
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-15-2019

Toward Controllable and Robust Surface Reconstruction from Toward Controllable and Robust Surface Reconstruction from

Spatial Curves Spatial Curves

Zhiyang Huang
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Huang, Zhiyang, "Toward Controllable and Robust Surface Reconstruction from Spatial Curves" (2019).
McKelvey School of Engineering Theses & Dissertations. 448.
https://openscholarship.wustl.edu/eng_etds/448

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Feng_etds%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/448?utm_source=openscholarship.wustl.edu%2Feng_etds%2F448&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST.LOUIS

School of Engineering & Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Tao Ju, Chair
Nathan Carr

Ayan Chakrabarti
Ulugbek Kamilov
Caitlin Kelleher

Toward Controllable and Robust Surface Reconstruction from Spatial Curves
by

Zhiyang Huang

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2019
St. Louis, Missouri

© 2019, Zhiyang Huang

Table of Contents

List of Figures... v

List of Tables .. x

Acknowledgments.. xi

Abstract ... xiv

Chapter 1: Introduction.. 1

1.1 Reconstruction from cross-sections.. 3

1.2 Reconstruction from wire-frames .. 5

1.3 Overview... 6

Chapter 2: Topology-controlled Reconstruction of Multi-labelled Domains
from Cross-sections... 8

2.1 Introduction... 8

2.2 Related works .. 12

2.2.1 Modeling multi-labeled domains ... 12

2.2.2 Topology-aware modeling of two-labeled domains........................... 12

2.3 Interface sets.. 14

2.3.1 Definition and properties .. 15

2.3.2 Discrete topological variations.. 17

2.4 Reconstruction algorithm.. 25

2.4.1 Enumeration .. 27

2.4.2 Selection.. 29

2.5 User interaction .. 31

2.6 Results ... 32

2.6.1 Performance ... 35

2.7 Conclusion and discussion ... 36

ii

2.7.1 Limitations .. 36

Chapter 3: Repairing Inconsistent Curve Networks on Non-parallel Cross-
sections .. 38

3.1 Introduction... 38

3.2 Relate work ... 41

3.3 Problem formulation .. 42

3.3.1 Implicit representation ... 43

3.3.2 Deformation energy ... 47

3.3.3 Optimization formulation.. 48

3.4 Optimization.. 51

3.4.1 Initial labels ... 52

3.4.2 Updating labels .. 54

3.5 Experimental results .. 58

3.6 Conclusion and discussion ... 68

Chapter 4: Variational Implicit Point Set Surfaces 69

4.1 Introduction... 69

4.2 Related Works.. 73

4.2.1 Surface reconstruction from points .. 73

4.2.2 Normal estimation ... 76

4.3 Definition .. 77

4.3.1 A general definition ... 78

4.3.2 Duchon’s energy.. 80

4.3.3 Definition using Duchon’s energy .. 82

4.4 Implementation .. 85

4.4.1 Initializing the optimization... 86

4.4.2 Complexity analysis ... 89

4.5 Experiments .. 90

4.5.1 Results.. 90

4.5.2 Comparisons .. 94

4.5.3 Performance ... 100

iii

4.5.4 Application: sketch surfacing ... 103

4.6 Conclusion and limitations .. 104

Chapter 5: Conclusion and future work... 106

5.1 Future work ... 108

5.1.1 Analytical formulation of critical offsets 108

5.1.2 Finer level topological control .. 108

5.1.3 Incremental framework for speeding up VIPSS 109

5.1.4 VIPSS for deforming points ... 111

5.1.5 Topologically-controlled VIPSS .. 111

5.1.6 Learning-based method for surfacing ... 112

References .. 113

Appendix A: Properties of VIPSS .. [133]

A.1 Exact interpolation.. [133]

A.2 Linear reproduction ... [134]

A.3 Commutativity with similarity transformations [134]

iv

List of Figures

Figure 1.1: Examples of surface reconstruction from cross-sectional curves (top)
and wire-frames (bottom): (a) reconstruction of an atrium from cross-
sections in 2-labeled domain, (b) reconstruction of a chicken heart from
cross-sections in multi-labeled domain (the right one is a cut-away
view), (c) reconstruction of a hand from free-sketch, (d) three step of
reconstructing a hand from clean wire-frames. 2

Figure 1.2: Example of topology description of shapes with respect to number of
connected components and genus. .. 5

Figure 2.1: Given several multi-labeled planes depicting the anatomical regions
of a mouse brain (a), reconstruction without topology control (b1)
leads to redundant handles for the red and yellow labels (black arrows
in c1, d1) and disconnection for the green label (e1). Our method
(b2) allows the user to prescribe the topology such that the red label
has one tunnel (gray arrow in c2), the yellow label has no tunnels
(d2), and the green label is connected (e2). The legends in (b1,b2)
report, for each label in the reconstruction, the genus of each surface
component bounding that label (e.g., “0,0” means two surfaces each
with genus 0). User-specified constraints are colored red. 9

Figure 2.2: Comparing the topology-oblivious multi-labeled method of Bermano
et al. [18] and Liu et al. [94] (b), the topology-constrained two-
labeled method of Zou et al. [166] (c), and our topology-constrained
multi-labeled method (d) on two cross-sections with three labels (a).
Cutaway views are shown in inserts. Legends report the per-component
genus for each label (red numbers are constrained). 14

Figure 2.3: Interface sets in 2D: (a) The input vector function ~f = {f1, f2, f3},
visualized as three height maps. (b,c,d): Three different choices of
offsets ~c = {c1, c2, c3} (top), superimposed height maps fi+ci (middle),
and the labeling (as color) and interface sets (as black curves) in the
2D domain (bottom). .. 18

v

Figure 2.4: (a) A topological change of interface sets in PL interpolation can
take place in arbitrary locations: lowering the offset of the yellow
label causes the yellow region to disappear inside the triangle. (b): A
topological change in our PC interpolation is restricted to the dual of
the input complex. The offseted functions are shown at the top and
the interface sets are shown at the bottom. 20

Figure 2.5: Topology analysis of 3-labeled interface sets. (a) A complex C where
each vertex is colored by the associated 3-vector. (b) The piecewise
constant vector function shown as one height map for each label. (c)
The active complex in the 3D offset space consisting of one triple
half-plane (“triblade”) for each vertex of C. (d) A cutaway of the
offset space (by the gray plane in (c)) showing the active complex
(colored lines) and the critical complex (black lines). (e) Example
interface sets in different pockets (see pocket labeling in (d)). 21

Figure 2.6: Reconstruction algorithm: starting from the plane arrangement (a,
showing 3 cells divided by the two cross-section planes), our algorithm
first enumerates and scores topologies of interface sets within each cell
(b, interface sets in each cell are ordered by decreasing scores), then
one topology is selected per cell to achieve the topological constraints
while maximizing the total score (c, showing solutions under two sets
of constraints marked in red; letters by the cutaway views at the
bottom are choices of cell topologies). .. 31

Figure 2.7: User interactions: a 4-labeled input (a) and reconstructions without
topological constraints (b), with genus-0 constraint on the red label
(c), after the user picks a different topology in one of the cells (d), and
after the user adds scribbles in that cell (e). All reconstructions are
shown in cutaway views as their exterior shapes are similar to that in
(b). .. 33

Figure 2.8: The Liver data set (a) and reconstructions without topological con-
straints (b), with some (c) and more (d) constraints, and after applying
scribbles (e). Cutaway views are shown in the inserts, and the legends
report the per-component genus for each label (constrained genus are
in red). Arrows point to topological issues, where the solution does
not meet users expectation. See detailed explanations in Section 2.5.. 34

Figure 2.9: The chicken heart data set (a) and reconstruction with topological
constraints on 5 labels (b, cutaway view in c). (d) compares the
reconstruction of orange (top) and light-green (bottom) labels without
and with topological constraints. The surfaces in (d2,d3,d5,d6) are
colored by labels of adjacent sub-domains to reveal the intertwining
of labels. ... 35

vi

Figure 3.1: Curve networks on two intersecting planes (p1,p2) with inconsistent
(left) and consistent (right) labeling. The pictures at the bottom show
the labeling on each plane as well as the labeling from the other plane
on the intersection line (l). ... 40

Figure 3.2: Vector function ~f = {f1, f2, f3} defined as signed distance functions
over a three-labelled 1D domain. Note that the difference function
f2 − f3 (magenta dotted graph) is a distance-like function locally at
the interface between labels 2 and 3.. 44

Figure 3.3: Overview of our algorithm. Each input slice (a) is first triangulated
(b), and a vector function is computed per slice to reproduce the
input labels (c). Then functions on all slices are optimized together to
enforce label consistency while minimizing deformations (d). Finally,
the output curve networks are extracted as the interface sets of the
optimized functions (e). ... 45

Figure 3.4: Optimization process on the input in Figure 3.1 (left, plane p2),
showing the labeling on the plane (as red, blue, gray colors) and
interface set (green curves) in the input (a), after initializing the labels
on the intersection lines (b) (see Section 4.1), and after the first (c)
and final (d) iterations of label updates (see Section 4.2). Interface
sets in previous steps are shown in white curves in subsequent steps
in (b,c,d) for comparison, and locations where vertices change labels
are indicated by arrows. ... 57

Figure 3.5: Results of our method (on input in Figure 3.1 left, showing plane p2)
for different values of λ in Equation 3.2. The labeling is shown as
colored regions, and the input curve network is shown as gray curves
for reference... 59

Figure 3.6: The result (top-right) of repairing an inconsistent two-labelled Atrium
data set (top-left, several inconsistencies are highlighted), and surfaces
reconstructed from these two sets of slices using [18] (bottom; observe
the artifacts in bottom-left). ... 63

Figure 3.7: The result (right) of repairing a two-labelled ferret brain data set
that is highly inconsistent (left, one inconsistency is highlighted). The
bottom pictures show the labeling on one of the planes (p) as well as
labelling from other planes on intersection lines. 64

Figure 3.8: The result (right) of repairing a 4-labelled liver data set (left, two
inconsistencies are highlighted), showing the labeling on two planes
(p1,p2) at the bottom. ... 65

vii

Figure 3.9: The result (right) of repairing another 4-labelled liver data set (left,
two inconsistencies are highlighted), showing labelling on two planes
(p1,p2) at the bottom. ... 66

Figure 3.10: Result (bottom) of repairing an inconsistent 7-labelled mouse brain
set (top), showing the labeling on three planes (p1,p2,p3) and labeling
on other planes along the intersection lines. A few inconsistencies are
highlighted in black boxes... 67

Figure 4.1: Given sparse, non-uniform, noisy and un-oriented points (b) sampled
from a set of unstructured 3D curves (a), our variational definition
(VIPSS with λ = 0.003) simultaneously produces oriented normals (c)
and a smooth approximating surface (d). The input is challenging for
state-of-the-art normal estimation methods such as [154], which fails
around sparsely sampled thin features (the flippers) (e). Incorrect
normals lead to poor reconstructions using existing implicit methods
such as Screened Poisson [86] (f, fitting weight α = 0.5). 71

Figure 4.2: Examples of Duchon’s interpolants fs,g that interpolate scattered
points in 1D (top, red dots) and 2D (bottom, red circles) for different
choices of the Hermite data {s,g}. In (a), si = 0 and gi is a constant
vector at each point. In (b,c,d), {s,g} are obtained by our variational
formulation (4.9) with λ = 0, 0.1, 1.0 respectively. The zero-level set
in (b,c,d) (black curves) is the VIPSS at the respective λ. 82

Figure 4.3: Initial vectors generated using the spectral method with λ = 0 (a)
contains vectors with very small magnitudes and flipped orientations
(see insert, vectors shown with 20x scaling), which leads to a high-
energy result after optimization (b). Initial vectors generated with
λ = 0.01 (c) and 0.1 (e) are more uniform, and they lead to the same
low-energy result (d,f) after optimization with λ = 0. 87

Figure 4.4: Top row: sampling a torus surface with decreasing density (a,b,c,d
with 500, 200, 50, 25 points respectively), varying sampling density (e),
missing samples (f,g), and along 1-dimensional curves (h,i). Middle
row: optimized vectors g visualized as oriented disks (green/blue:
front/back side). Bottom row: the VIPSS (λ = 0) colored by distance
from the original torus surface (blue/red: small/large distance). 91

Figure 4.5: VIPSS (λ = 0) for samples from Max Planck at different densities. ... 92

Figure 4.6: Samples from Hand, Vertebra, Kitten (left, each containing 500 points),
optimized vectors g (middle), and VIPSS (right, λ = 0). 93

viii

Figure 4.7: Samples from wireframes Trebol, Dog, Phone (left, containing 500,
1000, 1000 points), optimized vectors g (middle), and VIPSS (right,
λ = 0). ... 95

Figure 4.8: (a): Two sampling of the Kitten (500 points each) at low (top, 1%)
and high (bottom, 5%) noise rate. (b,c): VIPSS with λ = 0.001 and
0.01. ... 96

Figure 4.9: Comparing direction estimation on samples from a 3D wireframe using
PCA [72] and VCM [100] with different parameters. Each un-oriented
direction is shown by a yellow tangent disk and a line segment. 98

Figure 4.10: Comparing normal estimation from a 800-point sample from the Bath-
tub (cross-section shown in top-right) using VIPSS (λ = 0), variational
method of [154], and PCPNet [67] (on a 3000-point sampling). The
surfaces for these methods are generated using Hermite RBF interpo-
lation (i.e., zero-level set of fs,g where s = 0 and g are the estimated
normals). .. 99

Figure 4.11: Comparing Hermite RBF (Duchon’s interpolant) (b) with Screened
Poisson [86] (c,d) and APSS [66] (e,f) at different parameters on the
same oriented input with 1000 points (a). Orientations in (a) are
computed by our method with λ = 0. ... 101

Figure 4.12: Comparing VIPSS (λ = 0) with methods that do not require oriented
inputs: the Voronoi-based variational method of [5], the ball-pivoting
method [19], the tight cocone [49], and the power crust [7]. 102

Figure 4.13: VIPSS (λ = 0) vectors (b) and surface (c) for samples from an
unstructured sketch (a). The inserts take a closer look between the
index and ring fingers (the line segments in the insert of (b) indicate
−g). .. 104

Figure 5.1: Given a stack of 5-labeled slices (a) (only blue and green labels touch
on each slice), reconstruction with genus-0 constraint on each label
produces multiple patches of interface between the blue and green
labels (c), whereas a further modification of the algorithm results in a
contiguous interface (d) satisfying the same topology constraints. In
(c,d) we only show the surfaces of the blue label colored by its adjacent
labels, and junction curves and points are shown as grey wires and red
balls. The exterior surface of the reconstruction in (d) is shown in (b). 110

ix

List of Tables

Table 2.1: Running time of the two stages of our algorithm on the mouse brain
(Fig 2.1), liver (Fig 2.8), and chicken heart (Fig 2.9). Also showing the
number of constrained labels, number of tetrahedra, and maximum
number of per-cell topologies. .. 36

Table 3.1: Data size and running time for the examples in Figures 3.6, 3.7, 3.8, 3.9, 3.10,
showing the number of planes, number of labels, total number of
vertices in the triangulations, number of vertices in the reduced inter-
section set I, λ value, and timing (in seconds) for each of the three
stages of our method. (’-’ indicates the solver fails to return within 2
hours) ... 61

Table 3.2: Comparing our optimization method and the MIP solver in Gurobi on
a subset of k planes in the ferret brain data, in terms of minimal energy
and time (in seconds). Column 5, 6, 7 show the time on reduced set,
and column 8, 9, 10 show the time on original set on intersection lines. 62

Table 4.1: Running time (in seconds) of each step for Figure 4.5 recorded on a
MacBook Pro with 2.5GHz Intel Core i7 CPU and 16 GB memory
(implementation done in C++). Timing for Optimization step is
written as initialization time (using the offset method of Section 4.4.1)
+ NLOPT time. Surfacing uses a 1003 grid. 102

x

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor Prof. Tao Ju

for his guidance and support during the past five years. He is an amazing professor, showing

me the beauty of computer science, as well as providing invaluable instruction and feedbacks

for my research. None of the work in the dissertation would have been accomplished without

him. His enthusiasm and rigorousness for research lighten me through the road of my Ph.D.

career. I will always cherish my time as his student.

I would like to thank Nathan Carr, our amazing collaborator from Adobe. Nathan always

brings us invaluable insights. He is patient and kind, and it is both enjoyable and beneficial to

work with Nathan. I would like to also thank my other committee members Ayan Chakrabarti,

Ulugbek Kamilov and Caitlin Kelleher for their thoughtful suggestion in my proposal and

dissertation.

I would like to thank my lab-mates Ming Zou, Michelle Holloway, Hand Dou, Yajie Yan, Chen

Liu, Hang Yan and Dan Zeng for the companionship on pursuing the Ph.D. degree. They are

the best comrades and thought challengers. I will always value our time on collaborating

projects and brainstorming ideas.

I would like to thank all my dear friends, for sharing all the wonderful stories and happiness

in this journey.

xi

I would like to thank my family. Their uncoditional love and support make me feel fearless

toward every challenge in my life.

Zhiyang Huang

Washington University in Saint Louis

May 2019

xii

Dedicated to my parents.

xiii

ABSTRACT OF THE DISSERTATION

Toward Controllable and Robust Surface Reconstruction from Spatial Curves

by

Zhiyang Huang

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2019

Professor Tao Ju

Reconstructing surface from a set of spatial curves is a fundamental problem in computer

graphics and computational geometry. It often arises in many applications across various

disciplines, such as industrial prototyping, artistic design and biomedical imaging. While

the problem has been widely studied for years, challenges remain for handling different

type of curve inputs while satisfying various constraints. We study studied three related

computational tasks in this thesis. First, we propose an algorithm for reconstructing multi-

labeled material interfaces from cross-sectional curves that allows for explicit topology control.

Second, we addressed the consistency restoration, a critical but overlooked problem in applying

algorithms of surface reconstruction to real-world cross-sections data. Lastly, we propose the

Variational Implicit Point Set Surface which allows us to robustly handle noisy, sparse and

non-uniform inputs, such as samples from spatial curves.

xiv

Chapter 1

Introduction

Modeling a shape from its partial or non-uniform sampling is a common problem in many

scientific and engineering fields. An example problem is to reconstruct an interpolating

surface from spatial curves describing the shape. This task often arises in biomedical research,

where a 3D representation (e.g., a surface) of the target anatomical structure needs to be

reconstructed from its planar cross-sectional curves obtained from 3D volume imaging by

MRI or CT. Another important application of this problem is computer-aided industrial

prototyping and design, where engineers and artists typically start by defining a wire-frame of

the desired model, which is then turned into a surface representation for simulation, rendering,

and manufacturing. Examples of surface reconstruction from curves are shown in Figure 1.1.

A reconstructed surface has to meet certain correctness criteria. Commonly, the surface should

interpolate the curves, and should be geometrically valid (i.e., free of holes and intersections),

so it properly defines the boundary of the shape described by those curves. However, the

inherent sparsity and non-uniformness of curves pose a great challenge to the reconstruction

algorithm, mainly in two aspects. The first one is the ambiguity of the shape conveyed by

1

Figure 1.1: Examples of surface reconstruction from cross-sectional curves (top) and wire-
frames (bottom): (a) reconstruction of an atrium from cross-sections in 2-labeled domain,
(b) reconstruction of a chicken heart from cross-sections in multi-labeled domain (the right
one is a cut-away view), (c) reconstruction of a hand from free-sketch, (d) three step of
reconstructing a hand from clean wire-frames.

the curve representation. Compared to the high-quality point cloud where sampling are

usually spread over the shape uniformly, in curve representation, the sampling of the shape

is concentrated upon a few curve segments and the majority of space is left empty. This

leads to ambiguity in interpreting the empty regions, and thus the global shape. The second

challenge arises from the possible noise of curves in practices. While the set of curves could

be incomplete, disjoint and inaccurately-placed, it is difficulty to design geometry algorithms

for handling all unexpected irregularities. The computer graphics community has studied

this task for years with numerous algorithms being developed. An effective way for leveraging

the ambiguity is looking for additional data/prior, for instance, the utilization of the 3D

volume from MRI, or other domain knowledge about the shape such as topology. Such prior

2

is usually transformed into constraints on the output surface. How to incorporate those

prior with the reconstruction algorithm, or in other words, how to enforce the constraints on

the output surface, is an interesting problem being actively researched. On the other side,

although important, little progress has been made to tackle the noise of the curves which is

commonly seen in practice. Existing methods mostly require ”clean” inputs which satisfy

various assumption, and simply fail on ”dirty” data (See Sec 1.1, 1.2).

As mentioned above, there are two common types of input curves that are drawing people’s

attention: cross-sectional curves of anatomical shapes and design-created wire-frames. We

first briefly review the two bodies of works.

1.1 Reconstruction from cross-sections

Cross-section inputs often arise in biomedicine, where experts delineate boundaries of anatom-

ical regions on 2D slices of a 3D medical image (e.g., MRI, CT). Cross-section inputs can

also be found in other disciplines, such as material science (e.g., sectioned micrographs)

and geology (e.g., seismic images). Cross-sections can be parallel or non-parallel, and the

cross-section curves can partition each plane into regions of two (e.g., inside and outside) or

more (e.g., bone, muscle, fat, etc.) labels (See Fig 1.1 (a) (b)). Take the chicken heart in Fig

1.1 (b) as an example, cross-section curves (left) partition each plane into regions of 7 labels

indicated by different color, representing muscles or regions of different functionalities (e.g.,

yellow represents atrial).

Since the 70’s, extensive research has been conducted on reconstructing surfaces from

cross-sectional curves. Earlier methods focused on handling parallel cross-sections that are

partitioned by closed curve loops into inside and outside regions [87, 62, 26, 13, 111, 146, 12, 14].

The key idea in these methods is to divide the space (or more practically, a bounding box)

3

by the cross-sectional planes into “cells” and build surface pieces within each cell. When all

planes are parallel, all cells have a uniform and simple shape (a slab) that is bounded by two

planes. If the planes are arbitrarily oriented, each cell may be a general convex polytope

bounded by an arbitrary number of planes, which makes the surfacing task more challenging.

Over the past decade, research on cross-section-based reconstruction has focused on handling

non-parallel inputs. A number of methodologies have emerged including Delaunay meshing

[28], projecting curves onto a medial structure [94, 15], solving implicit functions [18, 70,

166, 77], and template fitting [71]. Some of these algorithms are capable of handling even

more general inputs such as multi-labeled cross-sections [94, 15, 18], partial planes [15], and

unknown regions [18].

While all the above algorithms can generate geometrically valid surfaces that interpolate the

curves, few can ensure that the output has a correct topology. Topology is an intrinsic property

of a shape that is invariant under continuous deformations. For a 2-label domain, the topology

of can be measured by the number of components and the number of handles or genus for

each component (See Fig 1.2). Most anatomical structures have a fixed and known topology,

and obtaining a topologically correct surface (i.e., a surface with the prescribed number of

connected components and genus)is particularly important for downstream tasks such as

shape matching and mechanical or fluid simulation. The only topology-aware reconstruction

method from cross-sections that we are aware of is by Zou et al. [166], which is designed for

the 2-labeled domain.

A common assumption of all existing reconstruction methods, when applied to non-parallel

cross-sections, is that two intersecting cross-sections should be consistent along the intersection

line (e.g., a point on the intersection line should have the same label on both cross-sections).

