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ABSTRACT OF THE DISSERTATION 

Wheelchair Training Program for New Manual Wheelchair Users 

by 

Kerri Ann Morgan 

Doctor of Philosophy in Movement Science 

Washington University in St. Louis, 2015 

Jack R. Engsberg, Chair 

 

Manual wheelchairs are commonly used for everyday mobility among people with lower 

limb impairments, including persons with spinal cord injury (SCI). Manual wheelchair users 

often experience pain and chronic overuse injuries in their upper extremities, limiting their 

mobility and their ability to complete daily activities. The repetitive trauma of propelling a 

wheelchair may be a contributing factor to upper extremity pain and injury. The anatomy of the 

upper extremities is not designed for the number of repetitions and the amount of force involved 

in everyday wheelchair propulsion. Research has been conducted to identify recommendations 

for decreasing the number of repetitions and the amount of force involved with manual 

wheelchair propulsion; however, training on how to use a wheelchair, specifically propulsion 

training, is often not implemented during rehabilitation. Important steps in identifying strategies 

for teaching wheelchair propulsion and skills include exploring devices for training, 

understanding health care professional and wheelchair user perspectives of wheelchair training, 

and training based on motor learning approaches. Therefore, the overall goal of this project was 

to further explore methodology for training of new manual wheelchair users. To this end, we 

conducted three studies (Chapters 2–4).  

In study 1 (Chapter 2), we tested a wheelchair dynamometer roller system, the WheelMill 

System (WMS), on its use in simulating different surfaces (i.e., overground and ramps) and 

assessing propulsion variables that can be used for training new wheelchair users. We identified 

that the WMS has the ability to accurately simulate flat overground movement; however, the 
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accuracy of the WMS was poor in simulation of ramps. Modifications to the software model and 

the addition of visual feedback may improve the accuracy of the simulation of ramps. The WMS 

was accurate in the quantification of biomechanical propulsion variables. 

In study 2 (Chapter 3), we identified perspectives of health care professionals and manual 

wheelchair users to assist in prioritizing the focus of wheelchair skills training of new manual 

wheelchair users. During focus groups, health care professionals and manual wheelchair users 

discussed if and how wheelchair propulsion biomechanics were taught and important skills that 

should be included in training. Results indicate that propulsion biomechanics were introduced 

but not addressed in detail. Important training components discussed include propulsion 

techniques, transfers in an out of the wheelchair, providing maintenance to the wheelchair, and 

navigating barriers such as curbs, ramps, and rough terrain. Health care professionals and manual 

wheelchair users identified many of the same skills as important but ranked them in a different 

order. 

In study 3 (Chapter 4), we piloted a wheelchair training program implementing aspects of 

motor learning for new manual wheelchair users and measured the impact of this program on 

wheelchair propulsion biomechanics and overall wheelchair skills. Post-training wheelchair 

biomechanics changed, as well as propulsion performance overground. Wheelchair skills did not 

change significantly post-training. Wheelchair training has the potential for change; however, 

there are many challenges associated with implementing training programs for new manual 

wheelchair users. 

Together, these results contribute knowledge to evidence-based approaches to teaching 

new manual wheelchair users with SCI how to efficiently and effectively use their wheelchairs. 

Specifically, we obtained information about technology for simulating and assessing manual 
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wheelchair propulsion, perspectives of stakeholders with regard to the manual wheelchair 

training process, and methodology for training new manual wheelchair users.
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Chapter 1: Introduction 

1.1 Manual Wheelchair Users 

In the United States, approximately 6.8 million (3.51%) of the non-institutionalized general 

population age 18 and older use an assistive device for mobility (Kaye, Kang, & LaPlante, 2000; 

Kaye, Kang, & LaPlante, 2002; LaPlante & Kaye, 2010; Russell, Hendershot, LaClere, Howie, 

& Adler, 1997). The third most common device reported for mobility is the manual wheelchair 

(1.42 million users; Kaye et al., 2000; LaPlante & Kaye, 2010). People with various disabilities 

including spinal cord injury (SCI), multiple sclerosis, stroke, and cerebral palsy use manual 

wheelchairs for mobility (Kaye et al., 2000; LaPlante & Kaye, 2010). 

1.1.1 Spinal Cord Injury 

According to the National Spinal Cord Injury Statistical Center (NSCISC), nearly 276,000 

people in the United States live with an SCI, and there are approximately 12,500 new injuries per 

year (DeVivo, 2012; NSCISC, 2013). Of those injured, 41% are paraplegics and 59% are 

tetraplegics. The incidence of SCI typically occurs at a relatively young age and, with advances 

in health care, more people are saved after injury, and people with SCI are living longer 

(DeVivo, 2012). The population of people with SCI is relatively small compared to the number 

of people with other health conditions such as cancer, stroke, and heart disease; however, 

associated annual health care utilization costs for people with SCI are overwhelming (Sadowsky 

& Margherita, 1999; Selvarajah et al., 2014). Persons with SCI use the health care system more 

often than the general population (this includes more physician and hospital visits), and they are 

more likely to experience other health conditions (Dryden et al., 2004; Selvarajah et al., 2014). 

The goal of clinicians and researchers who are focused on spinal cord injury is to decrease the 
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negative impact of impairments and enhance participation in major life activities (Simpson, Eng, 

Hsieh, & Wolfe, 2012). The focus of rehabilitation for persons with SCI has been broadening 

from a traditional medical management to a model that includes an emphasis on community 

participation (Gomara-Toldra, Sliwinski, & Dijkers, 2014). 

Persons with SCI require support and resources to live independently; this includes 

having independent mobility. Independent mobility has been identified by persons with spinal 

cord injury as a primary concern post injury as well as an ongoing concern post rehabilitation 

(Cox, Amsters, & Pershouse; Estores, 2003). The most common type of mobility device most 

persons with paraplegia and some with tetraplegia use for everyday mobility is a manual 

wheelchair (NSCISC, 2013). This is especially true for persons who are newly injured with 

approximately 61% of persons with a new injury using a manual wheelchair over other wheeled 

mobility devices (NSCISC, 2013).  

1.1.2 Manual Wheelchair Use and Wheelchair Propulsion 

Manual wheelchairs may enhance the mobility of persons with SCI, helping them engage in 

major life activities by increasing independence, providing more choices of activities, and 

improving satisfaction with participation in many areas. Despite this, many manual wheelchair 

users still experience activity limitations (Kaye et al., 2002; LaPlante & Kaye, 2010). Manual 

wheelchair users must be able to perform wheelchair skills to maneuver around their home and 

community environments independently (Kilkens, Dallmeijer, De Witte, van der Woude, & Post, 

2004). Strong manual wheelchair skill performance by people with SCI is positively associated 

with participation in major life activities (Kilkens, Post, Dallmeijer, van Asbeck, & van der 

Woude, 2005; Öztürk & Ucsular, 2011). 
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An important skill related to moving the wheelchair is propulsion. Wheelchair propulsion 

using both upper extremities is the primary means of maneuvering a manual wheelchair for 

persons with SCI. A propulsion cycle is divided into a push phase and a recovery phase. The 

push phase is when the hand is in contact with the wheel and pushes in a forward motion. 

Recovery phase is the period in which the hand is not directly engaged with the pushrim. Four 

types of propulsion patterns (i.e., arc propulsion, single loop over propulsion, double looping 

over propulsion, and semicircular) have been classified (Boninger, Cooper, Baldwin, Shimada, & 

Koontz, 1999; Boninger et al., 2005). Each of these patterns varies according to the trajectory of 

the hand when the hand is in the recovery period. The variability in the propulsion techniques 

and skill of manual wheelchair users may be due in part to the level of injury and in part as a 

result of little or no manual wheelchair training (Coolen et al., 2004).  

While wheelchair propulsion is an essential skill for maneuvering a manual wheelchair, 

the repetitive trauma of wheelchair propulsion is linked to secondary health conditions (e.g., 

pain, fatigue, and chronic overuse injuries). Ergonomic literature documents that a high amount 

of force and a high number of repetitions for a single activity increases a person’s risk for a 

repetitive use injury (Bernard, Cohen, Fine, Gjessing, & McGlothlin, 1997; Kohn, 1998). 

According to the evidence found in the wheelchair biomechanics literature, wheelchair 

propulsion far exceeds those limits, with an average of one push per second during propulsion 

and peak propulsive forces as high as 110 N (Boninger, Cooper, Robertson, & Rudy, 1997; 

Hoover et al., 2003; Koontz et al., 2006). The average wheelchair user exceeds in 16 minutes the 

number of repetitions a factory worker in a high-cycle task would complete in an eight-hour day 

(Bernard et al., 1997; Koontz et al., 2006).  
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1.1.3 Chronic Overuse Injuries and Wheelchair Propulsion 

Research suggests that repetitive trauma from propelling a wheelchair may be responsible for 

pain and chronic overuse injuries (Akbar et al., 2010; Boninger, Baldwin, Cooper, Koontz, & 

Chan, 2000; Collinger, Impink, Ozawa, & Boninger, 2010; Davidoff, Werner, & Waring, 1991; 

Finley, Rasch, Keyser, & Rodgers, 2004; Gellman, Chandler, Petrasek, Sie, Adkins, & Waters, 

1988; Koontz et al., 2005; Mercer et al., 2006). Pain and injury may impact manual wheelchair 

users’ desire or ability to perform daily activities that aggravate that pain. As such, people who 

experience pain as a result of overuse injuries may limit activities such as performing transfers, 

propelling the wheelchair, and other major life activities (Richter & Axelson, 2005; Robertson, 

Boninger, Cooper, & Shimada, 1996). Chronic overuse injuries in manual wheelchair users most 

commonly occur in the shoulder but can also occur in the elbow or wrist joints. Common chronic 

overuse injuries in manual wheelchair users include rotator cuff injuries, carpal tunnel syndrome, 

and median nerve damage (Akbar et al., 2010; Boninger et al., 1999; Gellman et al., 1988). 

Elbow tendonitis is also a common overuse injury due to a flexion–extension pattern, which 

assists the hand in pushing the wheelchair pushrim (Robertson, Boninger, Cooper, & Shimada, 

1996).  

Not only can the act of wheelchair propulsion lead to overuse injuries, but methods of 

propulsion can lead to different outcomes with respect to injury. For example, wheelchair users who 

push with a faster cadence and have a shorter recovery period have more median nerve damage than 

those who push with a slower cadence and have a longer recovery period (Boninger et al., 1999). 

Poor wheelchair propulsion techniques include a high push frequency, short push length (also 

referred to as push angle), and the use of the arc propulsion pattern, (i.e., a pattern that is short, 
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forceful, and one in which the hand does not go down toward the wheel axle during recovery) as the 

main propulsion stroke (Boninger et al., 2005).  

The wheelchair literature contains substantial information regarding wheelchair 

propulsion mechanics, techniques, and skills and suggests that propulsion mechanics may be 

changeable through training (Fay et al., 2004; Mercer et al., 2006). Research suggests that 

important components of training in propulsion are: decreasing push frequency (or cadence), 

using a semicircular propulsion pattern (i.e., a pattern in which the hand drops below the pushrim 

toward the axle during the recovery phase), and increasing push length (Boninger et al., 2005). 

The Clinical Practice Guidelines for the Preservation of Upper Limb Function Following Spinal 

Cord Injury (CPG) provide recommendations related to this research that emphasize minimizing 

force and frequency of pushes and using long strokes during propulsion (Boninger et al., 2005; 

Paralyzed Veterans of America Consortium for Spinal Cord Medicine, 2005; Sawatzky, 

DiGiovine, Berner, Roesler, & Katte, 2015). The semicircular pattern follows these guidelines 

and is the recommended pattern for reducing chronic overuse injuries (Boninger et al., 2002). 

The goal of the guidelines is to promote a more efficient propulsion pattern, or a motion that 

requires fewer pushes on the pushrim but uses more of the pushrim to retain the same speed 

(Boninger et al., 2002). Increased propulsion efficiency minimizes unnecessary upper extremity 

use during propulsion and may lead to a reduction in chronic injuries of the upper extremities. 

1.2 Wheelchair Training Devices 

Researchers and clinicians commonly conduct manual wheelchair research and training using a 

wheelchair simulation device. Using devices to simulate a propulsion environment eliminates the 

problem of limited lab or clinic space and simplifies data collection methods by placing the 

participant and the wheelchair in a relatively stationary location. Many simulated propulsion 
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systems have been used and, to this point, it is still unclear which offers the most realistic 

environment in which generalizations can be made to propulsion overground and in the 

environment (Kwarciak et al., 2011; Stephens & Engsberg, 2010). Each type of system has 

strengths and weaknesses; factors include cost, space, and adjustability. The use of different 

systems makes it difficult to compare data across studies (DiGiovine et al., 2001). However, 

having different device options enables clinicians and researchers to select appropriate devices 

for specific studies or interventions.  

The selection of equipment is related to the availability of resources and the specific 

purpose of the study or clinical intervention. Common equipment used in manual wheelchair 

research and clinical interventions include belted treadmills, rollers, and ergometers. Motor-

driven belted treadmill systems use either one or two belts and require aspects of steering and 

propulsion at the same time (de Groot, De Bruin, Noomen, & van der Woude, 2008; Richter, 

Rodriguez, Woods, & Axelson, 2007; Samuelsson, Tropp, Nylander, & Gerdle, 2004; Vegter, 

Lamoth, de Groot, Veeger, & van der Woude, 2014). Belted treadmills allow the simulation of 

different ramps by changing the angle of the belted surface; however, they are hard to use for the 

study of rolling resistance of different surface materials (Vegter, Lamoth, de Groot, Veeger, & 

van der Woude, 2014). Roller systems (sometimes referred to as dynamometers) consist of either 

one roller or two rollers running parallel to each other and a platform to secure the front 

wheelchair casters (Mercer et al., 2006). Many roller systems do not require aspects of steering, 

nor do they have features that allow the slope to be changed. The ergometer system uses 

components of a treadmill and a bicycle and typically has a laboratory wheelchair attached to the 

system (Rodgers, Keyser, Rasch, Gorman, & Russell, 2001). The literature contains information 

about a variety of ergometer systems including systems using hand crank devices and other 
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systems that are similar to dynamometers (de Groot, Veeger, Hollander, & van der Woude, 2002; 

Newsman et al., 1999; Niesing et al., 1990). Variables related to manual wheelchair propulsion, 

such as force, are not always able to be assessed with some of the equipment described above. 

Often, additional instruments such as force-sensing wheels (e.g., the SmartWheel and the 

OptiPush) are needed (Cooper, 2009; Guo, Kwarciak, Rodriguez, Sarkar, & Richter, 2011).  

The propulsion experience varies for the wheelchair user depending on the type of 

simulation device used. The use of belted and roller testing surfaces creates a simulated 

propulsion environment that might not be realistic (Mercer et al., 2006; Stephens & Engsberg, 

2010; van der Woude, Veeger, Dallmeijer, Janssen, & Rozendaal, 2001). Researchers often 

assume that methods and conclusions transfer directly to environmental conditions such as ramps 

and different resistive surfaces (e.g., tile, carpet, and gravel). Several research studies using 

treadmills and dynamometers reported setting the resistance comparable to rolling over a tile 

surface (Boninger et al., 2002; DiGiovine et al., 2001). However, many studies do not report how 

or whether the testing devices were calibrated to match surfaces commonly traversed by 

wheelchair users. Some devices offer a comparable experience of an individual’s actual 

propulsion pattern in the environment, and some may not (Koontz, Worobey, Rice, Collinger, & 

Boninger, 2012; Kwarciak et al, 2011; Stephens & Engsberg, 2010). Few of these devices 

simulate real-life conditions such as changes in surface and speed encountered by manual 

wheelchair users during everyday activities (Kwarciak et al., 2011). Available devices are 

limited in their ability to be adjusted to simulate several different surfaces (e.g., flat overground 

surface, up and down slopes, and cross slopes) by changing the resistance and the position of the 

wheelchair.  



8 

 

1.3 Manual Wheelchair Training 

Effective training of wheelchair skills in rehabilitation and community settings is imperative to 

increasing participation by people with mobility limitations (Carpenter, Forwell, Jongbloed, & 

Backman, 2007; Routhier, Vincent, Desrosiers, & Nadeau, 2003). Training may make an 

enormous impact on the incidence of pain and chronic overuse injuries and on a person’s 

independence (Kilkens, Post, Dallmeijer, Seelen, & van der Woude, 2003; Kilkens et al., 2004). 

However, few rehabilitation programs focus on training manual wheelchair propulsion and skills, 

despite the evidence suggesting that training may improve independence, freedom of movement, 

and quality of life (MacPhee et al, 2004).The time allowed for initial rehabilitation under current 

health care insurance policies is brief (approximately 36 days) and, often, insufficient training is 

given to wheelchair users for how to use and propel their wheelchairs efficiently (Kendall, 

Ungerer, & Dorsett, 2003; NSCISC, 2013). Therefore, manual wheelchair users in rehabilitation 

do not always develop their wheelchair skills (Fliess-Douer, Vanlandewijck, Manor, & van der 

Woude, 2010). When training is offered, the training is inconsistent in content and duration. 

Currently, wheelchair training during rehabilitation tends to be based on clinician intuition and 

not on tested training protocols (McNevin, Wulf, & Carlson, 2000). Guidelines, 

recommendations and validated protocols (Axelson, Chesney, Minkel, & Perr, 1996; Kirby et al., 

2004; Paralyzed Veterans of America Consortium for Spinal Cord Medicine, 2005) have been 

developed, but health care professionals often report not implementing them into rehabilitation 

practices due to limited time, funding constraints, and lack of knowledge (Best, Miller, & 

Routhier, 2014; Isaacson, 2011; Mitchell, Jin, Kim, Giesbrecht, & Miller, 2014).  

Different approaches to improving propulsion mechanics have been researched, including 

exercise programs, educational programs, and instructional programs based on visual and verbal 
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feedback (de Groot, Veeger, Hollander, & van der Woude, 2005; Degroot, Hollingsworth, 

Morgan, Morris, & Gray, 2009; I. Rice, Pohlig, Gallagher, & Boninger, 2013; L. Rice, Smith, 

Kelleher, Greenwald, & Boninger, 2014; Zwinkels, Verschuren, Janssen, Ketelaar, & Takken, 

2014). Exercise interventions are typically composed of strength and aerobic training, with no 

specific instruction on propulsion techniques (de Groot, De Bruin, Noomen, & van der Woude, 

2008; Rodgers et al., 2001). Educational programs describe the characteristics of a desired 

format using verbal explanation, written explanation, and/or videos and photographs, but direct 

instruction is not used (L. Rice et al., 2014). A few studies have used components of motor 

learning, such as providing visual feedback. The visual feedback was often provided through 

customized computer software programs using different variables (e.g., push force and speed) to 

allow manual wheelchair users to self-evaluate their performance (Kotajarvi, Basford, An, 

Morrow, & Kaufman, 2006; I. Rice, Gagnon, Gallagher, & Boninger, 2010). Each of these 

approaches has had varying results related to wheelchair propulsion biomechanics (Degroot et 

al., 2009; Kotajarvi et al., 2006; I. Rice et al., 2013).  

In general, few studies have explored training methods implementing motor learning 

concepts important to skill acquisition, performance, and retention for manual wheelchair 

propulsion (I. Rice et al., 2010). Even fewer studies have concentrated on training new manual 

wheelchair users. Literature on training interventions and their effectiveness is limited and 

difficult to translate to the clinical setting and to new manual wheelchair users.  

1.4 Motor Learning 

Manual wheelchair propulsion is a complex skill that requires long-term training. Motor learning 

of such a new complex skill involves many repetitions and training sessions to become a task 

that can be performed implicitly without much thought and with little error (Baddeley & 
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Longman, 1978; Karni, 1996; Kitago & Krakauer, 2013; Korman, Raz, Flash & Karni, 2003). 

Much of the research on motor learning that is available has used simple laboratory tasks that 

often lack the complexity of many real-life skills and have little in common with the types of 

functional skills addressed in rehabilitation (Shea & Wulf, 1999; Wulf, Höß, & Prinz, 1998). In 

real-life settings, motor skills, such as manual wheelchair propulsion, consist of various 

movements that have to be coordinated and require the control of multiple degrees of freedom 

(McNevin et al., 2000). Therefore, understanding motor learning may assist in providing relevant 

interventions in rehabilitation to enhance the efficiency of propulsion for manual wheelchair 

users (I. Rice et al., 2010; I. Rice et al., 2013).  

