficients used to compute U90 

values were symmetric about zero and had larger tails for preferred than non-preferred stimulus 

categories. However, the results in anaesthetized monkey V1 and awake human visual cortex are 

not comparable. The underlying columnar architecture in the joint-ROIs is unknown, the evoked 

template in the current work was not formed from a contrast of orthogonal exemplars, and 

BOLD activity was not sampled at an analogous spatial or temporal scale. 

 

2.5.4 Limitations 

 Stimuli were not controlled for low-level variables that might have differentially 

activated visual regions. As noted, grid-scrambled stimuli may have included contour 

terminators to a greater extent than single-object stimuli, increasing the activation of early visual 
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cortex. However, this supposition is only speculative since this factor was not explicitly 

controlled or manipulated. 

Additionally, the naturalistic stimuli of the present study were presented in a decidedly 

non-naturalistic context. Wilf et al. (Wilf et al. 2017) have shown that in early visual cortex, 

resting FC patterns are better accounted for by movies than by standard retinotopic stimuli, while 

Strappini et al. (Strappini et al. 2018) have shown that in higher-level visual cortex, resting FC 

patterns are better accounted for by movies than by static pictures of objects similar to those used 

here. Therefore, the present results may underestimate the spatial correspondences between 

resting and evoked activity patterns. 
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Chapter 3: Functional connectivity based on temporal 

task-to-rest activity pattern correspondences  

 

3.1 Abstract 

 Studies of functional connectivity (FC) of spontaneous activity have yielded important 

insights into the network organization of the human brain. However, there is no consensus on the 

mechanisms underlying functional connectivity. Here we used multivoxel pattern analysis to 

determine if resting FC in high-level visual cortex is modulated by the putative representational 

content of spontaneous activity. Sixteen participants received resting-state scans, localizer scans 

to identify cortical regions showing stimulus preferences for bodies and scenes, and task scans to 

determine the multivoxel patterns or templates in those regions evoked by body and scene 

images. On each resting state frame, the stimulus-evoked body and scene templates were 

spatially correlated with the resting multivoxel pattern in each body and scene ROI, frame-by-

frame, yielding a time course of the correlation between stimulus template and resting activity. 

Next, the timeseries associated with a template was then correlated over all scene and body 

ROIs, yielding a pattern-based resting FC matrix for each stimulus category. Resting spatial 

activity patterns showed correlated fluctuations across the category specific ROIs that were 

significantly larger for the ROIs preferred than non-preferred category. For instance, stronger 

pattern-based resting FC was found in PPA, RSC, and TOS (scene specific regions) for scene 

template-rest correlation timeseries than body template-rest correlation timeseries.  

We conclude that in human visual cortex fluctuations of spontaneous activity, at the level 

of multi-voxel patterns, are linked to stimulus-evoked patterns. 
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3.2 Introduction 

The task-evoked neural activity that ultimately results in behavior is generated in the 

context of ongoing, spontaneous activity. Many studies have detailed the spatiotemporal 

organization of spontaneous activity and considered the possible variables linking spontaneous 

and task-evoked activity. One explanation for the similarity of task and spontaneous activity is 

the underlying structural connectivity (Vincent et al. 2007). In whole brain models of 

spontaneous activity, structural connections and noise account at the group level for about ½  of 

the spatial correlation (Deco et al. 2011). However, the similarity between task and rest is much 

stronger during anesthesia, and significantly decreases in the awake state (Barttfeld et al. 2015). 

Another explanation is that the similarity of spontaneous activity and task-evoked activity comes 

from the statistical history of co-activation. In the course of development and personal history 

may affect the organization of spontaneous activity through Hebbian learning (Lewis et al. 

2009). Conversely the spatiotemporal organization of spontaneous activity may constrain the 

activity evoked by a task, predicting whole brain patterns or even topographic individual 

variations (Cole et al. 2016; Tavor et al. 2016). This reciprocal relationship between spontaneous 

and task-evoked activity may form a closed loop cycle (Lewis et al. 2009; Kim et al. 2018) 

through statistical learning and Bayesian prediction.  

However, common spatiotemporal patterns may simply reflect common patterns of inter-

regional synchronization, as task patterns may be clocked on spontaneous cycles of excitability 

as in the communication through Coherence hypothesis (Fries P. 2005). 

A related, but also different conceptualization is that spontaneous and task-evoked 

activity share information states (Fiser et al. 2004; Fiser et al. 2010; Harmelech and Malach 

2013). An organism’s long-term history of task-evoked activity not only shapes the way 
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networks remain correlated at rest, but also sculpt the distribution of synaptic weights that code 

for information. Therefore, spontaneous activity may not only represent fluctuations of 

excitability within/between regions, but also fluctuations of information states that may form the 

repertoire of available states in cortex at that moment. For distributed coding of semantic 

information in cortex see Huth et al. (Huth et al. 2012). 

This hypothesis about spontaneous activity function may be defined ‘representational’, 

insofar patterns of spontaneous activity code for or maintain information about stimuli, 

responses, etc. There is some support for this hypothesis. Studies in early visual cortex have 

shown that resting FC is partly organized according to retinotopy (Heinzle et al. 2011; 

Raemaekers et al. 2014; Arcaro et al. 2015). This has been also shown with local field potentials 

in monkey visual cortex (Lewis et al. 2016). A retinotopic organization of FC may be consistent 

with the underlying structural connectivity, as foveal regions in V1 tend to be more strongly 

connected to foveal regions in V2-V3; the same with more peripheral representation in V1-V3 

(Nakamura et al. 1993). There is also evidence that FC variance is better explained by the 

presentation of real movies than artificial stimuli such as gratings (Wilf et al. 2017). These 

findings in humans are similar to observations in macaque in which the mean and variance of 

spontaneous activity was similar to task evoked activity, but more for natural stimuli than 

synthetic stimuli (Fiser et al. 2004). Similarly, the tuning functions in adult ferret of spontaneous 

active are much more similar to natural stimuli than artificial ones (Berkes et al. 2011).  Also, 

face-preferential regions show stronger resting FC (Zhu et al. 2011; Nir et al. 2006; Zhang et al. 

2009), as compared to regions that do not share the same stimulus selectivity. Finally, the 

topography of task activation data sets, which mediate behavioral tasks, strongly resemble 

resting state correlation patterns, or combination thereof (Smith et al. 2009; Power et al. 2011; 
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Yeo et al. 2011; Laumann et al. 2015; Cole et al. 2016; Gordon et al. 2017; Gratton et al. 2018). 

However, there are also significant differences as documented in several studies (e.g. Kim et al. 

2018). 

A more direct testing of the representation hypothesis would be to show that FC patterns 

code for information states.  Information states would be represented, based on multivariate task 

activation in multi-voxel (multi-vertex in the case of surface analysis) patterns that would occur 

simultaneously in different functionally related regions.  These patterns could be analyzed in a 

static fashion averaging over time, or dynamically. 

Task fMRI has shown that multivoxel patterns within a region or piece of cortex carry 

important information about stimulus categories, retrieved memories, or cognitive processes such 

as attention, and can be modulated by learning (Haxby et al. 2001; Haynes and Rees 2005; 

Kamitani and Tong 2005; Kriegeskorte et al. 2006; Serences and Boynton 2007; Kriegeskorte et 

al. 2008; Greenberg et al. 2010; Kuhl and Chun 2014). In Chapter 2 we have shown that multi-

vertex patterns of spontaneous activity in human visual cortex resemble stimulus-evoked patterns 

for different categories, and, that these spontaneous patterns are both regional and stimulus 

specific, as they occur more frequently for a specific stimulus feature in those regions that are 

specialized (based on localizer or task scans) for that feature. 

One important issue is whether across regions in visual cortex, a specific category 

specific state will occur mainly in functionally specialized regions for that category, or whether it 

will be distributed across visual cortex. Furthermore, in dynamic terms it is not yet clear whether 

specific categorical states occur simultaneously in visual cortex, or are somehow temporally 

segregated. 
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To test the hypothesis that FC carries information about stimulus category, we adopt 

recent developments in which the FC organization of regions construed based on the temporal 

correlation of spatial activity patterns, rather than voxel- or vertice-averaged magnitudes 

(Coutanche and Thompson-Schill, 2013; Chen et al. 2018).  

Furthermore, to test whether categorical states at rest occur locally in functionally 

specialized regions or more widely in visual cortex, and whether they co-occur or segregate in 

time, we examined correlations over time in the spatial component of resting activity that 

corresponds to the representational pattern associated with a stimulus category (pattern-based 

FC). This analysis determined whether at rest, putative representational multivoxel patterns for a 

stimulus category (e.g. bodies) fluctuated coherently across regions and whether the 

representational patterns for different stimulus categories (e.g. bodies and scenes) fluctuated 

independently in time. 

 

3.3 Methods 

 The following analysis throughout the Chapter 3 uses exact same dataset analyzed in the 

previous Chapter 2. The basic experimental setups (e.g. participant information. stimuli, 

scanning procedure, imaging parameters, fMRI pre-processing, and defining ROIs from localizer 

activation contrasts) are identical and written in details in Chapter 2 Method section. 

 

3.3.1 Regions of Interests 

For the following pattern-based FC analysis, we used constituent ROIs from the joint-

ROIs analyzed in previous study (Chapter 2). Joint-ROIs of Face-, Body-, and Scene-preferential 

localizer activation were generated by combining multiple local responsive constituent ROIs (2 
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ROIs for Face, 5 ROIs for Body, and 7 ROIs for Scene) in visual cortex outside of early visual 

cortex (V1-V3) estimated by Benson template (Benson et al. 2012). Since only two face 

constituent ROI exists and one of the ROIs largely overlapped with a Body ROI in ventral 

temporal cortex, Face ROIs were not included in the current study. We used total of 12 ROIs: 5 

from the Body joint-ROI and 7 from the Scene Joint-ROI (see Fig. 3.1b for a schematic view of 

the ROIs and Table 3.1 for information on each ROI). To remove differences in BOLD 

magnitude across MR frames, for each ROI a z-normalization was applied across the vertices of 

each frame of the resting and task scans.   

 

 
Figure 3.1. (a) Group z-statistic Localizer maps. ROIs were separately defined for individual 

from their localizer maps using the group foci as a constraint (see Methods, Defining ROIs from 
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localizer activation contrasts in Chapter 2). (b) Category-preferential ROIs of boy and scene 

categories were defined.  

 

 

Table 3.1. Summary information for 12 constituent ROIs of Body and Scene joint-ROIs. 

 

3.3.2 Categorical-pattern-to-rest correlation timeseries 

 For each participant and ROI, we determined the degree to which the scene and body 

prototype templates (i.e. the multi-vertex pattern evoked by scenes and bodies; see Fig. 3.2a) 

matched the multi-vertex pattern measured on each resting frame. In this procedure, framewise 

intrinsic activity patterns were first obtained for each frame of independent resting-state scans. 

Then, for each frame the resting multi-vertex pattern was spatially correlated with the scene 

prototype template, as illustrated in Figure 3.2b, and with the body prototype template. A high 

positive correlation coefficient indicated that the multi-vertex resting activity pattern on a given 

frame was very similar to the pattern evoked by the template category. This procedure was 

repeated across all resting frames, resulting a timeseries of spatial correlation coefficients 

(categorical-pattern-to-rest correlation timeseries) for a particular template and ROI (e.g. the 

scene template in PPA). 
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3.3.3 Pattern-based resting functional connectivity 

 For each participant, the categorical-pattern-to-rest correlation timeseries for a category 

and ROI (e.g. the ‘scene’ timeseries in PPA) was temporally correlated across ROI pairs, 

resulting in a pattern-based FC matrix for that category (Fig. 3.2c). Separate pattern-based FC 

matrices were computed for the scene and the body templates. Additionally, a ‘preferred 

template’ pattern-based FC matrix was computed. Here, for the ‘preferred template’ pattern-

based FC, the categorical-pattern-to-rest correlation timeseries for body ROIs were computed 

using the body template and the categorical-pattern-to-rest correlation timeseries for scene ROIs 

were computed using the scene template. Finally, for a paired body-to-scene ROIs, the 

categorical-pattern-to-rest correlation timeseries for body ROIs using the body template were 

temporally correlated to the categorical-pattern-to-rest correlation timeseries for scene ROIs 

using the body template. This matrix will highlight if there is a stimulus specificity in the 

pattern-based FC for the category selective ROIs. In fact, we would expect a stronger correlation 

between body ROIs for body than scene templates, the reverse for scene ROIs. Finally, a vertex-

averaged FC matrix was computed by first averaging the resting BOLD timeseries across all 

vertices of an ROI to generate a vertex-averaged timeseries, and then temporally correlating 

these averaged timeseries for all pairs of ROIs. Vertex-averaged FC matrices, which correspond 

to the standard regional FC matrices found in the literature, eliminate any information carried by 

the spatial pattern of BOLD activity within ROIs. 

 Pattern-based FC values were analyzed via repeated measures ANOVAs and paired t-

tests. For example, we statistically evaluated whether the magnitude of pattern-based FC 

depended on both the category of the template and the preferred category of the ROIs by 

conducting a repeated-measures ANOVA with ROI-Type (Body, Scene) and Template-Category 
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(body, scene) as factors. Paired t-tests were conducted to test differences between specific 

template/ROI combinations. For example, pattern-based FC values between Body ROIs were 

compared for correlation timeseries generated using body-templates vs. scene-templates. 
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Figure 3.2 (a) At each vertex of each constituent ROI, the β weights for all 96 stimuli from 

within a category were computed, producing a prototype template. Two scene prototype 

templates for two scene preferential regions of PPA and TOS were obtained. (b) At each 
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constituent ROI, categorical-pattern-to-rest correlation timeseries was obtained by spatially 

correlated the scene prototype template with the resting multi-vertex pattern for each resting 

frame. (c) Pattern-based functional correlation was computed by temporally correlating the 

categorical-pattern-to-rest correlation timeseries for a category across ROIs.  

 

 

3.4 Result 

FC analyses typically evaluate the correlation between the timeseries of activity for single 

voxels or between voxel-averaged timeseries. However, recent task-based studies have also 

measured the inter-regional temporal correlation of spatial activity patterns (Coutanche and 

Thompson-Schill, 2013; Anzellotti et al. 2017 and 2018; Chen et al. 2018). We used a similar 

approach to determine whether resting fluctuations of the multi-vertex spatial pattern for a 

category in each constituent ROI of a joint-ROI fluctuated synchronously or independently 

across the constituent ROIs. Synchronous fluctuations would indicate temporal variations of an 

inter-regional brain state specific for a particular category. 

We first determined whether the similarity of the spatial pattern of activity on a resting 

state frame to the ‘template’ spatial pattern evoked by bodies or scenes was temporally correlated 

over frames between high-level regions of visual cortex preferring bodies or scenes. For each 

body- and scene-preferring ROI, we computed separate body and scene correlation timeseries 

based on the spatial correlation of the activity pattern on each resting frame with the scene 

template and the body template. We then constructed separate body and scene pattern-based 

resting FC matrices by computing the correlation over all pairs of ROIs, respectively, of the body 

and scene correlation timeseries (upper left and right panels of Fig. 3.3). The lower left panel 

shows the ‘preferred-template’ matrix that was constructed by first computing resting similarity 
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timeseries in body-preferring regions using the body template and scene preferring regions using 

the scene template, and then conducting all pairwise regional correlations. Finally, a standard FC 

matrix (Fig. 3.3, lower right panel) was constructed by computing vertex-averaged resting 

timeseries for each region, followed by pairwise correlation of the regional timeseries. 

 
Figure 3.3 Top Left: the pattern-based FC matrix that was constructed by correlating the correlation 

timeseries associated with the multivoxel body template over all pairs of scene and body regions. Top 

Right: the pattern-based FC matrix that was constructed by correlating the correlation timeseries 
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associated with the multivoxel scene template over all pairs of scene and body regions. Bottom Left: the 

pattern-based FC matrix constructed using the correlation timeseries in body regions that were generated 

using a body template and the correlation timeseries in scene regions that were generate using a scene 

template. Accordingly, the sub-block of 5 body regions is matrix necessarily matched the corresponding 

blocks from the Top Left Body Template. Similarly, the sub-block of 7 scene regions is matrix 

necessarily matched the corresponding blocks from the Top Right Scene Template. The blocks of Body-

region-to-Scene-region, however, involved the correlation of body region/body template timeseries with 

scene region/scene template timeseries. 

Bottom Right: a standard regional FC matrix generated by first averaging the vertex-wise timeseries of 

the BOLD signal within each region, and then correlating the resulting timeseries across all pairs of 

regions. 

 

3.4.1 Pattern-based functional connectivity at rest 

 Pattern-based resting FC between regions was most evident using stimulus-evoked 

templates that matched the regions’ stimulus preference. Figure 3.4a (leftmost graph) shows that 

the mean pairwise FC between all body-preferring regions was significantly larger for correlation 

timeseries computed using a body template than a scene template. Conversely, the mean pairwise 

FC between all scene-preferring regions was larger for correlation timeseries computed using a 

scene template than a body template Figure 3.4a (middle graph). A 2-factor ANOVA on the 

mean pairwise FC values with ROI-type (Body, Scene) and Template-Category (body, scene) as 

factors yielded a main effect of Template-type (F(1,15)=5.05, p=0.040), reflecting the larger FC 

values in body-preferring regions and a significant interaction of ROI-type by Template-

Category (F(1,15)=10.46, p=0.0006), confirming the selectivity of pattern-based FC for 

matching region preferences and stimulus templates. Paired t-tests indicated that average 

pairwise FC between body-preferring regions was significantly larger using body than scene 

templates (p=8.3e-4); however, average pairwise FC between scene-preferring regions was not 

significantly larger using scene than body templates (p=0.268). 
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 Interestingly, when pattern-based coherence was computed using the body template, 

coherence was largely confined to body-preferring regions. Particularly, Body-ROI-to-Scene-

ROI correlations were quite low (Fig. 3.4a, rightmost graph), indicating that a general body state 

that spanned both Body and Scene ROIs was not observed. A similar regionally-selective brain 

state was observed for the scene category with significant difference (p=0.025) indicating that a 

general scene state that spanned both Body and Scene ROIs was not observed. 

 We also determined whether body and scene representations fluctuated independently. 

The lower left panel of Figure 3.3 shows a ‘preferred-template’ matrix that was constructed 

using body correlation timeseries in body-preferring regions and scene correlation timeseries in 

scene preferring regions. The ‘Scene-ROIs-to-Body-ROIs’ blocks are of primary interest. They 

indicate that the correlation between scene and body regions was uniformly low under conditions 

in which the correlation involved timeseries from scene and body regions that respectively 

indicated the fluctuations of scene and body representations. Therefore, periods in which a body 

state was maximally present in body-preferring ROIs were largely independent of periods in 

which a scene state was maximally present in scene-preferring ROIs. Figure 3.4a, rightmost 

graph, shows the correlation values for scene-body blocks from all three matrices, with the green 

symbol indicating the scene-body correlations from the preferred-template matrix. 

 Figure 3.4b shows the average pairwise FC between body ROIs and between scene ROIs 

using standard vertex-averaged FC. The vertex-averaged FC values were essentially the same for 

scene-preferring and body-preferring regions and were significantly larger than the values 

obtained using pattern-based FC. Therefore, pattern-based FC but not vertex-averaged FC 

isolated a coherent state for a particular representational pattern in a corresponding set of ROIs, 

resulting in maximal coherence for a single set of constituent ROIs preferring the same category.  
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Pattern-based FC matrices were moderately-to-strongly correlated with the vertex-averaged FC 

matrix. As expected, the largest correlation was with the preferred template matrix rather than 

the matrices generated using a single template (body-template, ρ=0.61; scene-template, ρ=0.54; 

preferred template, ρ=0.78). 

 
Figure 3.4 (a) Group-averaged pattern-based FC between body regions (left graph) and between scene 

regions (middle graph) is shown for correlation timeseries generated using body and scene templates. The 

rightmost graph shows the group-averaged pattern-based FC between body and scene regions for 

correlation timeseries generated using body templates, scene templates, or the preferred template for the 

region (i.e. body templates in body regions and scene templates in scene regions). (b) The group-averaged 

vertex-averaged FC between body regions, between scene regions, or between body and scene regions is 

shown for timeseries generated by averaging the BOLD timeseries for all vertices within a region. 
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3.4.2 Category selectivity of U90 values in constituent vs. joint-ROIs 

 The significant different category preferential U90-value profiles shown in the previous 

Chapter 2 (Fig 2.4) were the measure of U90-value from all combined vertices of a joint-ROI. As 

each local constituent ROIs might have an overall similar but relevantly different categorical 

preferences, although the spatial patterns for the constituent ROIs of a joint-ROI fluctuated 

coherently, we measured the categorical U90 values in each constituent ROIs. The 

correspondence between the category selectivity of individual constituent ROIs and the joint-

ROI varied widely (Fig 3.5). Some constituent regions showed similar categorical U90-value 

profiles with the profile of the joint-ROI, while other regions showed rather moderately similar 

or different categorical U90-value profiles (see Fig 2.4 for categorical U90-values of the joint-

ROI). Separate repeated measures analysis of variance (ANOVAs) for each constituent ROI with 

Category (8 levels) as a factor indicated a significant main effect of Category in 5 constituent 

ROIs (Body ROI#2: F(7,91)=2.58, p=0.018; Body ROI #4: F(7,91)=4.09, p=6.1e-4; Scene ROI 

#1: F(7,105)=2.35, p=0.028; Scene ROI #3: F(7,91)=3.83, p=0.001; Scene ROI #5: 

F(7,105)=2.50, p=0.020). Since the ROIs comprising a joint-ROI were determined solely by the 

activation magnitude for a particular localizer contrast, and there were many fewer vertices in 

each constituent ROI than in the associated joint-ROI, this variability is perhaps not surprising. 