However, this assumption often fails in practice, because curves on one cross-section are often

4

Figure 1.2: Example of topology description of shapes with respect to number of connected
components and genus.

drawn manually and independently from curves on other cross-sections. Given an inconsistent

set of cross-sections, existing reconstruction methods would either fail to produce any surface,

or produce surfaces with notable artifacts around the inconsistencies in the input.

1.2 Reconstruction from wire-frames

Descriptive wire-frames are often used in computer-aided design. Several computer-based

tools exist [158, 21] that allow experts and artists to create wire-frames that effectively

describe a 3D shape.

Surfacing such wire-frames is often known as lofting or skinning, which is a fundamental

problem in computer-aided design. Existing methods follow a two-step strategy (See Fig 1.1

(d)), first identifying cycles in the wire-frames which bound individual surface patches, and

secondly forming patches in each cycle and clue them to form a complete surface. There are

numbers of methods [1, 165, 2] for locating curve cycles and several others [113, 1, 158] for

surfacing individual patches.

The two-step strategy only works for ”clean” inputs that are made up of complete curve

segments meeting at well-identified joints (i.e., a spatial graph). While such networks can be

5

created using the aforementioned tools, the creation process is often tedious (e.g., the user

has to explicitly connect the curves at joints). With the advance of AR/VR devices, more

intuitive drawing interfaces have been developed that permit a free-hand drawing experience

(e.g., the Tilt Brush by Google). However, the output of these tools typically consists of

incomplete curve fragments without connectivity information (e.g., Fig 1.1 (c) left). Hence

the existing two-step strategy cannot be used for surfacing such wire-frames.

1.3 Overview

In this thesis, we developed algorithms for reconstructing surfaces from spatial curves that

can control/guarantee certain properties on the output side (Chapter 2), as well as explored

ways to make the algorithm robust against noisy and irregular inputs (Chapter 3, 4).

In Chapter 2 we focus on reconstructing surfaces from cross-sectional curves with topological

constraints. In this work, we extend Zou’s [166] method to multi-labeled domain. Given a

set of cross-sections, each partitioned into regions of multiple labels by a curve network, our

algorithm produces an interpolating surface network such that the surface bounding each

label satisfies a prescribed topology such as numbers of components and genus simultaneously

(see Figure 1.2). The key contribution is we extend the well-known level-set to interface-set,

which allow us to explore a variety of topology variance in the multi-labeled domain rather

than the 2-labeled domain. This work has been published in [77].

In Chapter 3, we address a critical but overlooked problem of handling real-world cross-section

curves that are often inconsistent with each other by developing a novel algorithm that can

restore consistency to any set of cross-sections in multi-labeled domain while minimizing the

change to the curve shape. We formulate the problem into a disjunctive programming and

propose an effective solution for the optimization. This work has been published in [75].

6

In Chapter 4, instead of fixing the curves, we explore another direction for handling noise

and irregularity by proposing a new method for directly reconstructing an implicit surface

from an un-oriented point set. Our method only involves a single parameter, is easy to be

implemented without discretizing the space, and most importantly, is robust to sampling

imperfection such as sparse and non-uniform inputs. We credit such nice properties to our

key contribution which is the global variational definition of the implicit surface.

7

Chapter 2

Topology-controlled Reconstruction of

Multi-labelled Domains from

Cross-sections

2.1 Introduction

Computational modeling of multi-labeled domains arises in many disciplines, such as

biomedicine (e.g., organs made up of multiple anatomical regions) and mechanical engi-

neering (e.g., machine pieces made up of blocks of different materials). Such domains are

often represented by the non-manifold network of surfaces that partition the domain into

labeled sub-domains. This network, known as the material interface, is widely used in

applications including geometric processing, physical simulations, and manufacturing.

To be useful for applications, a material interface has to meet certain correctness criteria.

Most importantly, the material interface should be geometrically valid (i.e., free of holes and

8

Figure 2.1: Given several multi-labeled planes depicting the anatomical regions of a mouse
brain (a), reconstruction without topology control (b1) leads to redundant handles for the
red and yellow labels (black arrows in c1, d1) and disconnection for the green label (e1). Our
method (b2) allows the user to prescribe the topology such that the red label has one tunnel
(gray arrow in c2), the yellow label has no tunnels (d2), and the green label is connected
(e2). The legends in (b1,b2) report, for each label in the reconstruction, the genus of each
surface component bounding that label (e.g., “0,0” means two surfaces each with genus 0).
User-specified constraints are colored red.

intersections), so that it defines a proper partitioning of the domain into disjoint sub-domains.

Furthermore, some applications are also sensitive to the topology of the surface. For example,

fluid simulation within one or more sub-domains can be adversely affected if the surfaces

bounding these sub-domains fail to have an expected number of connected components

or genus. Extraneous components or genus can also be detrimental for many geometric

processing tasks, such as mesh simplification and surface parameterization.

Topology control has been extensively studied in the context of modeling two-labeled domains,

where the material interfaces are closed manifold surfaces. However, to date, no such control

has been seen in modeling domains containing three or more labels in the absence of a

template. Ensuring correct topology in a multi-labeled context is arguably more challenging,

because the topology of different labels are intertwined: modifying the topology of one label

may affect the topology of several other labels. The intertwining makes it difficult even for

9

humans to manually fix topological errors on a complex material interface without introducing

geometric errors (e.g., the mouse brain in Figure 2.1 (b1-e1)).

In this paper, we present a novel algorithm for enforcing topological constraints when recon-

structing multi-labeled material interfaces. Our algorithm is designed for inputs consisting

of cross-sections of the subject. Such inputs often arise in biomedicine, where experts delin-

eate boundaries of anatomical regions on 2D slices of a 3D medical image (e.g., MRI, CT).

Cross-sectional inputs can also be found in other disciplines, such as material science (e.g.,

sectioned micrographs) and geology (e.g., seismic images). To model a multi-labeled domain,

each cross-section contains a curve network that partitions the plane into labeled regions.

Our method gives the user the option to specify the desired topology, in terms of number of

connected components and genus, for any subset of the labels. The output is a geometrically

valid material interface that interpolates the curve networks while meeting the topological

requirements (Figure 2.1 (b2-e2)).

Our key contribution is a novel definition, called interface sets, that gives rise to not one, but

a space of topology-varying material interfaces. Our definition mimics the level sets, which

is a family of closed manifold surfaces defined by a scalar function and parameterized by

a scalar value. Similarly, the interface sets are non-manifold surface networks defined by

a vector function and parameterized by a vector value. We analyze the topological events

in the multi-variate space of interface sets, which are much more complex than those in

the univariate family of level sets, and propose a simple and effective method for sampling

distinct topologies of interface sets.

Using the interface sets, we extend the recently introduced topology-controlled algorithm of

Zou et al. [166] from two-labeled domains to multiple labels. Our algorithm proceeds in two

stages. First, within each cell bounded by the cross-section planes, we define a suitable vector

10

function and enumerate interface sets with different topologies. Each topology is also given a

score that measures its likelihood. Next, we perform combinatorial optimization to select

one topology per cell so that the overall reconstruction satisfies the user-given topological

constraints while the total score is maximized.

In addition to specifying components and genus, the user can steer the method in interactive

ways. The user may browse and select from the list of topologies computed by our method

for each cell. If a desired topology does not exist in our computed list, we offer a sketching

interface whereby the user can easily create new topologies. These user inputs guide the

algorithm towards a more satisfactory reconstruction. We demonstrated our algorithm and

tool on both simple synthetic inputs and non-trivial biological data sets (e.g., Figures 2.1,

2.8, 2.9).

Contributions To the best of knowledge, our method is the first for material interface

reconstruction that offers topology control without the use of any templates. Our main

contributions are:

1. Defining a multi-variate space of material interfaces, analyzing its topological structure

in the discrete setting, and developing a topology sampling method (Section 2.3).

2. Extending the topology-controlled reconstruction algorithm of Zou et al. [166] from

two to multiple labels (Section 2.4).

3. Developing interactive tools for refining the surface topology (Section 2.5).

While our method is designed for cross-sectional inputs, we believe some of our contributions

(particularly the method of interface sets) can benefit topology-aware modeling from other

input types, such as point clouds or labeled medical images.

11

2.2 Related works

We briefly review the three bodies of work that are closed to ours, namely modeling multi-

labeled domains, topology control in modeling two-labeled domains. And please refer to Sec

1.1 for a review of reconstruction from cross-sections.

2.2.1 Modeling multi-labeled domains

Typical representations of multi-labeled domains include (regional or global) implicit functions

[163, 97, 164, 88, 60, 160, 103, 125] and volume fractions [31, 3, 10, 9]. While implicit function

representations are often based on level sets, current works typically utilize a single level as

the underlying function evolves (e.g., during a simulation), which creates a univariate family

of domains. We are not aware of any work that explores a multi-variate space of material

interfaces.

Many reconstruction methods are capable of creating geometrically valid material interfaces.

The majority of these methods are based on iso-contouring [81, 20, 53, 162, 10, 69, 60, 123, 160],

a few perform mesh surgeries [35, 46], and others further address the quality of elements (e.g.,

triangles and tetrahedra) using Delaunay meshing [118, 30, 51, 38, 59] or particle diffusion

[101]. However, none of these methods offers explicit control over the topology. While

topological errors can be avoided by fitting or evolving a template shape with the correct

topology [151], these methods are limited to the availability of templates.

2.2.2 Topology-aware modeling of two-labeled domains

Numerous methods have been developed to fix topological errors on a closed manifold surface

(see survey [11]). The vast majority of these methods are concerned with the removal of

12

redundant topological handles, while some also address connected components [108, 83].

Another class of methods directly reconstruct a topologically correct model from raw inputs,

such as a point cloud [133, 134, 159], a collection of cross-section curves [166], or a grayscale

volume [16, 161]. These methods are guided by prescribed genus [166, 133], interactive inputs

[134, 159], or an existing template [16, 161].

It is non-trivial to obtain outputs with desirable topology in multi-labeled domain, and a

naive application or extension of existing method might fail to generate a satisfactory result.

For the simple input shown in Figure 2.2 (a), which consists of two parallel planes annotated

with three labels (red, blue, outside), applying the method of Liu et al. [94] results in two

components of the red label (Figure 2.2 (b), see cutaway). This would be an undesirable result

if the user wishes to create a single component of the red label that tunnels through the blue

label. A naive way to extend Zou’s method to handle multiple labels is by reconstructing each

label independently with the desired topology and combining the reconstructed surfaces. This

is exemplified in Figure 2.2 (c), where red and blue labels are reconstructed by Zou’s method

respectively with genus 0 and 1. However, as seen in the cutaway view, the combination of

two reconstructions results in jarring conflicts and intersections. In contrast, our extension of

Zou’s work creates a geometrically valid material interface with the desired genus for both

labels (Figure 2.2 (d)).

13

Figure 2.2: Comparing the topology-oblivious multi-labeled method of Bermano et al. [18]
and Liu et al. [94] (b), the topology-constrained two-labeled method of Zou et al. [166]
(c), and our topology-constrained multi-labeled method (d) on two cross-sections with three
labels (a). Cutaway views are shown in inserts. Legends report the per-component genus for
each label (red numbers are constrained).

2.3 Interface sets

Level sets have played fundamental roles in existing methods [133, 134, 166] to provide

topology control in modeling two-labeled domains. These methods take advantage of several

unique features of level sets. First, given a scalar function, any level set is guaranteed to

be geometrically valid (i.e., a closed manifold). Second, the collection of all level sets is

parameterized along a single “level” axis and can be easily explored. Third, the level sets

have a rich topological variety, and extensive studies are available on the topological evolution

of the level set with the level [102, 58].

14

To enable topology control in the context of multi-labeled modeling, we introduce a space of

material interfaces that possesses similar features as level sets. Given a vector function, we

define a space of interface sets such that each interface set is a geometrically valid material

interface. The space is parameterized by a vector value (as opposed to a scalar level in level

sets) and can be systematically explored. Lastly, this space reduces to the family of level

sets in the special case of two labels, and it contains a even richer variety of non-manifold

topologies in the case of three or more labels.

We start by defining interface sets and discussing their properties in the continuous setting

(Section 3.1). Building upon classical works on level set topology, we then characterize the

topological variations of interface sets in a discrete setting (Section 3.2). Finally, we propose a

simple and effective scheme for sampling the large variety of interface set topologies (Section

3.3). In the next section, the sampling scheme will be utilized in our reconstruction algorithm

to produce candidate local topologies from cross-sectional inputs.

2.3.1 Definition and properties

Our definition builds on an existing implicit definition of material interfaces, which has

been used by various researchers [97, 60, 160]. In this definition, a n-labeled domain is

represented by a vector-valued function ~f(~x) = {f1(~x), f2(~x), . . . , fn(~x)}, where ~x is a point

in d-dimensional space and each fi is a continuous scalar function. Intuitively, fi(~x) describes

the “prominence” of the i-th label at ~x. Each point is then assigned the most prominent

label(s), that is,

Labels(~x) = arg max
i=1,...,n

fi(~x). (2.1)

15

The material interface consists of all points whose label assignment is not unique (i.e., two

or more labels share the greatest prominence). This material interface is guaranteed to be

geometrically valid, as it divides the space into regions with unique labels.

To be able to define not just one, but a parameterized set of material interfaces, we introduce

an offset vector ~c = {c1, . . . , cn} to the definition described above. This offset vector plays the

role of the “level” in defining the level sets in a scalar function. More precisely, ~c is added to

the vector function ~f before evaluating the labels. That is, the labeling is now parameterized

by ~c as

Labels(~c, ~x) = arg max
i=1,...,n

(fi(~x) + ci). (2.2)

The interface set at offset ~c consists of all points ~x whose label assignment is not unique, that

is, |Labels(~c, ~x)| 6= 1.

We can visualize interface sets in d = 2 dimensions intuitively as superimposed terrain maps

(Figure 2.3). Imagine that each fi is the height map of a 3D terrain over the 2-dimensional

domain, and that each terrain has a unique color (Figure 2.3 (a)). Given an offset vector ~c,

we shift each i-th terrain vertically by the amount ci and superimpose the shifted terrains

(Figure 2.3 (b,c,d) middle). The labeling function Labels(~c, ~x) is precisely the picture of the

superimposed terrains taken from above, and the interface set is where two or more terrains

meet in this picture (Figure 2.3 (b,c,d) bottom).

It is easy to see that every interface set is a geometrically valid material interface, since it

divides the domain into regions carrying unique labels (i.e., Labels(~c, ~x)). In particular, the

interface set at the zero offset ~c = 0 is the material interface defined in the first paragraph

and used in previous works.

16

We can also show that interface sets reduce to level sets in the case of n = 2 labels. In this

case, any level set of a scalar function can be reproduced by some interface set of a vector

function, and vice versa. Specifically, the level set of a scalar function f at any level c is

identical to the interface set of the vector-valued function ~f(~x) = {f(~x), 0} at offset ~c = {0, c}.

Conversely, the interface set of a vector-valued function ~f(~x) = {f1(~x), f2(~x)} at any offset

~c = {c1, c2} is the same as the level set of the scalar function f(~x) = f1(~x)− f2(~x) at level

c = c2 − c1.

Note that an interface set is different from the intersection of n level sets, each defined by a

scalar function fi and a level ci, as studied in multivariate topological data analysis [57, 40].

The interface set is generally a (d − 1)-dimensional complex, regardless of the number of

labels n, since it partitions the d-dimensional space into labelled regions. In contrast, the

intersection of n level sets has a dimensionality of d − n, which is lower than that of the

interface set and decreases as the number of labels increases. In the case of n = 2 labels in

d = 3 dimensions, the intersection of level sets consists of one-dimensional curves, which are

known as fibers and have found uses in visualization of bivariate data [41, 144].

2.3.2 Discrete topological variations

Topological evolution of the level set, as the level changes, is well-understood [102, 58].

Topological changes are marked by local topological events, such as merging, splitting, and

destruction or creation of components. These events take place at well-defined locations,

known as critical points, which are identified by vanishing gradient of the scalar function.

The function values at these locations, known as critical values, divide the range of levels into

one-dimensional intervals, such that the level sets within one interval all share a common

topology.

17

(a)

(b) (c) (d)

Figure 2.3: Interface sets in 2D: (a) The input vector function ~f = {f1, f2, f3}, visualized
as three height maps. (b,c,d): Three different choices of offsets ~c = {c1, c2, c3} (top),
superimposed height maps fi + ci (middle), and the labeling (as color) and interface sets (as
black curves) in the 2D domain (bottom).

In contrast, topological evolution of the interface set, as the offset vector changes, is far more

complex. First, there is a greater variety of topological events that involve non-manifold

features of the surface (e.g., junction curves and points where more than three sheets meet).

Second, the multi-variate nature of our “level” parameter - the offset vector - creates a

complex topological landscape in the space of interface sets. Let’s consider the n-dimensional

18

space of all offset vectors, which we call the offset space. This space is made up of disjoint

n-dimensional regions (as opposed to one-dimensional intervals in the case of level sets) such

that interface sets within one region all share a common topology. We call such regions

topology pockets, or pockets in short. Topological events take place when the offset vector

moves from one pocket to an adjacent pocket in the offset space. We call the offset vectors

that lie on the boundary of pockets the critical offsets. Unlike the critical values in a scalar

function, critical offsets in a vector function form continuous, (n− 1)-dimensional complex in

the offset space, which we call the critical complex 1.

Characterizing the critical offsets is key to understanding the topological evolution of the

interface set. However, providing a complete, continuous characterization has proven to be

a non-trivial task. As our goal is to develop algorithms for practical, discrete inputs, we

perform our analysis in a discrete setting and leave the continuous characterization as a venue

for future investigation.

Discretization

We consider the discrete input as a simplicial complex C in Rd. Each vertex (i.e., 0-cell) v of

C is associated with a vector ~fv = {fv,1, . . . , fv,n}. A common way to construct a function is

by piecewise linear (PL) interpolation within each cell of C. Such interpolation is particularly

suited for analyzing level set topologies [58], since topological events of level sets are restricted

to the vertices of C. However, we have observed that the topological events of interface sets

in a PL vector function are no longer restricted to vertices of C. In fact, these events can

take place in arbitrary locations in the domain. An example is shown in Figure 2.4 (a) for
1The effective dimension of offset space is n − 1, since the interface set only depends on the relative

difference between components of the offset vector. Similarly, the critical complex is an “extrusion” of a
(n− 2)-dimensional complex (Figure 2.5(c)).

19

a 4-labeled domain in 2D; note that the yellow label disappears inside a triangle after the

offset changes.

(a) Piecewise Linear (b) Piecewise constant

Figure 2.4: (a) A topological change of interface sets in PL interpolation can take place
in arbitrary locations: lowering the offset of the yellow label causes the yellow region to
disappear inside the triangle. (b): A topological change in our PC interpolation is restricted
to the dual of the input complex. The offseted functions are shown at the top and the
interface sets are shown at the bottom.

To make the analysis of topological events simpler, we opt for a piecewise constant (PC)

interpolation. We consider the dual complex of C, noted as C∗, which consists of k-cells

that are dual to (d− k)-cells of C for k = 0, . . . , d. The vertices of C∗ lie at the barycenters

of their dual d-cells in C (although the exact locations do not affect the topology analysis).

We define the vector function ~f so that ~f(~x) = ~fv for any point ~x in the interior of a d-cell

in C∗ that is dual to a primary vertex v. Since ~f is discontinuous, we adjust the definition

of the interface sets as the union of all cells of C∗ that are faces of two d-cells of C∗ with

different labels. Examples of such interface sets are shown in Figure 2.4 (b). In contrast to

20

A

A

B

B

C

C

D

E

F

D E F(a)

(b) (c) Active complex

(offset space)

(d) Critical complex

(offset space)

(e) Interface set topologies

Figure 2.5: Topology analysis of 3-labeled interface sets. (a) A complex C where each vertex
is colored by the associated 3-vector. (b) The piecewise constant vector function shown as
one height map for each label. (c) The active complex in the 3D offset space consisting of
one triple half-plane (“triblade”) for each vertex of C. (d) A cutaway of the offset space (by
the gray plane in (c)) showing the active complex (colored lines) and the critical complex
(black lines). (e) Example interface sets in different pockets (see pocket labeling in (d)).

PL interpolation, interface sets in PC interpolation are restricted to low-dimensional cells of

C∗, which allows for simpler characterization of critical offsets (see below).

Critical offsets

In our PC interpolation, the interface set changes only when a vertex of complex C alters its

label. We call the offsets that trigger these vertex label-changing events the active offsets. An

active offset is critical if label-changing causes the topology of the interface set to change as

well. We will first characterize the active offsets and then identify the subset that is critical.

Given a vertex v and any pair of labels i, j ∈ {1, . . . , n}, there is a collection of offsets ~c at

which v may switch its label between i and j. This collection is defined by a set of equality

and inequality constraints:

{~c | fv,i + ci = fv,j + cj > fv,k + ck, ∀k 6= i, j} (2.3)

21

Geometrically, this collection forms a bounded (n − 1)-dimensional hyperplane in the n-

dimensional offset space. There are C2
n such hyperplanes for each vertex v, and they together

partition the offset space into n symmetric regions corresponding to the n possible labelling

of v. Combining the hyperplanes over all vertices forms a piecewise linear complex in the

offset space is the union of all active offsets. We call this complex the active complex.

To see this visually, take n = 3. Equation 2.3 defines a 2D half-plane in the 3D offset space.

For each vertex v, there are C2
3 = 3 such half-planes, one for each pairing of labels. The three

half-planes share a common boundary line in the direction of {1, 1, 1} passing through the

point {−fv,1,−fv,2,−fv,3}. Visually, they form a “triblade” around the line. The triblades

associated with all vertices intersect to form a honeycomb-shaped active complex (Figure 2.5

(c) and cutaway in (d)).

Since our reconstruction algorithm is concerned with the topology of individual labels, we

define a topological event in this paper as when there is a change in either the number of

connected components or genus of the surfaces that bound a particular label. To this end, we

can use the same criteria for critical points in a PL scalar function [58] to identify topological

events in any given label. Specifically, recall that the star of a cell σ in a complex consists of

all cells that contain σ as a face, and the link consists of all faces of cells in the star that are

disjoint from σ. Given a labeling of the vertices by an offset vector, we define the i-link of

vertex v as the union of cells in v’s link that contain only vertices with label i. Switching the

label of v between i and another label triggers a topological change of label i if the i-link of v

is not contractible to a single point.

As an example, we use the criteria to analyze the label-changing event in Figure 2.4 (b).

Since the label of the center vertex changes from blue to red, we focus on the blue-link and

the red-link of that vertex. The former consists of one edge (at the bottom) and a vertex (at

22

top-left), which is not contractible, while the latter consists of a single edge (at top-right),

which is contractible. Hence the blue label experiences a topological change (a splitting).

An active offset ~c satisfying Equation 2.3 is critical if either the i-link or j-link of v is not

contractible. Geometrically, the critical complex, made up of the union of all critical offsets,

forms a sub-complex of the active complex. As the active complex is piecewise linear, so is

the critical complex, which divides the offset space into polyhedral pockets. An example of

the critical complex for n = 3 labels is shown in Figure 2.5 (d) on a cross-section of the offset

space, and (e) shows topologically distinct interface sets in different pockets.