1.4.1 Repetition-Based Training 

In both animal and human studies, the reported amount of movement (or number of repetitions) 

required to acquire a skill varies (Lang et al., 2009). In neurorehabilitation literature, 

recommendations for turning a movement into a learned skill range from 300–800 repetitions per 

rehabilitation session (Birkenmeier, Prager, & Lang, 2010; Kimberley, Samargia, Moore, 

Shakya, & Lang, 2010; Lang et al., 2009).  Manual wheelchair research does not contain detailed 

information regarding the number of practice repetitions; rather, studies focus more on the 

number of sessions overall and the number of sessions per week related to practice. Clinicians 

have reported that approximately one to four hours are spent addressing basic wheelchair 

skills—including wheelchair propulsion— during rehabilitation (Best et al., 2014). For persons 

with stroke and traumatic brain injury in rehabilitation, fewer than 200 practice repetitions per 

session are reported (Kimberley et al., 2010). Insufficient wheelchair propulsion repetitions to 

promote a biomechanically efficient and effective propulsion pattern are being provided during 

rehabilitation in most instances. To understand the amount of training necessary and the impact 
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of training, additional research in manual wheelchair propulsion training methods that implement 

motor learning concepts is needed. 

1.5 Mixed Methods Approach 

Three approaches are used in research studies: quantitative, qualitative, and mixed methods 

approaches. Quantitative research tests hypotheses and examines relationships among variables. 

However, knowledge produced from quantitative studies may be abstract and too general for 

application to specific contexts and individuals. Qualitative data through methods such as 

stakeholder interviews allows researchers to explore and understand meaning related to 

individuals and groups (Hammell, 2001). However, the knowledge produced may not generalize 

to other people or other settings. A mixed methods approach combines the best aspects of both 

approaches and addresses the shortcomings of each; it involves collecting both quantitative and 

qualitative data and integrating the two forms of data to inform research design or interpret 

findings (Johnson & Onwuegbuzie, 2004). A mixed methods approach is now being used across 

disciplines including health sciences. NIH Best Practices for Mixed Methods Research in the 

Health Sciences acknowledges the value of using both qualitative and quantitative data in a 

mixed methods design (Creswell, Klassen, Plano, Clark, & Smith, 2011). Mixed methods may 

provide a more complete understanding of a research problem or question than either qualitative 

or quantitative research alone (Creswell, 2013).  

1.6 International Classification of Function Disability and Health 

A mixed methods approach commonly integrates conceptual frameworks as a basis for clarifying 

research aims. The World Health Organization (WHO) International Classification of 

Functioning, Disability and Health (ICF) is a conceptual framework developed to provide a 

common language for communication among health care professionals and persons receiving 
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rehabilitation services (WHO, 2011). The ICF incorporates the medical model and the social 

model of disability, recognizing the complex interactions between intrinsic person factors, such 

as body structures and function, and contextual factors, such as the environment and social 

policy. The ICF is composed of four sub-classifications: Body Functions, Body Structure, 

Activities and Participation, and Environment. The ICF describes a person’s capacity for 

functioning, as well as his or her actual performance (World Health Organization, 2001). The 

ICF has embraced the importance of measuring, assessing, and classifying disability in context 

(Gray & Hendershot, 2000). The inclusion of a performance in context (participation) may bring 

attention to the interactions of physical and social environmental factors that restrict or facilitate 

the participation of people in their home and community activities instead of simply focusing on 

simple movements and personal care activities (Verbrugge & Jette, 1994; Wright, 1983). Thus, 

environmental factors have become an essential feature of the ICF system for classifying 

participation. The changing scientific models and public policies regarding people with 

disabilities provide impetus for the evolution of research to capture body structure, body 

function, and participation of people with disabilities in the context of their environment 

(Bickenbach, 1993; Gray & Hendershot, 2000). 

1.7 Summary 

The literature on training interventions is limited and often difficult to translate to new manual 

wheelchair users. Training introduced at the time a person receives his or her wheelchair has the 

potential to decrease or delay the incidence of overuse injuries and pain and improve overall 

wheelchair skills and propulsion efficiency, resulting in increased participation. Providing an 

appropriate and realistic environment for the training is an important component of the training 

program’s success. Through a mixed methods approach, this project may contribute evidence 
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related to training approaches and a simulation device for training. The project goals are to test 

the usability of a device for training and assessing the propulsion biomechanics of new manual 

wheelchair users with SCI (study 1), identify important components for a manual wheelchair 

training program from the perspectives of health care professionals and manual wheelchair users 

(study 2), and to pilot-test a motor learning–based wheelchair training program (study 3). 
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Abstract 

Purpose: Researchers and clinicians often look for devices that can be used to simulate 

wheelchair propulsion in different environments for implementing interventions and conducting 

assessments. Common devices used are belted treadmills, dynamometers (roller systems), and 

wheelchair ergometers. The WheelMill System (WMS), a motor-driven roller system, has been 

developed to match the experience of rolling overground and pushing up and down graded slopes. 

The purpose of this research was to determine the accuracy of the WMS to simulate surfaces in the 

environment and to assess propulsion variables. 

Methods: SmartWheel and WMS data were collected with 13 manual wheelchair users 

pushing their wheelchairs overground and up two different sloped ramps. The participants then 

pushed their wheelchairs on the WMS at different resistance settings. 

Results: Participants pushed at a faster cadence and with more force when pushing 

overground and on the ramps than on the WMS. The force profiles of the participants were closer 

overground compared to the WMS than on the ramps compared to the WMS. During the push phase, 

the WMS assessed forces similar to those collected with the SmartWheel. 

Conclusions: The WMS has the ability to simulate different environments and assess 

propulsion variables, and it adds to the equipment available to clinicians and researchers. These 

results will assist in enhancing the WMS software models for simulating the resistance of common 

surfaces encountered by manual wheelchair users.  
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2.1 Introduction 

Persons who use manual wheelchairs encounter different surfaces as they move through the 

environment, including smooth, flat surfaces, resistive surfaces (e.g., carpet), and graded slopes 

(Kasemsuppakorn, Karimi, Ding, & Ojeda, 2014; Routhier, Vincent, Desrosiers, & Nadeau, 

2003). Propulsion on different surfaces may impact upper extremity injury and participation in 

life activities (Hurd, Morrow, Kaufman, & An, 2009). Investigating manual wheelchair 

propulsion techniques over these surfaces in the natural environment would be ideal; however, 

the natural environment provides challenges for collecting data and implementing interventions. 

For example, using accurate data collection procedures (such as video motion capture) can be 

difficult outside of a laboratory (Hurd, Morrow, Kaufman, & An, 2008). Therefore, devices are 

commonly used for manual wheelchair propulsion assessment and training purposes in both 

research and clinical settings. Using devices to simulate an environment eliminates the problem 

of limited lab or clinic space and simplifies data collection.  

Many devices have been used and tested by researchers, but it is still unclear which offers 

the most realistic simulation of propulsion in the environment (Kwarciak, Turner, Guo, & 

Richter, 2011; Stephens & Engsberg, 2010). Each type of system has strengths and weaknesses 

(cost, space, and adjustability), and the use of different systems makes it difficult to compare 

data from study to study (DiGiovine, Cooper, & Boninger, 2001). However, having different 

device options allows clinicians and researchers to select the most appropriate device(s) for 

specific studies or interventions.  

Common equipment used in manual wheelchair research and clinical interventions 

includes belted treadmills, rollers, and ergometers. Belted treadmills provide movement 

variability and require the user to engage in aspects of steering and propulsion at the same time 
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(Vegter, Lamoth, de Groot, Veeger, & van der Woude, 2013). In addition, changing the angle of 

the belted surface can allow for the simulation of different ramps. A belted treadmill is, however, 

difficult to use for the study of rolling resistance on different surface materials (van der Woude, 

Geurts, Winkelman, & Veeger, 2003). Roller systems, sometimes referred to as dynamometers, 

are simple to use but have been found to not emulate overground propulsion (Koontz, Worobey, 

Rice, Collinger, & Boninger, 2012; Stephens & Engsberg, 2010). The ergometer system 

typically uses a standard laboratory wheelchair but has instrumentation to collect propulsion 

variables (de Groot, Veeger, Hollander, & van der Woude, 2002; Mercer et al., 2006; Newsman 

et al., 1999). The selection of a device is related to the availability of resources and the specific 

purpose of the study or clinical intervention.  

Belted treadmills, rollers, and ergometers that are commonly used vary in the propulsion 

experiences for the wheelchair user. Some devices offer a comparable experience to an 

individual’s actual propulsion pattern in the environment, and some may not (Koontz et al., 

2012; Kwarciak et al., 2011; Mason, Lenton, Leicht, & Goosey-Tolfrey, 2014; Stephens & 

Engsberg, 2010). However, few of these devices simulate the real-life conditions (e.g., changes 

in surface and speed) encountered by manual wheelchair users during their participation in 

everyday life activities (Kwarciak et al., 2011; Mason et al., 2014). In addition, it is often not 

possible to assess variables related to manual wheelchair propulsion, such as force, with some of 

these devices. Often, additional instruments such as force-sensing wheels are needed (Cooper, 

2009; Guo, Kwarciak, Rodriguez, Sarkar, & Richter, 2011). The WheelMill System (WMS) is a 

unique, motor-driven, computer-controlled dynamometer roller system that was developed to 

simulate environmental situations (e.g., overground and ramps) and to quantify propulsion 

variables (e.g., cadence, peak force, and average force; Klaesner, Morgan, & Gray, 2014). The 
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purpose of this research was to: (1) evaluate the accuracy of the WMS for simulating propulsion 

over actual surfaces (smooth, flat, overground surfaces and graded slopes such as ramps), 

including the determination of the coefficients for the software model controlling the WMS, and 

(2) assess the accuracy of the quantification of propulsion variables. We hypothesized that the 

WMS propulsion variables would be comparable to those experienced on overground surfaces 

and up graded slopes. In addition, we hypothesized that the WMS would accurately measure 

propulsion forces. 

2.2 Methods 

2.2.1 Participants 

Thirteen participants (ten men, three women; aged 37.8 ± 11.5) with a spinal cord injury (SCI) or 

related neurologic condition that requires the use of a manual wheelchair were recruited from a 

local Independent Living Center (Table 2.1). Participants were screened to ensure that they met 

the following inclusion criteria: could actively self-propel their own manual wheelchairs, used 

their manual wheelchairs for at least 75% of activities throughout the day, had used a wheelchair 

for at least one year, were between the ages of 18 and 60, understood spoken English at a sixth 

grade level or higher, and were able to provide informed consent. The participants also had to 

have 24-inch wheels on their wheelchairs to accommodate the 24-inch SmartWheel. Potential 

participants were excluded from the study if they used power assist wheels or maneuvered the 

wheelchair with their lower extremities or with only one arm. Participants were compensated for 

their time and effort. The project protocol was approved by an institutional review board.  
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Table 2.1 Participant demographics 

 N % 

Gender   

  Male 10 76.9 

  Female 3 23.1 

Race   

  White 10 76.9 

  African American 2 15.4 

  Other 1 7.7 

Diagnosis   

  SCI 12 92.3 

  Other 1 7.7 

Level of Injury   

  Paraplegic 5 38.5 

  Quadriplegic 8 61.5 

Complete vs. Incomplete   

  Complete 7 53.8 

   Incomplete 5 38.5 

   N/A 1 7.7 

Side Dominance   

  Right 11 84.6 

  Left 2 15.4 
Note. SCI = spinal cord injury. 

2.2.2 Equipment 

SmartWheel. Kinetic data were collected using an instrumented manual wheelchair wheel with 

pushrim force and torque sensors, referred to as the SmartWheel (Three Rivers Holdings, LLC, 

Mesa, AZ). The SmartWheel is a force- and moment-sensing wheel that replaces one of the 

wheels of the user’s wheelchair during testing (Asato, Cooper, Robertson, & Ster, 1993). The 

SmartWheel measures the force applied to the pushrim by the hand during propulsion. The 

SmartWheel has been used to assess propulsion among wheelchair users, much in the way that 

force plates during gait analysis are used to assess an individual’s foot–ground forces during 

ambulation (DiGiovine, Koontz, & Boninger, 2006). A high-speed Wi-Fi link and onboard 

memory enable data collection from 500 feet. The data sampling frequency was 240 Hz. The 

SmartWheel was used to measure the force applied to the pushrim as well as cadence (push 
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frequency) and push angle. The SmartWheel has been used extensively in manual wheelchair 

research and, for the purposes of this study, was considered to be the “gold standard” for 

assessing wheelchair propulsion forces (Cooper, 2009). 

WheelMill System (WMS). The WMS is a computer-controlled roller dynamometer system 

that has the potential to simulate different environmental conditions through the adjustment of the 

platform to place the wheelchair in different positions and to provide realistic resistance on the rollers 

(Klaesner et al., 2014). The system consists of four motor-driven aluminum rollers, a front pan that 

holds the casters, and two independent motors (Kollmorgen AKM41 servomotor and S200 servo 

drive) that are used to control the rollers. The WMS is controlled by software written in Microsoft 

Visual C (Microsoft Visual Studios, 2005). The software uses an analog-to-digital/digital-to-analog 

system (NI USB-6229) to collect data from the motors and to change the roller torque applied by the 

motors, which changes the resistance and speed of the rollers. The analog-to-digital/digital-to-analog 

system measures speed with an optical device, measures camber and cross slope angles with 

goniometers, and controls the motors to change the slope. The software interface displays information 

such as speed, slope, and distance the person has pushed. The interface also allows the user to change 

the degree of the slope and cross slope; change the parameters controlling the motors (described 

below) for the left and right rollers, changing resistances; and save this information to a data file.  

The speed at which the wheels roll is dependent upon the force applied on the pushrims 

of the wheels by the person using the WMS (Figure 2.1). To move the rollers, the force the 

person creates has to be greater than the resistive force of the rollers on the wheels. The motors 

sense torque placed upon the rollers, and this information is used to control the speed of the 

rollers.  
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Note. Person and his or her wheelchair (white boxes), the physical structure of the WMS (gray boxes), and 

the computer system operating the WMS motors (black boxes).  

Figure 2.1 Interaction of WMS components to control speed 

The speed of the rollers can be varied by software models that simulate different surfaces 

or slopes. This is accomplished by increasing or decreasing the resistance supplied by the 

motors. Inertial effects are minimal when at a steady state. The movement for each pair of rollers 

is controlled independently. The variables that are used to control the motors’ speed and 

resistance are listed in Table 2.2. The voltage that is outputted to the motors by the digital-to-

analog controller is referred to as the motor control signal (MCS). This signal controls the torque 

that the motors apply to the rollers and is updated 50 times per second. The MCS signal is 

calculated using Equation 2.1. The previous signal (PS) variable is the MCS voltage from 

Equation 2.1. The motor feedback signal (MFS) is a voltage that is a feedback signal from the 

motors and is the difference between the torque that the motor applies to the rollers and what the 

rollers apply back to motors. This voltage increases when the wheelchair user applies force to the 

pushrims. Two dimensionless coefficients (push coefficient [PC] and decay coefficient [DC]) are 
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used to adjust the voltage applied to the motors and can be changed to allow for variation among 

users, different wheel chairs, modeled slopes, and simulated surface types.  

Table 2.2 WMS motor control equation variables 

 

MCS= {PS +PC[Δ (MFS)]}*DC        (Equation 2.1) 

The PC represents how efficiently the push is converted into roller speed and is related to 

the type (e.g., lightweight) and setup (e.g., axle position) of the wheelchair. The two PC values 

used for testing, 10 and 25, were chosen through experience using the WMS. The value 10 

represents a typical “low” value that would be used for a less efficient wheelchair (e.g., heavier 

frame with rearward axle position), and 25 is a typical “high” value for the PC variable that 

would be used by a more aggressive wheelchair setup (e.g., lightweight frame and forward axle 

position). The DC controls how quickly the speed of the roller decreases, which affects the glide, 

or distance the wheels continue to roll, of the wheelchair after a push and can be adjusted to 

reflect different types of surfaces and slopes as well as differences in wheelchair weights and 

centers of gravity. The values for the DC typically can range from about 0.4, which would be 

Variable Definition 

Motor Control Signal (MCS) 
The voltage output by the digital to analog converter (DAC) to the 

motor, which controls the speed of the rollers. 

Previous Signal (PS) The previous voltage output sent to the motor by the DAC. 

Push Coefficient (PC) 

Coefficient that controls the efficiency of the "push" to change the 

speed of the rollers; it may be related to the weight on the rollers and 

wheelchair configuration. This is a dimensionless variable. 

Motor Feedback Signal (MFS) 

A voltage signal from the motor to the analog-to-digital converter 

(ADC) that indicates how much torque is resisting or assisting the 

current movement of the rollers. 

Decay Coefficient (DC) 

Coefficient that controls the decrease in speed of the rollers due to the 

effects of friction (or other forces resisting the movement, such as 

gravity, an upslope, or air resistance). This is a dimensionless 

variable. 
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very difficult, to 1.0 or greater, which would allow the rollers to spin continuously without any 

additional push by the user. We selected these PC and DC values to encompass a wide range of 

pushing experiences as previously identified with three pilot participants (Klaesner et al., 2014). 

The data in this paper may provide further information that may be used to refine this software 

model by providing a systematic means of determining the PC and DC values to better simulate 

multiple surfaces for different users. 

2.2.3 Setting 

All testing was completed at a community-based research facility. The facility houses the WMS 

and contains two ramps with different slopes (1:20 and 1:12) and a flat surface 40 meters long.  

2.2.4 Data Collection Procedures 

Outcome variables. The SmartWheel has the ability to generate numerous variables that 

describe a person’s propulsion mechanics. Five of these variables (cadence, speed, peak 

tangential force, average tangential force, and push angle) were selected for this project and are 

deemed clinically relevant and frequently used in propulsion research to analyze propulsion 

mechanics (Boninger et al.,2002; Cowan, Boninger, Sawatzky, Mazover, & Cooper, 2008; 

Kwarciak et al., 2011). The WMS was able to collect data for three of the five propulsion 

variables (cadence, peak tangential force, and average tangential force). Once the participant 

reached a steady state (after three initial start-up pushes), three to five consecutive pushes were 

averaged for each variable. Cadence (push frequency) is defined as the number of times per 

second the pushrim is contacted (in contacts per second). Speed is the average speed (in meters 

per second) across the pushes. The most relevant force for wheelchair propulsion is the 

tangential force to the pushrim (Niesing et al., 1990); therefore, this is the force that was used for 
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analysis. Peak tangential force is the average of the greatest amount of force, measured in 

Newtons, of each of the three-to-five pushes. Average force, measured in Newtons, is the overall 

tangential force applied to the pushrim during the push phase averaged across the three-to-five 

pushes. Push angle is defined as the distance traveled by the hand on the pushrim from the point 

of contact to the point of release. Push angle is measured as the angle (in degrees) between the 

points at which the hand contacts the pushrim and then leaves the pushrim (Cowan, Nash, 

Collinger, Koontz, & Boninger, 2009). 

Actual surface: overground and ramps. The SmartWheel was placed on the participant’s 

dominant side to measure the force occurring during propulsion on an overground surface and on the 

upgraded slopes. Participants were asked to roll across a smooth, flat, overground surface for 40 

meters and up the slopes of a low-grade (1:20, or about 2.9°) ramp and a high-grade (1:12, or about 

4.8°) ramp at a self-selected comfortable pace. The slopes of 1:20 and 1:12 were selected because 

these are the specifications of slopes recommended for ramps in public spaces (U.S. Department of 

Justice, 2010). Three trials were completed on each surface. A laptop computer with SmartWheel 

software was used to capture the data for each trial. Data collection of cadence, speed, peak tangential 

force, average force, and push angle was initiated as the participant began the propulsion motion, 

prior to the first propulsion stroke. Participants began from a stationary position and accelerated to a 

self-selected comfortable speed. Data collection was stopped when the participant reached the end of 

the surface (e.g., for the ramp, until the participant reached the platform). 

Simulation on WMS. The participant was placed on the WMS with straps and wheel 

guides to keep the wheelchair secure (Figure 2.2). The SmartWheel remained on the dominant 

side of the person’s wheelchair. The participant was instructed to push at a self-selected 

comfortable pace for two minutes to become acclimated to the WMS. The participant was then 
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asked to propel the wheelchair on the WMS for 10 seconds for each PC and DC setting as 

outlined in Table 2.3. Changing the DC varied the resistance and glide that the wheelchair user 

experienced, and changing the PC altered how efficiently the user’s pushes overcame the 

resistance. The participant pushed the wheelchair for 12 different settings, consisting of a 

combination of six DCs and two PCs (see Table 2.3) to represent the expected range of simulated 

pushing experiences. The settings were tested from hardest (most resistance, least amount of 

glide) to easiest (least amount of resistance, greatest amount of glide). For each set of 

coefficients, the variables were collected by the SmartWheel and the WMS. DC values of 1.0 or 

greater were not tested with some individuals because the rollers would turn on their own 

without the user pushing on the pushrims of the wheelchair. 