In addition, however, the observed differences between the category profiles for a joint-ROI and 

its constituent ROIs (Fig. 3.5) link the spatial pattern analysis of Figure 2.4 with the 

spatiotemporal pattern analysis of Figures 3.3 and 3.4, as discussed below. 
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Figure 3.5. A graph of the profile of group-averaged U90 values across stimulus categories for each 

constituent Body ROIs and Scene ROIs. 

 

 

3.5 Discussion 

 The pattern-based FC identified the resting temporal correlations between regions that 

were related to the multi-vertex pattern evoked by a particular stimulus category. Importantly, 

the pattern-based FCs were significantly larger for the regions’ preferred category. In addition, 

pattern-based FC computed using a body template was significantly larger in body-preferring 

regions than in scene-preferring regions, indicating that a ‘body’ state did not occur throughout 

category-selective regions. Similar result was observed for scene-templates, resulting in a highly 

significant interaction of template category by region category that statistically confirmed 

selectivity. These results distinguished the pattern-based FCs from the vertex-averaged FC since 

roughly equivalent correlated fluctuations were observed simultaneously within body-preferring 

and scene-preferring ROIs in the vertex-averaged FC. These results demonstrate that in the 
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resting-state, the spatial pattern of activity across high-level visual regions preferring a particular 

category forms a linked brain state that is maximally present for spatial activity patterns evoked 

by the preferred category. 

 These results support the notion that the putative representational content of the 

spontaneous interactions between regions can be measured using pattern-based FC. The current 

work does not show that the linked spatial activity patterns are behaviorally significant, which is 

an important correlate of the argument that intrinsic activity serves a representational function. 

However, the results are consistent with a general framework in which there are joint influences 

between task-evoked and spontaneous activity (Albert et al. 2009; Hasson et al. 2009; Lewis et al. 

2009; Tambini et al. 2010), with the influence here from the spatial pattern of task-evoked 

activity to the spatial pattern of spontaneous activity. 

 

3.5.1 Selectivity of pattern-based functional connectivity at rest  

 Selective pattern-based FC did not reflect a greater average similarity of resting patterns 

to preferred stimulus-evoked patterns, which was not observed (e.g. the distributions of U90 

values in Fig. 2.4b). Instead, the correlated fluctuations of the preferred pattern across its 

associated constituent ROIs were observed in conjunction with an increased variation over 

resting frames in the magnitude of that pattern over the entire joint-ROI. As shown in Figure 3.5 

and Figure 2.4, the variation of U90 values across categories was generally larger within a joint 

ROI than within many of its constituent ROIs. Large positive or negative similarity values in a 

joint-ROI occur when the similarity values in the constituent ROIs are simultaneously large and 

of the same sign. Otherwise, across constituent ROIs the similarity values tend to cancel or 

average to a lower value. Therefore, a larger spread of similarity values is more likely to be 
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observed if the similarity values fluctuate in a correlated fashion across the constituent ROIs. If 

the patterns for a non-preferred category do not fluctuate as coherently across ROIs, the resulting 

similarity values across frames in the joint-ROI for that category will show less variation from 

zero. This mechanism, however, likely only partly explains the variance or spread result (Fig. 

2.4) since a significant variation of U90 values across categories was also observed within some 

constituent ROIs (2 out of 5 Body constituent ROIs and 3 out of 7 Scene constituent ROIs 

showed significant main effect of category in separated ANOVA tests). 

 

3.5.2 Identifying networks from FC 

 The overall consistency of resting-state FC MRI across subjects has inspired numerous 

attempts to specify a normative resting-state structure. Papers using different techniques have 

converged on a structure that is largely consistent with the structure observed in meta-analyses of 

task activation data, although there is clearly individual variation in this structure (Smith et al. 

2009; Power et al. 2011; Yeo et al. 2011; Laumann et al. 2015; Cole et al. 2014; Gordon et al. 

2017; Gratton et al. 2018). This normative structure was derived using signals that either 

corresponded to single voxels or were summed over the voxels in a region and whose putative 

representational content was not well specified. An interesting possibility is that resting state 

organization depends on the representational properties of the signals that are correlated across 

regions, where these representational features are indexed by spatial activity patterns. 

 Although the putative representational content of resting FC is often unspecified, an 

important exception comes from studies of early visual cortex, which have shown that resting FC 

respects the tuning of single voxels for polar angle, eccentricity, and low-level stimulus features 

(Heinzle et al. 2011; Raemaekers et al. 2014; Arcaro et al. 2015; Ryu and Lee, 2018). Most task-



81 

 

based studies of representation in higher-order visual and associative regions, however, have not 

involved measurements of voxelwise tuning functions but instead have identified task-evoked 

representations through measurements of regional spatial patterns. Therefore, pattern-based FC 

(Coutanche and Thompson-Schill, 2013; Anzellotti et al. 2017 and 2018; Chen et al. 2018) could 

provide insights into putative resting representational FC in high-level brain regions that are 

complementary to those provided by approaches based on the tuning properties of single voxels. 

 

3.5.3 Pattern-based FC application into resting FC 

 We suggest two ways in which pattern-based FC might inform studies of resting-state 

organization. First, pattern-based FC may help fractionate existing resting-state networks and 

identify the functional factors associated with that fractionation. For example, pattern-based 

resting FC between regions that prefer a particular category might depend on selectivity for 

features within the category, such as gender for face-preferring regions. Similarly, pattern-based 

resting FC between regions might depend on the resting selectivity of each region across visual 

categories.  

 A second possible contribution of pattern-based FC is to uncover resting FC 

organizations that differ substantially from the normative structure that has been described over 

the past decade, although this structure does vary over individuals. In the current work, pattern-

based FC was measured within category-preferring regions. Because regions that co-activate (e.g. 

to bodies) tend to show greater resting FC (Smith et al. 2009), and because previous studies have 

shown that regions preferring the same category show preferential FC (Nir et al. 2006; Zhang et 

al. 2009; Zhu et al. 2011; Hutchison et al. 2014; Stevens et al. 2015), novel FC organizations 
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were not expected. Accordingly, pattern-based FC matrices were moderately-to-strongly 

correlated with inter-regional vertex-averaged FC matrices.  

 However, divergent FC organizations may be more likely in studies that use task-evoked 

templates based on frequently occurring processes that combine different domains: for example, 

templates based on integration of voice and face information during person-to-person 

interactions, visuomotor coordination during object manipulation, or biologically significant 

stimulus-reward or response-reward contingencies. Cross-domain pattern-based connectivity that 

cuts across standard networks might reflect synergies (Leo et al. 2016) or routines for 

implementing frequently occurring processes 

 

3.5.3 Limitations 

 Previous work has shown that naturalistic stimulation from passive viewing of movies 

better accounts for resting FC throughout occipital cortex than artificial stimuli such as rotating 

checkerboard wedges or the static pictures of objects used here (Wilf et al. 2017; Strappini et al. 

2018). Although the attributes that underlie the greater correspondence between resting FC and 

movie-evoked FC are unknown, the use of static pictures in the present work may have reduced 

category-selective, pattern-based FC. 

 In addition, we measured stimulus-evoked templates using a task that maintained 

participant alertness but involved discriminations of low-level features unrelated to the category 

of the stimulus. This procedure was adopted to maximize the influence of automatic encoding 

processes, but the correspondence of resting FC and the FC evoked by passive viewing of 

movies suggests that the use of more ecological tasks could result in multivoxel activity patterns 

that show stronger resting coherence across regions. 
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3.6 Pattern-based FC using Gordon-Laumann Parcellation 

3.6.1 Introduction 

 The above pattern-based FC computed based on preferential ROIs in terms of stimulus-

evoked activations. The task-rest correspondences, therefore, was investigated based on task-

based selective region definitions. Another possible ROI definition can be used is RSN-based 

region definition. The RSN-based region definition would not be optimized in analyzing multi-

variate patterns categorizing and discriminating representations of given stimuli since the RSN-

based regions are purely organized for the temporal correlations of intrinsic activity. The 

hypothesis of task-rest correspondences and of a coherent brain resting state representing one 

stimulus category at a time, however, should be held consistently under the RSN-based region 

definition with relative categorical preferential responses. 

 We used multi-vertex activity patterns of task and rest activity registered into the 324 

Gordon-Laumann parcels grouped into 13 different resting-state networks (RSN) (Gordon et al. 

2016). Out of the 324 GL-Parcels, total 41 parcels with 6 hierarchical clusters showed categorial 

visual object discriminability (classifications over the chance accuracy) from a trained localizer 

linear support vector machine (SVM). We computed pattern-based FCs using different 

categorical templates among the 41 parcels. As expected, similar results to the above were 

observed. 
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3.6.2 Method 

 The data used in the previous sections (Ch.2 and Ch.3) were recruited once again for this 

analysis; however, there are three important changes need to be clarified. 

1) Out of 16 subjects, one subject data was registered relatively poorly in the preprocessing 

pipeline compared to the data of the subject used in Ch.2 and Ch.3. This is primarily due to 

the subject’s data used in the above sections was re-preprocessed after the analysis 

conducted in the current section: 3.6. Pattern-based FC using Gordon-Laumann 

Parcellation. 

2) For the localizer BOLD data, previous analysis in Ch.2 and Ch.3 did not use real-word 

(RW) and false-font string (FS) categories in the activation-based ROI definitions. In 

current section (3.6. Pattern-based FC using Gordon-Laumann Parcellation.), all localizer 

contrast categories including RW and FS were used in a region-of-interest definition. 

3) The categorical multi-vertex template generated were not prototypic template of a 

category. In following analysis, 24 heterogeneous templates created by averaging the β 

weights from four different exemplar instances were used. 

Except the above 3 changes, all basic computational methods for the pattern-based FC analysis 

are same as the previous analyses. 

 

 Initially, the preprocessed multi-vertex BOLD timeseries of the resting, the localizer, and 

the task scans were registered into the 324 Gordon-Laumann parcels (Gordon et al. 2016). While 

the GL-parcels were purely defined by resting-state temporal correlation structure, we still need 

to use certain GL-parcels that carries task-relevant information of categorical visual stimuli. A 
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distinction of task-selective GL-parcels was made by a linear SVM (LIBSVM; Chang and Lin 

2011) trained for a category classification.  

 Since the localizer contains 8 blocks/categories for each of 7 categories, each category 

was divided into 7 training blocks and 1 testing block. For each GL parcel, a categorical block 

GLM was computed to obtain localizer block β weights for the parcel (e.g. 8 ‘face’ block 

weights). A linear SVM was trained from the obtained weights with leave-one-out-cross-

validation (LOOCV) with 8 iterations. A chance-level classification accuracy (26.4% for p-val = 

0.005) was computed from 50 control simulations of shuffled labels across all GL-parcels. From 

the obtained classification accuracy for each GL-parcel, total 41 GL-parcels (Fig. 3.6b) were 

found to be above the chance-level classification accuracy. The categorical classification 

accuracy profiles of the 41 GL-parcels are illustrated in below Figure 3.6a with 6 clusters from a 

hierarchical clustering in accuracy profiles. Then, pattern-based FC analysis (see 3.3.2 Pattern-

based resting functional connectivity) of ‘face’, ‘body’, ‘tool’, and ‘scene’ templates was 

conducted using the chosen 41 GL-Parcels. 
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Figure 3.6. 41 Chosen GL-parcels. (a) Each graph plots the categorical classification accuracy predicted 

from the trained linear SVM for each parcel (thin blue line). Total 6 clusters were obtained from the 41 

GL-parcels above the chance-level classification accuracy. (b) Locations of the 41 GL-parcels are plotted 

over a brain surface.  
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3.6.1 Result 

 Similar results to the previous results in 3.4 were observed in pattern-based FC across 41 

GL-parcels. Figure 3.7 shows the pattern-based FC matrices of ‘face’, ‘body’, ‘tool’, and ‘scene’ 

templates and the corresponding vertex-averaged FC. The pattern-based FC’s spatial correlation 

to the vertex-averaged FC were moderate-to-strong: ρ(face) = 0.71; ρ(body) = 0.70; ρ(tool) = 

0.66; ρ(scene) = 0.72. Figure 3.7a shows that the overall network structures, but not the sub-

network organization, of the pattern-based FCs of 4 templates were similar. 

 

 
Figure 3.7. Pattern-based FCs across 41 Chosen GL-parcels. (a) Pattern-based FCs of ‘face’, ‘body’, 

‘tool’, and ‘scene’ templates were computed across 41 GL-parcels. (b) The corresponding vertex-

averaged FC was computed across 41 GL-parcels. 
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  Since the 41-GL parcels were not defined by categorical preferential activation as the 

previously used Body-ROIs and Scene-ROIs in Fig 3.3, the inter-regional selectivity and 

coherence analysis could not be performed. An alternative analysis for the coherent categorical 

pattern representations was performed by making a mixed pattern-based FC with categorical-

pattern-to-rest correlation timeseries of different categories for all 41 GL-parcels (e.g. temporal 

correlation between timeseries using ‘body’ template and timeseries using ‘non-body’ templates). 

This is different to the pattern-based FC of the ‘preferred-template’ in Fig. 3.3 since the ‘non-

target category’ templates mean using all other category templates (e.g. ‘non-body’ templates are 

‘face’, ’tool’, and ’scene’ templates) and since the cross correlation occurred in all pairs of GL-

parcels. The paired two-sample t-tests showed significant differences between the pattern-based 

FC of a single template and the corresponding mixed pattern-based FC. This result indicates 

existence of a coherent brain resting state representing one stimulus category. 
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Chapter 4: Word recognition activity and intrinsic 

activity in language system 
 

4.1 Abstract 

 In the previous chapters, the relationship between spontaneous and task-evoked brain 

activity was investigated along human ventral occipito-temporal cortex using real world visual 

object categories. It was shown that spontaneous multi-voxel activity patterns are linked to 

stimulus-evoked patterns. The task-rest correspondence is assumed to originate from task-evoked 

activity patterns being sculpted into spontaneous activity by experience through a Hebbian 

learning process. 

Here, we examined if similar rules apply to visual words. The visual word form is a 

representation of letter strings that can be only acquired through reading for many years. Visual 

words (letter strings, etc.), therefore, represent an excellent test of the hypothesis that patterns of 

spontaneous activity are entrained in the brain by experience. Here, we ask if spontaneous 

multivoxel activity patterns are linked to patterns evoked by linguistic (e.g. real word, consonant 

strings, letters), pseudo-linguistic (e.g. false font letters or strings), and non-linguistic (e.g. 

phase-scrambled real word) visual stimuli.  

  The similarity of task evoked patterns with resting state patterns was higher for word-like 

stimuli (real words, consonant strings, false fonts) than phase scrambled words. There was no 

preferential representation for linguistic stimuli. In addition, while task response patterns were 

consistent in showing higher responses for real words, in contrast to the first experiment, there 

was no correlation between pattern similarity in task vs. rest, and magnitude of response across 

subjects.  Control analyses show a weak correlation with word features like familiarity and 
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imaginability.  Finally, we show that across categories most of the effects are driven by the 

difference between real word stimuli and artificial (phase scrambled) stimuli. 

 

4.2 Introduction 

In previous chapter, we established an approach to compare the multi-vertex resting-state 

activity pattern and multi-vertex stimuli-evoked activity pattern in laboratory conditions by using 

categorical visual object stimuli that are prevalent in everyday life. The regions of interest are 

found in ventral occipito-temporal cortex where strong activations were evoked to specific object 

categories such as faces (Allison et al. 1994; Kanwisher et al. 1997; Ishai et al. 2000;), body 

parts (Downing et al. 2001; Grossman and Blake 2002), and places (Aguirre et al. 1998a and 

1998b; Epstein and Kanwisher 1998; Ishai et al. 2000). One known categorical-preferential 

responsive regions not tested in previous chapters is the visual word form area (VWFA), which 

is consistently activated for word reading (Cohen et al. 2002; Dehaene et al. 2002; Jobard et al. 

2003; Cohen and Dehaene 2004). VWFA in human VOTC is located next to the left fusiform 

face area, and is tuned for visual words across different languages such as Japanese, Chinese, and 

Roman (Bolger et al. 2005). It was reported that resting state BOLD signals in VWFA correlate 

with the other core regions of language systems including Wernicke’s area, and that the 

correlation of the BOLD signals between VWFA and Wernicke’s area predicts accuracy on a 

semantic classification task (Stevens et al. 2017). Additionally, Stevens and colleagues reported 

success in learning a second-language was positively correlated with the connectivity strength 

between the VWFA and the left middle superior temporal gyrus. 

 The visual word form is an abstract size-, font-, case-, and position-invariant 

representation of letter strings that can be only acquired by expert readers through long-term 
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reading training over years of education (Warrington and Shallice, 1980; Aghababian and Nazir, 

2000). It should be emphasized that training alone is not what makes visual words special.  Most 

ecological object categories tested in previous chapters (e.g. face) are also highly trained as their 

analysis is critical for survival. There is evidence that some face specific mechanisms are 

genetically determined, as in developmental prosopagnosia (Behrmann and Avidan. 2005), and 

that they are active early on in life, since babies can smile to faces immediately after birth 

(Modloch et al. 1999). In contrast, the VWFA is a brain mechanism that is exclusively related to 

training during development, since the oldest known record of writing system dates to the 

Babylonians about 5000 years ago; and, that literacy was low until the development of a public 

education system.  

The VWFA region shows increasing responsivity as a function of expertise for reading 

(Shaywitz et al. 2002; Maurer et al. 2006). VWFA activation is also positively correlated with 

reading speed accounting for about half of the variability in reading fluency (Dehaene et al. 

2010). A recent study by Dehane-Labertz and colleagues showed the activation-based emergence 

of the VWFA area from longitudinal fMRI scans of 6 years old children during reading 

acquisition (Dehane-Labertz et al. 2018). They found that children’s VWFA, positioned next to 

the face-selective region, was not specialized early on in recognizing written words, but rather 

was slightly responsive to tools. As reading training progressed, children’s VWFA became 

selective to written word, while stronger face-selective responses were observed in the right 

hemisphere homologous region. The authors claimed that an induced reorientation of cortical 

maps for letter-selectivity during reading acquisition partly replaced selectivity for other 

categories within the region. VWFA may obtain its functionality through a putative mechanism 

called “neuronal recycling” (Dehaene 2005). According to the neuronal recycling hypothesis, 
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human brain organization in its early state is constrained by anatomical neuronal connections 

shaped through evolutions. This constraint biases subsequent functional development within a 

region. The circuit, however, is plastic enough to recycle the given biased function onto a novel 

process such as responsiveness to written words. It has been reported that the location of the 

developing VWFA in a child at age 8 can be predicted by the connectivity structure of the child 

at age 5, supporting the idea of neuronal recycling within the initial framework given by 

anatomical connections (Saygin et al. 2016). 

While the above studies support a specific role of the VWFA in the analysis of written 

word, other studies suggest the VWFA is a more general visual processor (Price and Devlin 

2003). Stronger responses for words than consonant strings and false fonts were observed in 

some studies (Cohen et al. 2002; Baker et al. 2007; Vinckier et al. 2007), however, weaker 

responses were observed in other studies (Tagamets et al. 2000; Cohen et al. 2003; Xue et al. 

2006, Vogel et al. 2012b). For instance, Vogel and colleagues showed that VWFA responds to 

other high-spatial frequency high contrast stimuli, including line drawings, comparably to words 

or letter strings (Vogel et al. 2012). 

The aim of this study is to reveal correspondences between intrinsic activity and task-

evoked activity to highly trained linguistic (e.g. alphabetic letter, consonant string, real word), 

pseudo-linguistic (false font and false font string), and non-linguistic (phase-scrambled 

alphabetic letter and phase-scrambled real word) visual stimuli. These visual stimuli are ideal for 

testing the hypothesis that intrinsic activity is shaped by repeated exposures to specific task 

patterns. The hypothesis that the VWFA is specifically dedicated to words/letters would predict 

that these stimuli would be more frequently coded in intrinsic activity than pseudo-words or -

letters. On the other hand, if VWFA is a more general processor dedicated to high frequency line 
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stimuli then we would not expect a difference. However, both linguistic and non-linguistic 

pseudo-words and -letters should be more frequently coded in this region than phase scrambled 

stimuli. 