Note that the per-label topological events that we detect do not cover all possible ways

in which the topology of the interface set can change. For example, as we will show in

Section 2.7, the connectivity of the non-manifold junction curves can change without altering

the topology of any individual label. It would be interesting in the future to define other

types of topological events, which would lead to a more refined critical complex. This would

potentially allow a reconstruction algorithm to have finer control over the non-manifold

topology of the material interface.

Topology sampling

A direct way to enumerate distinct topologies of interface sets is to explicitly construct the

critical complex in the offset space. However, this can be computationally expensive. Our

calculations, confirmed by experiments, show that the active complex has a complexity of

O(V n−1) where V is the number of vertices in the input domain C and n is the number of

labels. A brute-force algorithm that first constructs the active complex and then prunes

non-critical parts would be impractical.

23

To tame the complexity, we opt for an approximate, sampling-based approach. The motivating

observation is that the more transient topologies tend to correspond to smaller pockets in the

offset space. For example, tiny pockets (D,E,F) in the offset space of Figure 2.5 (d) correspond

to topologies that contain small isolated components, as shown in (e). We therefore argue

that a regular sampling scheme in the offset space would have a greater chance of finding the

more stable topologies, because they are more likely to be captured by larger pockets.

A naive point sampling scheme is to use regular lattice points in the offset space. However,

to form a good coverage, more than a few points would be needed for each dimension of the

space, and the total number of samples can still be significant as the dimension of the offset

space (i.e., the number of labels) grows.

To reduce the sample count without sacrificing the coverage, we use 1-dimensional rays as

samples. By intersecting a ray with the critical complex, we can compute intervals along

each ray within which the interface sets share a common topology, much in the same way

as how the level set topologies are enumerated. Unlike point samples, each ray effectively

represents an infinite number of point samples (in one direction), and hence a relatively small

number of rays are needed.

As our reconstruction algorithm is mostly in-

terested in material interfaces at offsets close to

zero, we shoot rays in a radial pattern from the

origin of the offset space (see insert). Account-

ing for the one redundant dimension of the

offset space, the rays all lie in hyperplane or-

thogonal to the 1-vector {1, . . . , 1}. To create

a pseudo-uniform distribution, we form rays

24

connecting the origin with points on a regu-

lar lattice in that hyperplane centered at the

origin with (2b+ 1) points on each of its side,

where b is a user-specified small integer. This

creates up to (2b+1)n−1 rays. In our tests, we

found that b = 1 offers a reasonable sampling of topologies while keeping the overall execution

time low even for large n (e.g., 6-8).

Intersecting a ray with the critical complex can be implemented easily and executed efficiently

(i.e., in polynomial time). We start by computing the intersection between a parametric

equation of the ray and a hyperplane of the active complex defined by Equation 2.3, which

involves solving a linear equation with one variable and checking the solution against a set of

linear inequalities. The intersecting offset, if found, is further checked for criticality using the

link-based criteria described earlier, which operates in the local neighborhood of a vertex

in the input complex C. Repeating these computations for all hyperplanes and sorting the

resulting critical offsets produces the desired intervals. The total complexity of the algorithm

is O(H logH + L ∗ n ∗H) where L is the maximum number of cells in the link of a vertex

and H = V C2
n is the number of hyperplanes. For a fixed dimensionality of the input (3 in

our case), this complexity is polynomial in both the number of vertices (V) as well as in the

number of labels (n).

2.4 Reconstruction algorithm

We now describe our algorithm for reconstructing material interfaces from cross-section

inputs. The input to our method consists of a collection of possibly non-parallel planes in

3D, each partitioned into labeled regions by a network of curves. Without additional input,

25

our algorithm produces a geometrically valid material interface that interpolates the curve

networks.

The user have the option to specify the desired topology of the subject. For complex subjects

made up of many labels (e.g., Figures 2.1,2.8,2.9), the user may not have the knowledge

of the precise topology of all labels. Also, the topology of some labels may not matter in

downstream applications. To be able to handle these practical situations, we let the user

choose any (possibly empty) subset of the labels whose topology need to be constrained. For

each constrained label, the user specifies the desired number of connected surface components

that bound that label as well as the genus for each component. Note that a connected 3D

region with an interior cavity (“bubble”) counts as two separate surface components.

Our algorithm adopts the classical divide-and-conquer paradigm for cross-section-based

reconstruction. We consider the partitioning of the 3D space into convex polyhedral cells by

the input planes (known as the arrangement in computational geometry). The reconstruction

problem is reduced to creating a surface within each cell that interpolates the curves on

the boundary of the cell. What differentiates our algorithm from the majority of existing

methods is that we create not one, but a collection of surfaces within each cell that differ in

topology. These surfaces give rise to a space of topologically different overall reconstructions,

among which one that matches the user-specified topology is chosen. Our method proceeds

in two stages, which are illustrated on a simple example in Figure 2.6:

1. Enumeration: For each cell of the arrangement, compute a set of topologically

distinct material interfaces that all interpolate the curve network on the cell’s boundary.

Assign a score to each material interface that measures its likelihood. (Figure 2.6 (b),

Section 2.4.1)

26

2. Selection: Select one material interface per cell so that the overall reconstruction

matches the user-given topology constraints while the sum of the scores is maximized.

(Figure 2.6 (c), Section 2.4.2)

Our method generalizes the same two-stage framework of Zou et al. [166] from closed,

manifold surfaces to multi-labeled material interfaces. Besides using the newly developed

interface sets for topology enumeration (Section 2.3), we made several extensions in their

framework to address the challenges associated with multiple labels. In the enumeration

stage, Zou designed a scalar indicator function whose level sets interpolate the curve loops

on the cell’s boundary. We extend it to a vector function whose interface sets interpolate

the boundary curve networks. In the selection stage, Zou uses a region-growing dynamic

programming algorithm, which we extend to simultaneously track the topology of multiple

labels.

We next detail the two stages while highlighting our extensions over Zou’s work. The result

of these two stages is a topologically correct reconstruction made up of interface sets within

the arrangement cells. Since our interface sets are defined on the dual of a tetrahedral

complex, they have jagged appearances. We improve the geometry of the reconstruction in a

post-process using the method in [94] which creates a refined and fair material interface that

still interpolates the input curve networks.

2.4.1 Enumeration

We consider a polyhedral cell Ω in the arrangement whose boundary ∂Ω is partitioned by a

curve network U into regions with up to n labels. To enumerate material interfaces within

Ω, we define a vector function ~f over Ω and use the techniques developed in the previous

section to sample topologically distinct interface sets of ~f .

27

The function ~f , as well as the range of the offsets, need to be carefully chosen so that the

interface sets interpolate U . In addition, the interface sets should depict a natural extension

of U into the interior of Ω. In the special case of two labels (outside/inside), Zou et al. [166]

defines a harmonic indicator function that evaluates to 1 (resp. 0) at any point on ∂Ω that

is labeled outside (resp. inside). Harmonic function offers a natural interpolation of the

boundary values. This particular function also has the desirable property that any level set

at a level in the range (0, 1) interpolates U on ∂Ω.

Extending Zou’s scalar function to n > 2 labels, we define a vector indicator function

~f = {f1, . . . , fn} such that each fi is a harmonic function and, for any point ~x on ∂Ω,

fi(~x) = 1 if ~x has label i and fi(~x) = 0 otherwise. It is easy to verify that the interface set

of ~f interpolates the curve network U at an offset ~c = {c1, . . . , cn} where each ci lies in the

range [0, 1). Figure 2.5 (a) is an example of such a function in a triangulated 2D cell. As

seen in Figure 2.5 (e), interface sets at different offset vectors within the [0, 1) range (which

projects to the center hexagonal region in Figure 2.5 (d)) touch the cell’s boundary at the

same locations.

We compute ~f and enumerate its interface sets on a tetrahedralization of Ω. To ensure

consistence among neighboring cells, tetrahedral meshing is performed once over the entire

3D domain, constrained by the planes as well as vertices and edges of the curve networks (we

use Tetgen [137]). The harmonic functions are computed on the edge graph of the tetrahedral

mesh inside Ω, as in [166], which results in a vector ~fv associated with each vertex v. We

then invoke the ray-sampling algorithm to compute intervals of offsets within the range [0, 1).

For each interval that does not contain the zero offset, we extract the interface set at the

offset vector in the midpoint of that interval.

28

We also extend the scoring method in [166] to assess the likelihood of an interface set. The key

idea is to treat each harmonic function fi as the probability distribution of label i. Given an

offset vector ~c, which gives rise to the labeling Labels(~c, ~x) for any point ~x ∈ Ω, we consider

the joint probability of all labeled points,

h(~c) =
∑
v

w(v) log(fv,Labels(~c,v)) (2.4)

where the summation is over all interior vertices v in the tetrahedralization of Ω, and w(v)

measures the total volume of the tetrahedra incident on v.

Note that many interface sets may have the same topology. This can be caused by the same

pocket in the offset space being sampled by multiple rays or even multiple times by the same

ray. Also, different pockets may correspond to the same interface set topology. For each

distinct topology (in terms of the number of connected components and genus for each label),

we keep only the interface set with the highest score and remove the rest.

2.4.2 Selection

We first briefly review the combinatorial optimization method of Zou et al. [166]. In the

context of two-labeled modeling, their algorithm aims to find a closed surface with a user-

specified genus from enumerated topologies within each cell. The algorithm is optimal, in

that the output is guaranteed to have the highest total score among all possible combinations

of cell topologies that match the target genus. The basic idea is to grow a known volume

(KV), which is a union of a subset of the cells, while keeping track of the top-scored solution

(i.e., a choice of topology per cell) for each possible surface topology within the KV. The KV

is grown by merging with one adjacent cell at a time. Each merging computes the solutions

of the new KV from those in the old KV as well as the enumerated topologies in the merged

29

cell. When the KV is grown to the entire domain, the algorithm outputs the top-scored

solution that matches the target genus.

We present a simple extension of the algorithm to

handle multiple labels. In a nutshell, we treat the

problem of creating a n-labeled material interface as

creating n overlapping closed surfaces. We encode the

curve network as a set of overlapping closed loops,

in which each input curve segment is duplicated (see

insert). Accordingly, we encode the topology of an

interface set in a cell as the topology of a collection

of manifold surfaces whose boundaries are these loops.

Feeding this representation into Zou’s algorithm allows

simultaneous tracking of the topology of all labels as

the KV is grown.

Although optimal, the algorithm can have a high com-

plexity due to the possibly large number of topologies being tracked, which may grow

significantly with the number of labels. We adopt three strategies to curb the space of

topologies. The first two strategies follow those in [166], while the last one is unique to our

multi-labeled context. First, we remove any interface set from the enumeration stage if its

topology is deemed too complex, such as containing some surface with non-zero genus in the

cell. Second, we remove any intermediate solutions during KV growing that already have

higher genus or number of components than the given topology constraints. Third, if the

user only constrains a subset of the labels, we only keep intermediate solutions that differ in

the topology of those constrained labels. This last strategy effectively makes the complexity

of the algorithm depend only on the number of constrained labels.

30

Figure 2.6: Reconstruction algorithm: starting from the plane arrangement (a, showing 3 cells
divided by the two cross-section planes), our algorithm first enumerates and scores topologies
of interface sets within each cell (b, interface sets in each cell are ordered by decreasing
scores), then one topology is selected per cell to achieve the topological constraints while
maximizing the total score (c, showing solutions under two sets of constraints marked in red;
letters by the cutaway views at the bottom are choices of cell topologies).

2.5 User interaction

Besides specifying topological constraints, we offer two ways for a user to interact with

our algorithm and refine the solution. First, our method produces a ranked list of possible

topologies within each cell (see Section 2.4.1). The user can browse through the list and pick

any favorable topology. The user-selected topology will be treated as hard constraint during

optimization. This interaction can be useful when the algorithm creates a solution that

meets the topological constraints but exhibits undesirable local connectivity. For example,

given the input in Figure 2.7 (a), the automatic solution under genus-0 constraint for the

red label places the branching of the red label in the upper cell (c). The user decides that

the branching should take place in the lower cell, and she selects the corresponding topology

from our ranked list in that cell (d, left). Incorporating this information, our algorithm then

produces another genus-0 solution with the desired branching location (d, right).

To deal with the case that the desired topology is not found in the computed list, we developed

a sketching tool whereby the user can create arbitrarily complex topologies within a cell. As

31

shown in Figure 2.7 (e, left), the user is presented with a cutaway view of the cell on a plane

that she can manipulate, and she can scribble on that plane where a particular label should

be present. The labeled scribbles are incorporated by our algorithm to update the vector

function in that cell, by treating the scribble points as fixed label constraints (similar to

points on the cell boundary). A new set of interface set topologies are then enumerated (the

top-scored one is shown in (e, middle)) and used for optimization (e, right). Sketching can

be particularly useful when our algorithm fails to find a solution satisfying the topological

constraints, due to the limited set of topologies explored by the algorithm.

2.6 Results

We test our algorithm and tool on several non-trivial biological examples. These examples

contain a large number of labels (6 or more) that interact with each other in complex ways.

Two of the examples (mouse brain and liver) are also demonstrated in the accompanying

video.

In the mouse brain example in Figure 2.1, reconstruction without any topology constraints

leads to errors (e.g., extraneous components and tunnels) in 3 of the 7 labels (b1-e1).

Constraining the topology of these labels results in a satisfactory solution and no new

topological errors were introduced to the un-constrained labels (b2-e2).

A more complex scenario is shown on a liver example in Figure 2.8. Unconstrained reconstruc-

tion produces several obvious errors, including two extra components for the green label and

an extra tunnel for the outside label (see arrows in (b)). Based on prior knowledge, we also

know that the turquoise label should form a “shell” that wraps around the blue and purple

labels. In the unconstrained reconstruction, however, both blue and red labels are exposed to

the outside, and together they create a tunnel for the turquoise label (see the dotted line in

32

Figure 2.7: User interactions: a 4-labeled input (a) and reconstructions without topological
constraints (b), with genus-0 constraint on the red label (c), after the user picks a different
topology in one of the cells (d), and after the user adds scribbles in that cell (e). All
reconstructions are shown in cutaway views as their exterior shapes are similar to that in (b).

the insert of (b)). After running our algorithm with topology constraints on green, turquoise

and outside labels, a new error occurs for the unconstrained blue label - it breaks into two

components (see arrows in the insert of (c)). A topologically correct reconstruction is created

after adding constraints for both blue and red labels (d). Finally, we added scribbles in

two cells to create a more natural branching structure for the green label while keeping the

same topological constraints (e) (the same effect can be achieved if we select an alternative

topology in one of the cells and scribble in the other cell; see the accompanying video).

33

Figure 2.8: The Liver data set (a) and reconstructions without topological constraints (b),
with some (c) and more (d) constraints, and after applying scribbles (e). Cutaway views
are shown in the inserts, and the legends report the per-component genus for each label
(constrained genus are in red). Arrows point to topological issues, where the solution does
not meet users expectation. See detailed explanations in Section 2.5.

Lastly, we demonstrate our algorithm on a chicken heart data set made up of 13 parallel

slices containing 8 labels. As shown in Figure 2.9 (a), this input is particularly challenging as

some labels (e.g., light-green) weave through others. Without topological constraints, the

reconstruction contains numerous errors, which are all resolved after adding constraints on 5

labels. Figure 2.9 (d) examines two of these labels, showing the removal of an extra tunnel

for the orange label (d1-d3) and the connection of two components for the light-green label

(d4-d6) as a result of adding the constraints.

34

Figure 2.9: The chicken heart data set (a) and reconstruction with topological constraints on 5
labels (b, cutaway view in c). (d) compares the reconstruction of orange (top) and light-green
(bottom) labels without and with topological constraints. The surfaces in (d2,d3,d5,d6) are
colored by labels of adjacent sub-domains to reveal the intertwining of labels.

2.6.1 Performance

The performance of our method depends on many aspects of the input. Besides the number

of labels, slices and constraints, the amount of topological ambiguity (as manifested by the

number of enumerated topologies) within each cell can also significantly affect the performance.

The examples in the paper (Figures 2.1, 2.8, 2.9) exhibit a range of characteristics along

these axes, as shown in Table 2.1.

Table 2.1 reports the timings of the two stages of our algorithm on these examples. Our tool

was implemented in C++ and run on a MacBook Pro with 2.5 GHz Intel Core i7 and 16GB

RAM. The first stage, topology enumeration, is by far the most time-consuming stage. In

practice, we run this stage only once and invoke the selection stage repeatedly to optimize

for different topological constraints. The only exception is that, after a sketching interaction

is performed in one of the cells, the enumeration needs to be re-run for that cell. Timing

of the enumeration stage is in fact dominated not by ray-shooting, but by processing the

35

intervals returned by ray-shooting (e.g., extracting interface sets, computing their genus and

connected components, and scoring). Timing of the selection stage is sensitive to the number

of topologies enumerated in each cell.

#Slices #Labels #Tets. Max #Topo. Stage 1 Stage 2
(const.) per cell time time

Fig 2.1 6 7(3) 91793 8 259s 11ms
Fig 2.8 5 6(5) 69819 18 212s 83ms
Fig 2.9 13 8(5) 188401 89 2702s 56s

Table 2.1: Running time of the two stages of our algorithm on the mouse brain (Fig 2.1),
liver (Fig 2.8), and chicken heart (Fig 2.9). Also showing the number of constrained labels,
number of tetrahedra, and maximum number of per-cell topologies.

2.7 Conclusion and discussion

We introduce an algorithm for reconstructing multi-labeled material interfaces that allows the

user to explicitly prescribe the topology of individual labels. Our key contribution is defining

a novel space of material interfaces (as interface sets) that has a rich variety of topologies and

allows for systematic exploration. Combined with interactive tools, our method was shown

to be effective on non-trivial real-world data in the form of cross-sectional slices.

2.7.1 Limitations

Our method uses a number of approximating schemes to tame the complexity of topology

enumeration, including using piecewise constant interpolation and ray-sampling. As a result,

some topologies could be missed. We would like to explore the practicality of a complete

construction of the pockets in the offset space in the piecewise linear setting, perhaps limited

to a small region around the origin of the offset space (i.e., the zero offset vector). Extensions

36

of topology filtering methods [68, 63] from scalar functions to vector functions could also be

useful for removing small pockets prior to the construction, therefore improving the efficiency.

While our current work focuses on optimizing topology, the geometry of our reconstruction

can be further improved in a number of ways. As in [166], if an underlying image volume is

available, one can create a reconstruction that is aligned to intensity edges in the volume

by replacing the harmonic function in each cell with image-based random-walk probabilities.

Some other ideas include using more sophisticated scoring function of interface set topologies

that favor smoother geometry, and higher-order harmonic functions to improve the continuity

of surface across cell boundaries.

37

Chapter 3

Repairing Inconsistent Curve

Networks on Non-parallel

Cross-sections

3.1 Introduction

One of the primary applications of surface reconstruction from cross-section curves is in

interactive image segmentation, particularly for 3D volumes that arise from biomedical

imaging (e.g., MRI or CT scans). In a typical session, an expert user would delineate

boundaries of a region of interest (e.g., an organ) on selected 2D slices of the 3D volume, and

the computer would reconstruct a surface that interpolates those cross- sectional curves. Even

with the advances in automatic segmentation methods, interactive segmentation remains a

standard practice since it is difficult for existing automated methods to perform accurately

and consistently on real-world imaging data.

38

The majority of reconstruction algorithms are specialized for parallel cross-sections, in part

due to the natural choice of axial planes of 3D volumes for boundary delineation. A key

limitation of using parallel slices, however, is the restriction of the slice orientation. Allowing a

user to choose planes whose orientations are adapted to the 3D shape has the potential to lower

the number of planes needed to segment the shape, and thereby reducing human delineation

time. This hypothesis has motivated the development of several reconstruction algorithms

that are capable of handling arbitrarily oriented cross-sections [28, 94, 15, 18, 70, 166, 71, 77].

Some of these algorithms are further capable of reconstructing material interfaces given

multi-labelled slices [94, 15, 18, 77].

Despite the availability of these algorithms for surfacing non-parallel slices, a critical but

overlooked challenge in deploying these algorithms in practice is making sure that the input

slices to these algorithms are consistent. A set of slices is said to be consistent if, for any

two slices that intersect at a line l, the labelling induced by the curve networks on each

slice agrees on l (see Figure 3.1). The majority of surfacing algorithms require a consistent

input. Unfortunately, many applications that produce slices for surfacing do not guarantee

consistency among the slices. For example, in most off-the-shelf software for interactive 3D

volume segmentation, an expert delineates boundaries on each slice independently, and there

is no mechanism in the software to enforce consistency among what the expert draws on

intersecting slices.

For inputs consisting of only few slices with simple shapes (such as the one in Figure 3.1),

manual corrections may be possible to restore the consistency. However, the task can become

intractable even for modest size data sets (see Figures 3.6, 3.8, 3.10). We therefore propose an

algorithm to automatically restore consistency. Our algorithm fills the gap between real-world

data (which are often inconsistent) and existing surfacing algorithms (which typically require

consistency), hence allowing these algorithms to be more easily adopted in practice.

39

Problem statement Restoring label consistency can be stated as a constrained curve

deformation problem. We are given a set of planes, each divided by a curve network into

regions equipped with labels 1, . . . , n (n ≥ 2). We wish to deform the curve network on each

plane in a minimal way to guarantee that the labels on any pair of intersecting planes are

consistent along their intersection line (Figure 3.1).

Figure 3.1: Curve networks on two intersecting planes (p1,p2) with inconsistent (left) and
consistent (right) labeling. The pictures at the bottom show the labeling on each plane as
well as the labeling from the other plane on the intersection line (l).

Contributions We present the first algorithm for restoring consistency to non-parallel

cross-sections. Our algorithm would allow surfacing algorithm for non-parallel cross-sections

to be able to process a much wider range of inputs that are often generated by practical

applications. Technically, we make two main contributions:

1. We formulate restoration of label consistency as a constrained non-linear optimization

problem using a multi-labelled implicit representation.

40

2. We propose a novel solution strategy of this challenging optimization problem. The

solution is shown to be efficient and effective on real world data sets.

3.2 Relate work

We briefly review the work of curve deformations that is related to ours. And please refer to

Sec 1.1 for a review of reconstruction from cross-sections.

Geometric deformations Deformation of geometry, being 2D curves or 3D surfaces, is a

major research topic in computer graphics and related domains. Broadly speaking, deforma-

tion methods can be classified into explicit or implicit ones based on how the deformation

is represented. Explicit methods either deform the geometry itself, by computing displace-

ments of points on the geometry [32], or deform the embedding space around the geometry,

using some control structure such as lattices [131], cages [82], skeletons [98], and points

[126]. On the other hand, implicit methods represent the geometry as the level set of an

implicit function in 2D (for curves) or 3D (for surfaces) and indirectly deform the curve by

modifying the values of the functions [24]. Implicit representations are particularly attractive

for interactive editing due to the ease in manipulating the functions [25, 128, 129]. Other

popular ways for manipulating the functions include interpolating between given functions

(as in shape metamorphosis [78, 44, 37, 150]), associating the function with a particle system

[47], evolving the function with a user-specified speed function (as in the powerful level-sets

method [132, 145]), and interpolating functional or positional constraints using a variational

framework [148, 84, 70, 160].