 
Figure 2.2 Participant on the WMS 
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Table 2.3 WMS settings 

WMS 

Setting 

Decay 

Coefficient 

Push 

Coefficient 

Level of 

Resistance 

Overground 

Best Match 

Low 

Ramp Best 

Match 

High 

Ramp Best 

Match 

1 .6 15 Hardest 0 10 12 

2 .6 25  0 2 1 

3 .7 15 0 1 0 

4 .7 25 0 0 0 

5 .8 15 0 0 0 

6 .8 25 0 0 0 

7 .9 15 0 0 0 

8 .9 25 4 0 0 

9 1.0 15 4 0 0 

10 1.0 25 2 0 0 

11 1.1 15 1 0 0 

12 1.1 25 Easiest 1 0 0 
Note. Numbers in Overground, Low Ramp and High Ramp Best Match columns represent the number of 

participants who had their best match at that setting. 

Data processing. Custom MATLAB scripts and Microsoft Excel spreadsheets were 

developed to extract data from existing software (SmartWheel and WMS) and minimize manual 

data processing (The MathWorks, Inc., 2010; Microsoft, 2011). Data were identified across five 

variables for three pushes on the ramps to five pushes on overground and for each set of WMS 

coefficient values. Data were trimmed to include only the pushes made when the participant had 

achieved a steady state (after the initial three pushes). The start-up pushes were not included in 

the analysis; after push four, three to five consecutive pushes were averaged for each variable. 

These data represent the propulsion force of each participant across the different pushing 

experiences (overground, two graded [low and high] ramps, and 12 WMS settings).  

Actual surface comparisons to the WMS settings. To identify best fits of the WMS 

settings for each of the three surfaces (overground, low-grade, and high-grade ramps), three to 

five pushes were overlaid using the peak forces as the guide. The force profile for the five pushes 

was averaged to produce one representative push for each WMS setting and for each trial 
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overground and on the ramps. Forces (of the one average push) for the overground and ramp 

trials were compared to data for each of the WMS settings. The difference of force readings at 

each time sample was calculated. Through this process, the values that produced the output 

closest to the actual surface were identified for each person for flat surfaces and ramps. The 

WMS setting with the smallest force difference compared to the overground surface and ramps 

was selected as the best fit. These coefficients (see Table 2.3) were used for comparisons of all 

five propulsion variables collected by the SmartWheel on the actual surface and on the WMS. 

Assessing wheelchair propulsion variables: WMS compared to SmartWheel. To 

examine the accuracy of the WMS for assessing propulsion variables (cadence, peak force, and 

average force), the data collected from one trial representing the overground surface from all 13 

participants using both the SmartWheel and the WMS were processed and compared. The WMS 

does not measure the force applied to the pushrim as the SmartWheel does; the WMS measures 

force at the wheel–ground interface. The tangential force (Ft) from the WMS was calculated 

from the MCS controlling the torque of the rollers (Klaesner et al., 2014). The torque applied to 

the rollers by the wheels was sensed by the motor, and a control signal that controls the torque of 

the rollers was calculated, allowing them to turn at the appropriate speed. The tangential force 

was calculated by subtracting a speed-dependent voltage offset from this control signal and 

multiplying by a conversion coefficient. The MCS of the WMS was converted to Ft through 

custom Microsoft Excel spreadsheets.  

2.2.5 Data Analysis 

IBM SPSS Statistics software (version 21) was used for statistical analyses (SPSS Inc., 2012).  

Actual surface comparisons to the WMS settings. Propulsion variables (cadence, 

average speed, peak force, average force, and push angle) measured by the SmartWheel were 
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compared from the three different testing conditions (overground, low-grade ramp, and high-

grade ramp) to those measured by the WMS. A paired-samples t-test was conducted to determine 

whether there was a significant difference between propulsion variables when pushing 

overground on a smooth, flat surface compared to propulsion variables when pushing on the 

WMS setting that was identified as most representative of pushing overground, the null 

hypothesis being that there is no difference between propulsion overground and on the WMS. A 

Pearson’s product-moment correlation coefficient was run to assess the relationship between 

propulsion variables collected overground compared to those collected on the WMS. A Shapiro-

Wilk test was used to assess normality of the variables. Scatterplots of each variable were created 

to evaluate the similarity of variables. We fitted multiple regression models for the five 

propulsion variables separately as the dependent variable to examine the relationship of each 

variable to other factors (independent variables). Our independent variables were the settings on 

the WMS (PC and DC), person factors (gender, injury, and weight), and chair factors (wheelbase 

length and axle position). Individual participant force profiles were compared between 

overground and the WMS, and effect sizes were calculated to examine variability within and 

between participants. This process was repeated for both the low-grade ramp and the high-grade 

ramp variables.  

Assessing accuracy of quantification of wheelchair propulsion variables: WMS 

compared to SmartWheel. The WMS has the ability to measure variables such as cadence, 

average peak torque, and average force. These variables were compared to similar data collected 

from the SmartWheel. Paired t-tests were used to analyze the differences between SmartWheel 

and WMS data. Pearson’s product-moment correlation coefficients were used to assess the 
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relationship of the variables assessed by the WMS as compared to those assessed by the 

SmartWheel. Scatterplots of each variable were created to evaluate the similarity of variables.  

2.3 Results 

2.3.1 Actual Surface Comparisons to the WMS Settings: Overground (Group 

Comparison) 

One outlier that was more than three times the interquartile range was removed from the cadence 

calculations. The values for all variables except push angle were statistically different between 

the overground surface and the WMS setting identified as the best match (Table 2.4). All five 

variables had higher values overground than on the WMS. Cadence and push angle values on the 

WMS most closely represented overground. Analyses showed the relationship to be linear, with 

each of the variables normally distributed (p > 0.05) as determined by the Shapiro-Wilk test. 

Comparing overground to the WMS, there were significant (p < 0.05) moderate-to-strong 

positive correlations for cadence (r = 0.76), average speed (r = 0.65), average force (r = 0.55), 

and push angle (r = 0.87). There was not a significant correlation for peak force.  

Table 2.4 Comparison of propulsion variables: Three surfaces vs. WMS 

Variable Overground vs. WMS Low Ramp vs. WMS High Ramp vs. WMS 

 Surface WMS Surface WMS Surface WMS 

Cadence 1.0(0.1)* 1.0(0.1)* 1.1(0.2)* 0.9(0.1)* 1.1(0.3)* 0.9(0.1)* 

Speed 1.56(0.26)* 1.16(.34)* 0.99(0.21)* 0.64(0.12)* 0.90(0.30)* 0.64(0.14)* 

Peak Force 46.0(13.8)* 34.5(8.6)* 95.9(22.5)* 68.2(14.1)* 101.6(23.6)* 70.0(11.9)* 

Average Force 25.7(7.9)* 19.7(4.5)* 60.3(14.7)* 42.5(2.6)* 67.5(17.7)* 43.9 (8.4)* 

Push Angle 82.5(14.1) 79.0(19.0) 84.7(18.2) 89.0(15.5) 84.4(18.6) 88.0(16.0) 

Note. *p < 0.05; data listed as mean (SD). 

The propulsion variables (cadence, peak force, average force, and push angle) were used 

as the dependent variables. Gender, injury level, and wheelchair dimensions were not significant 

for any of the variables and, therefore, were excluded from the model. The assumptions of 
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linearity, independence of errors, homoscedasticity, unusual points, and normality of residuals 

were met. PC, DC, and weight variables significantly (p < .0005) predicted speed (adj. R2 = 

0.80), peak force (adj. R2 = 0.51), and average force (adj. R2 = 0.52; Table 2.5). No significant 

findings were found for cadence or push angle.  

Table 2.5 Summary of multiple regression analysis 

Speed b SE B 95% CI for b 

Push coefficient*  3.663     0.648 0.78    2.198, 5.128 

Decay coefficient  0.008 0.1    0.119 -.014, .030 

Weight* -0.005     0.001 -0.685   -.007, -.002 

Peak Force     

Push coefficient -35.864 25.444 -0.303 -93.423, 21.696 

Decay coefficient*  1.21   0.382   0.731     .345, 2.074 

Weight*   0.086   0.038   0.515  .000, .171 

Average Force     

Push coefficient* -35.533 13.186 -0.571 -65.363, -5.703 

Decay coefficient     0.402   0.198   0.461 -.046, .850 

Weight*    0.049 0.02   0.566  .005, .094 
Note. *p < 0.05; b = unstandardized regression coefficient; SE = standard error of the coefficient; B = 

standardized coefficient; CI = confidence interval. 

2.3.2 Actual Surface Comparisons to the WMS Settings: Overground 

(Individual Examples) 

The group means described in the previous section indicates differences between pushing 

overground and pushing on the WMS (with the appropriate setting). These differences may be 

related to the inter-variability across participants and the intra-variability for certain participants. 

Inter-variability of the data indicates that participants pushed differently overground than on the 

WMS. These differences can be categorized across participants in three ways: participant force 

values and cadence were almost the same overground as compared to the WMS (Figure 2.3, 

Participant A, effect size for average force 0.12); participant force values and cadence 

overground had similar shapes compared to those on the WMS (see Figure 2.3, Participant B, 

effect size for average force 0.38); and participant force values and cadences were stronger and 
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faster overground as compared to on the WMS (see Figure 2.3, Participant C, effect size for 

average force 0.67). In addition, intra-participant variability was evident in many participants 

who had similar rhythmic pushes on the WMS, but overground, the forces were not consistent 

across pushes. Participant C’s average peak force across the five pushes overground ranged from 

37 N to 75 N as compared to 25 N to 27 N on the WMS. 

 
Figure 2.3 Individual force profile comparisons: Overground and WMS 
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2.3.3 Actual Surface Comparisons to the WMS Settings: Ramps (Group 

Comparison) 

The propulsion variables were significantly different when pushing on the ramp surfaces 

compared to pushing on the WMS set to simulate ramps (see Table 2.4). For both sets of ramps, 

cadence, average speed, average peak force, and average force were significantly higher on the 

actual surface of the ramp than on the WMS. Push angle was shorter on the ramps than on the 

WMS but was not statistically different. Analyses showed the relationship to be linear, with each 

of the variables normally distributed, as assessed by the Shapiro-Wilk test (p > 0.05). Comparing 

the low-grade ramp to the WMS, there was a significant (p < 0.05) moderate-to-strong positive 

correlation for cadence (r = 0.70), peak force (r = 0.78), average force (r = 0.78), and push angle 

(r = 0.83). Average speed was not significant. Comparing the high-grade ramp to the WMS, 

there was a significant (p < 0.05) moderate-to-strong positive correlation for cadence (r = 0.74), 

peak force (r = 0.84), average force (r = 0.96), and push angle (r = 0.79). There was not a 

significant correlation for average speed.  

2.3.4 Actual Surface Comparisons to the WMS Settings: Ramps (Individual 

Examples) 

The peak and average forces were greater and the cadence faster on the ramps than on the WMS 

(Figure 2.4). The peak of the force profiles was held for a longer period of time on the WMS, 

while the peak force on the actual ramp was achieved more rapidly and not held for as long. This 

trend was common across participants. 
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Figure 2.4 Individual force profile: Low ramp and high ramp 

2.3.5 Assessing Wheelchair Propulsion Variables: WMS Compared to 

SmartWheel 

Cadence and peak force values collected by the SmartWheel were similar to the values collected 

by the WMS (Table 2.6). Average force was higher as calculated by the SmartWheel compared 

to the WMS. The force data collected during the recovery phase were closer to zero for the 

SmartWheel (0.17 N) than for the WMS (6.82 N). This difference is apparent when comparing 

SmartWheel and WMS force profiles for one participant (Figure 2.5). Analyses showed the 

relationship to be linear, with each of the variables normally distributed, as assessed by the 

Shapiro-Wilk test (p > 0.05), and no outliers were removed. Comparing the SmartWheel 

propulsion variables to those collected by the WMS, there were significant (p < 0.05) moderate-
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to-strong positive correlations for cadence (r = 0.99), peak force (r = 0.96), and average force (r 

= 0.71).  

Table 2.6 Comparison of propulsion variables: SmartWheel vs. WMS 

Propulsion Variable SmartWheel Mean (SD) WMS Mean (SD) 

Cadence 0.96 (0.14) 0.97 (0.14) 

Peak force 38.92 (9.49) 37.99 (8.48) 

Average force 22.36 (5.47)* 18.94 (3.95)* 

Recovery force 0.17 (0.58) ˗6.81 (3.97)* 

Note. *p < 0.05. 

 
Figure 2.5 Individual force profile: SmartWheel and WMS 

2.4 Discussion 

The purpose of this research was to evaluate the accuracy of the WMS for simulating propulsion 

over actual surfaces (overground and ramps) and to assess the accuracy of the quantification of 

propulsion variables. This research study had many limitations, including a small sample size for 

the number of variables examined. The high variability within and between participants also 

resulted in lower correlations and significant differences between the WMS and real-life 
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surfaces. In addition, identifying the best-fit WMS settings to compare across the three testing 

surfaces was challenging due to the difficulty in matching up two separate force profiles across 

different propulsion variables. The best setting for one variable was not always the best setting 

for all other variables. We have identified the need to modify the software model to take into 

account different factors, such as weight, in order to get one setting of DC and PC for each 

person to simulate different surfaces. The accuracy of the WMS was poor for the ramps and, 

with the current models, we cannot claim that we can simulate ramps with the system. However, 

the WMS demonstrated that it could accurately simulate overground movement for most 

important variables for users including cadence, push angle, and average force. 

During the procedures, we did not control for speed or cadence; we had each participant 

propel at a self-selected speed, because trying to hold a certain speed may impact propulsion 

biomechanics. The lack of visual feedback provided from the WMS to the participant may also 

have had an influence on propulsion on the WMS. This may have resulted in lower correlations, 

because it is difficult (even over the same surface) to propel exactly the same way.  

2.4.1 Actual Surface Comparisons to the WMS Setting: Overground and 

Ramps 

Previous research has reached differing conclusions about the accuracy of devices simulating 

surfaces encountered in the environment by manual wheelchair users. Stephens and Engsberg 

(2010) found kinematic differences overground when comparing rollers and belted treadmills. 

Koontz and colleagues (2012) found kinetic differences in propulsion between overground and 

rollers. However, Kwarciak and colleagues (2011) reported a motor-driven belted treadmill to 

have similar kinetic propulsion variables as overground. We found the WMS (motor-driven 

roller system) to be comparable to overground in some wheelchair propulsion variables but not 

all. When pushing overground, participants overall pushed at a faster rate, with greater force, and 
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with a slightly shorter push angle as compared to the WMS. Pushing on an actual ground or ramp 

surface has a goal, so users may push faster to reach their goal destination.  

Much of the research studying ramps used actual ramps in the community or ramps built 

out of plywood in lab settings (Koontz, et al., 2005; Sabick, Kotajarvi, & An, 2004). However, 

kinematic and kinetic comparisons between actual ramps and simulation on devices are limited. 

In this study, users had a higher cadence, faster speed, and much higher force on the ramps as 

compared to the WMS. The software model on the WMS could be adjusted to require higher 

forces, but there are no consequences on the WMS as there are on an actual ramp. If a person 

does not have a rapid cadence with enough force on an actual ramp, he or she will roll backward 

down the ramp. On the WMS, participants are not forced to push harder at a quicker pace to keep 

from rolling backward, so it is difficult to get a best match for all variables from one WMS 

setting. It is difficult to simulate environments such as ramps on a machine-based simulator 

because of lack of consequences; however, additional software modeling that would include 

backward rolling of wheels may assist the WMS with matching push variables with variables 

measured on ramps. 

The data described in this paper will assist in identifying the appropriate PC and DC so 

that, when a user applies force on the pushrims, the rollers will rotate at an appropriate rate to 

simulate rolling across a typical surface, slowing down as one would expect due to friction. This 

data comparison between the actual surface and the WMS provides us with an idea of what each 

of the coefficients equates to for simulating common resistances experienced by manual 

wheelchair users in everyday life. The higher DC matched more closely with participants’ 

overground propulsion variables. The lower DC matched more closely with the ramps (see Table 

2.2). Some of the middle WMS settings might be more appropriate for environmental surfaces 
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with different rolling resistances, such as carpet. We could go even lower on the PC (we 

underestimated) and add into the software interface cueing to keep a faster cadence or the rollers 

will begin to roll backwards. The data collected in this paper may assist in updating the software 

model so that it may automatically calculate the proper parameters for each person on different 

surfaces. 

2.4.2 Assessing Wheelchair Propulsion Variables 

Technology has changed over the past decade, and the instrumented wheels such as the 

SmartWheel (Asato et al., 1993) and Optipush (Guo et al., 2011) were not accessible to 

researchers in the past; consequently, there was a stronger need to use testing wheelchairs for all 

participants (Boninger, Cooper, Robertson, & Shimada, 1997; Boninger et al., 2002; Guo et al., 

2011; Kotajarvi, Basford, An, Morrow, & Kaufman, 2006). The development of force-sensing 

wheels has allowed participants to use their own wheelchairs rather than a standardized 

laboratory wheelchair. This allows for a more realistic assessment of wheelchair propulsion. 

However, the use of an instrumented wheel also has some limitations, including cost, wheel size, 

participants using a wheel with a pushrim that may be different from their own, and the 

measurement of force only applied directly to the pushrim. 

The WMS measures tangential forces during the push phase (while the hand is in contact 

with the pushrim) similar to those measured by the SmartWheel. However, the WMS measures 

the forces applied to the motors by the wheels of the wheelchair via the rollers, whereas the 

SmartWheel measures the forces applied to the pushrims. The benefits of using the WMS to 

measure forces occurring on the pushrim include the ability to measure the push forces on 

wheelchairs with any size wheel and regardless of where the wheelchair user applies force to the 

wheel. The rollers on the WMS use separate motors for the right and left wheels; therefore, force 
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can be measured at the same time on both sides without the need for two instrumented wheels. 

When using the WMS to measure force during propulsion, the participant can use his or her own 

wheelchair and wheels and does not have to acclimate to pushing on a different wheel or think 

about only pushing on the pushrim. The WMS does not have the ability to measure the resultant 

force, whereas an instrumented wheel has the ability to measure different forces acting upon the 

pushrim (Boninger et al., 2002). The WMS and the SmartWheel measured tangential force 

similarly during the push phase. However, during the recovery phase (when the hand is not in 

contact with the pushrim), the force on the WMS and the SmartWheel differed. As would be 

expected, the SmartWheel force was around zero during the recovery phase, but this was not the 

case for the WMS, since the WMS collects the data from the interaction between the wheel and 

the roller. This force during recovery may include forces placed on the roller by the wheel and 

may be related to the participant repositioning or shifting his or her center of gravity in 

preparation for the next push. The data may be useful in identifying participants who use their 

core or trunk during a propulsion cycle.  

2.4.3 Future Directions 

The WMS has clinical applications in that it has the ability to simulate different resistive surfaces 

while placing the wheelchair in a realistic position, providing opportunities for training 

wheelchair users in propulsion and body position. The WMS is also able to assess propulsion 

variables, making it useful for research purposes. Further development and research of the WMS 

may increase its application. Future directions include the following areas: (1) fine tune the 

computer models for simulating overground with an interface for determining the appropriate 

coefficients for each user; (2) adjust the WMS software model to require higher force and 

quicker cadence for simulating ramps; (3) develop and test procedures for measuring speed, 
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distance, and push angle on the WMS; (4) integrate a user friendly system for providing visual 

feedback to the person on the WMS and explore the use of virtual reality to provide a more 

realistic experience; and (5) collect kinetic and kinematic variables at the same time to compare 

different surfaces to the WMS.  

2.5 Conclusions 

The WMS has the ability to simulate different environments and assess propulsion variables, and 

it adds to the equipment available to clinicians and researchers. Information to improve the 

software modeling of the WMS to simulate propulsion on different surfaces was gathered. 

Pushing on an overground surface moderately correlates with pushing on the WMS. The ramp 

models need to be modified to allow for higher forces and to implement a cue to increase 

cadence. With further software development, the WMS has possible clinical applications to 

simulate different surfaces and research applications in assessing propulsion variables.  
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Abstract 

Purpose: The purpose of this project was to identify wheelchair skills currently being 

taught to new manual wheelchair users, identify areas of importance for manual wheelchair skills 

training during initial rehabilitation, identify similarities and differences between the 

perspectives of health care professionals and manual wheelchair users and use the ICF to 

organize themes related to rehabilitation and learning how to use a manual wheelchair.  

Methods: Focus groups were conducted with health care professionals and experienced 

manual wheelchair users. ICF codes were used to identify focus group themes.  