In addition to studying regions in visual cortex, we also examined these questions in 

classical language processing regions, such as Broca’s area and superior temporal cortex.  

Subjects received resting scans, localizer scans, and task scans. Localizer scans 

determined the tested ROIs and task scans identified the multi-voxel ‘representational’ patterns 

evoked by the different stimulus categories. These representational patterns were then correlated 

with the multi-voxel patterns measured on each frame of resting-scans. The resulting distribution 

of correlation coefficients indicated the extent to which resting activity patterns matched 

stimulus-evoked patterns. 

We specifically examined whether resting state multivoxel patterns: 1) corresponded 

better to multivoxel patterns evoked by linguistic categories (e.g. real word or letters) as 

compared to consonant strings or false fonts, consistent with a predominant role in processing 

linguistic material ; 2) corresponded better to line patterns (words, letters, pseudo-words or 

letters) than non-line patterns (e.g. phase-scrambled real word), consistent with a role in 

processing high frequency high contrast line stimuli. In addition, we determined whether resting 

activity patterns correlated with stimulus-evoked patterns coding for individual exemplars, either 

alphabetic letters or real words, and whether there was a correlation with linguistic properties 

such as word or letter frequency. 
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4.3 Methods 

 The general experimental design structure and analysis methods are analogous to those of 

the categorical object experiment described in Chapter 2. 

 

4.3.1 Participants 

The study included 16 healthy young adult volunteers (11 female; age 19 – 35 years-old) 

with no prior history of neurological or psychiatric disorders. All participants were right-handed 

native English speakers with normal or corrected-to-normal vision. All participants gave 

informed consent to take part in the experiment, and the study was approved by the Institutional 

Review Board (IRB) of Washington University in St. Louis School of Medicine.  

 

4.3.2 Stimuli 

Seven linguistic categories of grey-color images subtending 4o x 4o of visual angle were 

included in event-related ‘task’ fMRI scans (Fig 4.0). Three categories consisted of the linguistic 

stimuli that are composed with English characters: single letter, real word, and consonant strings.   

24 exemplars of the single letter category consisted of 24 lower case English alphabets in 

Arial font style. The letter “q” and “z” were not used based on their low lexical frequencies. 24 

exemplars of the real word category consisted of six ecological and frequently encountered 

natural object categories of human-types (e.g. boy and girl), body-parts (e.g. hand), mammals 

(e.g. dog), tools (e.g. hammer), non-tool objects (e.g. window), and scene-types (e.g. sea). 

Human-types, body-parts and mammals served as animate categories, and non-tool objects, tools 

and scene-types served as inanimate categories – matching hierarchical categorical object 
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representations in human VOTC (Kriegeskorte et al. 2008). The six ecological natural object 

categories were chosen for the possible investigation of a relationship between previously 

explored object visual recognition responses (Kim et al. 2019) and categorical semantic 

responses. Exemplars of the real word category are frequently used visually concrete words. 

From a large pool of norms of 2,311 nouns (Clark & Paivio, 2004), an initial word selection was 

made based on three linguistic criteria: imaginability, familiarity, frequency of use by log 

Kucera–Francis frequency. Imaginability of the word is reported with a 7-point scale, with 1 

indicating low scores, and 7, high scores. The initially chosen words have an imaginability score 

over 5 (some words don’t have an imaginability score, reported as 0). Familiarity of the word is 

reported with a 7-point scale, with 1 indicating low scores, and 7, high scores. The initially 

chosen words have imaginability score over 5 (some words don’t have imaginability score, 

reported as 0). Among words reached criteria (137 words), 41 categorical words were extracted. 

These chosen categorical words have mean imaginability of 6.41 ± 0.38, mean familiarity of 6.06 

± 0.61, and mean frequency of use (log Kucera–Francis frequency) of 1.77 ± 0.57. Similar to the 

categorical representation structure in visual pathways, semantic relationships show a 

representation structure among words reflecting higher level linguistic cognitive processes. 

Three parameters (free association strength, latent semantic analysis, and Word2Vec) were 

applied to analyze semantic structures among the extracted categorical words (Maki et al. 2004; 

Mikolov et al. 2013; Nelson et al. 2004). Free association strength is an index of relative 

accessibility of related words in memory scored between 0 and 1, with 0 indicating no free 

association, and 1, perfect free association (Nelson et al. 2004). Free association strength for all 

the pairs of the extracted categorical words was determined. Latent semantic analysis (LSA) is a 

measure of semantic organization based on lexical co-occurrence (Landauer and Dumais, 1997). 
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The semantic distances (cosine similarity values) based on LSA were determined from WordNet 

(Maki et al. 2004; Buchanan et al. 2013) For a pair of words, the LSA scored between 0 and 1, 

with 0 indicating no lexical co-occurrence, and 1, perfect lexical co-occurrence. For example, 

“Husband” and “Wife” has high lexical co-occurrence and scored 0.87 in LSA. LSA scores for 

all the pairs of the extracted categorical words were recruited. Word2Vec is an embedding of 300 

corpus data as vectors (Mikolov et al. 2013). Each word has a vector of 300 parameters which 

comes from 300 different corpus, then trained with 2-layer neural networks. By correlating the 

word vectors, Word2Vec shows the semantic relationship between paired words. Correlation 

values for all pairs of the extracted categorical words were computed. Four words within a 

category were chosen based on the averaged value of 3 parameters of word x word associative 

matrix. Each chosen word is written in Arial font placed on the center of gray background. 

Because each character (e.g. ‘a’) had the same size irrespective of the string (e.g. ‘cat’) in which 

it appeared, the shortest word width was the 3-character word “cat” while the longest word was 

the 8-character word “mountain”.  

24 unpronounceable consonant string exemplars were generated that had the same 

numbers of characters as the 24 real word exemplars (3 to 8 characters). The consonant string 

exemplars were generated from the English Lexicon Project by minimizing the number of 

orthographic neighbors and bigram frequency (http://elexicon.wustl.edu/).  

Two control, non-trained linguistic stimulus categories were constructed from the 

linguistic stimuli used in the experiment. A low-level control consisted of phase-scrambled 

stimuli that preserved the spatial frequency amplitude spectrum of the linguistic stimulus images. 

2D phase scrambled images were generated by applying the same set of random phases to each 

2-dimensional frequency component of the original image while keeping the magnitude constant 
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(Watson et al. 2016). Exemplars from single letter category were 2D phase scrambled, yielding a 

total of 24 2D phase scrambled single letter stimuli. Similarly, exemplars from the real word 

category were 2D phase scrambled, yielding a total of 24 2D phase scrambled real word stimuli. 

Intermediate-level control images were constructed from false fonts which preserve local 

visual properties of the linguistic stimulus images such as line segments and connectors. Each 

24-alphabet used in the single letter category was transformed into 24 false fonts with the 

method described in (Grotheer et al. 2016). Simply, local components (up to 4) of a particular 

character were moved randomly to a different position. Therefore, the local statistics of the 

original alphabet characters were preserved while the false fonts would not be recognized and 

processed as the original characters. Additionally, using the above generated false-fonts, 24 false 

font string images were generated as an intermediate-level control of the real word category. 24 

false font string exemplars were generated while having the same numbers of characters as the 

24 real word exemplars (3 to 8 characters) and preserving the alphabetical frequencies.  

Grey-colored images of exemplars from five categories were included in localizer scans: 

real words, false font strings, human faces, scenes, and phase scrambled real word images. The 

categories for the localizer scans differed from the categories for the task scans since the former 

was only used to define the regions of interest (ROIs).  

Stimuli were presented using the Psychophysics Toolbox package (Brainard 1997) in 

MATLAB (The MathWorks). Stimulus images were projected onto a screen and were viewed 

through a mirror mounted on the head coil. All stimuli were presented centrally on a gray 

background. For the linguistic stimuli of Alphabetic single letter (SL), real word (RW), 

consonant string (CS), false-font (FF), false-font string (FS), phase-scrambled alphabetic single 

letter (Scr-SL), and phase-scrambled real (Scr-RW), the size of each alphabetical character and 
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its corresponding control stimuli presented was kept constant across scans. The maximum pixel 

width of the linguistic stimuli found from the 8-letter real word “mountain”, subtended 

horizontally 4o of visual angle, and determined the horizontal visual angle of the other stimuli. 

 
Figure 4.0. Experimental Stimuli. 

 

 

4.3.3 Scanning Procedure 

The study consisted of two separate sessions, each conducted on a separate day. In 

session one, subjects received 3 resting state runs, 3 localizer runs, and 8 task runs. In session 2, 

subjects received 2 resting state runs, 3 localizer runs, 8 task runs, and 2 post-task resting state 

runs. 

 

Resting state runs. Participants received a total of 7 resting state scans, each lasting 5 min 

(300 TRs). During a scan the participant was asked to maintain fixation on a cross that was 

displayed at the center of the screen during the entire run. Five resting scans (3 for first session 
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and 2 for second session) were conducted before any localizer or task scans to collect stimulus-

free intrinsic activities. For the second session only, two additional 5 min resting state scans were 

conducted after the task scans to investigate potential post stimuli-driven effects on intrinsic 

activity. The results from the post-task resting scans will not be discussed here. 

 

Localizer runs. Each session included 3 localizer runs (6 in total), each lasting 4 min and 

20s (260 TRs), and each localizer scan was presented in a blocked fMRI design. Each block of a 

localizer run contained 20 images of a single category, and those images were different from the 

images used in the task scans. A fully randomized sequence of eight blocks, consisting of the 5 

stimulus categories and a fixation block, was repeated twice within each run. At the beginning 

and the end of each run, an additional fixation block was presented for 4s and 16s. Within each 

category block, images were presented for 300ms with an inter-stimulus interval (ISI) of 700ms. 

A fixation cross was continuously present at the center of the screen during the ISI and during 

fixation blocks. During category blocks, participants performed a minimally cognitively 

engaging task by pressing a button if the initially presented image was changed in size or 

position during the 300ms presentation.  

 

Task runs. Each session included 8 task runs (16 in total), each lasting 4 min and 45s 

(285 TRs). For each subject and for each run, stimulus presentation order and inter-stimulus 

intervals were fully randomized using Optseq2 (Dale 1999).  Each stimulus presentation lasted 

for 300ms and the interval between stimuli was jittered between 3.7s and 8.7s. A fixation cross 

was continuously present at the center of the screen during the ISI. In each category, there were 

24 separate exemplars (e.g. 24 different words) and each exemplar was repeated 4 times. 
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Participants performed a minimally cognitively engaging task by pressing a button if the 

presented image changed its size or position during a 300ms presentation, the same task as that 

performed during the localizer scans. 

 

4.3.4 Imaging Parameter 

Data were obtained from a Siemens 3T Prisma MRI scanner. Structural images for atlas 

transformation and lesion segmentation were acquired using T1-weighted magnetization 

prepared-rapid gradient echo (MP-RAGE) (1 x 1 x 1 mm voxels; echo time [TE] = 2.36 ms, 

repetition time [TR] = 1700 ms, TI=1000 ms, flip angle = 8°) and T2-weighted fast spin echo 

sequences (1 x 1 x 1 mm voxels; TE = 564 ms, TR = 3200 ms). FMRI scans were collected using 

a gradient echo-planar sequence sensitive to BOLD contrast (TE = 26.6 ms, flip angle = 58°, 2.4 

x 2.4 x 2.4 mm voxels, 48 contiguous slices, TR = 1.0 s, and multiband factor of 4).  

 

4.3.5 fMRI pre-processing 

FMRI data underwent pre-processing as previously described (Siegel et al. 2016). This 

included: (1) compensation for asynchronous slice acquisition using sinc interpolation; (2) 

elimination of odd/even slice intensity differences resulting from interleaved acquisition; (3) 

whole brain intensity normalization to achieve a mode value of 1000; (4) spatial realignment 

within and across fMRI runs; and (5) resampling to 2.4 mm cubic voxels in atlas space, including 

realignment and atlas transformation in one resampling step. Cross-modal (e.g. T2-weighted to 

T1-weighted) image registration was accomplished by aligning image gradients.  

Surface generation and processing of functional data followed procedures similar to 

Glasser et al (Glasser et al. 2013). First, anatomical surfaces were generated for each subject’s 
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T1 MRI using FreeSurfer automated segmentation (Fischl et al. 1999). This step included brain 

extraction, segmentation, generation of white matter and pial surface, inflation of the surfaces to 

a sphere, and surface shape-based spherical registration to the subjects’ “native” surface to the 

fs_average surface. The left and right hemispheres were then resampled to 164,000 vertices and 

registered to each other (Van Essen et al. 2001). 

Data were passed through several additional preprocessing steps: (i) removal by 

regression of the following sources of spurious variance: (a) six parameters obtained by rigid 

body correction of head motion, (b) the signal averaged over the whole brain (global signal 

regression), (c) signal from ventricles and CSF, and (d) signal from white matter; (ii) temporal 

filtering retaining frequencies in the 0.009–0.08-Hz band; and (iii) frame censoring (framewise 

displacement (FD) ≥ 0.5mm). The first four frames of each BOLD run were excluded. 

To account for magnitude variability between different task and resting state runs, the 

BOLD timeseries for each vertex were Z-normalized across time within the task and the resting 

state runs. This Z-normalization was not applied to the localizer scans. Also, it was not applied to 

the Task scans for a separate analysis described below in which task-evoked activation 

magnitudes were determined. 

 

4.3.6 Defining ROIs from localizer activation contrasts 

 ROIs were defined from univariate vertice-wise statistical contrasts on the localizer 

activation magnitudes for different categories. For example, word-selective areas were defined 

from the significant vertices for the contrast of real words minus false font string or scrambled 

real words. First, spatial smoothing with a Gaussian kernel of 6 mm FWHM was first applied to 

the minimally pre-processed data to improve signal-to-noise ratio as well as anatomy 
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correspondence between individuals. Second, for each participant a general linear model (GLM) 

was applied to their functional localizer scans. The GLM consisted of separate regressors for 

each stimulus category (e.g. real words) using an assumed hemodynamic response function from 

the Statistical Parametric Mapping (SPM12), a baseline term, and a linear trend term. Condition 

contrasts were formed to identify vertices showing preferences for each category: words-

preferred (a: real word > false font string, or b: real word > phase scrambled real word), face-

preferred (face > scene), scene-preferred (scene > face), and phase-scrambled-preferred (phase-

scrambled real word > real word).  

 A group random-effect statistical Z-map for each contrast was then computed from the 

single-subject GLMs (see Figure 4.1a for the group z-statistic map for each contrast). The Z-

values obtained were sorted in magnitude. From the highest Z-values from the map, the group 

peak with the next highest Z-value was generated until the Z-value was <= 2.0. Group peaks had 

to be separated by at least 38.4mm (9.6 mm x 4) in the sphere mesh to prevent a vertex being 

assigned to multiple ROIs in a subject. ROIs were then defined separately for each participant 

based on the individual’s univariate statistical maps (Oosterhof et al. 2012; Wurm et al. 2016). 

From each group peak defined above, the corresponding peak for an individual subject peak was 

defined as the vertex with the highest Z-value within a sphere of 9.6 mm radius centered around 

the group peak in each subject’s sphere mesh. The single-subject ROI was formed from the 

vertices exceeding Z= 2.0 in a sphere of 9.6 mm radius centered around the peak in the subject’s 

mesh. All ROIs used in following analysis contained at least 150 vertices in at least 14 subjects. 

ROIs in individual subjects with less than 150 vertices were discarded. 

 To remove differences in BOLD magnitude across MR frames, for each ROI a z-

normalization was applied across the vertices of each frame of the resting and task scans.  This 
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within-frame Z-normalization was not applied to the localizer scans. Also, it was not applied to 

the Task scans for a separate analysis described below in which task-evoked activation 

magnitudes were determined (see below, Task scans: multi-voxel activation patterns). We 

grouped the vertices from the target-preferred ROIs into a single target-preferred joint-ROI.  For 

each joint-ROI, all vertices located in early visual areas (V1 to V3) were excluded (Strappini et 

al. 2018), as estimated from surface topology using the template created by Benson et al. 

(Benson et al. 2012). Table 4.1 and Table 4.2 summarize the mean MNI coordinate, mean Z-

score for the obtained group peak, and mean number of vertices for all constituent ROIs in each 

joint-ROI. Figure 4.1b schematically indicates the position of all constituent ROIs in a joint-ROI 

based on their group-peak locations.  
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Figure 4.1. (a) Group z-statistic Localizer maps.  ROIs were separately defined for individual from their 

localizer maps using the group foci as a constraint (see Methods, Defining ROIs from localizer activation 

contrasts).  (b) Sets of category-preferential ROIs were defined for faces, scenes, real-word, and phase-

scrambled real-word. The ROIs in each set were combined into a joint-ROI after excluding regions in V1-

V3 as determined from the Benson template (Benson et al. 2012) except for the phase-scrambled ROIs. 
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Table 4.1 Summary ROI Information for real-word ROIs and phase-scrambled ROIs. 
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Table 4.2 Summary ROI Information for face and scene ROIs. 

  

 

4.3.7 Task scans: multi-voxel activation patterns 

For each Joint-ROI from each subject, the multi-vertex activation pattern for each of the 

96 stimulus presentations for a category in the task scans was estimated via a GLM that included 

a separate regressor for each stimulus presentation (Fig. 4.2). In addition, the GLM included a 

target regressor for the trials in which a stimulus was perturbed in size or position, and baseline 

and linear trend regressors for each scan. Each stimulus regressor was convolved with an 

assumed hemodynamic response function. The output task β weight matrix was a presentation-
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specific stimulus-evoked BOLD multi-voxel pattern of size Np x Nv (Np = 96 presentations by 

category x 7 stimuli categories & Nv = Number of vertices belong to the joint-ROI).  

Two kinds of stimulus-evoked spatial patterns or templates were computed for each 

category and joint-ROI from the β weight matrix. First, an averaged stimulus-evoked pattern or 

prototype template was computed by averaging the β weights from all 96 presentations of a 

category at each vertex of the joint-ROI (red pattern in Fig. 4.2a). Second, as each of the 24 

exemplars from each category was repeated four times, a ‘homogenous’ template was created for 

each of the 24 exemplars by averaging the β weights from the four presentations of each 

exemplar (4 instances of single letter ‘a’ as magenta pattern in Fig. 4.2b). As a control condition, 

a ‘heterogeneous’ template was created by averaging the β weights from four different exemplar 

instances (e.g. single letter ‘a’, ‘c’, ‘f’, and ‘g’). 

In order to determine the mean task-evoked categorical magnitudes, a β weight matrix 

was separately computed using spatially non-normalized BOLD timeseries from the task scans. 

The mean task categorical activation magnitude for each category (a vector of size Nc x 1) was 

computed by averaging the β weight matrix across vertices and presentations within a category. 

 

4.3.8 Determining similarity of resting multi-vertex patterns and stimulus-

evoked patterns 

For each participant’s individual joint-ROI, we determined the degree to which the multi-

vertex pattern for a stimulus-evoked template for a category matched the multi-vertex pattern on 

each resting frame based on derived parameter used in the previous study called the U90-value 

(Kim et al. 2019). In this procedure, illustrated in Figures 4.2a and 4.2b, framewise intrinsic 

activity patterns were obtained from independent resting-state scans. Next, for the averaged 
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stimulus-evoked pattern for a category (e.g. the prototype template for ‘alphabetic single letter’, 

Fig. 4.2a), the template spatial pattern was spatially correlated with the resting activity pattern on 

a frame. This procedure was repeated across all resting frames, resulting in a distribution of 

correlation coefficients (one coefficient per resting frame) for a particular category prototype in a 

particular joint-ROI. The upper 90% value of each distribution, hereafter termed the U90-value, 

was then determined. 

U90 values were analyzed via repeated measures ANOVAs and paired t-tests. For 

example, the statistical significance of an overall dependence of U90 values for a joint-ROI on 

the stimulus category was determined by conducting repeated-measures ANOVAs with 

Category-Type as factors. Paired t-tests were conducted to test specific contrasts, with a 

Bonferroni-correction for multiple comparisons. To analyze the local linguistic effect, the above 

U90 value analysis was additionally repeated for each constituent ROIs of the RW > FS joint 

ROI. 
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Figure 4.2. (a) Definition of U90-values using a prototype template. At each vertex of each joint-ROI, the 

β weights for the 96 stimuli from each category were averaged, producing an averaged stimulus-evoked 
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pattern or prototype template for each category and joint-ROI (e.g. the Alphabetic single letter pattern 

outlined in red). For each joint-ROI, the spatial correlation between the prototype template and the resting 

activity pattern on a single resting frame was measured, yielding a spatial correlation coefficient for that 

frame. This procedure was repeated for all resting-state frames, yielding a distribution of spatial 

correlation coefficients. The upper 90% value from this distribution, shown by the vertical red arrow, was 

used as a summary measure of the distribution. (b) Definition of U90-values using homogeneous 

exemplar templates. At each vertex of each joint-ROI, the β weights for 4 stimulus presentation of a 

single exemplar from a category comprised a homogeneous template for the exemplar (e.g. the magenta 

pattern represents a homogeneous template for the Alphabetic single letter “a”). For each joint-ROI, the 

spatial correlation between a homogeneous template and the resting activity pattern on a single resting 

frame was measured, yielding a spatial correlation coefficient for that frame. This procedure was repeated 

for all resting-state frames, yielding a distribution of spatial correlation coefficients for the homogeneous 

template. The upper 90% value from this distribution, shown by the colored vertical line, was used as a 

summary measure of the distribution for that exemplar. 