Deformation methods aim at fulfilling well-defined objectives specified by the user or by the

application. Examples of such objectives are handles or sketches (as in interactive editing), a

target shape (as in shape metamorphosis or registration), or intensity features in an image

41

(as in image segmentation). We are not aware of any deformation method that is designed for

consistency objectives like those in our problem. Our method falls into the class of variational

implicit methods [148, 84, 70, 160]. Unlike existing methods that formulate deterministic

constraints as simple equalities or inequalities, our method uses additional integer variables to

encode the uncertainty of labelling along intersection lines, which results in a more challenging

optimization problem.

3.3 Problem formulation

A perhaps tempting strategy for restoring consistency is to directly deform the input curve

networks. Such strategy would find some minimum-energy displacement of the curve vertices

constrained by the requirement that, for any two slices intersecting at line l, the curve networks

on both slices should intersect with l at the same set of locations. However, formulating such

constraint is difficult, since we do not know the number or the location of these intersection

points on l. Furthermore, the topology of the curve networks remains fixed in this strategy,

which reduces the flexibility of the deformation.

We adopt a different strategy that makes it easy to formulate the consistency constraints and

also permits topological changes of the curve networks. The curve network on each plane

is implicitly represented by functions over the plane, and curve deformation is indirectly

achieved by modifying the functions. In this representation, consistency among slices can

be formulated by linear inequality constraints along the intersection lines after introducing

additional integer variables (i.e., the labels of vertices on the intersection lines). By expressing

the amount of curve deformation as an energy term on the functions, we can cast the task of

restoring consistency as a constrained mixed-integer optimization problem.

42

We first discuss the implicit representation of curve networks on each plane in Section 3.3.1.

After introducing our deformation energy using this representation in Section 3.3.2, we present

our optimization formulation in Section 3.3.3.

3.3.1 Implicit representation

Curves that partition the plane into two labels can be implicitly represented as the level

set of a scalar function. To represent a curve network that partitions the plane into n > 2

labels, we consider a commonly used implicit representation that utilizes a vector function

[97, 60, 160, 77]. We first briefly review such representation, and then discuss our choice of

the initial vector function and how it is discretized on input cross-sections.

Implicit representation To represent an n-labelled domain, we consider a vector function

~f(~x) = {f1(~x), . . . , fn(~x)} where each fi is a continuous scalar function and ~x is a point in

the domain. The value of fi(~x) can be intuitively understood as the “strength” of label i at

~x. We assign each point ~x the label that has the maximal strength,

Label(~x) = arg max
i=1,...,n

fi(~x). (3.1)

We are interested in the boundary between regions of different labels, known as the interface

set [77]. More precisely, ~x is on the interface set if Label(~x) contains more than one label.

Interface sets are natural generalizations of level sets, since the interface set for n = 2 labels

are equivalent to the level set of some scalar function [77]. For n > 2 labels, an interface

set in the 2D domain can be made up of curve segments meeting at non-manifold junctions

(where three or more labelled regions meet).

Initial vector function We seek a vector function ~f whose interface set reproduces an

input curve network. This is equivalent to asking that the labelling defined by ~f (Equation

43

0

Figure 3.2: Vector function ~f = {f1, f2, f3} defined as signed distance functions over a
three-labelled 1D domain. Note that the difference function f2 − f3 (magenta dotted graph)
is a distance-like function locally at the interface between labels 2 and 3.

3.1) coincides with the labelling of regions partitioned by the network. Our definition of ~f

is based on signed distance functions. Specifically, consider a point ~x lying inside a region

with input label i. We set fj(~x) to be positive only if j = i and negative for all other labels j.

The magnitude of fj(~x) is set as the Euclidean distance from ~x to the nearest curves that

bound regions with label j. If label j is absent from the plane, we set fj(~x) = −∞. It is easy

to see that this definition of ~f ensures that Label(~x) = i. Figure 3.2 illustrates the vector

function over a three-labelled 1D domain.

While one could define the vector function in more sophisticated ways (e.g., using higher

degree polynomials [160]), we chose signed distance functions not only due to its simplicity but

also because of the convenience it offers for formulating the deformation energy (Section 3.3.2).

A key observation is that a Euclidean distance function has a constant gradient magnitude,

hence a small change to the function values leads to a bounded spatial displacement of its

level set. Also, adding a constant function to a distance function leads to level sets with

44

Figure 3.3: Overview of our algorithm. Each input slice (a) is first triangulated (b), and a
vector function is computed per slice to reproduce the input labels (c). Then functions on
all slices are optimized together to enforce label consistency while minimizing deformations
(d). Finally, the output curve networks are extracted as the interface sets of the optimized
functions (e).

similar shapes (i.e., offset curves). As a result, the magnitude and variation of the change to a

distance function correlates with the amount of deformation of the level set. This is not true

for general smooth functions. Note that the interface set between two labels i, j coincides

with the zero-level set of their difference function, fi − fj. In our signed-distance-based

definition of ~f above, fi− fj is similar to a signed distance function (with a constant gradient

magnitude of 2) in the vicinity of the interface set between labels i and j (see Figure 3.2). As

a result, we can approximately measure the deformation of the interface set between labels

i, j by the magnitude and variation in the change to the difference function fi − fj, as we

shall elaborate in Section 3.3.2.

Discretization We use piecewise linear vector functions encoded by values on vertices of a

triangulation. A cross-section plane is discretized by a constrained Delaunay triangulation

45

where the constrained set includes edges and vertices of the curve network as well as the

intersection lines with other planes. For consistency between cross-sections, all planes that

share one intersection line l use a common set of vertices and edges on that line. This set is

created by first uniformly sampling l and then adding new vertices where l intersects with

the curve networks or with other intersection lines (e.g., where three or more planes meet

at a point). The sampling density along l is chosen to be sufficiently high to capture the

inconsistency among the planes. We then use Shewchuk’s Triangle package [136] to compute

the triangulation. Figure 3.3 (b) shows the triangulation of the two slices on the left of Figure

3.1.

After triangulation, we compute a vector ~f(v) = {f1(v), . . . , fn(v)} at each vertex v as defined

above. To obtain the region label at each vertex, and assuming that each input curve is

equipped with labels on its two sides, we use a flooding process over the triangulation to

obtain the labels of vertices that are not on the curve network. To avoid numerical difficulties,

for each vertex v on the input curve network that bounds regions with labels Φ ⊆ {1, . . . , n},

we assign v the label with the lowest index in Φ and set the magnitude ‖fi(v)‖ for all i ∈ Φ

to be a small positive constant ε. Figure 3.3 (c) visualizes, for each slice in (b), the three

scalar functions corresponding to the three labels.

Interface set reconstruction Given the initial vector functions, the core of our method

(Section 3.4) is an optimization process that modifies these functions to ensure label consistency

between slices. After optimization, we need to extract the interface set of the modified vector

function on each slice as the output curve network. To do so, we use a dual scheme akin to

that in previous works [60] but over a triangulation. We create two types of points on the

output curve network, either on triangle edges (called edge points) or inside triangle faces

(called face points). For each triangle edge between two vertices with different labels i, j, we

locate the edge point as the zero-crossing of the function fi − fj along that edge. For each

46

triangle whose vertices do not have a common label, we locate the face point as the centroid

of the edge points. Finally, to create the network, we connect each face point inside a triangle

to the edge points on the triangle’s edges. To produce smoother results while conforming

to vertex labelling, we fair the curve networks using the non-shrinking centroid-averaging

scheme of Taubin [142] while constraining each edge (resp. face) point to lie on the respective

triangle edge (resp. face). Figure 3.3 (e) shows the interface sets from the modified functions

in (d).

3.3.2 Deformation energy

While there are many ways to modify the input to achieve consistency, we are looking for a way

that best preserves both the location and shape of the curve networks. As mentioned earlier,

our implicit representation makes it possible to capture the amount of curve deformation by

the magnitude and variation in the changes to (the difference of) the implicit functions.

Consider an initial vector function ~f in any domain, and let the modified function be ~f + ~g

where ~g is another vector function. In the continuous setting, our deformation energy has

the integral form

E(~g) =

∫
λ
∑
i∈R

‖gi(~x)‖2 +
∑
i,j∈R

‖∇(gi(~x)− gj(~x))‖2d~x (3.2)

where R ∈ {1, . . . , n} is the set of labels where fi 6= −∞ for any i ∈ R. The first term inside

the integral measures the magnitude of the change to each scalar function, and the second

term measures the variation (as Dirichlet energy) of the change to the difference between

scalar functions. The two terms are balanced by a user-specified constant λ. Note that

penalizing the first term has the indirect effect of penalizing the change to the difference

47

between scalar functions, but this term additionally acts as a regularizer to prevent spurious

solutions of ~g that differ by a constant function.

For a piecewise linear vector function ~g over a triangulation of the plane, the integral energy

in Equation 3.2 can be equivalently expressed in the following matrix form

E(g) = gTMg (3.3)

where g is a flattened list of values gi(v) for all vertices v in the triangulation and labels i ∈ R.

The matrix M encodes the geometric structure of the triangulation and can be derived from

Equation 3.2 using integrals of barycentric coordinates over triangles. Specifically, let Ma,b

denote the |R|× |R| submatrix whose top-left position in M is {(a− 1)|R|+1, (b− 1)|R|+1}.

The submatrix is non-zero only if the a-th and b-th vertices share a triangle edge, in which

case it has the form

Ma,b =

λ
∑

t∈Ta
σtI|R| +

∑
c∈Va

ωa,cH|R|, if a = b

λ
2

∑
t∈Ta,b

σtI|R| − ωa,bH|R|, if a 6= b

(3.4)

where Ta, Va are the list of triangles and vertices in the 1-ring neighborhood of the a-th vertex,

Ta,b is the list of triangles containing both the a-th and b-th vertices, σt is the area of triangle

t, ωa,b is the cotangent weights [117] for the edge between the a-th and b-th vertices, Im is the

identify matrix of size m, and Hm is the Laplacian matrix of a complete graph with m nodes.

3.3.3 Optimization formulation

We wish to modify the implicit functions on all planes to achieve two goals. First, any vertex

v shared by multiple planes should have the same label on those planes. That is, on each of

those planes, the corresponding scalar function of that label should be no smaller than the

48

function of any other label at v. Second, the sum of the deformation energy (E in Equation

3.3) over all planes should be minimized. Hence we have an optimization problem with a

quadratic objective function (the second goal) and linear inequality constraints (the first

goal). Note that formulating the inequality constraints requires the knowledge of the final

label of each vertex on the intersection lines between slices. As a result, we formulate a mixed

integer problem that solves for both function values at all vertices (which are real-valued)

and labels at those vertices on intersection lines (which are integers).

We now detail the formulation, starting with some notations. Let P be the set of triangulated

planes and ~fp be the initial vector function on each plane p ∈ P . Let I be the set of all

vertices on the intersection lines between planes, and denote by Pv the planes on which v lies.

Note that we need to store at a vertex v ∈ I multiple vectors ~fp(v), one for each plane p ∈ Pv.

Since not all labels are present on every plane, we denote by Rp the set of labels present on

the plane p and Rv the set of labels present on all planes p ∈ Pv. In the example of Figure

3.3, the input planes are P = {p1, p2}, and Pv = P for any vertex v on the intersection line.

As both planes contain three labels, we have Rp1 = Rp2 = Rv = {1, 2, 3}.

We solve for the change in the vector function ~fp on each plane p, denoted by the vector

function ~gp (see Figure 3.3 (c,d)), as well as one integer label L(v) ∈ Rv at each vertex v ∈ I.

Rewriting ~gp as a flat list gp that consists of gpi (v) for each vertex v on p and each label

i ∈ Rp, the optimization objectives are:

Minimize:
∑
p∈P

gT
p Mp gp (3.5)

49

Subject to: gpL(v)(v) + fp
L(v)(v) ≥ gpi (v) + fp

i (v) + ε,

∀v ∈ I, p ∈ Pv, i ∈ Rp, i 6= L(v)

(3.6)

This formulation minimizes the sum of deformation energy over all planes (Equation 3.5)

while enforcing consistency of labelling over all vertices on the plane intersections (Equation

3.6). Here, Mp is the matrix used in Equation 3.3 over the triangulated plane p.

As the number of vertices on all planes can be large (typically thousands), solving the

optimization problem as formulated above can be prohibitively expensive. To reduce the

problem size, we make two observations. First, the linear inequalities in (3.6) only involve

function values at vertices on the intersection lines (I). Second, since the deformation energy

is quadratic, the minimal energy after fixing the values at a subset of the vertices (e.g., I)

can be expressed as a quadratic function of these values. As a result, we can re-formulate the

optimization problem to solve for both function values and labels only at vertices in I.

Specifically, let gp = {gp,U ,gp,I}, where gp,I are values at vertices on the intersection lines

between p and other planes, and gp,U are values at the remaining vertices on p. In this

ordering, the matrix Mp has the form

Mp =

∣∣∣∣∣∣∣∣
A B

BT C

∣∣∣∣∣∣∣∣ (3.7)

where A is a square matrix of size |gp,U | × |gp,U |. Let Np = C − B−1A−1B (i.e., the Schur

complement of the block A of matrix Mp), the minimal energy of (3.5) can be re-written

using only variables on I as

Minimize:
∑
p∈P

gT
p,I Np gp,I (3.8)

50

Note that, unlike the sparse matrix Mp, Np is dense. However, we have observed in our

experiments that the number of vertices on the intersections (|I|) are usually 1 to 2 orders of

magnitude fewer than the toal number of vertices, and hence using the objective of Equation

3.8 still yields a significant speed-up over the original form in Equation 3.5

To summarize, the reduced formulation solves for values ~gp(v) and labels L(v) only for vertices

v ∈ I, with the objective of (3.8) and constraints of (3.6).

3.4 Optimization

The optimization problem can be understood intuitively as searching for the minimum of a

convex energy (Equation 3.8) over a set of disjoint polytopes in the solution space. To see

this, consider a higher dimensional space G where each point g ∈ G represents the vector of

real variables over all planes, that is, g = ∪p∈P gp,I . Each set of labels L(v) for all vertices

v ∈ I yields a set of linear inequalities in (3.6), which in turn defines a convex polytope of

feasible region in G. The goal is to find a label set L such that the minimal energy within

the corresponding polytope in G is smallest among all polytopes.

A standard trick to solve such problems is to cast it as a mixed-integer program (MIP). To

do so, we first replace the integer variable L(v) by an array of binary variables mi(v), one for

each label i ∈ Rv, so that mi(v) = 1 only if i = L(v). Keeping the energy goal as in (3.8), an

equivalent mixed-integer linear program (MILP) can be constructed by replacing the linear

equalities in (3.6) with

(1−mi(v))C + gpi (v) + fp
i (v) ≥ gpj (v) + fp

j (v) + ε,

∀v ∈ I, p ∈ Pv, i, j ∈ Rp, i 6= j,

(3.9)

51

where C is a large constant, and by adding new constraints including mi(v) ≥ 0 for all i

and
∑

i∈Rv
mi(v) = 1. Alternatively, we can construct a mixed-integer non-linear program

(MINLP) by replacing (3.9) with

mi(v)(g
p
i (v) + fp

i (v)− gpj (v)− fp
j (v)− ε) ≥ 0,

∀v ∈ I, p ∈ Pv, i, j ∈ Rp, i 6= j,

(3.10)

However, these MIP formulations have their own drawbacks. The large constant C used in

the MILP formulation may lead to weak linear programming relaxation and numerical issues,

whereas the constraints in the MINLP formulation are non-convex. These limitations result

in low efficiency in the solution process. When testing on our data sets, where the number of

variables can be on the order of hundreds, we found that state-of-the-art MIP solvers (e.g.,

Gurobi) fail to return a solution even after running for hours.

We propose an efficient method for solving our optimization problem without converting it

to MIP. The key observation is that, given a label set L, minimizing the energy within the

polytope of L is a quadratic programming (QP) problem, which can be solved much more

efficiently than MIP. Using the QP as a building block, we follow a greedy strategy to search

for the optimal label set. It starts with a initial labeling obtained from the signed distance

functions along the intersection lines. It then incrementally changes the labelling, one vertex

at a time, to decrease the QP energy. These two stages are detailed next.

3.4.1 Initial labels

A straight-forward scheme to initialize the label of a vertex v on an intersection line is to

average the signed distance vectors over all planes containing v and take the label with

52

the maximum value in the averaged vector. Specifically, recall that Pv is the set of planes

containing v and Rv is the set of labels present on all these planes, this scheme initializes

label L(v) for all v ∈ I as:

L(v) = arg max
i∈Rv

∑
p∈Pv

fp
i (v)/|Pv|. (3.11)

This simple scheme, however, may produce “jumps” in the labels along an intersection line.

In particular, the labelling along an intersection line l between two planes p1, p2 may suddenly

change at a vertex v where l meets another intersection line l′ between planes p1, p3. The

jump is caused by the fact that L(v) considers the function values on all three planes p1, p2, p3

while the labels at the remaining vertices of l consider function values on only two planes

p1, p2.

To create a smoother set of labels, we proceed in two steps. In the first step, we use Equation

3.11 to determine labels at those vertices that lie on multiple intersection lines. We call

these vertices junctions, denoted by J . In the second step, we modify the function along

each intersection line to match the labels at the junctions while maintaining the smoothness

of the original function. The modified functions are then used to obtain the labels of the

non-junction vertices using the simple averaging scheme above.

Specifically, for the second step, we represent the change of the original function ~fp along an

intersection line l on a plane p as another vector function ~hp,l. Note that there will be one

function ~hp,l for each plane p that contains l. We wish to find ~hp,l such that the modified

function ~fp + ~hp,l along l is as similar to ~fp as possible while matching the label at each

junction vertex on l. To measure similarity, we consider the same energy as Equation 3.2 but

over a 1-dimensional line, which penalizes the integral of the squared magnitude and gradient

of ~hp,l along the line. Using this energy, we need to solve a quadratic program for each plane

53

p and intersection line l. The variables are hp,l
i (v) for each vertex v ∈ l (including junction

vertices) and each label i ∈ Rp (labels present on p). The objective and constraints are:

Minimize: hT
p,l Ml hp,l

(3.12)

Subject to: hp,l
L(v)(v) + fp

L(v)(v) ≥ hp,l
i (v) + fp

i (v) + ε,

∀v ∈ J ∩ l, i ∈ Rp, i 6= L(v),

(3.13)

where hp,l is a flattened list of hp,l
i (v). Matrix Ml has a similar structure as M in Equation

3.3. Specifically, the |Rp| × |Rp| submatrix of Ml whose top-left position is {(a − 1)|Rp| +

1, (b− 1)|Rp|+1} is non-zero only if the a-th and b-th vertices share a common edge on l. Let

the edge between the a-th and b-th vertices be e, each non-zero submatrix has the same form

as Equation 3.4 except that now Ta is the list of edges sharing the a-th vertex, Ta,b = {e}, σt

is the length of edge t, and ωa,b = 1/σe.

After solving for ~hp,l for all planes p containing an intersection line l, and denoting this set of

planes by Pl, we obtain the label for all non-junction vertices v on l by averaging functions

over these planes:

L(v) = arg max
i∈Rv

∑
p∈Pl

(fp
i (v) + hp,l

i (v))/|Pl|. (3.14)

3.4.2 Updating labels

As mentioned before, fixing the vertex labels L reduces our optimization problem (3.8,3.6) to

a quadratic program (QP). We consider the minimal energy of this QP as a function of L,

denoted by E(L). Starting from an initial label set L0, we will create a sequence of label sets

L1, L2, . . . such that E(Lk+1) < E(Lk) for k ≥ 0.

54

Our approach is guided by the observation that E(Lk) is always achieved by some point on

the boundary of the polytope of Lk. To see this, observe that the convex energy E has a

unique local minimum in the solution space G that corresponds to no change to the initial

implicit functions. Assuming the input is inconsistent, the minimal-energy solution does not

lie inside any feasible regions. As a result, the minimizer in the polotype of Lk has to lie on

one or more facets of the polytope. Intuitively, the polytopes that are “on the other side” of

these facets are likely to have even lower energy. We therefore enumerate these polytopes

and pick one with the lowest energy as our next label set Lk+1.

More specifically, each facet of the polytope of Lk corresponds to an equality in the constraint

set (3.6), or

gpLk(v)
(v) + fp

Lk(v)
(v) = gpi (v) + fp

i (v) + ε

for some vertex v, plane p, and label i. The polytope “on the other side” of this facet

corresponds to values of gpLk(v)
(v), gpi (v) that make the left-hand side smaller than the right-

hand side. With ε being a small constant, the inequality would change the label of v from

Lk(v) to i. This leads to the following simple algorithm. First, we identify all vertex-label pairs

{v∗, i∗} that satisfy the above equality on some plane. For each such pair, we create a new

label set L∗ such that L∗(v) = L(v) for all v 6= v∗ and L∗(v∗) = i∗, and then compute E(L∗)

by solving QP (3.8,3.6). We then choose the next label set Lk+1 to be the L∗ with minimal

E(L∗), if such minimal energy is smaller than E(Lk). Otherwise, the process terminates and

outputs Lk as the solution.

The optimization process is illustrated in Figure 3.4 on the simple example from 3.1. Observe

that the vertices whose labels change during the updates are located close to the interface

set. In practice, we have observed that the initial labels obtained by our method are usually

55

fairly close to the final labels (see next section). As a result, iterative updates can converge

quickly to a locally optimal solution.

56

Figure 3.4: Optimization process on the input in Figure 3.1 (left, plane p2), showing the
labeling on the plane (as red, blue, gray colors) and interface set (green curves) in the input
(a), after initializing the labels on the intersection lines (b) (see Section 4.1), and after the
first (c) and final (d) iterations of label updates (see Section 4.2). Interface sets in previous
steps are shown in white curves in subsequent steps in (b,c,d) for comparison, and locations
where vertices change labels are indicated by arrows.

57

3.5 Experimental results

We test our algorithm on simple synthetic inputs as well as a few non-trivial examples

describing anatomical structures. Our implementation uses Gurobi for solving the quadratic

program (3.8,3.6) given a fixed label set L.

Choice of parameter We first evaluate the effect of the parameter λ in our deformation

energy (Equation 3.2). Figure 3.5 shows the results of our method on the same input in

Figure 3.1 (left) for different values of λ. Observe that λ controls the trade off between two

competing goals: maintaining the location of the input curves and preserving their shape. If

the value is too large (e.g., λ = 100), most of the input curve network is kept in place but at

the cost of severe shape distortion around the intersection lines (highlighted by the boxes)

to satisfy consistency. If the value is too small (e.g., λ = 0.0005), our method will strive to

maintain the overall shape of the curves but may produce a significant amount of scaling.

Nevertheless, we found that there is a reasonably large range of values of λ (e.g., between

0.001 and 0.1) for which our method produces plausible results for our test examples. These

parameters are reported in Table 3.1.

Complex examples We test our method on several non-trivial biological data sets con-

taining multiple planes (5 or more) that intersect with each other in complex ways (Figures

3.6, 3.7, 3.8, 3.9, 3.10). All of the examples exhibit a large number of inconsistencies. In

the case of multi-labelled data (Figures 3.8, 3.9, 3.10), observe that the interaction between

multiple labels would make it very difficult to rectify manually while simultaneously preserving

the shape of the input contour. Our method is capable of restoring consistency on all planes

in each data. Note that in some cases the topology of the curve network changes in the

output (Figure 3.8, plane p2, cyan region). The flexibility of allowing topological changes

without additional effort is another benefit of using an implicit representation.