Results: The Activities and Participation codes were more frequently used than Structure, 

Function and Environment codes. Wheelchair skills identified as important for new manual 

wheelchair users included propulsion techniques, transfers in an out of the wheelchair, providing 

maintenance to the wheelchair and navigating barriers such as curbs, ramps and rough terrain. 

Health care professionals and manual wheelchair users identified the need to incorporate the 

environment (home and community) into the wheelchair training program.  

Conclusions: Identifying essential components for training proper propulsion mechanics 

and wheelchair skills in new manual wheelchair users is an important step in preventing future 

health and participation restrictions.  
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3.1 Introduction 

Approximately 276,000 people in the United States live with a spinal cord injury (SCI), and the 

most common type of wheelchair these individuals, particularly those who are newly injured, use 

for everyday mobility is a manual wheelchair (National Spinal Cord Injury Statistical Center, 

2013). Manual wheelchairs may enhance the mobility of people with lower limb impairments 

and allow them to engage in major life activities by increasing independence, providing more 

choice in activities, and improving satisfaction with participation in many activities. Although 

wheelchairs may have a positive impact on the participation of individuals with mobility 

limitations, many manual wheelchair users still experience participation limitations (Kaye, Kang, 

& LaPlante, 2002; LaPlante & Kaye, 2010). To maneuver through their home and community 

environments independently, manual wheelchair users must be able to perform certain 

wheelchair skills, using a wheelchair in different ways and circumstances to overcome barriers 

(Kilkens, Dallmeijer, de Witte, van der Woude, & Post, 2004). Teaching manual wheelchair 

users skills to overcome barriers may increase mobility and enhance participation (Best et al., 

2014). 

During initial rehabilitation, the implementation of training and interventions to achieve 

an optimal level of wheelchair skill performance is important. Evidence suggests that training 

offered during rehabilitation is beneficial and influences the ability of wheelchair users to use 

their wheelchairs throughout their daily activities (Öztürk & Ucsular, 2011). Manual wheelchair 

skill performance of people with SCI is positively associated with participation in major life 

activities (e.g., domestic life, interpersonal interactions, and community and social life; Kilkens, 

Post, Dallmeijer, van Asbeck, & van der Woude, 2005). However, varying levels of manual 

wheelchair training (including the amount and content of training) are offered to new manual 
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wheelchair users during rehabilitation (Boninger et al., 2002; MacPhee et al., 2004; Taylor et al., 

2014). The time allowed for initial rehabilitation for persons with SCI under current health care 

insurance policies is brief (approximately 36 days), and insufficient attention is often given to 

manual wheelchair training (Kendall, Ungerer, & Dorsett, 2003; National Spinal Cord Injury 

Statistical Center, 2013). The wheelchair training that does occur in rehabilitation tends to be 

brief and based on the clinician’s intuition and personal clinical experience (McNevin, Wulf, & 

Carlson, 2000). Therefore, manual wheelchair users in rehabilitation do not always develop 

independent wheelchair skills (Fliess-Douer, Vanlandewijck, Manor, & van der Woude, 2010).  

Several training protocols, clinical guidelines, and resources relevant to independent 

manual wheelchair mobility have been developed (Axelson, Chesney, Minkel, & Perr, 1996; 

Kirby et al., 2004; Paralyzed Veterans of America Consortium for Spinal Cord Medicine, 2005). 

When studies report on wheelchair training during rehabilitation, training has been found to be 

offered, but minimal evidence is presented regarding what wheelchair skills are taught and which 

training methods are used during inpatient SCI rehabilitation (Taylor et al., 2014). When 

sufficient time during initial rehabilitation is provided, a frequently used protocol is the 

Wheelchair Skills Training Program (WSTP). The WSTP provides information, techniques, and 

strategies for training manual wheelchair skills not included during conventional training 

programs (e.g., maneuvering obstacles such as curbs and performing wheelies; MacPhee et al., 

2004). However, clinicians do not often use these approaches, usually because of time 

constraints, limited resources, or lack of knowledge (Best et al., 2014). Given that the cost 

containment approach to health care is unlikely to change, the use of validated wheelchair skills 

training programs is needed to provide evidence for determining the priority of skills required for 

manual wheelchair use. The information provided by these studies may be able to point to when 
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the most efficient time is to train specific wheelchair skills over the continuum of care (e.g., 

inpatient, day program, outpatient, or community-based services).  

A comprehensive and systemic approach to manual wheelchair training that is 

multidisciplinary and encompasses many environmental settings and various funding sources 

requires a framework or model that uses a globally agreed-upon language. The World Health 

Organization (WHO) International Classification of Functioning, Disability and Health (ICF) is a 

conceptual framework developed to provide a common language for communication among 

health care professionals and persons receiving rehabilitation services. The ICF emphasizes the 

description of information as it relates to health and disability rather than disease and dysfunction 

(WHO, 2001). The ICF has been used for research and clinical purposes to identify themes 

related to rehabilitation interventions both from the individual perspective and from the 

perspective of health care professionals (Coenen et al., 2006; Üstün, Chatterji, Bickenbach, 

Kostanjsek, & Schneider, 2003). The ICF has also been used to analyze qualitative data collected 

during focus groups (Gray, Hollingsworth, Stark, & Morgan, 2006; Gray, Hollingsworth, Stark, 

& Morgan, 2008; Jelsma, 2009; Kirchberger et al., 2010; Rauch, Fekete, Cieza, Geyh, & Meyer, 

2013; Whiteneck et al., 2004). ICF Core Sets for different health conditions (including SCI) and 

for different health care settings have been developed for use clinically to provide health care 

professionals with a better understanding of the needs of the populations they serve (Cieza et al., 

2010; Vidmar, 2013). Using the ICF to identify specific impairments, activity limitations, 

participation restrictions, and environmental factors that are barriers to full participation may 

provide health care professionals with a broader understanding of which manual wheelchair 

skills to teach and how and when to conduct training. Given the variability in experiences of 

manual wheelchair users receiving wheelchair skills training, the ICF can be a useful tool for 
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identifying key elements of wheelchair skills to be addressed by health care professionals during 

initial rehabilitation and those that can be addressed when the consumer has returned to 

community life. 

The purpose of this project was to (1) review wheelchair skills being taught during 

rehabilitation to people using a manual wheelchair for the first time, (2) identify important 

components for individuals to know when they are first learning to use a manual wheelchair, (3) 

compare the perspectives of health care professionals and manual wheelchair users for 

similarities and differences regarding what is being taught in rehabilitation and what should be 

taught, and (4) discuss the application of the ICF in understanding manual wheelchair use across 

Body Structure and Function, Activity and Participation, and Environment domains. 

3.2 Methods 

3.2.1 Participants 

A convenience sample of health care professionals and manual wheelchair users was recruited 

through local rehabilitation facilities and an Independent Living Center. Health care 

professionals with at least one year of experience with clients who have had an SCI and use 

wheelchairs for mobility were included. Thirteen health care professionals providing 

rehabilitation to people with SCI in the Midwestern region of the United States took part in the 

focus groups. The health care professionals averaged 7.8 years of experience in seating and 

mobility, with equal representation from occupational and physical therapists (Table 3.1). 

Manual wheelchair users with SCI who were at least one year post-injury were included. 

Fourteen participants with SCI using manual wheelchairs as their primary means of mobility 

took part in the focus groups. On average, participants had been injured for 14.3 years, 79% had 

cervical level injuries, and 50% of the participants reported receiving a moderate level of 
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wheelchair skills training during rehabilitation (Table 3.2). 

Table 3.1 Health care professionals (N = 13) 

Years of experience Average in years 7.8 

 Range, years 1–23 

Occupation, n (%) Occupational therapist 6 (46.2) 

 Physical therapist 6 (46.2) 

 Physical therapist assistant 1 (7.7) 

ATP certification Assistive technology professional 3 (23.1) 

Employment site, n (%) Community-based program 1 (7.7) 

 University-based program 2 (15.4) 

 Rehabilitation hospitala 8 (61.5) 

 VA 2 (15.4) 

Inpatient vs. outpatient, n (%) Inpatient 7 (53.8) 

 Outpatient 3 (23.1) 

 Both 3 (23.1) 

Note. aThree rehabilitation hospitals were represented. 

Table 3.2 Experienced manual wheelchair users (N = 14) 

Age Average in years 39.5 

 Range, years 22–57 

Gender, n (%) Male 13 (93) 

 Female 1 (7) 

Race, n (%) White 12 (86) 

 African American 2 (14) 

Time using wheelchair Average in years 14.3 

 Range, years 1.5–42 

Level of injury, n (%) Cervical 11 (79) 

 Thoracic 3 (21) 

Received wheelchair skills training in rehab, n (%) Little to none 3 (21) 

 Moderate 7 (50) 

 Extensive 4 (29)    

 

3.2.2 Setting 

The focus groups took place in a conference room housed in a community-based research 

facility.  

3.2.3 Procedures 

The study design was descriptive in nature, using focus groups to collect qualitative data. Focus 

groups were conducted by applying general rules for the implementation of focus groups 
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(Hammel et al., 2008; Kroll, Barbour, & Harris, 2007; Krueger & Casey, 2009). Focus groups 

for manual wheelchair users and health care professionals were conducted separately. Due to 

scheduling constraints, one group was conducted for health care professionals, and two groups 

for manual wheelchair users. Each participant was encouraged to provide an answer to each 

question. One moderator and two note-takers were present during the 90-minute, audio-recorded 

focus groups. Notes were taken during the focus groups to assist in identifying main themes and 

in identifying respondents on the audio recording transcription. 

Guidelines were developed that included key questions to identify wheelchair skills 

taught during rehabilitation to new wheelchair users and skills that should be taught (Table 3.3). 

For the purposes of this study, we considered skills currently being taught as “actual” practices 

during rehabilitation and skills that should be taught as “ideal” practices for rehabilitation. The 

health care professionals were asked to discuss manual wheelchair skills they currently teach to 

new manual wheelchair users (actual) and what they think should be taught (ideal). In the focus 

groups for manual wheelchair users, participants were asked to discuss manual wheelchair skills 

that they were taught as new wheelchair users (actual) during the rehabilitation process. Manual 

wheelchair users were then asked to discuss manual wheelchair skills they thought should be 

taught (ideal) to new manual wheelchair users. During discussion in each of the focus groups, 

one of the note-takers wrote the actual and ideal wheelchair skills discussed on a whiteboard in 

the room. At the completion of the group discussion of each focus group, a member check was 

conducted to verify that the themes captured by the note-takers on the whiteboard reflected the 

perspectives of the participants. Before participants left, they were asked to individually rank-

order the skills that were written on the whiteboard in order of importance for new manual 
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wheelchair users to learn during the rehabilitation process. The participants ranked the top ten 

skills they thought were most important.  

Table 3.3 Focus group structure: Health care professionals vs. manual wheelchair users 

Health Care Professionals Manual Wheelchair Users 

Introductions: Occupation, work setting, years 

working in SCI rehab  

Introductions: Time in wheelchair, level of 

injury, rehab experience  

Actual 

Wheelchair training: When is it completed, who 

does it, for how long, & what skills are taught? 

Wheelchair training: Did you receive any? If so, 

how, when, where, & what skills were learned? 

Ideal 

Wheelchair training: What should be taught? 

when, where, and by whom? 

Wheelchair training: What should be taught? 

when & where? 

Ranking 

Ranking by importance: List ten most important 

things new wheelchair users need to know. 

Ranking by importance: List ten most important 

things new wheelchair users need to know. 

Note. SCI = spinal cord injury. 

3.2.4 Data Processing and Analysis 

Audio recordings and written notes were used to transcribe the statements and themes made by 

participants, to identify respondents, and to code participants’ identities. A deductive content 

analysis, also known as directed content analysis, is a type of qualitative data analysis in which 

data are coded using predetermined categories (Elo & Kyngas, 2007; White & Marsh, 2006). A 

deductive content analysis was used to review transcripts to identify important skills for new 

manual wheelchair users to learn. The ICF was used to classify areas of wheelchair training for 

new wheelchair users related to the body, the individual, and the environment (Figure 3.1). The 

ICF comprises four components, and each is coded with a letter: Body Functions, b; Body 

Structures, s; Activities and Participation, d; and Environmental Factors, e. The ICF codes begin 

with one of these letters and continue with a chapter number (first level), second level, and the 

third and fourth levels. For example, the Environmental Factors category includes a “products 

and technology” domain, which is the first level of classification; “products and technology for 
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personal use in daily living” is the second level of classification (WHO, 2001). The focus group 

content was coded to the second level.  

Figure 3.1 International Classification of Functioning, Disability and Health (ICF) 

The transcripts were separately analyzed for health care professionals and manual 

wheelchair users. First, the transcripts were read thoroughly by each coder to get an 

understanding of the content. Next, for each transcript, the text was divided into sections for 

analysis. Within each section, words or sentences in the text that represented a specific concept 

were identified. Each identified concept was then linked to one or more ICF categories based on 

established rules (Cieza et al., 2002; Stucki, 2005; WHO, 2001). Each category was analyzed to 

determine whether it was currently being taught during initial rehabilitation or should be taught 

in rehabilitation. Three members of the research staff coded the transcripts; two members of the 

research staff coded all of the transcripts, and the third researcher (more experienced with 

coding) reviewed concepts that the first two coders coded differently and made the final decision 

regarding the classification. The concordance rate between the two primary coders was 81%. The 
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codes were compared across focus groups (health care professionals and wheelchair users) to 

identify differences. The codes were then divided into skills that health care professionals 

reported teaching and skills that wheelchair users reported learning (actual), as well as what 

health care professionals and wheelchair users thought should be taught (ideal) to new manual 

wheelchair users. After each concept was coded, the number of participants associated with that 

code was counted. 

The Activities and Participation component was further coded by the separation of 

activity and participation by reviewing all concepts in the transcripts coded with d codes. These 

concepts were reviewed and were associated with either a capacity qualifier (the ability of an 

individual to execute an action in a standardized environment without support) or a performance 

qualifier (what an individual does in his or her own environment). All capacity qualifiers were 

classified as an activity, and all performance qualifiers were classified as participation (WHO, 

2001). Percentages of activity and participation codes were calculated for health care 

professionals and manual wheelchair users. In addition, the number of participants reporting the 

skill in his or her list of top ten skills was identified. A paired-samples t-test was conducted to 

determine significant differences (p < 0.05) between health care professional rankings and 

manual wheelchair user rankings. A customized Microsoft excel database and SPSS version 21 

were used for data organization and analysis (Microsoft, 2011; SPSS Inc., 2012). 

3.3 Results 

Eighteen ICF chapters (out of a total of 30) and 44 second-level ICF categories (out of a total of 

363) were identified (see Tables 3.4–3.7). Six codes (s720, d220, d475, d530, d650, d720) were 

applied to concepts identified solely as current wheelchair rehabilitation skills taught, and six 

codes (b130, d230, d520, d710, d750, d910) were used when coding content solely related to an 
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ideal setting. Eight codes (b280, s720, d210, d220, d350, d710, d720, e130) were used for 

responses from health care professionals that were not used for responses from manual 

wheelchair users, and six codes (b730, b740, d475, d530, d750, e355) were applied to manual 

wheelchair user responses that were not applied to those of health care professionals. Themes 

and differences between the groups (health care professionals and manual wheelchair users) and 

situations (actual and ideal) are described below across the four ICF components and 

exemplified by original statements. 

3.3.1 ICF Coding 

Body Functions (b). Four chapters (out of eight) and six second-level categories (out of 

79) were used in identifying content in the area of Body Functions (Table 3.4). Wheelchair users 

focused on strength and conditioning related to being able to push their wheelchairs as they 

perform their daily activities. They reported receiving this training in rehabilitation and stressed 

the importance of continuing to focus on strength (b730) and conditioning (b740) as they relate 

to learning to use the wheelchair during rehabilitation: “I did get trained to push a chair; mainly 

strength training is what they did with me” (manual wheelchair user). The health care 

professionals focused on decreasing pain (b280) and issues related to the skin and prevention of 

pressure sores (b810) on different areas of the body. Many references were made to pressure 

mapping, selecting a cushion, and educating about pressure relief: “I start with safety of the chair 

and pressure reliefs number one; … you’re going to be sitting in this all the time. If you can’t 

pressure relieve, then we need to look at something else” (health care professional).  

During discussion of actual wheelchair training, there was no mention of psychological 

factors (b130) related to using a wheelchair. However, both health care professionals and manual 

wheelchair users discussed the importance of addressing and incorporating psychological factors, 
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such as motivation for wanting interventions, for new manual wheelchair users. One health care 

professional noted, “I wonder if there isn’t somebody that should be part of the team that’s kind 

of helping with the psychological adjustment a little bit more, whether that be a peer or a 

professional person or … I’m not sure who that ideal person is, but I think that maybe it’s 

beyond some of our areas of expertise—it is mine—and it is just as important in their overall 

participation and getting back to life.” Wheelchair users also discussed the influence of 

psychological factors on training: “I guess the important thing—you’re so traumatized that if you 

do this [wheelchair training] too soon—you’re on so much [sic] drugs that half the stuff they told 

me, you [sic] don’t remember. You might want to start [wheelchair training] three months after 

[injury]” (manual wheelchair user). 
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Table 3.4 Body functions related to wheelchair skills training 

ICF 

Code 
ICF Category Actual Ideal 

Chapter 1: Mental functions HCP MWU HCP MWU 

b130 Energy and drive functions 0 0 4 5 

Chapter 2: Sensory functions and pain   

b280 Sensation of pain 5 0 3 0 

Chapter 7: Neuromusculoskeletal and movement-related functions   

b710 Mobility of joint functions 4 3 1 1 

b730 Muscle power functions 0 9 0 3 

b740 Muscle endurance functions 0 3 0 3 

Chapter 8: Functions of the skin and related structures   

b810 Protective functions of the skin 2 1 4 2 

Note. Numbers in the right-hand columns represent the number of participants who mentioned content related to 

the corresponding code one or more times. Actual represents what was reported as practiced and experienced with 

manual wheelchair training; ideal represents what should be taught or learned related to manual wheelchair 

training. HCP = health care professionals, MWU = manual wheelchair users.  

Body Structures (s). The fewest number of codes, two chapters (out of eight) and three 

second-level categories (out of 39), were used from the body structures component of the ICF 

(Table 3.5). One common theme related to body structures and wheelchair use mentioned by 

several health care professionals was protecting the upper extremities, particularly the shoulder 

joint (s720), from overuse injuries: “One thing I think is important is pushing technique for 

shoulder preservation” (health care professional). Wheelchair users had concerns about their 

hands and protecting them while pushing outside and through doorways: “I wish I learned more 

about hand protection and not burning your hands on the pushrims and tires” (manual wheelchair 

user). A recurring coded theme during discussion of an ideal setting for health care professionals 

was focus on positioning in the wheelchair, preventing pressure sores, and educating wheelchair 

users about pressure sores: “We’ve had several instances where somebody has come in for 

outpatient six weeks after leaving inpatient, and they’ve got this gaping wound on the inside of 

the ankle because they thought it was just a blister and it’s not a big deal, and they did not know 

who to call for help” (health care professional). 
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Table 3.5 Body structures related to wheelchair skills training   

ICF 

Code 
ICF Category Actual Ideal 

Chapter 7: Neuromusculoskeletal and movement-related functions HCP MWU HCP MWU 

s720 Structure of shoulder region  2 0 0 0 

s770 Additional musculoskeletal structures related to movement 2 4 0 3 

Chapter 8: Skin and related structures     

s810 Structure of areas of skin 2 0 5 1 

Note. Numbers in the right-hand columns represent the number of participants who mentioned content related to 

the corresponding code one or more times. Actual represents what was reported as practiced and experienced with 

manual wheelchair training; ideal represents what should be taught or learned related to manual wheelchair 

training. HCP = health care professionals, MWU = manual wheelchair users. 

Activities and Participation (d). Codes from the Activities and Participation component 

of the ICF were the most frequently used in identifying the themes reported by the participants in 

the focus groups (Table 3.6). Eight out of the nine chapters were referenced, and 27 second-level 

categories (out of 85) were used. Many of the codes were from two chapters: Chapter 1: 

Learning and applying knowledge and Chapter 4: Mobility. Manual wheelchair users discussed 

the different ways they learned and acquired manual wheelchair skills during rehabilitation: “I 

guess I had my wheelchair skills experience; mostly [it] was just transferring with [a] transfer 

board. Primarily, it was just rolling down the hall, but I didn’t get my chair until I was home. So 

I pretty much had to learn those skills when I got home” (manual wheelchair user). Another 

manual wheelchair user shared that “the therapists would demonstrate [wheelchair skills], and 

then you would have people spotting you until you felt comfortable to try it on your own, so 

there’s still someone there to catch you or let you fall or whatever.”  