 

 

4.4 Results  

The primary goal of the experiment was to compare multi-vertex activity patterns in the 

resting state to stimulus-evoked activity patterns from linguistic and non-linguistic stimuli. In the 

main analyses discussed below, 3 types of templates were used: prototype, homogeneous and 

heterogeneous. Prototype templates were obtained by averaging the β weights for the ninety-six 

stimulus presentations within a category. Homogeneous and heterogeneous templates were 

obtained by averaging 4 instances of same and different exemplars within a category. Prototype 

templates were used to analyze whether a region of interest shows linguistic effects in the multi-

vertex activity patterns in the resting state. Additionally, homogeneous and heterogeneous 

templates were used to analyze whether a region of interest has character-specific or word-

specific effects in the resting state. 

The stimulus-evoked template for a category, whether a prototype, homogeneous or 

heterogeneous, was spatially correlated with the activity pattern in an ROI on each resting frame 

to determine a distribution of correlation coefficients over frames for the category and ROI (Fig. 
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4.2). The upper 90% value (U90 value) of the distribution was then used as a summary measure 

of the relationship between the stimulus-evoked and resting patterns like the previous categorical 

visual objects study (Kim et al. 2019).  

 

4.4.1 U90-values in the real-word preferred (RW > FS) joint-ROI represent 

line stimuli more than linguistic stimuli. 

First, we conducted an analysis that compared U90 values for letter conditions (including 

3 stimulus categories of SL: single alphabet letter; FF: false font; and Scr-SL: phase-scrambled 

single alphabet letter) and word conditions (including 4 stimulus categories of RW: real word; 

SC: consonant string; FS: false-font string; and Scr-RW: phase-scrambled real word) in the real-

word preferred (RW > FS) joint-ROI defined in the localizer scans. The RW > FS joint-ROI 

contains the regions with the strongest selectivity for visual words, with (ROI #5, Fig.4.4) 

corresponds to the VWFA. Figure 4.3a left panel shows U90 values for a joint-ROI’s linguistic-

stimuli (red symbol: SL, RW, and CS), pseudo-linguistic categories (blue symbols: FF and FS), 

and phase-scrambled category (black symbols: Scr-SL and Scr-RW).  

Separate repeated measures analysis of variance (ANOVAs) with all Category (7 levels) 

as a factor indicated a significant main effect of Category in the RW > FS joint-ROI (F(6,90) = 

2.258, p = 0.045). The ANOVA was re-run separately using only the letter-conditions (3 levels) 

or the word-conditions (4 levels). There was no significant main effects of Category in the letter-

conditions (F(2,30) = 0.761, p = 0.476). In contrast, there was a significant main effects of 

Category using the word-conditions (F(3,45) = 4.048, p = 0.013). Paired two-sample t-tests with 

Bonferroni corrections showed no difference between Real Words, Consonant strings, or False 

Font Strings. However, a significant difference was found with Phase scrambled words 
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(Bonferroni-corrected significance for Consonant Strings and uncorrected significance for Real 

Words). Therefore, this analysis does not support the idea that intrinsic activity in regions 

responding preferentially to visual words code preferentially for linguistic stimuli, as compared 

to non-linguistic (consonant) or line strings (false fonts). However, the higher frequency of 

resting states coding ‘realistic’ line stimuli as compared to scrambled line stimuli is consistent 

with the first experiment on faces, bodies, and scenes. 

The previous study of categorical objects demonstrated that the U90 value for a category 

and joint-ROI was related to the category’s activation strength (Kim et al. 2019). Figure 4.3a 

middle panel shows the mean response for each category in the RW > FS joint-ROI. The β 

weights for the task response were separately computed from spatially non-normalized task 

BOLD timeseries. Separate repeated measures analysis of variance (ANOVAs) for the mean 

categorical activation strength with all category (7 levels) as a factor indicated a significant main 

effect of Category in the RW > FS joint-ROI (F(6,90) = 24.785, p < 0.0001). The ANOVA 

analysis was re-run separately in the letter-conditions (3 levels) and word-conditions (4 levels) as 

factors. There was significant main effects of Category in both the letter-conditions (F(2,30) = 

10.684, p = 3.14e-4) and word-conditions (F(2,30) = 37.212, p < 0.0001). For the letter 

conditions, there was no difference between real letter and false fonts (p = 0.2462 after 

Bonferroni-correction), while both of them differed from scrambled letters (p = 0.003 and p = 

0.012 after Bonferroni-correction). For the word conditions, the linguistic stimuli (real words and 

consonant strings) significantly differed from false fonts and scrambled words. These patterns 

are consistent with the patterns of task activation reported in the literature, and show a difference 

in linguistic materials for words, and a difference between line like stimuli and phase scrambled 

stimuli. 
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However, in contrast to the previous experiment, we did not find a significant correlation 

across stimulus categories between U90 values and the strength of the activation response. 

Figure 4.3a right panel shows the correlation coefficient between the U90-value computed from 

the resting frames and the activation strength for the different letter conditions (SL, FF, and Scr-

SL), and word conditions (RW, CS, FS, and Scr-RW). Group one-sample t-tests indicated that 

the correlation coefficients were not significant for all 3 cases after Bonferroni-correction. This 

interesting difference suggests that the coding of words in intrinsic activity follows different 

rules than other stimuli (face, bodies, scenes).  

We also ran a series of control analyses to examine other properties of intrinsic activity 

patterns coding for word like stimuli.  

First, we looked at whether task patterns in intrinsic activity for letter or word like stimuli 

were character-specific or word-specific, or whether more robust patterns of intrinsic activity 

were obtained for average templates. Accordingly, U90-values for every SL and RW exemplar 

homogeneous templates were obtained (Fig 4.3b), and were separately tested in ANOVAs with 

character or word exemplars as a factor (24 levels). The ANOVA showed no significant main 

effects of Alphabetic characters (F(23,345)=1.394, p<0.1093), and no significant main effects of 

word exemplars (F(23,345)=0.813, p<0.7156). Overall, it appears that the average (prototype) 

template yields higher U90 values. 

Secondly, we were interested in examining if there was a relationship between U90 

values in intrinsic activity for individual stimuli and letter/word parameters in the real world. We 

found a correlation of r=-0.258 between U90 values and alphabetic frequencies of SL exemplars 

in the (RW > FS) joint-ROI. Similarly, we found weak/moderate correlations between U90 
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values and word-linguist parameters of character-length (r=-0.175), familiarity (r=-0.399), 

imaginability (r=0.124), and LKFR-frequency (r=-0.214). 

Thirdly, we examined if the frequency of task patterns in resting activity varied according 

to whether the template was homogeneous (averaging same stimulus n=4 across trials) or 

heterogeneous (averaging n=4 different stimuli). Figure 4.3c shows the within-category averaged 

U90 values for homogeneous and heterogeneous templates. For the letter conditions, separate 

repeated measures analysis of variance (ANOVAs) with template-type (homogeneous and 

heterogeneous) and category (SL, FF, and Scr-SL) as factors yielded a significant main effect of 

template (F(1,15)=4.832, p=0.044), no significant main effect of category (F(2,30)=0.685, 

p=0.512), and no significant interaction of template-type by category (F(2,30)=0.9, p=0.412). 

Similarly for the word conditions, separate repeated measures analysis of variance (ANOVAs) 

with template-type (homogeneous and heterogeneous) and category (RW, CS, FS, and Scr-RW) 

as factors yielded a significant main effect of template (F(1,15)=9.248, p=0.008), a significant 

main effect of category (F(3,45)=5.262, p=0.003), and no significant interaction of template-type 

by category (F(3,45)=0.049, p=0.691). 

The absence of statistically significant effect in the above analyses is consistent with the 

absence of language specific effects in the real-word preferred (RW > FS) joint-ROI. Because 

each exemplar was only presented four times, however, the statistical power of homogenous and 

heterogeneous templates was restricted. 
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Figure 4.3 (a) The graph plots categorical U90 values (Left Panel) and mean activation strength (Middle 

Panel) for the joint-ROI’s linguistic category (Red symbol), pseudo-linguistic categories (blue symbols), 

and phase-scrambled category (black symbol). The group-averaged correlation between activation 
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strengths and U90 values across all categories, letter-condition, and word-condition are plotted (Right 

Panel). (b) The graph plots homogeneous U90 values for the joint-ROI’s each Alphabetic single letter 

(Left Panel) and real-word (Right Panel) exemplar. (c) Within-category averaged homogeneous and 

heterogeneous U90-value across categories are plotted by letter-conditions (Left Panel) and by word-

conditions (Right Panel). 

 

 

4.4.2 No linguistic effects from U90-values in constituent linguistic (RW > FS) 

ROIs. 

 The real-word (RW >FS) joint-ROI contains vertices not only from ventral occipito-

temporal area, but also from higher-level language processing areas such as Broca’s area. To 

examine the coding of letter and word like stimuli in intrinsic activity, we computed U90 values 

separately for each ROIs that preferentially responded more strongly to real words than false font 

strings.  

Figure 4.4a shows the six ROIs used to generate the real-word preferred (RW > FS) joint-

ROI including the visual word form area (VWFA, ROI #5), Broca’s (ROI #2), and Wernicke’s 

area (ROI #3). Figure 4.4b shows categorical U90 values across the different ROIs. ANOVAs 

using the letter-conditions (3 levels) as levels on the Category factor were significant in ROI #2 

(Broca’s) and #7 (middle temporal gyrus) (p-value = 0.014 and 0.017). For these two ROIs, two-

sample t-tests of SL vs. FF and SL vs. Scr-SL were performed, and significant difference 

between SL and Scr-SL was found only in ROI #2 only (corrected p-val = 0.033). Similarly, 

ANOVAs using the word-conditions (4 levels) as levels on a Category factor were significant in 

ROI #3 (Wernicke’s) and #5 (VWFA) (p-value = 0.008 and 0.004). For these two ROIs, two-

sample t-tests of RW vs. CS, RW vs. FS, RW vs. Scr-RW, CS vs. FS, and CS vs. Scr-RW were 

performed. A significant difference between CS and Scr-RW was found in ROI #5 (corrected p-

val = 0.034). Figure 4.4c shows the mean correlation coefficient between the ROI’s categorical 
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U90-value and the categorical activation strength in the task across the six local linguistic 

constituent ROIs by using all 7 categories, letter conditions only, and word conditions only. 

Group one-sample t-tests were performed across ROIs and conditions yielding no significant 

correlations after Bonferroni multiple correction. 

This analysis shows that a linguistic explanation does not apply to the patterns observed 

in the resting state. However, several regions of the language network beyond VWFA showed 

greater U90 values for word like or line segment stimuli than phase scrambled stimuli. The lack 

of correlation between U90 patterns and task response is confirmed in other individual ROIs, 

consistent with the joint-ROI analysis. 
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Figure 4.4. (a) Six constituent RW > FS ROIs were schematically shown based on the group locations 

and group contrast map of RW > FS. (b) The graph plots categorical U90 values of linguistic category 

(Red symbol), pseudo-linguistic categories (blue symbols), and phase-scrambled category (black symbol) 

for each constituent ROI. (c) The group-averaged correlation between activation strengths and U90 values 

across all categories, letter-condition, and word-condition are plotted for each constituent ROI.  
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4.4.3 U90-value profiles across different category preferential joint-ROIs 

shows that differences are driven by phase-scrambled images. 

 To test for the category selectivity of word like stimuli in resting state activity, we 

measured the U90 values on letter and word (like) stimuli in 4 sets of joint-ROIs: (1) word 

category (RW > Phase-scrambled RW); (2) face category (Face > Scene), scene category (Scene 

> Face), and phase-scrambled (Phase-scrambled RW > RW) based on localizer scan responses. 

As the linguistic stimuli used in this study were presented with a small visual aperture of about 

4o at the center, we expected stronger foveal than peripheral responses.  As face specific ROIs 

also emphasize foveal regions of the visual field, while scene specific ROIs prefer the periphery, 

(Hasson et al. 2002; Malach et al. 2002) we expected visual stimuli in this experiment to be 

preferentially represented in more foveal (e.g. face) than peripheral (e.g. scene) ROIs.  The face 

joint-ROI and scene joint-ROI are a set of contrasting ROIs for the foveal vs. peripheral 

extended-eccentricity organization of the human visual system. 

 Figure 4.5 shows all 4 joint-ROIs’ U90-values profile across stimulus categories (Left 

Panel), mean activation strength profiles (Middle Panel), and correlation coefficient across 

categories between the U90-value computed from the resting frames and the activation strength 

in the task (Right Panel). ANOVAs with all conditions (7 levels) as levels on a Category factor 

yielded significant effects in the word, face, and phase-scrambled joint-ROIs (p-value = 0.001, 

0.001, and 0.014). ANOVAs using only the letter-conditions (3 levels) yielded significant effects 

in the generic word, face, and phase-scrambled joint-ROIs (p-value = 0.001, 0.001, and 0.048). 

Finally, ANOVAs using only the word-conditions (4 levels) yielded significant effects in the 

word and face joint-ROIs only (p-value = 0.001 and 0.001). For the above three joint-ROIs, two-
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sample t-tests of SL vs. FF, SL vs. Scr-SL, RW vs. CS, RW vs. FS, RW vs. Scr-RW, CS vs. FS, 

and CS vs. Scr-RW were performed. Significant differences in letter-conditions were found only 

for the SL vs. Scr-SL in the generic word and face preferred joint-ROIs (p-value = 0.001 and 

0.016 after Bonferroni-correction). Significant differences in word-conditions were found for the 

RW vs. Scr-RW in the generic word and face preferred joint-ROIs (p-value = 0.005 and 0.048 

after Bonferroni-correction) and for the CS vs. Scr-RW in the generic word preferred joint-ROI 

(p-value = 0.001 after Bonferroni-correction) only. Therefore, no significance differences among 

linguistic stimuli were found, and all significance differences were driven by the phase-

scrambled stimuli set. In other words, the higher frequency of positive and negative matches 

between resting frame patterns and task-evoked patterns was mainly driven by the difference 

between real world vs. artificial stimuli. Note also that letter/word like stimuli drive the face and 

word joint-ROIs, which favor the fovea, but not the periphery-preferring scene joint ROI. In 

contrast scrambled word/letter stimuli were more represented in early visual regions, as in 

experiment 1. 

 The correlation coefficient across categories between the U90-value computed from the 

resting frames and the activation strength in the task was computed by using all categories, letter 

conditions only (SL, FF, and Scr-SL), and word conditions only (RW, CS, FS, and Scr-RW). 

Group one-sample t-tests indicated that the correlation coefficients were significant for all 

categories in the generic word, face, and phase-scrambled preferred joint-ROIs (p-value = 0.001, 

0.001 and 0.029 after Bonferroni-correction), significant for letter-conditions in the generic word 

and face preferred joint-ROIs (p-value = 0.011 and 0.001 after Bonferroni-correction), and 

significant for word-conditions in the generic word and face preferred joint-ROIs (p-value = 

0.007 and 0.011 after Bonferroni-correction). The significant correlations between categorical 
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U90 values and mean activation strengths, however, were no longer significant if phase-

scrambled control stimuli (Scr-SL and Scr-RW) were excluded. The relationship between 

categorical U90-values and mean activation strengths from the object study in Chapter 2, 

therefore, is maintained in this experiment – but the main effect is driven by the phase-scrambled 

stimuli.  
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Figure 4.5. The graph plots categorical U90 values (Left Panel) and mean activation strength (Middle 

Panel) of linguistic category (Red symbol), pseudo-linguistic categories (blue symbols), and phase-
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scrambled category (black symbol) for each joint-ROI. The group-averaged correlation between 

activation strengths and U90 values across all categories, letter-condition, and word-condition are plotted 

for each joint-ROI (Right Panel). Black symbols indicate the significance of each correlation coefficient, 

as determined by a group 1-sample t-test (+ = Bonferroni-corrected p-val ≤ 0.05; ++ = Bonferroni-

corrected p-val ≤ 0.005; * = uncorrected p-val ≤ 0.05). 

 

 

4.5 Discussion 

 The goal of the experiment was to determine the relationship between resting multi-

vertex activity patterns and multi-vertex patterns evoked by linguistic and non-linguistic visual 

stimuli in regions of the language network, particularly the visual-word area in left ventral 

occipital temporal cortex. To this end, the multi-vertex patterns of the evoked BOLD activity 

from linguistic stimuli with varying levels of visual word form and corresponding non-linguistic 

stimuli were correlated with resting multi-vertex patterns in brain regions independently defined 

using standard localizers. The task-rest correspondence was measured in the U90 parameter that 

reflects the spread of positive and negative matches with resting activity patterns (Kim et al. 

2019). 

 Linguistic stimuli used in this experiment are 24 alphabetic single letters, 24 real words 

with 3-8 letters for categorical objects matching to previous object experiment (Chapter 2), and 

24 consonant strings. Pseudo-linguistic stimuli used are 24 false-fonts and false-font strings with 

3-8 letters corresponding to real-word stimuli. Finally, non-linguistic stimuli used are 24 phase-

scrambled Alphabetic single letters and phase-scrambled real words.  

 Under the hypothesis that task states driven by visual words are sculpted in resting state 

activity through extensive writing and reading and Hebbian learning, the U90-values across 

categories are expected to rank in the following orders: Linguistic stimuli > Pseudo-linguistic 
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stimuli > non-linguistic stimuli. However, an alternative hypothesis posits that the VWFA is a 

general processor for high frequency high contrast line stimuli. Under this hypothesis, we would 

predict a strong difference of all line stimuli (word, letters, consonant strings, false fonts) vs. 

scrambled letters and words. The results are more consistent with the latter hypothesis. 

 

4.5.1 No linguistic-specific visual correspondences at rest 

 Resting multivoxel patterns in the real-word preferential (RW >FS) joint-ROI containing 

vertices from language regions were not necessarily related to the patterns evoked by linguistic 

stimuli since no statistically significant differences in two-sample paired t-tests were found 

between SL and other letter-type control stimuli and between RW and other word-type control 

stimuli. Since the previous study of categorical objects demonstrated that the U90 value for a 

category and joint-ROI was related to the category’s activation strength (Kim et al., 2019), the 

correlation between the categorical U90-value and activation strengths were measured for all 

letter conditions only (SL, FF, and Scr-SL), and word conditions only (RW, CS, FS, and Scr-

RW) in Fig 3a right panel. Group one-sample t-tests, however, indicated that the correlation 

coefficients were not significant for all 3 cases after Bonferroni-correction.  

 To rule out the possible contaminations of higher-level linguistic processes, the above 

analyses were repeated in the constituent linguistic (RW > FS) ROIs. Among the constituent 

ROIs, the VWFA area was of particular interest since this region, based on the neuronal 

recycling hypothesis, has reoriented its function for visual word perception from general 

categorical object perception. Figure 4 shows the categorical U90 values and correlation between 

the categorical U90 values and the categorical mean activations across different constituent 

ROIs. Although the VWFA (ROI #5) and Broca’s area (ROI #2) appear to show higher U90-
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values for linguistic stimuli, statistically significant differences were only found in SL vs. Scr-SL 

(ROI #2) and in CS vs. Scr-RW (ROI #5). The significant differences between linguistic stimuli 

and phase-scrambled non-linguistic stimuli agree with the previous demonstrations in object 

study (Chapter 2) for high-level vs. low-level visual features. The initial assumption of written-

word preferred (RW > FS) regions having ranked categorical U90-value based on neuronal 

recycling hypothesis, however, was not met indicating no linguistic-specific effects were found 

at rest.  

 The selectivity of the VWFA for written words has been strongly debated in the 

literature. Some studies reported stronger responses for words than consonant strings and false 

font strings in the VWFA (Cohen et al. 2002; Baker et al. 2007; Vinckier et al. 2007) while other 

studies reported opposite findings (Tagamets et al. 2000; Cohen et al. 2003; Xue et al. 2006, 

Vogel et al. 2012). Vogel and colleagues showed that VWFA responded to other high-spatial 

frequency high contrast stimuli including line drawings in similar degree to words or letter 

strings responses, and claimed that the VWFA is not a specialized region for visual-word form 

but is rather a general visual processing region (Vogel et al. 2012). Other studies showed that the 

VWFA is activated by non-word visual stimuli (e.g. pictures) supporting the idea of VWFA 

region as a general visual processing region (Price and Devlin 2003; Ben-Shachar et al. 2007; 

Starrfelt and Gerlach 2007; Van Doren et al. 2010; Kherif et al. 2011; Song et al. 2012). The 

current results, which found no linguistic specific task-rest correspondence, support the 

hypothesis that the VWFA does not respond selectively to visual word form but responds 

generally for line drawings.  
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4.5.2 No character-specific or word-specific effect were found at rest. 