58

Figure 3.5: Results of our method (on input in Figure 3.1 left, showing plane p2) for different
values of λ in Equation 3.2. The labeling is shown as colored regions, and the input curve
network is shown as gray curves for reference.

The output of our algorithm can be utilized by any existing method for surfacing non-parallel

cross-sections. While the surfacing method of [18] can be applied to an inconsistent input,

the surface often contains artifacts near inconsistency between the cross-sections. An example

is shown in the bottom-left of Figure 3.6 using the inconsistent input in the top-left (the

artifacts are highlighted). Applying the same surfacing method to the consistent cross-sections

produced by our algorithm results in an artifact-free surface (Figure 3.6 bottom-right).

To make the solution process more efficient for these complex examples, we further simplify

the problem size by reducing the set of vertices I whose values and labels that we solve for

in the optimization formulation (3.8, 3.6). We observed that vertices that change labels in

the optimization process are either inconsistent to start with (i.e., having different labels on

different planes in the input) or close to these inconsistent vertices on the intersection lines.

59

We therefore restrict the set I to inconsistent vertices plus a fraction η of all vertices on

the intersection lines ranked in descending order by their distances to inconsistence vertices.

We use η = 0.1 in all three examples. Theoretically, it is possible for some vertices that

are on the intersection lines but excluded from I to become inconsistent, since there are no

label constraints imposed on these vertices. In this case, one could re-run the optimization

again by including the newly inconsistent vertices in I, and repeat the process until no more

inconsistency is present. However, we have not had any need to run optimization more than

once on our data set.

Performance The core of our algorithm solves a non-linear constrained optimization problem

which can also be formulated as a mixed integer program (MIP). Such problems are notoriously

challenging to solve even using carefully engineered general solvers. For example, we tried

to use Gurobi to solve the MILP formulation as described in Section 3.4, and it failed to

converge even after hours of running on all our complex examples (even after we restrict

the set I). Our proposed approach is made efficient by our careful choice of initialization

which places the starting guess close to the final solution (Section 3.4.1), and leveraging the

efficiency of solving smaller quadratic programs (QP) (Section 3.4.2).

To better understand the performance of our method, we divide our processing time into

three stages: a preprocessing stage that discretizes the planes and prepares data structures

for optimization, initialization of labels, and iterative updates of labels. The preprocessing

stage is dominated by the matrix inverse operation for obtaining the coefficient matrix Np

in the reduced energy objective (Equation 3.8). The inversion is done per plane p and the

complexity depends on both the total number of vertices on p and the number of labels

on that plane. The complexity of both the second and third stages depends on the size

of the QP, which scales with the number of vertices and labels in the intersection set I,

and the number of times QP is solved. For label initialization, QP is solved only twice per

60

Planes # Total |I| λ Pre-proc Initial Update Gurobi
(Labels) vertices time time time time

Atrium 5 (2) 5740 109 0.01 0.6398 0.0258 0.448619 13.784
Ferret Brain 10 (2) 13131 300 0.01 3.1514 0.703 62.945 -

Liver (Fig 3.8) 5 (4) 8222 95 0.1 10.943 0.5324 13.4681 -
Liver (Fig 3.9) 6 (4) 20799 125 0.005 60.7131 0.628 29.1373 -
Mouse Brain 6 (7) 14159 168 0.025 127.661 2.394 291.436 -

Table 3.1: Data size and running time for the examples in Figures 3.6, 3.7, 3.8, 3.9, 3.10,
showing the number of planes, number of labels, total number of vertices in the triangulations,
number of vertices in the reduced intersection set I, λ value, and timing (in seconds) for each
of the three stages of our method. (’-’ indicates the solver fails to return within 2 hours)

intersection line, one for each plane containing the line, and hence is usually very efficient.

For label updates, QP needs to be solved for possibly many times depending on the number

of iterations required to terminate and the number of vertices that need to be checked in

each iteration.

We report the performance of the stages of our algorithm in Table 3.1. Our algorithm was

implemented in C++ and runs on a laptop with 2.5 GHz Intel Core i7 and 16GB RAM.

Overall, our method finishes within minutes for all examples. The dominating stage is

updating labels, followed by the preprocessing stage.

Optimality To evaluate the optimality of our solution, we compare our results to those

obtained by Gurobi using the MILP formulation. Since Gurobi fails to run on any of our

complex examples, we design the following experiment. We take a subset of k planes from the

ferret brain data (Figure 3.7), for k = 2, . . . , 5, and run both Gurobi (solving MILP) and our

method (Sections 3.4.1,3.4.2) for each k. We stopped at k = 5, beyond which Gurobi could

not return an answer after running for two hours. We report the energy of the solution found

by both methods in Table 3.2, as well as the running time of each method. Observe that our

method is able to achieve the same energy as the general MIP solver for all experiments, yet

61

in significantly less time. Also note that our label initialization stage achieves close-to-optimal

energy levels, which is an important factor for the fast convergence of our method.

k
Initialization Final Gurobi |I| Our Gurobi |I| Our Gurobi

energy energy energy time time time time
2 16.97 16.65 16.65 16 0.274 0.135 61 0.826 1.05
3 26.49 24.95 24.95 32 0.354 0.421 121 1.253 11.28
4 26.46 25.02 25.03 47 0.531 0.719 181 3.024 33.16
5 36.14 29.55 29.55 93 1.471 25.26 430 33.218 619.91
6 53.03 46.74 46.74 181 9.923 1011.8 951 342.426 -

Table 3.2: Comparing our optimization method and the MIP solver in Gurobi on a subset of
k planes in the ferret brain data, in terms of minimal energy and time (in seconds). Column
5, 6, 7 show the time on reduced set, and column 8, 9, 10 show the time on original set on
intersection lines.

62

Figure 3.6: The result (top-right) of repairing an inconsistent two-labelled Atrium data set
(top-left, several inconsistencies are highlighted), and surfaces reconstructed from these two
sets of slices using [18] (bottom; observe the artifacts in bottom-left).

63

Figure 3.7: The result (right) of repairing a two-labelled ferret brain data set that is highly
inconsistent (left, one inconsistency is highlighted). The bottom pictures show the labeling
on one of the planes (p) as well as labelling from other planes on intersection lines.

64

Figure 3.8: The result (right) of repairing a 4-labelled liver data set (left, two inconsistencies
are highlighted), showing the labeling on two planes (p1,p2) at the bottom.

65

Figure 3.9: The result (right) of repairing another 4-labelled liver data set (left, two inconsis-
tencies are highlighted), showing labelling on two planes (p1,p2) at the bottom.

66

Figure 3.10: Result (bottom) of repairing an inconsistent 7-labelled mouse brain set (top),
showing the labeling on three planes (p1,p2,p3) and labeling on other planes along the
intersection lines. A few inconsistencies are highlighted in black boxes.

67

3.6 Conclusion and discussion

In this paper, we consider the problem of solving label inconsistencies given contour networks

on multi-labeled domains consisting of planar slices. We formulated the solution as a

constrained optimization problem using an implicit representation where we carefully construct

the energy function to preserve the shape of the contour while eliminating inconsistencies.

We presented a targeted solver which exceeds the performance of tuned general solvers for

this same problem. Our algorithm solves a critical step in the reconstruction pipeline from

cross-sections, and it is our hope that this method will pave the way for existing surfacing

algorithms to reach a wide spread use in the scientific, medical, and design communities.

Limitations and future work Our work can be improved and extended in several ways.

First, the deformation energy used in our optimization formulation captures the distortion

to the input curve network in terms of its location and tangents. However, it does not

explicitly preserve the smoothness of, or any sharp features on, the input curves. Augmenting

the energy with higher-order terms has the potential to more faithfully retain the curve

shape. Second, while label consistency is sufficient for reconstructing a continuous surface,

reconstructing a smooth surface places stronger requirement on the input curve network,

such as the differential properties where curves on different planes intersect. The precise

consistency condition for smooth reconstruction, and how to enforce them, invite further

investigation. Lastly, we would like to explore strategies to further speed up the optimization

process, so that it may be used within an interactive volume segmentation program to give

immediate feedback to the user as she delineates the boundary curves.

68

Chapter 4

Variational Implicit Point Set Surfaces

4.1 Introduction

Constructing a curve or surface that interpolates or approximates a given set of 2D or 3D

points is one of the fundamental problems in geometric modeling. A common representation

of the reconstructed output is the zero-level set of some smooth implicit function. This

representation naturally ensures a smooth and closed manifold. In addition, an implicit

function enables a range of applications such as boolean operations and collision detection.

While extensively studied [17], implicit modeling from points remains a difficult problem.

A fundamental challenge is that the constant zero function, although meaningless for re-

construction, perfectly meets our goal: the function is smooth and its zero-level set (which

includes the entire space) interpolates any input points. A common approach to avoid this

trivial solution is to introduce additional constraints, such as normals at the input points or

additional spatial locations with inside/outside labels. If such constraints are not available as

69

part of the input or provided by the user, they will need to be inferred from the input data

prior to reconstruction.

This two-stage paradigm - constraint estimation followed by reconstruction - has a number of

drawbacks. The use of multiple disparate methods, each carrying its own set of parameters,

makes parameter-tuning trickier and complicates the analysis (e.g., how the output changes

with the input). More importantly, methods for constraint estimation are completely unaware

of the quality of the reconstructed surface. Lacking any better guidance, current estimation

methods (e.g., for normals) rely on local point neighborhoods, which are often unreliable

when the points are sparse or non-uniformly distributed. Errors in constraint estimation, in

turn, lead to poorly reconstructed surfaces (e.g., Figure 4.1 (e,f)).

We propose a direct definition of an implicit function from an un-oriented point set. Unlike

the above-mentioned two-stage paradigm, our definition integrates constraint estimation

and surface reconstruction within a single variational formulation. Specifically, we seek a

smooth implicit function whose zero-level set is close to the input points and whose gradient at

each input point has unit magnitude. The unit-gradient constraint avoids the trivial solution

of zero but does not need to be estimated in a separate process. By a judicious choice of

the smoothness energy [56], we show that our definition can be expressed as a standard

constrained quadratic optimization problem with closed-form coefficients. The variational

problem can be solved using off-the-shelf optimization packages without the need to discretize

the domain.

Our method has a number of advantages over the previous two-stage paradigm. First, as

an explicit definition, we can analyze properties of the reconstruction as a function of the

input points. In this paper, we show that the surface given by our definition reproduces

linear geometry and commutes with similarity transformations (translation, rotation, uniform

70

Figure 4.1: Given sparse, non-uniform, noisy and un-oriented points (b) sampled from
a set of unstructured 3D curves (a), our variational definition (VIPSS with λ = 0.003)
simultaneously produces oriented normals (c) and a smooth approximating surface (d). The
input is challenging for state-of-the-art normal estimation methods such as [154], which fails
around sparsely sampled thin features (the flippers) (e). Incorrect normals lead to poor
reconstructions using existing implicit methods such as Screened Poisson [86] (f, fitting weight
α = 0.5).

71

scaling). Second, our definition involves only a single parameter (λ) that controls the accuracy

of approximation. If exact interpolation is desired, reconstruction is completely parameter-free

for any point set by setting λ = 0. Third, we observed that the surfaces produced by our

definition are much more resilient to sparse or non-uniform samples than existing methods.

We owe such robustness to our integrated formulation and the chosen smoothness energy

[56], which considers the global shape of the reconstructed implicit function instead of local

neighborhood of points.

The main limitation of our method is its computational complexity, which scales cubically

with the number of points. While we are actively exploring means to improve scalability,

we demonstrate the usefulness of our method in one application (surfacing unstructured 3D

sketches) which result in sparse, non-uniform, un-oriented samples that are challenging for

existing reconstruction methods (Figure 4.1).

Contributions We make the following technical contributions:

• We introduce a variational definition of an implicit surface directly from un-oriented

points. The definition has a single parameter, applies to any dimensions, and does not

need domain discretization or numerical integration (Section 4.3).

• We show several theoretical properties of the definition, including exact interpolation,

reproducing linear geometry, and commuting with similarity transformations (Appendix

A).

• We propose an effective strategy for initializing the optimization (Section 4.4.1).

72

4.2 Related Works

4.2.1 Surface reconstruction from points

We review the most relevant methods for surface reconstruction from 3D point sets. For more

in-depth and comprehensive discussions of these and other methods, we refer readers to the

latest survey [17].

Combinatorial methods

One class of reconstruction algorithms directly produce a triangulated surface whose vertices

are the input points. These methods are typically based on the Delaunay triangulation of the

points or its dual, the Voronoi Diagram (see survey [48]). Compared with implicit methods,

the smoothness of the surfaces created by combinatorial methods is limited by the input

sampling density. Also, a water-tight surface is not always guaranteed. Furthermore, as these

methods usually work under the assumption that the input samples are dense enough with

respect to the local shape, sparse or non-uniform sampling may lead to significantly degraded

reconstruction quality (see Figure 4.12).

Implicit methods

We broadly classify implicit reconstruction methods into three types: ones that require

“signed” input (e.g., oriented normals or additional labelled points), ones that perform signing

in a post-process, and ones that do neither.

73

Requiring signed input Most implicit methods require the input points to be equipped

with oriented normals. The Poisson reconstruction method [85] and its variants [99, 143,

115, 86] seek an “indicator function” that is 1 (resp. 0) in the interior (resp. exterior) of

the shape and whose gradient near the shape’s boundary agrees with the given normals.

The implicit moving least squares (IMLS) method defines a local polynomial, such as a

constant [135, 52, 90, 112] or an algebraic sphere [66], at each spatial location that fits nearby

samples and normals. Note that these methods are different from another group of methods

(also called moving-least squares) that employ a projection operator [4, 92, 61], whose result

is generally not a level set of an implicit function [8]. IMLS using a constant polynomial

effectively blends linear functions defined by the tangent planes at the input points, which is

also used in [72, 27]. More generally, the partition-of-unity method [109] blends polynomials

that are fitted to groups of points.

Another tool for implicit reconstruction from signed input is radial basis functions (RBF).

RBF interpolants for scattered data have been extensively studied in the literature [39, 155].

Unlike IMLS and partition-of-unity, an RBF interpolant is a linear combination of fixed

radial basis kernels (typically centered at the input points) blended with a fixed set of weights

chosen so that the given values at the input points are interpolated. To avoid the trivial

interpolant of constant zero, most reconstruction methods that use RBF introduce additional

spatial locations equipped with signed values [147, 106, 42, 149, 54, 110, 140, 124, 153]. These

locations are often created by offseting along a sample’s normal. However, care must be

taken in determining the offset amount, particularly near thin features. Alternatively, some

authors [36, 65, 79, 95] apply a Hermite variant of the RBF interpolant [56] directly to the

input points and normals.

All methods in this class interpolate or closely approximate the normals at the input points.

As a result, their reconstruction quality relies heavily on the accuracy of normal estimation.

74

In this work, we use the Hermite RBF interpolant of [56] (which we call Duchon’s interpolant

and will discuss in details in Section 4.3.2). However, our variational formulation removes

the need for estimating the normals.

Signing in a post-process A number of methods first create an un-signed distance

function from the input points and then determine the sign afterwards. Various strategies

were used for signing, including graph-cut [73], ray-shooting [107], watershed [119], and energy

minimization [64]. While these methods can be applied directly to un-oriented points, the

heuristic nature of the signing step makes it difficult to analyze the results of these methods.

Also, the two-stage pipeline involves several parameters that need to be carefully tuned.

Variational methods Like our method, several other methods directly reconstruct a

signed function from un-oriented points using some variational formulation. After computing

un-oriented normals at the samples, Alliez et al. [5] seek an implicit function whose gradients

best align with the un-oriented normals under the constraint that the weighted sum of

biharmonic energy and fitting error has unit norm. Both Scholkopf et al. [130] and Walder et

al. [152] propose un-constrained formulations using scalar (non-Hermite) RBF interpolants.

Scholkopf et al. minimize a weighted sum of smoothness energy, fitting error, and the negative

constant component of the interpolant. Walder et al. point out that Scholkopf’s formulation

leads to ill-shaped functions. They replace the last component of Scholkopf’s objective by

another two terms, the negative integral of the function values and of the gradient magnitudes

over the domain.

The above formulations all involve multiple parameters for balancing the various energy

terms and/or constraints. Also, solving for these variational problems may require domain

discretization [5] or numerical integration [152], which introduces additional parameters as

well as dependencies on the discretization structure or resolution. In contrast, our definition

75

has a single parameter (which is fixed in the interpolation mode), and no discretization

is needed for optimization. We also observed that our formulation tends to behave more

robustly under sparse sampling than [5] (see Figure 4.12).

4.2.2 Normal estimation

As mentioned above, normal estimation is required by many implicit reconstruction methods.

Existing estimation methods can be classified into two types, ones that separately estimate

the direction and orientation (i.e., forward or backward) of normals, and ones that estimate

both at once.

Estimation and orientation of un-oriented normals A common strategy for estimat-

ing un-oriented normal directions is by fitting the local neighborhood of a point with a

function. Linear functions are most common [72] (also known as the PCA method), but

higher-order polynomials have also been used [43, 66]. It is well-known that the choice of

the point neighborhood is crucial to the accuracy of estimation, and various proposals were

made to deal robustly with noisy samples [116, 104] and sharp features [93, 33, 96]. Another

strategy is based on analyzing the shape of individual [6, 50] or a group of [5, 100] Voronoi

cells. While many of these methods can successfully handle noisy samples, they tend to fail

when the sampling rate is low or the pattern is not uniform (see Figure 4.9).

Orienting the un-oriented normals can be treated as a combinatorial optimization problem.

The choice of energy varies from simple consistency among neighboring normals [72] to more

sophisticated ones that better handle thin features [157, 91, 74]. The energy can be minimized

by a minimal spanning tree [72] or a global solver [127]. However, if the un-oriented normal

has a wrong direction (e.g., orthogonal to the true normal), it cannot be corrected by the

orientation step.

76

Direct estimation of oriented normals Wang et al. [154] proposed a variational method

that estimates both the direction and orientation of normals in a single step. They formulate

a quadratic optimization problem that minimizes the weighted sum of two energy terms on

each pair of nearby normals, a consistency energy similar to [72] and an orthogonality energy.

In our experiments, we found this method outperforms the two-step methods mentioned

above for sparse and non-uniform samples, but tuning its parameters can be challenging (see

Section 4.5.2 and Figure 4.10). While our definition solves a similar quadratic optimization

problem, our objective captures the global regularity of the implicit function, which leads to

more robust results while removing the need for parameter tuning.

Recently, deep learning has been employed to infer oriented normals from point clouds [34, 67].

These methods can produce impressive results on densely sampled points contaminated with

noise. However, we found that they are less successful on sparse samples (see Figure 4.10).

4.3 Definition

We introduce our definition of the point set surface in this section. We first give a general

definition for any choice of smoothness energy, and then specialize it to a particular energy

that leads to a simple and computable definition.

Notations In this paper, scalar values are italicized (e.g., x), vector values are bold (e.g.,

x), and matrices are capitalized (e.g., M). All vectors are assumed to be column vectors.

We use Di to denote taking the i-th derivative (or gradient, if the variable is a vector), and

D = D1. For a two variable function f(·, ·), we use Di,j to denote taking the i-th partial

derivative of the first variable and j-th partial derivative of the second variable. ‖ · ‖ denotes

the L2 norm.

77

4.3.1 A general definition

Given a set of points xi ∈ Rd (i = 1, . . . , n), we wish to define a smooth implicit function

f(x) whose zero-level set is as close to xi as possible. As mentioned earlier, to avoid the

trivial solution f ≡ 0, we need an additional constraint. To this end, we note that existing

implicit modeling methods either look for a true signed distance function, or an “indicator

function” that is close to a signed distance function near the shape boundary. In the same

spirit, we require that the gradient of f should have unit magnitude at each input point.

Unlike signed constraints, such as normals or labelled points, the unit-gradient constraint

does not need to be provided or estimated a priori. Note that the same constraint has been

used previously for fitting implicit functions [121].

We arrive at the following variational definition of an implicit point set surface:

Definition 1. The variational implicit point set surface (VIPSS) of points xi ∈ Rd, for a

chosen energy E and approximation parameter λ, is the zero-level set of a function f ∈ Rd

that

Minimizes:
∑

i f(xi)
2 + λ E(f)

Subject to: ‖Df(xi)‖ = 1, ∀i
(4.1)

Here, λ balances the two goals of data fitting and smoothness. A larger λ leads to a smoother

surface at the cost of a less accurate approximation of the input points.

A key ingredient of this definition is the energy E, which needs to be appropriately chosen for

the definition to be meaningful and practical. On one hand, lower E values should correspond

to a smoother zero-level set of f . This requires an energy of at least 2nd-order, so that linear

functions (whose level sets are hyperplanes, which are perfectly smooth) have zero energy.

78

On the other hand, the energy should make the variational problem computable, and ideally

not requiring any discretization of the domain.

We describe one class of energy E that makes Definition 1 computation-friendly without

discretization. Suppose we are given an additional set of Hermite data s = {si} and g = {gi},

so that each point xi is equipped with a scalar si and a (possibly un-normalized) vector gi.

Let fs,g be the interpolating function with minimal energy,

fs,g = arg min
f

{E(f)| f(xi) = si, Df(xi) = gi,∀i}

The solution to the constrained optimization problem of (4.1) is therefore the interpolant fs,g

for the Hermite data {s,g} that

Minimizes: sT s + λ E(fs,g)

Subject to: gi
Tgi = 1, ∀i

(4.2)

Conceptually, while fs,g smoothly interpolates a given Hermite data {s,g}, we look for

the best Hermite data, with unit vectors g, that results in the smoothest interpolant. If

energy E is chosen such that the energy-minimizing Hermite interpolant fs,g, as well as its

energy E(fs,g), can be expressed in closed-form by s and g, then (4.2) becomes a constrained

optimization problem on a finite variable set (s,g).

Next, we review one choice of E that has the above characteristics, namely being 2nd-order

and the energy-minimizing Hermite interpolant has closed form (Section 4.3.2). With this

choice, we will show that Definition 1 becomes a constrained quadratic optimization problem

(Section 4.3.3).

79

4.3.2 Duchon’s energy

Duchon [56] studied a family of semi-norms whose minimizers, subject to interpolatory

conditions, have simple and closed forms. In the context of this work, we are interested in

the following 2nd-order member of the family 2:

E(f) =

∫
Rd

‖τ‖d−1 ‖FD2f(τ)‖2dτ (4.3)

where F denotes the Fourier transform. The energy is a generalization of the “thin-plate” or

“bending” energy in one dimension (d = 1), where

E(f) =

∫
R
‖FD2f(τ)‖2dτ =

∫
R
‖D2f(x)‖2dx

Duchon showed that the function that interpolates Hermite data {si,gi} at each input point

xi with the minimal energy has the following form:

fs,g(x) =
∑
i

aiφ(x,xi) +
∑
i

bT
i D

0,1φ(x,xi) + cTx + d (4.4)

where φ is the triharmonic radial basis kernel (φ(x,y) = ‖x − y‖3), and ai ∈ R,bi ∈ Rd, c ∈

Rd, d ∈ R are constants determined from the input data. Specifically, these constants need

to satisfy the interpolatory conditions (fs,g(xi) = si, Dfs,g(xi) = gi for all i) and additional

orthogonality conditions including
∑

i ai = 0 and
∑

i aixi+
∑

i bi = 0 to ensure the existence
2Duchon’s original semi-norms take an additional square-root, which we drop in this work

80

of a unique solution. All of these conditions can be expressed by a system of linear equations

A

a

b

c

d

=

s

g

0

0

(4.5)

where a = {ai}, b is the flattened array of {bi} of length d× n, and g is the flattened array

of gi of length d× n. The coefficient matrix A of this system (often called the interpolation

matrix) has the form

A =

M N

NT 0

 , M =

M00 M01

MT
01 M11

 , N =

N0 1

N1 0

 (4.6)

Here, the matrices M00,M01,M11 have dimensions n×n, n×dn, and dn×dn respectively. Each

(i, j)-th entry (or block) of matrix Mαβ where α, β ∈ {0, 1} is the differential Dα,βφ(xi,xj).