Health care professionals mentioned the importance of manual wheelchair users being 

able to communicate to others how to help with using and maintaining the wheelchair: “Making 

sure that [wheelchair users] know all the adjustments on the chair, you know, either they can do 

it or instruct somebody to change the armrest height and leg rests and all of the adjustments that 
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are on there, that they at least know how they work and can tell somebody if they are not able to 

do it themselves” (health care professional). Many wheelchair users reported learning transfers, 

including transfers in the home, in the car, and on airplanes: “We worked on shower transfers, 

toilet transfers, all that home stuff” (manual wheelchair user). This included the importance of 

transfers and the emphasis placed on transfers in rehabilitation: “An important thing to work on 

is every kind of transfer you can think of, multiple times” (manual wheelchair user).  
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Table 3.6 Activity and participation related to wheelchair skills training 

ICF Code ICF Category Actual Ideal 

Chapter 1: Learning and applying knowledge HCP MWU HCP MWU 

d155 Acquiring skills 5 13 10 12 

d175 Solving problems 3 3 9 5 

d177 Making a decision 2 1 5 3 

Chapter 2: General tasks and demands     

d210 Undertaking a single task 1 0 2 0 

d220 Undertaking multiple tasks 1 0 0 0 

d230 Carrying out daily routine 0 0 1 1 

d240 
Handling stress and other 

psychological demands 
0 3 7 2 

Chapter 3: Communication     

d350 Conversation 2 0 6 0 

Chapter 4: Mobility     

d410 Changing basic body position 4 7 3 6 

d415 Maintaining a body position 3 3 3 4 

d420 Transferring oneself 4 11 4 8 

d445 Hand and arm use 4 6 4 7 

d455 Moving around 4 3 4 2 

d460 Moving around in different locations 5 8 4 9 

d465 Moving around using equipment 7 6 3 7 

d470 Using transportation 2 4 3 0 

d475 Driving 0 2 0 0 

Chapter 5: Self-care     

d520 Caring for body parts 0 0 2 1 

d530 Toileting 0 1 0 0 

d570 Looking after one’s health 2 0 5 3 

Chapter 6: Domestic life     

d620 Acquisition of goods and services 0 1 5 3 

d650 Caring for household objects 1 3 0 0 

Chapter 7: Interpersonal interactions and relationships     

d710 Basic interpersonal interactions 0 0 3 0 

d720 Complex interpersonal interactions 1 0 0 0 

d750 Informal social relationships 0 0 0 2 

Chapter 9: Community, social and civic life     

d910 Community life 0 0 2 4 

d920 Recreation and leisure 0 5 1 3 

Note. Numbers in the right-hand columns represent the number of participants who mentioned content related to 

the corresponding code one or more times. Actual represents what was reported as practiced and experienced with 

manual wheelchair training; ideal represents what should be taught or learned related to manual wheelchair 

training. HCP = health care professionals, MWU = manual wheelchair users. 
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Content coded as Activities and Participation (d) was further subdivided to reflect the 

percentage of codes corresponding to activity-based themes (the execution of a task or action) 

versus the percentage of codes associated with participation-based themes (involvement in a life 

situation; WHO, 2001). The focus group content related to Activities and Participation was 79% 

activity based and 21% participation based. Regarding the actual rehabilitation process, 

participation-based themes were discussed by health care professionals 14% of the time and by 

manual wheelchair users 15% of the time. During discussions of what ideally should take place, 

themes related to participation increased to 21% by health care professionals and 33% by manual 

wheelchair users. 

 Environmental Factors (e). Four (out of five) environment chapters and eight second-

level (out of 64) categories were identified with themes discussed during the focus groups (Table 

3.7). Many of the codes for content related to the environment came from Chapter 1: Products 

and technology. Health care professionals referred to environmental factors more often when 

asked about an ideal situation than when they discussed actual situations; one health care 

professional emphasized the importance of “taking the time to simulate—to simulate not just 

[manual wheelchair users’] environment, but do their environment multiple times.” Manual 

wheelchair users talked at length about their experiences with their health care professionals 

(e355) during rehabilitation. One participant remarked that: 

If you’re with a therapist, they’re going to be like, “oh, don't do that,” so when you’re out 

with other people in the same situation, you’re like, “oh, they can jump off that curb,” so 

you just go and do it. I think just getting tossed into the mix of things was the best 

learning for me because the therapists—I just feel like they don’t know.  

Overall, environment codes were identified more often with content discussed for an ideal 

situation than for actual situations. The health care professionals and manual wheelchair users 
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reported wanting more opportunities related to using the wheelchair and practicing skills outside 

of the hospital environment. One health care professional commented that: 

I think, from my perspective, it’s kind of ideal and I get to do it periodically … I get to go 

to the place where they [wheelchair users] work. We access every environment that they 

are going to be in, and it really works out great because, a lot of times, there’s something 

that comes up—and it might be the littlest thing. If you don’t go and have those 

experiences, then they just get in that situation and they have to figure out how to make 

the non-ideal situation work. Sometimes, I think that leads to some injuries and falls. It 

would be really nice for all of us to be able to go with these guys where they go and train 

them there.  

Manual wheelchair users also emphasized the importance of training in the lived environment, as 

one participant emphasized, “There’s got to be more training at the home.” 

Table 3.7 Environmental factors related to wheelchair skills training 

ICF 

Code 
ICF Category Actual Ideal 

Chapter 1: Products and technology HCP MWU HCP MWU 

e115 Products and technology for personal use in daily living 4 1 7 6 

e120 
Products and technology for personal indoor and 

outdoor mobility and transportation 
6 7 9 11 

e130 Products and technology for education 0 0 2 0 

e150 
Design, construction and building products and 

technology of buildings for public use 
0 4 3 8 

e155 
Design, construction and building products and 

technology of buildings for private use 
0 1 2 2 

Chapter 2: Natural environment and human-made changes to environment   

e210 Physical geography 3 2 4 4 

Chapter 3: Support and relationships     

e355 Health professionals 0 5 0 4 

Chapter 5: Services, systems and policies     

e580 Health services, systems and policies 3 4 3 2 

Note. Numbers in the right-hand columns represent the number of participants who mentioned content related to 

the corresponding code one or more times. Actual represents what was reported as practiced and experienced with 

manual wheelchair training; ideal represents what should be taught or learned related to manual wheelchair 

training. HCP = health care professionals, MWU = manual wheelchair users. 
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3.3.2 Identifying Important Skills for New Manual Wheelchair Users 

Participants (manual wheelchair users and health care professionals) identified 21 manual 

wheelchair skills (Figure 3.2) and ranked their top 10 in order of importance. The four skills that 

were ranked in the top ten by all participants (n = 27) were transfers (n = 26), taking care of the 

wheelchair (this includes maintenance, cleaning, and adjustment; n = 20), propulsion techniques 

(n = 19), and maneuvering small bumps or curbs (n = 19; Figure 3.3). Performing activities of 

daily living in the wheelchair (n = 2) and going up and down stairs (n = 2) were among skills that 

were least identified in the top 10 important skills. More manual wheelchair users (n = 15) 

identified transfers in their top 10 list than did health care professionals (n = 11). Health care 

professionals (n = 11) reported the ability to perform a pressure relief in the wheelchair more 

commonly than did manual wheelchair users (n = 1). Health care professionals and manual 

wheelchair users identified similar themes; however, the order of importance of the skills for 

manual wheelchair users and health care professionals were statistically different (p < 0.05).  
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Manual Wheelchair Skills 

General transfers (bed, shower/bathtub, car) 

Maintenance/cleaning/adjustments 

Propulsion techniques 

Small bumps/curbs 

Positioning/sitting, posture 

Chair education (parts, vendor, etc.) 

Wheelies 

Community mobility 

Pressure relief 

Ramps (up and down) 

Hills (up and down) 

Strength and conditioning 

Rough surfaces (gravel, grass, etc.) 

Doors (opening and closing) 

Floor-to-chair transfer 

Turning and maneuvering/managing tight spaces 

Assembling and disassembling wheelchair  

Sitting balance 

Psychological adjustment 

ADLs in wheelchair 

Stairs 

Note. ADLs = Activities of daily living.  

Figure 3.2 Manual wheelchair skills identified as important by health care professionals and manual 

wheelchair users.  
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Note. This figure shows only the skills that at least 10 participants reported in their top ten list of skills. Black 

arrows indicate difference between manual wheelchair users and health care professionals. HCP = health care 

professionals, MWU = manual wheelchair users. 

Figure 3.3 Manual wheelchair skills identified during focus groups: ranked by importance by both groups, 

each group, and reported group differences.  

3.4 Discussion 

The purpose of this project was to identify wheelchair skills currently being taught to new 

manual wheelchair users, identify areas of importance for acquisition of manual wheelchair skill 

training during initial rehabilitation, identify similarities and differences between health care 

professional and manual wheelchair user perspectives, and use the ICF in organizing themes 

related to rehabilitation and learning how to use a manual wheelchair. The use of focus groups 

provided an opportunity for health care professionals and manual wheelchair users to share their 

thoughts about the current state of wheelchair training and potential priorities for the future 

(Hammell, 2001). This study had many limitations, including a small sample size and limited 
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geographic representation of participants. The health care professionals and manual wheelchair 

users were located in the Midwestern geographical region; however, many participants received 

rehabilitation or worked in facilities outside of this geographical area. A few of the participants 

were injured for more than 10 years, and their experiences during rehabilitation may not reflect 

the current state of rehabilitation. Across participants in the manual wheelchair user group, the 

spectrum ranged from individuals who were newly injured to individuals who had been injured 

for over 40 years. This diverse participant population provided a picture of rehabilitation for 

manual wheelchair users across a wide range of time.  

3.4.1 Actual Experience Reported by Health Care Professionals and Manual 

Wheelchair Users 

Previous research provides varying descriptions of the amount of wheelchair training offered 

during rehabilitation, ranging from little to no training offered to more thorough and deliberate 

training offered over numerous therapy sessions (Boninger et al., 2002; Taylor et al., 2014). The 

experiences of wheelchair training during rehabilitation described by manual wheelchair users in 

this study are similar to those described in the literature. Manual wheelchair users in the focus 

groups reported differing experiences related to training, with half of the sample reporting one 

extreme or the other (no training or a great deal training) and the other half of the sample 

reporting that they received a moderate amount of training. The health care professionals all 

reported providing wheelchair training to new wheelchair users; however, the amount of training 

was dependent upon the circumstances. From the information provided in the focus groups, some 

level of wheelchair skills training is, for the most part, introduced during rehabilitation. The 

material covered during training varies, and the application of the information to the person’s 

own environment does not necessarily translate to changes in participation in the person’s lived 

environment.  
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The most common skills taught in rehabilitation as reported in the literature are transfers, 

wheelies, propulsion techniques, navigating different surfaces, and going up slopes (Kilkens, 

Post, Dallmeijer, Seelen, & van der Woude, 2003; Taylor et al., 2014). Transfers in and out of 

the wheelchair (e.g., to the bed, shower, or car) were repeatedly mentioned as a skill taught 

during rehabilitation. Wheelies were not mentioned often by health care professionals or manual 

wheelchair users as being taught during rehabilitation. Techniques for propelling a wheelchair 

were introduced but not explained or practiced, as reported by manual wheelchair users in the 

focus groups. Focus group participants did report some practice with maneuvering obstacles and 

going up and down ramps. 

At the beginning of each focus group, manual wheelchair skills were vaguely defined. 

When asked about wheelchair skills training currently being provided during the rehabilitation 

process, many health care professionals responded by explaining the wheelchair seating 

evaluation process. Even after being redirected to the purpose of the discussion (wheelchair skills 

training), health care professionals made statements about the wheelchair seating process (e.g., 

meeting with the equipment provider, taking measurements, setting the axle position) rather than 

wheelchair skills training. This focus on the wheelchair fitting rather than wheelchair skills 

training may be due to the short duration of rehabilitation stays, which may leave insufficient 

time for actual wheelchair skills training (Kendall et al., 2003). The emphasis on the wheelchair 

fitting may also be related to how comfortable health care professionals are with teaching 

wheelchair skills. During the focus groups, we asked what should be taught but did not ask 

whether health care professionals felt equipped to teach these skills. Many comments from both 

health care professionals and manual wheelchair users indicated that therapists may not 

necessarily know some of the wheelchair skills or be comfortable teaching them. Wheelchair 
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skills training may not be an area in which health care professionals are trained, feel comfortable 

with, or have support or time to offer during rehabilitation (Coolen et al., 2004).Therapists 

mentioned learning on the job and from other, more experienced therapists. Literature suggests 

that training in this area for therapists may not be extensive or hands-on, and this may lead to 

inadequate wheelchair training during rehabilitation, as well as safety concerns (Best et al., 2014; 

Giesbrecht et al., 2004; Kirby et al., 2004). Several manual wheelchair users in this study 

reported learning many of their wheelchair skills (especially advanced skills) outside of 

rehabilitation from experienced wheelchair users. 

3.4.2 Ideal Experience Reported by Health Care Professionals and Manual 

Wheelchair Users 

A disconnect between what wheelchair training is occurring in rehabilitation and what health 

care professionals and manual wheelchair users thought should occur was identified. Three of the 

areas that were evident in coding gaps between actual and ideal were use of the environment for 

training, addressing and accommodating for a psychological adjustment period, and teaching not 

just wheelchair use, but also how to care for and maintain the wheelchair. In the ideal setting, 

more participation-based training in the context of the environment was emphasized. Even 

though SCI rehabilitation focus is shifting away from a pure medical model, many barriers still 

exist to offering rehabilitation interventions with a participation focus (Gómara-Toldrà, 

Sliwinski, & Dijkers, 2014). These barriers identified by the health care professionals in the 

focus groups and supported by the literature include funding, time, policies, and limited access to 

support and resources (Isaacson, 2011; Mitchell, Jin, Kim, Giesbrecht, & Miller, 2014).  

Another area identified by the health care professionals and the manual wheelchair users 

as needing more emphasis is the psychological factors that impact motivation to learn wheelchair 

skills. Adjusting to a disability (such as an SCI) and using a wheelchair for fulltime mobility is a 
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process and often leads to depression, anxiety, and lack of motivation (Post, de Witte, van 

Asbeck, van Dijk, & Schrijvers, 1998).  

Themes in the focus groups were similar to those in literature published on adjustment 

and impact on rehabilitation (Sand, Karlberg, & Kreuter, 2006). Manual wheelchair users 

discussed that they would have liked to be more included and consulted about rehabilitation 

plans for wheelchair training. Health care professionals and manual wheelchair users suggested 

extending the time wheelchair training is offered across settings (inpatient, outpatient, and 

community services) to allow for an adjustment period (Ditunno, 1994). The third reoccurring 

theme discussed by both participant groups was the need for more training related not just how to 

use the wheelchair, but also about the wheelchair—how to care for, adjust, and clean the 

wheelchair. Literature supports the finding that wheelchair users often are not informed about 

their wheelchairs, do not know how to care for them, and are unable to determine on their own 

when adjustments and maintenance are needed (Hansen, Tresse, & Gunnarsson, 2004).  

3.4.3 Health Care Professional and Manual Wheelchair User Perspectives 

Limited information exists in the literature on perspectives of health care professionals in 

comparison to those of manual wheelchair users on wheelchair training during rehabilitation for 

people with SCI. The results of this project provide a unique perspective of the two key players 

in wheelchair training during rehabilitation: the health care professional and the manual 

wheelchair user. While there were many commonalities in the themes identified by both groups, 

there were also some discrepancies or instances in which one group emphasized an area more 

than the other group. Health care professionals frequently discussed themes related to body 

functions and structures, such as pressure and skin, whereas manual wheelchair users 

emphasized transfers in and out of the wheelchair. Discrepancies between responses from 
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manual wheelchair users and health care professionals were also identified when discussing what 

was taught during rehabilitation. For example, health care professionals explained that one of the 

routine skills that they teach to new manual wheelchair users is propulsion technique; however, 

manual wheelchair users repeatedly said that they received little to no direct instruction on how 

to push the wheelchair and, when they did, it was basic instruction over hospital floors. Health 

care professionals and manual wheelchair users both identified the importance of teaching the 

skills within the context of the person’s environment, such as the home and community. Health 

care professionals and manual wheelchair users agreed on skills that should be taught but had 

differences in the order of importance of these skills.  

3.4.4 Application of the ICF to Wheelchair Skill Training in Rehabilitation 

Wheelchair training may be implemented across different settings by multiple professions, most 

commonly occupational and physical therapists. The ICF provides language to cut across health 

care professions and different settings and to connect to wheelchair users (Biering-Sørensen et 

al., 2006; Steiner et al., 2002). The structure that the ICF provides addresses the language gap 

between the medical model of a disease, deficit, and limitation with a focus on individual 

interventions and a social model that views the physical and social aspects of the environment 

for creating disability (WHO, 2001). Proper and effective wheelchair skill training is an example 

of a rehabilitation intervention that requires attention to both models. The ICF provides a 

structure to view wheelchair training rehabilitation with a biological-socio-environmental view 

(WHO, 2001). 

The ICF has not previously been employed to analyze the specific components of 

wheelchair skills training during rehabilitation; however, the ICF has been used for wheelchair 

seating and training outcomes analyses. Many of these measures have been found to focus on 
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body function and structure and standardized environments rather than participation and the 

natural environment (Gray et al., 2008; Jette, Haley, & Kooyoomjian, 2003; Perenboom & 

Chorus, 2003). Although many measures may be related to body functions and structures, those 

codes were used the least when identifying themes of what is actually offered in rehabilitation to 

address wheelchair skills. The health care providers and manual wheelchair users describe (as 

indicated by the ICF-coded themes discussed during the focus groups) the current state of 

wheelchair skills training intervention in rehabilitation as an activity-dependent intervention 

performed primarily in a controlled environment (Glass, 1998). Activity-dependent interventions 

are subject to performance measures in standard environments designed to reduce the number 

and types of variables present, they are dependent upon observation, and progress is measured by 

time taken and magnitude of response. On the contrary, participation-dependent interventions are 

assessed by the participant, done in the lived environment, are dependent upon support available 

(e.g., personal assistance and assistive technology) but often are difficult to implement and 

support in the rehabilitation setting. The current activity-dependent approach in wheelchair 

training rehabilitation may explain why skills vary greatly across manual wheelchair users and 

why many manual wheelchair users are unable to perform more advanced wheelchair skills in 

their own environments (Kirby, Swuste, Dupuis, MacLeod, & Monroe, 2002; MacPhee et al., 

2004).  

ICF Core Sets have been developed for more than thirty health care conditions (e.g., 

stroke, rheumatoid arthritis, low back pain, and SCI; Cieza et al., 2010; Vidmar, 2013). The ICF 

Core Set for SCI has similar codes identified in this study but provides a greater picture of SCI 

overall, with many codes specifically related to body structure and function (Cieza et al., 2010). 

The information gathered in this study could form the basis for establishing an ICF Core Set for 
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manual wheelchair users to include Body Structures and Function, Activities and Participation, 

and Environment codes that were mentioned in the focus groups. An ICF Core Set with a limited 

number of codes for health care professionals and consumers may promote an understanding of 

the important variables to consider when training people to use manual wheelchairs.  

3.4.5 Implications for Rehabilitation 

People with SCI leaving rehabilitation have not felt prepared for everyday community living in 

part due to poor independent mobility skills (Cott, 2004). This project provides a view of 

wheelchair training interventions from the perspective of health care professionals and manual 

wheelchair users. Reviewing what is being covered in rehabilitation related to wheelchair skills 

training and what should be emphasized may provide information to help health care 

professionals identify ideas about other possible approaches in wheelchair skills training. The 

project specifically highlights manual wheelchair skills identified as important for new 

wheelchair users to learn. With limited time during rehabilitation, select skills identified as 

important for new manual wheelchair users could be the focus. Formalized wheelchair training 

protocols such as the WSTP could be utilized as a guide for health care professionals on how to 

teach the skills they have chosen to address during rehabilitation (MacPhee et al., 2004). 

Nineteen of the 21 skills discussed in the focus groups (see Table 3.8) are found in the WSTP. 

The results of this study help to identify important manual wheelchair skills that need further 

examination for ranking of importance and how best to teach them. This information may guide 

alternative approaches to providing further education and training about manual wheelchair use 

outside of initial rehabilitation.  
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3.4.6 Future Directions 

In order to represent a wider experience of rehabilitation, future work could include recruiting a 

larger sample size with representation across the country and across different settings. In 

addition, the continuum of care in wheelchair skills being taught across settings needs to be 

examined to determine what is being taught in inpatient and outpatient rehabilitation and the 

potential need for community programs. ICF coding for related content could also be expanded 

to include third and fourth level codes. In addition, qualifier codes for the Activities and 

Participation and Environment components could be used to provide more information regarding 

wheelchair skills deemed most difficult to learn and environmental barriers and facilitators 

influencing participation using these skills. A larger sample across settings and with more levels 

coded could assist in the process of solidifying an ICF Core Set for manual wheelchair users.  