 Figure 3b describes U90-values for 24 alphabetic single letter exemplars and 24 real-

word exemplars to analyze possible character-specific or word-specific effects in the resting state. 

The one-way ANOVA with all character or word exemplar (24 levels) as a factor did not show 

any statistical significance.  

 It has previously been shown greater word frequency is associated with decreasing 

activations (Kuo et al. 2003; Kronbichler et al. 2004; Schuster et al. 2016). The frequency effect 

was explained by a “predictive coding” framework: the reciprocal sensorimotor activation that 

conveys experience-dependent predictions of a stimulus. The higher activation from infrequent 

words was explained as a larger error signal. Additionally, Schuster et al. (2016) reported that 

increasing word length is associated with increasing activations due to linked eye movements 

during reading. 

 To test for effects associated with various linguistic properties, U90 values were 

correlated with character-length, familiarity, imaginability, and LKFR-frequency of the RW 

exemplars and to alphabet frequency. The interpretation of the results is different than in 

Schuster et al. since the U90-value is a measure of spatial pattern similarity between resting 

activity patterns and specific word exemplar evoked activity patterns. Under the initial 

hypothesis of task-rest correspondence, a more frequently experienced stimulus with a higher 

LKFR-frequency or a higher alphabetic frequency would be shaped more into resting activity 

patterns, and therefore would be expected to yield a higher U90-value. Against this initial 

prediction, negative correlations were found between the homogeneous RW exemplar U90-value 

and the LKFR-frequency and between the homogeneous SL exemplar U90-value and alphabetic 
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letter frequency. Additionally, negative correlations for character length and for familiarity 

scores were found.  

 

4.5.3 Phase-scrambled stimuli drive task-rest correspondences mostly. 

 In Chapter 2, we discovered that resting multivoxel patterns in visual areas were not 

necessarily related to the patterns evoked by ecological objects but were more related to a 

region’s stimulus preferences for high- or low-level visual features (e.g. Intact-stimuli in high 

level visual region and phase-scrambled in low-level visual region).  

 In the current study, figure 4.5 shows all 4 joint-ROIs’ U90-values profile across stimulus 

categories (Left Panel), mean activation strength profiles (Middle Panel), and correlation 

coefficient across categories between the U90-value computed from the resting frames and the 

activation strength in the task (Right Panel). From the one-way ANOVA across ROIs and the 

two-sample paired t-tests across categories and 4 different joint-ROIs, it was shown that 

significant differences in U90-values are mainly driven by differences between the other 

stimulus categories and the phase-scrambled control stimuli. Additionally, the complementary 

foveal-bias vs. peripheral-bias of the extended organization of the human visual system was 

consistent with the results across different joint-ROIs (Hasson et al. 2002; Malach et al. 2002). 

Intact-stimuli (both linguistic stimuli and pseudo-linguistic stimuli) were mostly processed in 

foveal-biased regions, consistent with the acuity demands of readings. The foveal bias for intact-

stimuli resulted in higher U90-values for intact-stimuli than phase-scrambled stimuli in the 

foveal-biased face (Face > Scene) joint-ROI and the generic word preferred (RW > Scr-RW) 

joint-ROI. In contrast, the phase-scrambled control images (Scr-SL and Scr-RW) showed higher 

U90-values in the periphery-biased scene (Scene > Face) joint-ROI and phase-scrambled 
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preferred (Scr-RW > RW) joint-ROI. Therefore, the task-rest correspondences for intact-stimuli 

vs. phase-scrambled stimuli across joint-ROIs were consistent with the conclusions of the 

previous study (Chapter 2). 

 

4.5.4 Limitations of the study 

 First, the linguistic stimuli of the present study were presented in a decidedly 

non-naturalistic context since only single stimuli were presented in the context of a minimally 

cognitive engaging detection task. It is possible that the current procedure was not sufficient to 

evoke the linguistic activation patterns evoked by naturalistic reading; therefore, the finding of 

no linguistic-specific effects may be misleading.  

 Second, compared to the previous study of visual categorical object recognition bounded 

in VOTC (Chapter 2), the current study used word-preferred joint ROIs (RW > FS or RW > Scr-

RW) containing different language areas across the entire brain. Since the recruited regions 

outside of VOTC play a role in higher-level cognitive processing such as semantic processing 

and integration of different modalities (e.g., sound and visual stimuli), the task-evoked activity 

patterns measured would be contaminated by those higher-level cognitive processes. However, 

the main conclusions of the paper were clearly not due to this factor. We separately repeated 

analyses in the constituent ROIs of the real-word preferential (RW >FS) joint-ROI, and still 

linguistic-specific effects were not found.  

 The temporal resolution of the fMRI BOLD signal might limit the power of the spatial 

similarity measures of task-evoked activity patterns. The activation time-courses for real-words, 

consonants, and false fonts were identified with fMRI and Magnetoencephalography (MEG) 

(Thesen et al., 2012). Different activation peaks and profiles were found across categories with 
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several hundred milliseconds differences across language network regions. Since the time 

resolution of the current study is TR = 1 second, the activity patterns we obtained might not 

represent the optimal activity patterns. Additionally, the U90 value measurement came from 

direct spatial correlations between resting-state activity patterns and task-evoked activity patterns. 

This simple comparison might not be proper if the task-evoked activity patterns are convolved 

with hidden layers specific to visual word form due to the induced reorientation of cortical maps. 

While categorical object recognition is a built-in function (e.g. a baby responds and distinguishes 

faces), linguistic recognition only happens after long-term training; therefore, the differences 

between the results for objects in Chapter 2 and linguistic stimuli in the current study may reflect 

developmental factors.  

 Finally, because each exemplar was only presented four times, the comparison of 

homogenous vs. heterogeneous templates was restricted in power. The correlations between 

U90-values and linguistic parameters (e.g letter type) could be affected by the small sample size 

for each homogeneous template. 
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Chapter 5: Functional connectivity structure in 

resting-state and during natural vision. 
 

The main results discussed in this chapter has been published as a journal article. The 

citation is: 

Kim D, Kay K, Shulman GL, Corbetta M. (2018). A New Modular Brain Organization of the 

BOLD Signal during Natural Vision. Cereb Cortex, 28(9):3065-3081. 

 

The visual stimuli used in Chapter 2 to 4 are designed specifically for a laboratory 

environment that does not correspond to realistic ecological environments. In Chapter 5, to 

overcome this limitation, we use the more naturalistic visual experience of movie-watching and 

compare the whole-brain FC network structure of movie-watching and of resting-state. 

5.1 Abstract 

             The resting blood-oxygenation-level-dependent (BOLD) signal is synchronized in large-

scale brain networks (resting-state networks, RSNs) defined by inter-regional temporal 

correlations (functional connectivity, FC). RSNs are thought to place strong constraints on task-

evoked processing since they largely match the networks observed during task performance. 

However, this result may simply reflect the presence of spontaneous activity during both rest and 

task. Here we examined the BOLD network structure of natural vision, as simulated by viewing 

of movies, using procedures that minimized the contribution of spontaneous activity. We found 

that the correlation between resting and movie-evoked FC (ρ = 0.60) was lower than previously 

reported. Hierarchical clustering and graph-theory analyses indicated a well-defined network 

structure during natural vision that differed from the resting structure, and emphasized functional 
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groupings adaptive for natural vision. The visual network merged with a network for navigation, 

scene analysis, and scene memory. Conversely, the dorsal attention network was split and re-

integrated into two groupings likely related to vision/scene and sound/action processing. Finally, 

higher-order groupings from the clustering analysis combined internally-directed and externally-

directed RSNs violating the large-scale distinction that governs resting-state organization. We 

conclude that the BOLD FC evoked by natural vision is only partly constrained by the resting 

network structure. 

 

5.2 Introduction 

 Recent evidence indicates that spontaneous activity in the brain is not random, as 

traditionally modeled based on the variability of sensory response to identical stimuli, but is 

systematically organized as spatial patterns of temporally correlated activity (from neurons to 

whole brain networks) (Tsodyks et al. 1999; Varela et al. 2001; Fiser et al. 2004; Fox et al. 2005; 

He et al. 2008; Nir et al. 2008; de Pasquale et al. 2010; Berkes et al. 2011; Brookes et al. 2011; 

Florin and Baillet 2015). In fMRI studies, for example, the spatial topography of inter-regional 

temporal correlations (functional connectivity, FC) of the blood-oxygenation-level-dependent 

(BOLD) signal at rest, i.e. in the absence of any stimulation or task, is well described by a 

relatively small number of spatio-temporal clusters or networks (so called resting state networks, 

RSNs). Interestingly, the topography of BOLD RSNs is very similar to the topographies of 

BOLD task activity evoked by different sensory, motor, and cognitive tasks and the FC measured 

during those tasks (Biswal et al. 1995; Smith et al. 2009; Mennes et al. 2013; Cole et al. 2014). 

 One explanation for this task-rest correspondence is that task states have been 

sculpted into the brain by evolution, development, and experience (Fiser et al. 2004; Albert et al. 
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2009; Hasson et al. 2009; Lewis et al. 2009; Tambini et al. 2010; Raichle 2011; Petersen and 

Sporns 2015). On this view, specific tasks represent different subsets of the repertoire of states 

that the brain explores at rest (Kenet et al. 2003). As a result, the neural activity that enables 

adaptive behavior during tasks is strongly constrained by the activity observed at rest. However, 

if similar sources of intrinsic activity are present at rest and during tasks, similar FC matrices 

will be observed for both states even if task-evoked FC is very different than resting FC. In line 

with this view, several authors have proposed that rest states represent a default or idling state 

from which many different task states can be generated through unknown mechanisms (Betti et 

al. 2013; Spadone et al. 2015). Therefore, the FC from adaptive neural activity, i.e. activity 

evoked by a task, may be largely unrelated to resting FC. The first but not second view predicts 

that task and resting BOLD FC will be similar even if the influence of intrinsic activity during a 

task is removed. 

 In this study we compared the topography of resting state patterns of functional 

connectivity to the topography induced by natural vision, as simulated by viewing a series of 

short movies. Importantly, this comparison occurred after isolating the movie-evoked component 

free of any ongoing spontaneous or intrinsic activity, insuring that task-rest correspondences did 

not simply reflect the presence of intrinsic activity during both. One approach to removing 

intrinsic activity is to average BOLD timeseries across subjects, on the assumption that ongoing 

spontaneous activity in different subjects is not temporally synchronized. However, Henrikkson 

et al. reported that the effects of intrinsic activity on representational dissimilarity matrices were 

only partly removed by averaging BOLD timeseries across subjects (Henriksson et al. 2015). A 

different approach, called inter-subject functional correlation (ISFC), was recently reported 

(Simony et al. 2016) (see also Mantini et al. 2012). To compute the functional connectivity 
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between regions A and B, the BOLD timeseries from region A was averaged over one group of 

subjects, the BOLD timeseries from region B was averaged over a separate group of subjects, 

and then the timeseries for regions A and B were correlated. 

 In the first part of this paper, we show that the ISFC procedure eliminates intrinsic 

signals more effectively than simple averaging of timeseries across subjects within a group, but 

that at large sample sizes the two methods yield very similar results.  We then use the ISFC 

procedure to show that the correlation between FC matrices for natural vision and rest is lower 

than previously reported.  This result indicates that BOLD task-rest correspondences have been 

overestimated due to the common presence of intrinsic activity. Finally, by applying hierarchical 

clustering and graph-based analyses to the resting and movie-evoked FC matrices, we show that 

natural vision induces a modular network organization of the BOLD signal that differs from the 

organization at rest. 

 

5.3 Method 

5.3.1 Human Connectome Project (HCP) Data 

 Seventy participants (28 Male, age 22~35, including pairs of identical twins) were 

obtained from the Washington University-Minnesota Consortium Human Connectome Project 

(WU-Minn HCP Data – 900 Subjects + 7T; June 2016) (Van Essen et al. 2012). Blood 

oxygenation level dependent (BOLD) signals were acquired in two consecutive days of 

experiments on a 7T scanner (SC72 gradient coil 70 ~ 100 mT/m, Multi-Band factor of 5, TE = 

22ms, TR = 1sec, 1.6 mm voxel size) installed at the University of Minnesota (Uǧurbil et al. 

2013). On the first day, participants were scanned while maintaining fixation on a black screen 

for 2 scans, each 15 minutes in duration (Resting state). Next, participants were scanned while 
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watching movie clips for 2 scans, each 15 minutes in duration (Movie task). Each movie 

watching scan contained 3 to 4 short movie clips with a repeated short clip for validation of 

possible regression models inserted at the end of each movie session. A twenty second period of 

fixation on a black screen was inserted prior to the first movie clip, in between movie clips, and 

following the last movie clip. The same procedure was repeated for the second day. Two of the 

movie sessions were composed of short clip compilations of 3 Hollywood movies with short 

intermissions, and the other two movie sessions were composed of short clip compilations of 

four independent films with short intermissions (see Fig 5.1 for descriptions of movie clips). 
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Figure 5.1. Human Connectome Project 7T experiment design for resting-state scans and movie 

scans. 

 

5.3.2 Pre-Processing 

 Spatial image preprocessing initially followed the HCP minimal preprocessing pipeline, 

minimizing spatial smoothing and spatial distortion while maximizing alignment across image 

modalities. The HCP minimal preprocessing pipeline transformed the data from the original 

resolution to 2 mm resolution into a 91,282 grayordinate space called CIFTI (Glasser et al. 
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2013). CIFTI grayordinates comprise cortical grey matter surface vertices (both left and right 

hemisphere, 30k vertices each) and subcortical grey matter voxels (30k voxels). In this study, 

only cortical grey matter surface vertices of both hemispheres were used. 

 The BOLD time series then underwent four additional steps. First, the data were 

normalized by their mean, transforming each timeseries into % BOLD fluctuation, and global 

signal regression (GSR) was conducted. Second, to minimize the effect of subject motion, BOLD 

timeseries were censored and corrected using the DVARS measure (temporal derivative of RMS 

variance), which is highly correlated with frame-wise head-motion displacement (Power et al. 

2012). For each subject, approximately 5% of BOLD frames were replaced by interpolating the 

magnitude values of neighboring BOLD time points. 

 Third, each subject’s BOLD timeseries of cortical grey matter surface vertices (both left 

and right hemisphere, 30k vertices each) were registered into the Gordon-Laumann parcellation 

(Gordon et al. 2016), and then averaged across the vertices within a parcel. This procedure 

resulted in a mean BOLD timeseries for each parcel, reducing 60K timeseries to 324. The 324 

Gordon-Laumann parcels are grouped into 13 different resting-state networks (RSN) (see Fig. 

5.2): Visual (VIS), Retrosplenial Temporal (RST), Dorsal Attention (DAN), Dorsal 

Somatomotor (SMd), Somatomotor Mouth (SMv), Auditory (AUD), Cingulo-Operculum 

(CON), Ventral Attention (VAN), Salience (SAL), Cingulo-parietal (CPN), Fronto-parietal 

(FPN), Default Mode (DMN), and None. Therefore, use of the mean parcel BOLD time series 

allowed simple comparisons of the functional topographies between resting state BOLD and 

movie-watching BOLD while increasing the signal-to-noise ratio of movie-evoked and resting 

BOLD timeseries.  

 



146 

 

 
Figure 5.2. Gordon-Laumann Parcellation with 13 resting state networks. 

 

 The final processing step was temporal filtering of the mean parcel BOLD timeseries. 

Since low frequency fluctuations (< 0.1 Hz) account for about 90% of the correlation coefficient 

between regions, a bandpass filter of 0.008Hz to 0.08 Hz was applied (Cordes et al. 2001). For 

each movie BOLD time series, the first six seconds from the beginning of each clip within each 

movie was eliminated to account for hemodynamic lag. 

 

5.3.3 Resting State Functional Connectivity (rs-FC) and Movie Functional 

Connectivity (m-FC) 

 BOLD signal time series obtained from different scans were concatenated, and a 

correlation matrix was computed for each subject by calculating parcel-to-parcel, i.e. pairwise, 

the temporal correlation (Pearson r) between timeseries. Pearson r-values for individual parcel 

pairs were converted to Fisher Z-transformed values. A group average resting-state functional 
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connectivity matrix was obtained by averaging over subjects the individual subject correlation 

matrices and then transforming the Fisher z-values into Pearson r-values (Fig. 5.3 Left). 

 

5.3.4 Functional Connectivity after temporal averaging: Movie (m-avgFC) 

and Resting State (rs-avgFC) 

 Temporal averaging time-locked to specific events is used in neurophysiology to increase 

signal to noise of stimulus or task evoked activity. Previous work has shown that movie 

observation leads to highly synchronized signal time series across different subjects, due 

presumably to consistent phase resets of ongoing spontaneous activity induced by events in the 

movie (Hasson et al. 2004; Mantini et al. 2012). Therefore, averaging across subjects BOLD 

time series from a specific parcel prior to computing functional connectivity should lead to 

suppression of correlations due to intrinsic activity and subject-specific movie-evoked activity, 

and should enhance the correlation due to movie-evoked activity shared across subjects. We 

computed parcel-to-parcel FC matrices on group averaged BOLD signal time series in the resting 

state (rs-avgFC) and during the movie (m-avgFC) (Fig. 5.3 Middle). The prediction is that movie 

FC should reflect predominantly movie-related activity shared across subjects, whereas resting 

state FC should show weak or no correlation because intrinsic activity should not be 

synchronized across subjects. 

 

5.3.5 Inter-subject Functional Correlation (ISFC) 

 The effectiveness of temporal averaging in removing effects of intrinsic activity on FC 

was compared to that of a second method, “Inter-Subject Functional Correlation (ISFC)”, which 

was recently introduced by Simony et al. (2016) (see also Mantini et al. 2012). Subjects were 
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evenly and randomly split into two groups. For each parcel, the BOLD signal time series were 

averaged across the subjects within each group. Then a parcel-by-parcel pairwise functional 

connectivity matrix was computed between groups. The computed FC was not symmetric at this 

point since the correlation coefficients of paired region A and B were computed as: 

ρAB, upper diagonal = correlation between the BOLD(region A, group1) and 

BOLD(region B, group2).  

ρBA, lower diagonal = correlation between the BOLD(region A, group2) and 

BOLD(region B, group1). 

To keep the conventional unidirectional connectivity characteristic of FC, symmetricity in ISFC 

was imposed by averaging upper diagonal values and lower diagonal values. By randomly 

permuting 50 times the subjects assigned to each group, 50 FC matrices were obtained. The r-

values of the 50 matrices were converted to Fisher Z-transformed values, the 50 matrices were 

averaged, and the values of the averaged matrix were converted from z-values back to r-values 

(Fig. 5.3 Right). ISFC matrices were computed for both resting state and movie-evoked 

timeseries. 
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Figure 5.3. Three methods for computing functional connectivity matrices. Left) Resting state 

functional connectivity (rs-FC) and movie FC (m-FC) group correlation matrices were generated by 

averaging individual correlation matrices that were computed from pairwise, parcel-to-parcel BOLD 

temporal correlations. Middle) For both movie and resting-state conditions, the BOLD time series for 

each parcel was first temporally averaged across subjects. Then group m-avgFC and rs-avgFC matrices 

were calculated from pairwise, parcel-to-parcel BOLD temporal correlations. Right) In the ISFC method, 

subjects were randomly split into two groups. Within a group, the BOLD time series for each parcel was 

first temporally averaged across subjects. Then, a group FC matrix was computed by correlating, for each 

pair of parcels, the parcel time series from one group with the parcel time series from the other group. 

This procedure was repeated fifty times with different random groupings of subjects, and the resulting FC 

matrices were averaged to produce the final group m-ISFC and rs-ISFC matrices 
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5.3.6 Statistical analysis of time-series correlations 

 The statistical significance of each observed correlation was accessed by a permutation 

procedure based on surrogate data (Simony et al. 2016). Phase-randomized surrogate BOLDs 

time series of equal mean and autocorrelation to the original signal were obtained. The phase-

randomization was computed by rotating the phase ϕ(f) by an independent random variable φ(f) 

which was uniformly chosen in the range of [0, 2π) (Prichard and Theiler 1994).  

 For the orthogonality test, null distributions of both maximum noise correlation values 

and minimum noise correlation values were obtained via repeated generations (1,000) of 

surrogate BOLD signals (Resting state, movie-evoked, and movie-residual). FWER were 

controlled by a threshold (R*) at the q*100th percentile of the null distribution of maximum 

values. The thresholds for each condition are given above in each case (all for q<0.005), along 

with the % significant ROI-pairs out of the 52326 possible ROI-pairs. 