Note that both M00,M11 are symmetric matrices. N0 has dimension n× d and its i-th row is

xT
i . N1 has dimension dn× d and consists of n identity matrices of dimension d× d.

Assuming that the points xi are pairwise disjoint, the matrix A is always invertible and hence

the constants a,b, c, d satisfying (4.5) uniquely exist [155]. In one dimension (d = 1), the

resulting interpolant fs,g coincides with the ordinary piecewise cubic Hermite interpolation.

In this sense, Duchon’s interpolant can be considered as a generalization of cubic Hermite

interpolation to arbitrary dimensions. Figure 4.2 (a) gives examples of the interpolant in 1D

and 2D (with si = 0 and gi set to a constant for all i).

81

Figure 4.2: Examples of Duchon’s interpolants fs,g that interpolate scattered points in 1D
(top, red dots) and 2D (bottom, red circles) for different choices of the Hermite data {s,g}.
In (a), si = 0 and gi is a constant vector at each point. In (b,c,d), {s,g} are obtained by
our variational formulation (4.9) with λ = 0, 0.1, 1.0 respectively. The zero-level set in (b,c,d)
(black curves) is the VIPSS at the respective λ.

The energy of Duchon’s interpolant can also be written in a simple closed form. Since E is

the semi-norm of a semi-Hilbert space whose reproducing kernel is the triharmonic radial

basis φ, the semi-norm of fs,g can be expressed as

E(fs,g) =

(
aT bT

)
M

a

b

 (4.7)

4.3.3 Definition using Duchon’s energy

We now specialize the VIPSS definition (1) to the case where E is chosen as Duchon’s energy

(4.3). In essence, we will look for the scalars s and unit vectors g such that the Duchon’s

interpolant fs,g minimizes the energy objective in (4.2).

82

We first write the inverse of the interpolation matrix A as

A−1 =

 J K

KT L

 , J =

J00 J01

JT
01 J11

 (4.8)

where matrices J , K, J00, J01, J11 have the respective sizes as M , N , M00, M01, M11 in (4.6),

and J , L, J00, J11 are symmetric. We now present our main result:

Proposition 1. The VIPSS of points xi, where E is Duchon’s energy defined in (4.3), is the

zero-level set of Duchon’s interpolant fs,g defined in (4.4) for Hermite data {s,g}, such that g

Minimizes: gTHg

Subject to: gi
Tgi = 1, ∀i

(4.9)

where

H = J11 − λJT
01(I + λJ00)

−1J01 (4.10)

and s is obtained from g by

s = −λ(I + λJ00)
−1J01 g (4.11)

Proof. We start by re-writing the energy of Duchon’s interpolant E(fs,g) as a function of the

Hermite data {s,g}. Using notations in (4.8),

a

b

 = J

s

g

 (4.12)

83

Substituting into (4.7) yields

E(fs,g) =

(
sT gT

)
J M J

s

g

 (4.13)

To simplify this expression further, note that by A−1A = I we have J M +K NT = I and

J N = 0. Therefore,

J M J = (I −K NT) J

= J −K NT J

= J −K (J N)T

= J

which leads to

E(fs,g) =

(
sT gT

)
J

s

g

 (4.14)

Using the expression of E(fs,g) above, the minimization objective in (4.2) becomes a quadratic

function on s and g:

sT s + λ

(
sT gT

)
J

s

g

 (4.15)

For a given g, (4.15) is minimized when s is given by (4.11), and the minimum has the

form λgTHg where H is defined in (4.10). By dropping the constant λ, we have proven the

proposition.

We add two technical notes here. First, matrix I + λJ00 is invertible for generic values of λ,

as long as −1/λ is not an eigenvalue of J00. Second, H is a positivie semi-definite matrix,

84

since λgTHg is the sum of sT s and Duchon’s energy of fs,g, both of which are non-negative

for any choice of g.

One may observe that Proposition 1 transforms the problem of finding an implicit function

(4.1) to that of finding unit vectors (normals) g at the input points (4.9). From this perspective,

our definition offers another way of estimating normals from un-oriented points. The key

distinction between our formulation and existing normal estimation approaches is that, while

the latter is guided by the local shape of point samples, ours is guided by the global shape

of the reconstructed implicit function (via minimizing Duchon’s energy). As we shall see in

the experimental results, the coupling of normal estimation with reconstruction allows our

method to better deal with imperfect sampling than previous methods.

Figure 4.2 (b,c,d) give examples of the VIPSS specialized to Duchon’s energy with varying

values of λ (0, 0.1, 1) in both 1D and 2D. Observe that the VIPSS in 2D is able to interpolate

or approximate sparse and non-uniformly distributed points. Increasing λ results in smoother

curves that deviate further from the input. At λ = 0, the VIPSS exactly interpolates the

points (a property that will be discussed in the next section).

4.4 Implementation

Reconstructing the VIPSS from a point set involves four steps:

1. Computing matrix H. This involves constructing the interpolation matrix A by (4.5),

computing its inverse A−1, and computing H from sub-matrices of A−1 by (4.10).

2. Optimizing vectors g by (4.9).

85

3. Constructing Duchon’s interpolant fs,g. This involves recovering interpolated values s

from g by (4.11) and then the constants a,b, c, d in fs,g by A−1 · {sT ,gT ,0T , 0}T .

4. Surfacing the zero-level set of fs,g.

Steps (1,3) can be done using standard linear algebra packages (we use Armadillo). To

solve the constrained optimization problem of (4.9), we first convert it into an unconstrained

problem by representing each gi using two spherical angles and then solve it by L-BFGS. For

step (4), one may use any available method that polygonalizes level sets of implicit functions.

Since the input points are usually close to the zero-level surface, we use a tracing-based

marching cubes method [23] at a fixed grid resolution (1003 to 2003 in our experiments) that

starts from a data point. More advanced meshing methods, such as [29], can be applied to

produce surfaces with better triangle shapes.

As with many non-linear optimization problems, the quality of the solution depends heavily

on the quality of the initialization. In the following (Section 4.4.1), we describe a practically

effective method for initializing our optimization problem. We end this section with a

complexity analysis (Section 4.4.2).

4.4.1 Initializing the optimization

Optimization formulations like ours (4.9) commonly appear in the literature on computing

direction fields [154, 89, 80, 76]. A typical initialization strategy is relaxing the per-vector

unit-norm constraint (gi
Tgi = 1) to constraining the total norm of all vectors to be one

(gTg = 1). By the Rayleigh Quotient Theorem, the minimal value of gTHg under the relaxed

constraint is achieved when g is the eigenvector of H with the smallest eigenvalue (denoted

86

Figure 4.3: Initial vectors generated using the spectral method with λ = 0 (a) contains vectors
with very small magnitudes and flipped orientations (see insert, vectors shown with 20x
scaling), which leads to a high-energy result after optimization (b). Initial vectors generated
with λ = 0.01 (c) and 0.1 (e) are more uniform, and they lead to the same low-energy result
(d,f) after optimization with λ = 0.

by eH). This eigenvector, after normalization, is then used as the initial solution to start the

optimization under the original, per-vector unit-norm constraint.

However, the spectral initialization strategy often fails for our problem. In these failure cases,

there is a significant variation among the norms of individual vectors ‖gi‖ derived from eH .

87

Those vectors with extremely small norms tend to be less accurate, and such vectors often

form clusters with “flipped” orientations that are difficult to be corrected by optimization. We

illustrate such a case in 2D in Figure 4.3 (a,b). Note that the initial vectors associated with

the lower points in (a) have very small lengths, and their orientations are opposite to those

vectors associated with the upper points (see zoom-in). Optimizing from this initialization

leads to a high-energy local minimum shown in (b).

To find more stable initial vectors, we observed that the norms of individual vectors ‖gi‖

derived from eH tend to be more uniformly distributed, both in length and in direction, as λ

increases. This can be conceptually explained by the fact that a larger λ leads to a smoother

interpolant, whose gradients at the input points are more similar with each other. We can

also provide a more rigorous argument in the limiting case of λ → ∞:

Proposition 2. As λ → ∞, any g = {gi} where gi = gj for all pairs i, j is an eigenvector

of H with zero eigenvalue.

Proof. By JN = 0, where J is defined in (4.8) and N in (4.6), we have

J00 N0 + J01 N1 = 0

JT
01 N0 + J11 N1 = 0

We then have

H N1 = J11N1 − JT
01(I/λ+ J00)

−1J01N1

= −JT
01N0 + JT

01(I/λ+ J00)
−1J00N0

As λ → ∞, (I/λ+ J00)
−1J00 → I. Therefore

H N1 → −JT
01N0 + JT

01N0 = 0

88

As a result, the columns of N1 are eigenvectors of H with zero eigenvalues as λ → ∞. Since

the g in the proposition can be expressed as a linear combination of the columns of N1, it is

also an eigenvector of H with zero eigenvalue.

In other words, the output of spectral initialization tends toward a constant vector field

as λ → ∞. Hence it can be expected that, as λ increases, vectors produced by spectral

initialization become increasingly more uniform. We illustrate this behavior in Figure 4.3

(c,e) for two different values of λ (0.01, 0.1) on the same point set as (a). Using either set

of vectors as the initial solution, optimizing (4.9) with λ = 0 successfully reaches the same

low-energy solution shown in (d,f).

Guided by the observation, we propose to compute not one, but multiple candidate ini-

tializations corresponding to different values of λ. We pre-define a set of “offset” values

{λ1, . . . , λk}. Let λ0 be the parameter chosen by the user for the VIPSS. For each λi, we

construct the matrix H using λ = λ0 + λi and compute its eigenvector eH . This gives us k

initial solutions. We then optimize (with λ = λ0) for k times, each time starting from one of

the initial solutions, and take the optimized result with the least energy. We use the offset

values {0, 0.001, 0.01, 0.1, 1} in our tests, assuming the data is scaled to fit in a 2 × 2 × 2

cube.

4.4.2 Complexity analysis

The asymptotic complexity of running time, with respect to the dimensionality d and number

of input points n, of each step is as follows:

1. O(d3n3): O(d3n2) for constructing A, O(d3n3) for inverting A, and O(n3 + d2n3) for

constructing H.

89

2. O(d3n3): O(d3n3) for computing the eigenvector of H with the smallest eigenvalue, and

O(ld2n2) for gradient-descent optimization, where l is the number of descent iterations

(which is typically much smaller compared to n).

3. O(d2n2): O(dn2) for computing s, and O(d2n2) for recovering the constants a,b, c, d.

4. O(mdn) where m is the number of points at which the surfacing algorithm evaluates

the interpolant.

It is clear from the analysis that the bottlenecks of the algorithm are the inversion of matrix

A and finding the eigenvector of matrix H, both taking O(d3n3) time. Note that A is a

dense matrix due to the global nature of the triharmonic basis. While we have observed

that H often contains a large amount of close-to-zero entries, particularly for uniformly

sampled points and a small value of λ, the sparsity tends to decrease with the increase of

non-uniformity in sampling and noise level (which necessitates larger values of λ).

4.5 Experiments

We show experimental results of our method in 3D under varying sampling conditions and

compare with relevant methods for normal estimation and surface reconstruction. We end

this section with a performance report and an application. In our examples, uniform sampling

from existing surfaces is generated using the Poisson-disk sampling method [45] implemented

in MeshLab.

4.5.1 Results

We first evaluate our method under varying sampling densities and patterns using a synthetic

Torus surface (level set of a degree-4 polynomial). We fix λ = 0 to perform exact interpolation.

90

Figure 4.4: Top row: sampling a torus surface with decreasing density (a,b,c,d with 500, 200,
50, 25 points respectively), varying sampling density (e), missing samples (f,g), and along
1-dimensional curves (h,i). Middle row: optimized vectors g visualized as oriented disks
(green/blue: front/back side). Bottom row: the VIPSS (λ = 0) colored by distance from the
original torus surface (blue/red: small/large distance).

As seen in Figure 4.4, our method can reconstruct an almost perfect torus from as few as

50 points (c), and a close approximation from 25 points (d). Also, our method is robust

under different types of non-uniform sampling patterns, such as varying density (e), missing

samples (f,g), and highly anisotropic sampling along curves (h,i), unless the samples are too

ambiguous for inferring the shape (e.g., in (g)).

We next test our method on samples from more complex 3D surfaces (Figures 4.5, 4.6) and

wireframes (Figure 4.7). Again, we fix λ = 0. Observe in Figure 4.5 that the quality of VIPSS

drops gracefully under decreasing sampling density. Despite the sparsity and anisotropy of

sampling in Figures 4.6 and 4.7, our method is able to faithfully reconstruct various shape

features, such as the fingers of the Hand, protrusions of the Vertebra, ears of the Dog, etc.

91

Figure 4.5: VIPSS (λ = 0) for samples from Max Planck at different densities.

92

Figure 4.6: Samples from Hand, Vertebra, Kitten (left, each containing 500 points), optimized
vectors g (middle), and VIPSS (right, λ = 0).

93

Lastly, we test our method on noisy samples in Figure 4.8. Consistent with our observations

earlier in 1D and 2D (Figure 4.2), larger λ values lead to smoother and less approximating

surfaces, which are suited for higher noise levels.

4.5.2 Comparisons

Normal estimation methods We compare the oriented vectors g resulted by our opti-

mization (4.9) with those produced by existing normal estimation methods.

We first consider methods that separately estimate directions and orientations. Since errors

in the un-oriented directions persist after orientation, we will focus on issues in the direction

estimation step. We considered two prevalent methods for direction estimation, the plane-

fitting method of [72] (referred to as PCA) and the Voronoi-based method of [100] (referred

to as VCM). Both methods are based on analysis of local point neighborhood, whose size is

controlled by the number of nearest neighbors (k in PCA) or a sphere radius (r in VCM). We

found that they both tend to fail on non-uniformly distributed samples, where oftentimes a

suitable neighborhood size cannot be found. As shown in Figure 4.9, taking the Dog wireframe

samples from Figure 4.7 as input, PCA requires a fairly large neighborhood (k = 30 in (a))

to get a reasonable direction estimate for most points, while still failing on some (see the red

and blue boxes). Increasing the neighborhood size (k = 50 in (b)) improves the directions at

some points (the red box), but makes others worse (the blue box), due to the interference

with nearby features (the dog ear). Similarly, VCM at a small neighborhood size (r = 0.1 in

(c)) produces many incorrect directions (red box). A larger neighborhood (r = 0.25 in (d))

improves some directions but results in over-smoothing at small shape features (blue box).

Next we compare with the variational method of Wang et al. []Wang2011AVM, which

estimates oriented normals in a single step by solving a quadratic optimization problem

94

Figure 4.7: Samples from wireframes Trebol, Dog, Phone (left, containing 500, 1000, 1000
points), optimized vectors g (middle), and VIPSS (right, λ = 0).

95

Figure 4.8: (a): Two sampling of the Kitten (500 points each) at low (top, 1%) and high
(bottom, 5%) noise rate. (b,c): VIPSS with λ = 0.001 and 0.01.

96

similar to ours (4.9). While our matrix H is derived from the global smoothness of the implicit

function, theirs is based on two hand-crafted energy terms that measure correlation between

nearby normals. We have observed that, while Wang’s method produces more stable results

than two-step methods for sparse and non-uniform inputs, careful tuning of its parameters

(neighborhood size and energy weighting) is required for individual inputs. Even with our

best effort in tuning, Wang’s method can still fail for some inputs, such as the Walrus sketch

(Figure 4.1 (e)) and the Bathtub (Figure 4.10, third row), particularly near sparsely sampled

thin shape features (e.g., Walrus’ flippers and Bathtub’s curved wall). These errors, in turn,

lead to poorly reconstructed surfaces. Observe that our method produces a plausible set of

normals for both inputs, and in turn better reconstructions.

We also compared with the deep-learning-based normal estimation method, PCPNet [67] on

the same Bathtub example (Figure 4.10, bottom row). This method was unable to give any

reasonable normals for the original 800-point sample, so we showed their result on a denser

sampling (3000 points). Even at this density, PCPNet produces incorrect normal orientations

for a significant portion of the points, which leads to a poor reconstruction.

Surface reconstruction methods As reviewed earlier, most implicit reconstruction meth-

ods require oriented points as input. Hence improved normal estimation (e.g., our optimized

vectors g) would benefit these existing methods.

In our setting, using Duchon’s interpolant (or so-called Hermite RBF) has several advantages

over other implicit reconstruction methods. First, the interpolant fs,g can fully utilize the

optimized Hermite data s,g, not just the vectors g, in the case of approximation with a

non-zero λ (and hence non-zero s). Second, by Proposition 1, Duchon’s interpolant using

optimized Hermite data is theoretically optimal in terms of the objective (4.1). Third,

and in practice, we observed that Duchon’s interpolant outperforms existing methods for

97

Figure 4.9: Comparing direction estimation on samples from a 3D wireframe using PCA [72]
and VCM [100] with different parameters. Each un-oriented direction is shown by a yellow
tangent disk and a line segment.

98

Figure 4.10: Comparing normal estimation from a 800-point sample from the Bathtub (cross-
section shown in top-right) using VIPSS (λ = 0), variational method of [154], and PCPNet
[67] (on a 3000-point sampling). The surfaces for these methods are generated using Hermite
RBF interpolation (i.e., zero-level set of fs,g where s = 0 and g are the estimated normals).

99

interpolating sparse, oriented points. In Figure 4.11, we compared Duchon’s interpolant

with Screened Poisson reconstruction [86] and Albegraic Point Set Surface (APSS) [66] (an

IMLS-type method) on the same input, which is a 1000-point sampling of the Stanford Bunny

with normals computed by our method. Each of these methods has a parameter that trades

off smoothness with closeness of approximation (fitting weight α in Screened Poisson, larger

for a closer fit, and filter scale h in APSS, smaller for a closer fit). Observe that closer

approximation using these methods leads to surface artifacts (dimples in (d) and tearing in

(e)). On the other hand, Duchon’s interpolant results in exact and smooth interpolation (b).

We next compare with a few methods that do not require oriented points in Figure 4.12. The

variational method of [5] (b) has trouble handling sparse samples on thin shapes (e.g., the

Bathtub), even after we used a very high data-fitting weight in their formulation. Also, since

the variational problem is solved on a tetrahedralization of the domain, their method produces

less smooth surfaces than our method (e.g., the Dog). On the other hand, combinatorial

methods, such as the ball-pivoting method [19], the tight cocone [49], and the power crust

[7], are designed for dense samples and generally unsuited for sparse and non-uniform inputs

like these.

4.5.3 Performance

Table 4.1 reports the running time of the four steps of our method (see Section 4.4) on the

Max Plank data set in Figure 4.5. Observe that these statistics agree with the complexity

analysis in Section 4.4.2. The running time is dominated by the computation of H (inverting

A) and the initialization of optimization (computing eigenvectors of H), both exhibiting

cubic growth with the input size.

100

Figure 4.11: Comparing Hermite RBF (Duchon’s interpolant) (b) with Screened Poisson [86]
(c,d) and APSS [66] (e,f) at different parameters on the same oriented input with 1000 points
(a). Orientations in (a) are computed by our method with λ = 0.

101

Figure 4.12: Comparing VIPSS (λ = 0) with methods that do not require oriented inputs:
the Voronoi-based variational method of [5], the ball-pivoting method [19], the tight cocone
[49], and the power crust [7].

Points Compute H Optimize g Build fs,g Polygonize
500 0.3 2.5 + 0.2 0.0 6.6
1000 1.8 20.0 + 1.1 0.1 13.0
2000 14.6 165.6 + 10.8 0.3 26.0
4000 98.5 1428.2 + 45.4 0.7 51.7

Table 4.1: Running time (in seconds) of each step for Figure 4.5 recorded on a MacBook Pro
with 2.5GHz Intel Core i7 CPU and 16 GB memory (implementation done in C++). Timing
for Optimization step is written as initialization time (using the offset method of Section
4.4.1) + NLOPT time. Surfacing uses a 1003 grid.

102

4.5.4 Application: sketch surfacing

AR/VR sketching tools, such as Google’s Tilt Brush, allow a user to create 3D curvilinear

designs in a fully immersive manner. While these tools just display the sketches, the ability to

create a surface representation directly from the sketches would further enable interactive 3D

modeling. However, freehand 3D sketches are highly unstructured (e.g., with disconnections,

over-sketching, missing junctions, etc.), whereas existing methods for surfacing 3D wireframes

generally require a clean, connected graph [22, 114, 139].

Due to its resilience to sparse and non-uniform sampling, our method is well-suited to perform

this challenging surfacing task. Since we were not able to find a public data set of curves

produced by these sketching systems, we simulate the sketches by freehand curves drawn

on top of existing surfaces. An example is shown in Figure 4.13 on a sketch of a hand (we

use 1000 sample points). The interpolating VIPSS (λ = 0) is able to resolve the small gap

between two nearby fingers (see inserts) at this low sampling rate. A second example is in

Figure 4.1, where we further introduced random perturbation to each curve segment (by

maximally 5% of the longest dimension of the input) to simulate inaccuracies in free-hand 3D

sketches. Our method is able to create a smooth approximation of the Walrus at λ = 0.003.

103

Figure 4.13: VIPSS (λ = 0) vectors (b) and surface (c) for samples from an unstructured
sketch (a). The inserts take a closer look between the index and ring fingers (the line segments
in the insert of (b) indicate −g).

4.6 Conclusion and limitations

We describe a novel implicit surface definition (VIPSS) from unoriented point sets that

involves a single parameter (zero for exact interpolation), applies to any dimensions, and does

not require discretization. Reconstruction using the definition can be easily implemented

using standard linear algebra and optimization packages, and the results appear more robust

under sparse and non-uniform sampling than existing methods.

Limitations The main limitation of our method is its computational complexity (cubic

on the number of points). There are several promising directions that wish to pursue for

improving its scalability. Since the matrix M is the Gram matrix of inner products in a semi-

Hilbert space, low-rank approximation methods for such matrices [138, 55] can potentially

104

reduce the complexity of various matrix operations in this work. For large and dense point

sets, we may consider an incremental approach akin to [42] that starts with fitting a small

subset of points and then incrementally adds more points where the approximation errors are

large. Finally, we would like to find more efficient strategies to initialize the optimization

than the current offset-based method (Section 4.4.1), which requires multiple eigenvector

computations.

The robustness of VIPSS to sparse and non-uniform sampling raises the theoretical question

of what is the sampling condition under which VIPSS has guaranteed reconstruction quality

(geometrically and topologically). We would also like to explore how the current formulation

can be extended to reconstruct shapes with sharp (C0) features, such as man-made shapes.