3.5 Conclusions 

The focus of rehabilitation for wheelchair skill training falls primarily in the Activity and 

Participation domains of the ICF. Health care professionals and manual wheelchair users 

identified the need to incorporate the environment (home and community) into the wheelchair 

training program. The focus groups identified key wheelchair skills that may be important to 

introduce to new manual wheelchair users during the continuum of rehabilitation. Many skills 

that were identified as important by participants (both health care professionals and manual 

wheelchair users) related to proper propulsion mechanics, transfers in an out of the wheelchair, 

providing maintenance to the wheelchair, and pushing over environmental barriers such as curbs, 

ramps, and rough terrain. The results of this study have important implications for health care 

professionals working with people who use manual wheelchairs. Identifying essential 
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components for training proper propulsion mechanics and wheelchair skills in new manual 

wheelchair users is an important step in preventing future health and participation restrictions.   
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Abstract 

Purpose: Developing evidence-based approaches to teaching wheelchair skills and proper 

propulsion for people with SCI is important to successful rehabilitation for everyday wheelchair 

use. The purpose of this project was to pilot test a manual wheelchair training program based on 

motor learning and repetition-based training for new manual wheelchair users with a spinal cord 

injury (SCI). 

Methods: Six persons with a spinal cord injury requiring the use of a manual wheelchair 

participated in a wheelchair training intervention. The intervention included nine 90-minute 

training sessions. The primary focus was on wheelchair propulsion biomechanics and the 

secondary focus was on wheelchair skills. At each testing session (Pretest 1, Pretest 2 and 

Posttest), kinematics related to propulsion and wheelchair performance overground were 

measured. Kinetic propulsion variables and wheelchair skills were measured immediately before 

the intervention (Pretest 2) and immediately after (Posttest). 

Results: Significant changes in area of the push loop, hand to axle relationship, and slope 

of the push forces were found. Changes in propulsion patterns were identified pre and post 

wheelchair training. No significant differences were found in peak and average push forces and 

wheelchair skills pre and post wheelchair training. 

Conclusions: This project identified trends in change related to a repetition-based motor 

learning approach for propelling a manual wheelchair. The changes found were related to the 

propulsion pattern of the participants. Studying manual wheelchair use with new manual 

wheelchair users has potential for change and preventing or reducing pain and chronic overuse 

injuries. However, there are many challenges associated with implementing interventions for 

new manual wheelchair users. 
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4.1 Introduction 

The most common type of wheelchair used for everyday mobility by persons with spinal cord 

injuries (SCI) is a manual wheelchair (National Spinal Cord Injury Statistical Center, 2013). 

While wheelchair propulsion is an essential skill for maneuvering a manual wheelchair, research 

suggests that the repetitive loading on the upper extremities may contribute to pain and chronic 

overuse injuries (Boninger et al., 2005; Gellman et al., 1988; Tun & Upton, 1988). Specifically, 

biomechanically poor wheelchair propulsion techniques have been associated with rotator cuff 

injuries, tendonitis, carpal tunnel syndrome, and median nerve injuries (Akbar et al., 2010; 

Davidoff, Werner, & Waring, 1991; Koontz et al., 2005). Pain and injury to the upper extremities 

is a major concern for manual wheelchair users because they depend upon their upper extremities 

to perform typical activities of daily living (e.g., transferring, getting dressed, and driving a 

vehicle; Robertson, Boninger, Cooper, & Shimada, 1996; Rodgers, Keyser, Rasch, Gorman, & 

Russell, 2001). Manual wheelchair users may benefit from training in proper wheelchair 

propulsion to help decrease the possibility of injuries that may affect their mobility and activities 

of daily living.  

The literature contains substantial information regarding wheelchair propulsion 

mechanics, techniques, and skills and suggests that propulsion mechanics may be changeable 

through training (Fay et al., 2004; Mercer et al., 2006). Specifically, research suggests that 

important components of wheelchair propulsion training are decreasing push frequency, 

increasing push angle, and using a semicircular propulsion pattern or a pattern in which the hand 

drops below the pushrim toward the axle of the wheel during the recovery phase of the push 

(Boninger et al., 2005). The Clinical Practice Guidelines for the Preservation of Upper Limb 

Function Following Spinal Cord Injury (CPG) recommendations are based upon this research 
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and emphasize minimizing the force and frequency of pushes and using long pushes during 

propulsion (Boninger et al., 2005; Paralyzed Veterans of America Consortium for Spinal Cord 

Medicine, 2005; Sawatzky, DiGiovine, Berner, Roesler, & Katte, 2015). The goal of the 

guidelines is to promote a more efficient propulsion pattern, or a motion that requires fewer 

pushes on the pushrim but uses more of the pushrim to retain the same speed (Boninger et al., 

2002). Increased propulsion efficiency minimizes unnecessary upper extremity use during 

propulsion and may lead to a reduction in chronic injuries of the upper extremities.  

Different approaches to improving propulsion mechanics, including exercise programs, 

educational programs, and instructional programs based on visual and verbal feedback have been 

researched (de Groot, Veeger, Hollander, & van der Woude, 2005; Degroot, Hollingsworth, 

Morgan, Morris, & Gray, 2009; I. Rice, Pohlig, Gallagher, & Boninger, 2013; L. Rice, Smith, 

Kelleher, Greenwald, & Boninger, 2014; Zwinkels, Verschuren, Janssen, Ketelaar, & Takken, 

2014). A limited number of studies have explored training methods implementing motor learning 

concepts important to skill acquisition, performance, and retention for new manual wheelchair 

propulsion (I. Rice, Gagnon, Gallagher, & Boninger, 2010; I. Rice et al., 2013; MacPhee et al., 

2004). Motor learning consists of many components, but one of the most effective approaches to 

skill acquisition is increasing the number of times a skill is practiced (Kitago & Krakauer, 2013; 

Korman, Raz, Flash, & Karni, 2003). Motor learning of wheelchair propulsion is a complex skill 

and involves many repetitions and training sessions for the task to be performed without much 

thought and with little error (Baddeley & Longman, 1978; Karni, 1996; Kitago & Krakauer, 

2013; Lang et al., 2009).  

Research interventions involving training wheelchair propulsion biomechanics 

commonly do not use new manual wheelchair users but instead use either experienced manual 
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wheelchair users or able-bodied participants. Using able-bodied participants does not address 

many factors involved with training new manual wheelchair users, such as medical-related 

issues, lack of support and resources, adjustment psychologically, and dependence on proper 

wheelchair seating and positioning (Boninger, Baldwin, Cooper, Koontz, & Chan, 2000; 

Kotajarvi, Basford, An, Morrow, & Kaufman, 2006). Training introduced closer to the time a 

person receives his or her wheelchair has the potential to decrease or delay the incidence of 

overuse injuries and pain and improve overall wheelchair skills and propulsion efficiency, 

resulting in an increase in participation (Kilkens, Post, Dallmeijer, Seelen, & van der Woude, 

2003). 

Although a relationship between wheelchair propulsion and chronic overuse injuries is 

documented, clinical guidelines have been developed, and research has been conducted on 

different approaches, new manual wheelchair users are often given little information or training 

on how to propel their wheelchairs (Boninger et al., 2002). Few rehabilitation programs focus on 

manual wheelchair propulsion training, despite evidence that suggests the benefits of training 

(MacPhee et al., 2004). Clinicians often report no implementation of formalized protocols or 

evidence-based practice into wheelchair training rehabilitation because of time, cost, and lack of 

knowledge (Best, Routhier, & Miller, 2014). When training does occur, it tends to be basic 

wheelchair training (e.g., addressing wheelchair use, propulsion, and navigating obstacles) for an 

average of one to four hours during the entire rehabilitation stay (Best et al., 2014). This limited 

time would not allow for specific propulsion instruction or practice time. Manual wheelchair 

propulsion is a complex, novel task that requires training to promote an efficient and effective 

propulsion pattern (Vegter, de Groot, Lamoth, Veeger, & van der Woude, 2013).  
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There is a paucity of research investigating manual wheelchair propulsion training 

methods that implement motor learning concepts, specifically repetition-based training. 

Literature on existing training interventions and their effectiveness is limited and difficult to 

translate to clinical settings and to new manual wheelchair users. Developing evidence-based 

approaches to teaching wheelchair skills and proper propulsion for people with SCI is important 

to successful rehabilitation for everyday wheelchair use. The purpose of this pilot study was to 

test a manual wheelchair training program based on motor learning principles for manual 

wheelchair users with SCI. We hypothesized that, after participants received the wheelchair 

training intervention, they would increase push length (also referred to as push angle), use a 

semicircular push pattern, decrease push force, increase push efficiency, and improve wheelchair 

skills proficiency.  

4.2 Methods 

4.2.1 Participants 

Six persons (four men, two women; average age, 38 ± 17.5) with an SCI or related neurologic 

condition requiring the use of a manual wheelchair were recruited through local rehabilitation 

facilities in a Midwestern area of the United States (Table 4.1). Fifty percent of participants 

reported still receiving outpatient rehabilitation services and that these services did not 

specifically address wheelchair propulsion or wheelchair skills. Participants were screened to 

ensure that they met the following inclusion criteria: were 18 years of age or older, had an SCI or 

related neurological condition requiring the use of a manual wheelchair, were considered not 

previously trained in wheelchair propulsion biomechanics, self-reported as being novice 

wheelchair users, and were able to self-propel a manual wheelchair. Participants also were 

required to provide informed consent. People were excluded from the study if they maneuvered 



94 

 

their wheelchairs with their lower extremities or with only one arm. Participants were 

compensated for their time and effort. The project was approved by an institutional review board. 

Table 4.1 Demographics of manual wheelchair users (N = 6) 

Age Average in years 38 

 Range, years 20–69 

Gender, n (%) Male 4 (67) 

 Female 2 (33) 

Race, n (%) White 3 (50) 

 African American 2 (33) 

Time using wheelchair Average in months 12.3 

 Range, months 6–18 

Level of injury, n (%) Cervical 2 (33) 

 Thoracic 4 (67) 

Receiving outpatient therapy, n (%) Yes 3 (50) 

 No 3 (50) 

 

4.2.2 Procedure 

A repeated measures within-subject design was used with participants acting as their own 

controls. Each participant completed a demographic survey during the first assessment. Two 

baseline measurements (Pretest 1 and Pretest 2) were taken three weeks apart and were followed 

by a nine-session intervention (wheelchair training program), then a Posttest (Figure 4.1). All 

assessment and training sessions took place in a community-based research facility. At each 

testing session (Pretest 1, Pretest 2, and Posttest), kinematics related to propulsion and 

wheelchair performance overground were measured. Kinetic propulsion variables and wheelchair 

skills were measured immediately before the intervention (Pretest 2) and immediately after 

(Posttest). Participants completed the nine-session training program over a timeframe of three to 

five weeks, completing two or three sessions per week.  
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Note. *In Pretest 1, only kinematics that related to propulsion and wheelchair performance overground were 

tested. **Between Pretest 1 and Pretest 2, no intervention occurred for three weeks. 

Figure 4.1 Research design: Within subject (repeated measures)  

 

4.2.3 Outcome Measures 

Propulsion Kinematics. A Video Motion Capture (VMC) system was used to collect kinematic 

data during propulsion. The VMC system (Motion Analysis Corporation) consisting of eight 

cameras was positioned to capture the movement of reflective markers placed on anatomical 

landmarks of each participants’ third metacarpal and on the wheel axle of the participant’s 

wheelchair as the participant propelled across the floor. The participant performed practice 

pushes across the 12-meter laboratory, and then three trials were recorded. The VMC recorded 

the motion as the participant propelled through the capture volume. By the time the participant 

entered the capture volume, he or she was propelling at a constant, self-selected normal speed 

(Stephens & Engsberg, 2010).  

To quantify the motion of the participant’s propulsion pattern, several variables were 

calculated (Figure 4.2). Each variable was calculated for the right arm and averaged across three 

pushes. Sagittal plane numerical data for the third metacarpal marker on the right hand were 

calculated relative to the marker placed on the axle of the right wheel. The propulsion phase was 

determined by measuring when the participant’s third metacarpal was the same distance from the 
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wheel axle as the wheel radius, indicating that the hand was in contact with the pushrim of the 

wheel (Julien, Morgan, Stephens, Standeven, & Engsberg, 2013). Recovery phase was 

considered when the hand was not in contact with the pushrim and was not moving forward.  

 
Note. MC=Metacarpal. 

Figure 4.2 Right hand push loop measurements designated by 3rd metacarpal 

Three variables— area of the push loop, hand–axle relationship, and push angle—were 

compared across the three assessments. These three variables correspond to the 

recommendations outlined in the CPG (use of a semicircular propulsion pattern [area of push 

loop], bringing the hand down toward the axle during recovery [hand–axle relationship], and 

longer push strokes [push angle]; Paralyzed Veterans of America Consortium for Spinal Cord 

Medicine, 2005). The area of the push loop (total area [cm2]) represented the area made by the 

hand during the push and recovery phase. A positive area of the loop value indicates that the 

push loop is below the pushrim, and a negative value indicates that the area of the push loop 

during recovery is above the pushrim (Stephens & Engsberg, 2010). Hand–axle relationship was 

measured during the recovery phase and was defined as the distance of the third metacarpal from 
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the axle at the closest point. Push angle was the angle in degrees between the points at which the 

hand contacted the pushrim and left the pushrim (Cowan, Nash, Collinger, Koontz, & Boninger, 

2009). In addition, we classified the propulsion patterns found during all three assessments 

across all three trials of the VMC data according to four propulsion patterns described in the 

literature (Boninger et al., 2002; Stephens & Engsberg, 2010). The semicircular and double loop 

pattern most closely represents the CPG because, during the recovery phase of these two 

propulsion patterns, the hand moves down toward the direction of the wheel axle. 

 Propulsion Performance. The Wheelchair Propulsion Test (WPT) was used to measure 

push frequency and effectiveness while pushing overground over a smooth, flat surface (Askari, 

Kirby, Parker, Thompson, & O’Neill, 2013). The WPT also allows for observation and 

quantification of a participant’s propulsion pattern. Participants were asked to propel 10 meters 

across a smooth, flat surface at a self-selected comfortable pace during Pretest 1, Pretest 2, and 

Posttest. A member of the research staff used a stopwatch to time how long it took each 

participant to propel across 10 meters and observed the propulsion pattern of the participant’s 

right arm. The number of seconds (time) and the number of pushes (cadence) were recorded. The 

research staff member also answered two yes-or-no questions about the participant’s hand 

placement during the push and recovery phases: (1) during the contact phases, did the participant 

generally begin the contact between the hands and the pushrims behind the top dead-center of the 

wheel? and (2) during the recovery phases, did the participant generally use a path of the hands 

that was predominantly beneath the pushrims? (Askari, et al., 2013). Variables calculated were 

contact (yes or no), recovery (yes or no), time to complete the 10 meters (seconds), the number 

of pushes needed to complete the 10 meters (cadence), speed (meters per second), push 

frequency (pushes per second), and push effectiveness (meters per push). The data collected 
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from the WPT helped identify changes of propulsion performance pre- and post-intervention and 

how those changes related to the CPG of minimizing the frequency of pushes while retaining the 

same speed (Paralyzed Veterans of America Consortium for Spinal Cord Medicine, 2005).  

 Propulsion Kinetics. The WheelMill System (WMS) is a computer-controlled 

wheelchair dynamometer roller system that has the ability to measure kinetic propulsion 

variables (Klaesner, Morgan, & Gray, 2014). The WMS measures the forces at the wheel–roller 

interface. A force from the WMS that is representative of the tangential force (Ft) was calculated 

from the motor control signal controlling the torque of the rollers (Klaesner et al., 2014). During 

Pretest 2 and Posttest, participants pushed for 30 seconds at a self-selected speed on the WMS. 

Peak force (the greatest amount of force [measured in Newtons]) and average force (measured in 

Newtons) were calculated across five pushes at a steady state. In addition, the slope of the 

smoothed calculated tangential force (Newtons per second) was calculated by taking a three 

point differentiation of the signal. A five-point moving average was used to smooth the signal. 

The local maximum slope for each of the five pushes was found, and these values were averaged 

across five pushes for each assessment (Pretest 2 and Posttest). The slope of the force was 

calculated to determine whether the load of force the participant applied to the pushrim changed 

post-training. The force variables (average force, peak force, and slope of the force) were used to 

identify whether the CPG of minimizing forces was met post-training (Paralyzed Veterans of 

America Consortium for Spinal Cord Medicine, 2005). 

 Wheelchair Skills. The Wheelchair Skills Test (WST) version 4.2 was used to examine 

the participant’s ability to safely complete wheelchair skills (e.g., propelling up and down ramps 

of varying slopes, turning in tight areas, maneuvering over curbs or obstacles of varying heights) 

in a controlled environment (Kirby, Swuste, Dupuis, MacLeod, & Monroe, 2002; Lindquist et 
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al., 2010). The community research facility contained an indoor mobility skills course with 

obstacles that participants may encounter in the community (e.g., ramps, cross slope, and curbs 

of varying heights). Participants performed a series of tasks on the course and were scored on 

their completion of each task. Tasks were performed in order of difficulty. If a participant could 

not complete certain tasks, he or she was not asked to complete all tasks; for example, if a 

participant could not maneuver over a threshold-height obstacle, the participant was not tested on 

the different curb heights. A spotter strap was attached to the wheelchair in case the research 

team needed to intervene in an unsafe situation. A member of the research team scored each 

individual skill on a scale of 0 to 2, with 0 indicating that the skill was not completed, 

1indicating that the skill was completed with difficulty, and 2 indicating that the skill was 

completed without difficulty (Kirby, Swuste, Dupuis, MacLeod, & Monroe, 2002; Lindquist et 

al., 2010). A wheelchair skill completion score (sum of scores ∕ ([total number of skills – total 

number of skills not completed] x 2) x 100%) was calculated and compared across Pretest 2 and 

Posttest to identify changes in wheelchair skills. 

 Wheelchair Training Intervention. The training program was developed from current 

training methods and the best available evidence. The CPG recommend minimizing the force and 

frequency of pushes and using long strokes during propulsion (Boninger et al., 2005; Paralyzed 

Veterans of America Consortium for Spinal Cord Medicine, 2005). The training program for 

manual wheelchair users was based on motor learning principles using a repetition-based 

approach to produce an efficient propulsion technique and to prevent chronic overuse injuries 

that limit independence for persons with SCI (Boudreau, Farina, & Falla, 2010; Dayan & Cohen, 

2011; Lang et al., 2009; Nudo, 2006; Nyland et al., 2000).  
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The training program included nine 90-minute training sessions; training sessions were 

conducted two to three times per week. While increasing the number of practice repetitions is the 

emphasized component of motor learning in this study, other motor learning components that 

may affect skill performance and acquisition were also implemented (Kitago & Krakauer, 2013). 

Each training session included two propulsion practice sets and two opportunities to practice 

wheelchair skills (Table 4.2). Each session was organized to limit the number of variables 

presented to the participant at one time (Gevins et al., 1998; Schmidt & Wulf, 1997).  

The primary focus of the training was propulsion biomechanics. Propulsion training was 

divided into two propulsion sets. Propulsion set A focused on using longer push strokes. 

Propulsion set B focused on dropping the hand down toward the axle. The two propulsion sets 

were randomized throughout training to maximize random practice. Participants were coached 

and cued throughout each session in order to correct propulsion form and provide extrinsic post-

responsive information on propulsion movements. At the beginning of the training program, 

more cues were used; as the sessions progressed, the number of cues decreased (Goodwin, 

Eckerson, & Voll 2001). The trainer emphasized the participant’s ability to self-identify when he 

or she needed to make a correction, having participants look in a mirror during their practice 

repetitions. All propulsion sets were completed on the WMS, and participants achieved 500–700 

repetitions per session. After every three sessions, the number of repetitions per session 

increased (Sessions 1–3: 500 repetitions, Sessions 4–6: 600 repetitions, Sessions 7–9: 700 

repetitions). Each participant completed 5400 repetitions by the end of the training program. 

Documentation in the research literature indicates that 300–800 repetitions per session turn a 

movement into a learned skill (Birkenmeier, Prager & Lang, 2010). After each propulsion set, 
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the participant was taken off the WMS and the principles taught on the WMS were encouraged 

overground. However, the counted practice repetitions all occurred on the WMS. 