 For each surrogate resting-state BOLD and movie-BOLD, all FC maps (rs-FC, rs-avgFC, 

rs-ISFC, m-FC, m-avgFC, and m-ISFC) were computed, then the maximum noise correlation 

values and the minimum noise correlation values for each FC map were obtained. By repeating 

the above procedure 5,000 times, null distributions of the maximum noise correlation values and 

the minimum noise correlation values were obtained for each FC map. Family-wise error rate 

(FWER) was controlled by a threshold (R*) at the q*100th percentile of the null distribution of 

maximum values (q = 0.005). Since separate thresholds were applied for positive and negative 

values, the FWER was 0.01, two-tailed. 
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5.3.7 Data-driven FC network reorganization 

 The Resting state (rs-FC) and movie-evoked (m-ISFC) FC matrices generated above 

were organized in terms of the pre-defined RSNs. To analyze the network organization of the 

resting state and movie-evoked state, three different unsupervised, data-driven analyses were 

conducted. 

 First, hierarchical clustering methods were implemented. Resting state (rs-FC) and 

movie-evoked (m-ISFC) FC matrices were converted to dissimilarity matrices by calculating a 

dissimilarity index (1 – Pearson’s r for paired parcels). A hierarchical clustering analysis, applied 

to each matrix, yielded an FC dendrogram (Connolly et al. 2012; Cauda et al. 2013; Riedel et al. 

2015). The number of clusters (detected communities) were determined by the Davies-Bouldin 

index (DBI), which determines the optimal number of clusters (Davies and Bouldin 1979). FC 

matrices were then re-ordered based on the hierarchical clustering results. 

  Second, resting state FC (rs-FC) and movie-evoked FC (m-ISFC) were reorganized into 

communities by implementing the Louvain community detection algorithm (Blondel et al. 2008) 

from the Brain Connectivity Toolbox (Rubinov and Sporns 2010) for varying threshold edge 

densities (4~20%). Due to the randomized initialization procedure, each run of algorithm 

resulted variations in detected communities. To account these variations, 10,000 runs of Louvain 

algorithms were conducted for each FC maps. For each parcel, the most frequently assigned 

community throughout the entire iterations was chosen. For the network modularity 

measurement, the average modularity across runs of algorithm was used. To evaluate the 

stability of communities, Newman’s Q modularity (Newman 2004) was evaluated based on both 

newly detected communities (unsupervised) and pre-defined RSNs (supervised). The values of 

modularity ranges between 0 (community is no better than random connection) and 1 (strong 
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community structure) while the modularity of typical networks with a strong modular structure 

ranges from 0.3 to 0.7 (Newman and Girvan 2004). Since movie-evoked FC (m-ISFC) was an 

averaged map of 50 different permutations of split subjects, the modularity scores were assessed 

for each permutation. Similarly, the modularity scores of resting state FC (rs-FC) were assessed 

from 50 different permutations of rs-FC generated from 35 randomly chosen subjects. To test for 

a difference in mean modularity scores between rs-FC and m-ISFC, a cluster-based 

nonparametric test with a p-value of 0.0001 was performed (Maris and Oostenveld 2007) as 

follows:  

1) Collect trials of the two experimental conditions (the modularity scores of rs-FC and 

m-ISFC in all permutations).  

2) Draw a combined dataset that had two subsets of randomly assigned modularity 

scores. 

3) Calculate the difference in mean modularity scores between subsets. 

4) Repeat above steps 2 and 3 1,000,000 times to construct a histogram of the difference 

in mean modularity scores.  

5) Calculate a p-value based on the proportion of random partitions that resulted in a 

larger test statistic than the observed one. 

Finally, resting state FC (rs-FC) and movie-evoked FC (m-ISFC) were visualized with spring 

embedded models that were computed using a 4% threshold edge density. Similarly, 

communities defined from hierarchical clustering and Louvain community detection algorithms 

were visualized with spring embedded models. 
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5.4 Results 

5.4.1 Orthogonality of movie-evoked and resting BOLD signals 

 We first checked that group-averaged BOLD signals evoked by the movie were 

orthogonal to intrinsic signals, since otherwise removing one signal would partly remove the 

other.  

 Two different methods were used to test orthogonality. In the first, we averaged the 

movie BOLD timeseries from 35 subjects (group 1) to get a stable estimate of the movie-evoked 

BOLD timeseries.  We then correlated this group 1 timeseries with the resting-state timeseries of 

each subject from a different group of 35 subjects (group 2). The correlation between the Group 

1 (average) and Group 2 (single subject) timeseries was on average, essentially zero with a small 

standard deviation across group 2 subjects (correlation coefficient: μ = -6.32e-4 and σ = 0.041). 

A non-parametric permutation test with family error wise correction for the significance of the 

computed FC (Simony et al. 2016) indicated no significant ROI-pairs (threshold R* = -0.289 and 

0.288). 

 In a second analysis, we again averaged the movie BOLD timeseries from 35 subjects 

(group 1) to get a stable estimate of the movie-evoked BOLD timeseries. For each subject in a 

different group of 35 subjects (group 2), we subtracted the group 1 timeseries from the movie 

timeseries for that group 2 subject to yield a residual timeseries. The residual timeseries 

contained subject-specific movie-evoked BOLD signals and intrinsic signals, with at most a 

small contribution from movie-evoked signals. We then correlated the residual timeseries for that 

group 2 subject with the group 1 average movie-evoked timeseries. The correlation between the 

two timeseries was on average, essentially zero with a small standard deviation across group 2 
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subjects (correlation coefficient: μ = -0.003 and σ = 0.057). A total of 0.31% of significant ROI-

pairs were found (threshold R* = -0.282 and 0.282). 

 The above analyses show that the group movie-evoked BOLD signal is orthogonal to the 

resting state and movie-residual BOLD signals. We also conducted two tests of the orthogonality 

of different resting-state timeseries.  In the first analysis, we correlated the resting BOLD 

timeseries across runs within a subject. The correlation between two timeseries was on average, 

essentially zero with a small standard deviation across subjects (correlation coefficient: μ = -

0.001 and σ = 0.060), and no significant ROI pairs were found (threshold R* = -0.292 and 

0.291). In a second analysis, we correlated the resting-state BOLD timeseries from different 

subjects for a given run. Again, the correlation between the two timeseries was on average, 

essentially zero with a small standard deviation across subjects (correlation coefficient: μ = -

4.16e-4 and σ = 0.041). No significant ROI-pairs were found (threshold R* = -0.217 and 0.221). 

 

5.4.2 The influence of intrinsic activity on network synchronization during 

natural vision 

 Because the BOLD signal measured during movie viewing includes both intrinsic 

fluctuations and movie-evoked fluctuations (Fox et al. 2006; Becker et al. 2011), pure movie-

evoked patterns of inter-regional signal synchronization can only be isolated after removing the 

fluctuations due to intrinsic activity. We tested two procedures for accomplishing this. 

 Figure 5.4a shows the group resting FC matrix (rs-FC), which was computed by 

averaging across subjects the single-subject FC matrices formed from the correlations between 

BOLD timeseries for all pairs of parcels from the Gordon-Laumann parcellation (see Fig. 5.3, 

left panel). The rs-FC matrix shows the characteristic block structure along the diagonal that 
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highlights different resting state networks (RSNs). A nonparametric test (FWER p=.01, two-

tailed) indicated that 84.7% of ROI-pairs in the rs-FC matrix were significant. Figure 5.4d shows 

the group movie FC matrix (m-FC), similarly computed by averaging of single-subject FC 

matrices computed from the BOLD timeseries during movie viewing. A nonparametric test 

(FWER p=.01, two-tailed) showed that 82.0% of ROI-pairs in the m-FC matrix were significant. 

The spatial correlation between the resting and movie FC matrices was very high, 0.87, 

replicating the correspondence between task and rest FC previously reported (Cole et al. 2014). 

However, this correspondence may have reflected the common influence of intrinsic activity. To 

compute pure movie-evoked FC, we averaged the BOLD time series from different parcels over 

subjects before computing the FC between parcels (see Fig. 5.3 middle panel). Since fluctuations 

of intrinsic activity vary in time from subject to subject, inter-subject averaging of BOLD time 

series should reduce the magnitude of intrinsic BOLD variation to near zero, leaving only the 

components that are time-locked to events in the movie. The movie-evoked FC after inter-subject 

averaging (m-avgFC) is shown in Figure 5.4e. A nonparametric test (FWER p=.01, two-tailed) 

showed that 38.2% of ROI-pairs in the m-avgFC matrix were significant. The spatial correlation 

between resting and movie-evoked matrices was only 0.63, much less than the previous 

correlation (0.87), consistent with a reduction of the large contribution of intrinsic activity.  

 To test whether the inter-subject averaging procedure completely removed the effect of 

intrinsic activity on FC, we applied the same procedure to the resting state data. After inter-

subject averaging, each parcel’s BOLD timeseries showed only small variations around zero, as 

expected (not shown). Nevertheless, as shown in Figure 5.4b, the resulting FC matrix (rs-avgFC) 

was almost identical to the original resting FC matrix, with a spatial correlation of 0.95. 

Therefore, the influence of intrinsic activity on the topography of movie-evoked FC was not 
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fully removed by inter-subject averaging of parcel BOLD time series. This result is consistent 

with a recent report that averaging of BOLD time series during natural image viewing is 

insufficient to remove intrinsic fluctuations (Henriksson et al. 2015). A nonparametric test 

(FWER p=.01, two-tailed) showed that 13.6% of ROI-pairs in the rs-avgFC matrix were 

significant. 

 
Figure 5.4. Functional connectivity matrices for rest and natural vision generated by three methods. 

FC matrices for both resting state BOLD and movie-watching BOLD were computed using the methods 
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shown in Figure 5.3. (a) Resting-state FC (rs-FC), (b) Resting-state average FC (rs-avgFC), (c) Resting-

state inter-subject functional correlation (rs-ISFC), (d) Movie FC (m-FC), (e) Movie average FC (m-

avgFC), and (f) Movie inter-subject functional correlation (m-ISFC). 

 

5.4.3 Inter-subject functional correlation effectively removes the influence of 

intrinsic activity 

 We tested a second procedure for removing intrinsic activity called “Inter-Subject 

Functional Correlation” (ISFC) (see Fig. 5.3 right panel), which was recently introduced by 

Simony et al. (2016). Briefly, the method involves the same assumption as the first method, 

namely that intrinsic activities are uncorrelated across subjects. However, intrinsic activity is 

removed by correlating the BOLD time series for two parcels across two groups of subjects 

rather than within the same group. First, subjects were randomly split into two groups. Then, the 

BOLD time series for each parcel was averaged within each group, similar to the inter-subject 

averaging procedure of the first method, resulting in a relatively stable estimate of the movie 

activity for each parcel. Note, however, that since data from only half of the subjects were used 

to compute the average timeseries in a group, the parcel timeseries for the ISFC method had 

lower signal-to-noise than the timeseries computed using the inter-subject averaging method. In 

the final step of the ISFC method, we computed the FC between two parcels by correlating the 

averaged time series for the first parcel from one group with the averaged time series for the 

other parcel from the other group. This correlation step was repeated for all pairs of parcels to 

derive a complete FC matrix. The same procedure was then repeated over many iterations using 

different assignments of subjects to the two groups. A final ISFC matrix was computed by 

averaging the matrices generated from each iteration.  



158 

 

 The FC matrix computed by applying the ISFC procedure to the resting-state scans (rs-

ISFC) is shown in Figure 5.4c. No structure is evident, with the correlations tightly grouped 

around zero (mean correlation ρ = 3.57e-4, σ = 0.03, max ρ = 0.12, min ρ = -0.13). A 

nonparametric test (FWER p=.01, two-tailed) showed that no ROI-pairs in the rs-ISFC matrix 

were significant. Moreover, the spatial correlation between the rs-ISFC matrix and the original 

resting-state matrix (rs-FC) was only 0.10. These results indicate that the effects of intrinsic 

activity on FC were more fully removed by the ISFC than inter-subject averaging procedure.  

  Finally, we computed movie-evoked FC using the ISFC procedure (Fig. 5.4f, m-ISFC), 

allowing us to determine pure movie-evoked FC free of any influence from intrinsic activity. The 

overall topography of the m-ISFC matrix was very similar to that of the m-avgFC matrix. A 

nonparametric test (FWER p=.01, two-tailed) showed that 61.2% of ROI-pairs in the m-ISFC 

matrix were significant. Correspondingly, the correlation between the m-ISFC and rs-FC 

matrices was 0.60, only slightly less than the correlation (0.63) between the m-avgFC and rs-FC 

matrices. Therefore, the ISFC and inter-subject averaging methods produced very similar movie-

evoked FC matrices, even though they produced very different resting FC matrices. The reasons 

for this discrepancy are considered in the discussion. 

 

5.4.4 Inter-subject averaging was more contaminated by intrinsic activity 

when FC was computed from fewer subjects 

 The preceding section demonstrated that the ISFC method more fully removed the 

influence of intrinsic activity during movie-watching than the inter-subject averaging method. 

We next determined the effectiveness of each method as a function of the number of subjects 
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used to compute the FC matrices, since as a practical matter, large datasets may not be routinely 

available.  

 Spatial correlations between different FC matrices as a function of the number of subjects 

are illustrated in Figure 5.5. The effectiveness of the ISFC procedure in removing intrinsic 

activity is depicted in Figure 5.5a. Regardless of sample size, the spatial similarity of the rs-FC 

and rs-ISFC matrices was quite low (Fig. 5.5a, green), indicating that the rs-ISFC matrix 

contained no resting network structure. Conversely, the spatial similarity of the rs-FC and rs-

avgFC matrices was quite high for all sample sizes (Fig 5.5a, blue), indicating that resting 

network structure was preserved in spite of the averaging of resting timeseries across subjects.  

 Figure 5.5b compares the similarity of the topography of intrinsic activity during rest (rs-

FC) with the topographies during movie-watching in which intrinsic activity was left in (m-FC), 

was putatively removed by averaging timeseries over subjects (m-avgFC), or was putatively 

removed by computing FC between subjects (m-ISFC). Regardless of sample size, resting FC 

was highly correlated with movie FC when intrinsic activity was not removed (Fig. 5.5b, blue). 

Averaging of timeseries across subjects reduced rest-movie correlations (Fig. 5.5b, green), with 

an effect that increased signal-to-noise (movie-evoked activity to intrinsic activity) ratio at larger 

sample sizes, as expected. However, even at the largest sample size, the correlation of resting 

and movie FC was lowest with the ISFC procedure (Fig. 5.5b, red). The slight increase in the 

spatial similarity of the rs-FC and m-ISFC matrices (Fig. 5.5b, red) with sample size likely 

reflected a corresponding increase in the SNR for each parcel timeseries, as discussed above. 

Because this effect appeared to asymptote by the largest sample size, however, it likely does not 

explain the residual difference between the correlations of rs-FC with m-avgFC vs. m-ISFC. 

Overall, the ISFC procedure was the most effective at removing intrinsic activity and performed 
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well at all sample sizes. For large sample sizes, the averaging and ISFC methods yielded similar 

results for movie-evoked FC, but not resting FC. 

 The spatial similarity of the movie FC matrices computed using the three methods of 

Figure 5.3 was evaluated in Figure 5.5c. The high spatial correlation values between m-ISFC and 

m-avgFC showed that the overall topography of m-ISFC was very similar to that of m-avgFC, 

particularly when a sufficient number of subjects were sampled (Fig. 5.5c, red). Finally, the 

reliability of the ISFC procedure is shown in Figure 5.5d. The spatial correlation between m-

ISFC from only 10 random subjects and m-ISFC from all 70 subjects was high (Fig. 5.5d, red), 

indicating that the topography of pure movie-evoked FC was captured with small samples. 

 

 
Figure 5.5. Spatial correlation of FC matrices as a function of sample size. (a) Correlation of resting-

state FC (rs-FC) with resting-state average FC (blue) and resting-state inter-subject FC (green), and 
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correlation of rest and movie inter-subject FC (red), with 95% confidence intervals. (b) Correlation of 

resting-state FC (rs-FC) with movie FC (m-FC, blue) movie average FC (m-avgFC, green) and movie 

inter-subject FC (m-ISFC, red) , with 95% confidence intervals. (c) Correlation of movie FC matrices that 

were computed using the three methods of Figure 5.3, with 95% confidence intervals. (d) FC matrices 

based on all 70 subjects were compared to matrices of the same type computed from fewer subjects (rs-

FC, Blue; m-ISFC, red), with 95% confidence intervals. 

 

5.4.5 Effect of number of BOLD MR frames on the similarity of rest and 

movie FC matrices 

 Resting and movie FC matrices are more accurately estimated as more BOLD frames are 

analyzed (Laumann et al. 2015).  We evaluated how the spatial correlation between rs-FC and 

movie FC matrices depended on epoch length (number of BOLD frames) (Fig. 5.6). For 

example, we analyzed 5 independent BOLD data sets (both movie and rest), each consisting of 

500 BOLD frames, yielding 5 rs-FC, 5 m-FC, 5 m-avgFC, and 5 m-ISFC matrices. The spatial 

correlation among the rs-FC and movie FC matrices was computed for each of the 25 possible 

combinations and then averaged. Figure 5.6 shows the correlation coefficient between resting 

and movie FC matrices as a function of the epoch length. For all movie FC matrices, the 

correlation with the rest FC matrix increased with epoch length, consistent with previous work 

(Laumann et al. 2015). 

 



162 

 

 
Figure 5.6. Correlation coefficient between resting and 3 movie FC matrices as a function of the 

epoch length. 

 

5.4.6 Consistency of reductions in task-rest similarity across movies 

 The similarity of task-evoked and resting FC matrices was substantially reduced when the 

effects of intrinsic activity on movie FC were eliminated using the ISFC procedure. We next 

determined whether this reduction was consistent across the movies in the HCP dataset, which 

differed widely in content (including Hollywood movies, documentaries, commercials, and 

independent movies (Figure 5.1). Consistency would suggest that the reduction in similarity did 

not depend on the details of the cognitive processes engaged by each movie. 

  Movie FC matrices (m-FC and m-ISFC) were computed for each of twelve movies that 

lasted at least 3 minutes (see Figure 5.1).  The spatial correlation of each movie matrix with the 

resting FC matrix (rs-FC) was then measured (see Table 5.1). The similarity of individual m-FC 

matrices to the resting FC matrices varied over a small range (μ = 0.80, σ = 0.032), as did the 
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similarity of m-ISFC matrices (μ = 0.48, σ = 0.028). The lower spatial correlation value of each 

individual movie matrix to the resting matrix relative to the original aggregate analysis, reflected 

the smaller number of BOLD frames that were analyzed for each movie (e.g. for the individual 

m-ISFC matrices the mean correlation was 0.48 while in the aggregate analysis the correlations 

was 0.60; see previous section, Effect of number of BOLD MR frames on the similarity of rest 

and movie FC matrices) Importantly, all twelve movies showed a substantial reduction in task-

rest similarity when intrinsic activity was removed (see bottom row, Table 5.1). Therefore, the 

large decreases in task-rest similarity after the removal of intrinsic activity generalized over the 

individual movies within the HCP dataset, indicating that the reduction did not depend on the 

detailed content of the movies. 

 

Table 5.1. Spatial correlations of individual clip m-FC between rs-FC, spatial correlations of 

individual clip m-ISFC between rs-FC, and its differences. 

 
The movie FCs (m-FC and m-ISFC) were computed for each of twelve movies that lasted at least 3 

minutes (see Figure 5.1 and below list), then measured its spatial correlations to the rs-FC. The mean and 

standard deviation of task-rest similarity across movies, as well as the reduction in task-rest similarity 

following the removal of intrinsic activity were measured. 

Clip 1: Two Men 

Clip 2: Welcome to Bridgeville 

Clip 3: Pockets 

Clip 4: Inception 

Clip 5: Social Network 

Clip 6: Oceans Eleven 

Clip 7: Off the Shelf 

Clip 8: 1212 

Clip 9: Mrs. Meyers Clean Day 

Clip 10: Home Alone 
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Clip 11: Erin Brockoviche 

Clip 12: Star Wars 

 

5.4.7 Different patterns of functional interactions during rest and natural 

vision 

 Since the ISFC procedure effectively removed the influence of intrinsic activity on FC, 

we next considered the relationship between FC during rest and natural vision. The spatial 

correlation between the m-ISFC and rs-FC matrices was 0.60, lower than the 0.87 correlation 

between the m-FC and rs-FC matrices. Because the influence of intrinsic activity was removed, 

however, this residual similarity reflected signals generated from entirely different sources, i.e. 

intrinsic vs movie-evoked activity.  