105

Chapter 5

Conclusion and future work

In this dissertation, we aim at surface reconstruction from spatial curves, a fundamental

problem in computer graphics. We present novel solutions for pushing the limit of algorithms

for this task, tackling challenges resulted from the inherent ambiguity and noise of the curve

representation. While various methods have been developed, we extend the existing method

or contribute new algorithms allowing them to take the more general form of inputs, such as

multi-labeled input, or noisy curve.

We first extend Zou’s work, by introducing the first algorithm for reconstructing multi-labeled

material interfaces from cross-sectional curves while providing topological control of individual

labels. We define the interface set as a tool for systematically exploring material interfaces of

a variety of topologies. Beyond the specified application, this work introduces the concept of

topologically-controlled reconstruction into the multi-labeled domain. It also have potential

to work in problems of different scenarios, such as reconstruction from point cloud data and

fixing topological errors on existing material interfaces. In both cases, one can convert the

106

input in a vector function and potentially apply our method to explore local topological

variations in regions surrounding topological ambiguities.

The next two works aim at handling noisy inputs. The second work addresses the critical

gap between existing surfacing algorithms which require consistent cross-sectional curves

and practical inputs, by developing an algorithm for restoring consistency on non-parallel

cross-sections. We formulate the problem into a MIP on implicit functions and provide an

efficient optimization strategy. This work builds a bridge between existing algorithms that

reconstructs surfaces from cross-sections and the large amount of existing inconsistent data,

as well as other wide-spread tools used in medical communities.

The third work directly generates surfaces from noisy wire-frames. We propose the Variational

Implicit Point Set Surface that appear more robust under sparse and non-uniform point cloud

inputs, and it has exhibited remarkable performance on noisy hand-sketch spatial wire-frames.

We believe this work is the first successful attempt in surfacing wire-frames of various kind of

unexpected irregularities.

The first two works pave the path of reconstruction algorithms of cross-sectional curves for

handling inconsistent inputs and satisfying topological constraint simultaneously. However,

we should note that the planar structure and the information of inside/outside, which come

with the cross-sections, simplify the problem. The more challenging problem of how to impose

topological constraints on the reconstruction of noisy wire-frames, where there is no such

additional data, is still under examination. We believe this dissertation contributes a step

toward the final goal of controllable and robust algorithms on surface reconstruction of spatial

curves.

107

5.1 Future work

While good performance of the proposed methods has been exhibited in our experiments,

interesting venues for future research have also opened up. We briefly discuss several possible

directions here.

5.1.1 Analytical formulation of critical offsets

In the first work, we propose the interface set in multi-labeled domain as the counter part

of the well-known level set in 2-labeled domain. While thorough theoretical studies have

been made on the topological evolution of the level set as the level changes, the theoretical

analysis of topological variation of the interface set in the continuous setting, or equivalently,

the analytical formulation of critical offsets, demands further investigation. We are already

making progress in this direction, and our initial observation is that the criticality of interface

sets, like the Jacobi set [57], is linked to certain geometric degeneracy of gradients of the

scalar functions fi. We expect such observation to lead to practical and robust algorithms

for analyzing topological events in a piecewise linear interpolation.

5.1.2 Finer level topological control

Another direction for future extension is to offer topological controls at a finer level, such as

over the adjacency among labels (i.e., whether and how two labels touch). Note that two

material interfaces may share the same per-label topology (i.e., components and genus) but

differ in their adjacency. Take the 5-labeled input of Figure 5.1 (a) for example, the two

reconstructions in (c,d) both have genus-0 for each label but differ in how these labels touch

each other. In particular, while the interface between the blue and green labels in (d) forms a

108

continuous stripe, this interface is broken into several disconnected patches in (c) due to the

touching of the other two labels (purple and yellow). Controlling adjacency can be important

for applications (e.g., mesh simplification) that are sensitive to the non-manifold structure of

the material interface, in addition to the topology of individual labels.

As a simple example for controlling adjacency, we can modify our algorithm to minimize the

number of non-manifold junction points, where four or more labels meet (red balls in Figure

5.1 (c,d)), in addition to meeting the user-specified per-label topology constraints. This is

done by expanding our criticality criteria of active offsets to also check for changes in the

number of junction points (Section 2.3.2) and including the total number of junction points

on an interface set as part of its score (Section 2.4.1). The modification creates the result in

Figure 5.1 (d). We will continue to explore how our algorithm can be extended to offer more

extensive and precise controls over label adjacency.

5.1.3 Incremental framework for speeding up VIPSS

The computational complexity (cubic on the number of points) of VIPSS prohibits its

application on large point sets. A possible solution for improving the scalability is taking an

incremental approach akin to Carr et al. [42]. Given a large/dense point set, we start with

sampling a small subset of points uniformly or based on geometry of the point cloud, which

we call the chosen set. While a naive way is to directly build up the VIPSS only from the

chosen set, we can further consider the residual energy of remaining points as the norm of

interpolation values at those points simultaneously. Similar to how we deduce the energy

matrix in Eq. 4.9, using Eq.4.5, we can again represent the residual energy into a quadratic

term with g as variables, and then obtain the total energy by combining the residual energy

with Duchon’s energy of the chosen set. After getting the estimated normals on the chosen

set, we can add more points where the approximation errors are large. For updating the

109

Figure 5.1: Given a stack of 5-labeled slices (a) (only blue and green labels touch on each slice),
reconstruction with genus-0 constraint on each label produces multiple patches of interface
between the blue and green labels (c), whereas a further modification of the algorithm results
in a contiguous interface (d) satisfying the same topology constraints. In (c,d) we only show
the surfaces of the blue label colored by its adjacent labels, and junction curves and points
are shown as grey wires and red balls. The exterior surface of the reconstruction in (d) is
shown in (b).

matrix with the enlarged set of points, we can use block matrix inversion to quickly build

up the new energy matrix to avoid the expensive inverting operation, as well as utilize the

computed normals on previous chosen set for initialization to avoid the eigen decomposition.

We believe this framework can lead to a efficient computation of VIPSS on large point sets.

110

5.1.4 VIPSS for deforming points

The variational formulation of VIPSS in Duchon’s energy can be informally viewed as finding

the best set of unit normals upon the given point sets which leads to the lowest energy among

all possible normals. An interesting question is how the best set of normals changes as the

position of the point set changes, and can we predict the deviation of normals in an efficient

way. The related solution could be potentially applied to modeling deformation, especially

continuous deformation over time.

5.1.5 Topologically-controlled VIPSS

An algorithm that offers topological control over the reconstructed surface is always desirable.

While VIPSS generates high quality surfaces given only an un-oriented point set, the surface

with the lowest energy might not be the desired one that satisfies the prescribed topology.

Recently, Poulenard et al. [120] propose an approach for optimizing real-valued functions

based on a wide range of topological criteria. They found that the persistence diagrams

can be differentiated with respect to the changes in function values, and thus opens up the

possibility of topological optimization using continuous optimization techniques. This method

could be potentially applied or adjusted to VIPSS, since VIPSS generate a implicit real-value

function in the entire domain. It will be interesting to see how the change of the normals

and the parameters would change the topology of the underlying surface, and how to use

Poulenard’s method to extend VIPSS for taking topological constraints into account.

111

5.1.6 Learning-based method for surfacing

Deep learning has been proven to be a powerful tool for solving various vision and graphics

problem. While it is natural to formulate the task we are solving in this thesis as a building

a learning system, who takes a set of curves as input and reconstructs a surface that is best

described by these curves as output, there are several challenges whose solution might benefit

the deep learning community. For example, taking spatial curves as input or output of a deep

neural network has not been thoroughly studied and understood so far. Unlike other types

of 3D geometry (e.g., surfaces [105], volumes [156], multi-view projections [141], and point

cloud [122]) that have been used in deep neural networks, curves are particularly challenging

as they represent a highly non-uniform sampling of the shape: the sampling is dense along

the 1-dimensional curves, but non-existing away from these curves. It is not clear how well

existing network architectures can be adapted to curves, or whether new representations of

curves need to be developed for more effective learning. We are also interesting in directly

exploring the possibility of using implicit function as a representation of surfaces, where we

can predict the function value given any position in a continuous sense. Another interesting

direction is to study the utilization of the energy used in VIPSS as a regularization term or

even as main loss function, given the remarkable performance of using the energy in the third

work.

112

References

[1] Fatemeh Abbasinejad, Pushkar Joshi, and Nina Amenta. Surface patches from un-

organized space curves. In Proceedings of the Twenty-eighth Annual Symposium on

Computational Geometry, SoCG ’12, pages 417–418, New York, NY, USA, 2012. ACM.

[2] Fatemeh Abbasinejad, Pushkar Joshi, Cindy Grimm, Nina Amenta, and Lance Simons.

Surface patches for 3d sketching. In Proceedings of the International Symposium on

Sketch-Based Interfaces and Modeling, SBIM ’13, pages 53–60, New York, NY, USA,

2013. ACM.

[3] Hyung Taek Ahn and Mikhail Shashkov. Multi-material interface reconstruction on

generalized polyhedral meshes. J. Comput. Phys., 226(2):2096–2132, October 2007.

[4] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T Silva. Computing and rendering point set surfaces. IEEE Transactions on

visualization and computer graphics, 9(1):3–15, 2003.

[5] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. Voronoi-based variational

reconstruction of unoriented point sets. In Proceedings of the Fifth Eurographics

Symposium on Geometry Processing, SGP ’07, pages 39–48, 2007.

113

[6] Nina Amenta and Marshall Bern. Surface reconstruction by voronoi filtering. Discrete

& Computational Geometry, 22(4):481–504, 1999.

[7] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. In Proceedings

of the sixth ACM symposium on Solid modeling and applications, pages 249–266. ACM,

2001.

[8] Nina Amenta and Yong Joo Kil. Defining point-set surfaces. ACM Transactions on

Graphics (TOG), 23(3):264–270, 2004.

[9] J. C. Anderson, C. Garth, M. A. Duchaineau, and K. I. Joy. Smooth, volume-accurate

material interface reconstruction. IEEE Transactions on Visualization and Computer

Graphics, 16(5):802–814, 2010.

[10] John C. Anderson, Christoph Garth, Mark A. Duchaineau, and Ken Joy. Discrete

multi-material interface reconstruction for volume fraction data. Computer Graphics

Forum (Proc. of Eurographics/IEEE-VGTC Symposium on Visualization 2008), 27(3),

2008.

[11] Marco Attene, Marcel Campen, and Leif Kobbelt. Polygon mesh repairing: An

application perspective. ACM Comput. Surv., 45(2):15, 2013.

[12] Gill Barequet, Michael T. Goodrich, Aya Levi-Steiner, and Dvir Steiner. Straight-

skeleton based contour interpolation. Graph. Models, 65:323–350, 2004.

[13] Gill Barequet and Micha Sharir. Piecewise-linear interpolation between polygonal slices.

Computer Vision and Image Understanding, 63:251–272, 1996.

[14] Gill Barequet and Amir Vaxman. Nonlinear interpolation between slices. In SPM ’07:

Proceedings of the 2007 ACM symposium on Solid and physical modeling, pages 97–107,

2007.

114

[15] Gill Barequet and Amir Vaxman. Reconstruction of multi-label domains from partial

planar cross-sections. Comput. Graph. Forum, 28(5):1327–1337, 2009.

[16] Pierre-Louis Bazin and Dzung L. Pham. Topology-preserving tissue classification of

magnetic resonance brain images. IEEE Trans. Med. Imaging, 26(4):487–496, 2007.

[17] Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud,

Joshua A Levine, Andrei Sharf, and Claudio T Silva. A survey of surface reconstruction

from point clouds. Computer Graphics Forum, 36(1):301–329, 2017.

[18] Amit Bermano, Amir Vaxman, and Craig Gotsman. Online reconstruction of 3d objects

from arbitrary cross-sections. ACM Trans. Graph., 30(5):113:1–113:11, October 2011.

[19] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel

Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE transactions on

visualization and computer graphics, 5(4):349–359, 1999.

[20] Martin Bertram, Gerd Reis, Rolf H. van Lengen, Sascha Köhn, and Hans Hagen.

Non-manifold mesh extraction from time-varying segmented volumes used for modeling

a human heart. In Proceedings of the Seventh Joint Eurographics / IEEE VGTC

Conference on Visualization, EUROVIS’05, pages 199–206, 2005.

[21] Mikhail Bessmeltsev, Caoyu Wang, Alla Sheffer, and Karan Singh. Design-driven

quadrangulation of closed 3d curves. ACM Trans. Graph., 31(6):178:1–178:11, November

2012.

[22] Mikhail Bessmeltsev, Caoyu Wang, Alla Sheffer, and Karan Singh. Design-driven

quadrangulation of closed 3d curves. ACM Transactions on Graphics (TOG), 31(6):178,

2012.

115

[23] Jules Bloomenthal. Graphics gems iv. chapter An Implicit Surface Polygonizer, pages

324–349. 1994.

[24] Jules Bloomenthal and Chandrajit Bajaj. Introduction to implicit surfaces. Morgan

Kaufmann, 1997.

[25] Jules Bloomenthal and Brian Wyvill. Interactive techniques for implicit modeling.

ACM SIGGRAPH Computer Graphics, 24(2):109–116, 1990.

[26] Jean-Daniel Boissonnat. Shape reconstruction from planar cross sections. Comput.

Vision Graph. Image Process., 44(1):1–29, 1988.

[27] Jean-Daniel Boissonnat and Frédéric Cazals. Smooth surface reconstruction via natural

neighbour interpolation of distance functions. Computational Geometry, 22(1-3):185–203,

2002.

[28] Jean-Daniel Boissonnat and Pooran Memari. Shape reconstruction from unorganized

cross-sections. In SGP ’07: Proceedings of the fifth Eurographics symposium on Geometry

processing, pages 89–98, 2007.

[29] Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing of

surfaces. Graph. Models, 67(5):405–451, September 2005.

[30] Dobrina Boltcheva, Mariette Yvinec, and Jean-Daniel Boissonnat. Feature preserving

delaunay mesh generation from 3d multi-material images. Comput. Graph. Forum,

28(5):1455–1464, 2009.

[31] Kathleen S. Bonnell, Mark A. Duchaineau, Daniel Schikore, Bernd Hamann, and

Kenneth I. Joy. Material interface reconstruction. IEEE Trans. Vis. Comput. Graph.,

9(4):500–511, 2003.

116

[32] Mario Botsch and Olga Sorkine. On linear variational surface deformation methods.

IEEE transactions on visualization and computer graphics, 14(1):213–230, 2008.

[33] Alexandre Boulch and Renaud Marlet. Fast and Robust Normal Estimation for Point

Clouds with Sharp Features. Computer Graphics Forum, 2012.

[34] Alexandre Boulch and Renaud Marlet. Deep Learning for Robust Normal Estimation

in Unstructured Point Clouds. Computer Graphics Forum, 2016.

[35] Kenneth A. Brakke. The surface evolver. Experiment. Math., 1(2):141–165, 1992.

[36] E Brazil, Ives Macedo, M Costa Sousa, Luiz Henrique de Figueiredo, and Luiz Velho.

Sketching variational hermite-rbf implicits. In Proceedings of the Seventh Sketch-Based

Interfaces and Modeling Symposium, pages 1–8. Eurographics Association, 2010.

[37] David E Breen and Ross T Whitaker. A level-set approach for the metamorphosis of

solid models. IEEE Transactions on Visualization and Computer Graphics, 7(2):173–192,

2001.

[38] Jonathan R. Bronson, Joshua A. Levine, and Ross T. Whitaker. Lattice cleaving:

A multimaterial tetrahedral meshing algorithm with guarantees. IEEE Trans. Vis.

Comput. Graph., 20(2):223–237, 2014.

[39] Martin D Buhmann. Radial basis functions: theory and implementations, volume 12.

Cambridge university press, 2003.

[40] Hamish Carr and David J. Duke. Joint contour nets. IEEE Trans. Vis. Comput. Graph.,

20(8):1100–1113, 2014.

[41] Hamish Carr, Zhao Geng, Julien Tierny, Amit Chattopadhyay, and Aaron Knoll.

Fiber surfaces: Generalizing isosurfaces to bivariate data. Comput. Graph. Forum,

34(3):241–250, 2015.

117

[42] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard

Fright, Bruce C McCallum, and Tim R Evans. Reconstruction and representation of

3d objects with radial basis functions. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 67–76. ACM, 2001.

[43] F. Cazals and M. Pouget. Estimating differential quantities using polynomial fitting of

osculating jets. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium

on Geometry Processing, SGP ’03, pages 177–187, 2003.

[44] Daniel Cohen-Or, Amira Solomovic, and David Levin. Three-dimensional distance field

metamorphosis. ACM Transactions on Graphics (TOG), 17(2):116–141, 1998.

[45] Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. Efficient and flexible

sampling with blue noise properties of triangular meshes. IEEE Transactions on

Visualization and Computer Graphics, 18(6):914–924, 2012.

[46] Fang Da, Christopher Batty, and Eitan Grinspun. Multimaterial mesh-based surface

tracking. ACM Trans. Graph., 33(4):112:1–112:11, July 2014.

[47] Mathieu Desbrun and Marie-Paule Gascuel. Animating soft substances with implicit

surfaces. In Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques, pages 287–290. ACM, 1995.

[48] Tamal K Dey. Curve and surface reconstruction: algorithms with mathematical analysis,

volume 23. Cambridge University Press, 2006.

[49] Tamal K Dey and Samrat Goswami. Tight cocone: a water-tight surface reconstructor.

Journal of Computing and Information Science in Engineering, 3(4):302–307, 2003.

118

[50] Tamal K. Dey and Samrat Goswami. Provable surface reconstruction from noisy

samples. In Proceedings of the 20th ACM Symposium on Computational Geometry,

Brooklyn, New York, USA, June 8-11, 2004, pages 330–339, 2004.

[51] Tamal K. Dey, Firdaus Janoos, and Joshua A. Levine. Meshing interfaces of multi-label

data with delaunay refinement. Eng. Comput. (Lond.), 28(1):71–82, 2012.

[52] Tamal K Dey and Jian Sun. An adaptive mls surface for reconstruction with guarantees.

In Symposium on Geometry processing, pages 43–52, 2005.

[53] Scott Dillard, Dan Thoma, Bernd Hamann, and John Bingert. Construction of simplified

boundary surfaces from serial-sectioned metal micrographs. IEEE Transactions on

Visualization & Computer Graphics, 13(undefined):1528–1535, 2007.

[54] Huong Quynh Dinh, Greg Turk, and Greg Slabaugh. Reconstructing surfaces by

volumetric regularization using radial basis functions. IEEE transactions on pattern

analysis and machine intelligence, 24(10):1358–1371, 2002.

[55] Petros Drineas and Michael W. Mahoney. On the nyström method for approximating a

gram matrix for improved kernel-based learning. J. Mach. Learn. Res., 6:2153–2175,

December 2005.

[56] Jean Duchon. Splines minimizing rotation-invariant semi-norms in sobolev spaces. In

Constructive theory of functions of several variables, pages 85–100. Springer, 1977.

[57] H. Edelsbrunner and J. Harer. Jacobi sets of multiple morse functions. In Foundations

in Computational Mathematics, pages 37–57. Cambridge University Press, 2002.

[58] Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction.

American Mathematical Society, 2009.

119

[59] Noura Faraj, Jean-Marc Thiery, and Tamy Boubekeur. Multi-material adaptive volume

remesher. Comput. Graph., 58(C):150–160, August 2016.

[60] Powei Feng, Tao Ju, and Joe D. Warren. Piecewise tri-linear contouring for multi-

material volumes. In Advances in Geometric Modeling and Processing, 6th International

Conference, GMP 2010, Castro Urdiales, Spain, June 16-18, 2010. Proceedings, pages

43–56, 2010.

[61] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T Silva. Robust moving least-squares

fitting with sharp features. ACM transactions on graphics (TOG), 24(3):544–552, 2005.

[62] H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction from planar

contours. Commun. ACM, 20(10):693–702, 1977.

[63] Yotam I. Gingold and Denis Zorin. Controlled-topology filtering. In Proceedings of

the Tenth ACM Symposium on Solid and Physical Modeling 2006, Cardiff University,

Wales, UK, June 6-8, 2006, pages 53–61, 2006.

[64] Simon Giraudot, David Cohen-Steiner, and Pierre Alliez. Noise-adaptive shape recon-

struction from raw point sets. In Proceedings of the Eleventh Eurographics/ACMSIG-

GRAPH Symposium on Geometry Processing, pages 229–238. Eurographics Association,

2013.

[65] Cindy Grimm and Pushkar Joshi. Just drawit: A 3d sketching system. In Proceedings

of the International Symposium on Sketch-Based Interfaces and Modeling, SBIM ’12,

pages 121–130, 2012.

[66] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. ACM Transactions

on Graphics (TOG), 26(3):23, 2007.

120

[67] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. PCPNet: Learning

local shape properties from raw point clouds. Computer Graphics Forum, 37(2):75–85,

2018.

[68] David Günther, Alec Jacobson, Jan Reininghaus, Hans-Peter Seidel, Olga Sorkine-

Hornung, and Tino Weinkauf. Fast and memory-efficienty topological denoising of 2d

and 3d scalar fields. IEEE Trans. Vis. Comput. Graph., 20(12):2585–2594, 2014.

[69] M. Haitham Shammaa, Yutaka Ohtake, and Hiromasa Suzuki. Segmentation of multi-

material ct data of mechanical parts for extracting boundary surfaces. Comput. Aided

Des., 42(2):118–128, February 2010.

[70] Frank Heckel, Olaf Konrad, Horst Karl Hahn, and Heinz-Otto Peitgen. Interactive 3d

medical image segmentation with energy-minimizing implicit functions. Computers &

Graphics, 35(2):275–287, 2011.

[71] Michelle Holloway, Cindy Grimm, and Tao Ju. Template-based surface reconstruction

from cross-sections. Computers & Graphics, 58:84–91, 2016.

[72] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.

Surface reconstruction from unorganized points, volume 26. ACM, 1992.

[73] Alexander Hornung and Leif Kobbelt. Robust reconstruction of watertight 3 d models

from non-uniformly sampled point clouds without normal information. In Symposium

on geometry processing, pages 41–50. Citeseer, 2006.

[74] Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. Consolidation of un-

organized point clouds for surface reconstruction. ACM Trans. Graph., 28(5):176:1–176:7,

December 2009.

121

[75] Z. Y. Huang, M. Holloway, N. Carr, and T. Ju. Repairing inconsistent curve networks

on non-parallel cross-sections. Computer Graphics Forum, 37(2):25–35, 2018.

[76] Zhiyang Huang and Tao Ju. Extrinsically smooth direction fields. Comput. Graph.,

58(C):109–117, August 2016.

[77] Zhiyang Huang, Ming Zou, Nathan Carr, and Tao Ju. Topology-controlled reconstruc-

tion of multi-labelled domains from cross-sections. ACM Transactions on Graphics

(TOG), 36(4):76, 2017.

[78] John F Hughes. Scheduled fourier volume morphing. In ACM SIGGRAPH Computer

Graphics, volume 26, pages 43–46. ACM, 1992.

[79] Takashi Ijiri, Shin Yoshizawa, Yu Sato, Masaaki Ito, and Hideo Yokota. Bilateral

Hermite Radial Basis Functions for Contour-based Volume Segmentation. Computer

Graphics Forum, 32(2):123–132, 2013. Proc. of EUROGRAPHICS’13.