Table 4.2 Training session outline 

Time (min.) Training 

0:00–15:00 Check in, intro to training, review of last session  

15:00–25:00 Propulsion A or B (250–350 reps) 

25:00–45:00 Wheelchair skill practice 

45:00–50:00 Break 

50:00–60:00 Propulsion A or B (250–350 reps) 

60:00–80:00 Wheelchair skill practice 

80:00–90:00 Wrap up, schedule next session 

 

 The secondary goal of the training program was improvement of wheelchair skills. The 

wheelchair skills introduced during each session were used to vary the practice schedules of 

movement, provide external focus of attention, and further educate participants on valuable 

wheelchair skills. Wheelchair skills included in the sessions included basic wheelchair 

maintenance, backward propulsion, maneuvering tight spaces, opening and closing doors, going 

up and down ramps, pushing across a cross slope, going over curbs and bumps, and performing a 

wheelie. The portions of the training program that involved propulsion and maneuvering 

environmental obstacles were first taught on the WMS, which simulates the resistance and 

wheelchair position of surfaces such as ramps and cross slopes (Figure 4.3). The device provides 

an opportunity to safely train participants on propulsion techniques and obstacle manipulation 

while in a secure position, allowing participants to focus solely on the technique of each skill. 

Once these skills were introduced on the WMS, participants were transitioned onto the actual 

surfaces for additional training to introduce navigation of obstacles in the actual environment 

(Braun, Aertsen, Wolpert & Mehring, 2009). The additional training included pushing across 

ramps of varying slopes (up and down) and pushing over different surfaces (carpet, tile, gravel) 
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using the techniques taught on the WMS. These ramps and surfaces were all located in and 

around the testing facility. 

   

Note. Participant pushing on a cross slope simulated by the WMS (left picture). Participant pushing outside over a 

cross slope (right picture). 

Figure 4.3 Cross slope practice 

4.2.4 Data Analysis 

Customized Microsoft Excel spreadsheets were used to process all project data (Microsoft, 

2011). VMC data were tracked and edited using motion analysis software (Cortex 2.1, 2010). We 

used SPSS version 21 on a Windows-based computer for data analysis (SPSS Inc., 2012). A 

repeated measures analysis of variance (ANOVA) was used to determine whether there were 

significant differences in the wheelchair kinematic variables and the wheelchair performance 

variables across three testing times (p < 0.05). Mauchly’s test of sphericity was used to test 

whether the assumption of sphericity was met. For the repeated measures ANOVA results, the 

assumption of sphericity was met (p > 0.05) for all variables. The Bonferroni post hoc tests were 

used to determine which assessments differed from one another. A paired t-test was used to 

determine significant differences in the wheelchair push force variables (WMS), and wheelchair 

skills (WST) variables between Pretest 2 and Posttest (p < 0.05). Effect sizes (partial η2) were 
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calculated to determine the magnitude of differences before and after wheelchair training. 

Individual results were also reported to identify inter-variability and intra-variability across 

participants and assessments. 

4.3 Results 

Six participants completed the three assessments and each of the nine training sessions. Below 

are group comparison results and overall trends of individual results. 

4.3.1 Group Comparison 

Propulsion Kinematics. Two of the three wheelchair push kinematics variables collected by the 

VMC system were found to be significant (Table 4.3). The wheelchair training intervention 

elicited significant changes in the area of the push loop, F(2, 10) = 9.8, p < 0.01, partial η2 = 

0.66, with the area remaining consistent between the two pretest measurements (34.8 cm2 and 

27.0 cm2) and increasing post-intervention (336.67 cm2; see Table 4.3). The area was a positive 

value, indicating that the hand motion during recovery was below the pushrim (or toward the 

wheelchair axle). Post hoc analysis revealed that the area of the push loop significantly increased 

(p = 0.05) from Pretest 2 to Posttest, with a mean difference of 309.7 cm2 (95% CI, 5.7 to 613.6). 

The wheelchair training intervention also elicited significant changes in the hand–axle 

relationship pre- and post-intervention, F(2, 10) = 5.2, p = 0.03, partial η2 = 0.51, with the 

distance between the third metacarpal and the wheel axle decreasing during recovery between 

the Pretest and Posttest assessments. Post hoc analysis showed no significant changes between 

each of the assessment points. The wheelchair training intervention did not elicit significant 

changes in push angle pre- and post-intervention, F(2, 10) = 3.6, p = .07, with the push angle 

increasing during the push phase between the Pretest and Posttest assessments. However, push 

angle did not increase for all participants.  
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Table 4.3 Repeated measures ANOVA: Wheelchair kinematics and wheelchair performance 

Wheelchair kinematics (VMC) Pretest 1 Pretest 2 Posttest 

Area of the loop (cm2)*+ 34.8(191.8) 27.0(227.1) 336.6(247.5) 

Hand–axle relationship (cm)* 26.1(5.1) 27.1(4.5) 19.3(7.3) 

Push angle (degrees) 76.8(11.3) 76.1(8.0) 85.6(11.2) 

Wheelchair performance (WPT)    

Contact (yes or no) 0.8(0.4) 0.8(0.4) 1.00(0.00) 

Recovery (yes or no)* 0.2(0.4) 0.2(0.4) 0.8(0.4) 

Time to complete 10m(s)*+ 10.8(3.1) 11.5(2.6) 9.7(2.0) 

Cadence (pushes)*+ 10.8(2.5) 11.0(2.5) 9.3(2.3) 

Speed (m/s)*+ 0.98(0.24) 0.90(0.18) 1.07(0.19) 

Push effectiveness (m/push)* 0.96(0.21) 0.95(0.21) 1.12(0.24) 

Push frequency (push/s) 1.02(0.20) 0.96(0.1) 0.96(0.06) 

Note. Mean score(standard deviation); *p < 0.05; +Bonferroni significant between Pretest 2 and Posttest. 

Propulsion Performance. Five of the seven WPT variables were found to be significant 

(see Table 4.3). The recovery item on the WPT (defined as bringing the hand below the pushrim 

toward the axle during the recovery phase of the push cycle) was found to be significant (p < 

0.01, partial η2 = 0.67). Prior to the wheelchair training program, only one participant brought his 

or her hand below the pushrim toward the axle during the recovery phase of the push cycle. After 

training, all but one participant brought their hands below their pushrims during the recovery 

phase. The wheelchair training intervention elicited significant changes in the time it took to 

complete 10 meters, F(2, 10) = 10.3, p < 0.01, partial η2 = 0.67. Post hoc analysis revealed that 

the time to complete the 10 meter test significantly decreased (p = 0.01) from Pretest 2 to 

Posttest, with a mean difference of 1.8 seconds (95% CI, 0.75 to 2.9). The wheelchair training 

intervention elicited significant changes in the number of pushes (cadence) needed to push 10 

meters, F(2, 10) = 5.9, p = 0.02, partial η2 = 0.54. Post hoc analysis revealed that the number of 

pushes to complete the 10 meter test significantly decreased (p=0.03) from Pretest 2 to Posttest 

with a mean difference of 1.7 pushes (95% CI, 0.18 to 3.2).The wheelchair training intervention 

elicited significant changes in the speed (meters per second) to push the 10 meters, F(2, 10) = 
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11.39, p <0.01, partial η2 = 0.70. Post hoc analysis revealed that the speed across the 10 meter 

test significantly increased (p< 0.01) from Pretest 2 to Posttest, with a mean difference of 0.16 

meters per second (95% CI, 0.24 to 0.10). The wheelchair training intervention elicited 

significant changes in the push effectiveness (meters per push) across the 10 meters, F(2, 10) = 

4.33, p <0.04, partial η2 = 0.46. Post hoc analysis showed no significant changes between each of 

the assessment points. The wheelchair training intervention did not elicit significant changes in 

push frequency (pushes per second) before and after intervention, F(2, 10) = 0.45, p = 0.65. The 

push contact item of the WPT (defined as a long push stroke achieved by reaching back before 

the top dead-center of the wheel to initiate a push) was not significant (p = 0.40). All but one 

participant in the Pretest assessments initiated his or her push before the top dead-center of the 

wheel. After the wheelchair training intervention, all participants initiated pushes before the top 

dead-center of the wheel. 

Propulsion Kinetics and Wheelchair Skills. The slope of the force elicited a significant 

decrease (p = 0.03) of 34.3 N/s (95% CI, 5.2 to 63.4) post-intervention (Table 4.4). Participants’ 

forces (average and peak) decreased after the wheelchair training intervention (Table 4.4). 

However, no significant difference was found for average force (p = 0.10) or peak force (p = 

0.13) in the paired t-test results. Wheelchair skills as measured by the WST also showed no 

significant difference (p = 0.08; see Table 4.4). All participants’ wheelchair skills scores 

increased from Pretest 2 (67%) to Posttest (73%); two participants had increases of 

approximately 14–17%, and two participants already had high scores (i.e., 90% and 94%) before 

starting the training (Figure 4.4). 
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Table 4.4 Paired t-test: Wheelchair push forces and wheelchair skills 

Wheelchair push forces (WMS) Pretest 1 Pretest 2 Posttest 

Average force (N) — 10.9(4.5) 8.0(4.3) 

Peak force (N) — 20.6(8.6) 16.4(8.4) 

Slope of the force (N/s)* — 149.1(72.1) 114.8(56.6) 

Wheelchair skills (WST)    

Skill completion score (%) — 67.1(23.2) 73.45(18.0) 

Note. Mean score(standard deviation); *p < 0.05.  

 
Note. P=Participant. 

Figure 4.4 Wheelchair skills test scores 

4.3.2 Individual Results 

Three distinct groupings of kinematic results emerged among the participants: (1) changes in all 

three of the kinematic variables (i.e., area of the push loop, hand–axle relationship, and push 

angle) pre-and post-intervention; (2) changes in at least one kinematic variable; and (3) 

consistent variables across each assessment. Each of these groupings is described below in detail. 

Two participants, Participants 1 and 3 (female, thoracic level of injury; male, thoracic 

level of injury) made kinematic changes in all three propulsion variables, which included 

increases in area of the push loop and push angle and decreases in distance from the hand marker 

to the wheel axle during the push recovery phase (example Participant 1; Figure 4.5). These two 
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participants (Participants 1 and 3) changed their propulsion pattern to a semicircular or double 

loop pattern post-intervention (Table 4.5). Participants 1 and 3 also decreased the number of 

pushes and the amount of time it took to complete the 10-meter test and decreased their average 

force, max peak force, and slope of force pre-and post-intervention. However, their wheelchair 

skills scores remained consistent before and after the wheelchair training intervention.  

 
Note. Area=area of the push loop; Angle=Push angle; Hand-Axle=Hand to axle relationship; PP=Propulsion 

pattern; +, hand did not drop below pushrim during recovery. 

Figure 4.5 Participant 1: Wheelchair push kinematic measurements 

Table 4.5 Propulsion patterns pre and post wheelchair training 

Participant Pre1T1 Pre1T2 Pre1T3 Pre2T1 Pre2T2 Pre2T3 PostT1 PostT2 PostT3 

1  +AR +AR +AR +AR +AR +AR SC SC SC 

2  ~+AR +AR +AR ~+AR ~+AR ~+SL ~DL ~DL ~DL 

3  ~+SL ~+SL ~+SL ~+AR ~+AR ~+AR DL DL DL 

4  DL DL DL DL DL DL SC SC SC 

5  +SL DL DL +SL +SL +SL ~DL ~SC SC 

6  ~+SL ~+SL ~+SL +SL ~+AR ~+SL ~+AR ~SC ~SC 

Note. Pre1=Pretest 1, Pre2=Pretest2, Pre3=Pretest3; T=trial; DL, double loop over pattern; SC, semicircular 

pattern; AR, arc pattern; SL, single loop over pattern; +, hand did not drop below pushrim during recovery; ~, 

inexact pattern match. 

Three participants (female, cervical level of injury; male, cervical level injury; and male, 

thoracic level of injury) made changes in at least one of the kinematic variables (example 

Participant 5; Figure 4.6). All three of these participants (Participants 2, 5 and 6) changed their 
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propulsion pattern post-intervention to either a double loop or semicircular pattern. Participant 2 

decreased the number of pushes and the amount of time to complete the 10-meter test and 

increased her speed; the other two participants had consistent push performance across 

assessment times. Participants 5 and 6 decreased forces and slope of the forces pre-and post-

intervention, and Participant 5 had consistent force values pre-and post-intervention. Participants 

2 and 6 increased wheelchair skills, and Participant 5 made no improvements in wheelchair skill 

proficiency.  

 
Note. Area=area of the push loop; Angle=Push angle; Hand-Axle=Hand to axle relationship; PP=Propulsion 

pattern; +, hand did not drop below pushrim during recovery; ~, inexact pattern match. 

Figure 4.6 Participant 5: Wheelchair push kinematic measurements 

One participant (male, thoracic level of injury) displayed biomechanics as described by 

the CPG both pre- and post-intervention. He increased the area of the push loop post-intervention 

(Participant 4; Figure 4.7). This participant (4) changed from a double loop pattern to a 

semicircular pattern post-intervention. His wheelchair push performance (WPT) remained 

consistent before and after intervention. His force values decreased after intervention. He had a 

high wheelchair skill completion score on the WST pre-intervention and, therefore, experienced 

no change in the score post-intervention.  
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Note. Area=area of the push loop; Angle=Push angle; Hand-Axle=Hand to axle relationship; PP=Propulsion 

pattern. 

Figure 4.7 Participant 4: Wheelchair push kinematic measurements 

4.4 Discussion 

The primary purpose of this investigation was to pilot-test a manual wheelchair training 

program for new manual wheelchair users with SCI. We found indications of changes in 

propulsion that follow the recommended CPG (Paralyzed Veterans of America Consortium for 

Spinal Cord Medicine, 2005). However, this study had many limitations, including a small 

sample size and heterogeneity (length of injury and level of injury) of the participants recruited. 

The small sample size and range in length of injury were the result of difficulty recruiting new 

manual wheelchair users; in part, this was because of difficulty recruiting participants who were 

medically stable and emotionally ready to work on wheelchair skills and because of lack of 

resources to support potential participants in getting to and from the training sessions (Best et al., 

2014; Mitchell, Jin, Kim, Giesbrecht, & Miller, 2014). Duration of injury did not always equate 

to duration of wheelchair use. For example, the participant who had been injured for 36 months 

reported not independently using her manual wheelchair since she received it. She relied on her 

daughter to push her wheelchair for her. Even though she was 36 months post-injury, she was a 
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new independent manual wheelchair user when she entered the training program. This study had 

a small sample design, with participants serving as their own controls, which can be useful for 

evaluating changes following an intervention, especially when participants have significant 

individual variability (Korn, McShane, & Freidlin, 2013; Ottenbacher, 1990). However, an 

experimental design with a larger sample size, random selection, and a control group would 

permit the use of a more powerful statistical approach. A methodological limitation of the study 

was that the kinematic data and kinetic (force data) were collected on different surfaces. The 

force data were collected on a wheelchair roller system, so the force data may not be 

representative of overground propulsion. 

All six participants made changes related to the CPG. Some participants made changes 

across all variables and others just a few of the variables. The significant results from the area of 

the push loop and the hand to axle relationship (from the VMC data) and the recovery item (on 

the WPT) indicate changes in the propulsion patterns, with participants bringing their hands 

down towards the axles of their wheelchairs. This was further indicated by classification of 

propulsion patterns exhibited by each participant across all assessments and trials (see Table 

4.5). The changed propulsion pattern toward a semicircular and/or double loop pattern meets part 

of the CPG recommendations. Significant changes in push effectiveness and speed as measured 

by the WPT may be related to the changes in propulsion pattern. The significant decrease in the 

slope of the force post-intervention may indicate a decrease in the rate of loading the force onto 

the pushrim. A few of the reasons push angle and average and peak forces were not significant 

include wheelchair positioning issues, variability in injury level, one participant having good 

biomechanics to start, and some participant inconsistencies across assessments and training. 

Even though these variables were not significant, changes were made across participants, with 
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two participants making dramatic changes in each of these variables. The secondary purpose of 

the study was to identify whether the person’s ability to complete wheelchair skills 

independently and safely improved after receiving the training. No significant difference was 

found in wheelchair skill proficiency before and after wheelchair training intervention. Several 

reasons for this could be attributed to a ceiling effect (two participants started the intervention 

with high scores), the fact that only 20 out of the 32 items on the WST were addressed during 

training, and that some of the advanced skills (e.g., wheelies) may require more training time 

than was allotted.  

Manual wheelchair training studies often use able-bodied participants to study the impact 

of training on new manual wheelchair users (van der Woude, van Croonenborg, Wolff, 

Dallmeijer, & Hollander, 1999; Vegter et al., 2013) or use experienced wheelchair users 

(Degroot et al., 2009; I. Rice et al., 2013). The results from such studies may be difficult to 

translate to new wheelchair users, because wheelchair positioning may not have as much of an 

impact on propulsion biomechanics for an able-bodied person, and more experienced users may 

be positioned more optimally for propulsion. Wheelchair positioning is not always optimal for 

proper biomechanics for new wheelchair users receiving their first wheelchair, with common 

issues being maneuverability and use of the wheelchair across environments (Kittel, Marco, & 

Stewart, 2002). Some participants in this study experienced wheelchair positioning that 

prevented them from fully implementing the training recommendations. For example, one 

participant was seated high in the wheelchair to make transfers in and out of the wheelchair 

easier, but this made it difficult for her to drop her hands toward the axle during the recovery 

phase of her push. However, she did increase her push angle and overall wheelchair performance 

overground. Previous studies have addressed some of the pain and chronic overuse injuries of 
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manual wheelchair users by modifying the wheelchair and the person’s position relative to the 

wheelchair (Boninger et al., 2000; Kotajarvi et al., 2006). Results suggest that wheelchair seating 

and positioning have an impact on biomechanics and wheelchair skills.  

The results of this project are similar to those found in previous wheelchair training 

research. Studies using components of motor learning, such as visual feedback, found subtle 

changes in propulsion biomechanics, including longer slow push patterns similar to the changes 

found in this study (de Groot et al., 2005; Kotajarvi et al., 2006; I. Rice et al., 2013; Vegter, 

Lamoth, de Groot, Veeger, & van der Woude, 2014). Across studies, variables associated with 

push forces have varied in response to wheelchair propulsion interventions, including decrease in 

push force, increase in push force, and no change in push force (Degroot, et al., 2009; Kotajarvi 

et al., 2006; I. Rice et al., 2013). We did not find significant change related to average or peak 

force, but did find change in the slope of the force. The WPT results found in this study were 

similar to those of new wheelchair users’ median results reported in a previous study (Askarai, et 

al., 2013). The main focus of this study was wheelchair propulsion biomechanics, with a 

secondary emphasis on wheelchair skills. Although there was some indication of change in 

wheelchair skills (7% increase), the results were not significant. Studies solely focused on 

wheelchair skills have had significant changes, with increases up to 25% in wheelchair skills 

scores on the WST post-intervention (MacPhee et al., 2004).  

The wheelchair training intervention described in this paper included wheelchair 

propulsion training and wheelchair skills training. Other interventions tended to focus on either 

teaching propulsion techniques or wheelchair skills. The duration of the wheelchair training 

intervention included nine 90-minute sessions. Other wheelchair training interventions ranged 

from one visit total to seven weeks consisting of two to three visits per week (de Groot, De 
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Bruin, Noomen, & van der Woude, 2008; Vegter et al., 2014). Studies using exercise and motor 

learning approaches were longer in duration (I. Rice et al., 2013; Vegter et al., 2014). The 

number of sessions and the amount of time per session for this study were necessary for the 

repetition-based approach and focused on turning proper biomechanics into a learned motion 

(Baddeley & Longman, 1978). Each session consisted of 500 to 700 total practice repetitions for 

a total of 5,400 repetitions by each participant at the completion of the wheelchair training 

intervention. The number of practice propulsion repetitions during rehabilitation for manual 

wheelchair users with SCI is unclear. Recommendations of 300 to 800 practice repetitions per 

session for skill acquisition has been documented in the neurorehabilitation literature 

(Birkenmeirer, et al., 2010). The number of practice repetitions offered in this study falls within 

that range. All participants tolerated and completed the number of repetitions per session 

This is one of few manual wheelchair training studies to use components of motor 

learning and provide instruction-based interventions with relatively new manual wheelchair users 

with SCI. This study confirms the importance of wheelchair seating and positioning in 

conjunction with wheelchair training. The CPG provide recommendations based on research for 

clinicians to follow when teaching wheelchair propulsion biomechanics but no information on 

how to teach these recommendations. A validated wheelchair training protocol, the Wheelchair 

Skills Training Program (WSTP), provides an approach to teaching wheelchair biomechanics 

and background on motor learning, stating the importance of practice but indicates that the 

specific amount of practice varies (Coolen et al., 2004; Best, Kirby, Smith, & MacLeod, 2005; 

MacPhee et al., 2004). Furthermore, clinicians report that they rarely use validated protocols 

when teaching wheelchair skills during rehabilitation (Best et al., 2014). The results of this study 

indicate that new manual wheelchair users can tolerate up to 700 practice propulsion repetitions 
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per session and that approximately 5000 repetitions contribute to changes in propulsion patterns. 