 During movie-watching (Fig. 5.4f) the functional connectivity of individual regions, 

relative to rest, was selectively increased or decreased with other regions in the same network, 

and particularly with other regions in different networks, resulting in a heterogeneous m-ISFC 

matrix. We statistically evaluated these within-network and between-network FC changes from 

rest to natural vision by measuring the mean and variance of the FC of region pairs within and 

across the standard resting networks. In Figure 5.7a (movie) and Figure 5.7b (resting), the 

diagonal and off-diagonal cells show, respectively, the mean FC of parcel pairs within each 

network and between each pair of networks. Figure 5.7c indicates the difference in mean FC 

between movie and rest, with cells showing a significant difference in mean FC displayed in 

color. Statistical significance was determined by t-tests over the different inter-regional FC 

values within a network or across networks, with a p-value of 0.05 after Bonferroni correction 

for multiple comparisons (a total of 78 comparisons, comprising the diagonal and upper-diagonal 
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cells of the FC matrix and excluding the ’none’ category). Figures 5.7d, 5.7e, and 5.7f show the 

analogous matrices for the variance of FC, with significance determined by F-tests.  

 Not counting the cells involving the ‘none’ category, 60.3% of the cells (47/78) showed 

significant differences between rest and movie in mean FC, including both increases (e.g. DAN 

FC) and decreases (e.g. DAN-VIS FC) in FC from rest to movie. Significant mean effects were 

observed in 33.3% (4/12) of within-network and 65.2% (43/66) of between-network cells. 

Significant differences in variance were more common overall, occurring in 79.5% (62/78) of 

cells, and in all cases reflected increased variance during the movie. Non-significant effects often 

involved networks that contained relatively small numbers of regions (e.g. CPN, SAL). 

Significant variance effects were observed in 66.7% (8/12) of within-network cells and 81.8% 

(54/66) of between-network cells. Therefore, significant differences in both mean FC and 

variance occurred in a higher percentage of between-network than within-network cells. 
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Figure 5.7. Statistical analysis of changes in network organization between rest and natural vision. 

Mean functional connectivity of region pairs within and across RSNs were computed for movie-evoked 

(m-ISFC, a) and resting state (rs-FC, b) FC. The mean difference matrix (c, m-ISFC minus rs-FC) is 

depicted with cells of only significant difference in the mean of FC (as determined by t-tests with a p-

value of 0.05 after Bonferroni correction for multiple comparisons, total 78 comparisons of diagonal and 

upper-diagonal values only, excluding the ’none’ category).  

 Variance of the functional connectivity of region pairs within and across the RSNs were 

computed for both movie-evoked (m-ISFC, d) and resting state (rs-FC, e) FCs. The variance difference 
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matrix (f, m-ISFC minus rs-FC) is depicted with cells of only significant difference in the variance of FC 

(as determined by F-tests with a p-value of 0.05 after Bonferroni correction for multiple comparisons, 

total 78 comparisons of diagonal and upper-diagonal values only, excluding the ’none’ category). 

 

5.4.8 A new set of networks during natural vision 

 The statistical analysis of the FC matrices for rest and natural vision indicated that natural 

vision involved a large-scale reorganization of BOLD resting network structure. This 

reorganization could have involved the formation of a new set of networks that were just as 

modular as those observed during rest, or a less modular structure in which most regions broadly 

interacted with many other regions. To objectively identify the BOLD network organizations for 

intrinsic and movie-evoked FC, we conducted both hierarchical clustering analyses and graph 

theory analyses of modularity and community structure on the rs-FC and m-ISFC matrices. 

 In order to conduct the hierarchical clustering analysis, the Pearson correlation 

coefficients within each FC matrix were transformed to dissimilarity indices (dij = 1 - ρij || ij = 

Pair of parcelsi and parcelsj). The optimal number of clusters for each FC matrix (Nclust,rs-FC = 

2 and Nclust,m-ISFC = 7) was determined by the Davies-Bouldin Index (DBI) (Davies and 

Bouldin 1979), as shown in Figures 5.8a and 5.8d. The ordering of parcels in the rs-FC matrix 

was rearranged to match the dendrogram generated by the clustering analysis and is displayed in 

Figure 5.8b. The color assignments in the dendrogram were based on the same color assignments 

as the predefined networks from the Gordon-Laumann parcellation (Fig. 5.1). Figure 5.8b shows 

that the color arrangements within the rs-FC dendrogram were mostly, although not always, 

homogeneous, indicating that the clustering algorithm largely replicated the apriori network 

structure. Moreover, the two clusters at the top-level of the hierarchy were consistent with 

previous demonstrations of a large-scale distinction between externally and internally directed 

networks (Fox et al. 2005; Golland et al. 2008). Cluster one (Fig. 5.8c) included most/all parcels 
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belonging to the RST, CON, FPN, and DMN networks, corresponding to an internal network 

grouping, and the second cluster included most/all parcels belong to the VIS, SMd SMv, AUD, 

VAN, and DAN networks, corresponding to an external network grouping. Figure 5.8g left panel 

shows the topography of the external and internal clusters.  

  The ordering of parcels in the m-ISFC matrix was also rearranged in line with the 

clustering analysis and is displayed in Figure 5.8e. Figure 5.8f shows the composition of five of 

the seven clusters at the top level of the hierarchy (the other two clusters contained only 1 and 2 

parcels, and are not shown). Several results stand out. The m-ISFC matrix (Fig. 5.8e) showed a 

clear block structure along the main diagonal, reflecting a modular, network organization. 

However, this modular organization departed from the apriori network structure. Some apriori 

networks were combined largely intact to form new groupings adaptive for natural vision. 

Cluster #5 (Fig. 5.8f) merged a largely intact visual network with an intact RST network, which 

is involved in navigation, scene perception, and scene memory, along with some parcels from the 

fronto-parietal network. However, many apriori networks were split up and distributed across 

different clusters (Fig. 5.8f). For example, the DAN was split between clusters #3 and #4. 

Interestingly, the large-scale division between internal and external networks was not respected, 

with clusters including parcels from networks of both types. For example, the largest cluster in 

the m-ISFC matrix, cluster #3, included parcels from both external networks (e.g. SMd, AUD, 

DAN) and internal networks (e.g. CON, FPN, DMN). Similarly, the Davies-Bouldin index for 

natural vision did not show a minimum at two clusters (Fig. 5.8d), unlike the index values for the 

resting-state (Fig. 5.8a). The topography of the five clusters is shown in Figure 5.8g, right. We 

defer a description of the possible functions associated with these clusters until further analyses 

are presented. 
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Figure 5.8. Hierarchical clustering analysis reveals distinctive network organizations for rest and 

natural vision. a) and d) Davies-Bouldin Index (DBI) values as a function of the number of clusters for 

rs-FC (a, minimum DBI = 2) and m-ISFC (d, minimum DBI = 7). b) and e) Region labels along the x- 

and y-axes of the resting-state FC matrix (b) and m-ISFC matrix (e) were re-ordered in accordance with 

the dendrogram from the hierarchical clustering algorithm. The dendrogram was colored according to the 

predefined network assignments from the Gordon-Laumann (GL) parcellation (Fig. 5.2). c) and f) 

Percentage distribution of predefined GL RSNs for each cluster (e.g. C1) defined from the hierarchical 
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clustering algorithm for rs-FC (c) and m-ISFC (f). The number by each bar indicates the total number of 

parcels contained in the cluster. Two clusters containing less than three parcels are not shown. (g) 

Clusters for rs-FC (Left) and m-ISFC (Right) were projected onto the cortical surface. 

 

 One general conclusion from the clustering analysis is that during natural vision, regions 

from the resting networks were re-distributed into a new set of BOLD networks. This re-

distribution should have reduced the modularity of the m-ISFC graph computed using the apriori 

networks. Figure 5.9a, left panel confirms this prediction, with much lower modularity scores 

during natural vision than rest. However, when modularity was computed without assuming a 

pre-defined network structure by using the Louvain algorithm, modularity scores during rest and 

natural vision were roughly similar at moderate and low edge densities (Fig. 5.9a, right panel). 

Therefore, natural vision produced a new network organization that was roughly as modular as 

the organization during rest. This is consistent with the clear network organization shown in the 

m-ISFC matrix that was ordered by the dendrogram from the clustering analysis (Fig. 5.8d). 

 As in the clustering analysis, one community for m-ISFC (#1 in Fig. 5.9c) merged the 

visual network and the RST network involved in navigation, scene perception and scene memory 

(see Fig. 5.9b for the topography of each Louvain community). Similarly, the DAN was again 

split between two communities (i.e. the green blocks within clusters #5 and #6 in Figure 5.9c, 

right column). 
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Figure 5.9.  Analysis of community structure and modularity during rest and natural vision.  (a) 

Modularity of rs-FC (blue) and m-ISFC (red) matrices was computed using the pre-defined Gordon-

Laumann communities (left graph), or without assuming a pre-existing community structure by using the 

Louvain algorithm (right graph). A cluster-based nonparametric test with a p-value of 0.0001 was 

performed to test for a difference in mean modularity between rs-FC and m-ISFC. (b) Communities 

identified using the Louvain algorithm (C1 to C10) for rs-FC (Left) and m-ISFC (Right) were projected 

onto the cortical surface. The percentage distribution of predefined RSNs for the communities identified 

by the Louvain algorithm for (c) rs-FC and m-ISFC. The number on the right of the each bar indicates the 

total number of parcels contained in the community. The number on the left of the each bar indicates the 

frequency of community assignments from 10,000 iterations of the Louvain Algorithm. Communities 

containing fewer than five parcels are not shown. 
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5.4.9 Visualization of the network organization during rest and natural vision 

 To illustrate the functional groupings identified by the clustering and graph analyses and 

to provide more insight into their functions, resting state FC (rs-FC) and movie-evoked FC (m-

ISFC) matrices were visualized via spring embedded models (Fig. 5.10). The colors of the nodes 

in the models in Figures 5.10a and 5.10d were based on the apriori Gordon-Laumann networks, 

those in Figures 5.10b and 5.10e on the communities from the unsupervised Louvain algorithm, 

and those in Figures 5.10c and 5.10f on the top-level clusters from the hierarchical clustering 

analysis. 

 Under resting conditions, the spring-embedded model of the apriori Gordon-Laumann 

networks (Fig. 5.10a) was very similar to the model of the Louvain communities (Fig. 5.10b), 

with nodes of similar colors (i.e. nodes from similar apriori networks or Louvain communities) 

grouped together. Therefore, the data-driven resting network structure from the current study 

matched that observed in previous studies. Additionally, the spring embedded model of rs-FC 

showed a similar arrangement to the spring embedded resting-state model reported in a previous 

study (Power et al. 2011). Finally, the top-level grouping from the cluster analysis (Fig. 5.10c) 

showed a clear separation that corresponded to the distinction between internally-directed and 

externally-directed networks, again consistent with previous work (Fox et al. 2005; Golland et al. 

2008).  

 In contrast, under natural vision the apriori Gordon-Laumann networks (Fig. 5.10d) did 

not match the new BOLD network structure, with intermingling of differently colored nodes to 

form new functional groupings. These groupings, presumably adaptive for natural vision, are 

evident in Figures 5.10e and 5.10f, which display respectively the Louvain communities and the 
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top-level clusters from the clustering analysis. The Visual and RST network were merged into a 

single vision/scene analysis community (community #1, Fig. 5.10e; also cluster #5, Fig. 5.10f), 

as noted earlier, which was adjacent to a community (#5, Fig. 5.10e; also cluster #4, Fig. 5.10f) 

that combined more visually-related parcels from the DAN and VAN/language parcels (see Fig. 

5.10d). The DAN/VAN component of this multi-community grouping might be involved in 

controlling attention to the display. The remaining parcels of the DAN were integrated with 

many dorsal somato-motor parcels (Fig. 5.10d) into Community #6, which was adjacent to a 

community (#3, Fig. 5.10e) containing many parcels from the auditory network (Fig. 5.10d). 

This DAN/SMd/AUD grouping could reflect attention to/interpretation of action as well as 

sound, perhaps including dialog. Community #7 (Fig. 5.10e) was possibly the most centrally 

located in the model and primarily contained parcels from the FPN, along with small 

contributions from the VAN and CON. The central location of this ‘cognitive control’ 

community was consistent with the critical role of the FPN in task-dependent processing 

(Dosenbach et al. 2008; Cole et al. 2013). 
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Figure 5.10. Spring embedded models reveal different network organizations for rest and natural 

vision. Spring embedded models were generated for Resting-state FC (rs-FC) and Movie-evoked FC (m-

ISFC) matrices of 4% edge density. Nodes were colored by the predefined network assignment from the 

Gordon-Laumann parcellation (a & d), by Louvain community assignment (b & e), and by Hierarchical-

clustering (c & f). See Figures 5.8c, 5.8f, and 5.9c for the percentage distribution of pre-defined RSNs for 

each cluster and community.  



175 

 

 

5.5 Discussion 

Natural vision produced substantial modifications in the functional connectivity (FC) 

observed at rest, resulting in a new BOLD network structure that was roughly as modular as the 

resting structure. During natural vision, RSNs were split into components that re-combined with 

components from other RSNs to form new communities, or remained intact but merged with 

other RSNs to form larger communities. As discussed below, the formation of these communities 

was consistent with the cognitive demands imposed by natural vision. Interestingly, these 

groupings did not necessarily respect the large-scale internal/external distinction that governs 

resting state structure, indicating a fundamental change from the resting structure. All of the 

above results were supported by both hierarchical clustering and graph-based analyses and 

indicate that the BOLD network structure evoked by natural vision was only partly constrained 

by the resting structure. 

 

5.5.1 BOLD network organization during natural vision and rest 

 Movie viewing changed the network structure observed during rest to produce new 

functional groupings in line with the demands of natural vision. The visual network merged with 

the network for navigation, scene perception and scene memory, along with parcels from the 

FPN to form a community adaptive for analyzing the visual content of the movie. The dorsal 

attention network was split into two parts that may have reflected the multi-modal/multi-

dimensional nature of the movie. Parcels from the DAN and VAN, along with some from the 

salience and cingulo-parietal networks, were combined into a single community that was 

adjacent to the visual/scene community described above. This larger DAN/VAN/VIS/Scene 
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grouping may have been involved in controlling attention to the display. The remaining DAN 

parcels were integrated with dorsal somato-motor parcels into a community adjacent to another 

community that included large contributions from the auditory network. The resulting 

DAN/SMd/AUD grouping may have been involved in attention to/interpretation of action and 

perhaps attention to sound and dialog. Although these assignments of function are speculative, 

the reorganization of the dorsal attention network into two separate communities/clusters was 

evident both in the Louvain community analyses and in the cluster analysis. Finally, internally- 

and externally-directed processes interacted more strongly during natural vision than rest. The 

Davies-Bouldin index for resting FC showed a minimum at two clusters, and the composition of 

those clusters matched the internal/external distinction. In contrast, the smallest local minimum 

value of the Davies-Bouldin index for natural vision occurred at seven clusters, and the largest 

cluster found combined parcels from several internal and external networks. Similarly, Louvain 

communities combined CON parcels with those from the auditory network and dorsal somato-

motor network.  

 The observed changes in BOLD network structure were consistent with prior 

observations of differences in functional connectivity during resting and task states. Spadone et 

al reported increased functional connectivity between visual and dorsal attention regions during 

an attention-shifting paradigm (Spadone et al. 2015). Betti et al. reported with fMRI and MEG a 

decrease in the correlation within networks of alpha/beta band limited power (BLP, especially 

visual and auditory), and an increase in the correlation between networks (e.g. visual and 

language networks) of theta, beta, and gamma BLP (Betti et al. 2013). Both Spadone et al. and 

Betti et al reported that the overall topographies of FC during rest and natural vision were very 

similar, as did a subsequent fMRI paper by Cole et al. (2014), but their methodologies did not 
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remove the effects of intrinsic activity during movie viewing (see below, relation to previous 

studies). 

 

5.5.2 Implications for the function of resting state activity 

 The introduction noted two different conceptions of the relationship between intrinsic and 

task-evoked activity, i.e. a task state is selected from a broad repertoire of resting states or is 

independently generated from a default resting state through unknown mechanisms. The new 

BOLD network organization observed during natural vision seems more consistent with the latter 

viewpoint, a conclusion similar to that of Betti et al. (Betti et al. 2013). Our results indicate that 

resting state organization does not fully constrain the large-scale functional connectivity of brain 

areas that is adaptive for natural vision. More generally, we suggest that the brain can change its 

network structure to meet the demands of a task even if that structure departs substantially from 

the resting structure. The view that network structure can change to meet the current task demand 

is in line with previous views (Miller and Cohen 2001; Heinzle et al 2012). 

 

5.5.3 Sources of the residual shared structure between rest and task 

 Although the spatial correlation between rest and movie, r = 0.60, was smaller than the 

rest-task correlations previously reported, it was nonetheless significant.  This result is, 

consistent with recent studies indicating that task activation can be predicted from resting FC 

(Cole et al. 2016; Tavor et al. 2016). Importantly, since the ISFC procedure completely removed 

the effects of intrinsic activity from the FC matrix, the shared FC topography did not reflect a 

common source of signals, i.e. intrinsic activity, but instead represented a correspondence 

between the resting network structure and the evoked structure observed during natural vision. A 
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focus on this residual correspondence may allow a better understanding of how resting-state FC 

constrains task-evoked signals and FC. 

 This correspondence may have resulted from several factors. First, a common structural 

connectivity matrix promotes rest-task correspondence (Vincent et al. 2006; Greicius et al. 2009; 

Hasson et al. 2009; Honey et al. 2009). Barttfeld et al studied the variability of FC whole brain 

patterns in different behavioral conditions (awake, drowsy, anesthesia) in monkeys (Barttfeld et 

al. 2015). They reported that the variability of FC patterns increased with arousal/wakefulness, 

and that FC patterns under anesthesia were closely related to the structural connectivity 

organization. The latter, structurally-driven component of FC should be common to task and rest. 

 In addition, experience driven by natural vision may include some modal or highly 

frequent FC patterns that through repetition and Hebbian mechanisms become part of the tonic, 

resting FC structure. Consistent with this idea several studies have reported modifications of 

resting FC patterns after learning (Albert et al. 2009; Lewis et al. 2009; Tambini et al. 2010; 

Harmelech and Malach 2013).  Recent work has also suggested long-term, experience-dependent 

influences on FC in visual cortex. FC between different visual areas is increased in ROIs that 

have overlapping receptive fields (Heinzle et al. 2011; Raemaekers et al. 2014; Wilf et al. 2017) 

or represent similar eccentricities (Arcaro et al. 2015).  Wilf et al. (2017) additionally reported 

that the FC of visual cortex from movie viewing, after removal of intrinsic activity, was more 

similar to resting FC than the FC from iso-eccentricity stimulation, iso-polar stimulation, or 

predictions based on retinotopic, polar angle or eccentricity distance. Therefore, a component of 

the residual shared structure between rest and natural vision likely reflects frequently 

experienced patterns of inter-regional, evoked activity. Conversely, the FC in visual cortex 
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evoked by stimulation can differ from resting FC, with larger differences for non-naturalistic 

stimulation. 

 Finally, FC on average is greater between nearby brain regions both during task and rest, 

an effect that largely reflects stronger structural and functional interactions between neighboring 

regions, but may also partly result from method-related factors such as smoothing. 

 

5.5.4 Relation to previous studies 

 The conclusion that natural vision produced large changes in the resting network 

structure does not conflict with the previous results of Cole et al. who reported very similar FC 

matrices for resting and task conditions, since the latter authors did not remove the effects of 

intrinsic activity from their task FC matrices (Cole et al. 2014). Interestingly, Cole et al. also 

reported that regressing the mean task activity from the BOLD timeseries only slightly increased 

the correlation of rest and task FC matrices from 0.86 to 0.90 (results taken from the HCP 

‘seven-task’ dataset, n=118). The large effect of removing intrinsic activity on the movie FC 

matrix, coupled with the much smaller effect of removing mean task activity on the task FC 

matrix (Cole et al. 2014), suggests that intrinsic fluctuations are larger in magnitude than 

task/movie-evoked fluctuations. On this view, the resting FC matrix matched the non-regressed 

task FC matrix in Cole et al. and the movie FC matrix (m-FC) in the present study because 

during the task/movie the sum of the intrinsic modulations and the (very different) task/movie-

evoked modulations was dominated by the same intrinsic modulations that were present at rest. 

 The same factor, in conjunction with the insensitivity of correlation to overall changes in 

magnitude, explains why the inter-subject averaging and ISFC procedures produced very similar 

movie FC matrices but very different resting FC matrices. Inter-subject averaging of intrinsic 
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fluctuations greatly reduced their magnitude. As a result, the sum of these signals with the 

movie-evoked signals was dominated by the latter, producing similar m-avg and m-ISFC 

matrices. However, during rest the intrinsic signals were not summed with signals from a 

different source. Therefore, smaller amplitude intrinsic signals were sufficient to produce the 

same FC matrix as the resting matrix measured without inter-subject averaging.  Larger 

amplitudes of intrinsic than movie-evoked activity might partly reflect the fact that the power of 

the local field potential is on average greater and more synchronized at rest than during tasks 

(Pfurtscheller and Lopes Da Silva 1999; Betti et al. 2013). 

 

5.5.5 Group FC vs. subject-specific FC 

 The ISFC procedure (Simony et al. 2016) is a powerful technique for eliminating the 

influence of intrinsic activity on the FC measured during a task. It produces stable estimates of 

functional connectivity, uncontaminated by intrinsic activity, over a wide range of sample sizes. 