[80] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. Instant

field-aligned meshes. ACM Trans. Graph., 34(6):189:1–189:15, October 2015.

[81] Tao Ju, Frank Losasso, Scott Schaefer, and Joe D. Warren. Dual contouring of hermite

data. ACM Trans. Graph., 21(3):339–346, 2002.

[82] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed triangular

meshes. In ACM Transactions on Graphics (TOG), volume 24, pages 561–566. ACM,

2005.

[83] Tao Ju, Qian-Yi Zhou, and Shi-Min Hu. Editing the topology of 3d models by sketching.

ACM Trans. Graph., 26(3), July 2007.

122

[84] Olga Karpenko, John F Hughes, and Ramesh Raskar. Free-form sketching with

variational implicit surfaces. In Computer Graphics Forum, volume 21, pages 585–594.

Wiley Online Library, 2002.

[85] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction.

In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP

’06, pages 61–70, 2006.

[86] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM

Transactions on Graphics (ToG), 32(3):29, 2013.

[87] E. Keppel. Approximating complex surfaces by triangulation of contour lines. IBM

Journal of Research and Development, 19(1):2–11, 1975.

[88] Byungmoon Kim. Multi-phase fluid simulations using regional level sets. ACM Trans.

Graph., 29(6):175:1–175:8, December 2010.

[89] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Globally optimal

direction fields. ACM Trans. Graph., 32(4):59:1–59:10, July 2013.

[90] Ravikrishna Kolluri. Provably good moving least squares. ACM Transactions on

Algorithms (TALG), 4(2):18, 2008.

[91] Sören König and Stefan Gumhold. Consistent propagation of normal orientations in

point clouds. In VMV, 2009.

[92] David Levin. Mesh-independent surface interpolation. In Geometric modeling for

scientific visualization, pages 37–49. Springer, 2004.

[93] Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang, and Jin Shiyao.

Robust normal estimation for point clouds with sharp features. Computers & Graphics,

34(2):94–106, 2010.

123

[94] Lu Liu, C. Bajaj, Joseph Deasy, Daniel A. Low, and Tao Ju. Surface reconstruction

from non-parallel curve networks. Comput. Graph. Forum, 27(2):155–163, 2008.

[95] Shengjun Liu, Charlie C.L. Wang, Guido Brunnett, and Jun Wang. A closed-form

formulation of hrbf-based surface reconstruction by approximate solution. Comput.

Aided Des., 78(C):147–157, September 2016.

[96] Xiuping Liu, Jie Zhang, Junjie Cao, Bo Li, and Ligang Liu. Quality point cloud normal

estimation by guided least squares representation. Comput. Graph., 51(C):106–116,

October 2015.

[97] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. Multiple interacting

liquids. ACM Trans. Graph., 25(3):812–819, July 2006.

[98] Nadia Magnenat-Thalmann, Richard Laperrire, and Daniel Thalmann. Joint-dependent

local deformations for hand animation and object grasping. In In Proceedings on

Graphics interface?88. Citeseer, 1988.

[99] Josiah Manson, Guergana Petrova, and Scott Schaefer. Streaming surface reconstruction

using wavelets. Computer Graphics Forum, 27(5):1411–1420, 2008.

[100] Quentin Merigot, Maks Ovsjanikov, and Leonidas J. Guibas. Voronoi-based curvature

and feature estimation from point clouds. IEEE Transactions on Visualization and

Computer Graphics, 17(6):743–756, June 2011.

[101] Miriah D. Meyer, Ross T. Whitaker, Robert M. Kirby, Christian Ledergerber, and

Hanspeter Pfister. Particle-based sampling and meshing of surfaces in multimaterial

volumes. IEEE Trans. Vis. Comput. Graph., 14(6):1539–1546, 2008.

[102] J. Milnor. Morse Theory. Princeton Univ. Press, New Jersey, 1963.

124

[103] Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. Non-

manifold level sets: A multivalued implicit surface representation with applications to

self-collision processing. ACM Trans. Graph., 34(6):247:1–247:9, October 2015.

[104] N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals in noisy point

cloud data. In special issue of International Journal of Computational Geometry and

Applications, volume 14, pages 261–276, 2004.

[105] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,

and Michael M. Bronstein. Geometric deep learning on graphs and manifolds using

mixture model cnns. CoRR, abs/1611.08402, 2016.

[106] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian. Interpolating

implicit surfaces from scattered surface data using compactly supported radial basis

functions. In Proceedings International Conference on Shape Modeling and Applications,

pages 89–98, 2001.

[107] Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-Steiner, and

Pierre Alliez. Signing the unsigned: Robust surface reconstruction from raw pointsets.

Computer Graphics Forum, 29(5):1733–1741, 2010.

[108] Fakir S. Nooruddin and Greg Turk. Simplification and repair of polygonal models using

volumetric techniques. IEEE Trans. Vis. Comput. Graph., 9(2):191–205, 2003.

[109] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel.

Multi-level partition of unity implicits. In ACM Transactions on Graphics (TOG),

volume 22, pages 463–470. ACM, 2003.

[110] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. A multi-scale approach to

3d scattered data interpolation with compactly supported basis functions. In Shape

Modeling International, 2003, pages 153–161. IEEE, 2003.

125

[111] J-M. Oliva, M. Perrin, and S. Coquillart. 3d reconstruction of complex polyhedral

shapes from contours using a simplified generalized voronoi diagram. Computer Graphics

Forum, 15(3):397–408, 1996.

[112] A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. Feature preserving point set

surfaces based on non-linear kernel regression. Computer Graphics Forum, 28(2):493–501,

2009.

[113] Hao Pan, Yang Liu, Alla Sheffer, Nicholas Vining, Chang-Jian Li, and Wenping Wang.

Flow aligned surfacing of curve networks. ACM Trans. Graph., 34(4):127:1–127:10,

July 2015.

[114] Hao Pan, Yang Liu, Alla Sheffer, Nicholas Vining, Changjian Li, and Wenping Wang.

Flow aligned surfacing of curve networks. ACM Trans. Graph. (SIGGRAPH), 34(4),

2015.

[115] Rongjiang Pan and Vaclav Skala. Surface reconstruction with higher-order smoothness.

The Visual Computer, 28(2):155–162, 2012.

[116] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross. Shape modeling with

point-sampled geometry. ACM Trans. Graph., 22(3):641–650, July 2003.

[117] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their

conjugates. EXPERIMENTAL MATHEMATICS, 2:15–36, 1993.

[118] Jean-Philippe Pons, Florent Ségonne, Jean-Daniel Boissonnat, Laurent Rineau, Mariette

Yvinec, and Renaud Keriven. High-Quality Consistent Meshing of Multi-Label Datasets.

In International Conference on Information Processing in Medical Imaging 2007, page

200, Netherlands, 2007.

126

[119] Roi Poranne, Craig Gotsman, and Daniel Keren. 3d surface reconstruction using

a generalized distance function. In Computer Graphics Forum, volume 29, pages

2479–2491. Wiley Online Library, 2010.

[120] Adrien Poulenard, Primoz Skraba, and Maks Ovsjanikov. Topological function opti-

mization for continuous shape matching. In Computer Graphics Forum, volume 37,

pages 13–25. Wiley Online Library, 2018.

[121] Vaughan Pratt. Direct least-squares fitting of algebraic surfaces. In Proceedings of the

14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’87, pages 145–152, 1987.

[122] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. CoRR, abs/1612.00593,

2016.

[123] Jin Qian and Yongjie Zhang. Dual contouring for domains with topology ambiguity. In

Proceedings of the 20th International Meshing Roundtable, IMR 2011, October 23-26,

2011, Paris, France, pages 41–60, 2011.

[124] M. Samozino, M. Alexa, P. Alliez, and M. Yvinec. Reconstruction with voronoi

centered radial basis functions. In Proceedings of the Fourth Eurographics Symposium

on Geometry Processing, pages 51–60, 2006.

[125] R. I. Saye. An algorithm to mesh interconnected surfaces via the voronoi interface.

Eng. with Comput., 31(1):123–139, January 2015.

[126] Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation using moving least

squares. In ACM transactions on graphics (TOG), volume 25, pages 533–540. ACM,

2006.

127

[127] Nico Schertler, Bogdan Savchynskyy, and Stefan Gumhold. Towards globally optimal

normal orientations for large point clouds. Comput. Graph. Forum, 36(1):197–208,

January 2017.

[128] Ryan Schmidt, Brian Wyvill, and Eric Galin. Interactive implicit modeling with

hierarchical spatial caching. In Shape Modeling and Applications, 2005 International

Conference, pages 104–113. IEEE, 2005.

[129] Ryan Schmidt, Brian Wyvill, Mario Costa Sousa, and Joaquim A Jorge. Shapeshop:

Sketch-based solid modeling with blobtrees. In ACM SIGGRAPH 2007 courses, page 43.

ACM, 2007.

[130] Bernhard Schölkopf, Joachim Giesen, and Simon Spalinger. Kernel methods for implicit

surface modeling. In Proceedings of the 17th International Conference on Neural

Information Processing Systems, NIPS’04, pages 1193–1200, 2004.

[131] Thomas W Sederberg and Scott R Parry. Free-form deformation of solid geometric

models. ACM SIGGRAPH computer graphics, 20(4):151–160, 1986.

[132] James Albert Sethian. Level set methods and fast marching methods: evolving interfaces

in computational geometry, fluid mechanics, computer vision, and materials science,

volume 3. Cambridge university press, 1999.

[133] Andrei Sharf, Thomas Lewiner, Ariel Shamir, Leif Kobbelt, and Daniel Cohen-Or.

Competing fronts for coarse–to–fine surface reconstruction. In Eurographics, pages

389–398, Vienna, september 2006.

[134] Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan Toledo, and Daniel Cohen-Or.

Interactive topology-aware surface reconstruction. ACM Trans. Graph., 26(3), July

2007.

128

[135] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating and ap-

proximating implicit surfaces from polygon soup. ACM Trans. Graph., 23(3):896–904,

August 2004.

[136] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator and

delaunay triangulator. In Applied computational geometry towards geometric engineering,

pages 203–222. Springer, 1996.

[137] Hang Si. TetGen. a quality tetrahedral mesh generator and three-dimensional delaunay

triangulator., 2007.

[138] Alex J. Smola and Bernhard Schökopf. Sparse greedy matrix approximation for

machine learning. In Proceedings of the Seventeenth International Conference on

Machine Learning, ICML ’00, pages 911–918, 2000.

[139] Tibor Stanko, Stefanie Hahmann, Georges-Pierre Bonneau, and Nathalie Saguin-

Sprynski. Surfacing curve networks with normal control. Computers & Graphics,

60:1–8, 2016.

[140] Florian Steinke, Bernhard Schölkopf, and Volker Blanz. Support vector machines for

3d shape processing. Computer Graphics Forum, 24(3):285–294, 2005.

[141] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-

view convolutional neural networks for 3d shape recognition. CoRR, abs/1505.00880,

2015.

[142] Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of

the 22nd annual conference on Computer graphics and interactive techniques, pages

351–358. ACM, 1995.

129

[143] Gabriel Taubin. Smooth signed distance surface reconstruction and applications. In

Iberoamerican Congress on Pattern Recognition, pages 38–45. Springer, 2012.

[144] Julien Tierny and Hamish Carr. Jacobi fiber surfaces for bivariate reeb space computa-

tion. IEEE Trans. Vis. Comput. Graph., 23(1):960–969, 2017.

[145] Richard Tsai, Stanley Osher, et al. Level set methods and their applications in image

science. Communications in Mathematical Sciences, 1(4):1–20, 2003.

[146] Greg Turk and James F. O’Brien. Shape transformation using variational implicit

functions. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Com-

puter graphics and interactive techniques, pages 335–342. ACM Press/Addison-Wesley

Publishing Co., 1999.

[147] Greg Turk and James F. O’Brien. Shape transformation using variational implicit

functions. In Proceedings of the 26th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’99, pages 335–342, 1999.

[148] Greg Turk and James F O’brien. Modelling with implicit surfaces that interpolate.

ACM Transactions on Graphics (TOG), 21(4):855–873, 2002.

[149] Greg Turk and James F. O’Brien. Modelling with implicit surfaces that interpolate.

ACM Trans. Graph., 21(4):855–873, October 2002.

[150] Greg Turk and James F O’brien. Shape transformation using variational implicit

functions. In ACM SIGGRAPH 2005 Courses, page 13. ACM, 2005.

[151] J. Waggoner, Y. Zhou, J. Simmons, M. D. Graef, and S. Wang. Topology-preserving

multi-label image segmentation. In 2015 IEEE Winter Conference on Applications of

Computer Vision, pages 1084–1091, 2015.

130

[152] C. Walder, O. Chapelle, and B. Schölkopf. Implicit surface modelling as an eigenvalue

problem. In Proceedings of the 22nd International Conference on Machine Learning,

pages 937–944. ACM, 2005.

[153] Christian Walder, Olivier Chapelle, and Bernhard Schölkopf. Implicit surfaces with

globally regularised and compactly supported basis functions. In Advances in Neural

Information Processing Systems, pages 273–280, 2007.

[154] Jun Wang, Zhouwang Yang, and Falai Chen. A variational model for normal computa-

tion of point clouds. The Visual Computer, 28:163–174, 2011.

[155] Holger Wendland. Scattered data approximation, volume 17. Cambridge university

press, 2004.

[156] Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and Jianxiong Xiao.

3d shapenets for 2.5d object recognition and next-best-view prediction. CoRR,

abs/1406.5670, 2014.

[157] Hui Xie, Jianning Wang, Jing Hua, Hong Qin, and Arie E. Kaufman. Piecewise

C1 continuous surface reconstruction of noisy point cloud via local implicit quadric

regression. In 14th IEEE Visualization 2003 Conference, VIS 2003, Seattle, WA, USA,

October 19-24, 2003, pages 91–98, 2003.

[158] Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan

Singh. True2form: 3d curve networks from 2d sketches via selective regularization.

ACM Trans. Graph., 33(4):131:1–131:13, July 2014.

[159] Kangxue Yin, Hui Huang, Hao Zhang, Minglun Gong, Daniel Cohen-Or, and Baoquan

Chen. Morfit: Interactive surface reconstruction from incomplete point clouds with

curve-driven topology and geometry control. ACM Trans. Graph., 33(6):202:1–202:12,

November 2014.

131

[160] Zhan Yuan, Yizhou Yu, and Wenping Wang. Object-space multiphase implicit functions.

ACM Trans. Graph., 31(4):114:1–114:10, July 2012.

[161] Yun Zeng, Dimitris Samaras, Wei Chen, and Qunsheng Peng. Topology cuts: A

novel min-cut/max-flow algorithm for topology preserving segmentation in N-D images.

Computer Vision and Image Understanding, 112(1):81–90, 2008.

[162] Yongjie Zhang, Thomas J. R. Hughes, and Chandrajit L. Bajaj. Automatic 3d mesh

generation for a domain with multiple materials. In Proceedings of the 16th International

Meshing Roundtable, October 14-17, 2007, Seattle, Washington, USA, Proceedings,

pages 367–386, 2007.

[163] Hong-Kai Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach

to multiphase motion. Journal of Computational Physics, 127(1):179 – 195, 1996.

[164] Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. Simulation of bubbles. In Proceedings

of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA

’06, pages 325–333, 2006.

[165] Yixin Zhuang, Ming Zou, Nathan Carr, and Tao Ju. A general and efficient method for

finding cycles in 3d curve networks. ACM Trans. Graph., 32(6):180:1–180:10, November

2013.

[166] Ming Zou, Michelle Holloway, Nathan Carr, and Tao Ju. Topology-constrained surface

reconstruction from cross-sections. ACM Trans. Graph., 34(4):128, 2015.

132

Appendix A

Properties of VIPSS

We show that the VIPSS satisfies a few basic properties that are desirable for surface

reconstruction.

A.1 Exact interpolation

It is easy to see that the VIPSS interpolates all the input points when λ = 0. In this case,

s = 0 by (4.11), which implies that the Duchon’s interpolant fs,g is precisely zero at each xi.

Note that, since the fitting is exact, the optimization problem (4.1) in the general definition

of VIPSS reduces to a parameter-free form:

Minimizes: E(f)

Subject to: ‖Df(xi)‖ = 1, f(xi) = 0, ∀i

[133]

A.2 Linear reproduction

Since Duchon’s energy is 2nd-order, the VIPSS reproduces linear geometry. Specifically,

suppose that xi span a (d− 1)-dimensional hyperplane in Rd (e.g., a line in 2D or a plane in

3D). Such hyperplane can be defined as the zero-level set of some linear function f , which has

vanishing objective in (4.1). By choosing the f with a unit gradient, we have found a solution

to the variational problem of (4.1), whose zero-level set (the VIPSS) is the hyperplane.

A.3 Commutativity with similarity transformations

Ideally, a reconstruction method should be invariant to the change of the coordinate system.

In other words, the reconstruction operator should commute with similarity transformations

(e.g., translation, rotation, and uniform scaling): reconstructing from the transformed points

should be equivalent to transforming the reconstruction from the original points.

Commutativity to isometry (translations and rotations) is a direct consequence of the

invariance of Duchon’s energy to isometry. Consider a set of transformed points ~xi = T (xi)

where T is an isometry. For any function f , the objective in (4.1) with respect to the original

points xi is the same as the objective of the transformed function f̃(x) = f(T−1(x)) with

respect to the transformed points ~xi. Since gradient magnitudes are preserved under isometry,

we conclude that, if f is the solution to (4.1) for xi, f̃ must be the solution for ~xi.

Duchon’s energy is not invariant to uniform scaling, but is multiplied by some power of the

scale. To ensure that the VIPSS commutes with scaling, the value of λ needs to be properly

scaled with the input points. As the next proposition shows, λ should scale cubically with

the data size.

[134]

Proposition 3. Let f be the solution to (4.1) using Duchon’s energy for a given point set xi

and λ, and w > 0. Then f̃(x) = wf(x/w) is the solution for points ~xi = wxi (i = 1, . . . , n)

and λ̃ = w3λ.

Proof. In the following, we use symbol ˜ for quantities involving the transformed points ~xi.

We first note that

φ(wx, wy) = w3φ(x,y)

D0,1φ(wx, wy) = w2D0,1φ(x,y)

D1,1φ(wx, wy) = wD1,1φ(x,y)

Hence matrix Ã in (4.5) for ~xi is related to A for xi by

Ã = w−3 W A W

where W is a diagonal matrix whose diagonal consists of n of w3, dn of w2, d of w, and a

single 1, in order. The inverse W−1 is also a diagonal matrix, whose diagonal consists of n

of w−3, dn of w−2, d of w−1, and a single 1, in order. Thus we have the following relation

between the inverses, Ã−1 and A−1,

Ã−1 = w3 W−1 A−1 W−1

and the relations between the sub-matrices,

J̃00 = w−3 J00, J̃01 = w−2 J01, J̃11 = w−1 J11

Substituting the above into (4.10) and noting that λ̃ = w3λ yields

H̃ = w−1H

[135]

Therefore, if g minimizes gTHg, then it also minimizes gT H̃g. For notational consistency,

we denote ~g = g. By (4.11), we have ~s = ws. As a result,

~a

~b

~c

d̃

= Ã−1

~s

~g

0

0

= w−3W−1A−1W−1

ws

g

0

0

=

w−2a

w−1b

c

wd

Substituting the above into the definition of Duchon’s interpolant (4.4) yields f~s,~g(x) =

wfs,g(x/w). This proves the proposition, because fs,g and f~s,~g are the solutions to (4.1) for

inputs {x, λ} and {~x, λ̃}, respectively, due to Proposition 1.

The above proposition implies that the VIPSS of the scaled points (zero-level set of f̃) is the

VIPSS of the original points (zero-level set of f) scaled by the same factor w. In summary,

the VIPSS undergoes the same similarity transformation with the input data, as long as

parameter λ is multiplied by the cubic power of the scaling factor whenever uniform scaling

is involved.

[136]

Vita
Zhiyang Huang

Degrees B.S. Electronic Engineering and Information Science, University of
Science and Technology of China, June 2014
Ph.D. Computer Science, Washington University in St. Louis, May
2019

Publications Zhiyang Huang, Nathan Carr, Tao Ju. Variational Implicit Point
Set Surfaces. Accepted to ACM SIGGRAPH 2019.

Zhiyang Huang, Michelle Holloway, Nathan Carr, Tao Ju. Repairing
Inconsistent Curve Networks on Non-parallel Cross-sections.
Computer Graphics Forum (Proc. Eurographics 2018).

Roee Lazar, Nadav Dym, Yam Kushinksy. Zhiyang Huang, Tao Ju,
Yaron Lipman. Robust Optimization for Topological Surface
Reconstruction. ACM Transactions on Graphics (Proc. ACM
SIGGRAPH 2018).

Zhiyang Huang, Ming Zou, Nathan Carr, Tao Ju. Topology-controlled
Reconstruction of Multi-labelled Domains from Cross-sections.
ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2017).

Zhiyang Huang, Tao Ju. Extrinsically smooth direction field.
Computers & Graphics (58) (Shape Modeling International 2016).

May 2019

[137]

	Toward Controllable and Robust Surface Reconstruction from Spatial Curves
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 Reconstruction from cross-sections
	1.2 Reconstruction from wire-frames
	1.3 Overview

	Chapter 2: Topology-controlled Reconstruction of Multi-labelled Domains from Cross-sections
	2.1 Introduction
	2.2 Related works
	2.2.1 Modeling multi-labeled domains
	2.2.2 Topology-aware modeling of two-labeled domains

	2.3 Interface sets
	2.3.1 Definition and properties
	2.3.2 Discrete topological variations

	2.4 Reconstruction algorithm
	2.4.1 Enumeration
	2.4.2 Selection

	2.5 User interaction
	2.6 Results
	2.6.1 Performance

	2.7 Conclusion and discussion
	2.7.1 Limitations

	Chapter 3: Repairing Inconsistent Curve Networks on Non-parallel Cross-sections
	3.1 Introduction
	3.2 Relate work
	3.3 Problem formulation
	3.3.1 Implicit representation
	3.3.2 Deformation energy
	3.3.3 Optimization formulation

	3.4 Optimization
	3.4.1 Initial labels
	3.4.2 Updating labels

	3.5 Experimental results
	3.6 Conclusion and discussion

	Chapter 4: Variational Implicit Point Set Surfaces
	4.1 Introduction
	4.2 Related Works
	4.2.1 Surface reconstruction from points
	4.2.2 Normal estimation

	4.3 Definition
	4.3.1 A general definition
	4.3.2 Duchon's energy
	4.3.3 Definition using Duchon's energy

	4.4 Implementation
	4.4.1 Initializing the optimization
	4.4.2 Complexity analysis

	4.5 Experiments
	4.5.1 Results
	4.5.2 Comparisons
	4.5.3 Performance
	4.5.4 Application: sketch surfacing

	4.6 Conclusion and limitations

	Chapter 5: Conclusion and future work
	5.1 Future work
	5.1.1 Analytical formulation of critical offsets
	5.1.2 Finer level topological control
	5.1.3 Incremental framework for speeding up VIPSS
	5.1.4 VIPSS for deforming points
	5.1.5 Topologically-controlled VIPSS
	5.1.6 Learning-based method for surfacing

	References
	Appendix A: Properties of VIPSS
	A.1 Exact interpolation
	A.2 Linear reproduction
	A.3 Commutativity with similarity transformations