This instruction was provided by a clinician and did not require a computer system with 

feedback. More research is needed to understand “dosing,” or the number of repetitions needed 

to promote the propulsion techniques described in the CPG. As rehabilitation advances, it is 

important that clinicians use evidence-based practices, such as training programs based on motor 

learning principles (Wulf, Shea, & Lewthwaite, 2010).  

Future research is needed to further test repetition-based wheelchair training with a more 

rigorous research design, to measure kinematics and kinetics at the same time overground, and to 

examine the retention of propulsion biomechanics and skills after the training sessions. 

Additionally, other factors involved in motor learning, the rate at which new wheelchair users 

learn, and the involvement of depression, motivation, and cognitive processing in the motor 

learning process should be evaluated in relation to the training program. Future studies should 

include a review of wheelchair positioning and allow for adjustments prior to the training. In 

conjunction with wheelchair seating setup, practicing the proper push biomechanics through 

repetition-based training may promote the use of the recommended and researched 

biomechanics. 

4.5 Conclusions 

This project identified trends in change related to a repetition-based motor learning approach 

for propelling a manual wheelchair. The changes found were related to the propulsion pattern of 

the participants. Studying manual wheelchair use with new manual wheelchair users has 

potential for change and preventing or reducing pain and chronic overuse injuries. However, 

there are many challenges associated with the implementation of interventions with new manual 

wheelchair users. The results of this study have clinical implications, as the motor learning 
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principles used in the training program developed during this research could be applied to 

wheelchair skills training during rehabilitation.  
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Chapter 5: Conclusion 

5.1 Summary of Major Findings 

The goal of this dissertation was to better understand methodologies related to training new 

manual wheelchair users how to efficiently and effectively use their wheelchairs. To this end, we 

investigated (1) the accuracy of a wheelchair device to assess and simulate overground 

propulsion, (2) the current state of wheelchair training for new wheelchair users and 

recommendations for future areas of focus, and (3) the impact of repetition-based training on 

new manual wheelchair user’s propulsion biomechanics. A mixed methods approach was 

implemented, with quantitative data collected in Chapters 2 and 4 and qualitative data in Chapter 

3. This approach assisted in collecting data that provided both a rich, detailed picture of 

wheelchair training and methods for testing devices and procedures for training. Major findings 

of each section, within the context of current literature, are as follows. 

5.1.1 Chapter 2 

Belted treadmills, rollers, and ergometers that are commonly used for research and clinical 

purposes vary in the propulsion experiences for the wheelchair user. Some devices offer a 

comparable experience to an individual’s actual propulsion pattern in the environment, and some 

may not (Koontz, Worobey, Rice, Collinger, & Boninger, 2012; Kwarciak, Turner, Guo, & 

Richter, 2011; Mason, Lenton, Leicht, & Goosey-Tolfrey, 2014; Stephens & Engsberg, 2010). 

Few of these devices simulate real-life conditions (e.g., changes in surface and speed) 

encountered by manual wheelchair users during their participation in everyday activities 

(Kwarciak et al., 2011; Mason et al., 2014). In addition, many of these devices are not able to 

assess variables related to manual wheelchair propulsion, such as force. Often, additional 
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instruments such as force-sensing wheels are needed (Cooper, 2009; Guo, Kwarciak, Rodriguez, 

Sarkar, & Richter, 2011). 

In Chapter 2, we tested the WheelMill System (WMS), a motor-driven dynamometer 

roller system, for its accuracy in simulating surfaces and quantifying propulsion variables. Three 

studies have compared overground propulsion to a device; two of the studies found differences 

between overground and devices such as rollers and belted treadmills (Koontz et al., 2012; 

Stephens and Engsberg, 2010). However, Kwarciak and colleagues (2011) reported a motor-

driven belted treadmill to have similar kinetic propulsion variables as overground. We found the 

WMS to be comparable to overground in some wheelchair propulsion variables but not all. 

When pushing overground, participants generally pushed at a faster rate, with greater force, and 

with a slightly shorter push length than they did on the WMS. Kinematic and kinetic 

comparisons between actual ramps and simulation on devices are limited (Koontz et al., 2005; 

Sabick, Kotajarvi, & An, 2004). When we looked at the WMS in comparison to ramps, users had 

a higher cadence, faster speed, and much higher force on the ramps than on the WMS. Pushing 

on an actual ground or ramp surface has a goal, so users may push faster to reach their goal 

destinations. The software model on the WMS could be adjusted to require higher forces, but 

there are no consequences (i.e., rolling backward if the force of propulsion is not great enough) 

on the WMS as there are when pushing on an actual ramp.  

Currently, in research and in the clinic, force-sensing wheels are used to measure 

propulsion forces (Boninger, Cooper, Robertson, & Shimada, 1997; Boninger et al., 2002; Guo 

et al., 2011; Kotajarvi, Basford, An, Morrow, & Kaufman, 2006). The use of an instrumented 

wheel has some limitations, including cost, wheel size, participants using a wheel with a pushrim 

that may be different from their own, and the measurement of force only as applied directly to 
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the pushrim. The WMS measures tangential force during the push phase similarly to that 

measured by an instrumented wheel. However, the WMS measures the force applied to the 

motors by the wheels of the wheelchair via the rollers, whereas instrumented wheels such as the 

SmartWheel and the Optipush measures the force applied to the pushrim (Asato, Cooper, 

Robertson, & Steer, 1993; Guo et al., 2011). The benefits of using the WMS to measure force 

include the ability to measure the push force on wheelchairs with wheels of any size and the 

ability to measure force regardless of where the wheelchair user applies force to the wheel. The 

WMS does not have the ability to measure the resultant force, whereas an instrumented wheel 

has the ability to measure different forces acting upon the pushrim (Boninger et al., 2002). The 

WMS senses forces applied by the wheelchair to the rollers; tangential force applied by the user 

to the wheelchair pushrims is sensed by the motors during the push phase and can be measured. 

Other forces, such as changes in position or center of gravity, can also be sensed by the WMS 

motors. The tangential forces measured by the WMS were similar to the tangential forces 

measured by the SmartWheel. However, during the recovery phase, the force on the WMS and 

the SmartWheel differed. This force detected by the WMS during recovery may include forces 

placed on the roller by the wheel and may be related to the participant repositioning or shifting 

his or her center of gravity in preparation for the next push. This data may be useful in 

identifying participants who use their core or trunk during a propulsion cycle. 

5.1.2 Chapter 3 

During initial rehabilitation, the implementation of wheelchair training to achieve an optimal 

level of wheelchair skill performance is important (Best, Miller, & Routhier, 2014). Evidence 

suggests that training offered during rehabilitation is beneficial and influences the ability of 

wheelchair users to use their wheelchairs throughout their daily activities (Öztürk & Ucsular, 
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2011). Discrepancies in rehabilitation priorities often exist between health care professionals and 

consumers (Simpson, Eng, Hsieh, & Wolfe, 2012). Limited information exists in the literature on 

the perspectives of health care professionals and manual wheelchair users on the wheelchair 

training process during rehabilitation for people with SCI. The results of this project provide a 

unique perspective of the two key players in wheelchair training during rehabilitation: the health 

care professional and the manual wheelchair user. While there were many commonalities in the 

themes identified by both groups, there were also some discrepancies or instances in which one 

group emphasized the importance of a specific wheelchair skill more than the other group.  

Previous research provides varying descriptions of the amount of wheelchair training 

offered during rehabilitation, ranging from little to no training to more thorough and deliberate 

training offered over numerous therapy sessions (Boninger et al., 2002; Taylor et al., 2014). The 

experiences of wheelchair training during rehabilitation described by manual wheelchair users in 

this study are similar to those described in the literature. Manual wheelchair users in the focus 

groups reported differing experiences related to the amount of training received, with half of the 

sample reporting that they received either no training or a great deal of training and the other half 

of the sample reporting that they received a moderate amount of training. 

The most common skills taught in rehabilitation as reported in the literature are transfers, 

wheelies, propulsion techniques, navigating different surfaces, and going up slopes (Kilkens, 

Post, Dallmeijer, Seelen, & van der Woude, 2003; Taylor et al., 2014). During this study, 

transfers in and out of the wheelchair (e.g., to the bed, shower, or car) were repeatedly mentioned 

as a skill taught during rehabilitation. Wheelies were not mentioned often by health care 

professionals or manual wheelchair users as being taught during rehabilitation. Techniques for 

propelling a wheelchair were introduced but not explained or practiced, as reported by manual 
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wheelchair users in the focus groups. Focus group participants did report some practice with 

maneuvering obstacles and going up and down ramps. A disconnect between what wheelchair 

training is occurring in rehabilitation and what health care professionals and manual wheelchair 

users think should occur was identified. Three of the areas that were identified in the focus 

groups that are not adequately addressed but should be are: training in the environment, 

addressing and accommodating a psychological adjustment period, and teaching not just 

wheelchair use, but also how to care for and maintain the wheelchair. The results of this study 

have important implications for health care professionals working with people who use manual 

wheelchairs. Identifying essential components for training proper propulsion mechanics and 

wheelchair skills in new manual wheelchair users is an important step in preventing future health 

and participation restrictions. 

5.1.3 Chapter 4 

Finally, we wished to examine the use of repetition-based training on the biomechanics of 

wheelchair users. The results of this project are similar to those found in previous wheelchair 

training research. Studies using aspects of motor learning such as visual feedback found subtle 

changes in propulsion biomechanics, including longer, slower push patterns similar to the 

changes found in this study (de Groot, Veeger, Hollander, & van der Woude, 2005; Kotajarvi, 

Basford, An, Morrow, & Kaufman, 2006; Rice, Pohlig, Gallagher & Boninger, 2013; Vegter, 

Lamoth, de Groot, Veeger, & van der Woude, 2014). We found significant changes in the area of 

the push loops and the hand to axle relationships.  Across studies, variables associated with push 

forces have varied in response to wheelchair propulsion interventions, including decreases in 

push force, increases in push force, and no change in push force (Degroot, Hollingsworth, 

Morgan, Morris, & Gray, 2009; Kotajarvi et al., 2006; Rice et al., 2013). We did not find 
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significant change related to average or peak forces, but did find significant changes in the slope 

of the force. The Wheelchair Propulsion Test (WPT) results found in this study were similar to 

those of new wheelchair users’ median results reported in a previous study (Askarai, Kirby, 

Parker, Thompson, & O’Neill, 2013). The main focus of this study was wheelchair propulsion 

biomechanics, with a secondary emphasis on wheelchair skills. Although there was some 

indication of change in wheelchair skills, the results were not significant. Studies solely focused 

on wheelchair skills have shown significant increases in wheelchair skills scores post-

intervention (MacPhee et al., 2004). 

Manual wheelchair training studies often use able-bodied participants to study the impact 

of training on new manual wheelchair users (van der Woude, van Croonenborg, Wolff, 

Dallmeijer, & Hollander, 1999; Vegter, de Groot, Lamoth, Veeger, & van der Woude, 2013) or 

experienced wheelchair users (Degroot et al., 2009; Rice et al., 2013). The results from such 

studies may be difficult to translate to new wheelchair users because wheelchair positioning may 

not have as much of an impact on propulsion biomechanics for an able-bodied person, and more 

experienced users may be positioned more optimally for propulsion. Wheelchair positioning is 

not always optimal for proper biomechanics in new wheelchair users receiving their first 

wheelchairs, with common issues being maneuverability and use of the wheelchair across 

environments (Kittel, Marco, & Stewart, 2002). This was one of many challenges found in 

implementing a training intervention with new manual wheelchair users. 

5.2 Significance and Clinical Implications 

Manual wheelchair biomechanics research is extensive in identifying different propulsion 

patterns and in measuring push forces. Research is more limited in interventions for addressing 

poor biomechanics and application to clinical settings. Specifically, devices to provide training 
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and collect data may not be optimal, and new manual wheelchair users receive a limited amount 

of training. The significance of the research in Chapters 2 through 4 is that it provides more 

information on devices, manual wheelchair and health care professional perspectives on training, 

and a motor learning approach that uses instruction and repetition-based training to facilitate 

more efficient and effective propulsion habits.  

Chapter 2 discusses the WMS, which has many possible clinical applications in that it has 

the ability to simulate different resistive surfaces while placing the wheelchair in a realistic 

position. The WMS is also able to assess propulsion variables, making it useful for research 

purposes. The WMS is one of few devices that allow a person to use his or her own wheelchair 

without the need of an instrumented device, allows for the placement of the wheelchair in 

different positions, and can control different parameters for simulation. This device clinically 

could provide opportunities for training wheelchair users in propulsion and body position. 

Chapter 3 provides a view of wheelchair training interventions from the perspectives of 

health care professionals and manual wheelchair users. Reviewing what is being covered in 

rehabilitation related to wheelchair skills training and what should be emphasized may provide 

information to assist health care professionals in identifying ideas about other possible 

approaches in wheelchair skills training. The project specifically highlights manual wheelchair 

skills identified as important for new wheelchair users to learn. With limited time during 

rehabilitation, select skills identified as important for new manual wheelchair users could be the 

focus. Formalized wheelchair training protocols could be utilized as a guide for health care 

professionals on how to teach the skills they have chosen to address during rehabilitation. The 

results of this study help to identify important manual wheelchair skills that need further 

examination for ranking of importance and how best to teach them. This information may guide 
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alternative approaches to providing further education and training about manual wheelchair use 

outside of initial rehabilitation. 

Wheelchair skills are being addressed frequently during rehabilitation at the activity-

dependent level. A desire for more effort and emphasis on training in context was expressed by 

health care professionals and wheelchair users. The results of this project provide information 

about important skills for new manual wheelchair users to learn including propulsion techniques, 

transfers in an out of the wheelchair, providing maintenance to the wheelchair, and navigating 

barriers such as curbs, ramps and rough terrain. Environment factors (in the home and 

community) are important to incorporate into wheelchair training to maximize safe use of 

manual wheelchairs in a variety of environmental settings. The ICF was useful in identifying 

themes and may have applications for understanding manual wheelchair rehabilitation for 

wheelchair users and therapists. 

Chapter 4 describes the pilot-testing of one of few manual wheelchair training studies to 

use motor learning principles and provide instruction-based interventions with relatively new 

manual wheelchair users who have SCI. This study confirms the importance of wheelchair 

seating and positioning in conjunction with wheelchair training and the difficulty of 

implementing interventions with new manual wheelchair users. The results of this study indicate 

that new manual wheelchair users can tolerate up to 700 practice propulsion repetitions per 

session and that approximately 5000 repetitions contribute to changes in propulsion patterns. 

This instruction was provided by a clinician and did not require a computer system with 

feedback.  
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5.3 Limitations 

An overall limitation across all three chapters is small sample size. With a small sample size, we 

could not use the most robust statistical approaches. For example, in Chapter 4, an experimental 

design with a larger sample size, random selection, and a control group would permit the use of a 

more powerful statistical approach. The health care professional and manual wheelchair samples 

in Chapter 3 represented only one geographic region. In Chapters 2 and 4, we did not control 

many factors, such as the speed of the participant; we had each participant propel at a self-

selected speed, because trying to hold a certain speed could impact propulsion biomechanics. 

This may have resulted in lower correlations, because it is difficult (even over the same surface) 

to propel exactly the same way. In Chapters 2 and 4, we did not test kinematics and kinetics at 

the same time on the same surface. A methodological limitation of Chapter 4 was that the 

kinematic and kinetic data were collected on different surfaces. The force data were collected on 

a wheelchair roller system, so the force data may not be representative of overground propulsion. 

5.4 Suggestions for Future Research 

In general, more studies are needed to understand interventions in the clinical setting and the 

translation of research interventions to the clinical setting. Below are suggestions for future 

research as it relates to each chapter. 

5.4.1 Chapter 2 

Further development and research of the WMS may increase its application. Fine-tuning of the 

software models for simulating overground propulsion with an interface for determining the 

appropriate coefficients for each user is needed. The software model for ramps needs to be 

adjusted and tested with higher forces and quicker cadences. Test procedures for measuring 
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speed, distance, and push length on the WMS could be developed and compared to similar data 

collected by instrumented wheels. Kinetic and kinematic variables could be collected at the same 

time to compare different surfaces to the WMS. Visual feedback and virtual reality could be used 

in combination with the WMS to identify whether this feedback would improve the simulation of 

surfaces on the WMS. 

5.4.2 Chapter 3 

In order to represent a wider experience of rehabilitation, future work could include recruiting a 

larger sample size with representation across the country and across different settings. In 

addition, the continuum of care in wheelchair skills being taught across settings needs to be 

examined to determine what is being taught in inpatient and outpatient rehabilitation and the 

potential need for community programs. ICF coding could also be expanded to include third- and 

fourth-level codes. In addition, qualifier codes for the Activities and Participation and 

Environment components could be used to provide more information regarding which 

wheelchair skills are deemed most difficult to learn and environmental barriers and facilitators 

that influence participation using these skills. A larger sample across settings and with more 

levels coded could assist in the process of solidifying an ICF Core Set for manual wheelchair 

users.  

5.4.3 Chapter 4 

Future research is needed to further test repetition-based wheelchair training with a more 

rigorous research design, to test kinematics and kinetics at the same time overground, and to 

examine retention of propulsion biomechanics and skills after the training sessions. More 

research is needed to understand “dosing,” or the number of repetitions needed to promote the 

propulsion techniques described in the Clinical Practice Guidelines (CPG). Additionally, other 
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factors involved in motor learning, the rate at which new wheelchair users learn, and the 

involvement of depression, motivation, and cognitive processing in the motor learning process 

should be evaluated in relation to the training program. Future studies should include a review of 

wheelchair positioning and allow for adjustments prior to the training. In conjunction with 

wheelchair seating setup, practicing the proper push biomechanics through repetition-based 

training may promote the use of the recommended and researched biomechanics. 
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Appendix 

Appendix 1: The Development of an Instrumented Wheelchair 

Propulsion Testing and Training Device 
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Klaesner, J., Morgan, K. A., & Gray, D. B. (2014). The development of an instrumented 

wheelchair propulsion testing and training device. Assistive Technology, 26(1), 24–32.
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Abstract 

Purpose: Several types of testing devices and training surfaces have been used to 

examine wheelchair propulsion. Testing and training wheelchair users on the actual surface of 

interest such as tile floors or ramps is ideal but difficult. Devices such as treadmills, 

dynamometers, and ergometers allow for a wheelchair user to be observed in a controlled space. 

However, these devices often do not have the ability to realistically simulate the environment. 

This article describes an instrumented wheelchair dynamometer system, the WheelMill System 

(WMS) that adjusts the resistance of the rollers and changes position of the wheelchair. 

Methods: Three participants wheeled on the WMS, over a tile surface and up two 

different graded slopes with the SmartWheel to compare speed and forces. 

Results: The participants’ speed was faster on the tile than the WMS. The peak forces for 

each propulsion stroke varied more on tile than the WMS. For the slopes the speed oscillated 

over a greater range and was slower and the measured forces were higher. 

Conclusions: The WMS has the potential to reasonably simulate propulsion over a tile 

floor but more research is needed for up slopes. The WMS may have several research and 

clinical applications.  
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Appendix 2: Repetition Based Training for Efficient Propulsion in 

New Manual Wheelchair Users 
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Repetition based training for efficient propulsion in new manual wheelchair users. Journal of 
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Abstract 

Purpose: The purpose of this project was to determine the number of propulsion 

repetitions necessary to produce changes in propulsion biomechanics of new manual wheelchair 

users with spinal cord injuries.  

Methods: Five new manual wheelchair users with spinal cord injury participated in this a 

nine-session manual wheelchair training program that aimed to improve propulsion 

biomechanics through 5,400 propulsion repetitions. A single subject design was used. 

Assessments were performed on a wheelchair dynamometer at 7 levels of repetition dosing. 

Kinematic measurements (i.e., push loop height, push angles, cadence) were taken using video 

cameras and Microsoft Kinect systems. Kinetic measurements (i.e., peak force, average force, 

rate of rise of force) were taken using a wheelchair dynamometer system.  

Results: All five participants had improvements in propulsion biomechanics, which 

occurred in the first levels of repetition dosing (between 1000-2700 repetitions); there were 

variances in type of change (kinematic or kinetic).  

Conclusions: Results suggest that proper propulsion biomechanics can be learned with 

appropriate dosing. The variability among participants in the type of change that occurred at 

different dosing levels may be due to differences in wheelchair positioning and level of injury. 

The impact of manual wheelchair users learning efficient propulsion is great, as engagement in 

daily activities is dependent upon the health of the upper extremities. 
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