In contrast, the temporal averaging procedure requires a large sample size to achieve a similar 

result.  It is important to note, however, that the ISFC procedure as well as temporal averaging 

also eliminates task-evoked FC that is specific to an individual rather than common across a 

group. 

 Wilf et al. (Wilf et al. 2017) have reported a procedure that eliminates the effects of 

intrinsic signals on FC while retaining both group and subject-specific, movie-evoked FC. Their 

subjects viewed the same movie twice, allowing within-subject FC to be computed from the 

correlation between the two viewings (see Henrikksen et al. for a related approach in which 

representational dissimilarity matrices were computed within vs. across trials, and Hasson et al. 

for earlier work on inter-subject synchronization during movie viewing). However, this 
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procedure only preserved group and individual FC patterns that were invariant over repeated 

viewings, which could skew the observed FC. For example, on a second viewing, subjects likely 

could better predict the spatio-temporal content of the movie. 

 

5.5.6 Limitations 

 Because eye-movements are not controlled in the natural vision paradigm each subject 

may have received different retinal inputs during the movie, depending on their fixation patterns.  

As noted above, subject-specific FC was not assessed by the ISFC technique. However, the free-

viewing paradigm has been used in many previous fMRI studies of natural vision (Hasson et al. 

2004; Bartels and Zeki 2005; Golland et al. 2007; Huth et al. 2012; Mantini et al. 2012; Betti et 

al. 2013; Stansbury et al. 2013) and has consistently shown strong inter-subject correlations in 

visual cortex as well as many other brain regions (Hasson et al. 2004, 2010). Responses in visual 

cortex are sufficiently consistent that a reverse inference procedure can be conducted in which 

the brain response in a region such as the fusiform gyrus during individual frames of the movie 

can be used to predict the regions’ selectivity (Hasson et al. 2004). In the current paper, the m-

ISFC matrix showed high correlations between visual regions. Therefore, movie-viewing evokes 

a consistent BOLD response across many brain regions, despite the fact that eye movements are 

not controlled. In this paper, we studied the network organization over the entire brain of these 

consistent responses. 

 Because the present work was based on the BOLD signal, our conclusions only apply to 

low-frequency activity. Although the relationship between FC networks during task and rest has 

been measured at higher frequencies (Betti et al. 2015), intrinsic signals were not removed from 

task FC. 
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 m-ISFC reflects an unknown mixture of inter-regional interactions and independent co-

activations. Although Cole et al. (2014) removed the mean BOLD activation from task 

timeseries through regression, an analogous procedure was not possible here since the movie did 

not involve repeated ‘trials’, i.e. each time segment of the movie was different.  

 The ISFC procedure eliminates interactions between task-evoked signals and intrinsic 

signals, treating these signals as additive.  Some prior studies reporting high task-rest similarity 

used procedures that also likely minimized or attenuated interaction effects, suggesting that these 

effects do not explain the reduction of task-rest similarity when intrinsic activity is removed. The 

high correspondence reported by Smith et al. (2009), for example, was not caused by 

interactions, since time-locked activations have no consistent phase relationship with intrinsic 

activity. Cole et al. (2014) compared the similarity of group-averaged task-evoked FC matrices 

with group-averaged resting FC matrices rather than calculating task-rest similarity in 

individuals.  Group-averaging would have minimized interaction effects that differed across 

subjects. Moreover, the effects of interactions on the similarity of task-evoked and resting FC 

may depend on the detailed nature and consistency of the interactions across regions, and 

therefore may be difficult to predict.  However, we acknowledge that interactions between task-

evoked signals and intrinsic activity may well affect task-rest similarity and consequently the 

degree to which reductions are observed when intrinsic activity is removed.  

 The reduction in movie-rest similarity after the effects of intrinsic activity were removed 

was highly robust and consistent across individual movies. One question, however, is whether 

similar reductions will be found for other kinds of tasks. The seven tasks from the Human 

Connectome dataset tested by Cole et al. (2014), Emotional, Gambling, Language, Motor, 

Relational, Social, and N-back, showed correlation coefficients between rest and task FC 
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matrices that were very similar to those between rest and m-FC matrices (i.e. matrices in which 

the effects of intrinsic activity were not removed), with only modest variation across the seven 

tasks (μ = 0.83 σ = 0.037).  However, despite the similarity of rest-task correspondences across 

movies and tasks when intrinsic activity was left in, it is still possible that the magnitude of 

reductions in similarity when intrinsic activity is removed will differ for some tasks.  

 Finally, although the relationship between resting and task-evoked activity has usually 

been conceptualized in terms of the correspondence between resting and task networks defined 

by inter-regional correlations or between resting networks and patterns of task co-activation, it 

also can be conceptualized in terms of the similarity of the information carried by patterns of 

neural activity during task and rest (Fiser et al. 2010). Numerous studies have shown that 

multivoxel patterns of local activity during tasks carry information about specific stimuli, classes 

of stimuli, or even task operations (Haxby et al. 2001; Kamitani and Tong 2005; Haynes and 

Rees 2006; Kriegeskorte et al. 2008; Connolly et al. 2012; Guntupalli et al. 2016), and can be 

modulated by learning and attention. The current study, however, did not test whether intrinsic 

activity influences or constrains the information carried by task-evoked activity since activity 

was averaged over a parcel and was not analyzed using multi-voxel techniques. 

 

5.6 Mathematical derivation of intrinsic and extrinsic 

activity effect in various FC computations 

 It has been known that each individual has variations in its resting state functional 

connectivity structures while the population-level of resting state functional connectivity is rather 

stable. To understand the increasing spatial correlation between rs-FC and rs-avgFC with the 
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increasing sample size, we revisited how the rs-FC and rs-avgFC was computed mathematically. 

The below derivations had same or modified notations to Simony et al. 2016 (Simony et al. 

2016).  

 

5.6.1 Derivation of rs-FC  

Based on the given individual FC variations and stable group-level FC, the individual 

BOLD signal (denoted Y) of a region can be decomposed as below: 

BOLD of region A [YA] = Population-wise correlated intrinsic BOLD [I1A] + subject-

specific correlated intrinsic BOLD [I2A] + Noise signal [NA] 

So that, subject-wise functional connectivity of two regions (A and B) of subject X would be 

[YA, Yb] = [I1A, I1B] + [I2A, I2B] + [NA, NB] 

The population/group-level rs-FC of two regions (A and B) with sample size n was computed as  

rs-FC [YA, Yb] = tanh( /n)) 

 ≈ /n    *** Let’s simplify the computation by ignoring fisher-z 

transformation 

≈ /n + /n + /n 

  i1                          i2    i3 

*** Let’s simplify the computation by linearly expending the correlation 

coefficient terms. 

a) Since the  is originated from population-wise correlated intrinsic BOLD signals,  

/n ==  regardless the size of n 

b) Since  is originated from subject-specific correlated intrinsic BOLD signals, 
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 → 0, as n increases. 

c) Since  is originated from noise signals, 

 → 0, as n increases. 

d) Therefore, when rs-FC is computed with enough sample subjects, the rs-FC can be expressed 

as 

rs-FC [YA, Yb] ≈ /n  

 

5.6.2 Derivation of rs-avg FC  

By using the same notation as above, 

BOLD of region A [YA] = Population-wise correlated intrinsic BOLD [I1A] + subject-

specific correlated intrinsic BOLD [I2A] + Noise signal [NA] 

The rs-avgFC of two regions (A and B) with sample size n was computed as 

rs-avgFC [YA, Yb] = ] 

≈ ] + ] + ] 

 i4                           i5    i6 

Since I1 is population-wise correlated intrinsic BOLD, the correlation coefficients of its mean 

signal will be constant across varying size of n. On the other hand, I2 and N is subject-specific 

signal; therefore, the correlation coefficients of its mean signal will be converged into 0 as n 

increases.  

Therefore, above mathematical derivations in 5.6.1 and 5.6.2 explain how increasing sample size 

helps both rs-FC and rs-avgFC converging into ‘true’ population-wise correlation coefficients. 

The increasing spatial correlation between rs-FC and rs-avgFC in terms of increasing sample 
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subject number is effectively due to both FCs becomes close to i1 and i4 terms only. It is 

important to note that the above computations were highly simplified inducing discrepancies to 

the real computation outputs. For example, the spatial correlation between rs-FC and rs-avgFC in 

Figure 5.4.a was converged around 0.94 indicating both rs-FC and rs-avgFC cannot be simplified 

by i3 and i4 terms only  

 

5.6.3 Derivation of m-FC  

The movie BOLD can be decomposed as population-wise shared movie BOLD, subject-specific 

movie BOLD, population-wise correlated intrinsic BOLD, subject-specific correlated intrinsic 

BOLD, and Noise.  

The individual movie BOLD signal (denoted Y) of a region can be decomposed as below: 

BOLD of region A [YA] = Population-wise shared movie BOLD [M1] + subject-specific 

movie BOLD [M2] + Population-wise correlated intrinsic BOLD [I1] + subject-specific 

correlated intrinsic BOLD [I2] + Noise [N] 

The m-FC of two regions (A and B) with sample size n was computed as 

m-FC [YA, Yb] = tanh( /n)) 

    ≈ /n    *** Let’s simplify the computation by ignoring  

          fisher-z transformation 

   ≈ /n + /n + 

    /n + /n + /n 

a) Since M2, I2, and N is subject-specific terms, 

/ n + /n + /n → 0, as n 

increases. 
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b) Since the  is originated from population-wise correlated intrinsic BOLD signals,  

/n ==  regardless the size of n 

c) Since M1is population-wise shared movie BOLD,  

/n ==  regardless the size of n 

Therefore, m-FC could be effectively expressed as, 

m-FC [YA, Yb] ≈ /n + /n 

         ≈ +  

The population-wise shared movie BOLD accounts less than 50% of BOLD variances for 

individual movie BOLD (data not shown). This indicates that the mean of individual FC maps 

(m-FC) is rather a structural expression of resting state functional connectivity than an 

expression of movie functional connectivity. 

 

5.6.4 Derivation of m-avg FC  

The m-avgFC of two regions (A and B) with sample size n was computed as 

m-avgFC [YA, Yb] = ] 

≈ ] + ] + ]  

      + ] + ]  

a) Since the M1 is population-wise shared movie BOLD,  

, and ] = , at large size of n 

b) Since the M1 is subject-specific movie BOLD, 

 → 0, as n increases. 
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c) Since I2 is subject-specific correlated intrinsic BOLD signals and N is noise, 

 → 0, as n increases. 

d) The computation of correlation of I1, population-wise correlated intrinsic BOLD, is where 

relative amount of variance from movie vs. ongoing fluctuation becomes significant. The 

population-wise shared movie BOLD [M1] was acquired by averaging 35 subjects’ movie 

BOLD timeseries (equivalent to the number of subjects used in m-ISFC). The ongoing 

fluctuations is acquired by subtracting the population-wise shared movie BOLD [M1] from the 

averaged individual movie BOLD time series of n subjects. The ongoing fluctuations of region 

A, therefore, were equivalent to  

YOngoing Fluctuation, A =   +   +   +    

The amounts of variance from population-wise shared movie BOLD were measured by n = 1 

(single subject), 5, 10, 20, and 30. The amount of variance from population-wise shared movie 

BOLD were less than 50% across all networks (data not shown). By increasing the number of 

subjects, the amount of variance from population-wise shared movie BOLD was increased near 

to 100%. This is the expected results since the population-wise shared movie BOLD was the 

simple average of BOLD timeseries across 35 subjects.  

In above demonstrations of spatial similarity between rs-FC and rs-avgFC, it was shown that 

correlation from I1 was preserved across different number of subjects. This was possible since 

the relative variances of [I1], [I2], and [N] were preserved while averaging resting state BOLD 

time series across subjects. The relative variances among [M1], [M2], [I1], [I2], [N] were 

changed significantly while averaging across subjects, and the correlation coefficients term of I1 

would be present but small as number of subject increases.  
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 → ϵ (small but present), as n increases. 

Therefore, the m-avgFC with many subjects could be effectively described as  

m-avgFC [YA, Yb] = ] 

≈ ] +   

≈  + ϵ 

 

5.6.5 Derivation of m-ISFC  

By using the same notation as above, 

m-ISFC [YA, Yb] = ] 

≈ ] + ] + ]  

   + ] + ] 

  , while X = 1st sampled group and XX = 2nd sampled group of n subjects. 

Since M2, I1, I2, and N are subject-specific terms which doesn’t share its time series across 

subjects,   

]     

     + ] + ] → 0, as n increases. 

Since M1is population-wise shared movie BOLD,  

, and 

] =  =  with large size of n 
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Therefore, m-ISFC effectively isolates correlation coefficients of population-wise shared movie 

BOLD only. 
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Chapter 6: Concluding Remarks 

 Studies of spontaneous activity with fMRI have revealed that the topography of temporal 

covariance structures across brain regions, so called resting state networks (RSN), are similar to 

the topography of various cognitive and behavioral task-evoked fMRI responses (Raichle et al. 

2001; Greicius et al. 2003; Fox et al. 2005; Nir et al. 2006; Smith et al. 2009; Power et al. 2011; 

Mennes et al. 2013). A large-scale whole brain comparison of resting state FC and task-evoked 

FC with 64 tasks across multiple cognitive and behavioral domains showed a very high overall 

topographic similarity (ρ = 0.90) (Cole et al. 2014). In addition to the strong spatial similarity, 

several studies have shown that resting FC can be changed by learning, i.e. by repeating specific 

task patterns, in various domains (motor, visual, memory, and neuro-feedback) (Albert et al. 

2009; Lewis et al. 2009; Tambini et al. 2010; Harmelech and Malach 2013).  

 The above observations have led to the idea that spontaneous brain activity is not 

random, but represent a set of activity sub-states that represent specific task activity patterns 

convolved over time. A related idea is that intrinsic activity is shaped by task activity in the 

course of development and in the adult life by individual experiences through a Hebbian learning 

process. Conversely, task-evoked activity is influenced and constrained by intrinsic activity. The 

aim of the current thesis was to reveal correspondences between intrinsic activity and task-

evoked activity in order to test the hypothesis that spontaneous activity plays a role in coding 

information states, so called representational hypothesis. We measured in human visual cortex 

the blood oxygen level dependent (BOLD) signal with fMRI to analyze the multivoxel activity 

patterns and FC structures of intrinsic activity, and compared them to those evoked by natural 

and synthetic visual stimuli. 
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 The current work was largely inspired by three experimental strategies from the 

literature: 

a) The successful history of multi-variate pattern experiments measuring task-evoked 

activity pattern (Haxby et al. 2001 and 2006; Cox and Savoy 2003; Kriegeskorte et al. 

2007 and 2008), and their spatiotemporal correlation structure (Coutanche and 

Thompson-Schill, 2013; Anzellotti et al. 2017 and 2018; Chen et al. 2018) to infer 

what information is coded in different regions of cortex.  

b) The comparisons of intrinsic activity and task-evoked patterns in visual cortex in 

anesthetized animals (Tsodyks et al. 1999; Kenet et al. 2003; Omer et al. 2018). 

c) The paradigm of natural vision (movie watching) that induces strong inter-subject 

correlation of activity time courses (Hasson et al. 2004; Bartels and Zeki 2005; 

Golland et al. 2008; Mantini et al. 2012; Betti et al. 2013) in a distributed semantic 

space (Huth et al. 2012; Stansbury et al. 2013), and that has been shown to be 

represented in FC patterns (Wilf et al. 2017; Strappini et al. 2018). 

By adapting the above strategies, we developed a multivariate-pattern analysis (MVPA) 

approach to evaluate spatial patterns of intrinsic and task-evoked activity in Chapter 2-4. Then, 

in Chapter 5, we used a more naturalistic movie-watching paradigm to compare whole-brain FC 

network structure at rest and during natural vision. 

  

 In Chapter 2 and 4, to investigate task-to-rest correspondences, we developed a measure 

of correlation variability (the U90 value) that measures the spread of correlation coefficient 

distributions between task-evoked and resting-state activity patterns. Using natural categorical 

visual object stimuli, we showed in Chapter 2 that the spread of correlation coefficients (positive, 
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negative) was significantly greater in functionally specialized human visual extra-striate regions 

for the preferred stimulus categories, or categories whose evoked activity induced similar 

patterns of activation, as compared to low level control stimuli. In addition, we found that the 

similarity between task and rest patterns linearly varied across subjects with the strength of 

selective task activation. In other words, stronger face selective responses corresponded to more 

frequent face-like matches in the resting state. Conversely, in early visual cortex, which is more 

responsive to low level features, spontaneous activity patterns represented more commonly phase 

and position scrambled control stimuli as compared to whole objects. 

 We interpret these findings by proposing that the spatial pattern of resting activity in a 

distributed set of regions varies over frames along an axis that is best aligned with the spatial 

pattern of the regions’ preferred stimulus tuning.  This is consistent with the hypothesis that 

resting multivoxel patterns of activity within a brain region code for relevant stimulus features.  

 The same experimental design was adapted in Chapter 4 to linguistic, pseudo-linguistic, 

and phase-scrambled control stimuli. Linguistic stimuli, as compared to natural stimuli, are 

entirely dependent on training, and cannot rely on built-in genetically determined mechanisms, 

or early development experiences. The results confirmed the results on natural stimuli as the U90 

values for linguistic stimuli at rest were higher both in visual regions (word form area) and 

temporal/frontal language areas, as compared to scrambled stimuli. However, we did not find a 

selective language effects suggesting that resting activity in these regions is more tuned to high 

contrast high frequency line like stimuli. Also, we did not observe a significant correlation with 

task evoked responses. This may be due to the fact that the representation of visual words is 

acquired relatively late, and is supposed to be ‘recycled’ from other representations. It is 

therefore possible that the emergence of a visual word pattern does require a more indirect 
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mapping with intrinsic activity. Another explanation that a template for words cannot be very 

specific as a word to be read must be inspected with attention, hence the modulation of task 

evoked activity may be critical for linguistic differences to emerge in activity. 

 Overall, the combined findings in Chapter 2 and Chapter 4 supports the idea of a closed 

loop relationship between intrinsic activity and task-evoked activity. These results are the first 

demonstration of a correlation between multi-variate rest and task-evoked activity patterns in 

human visual cortex (see Omer et al. 2019 for a similar study in monkey cortex). 

 It is noteworthy that the experimental design is simple and universal enough to be applied 

to other cognitive-behavioral task across different domains (e.g. auditory sensory task, memory 

task, and motor-task). Also, the experimental design can be adopted to other recording modalities, 

such as ECoG or high-density EEG, for data with higher spatiotemporal resolution.  

 In Chapter 3, we generated pattern-based FC based on inter-regional temporal correlation 

computed from multivoxel similarity timeseries for body-, scene-, and preferred-templates. The 

pattern-based FC showed a high degree of similarity to regular resting state FC (ρ=0.78). This 

indicates that activity patterns in the functionally related regions of cortex fluctuated coherently. 

It was also shown that body and the scene representations fluctuate independently in different 

regions. The idea of sub-state of resting-state FC as replaying subset information states coding 

for different stimuli or task patterns is novel and was confirmed. The use of pattern-based FC 

might inform studies of resting-state organization by fractionating existing resting-state networks, 

and identifying the functional factors associated with that fractionation. Dynamic functional 

connectivity methods (Hutchison et al. 2013) and graph theory associated analysis methods (see 

a review of Sporns and Betzel, 2016) can also be adapted into the pattern-based FC analysis for a 
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better understanding in temporal developments and modular brain organizations of resting-state 

FC in terms of the specific task-representations. 

 In Chapter 5, to overcome the limitation of static visual stimuli, we used movie-watching, 

and compared whole-brain FC network structure during movie-watching vs. resting-state. We 

examined the BOLD network structure of natural vision using procedures that minimized the 

contribution of spontaneous activity, and found that the correlation between resting and movie-

evoked FC (ρ = 0.60) was lower than previously reported (up to ρ = 0.90). Also, natural vision 

induces a modular network re-organization as shown by hierarchical clustering and graph-based 

analyses. Overall, we demonstrated that the whole-brain FC structure evoked by movie-watching 

is partly constrained by the resting network structure. The current work of task-rest 

correspondences during natural vision is limited to static FC spatial similarity measures. More 

dynamic analyses will be possible, especially if integrated with dynamic semantic analyses as in 

(Huth et al. 2012; Stansbury et al. 2013).  

 The relationship between spontaneous and task-evoked brain activity is an increasingly 

important topic in neuroscience. Throughout the analyses and results discussed in this 

dissertation, we provided evidences of a closed cycle relationship between intrinsic activity and 

task-evoked activity across regions in human brain, and a representational role for intrinsic 

patterns. Intrinsic activity, in contrast to the traditional notion of being just random noise, 

appears to encode meaningful information in time. Future studies will focus on understanding the 

dimensionality and dynamics of these sub-states in different cognitive and behavioral task 

domains.  
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