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Hyperspectral data are important for remote applications such as mineralogy, geology, agri-

culture and surveillance sensing. A general pipeline converting measured hyperspectral ra-

diance to the surface reflectance image can provide planetary scientists with clean, robust

and repeatable products to work on.

In this dissertation, the surface single scattering albedos (SSAs) [2], the ratios of scattering

efficiency to scattering plus absorption efficiences of a single particle, are selected to describe

the reflectance. Moreover, the IOF, the ratio of measured spectral radiance (in the unit of

watts per squared-meter and micrometer) to the solar spectral radiance (in the unit of watts

per squared-meter and micrometer) at the observed time, is used to indicate the measure-

ments. This pipeline includes two main parts: retrieving SSAs from IOF and reconstructing

the SSA images from the SSA cube.

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Recon-

naissance Orbiter (MRO) helps scientists identify locations on Mars that may have exhibit

xii



hydrated mineral phases. This dissertation mainly focuses on developing the pipeline for

CRISM data. One should notice that pipelines for other hyperspectral spectrometers can

also be developed based on almost the same idea.

Retrieving surface kinetic temperatures and SSA values from IOF data is challenging because

the problem is under-determined and ill-posed, including modulating effects of atmospheric

aerosols and gases, and surface scattering and emission properties. We introduce a general

framework called STANN (Separating Temperature and Albedo using Neural Networks) to

solve this kind of problem. STANN takes the hyperspectral IOF cube as inputs and outputs

the retrieved temperature mapping and the corresponding SSA cube. Our STANN is derived

using the Discrete Ordinates Radiative Transfer function to describe the forward model from

SSA and temperature to IOF. In the STANN, we have a generator to generate more training

samples based on limited library spectra and a neural network to approximate the inverse

function based on enough generated training samples. This framework has been implemented

for the Compact Imaging Spectrometer for Mars in a detailed manner.

SSA can be computed from IOF directly by modeling the thermal and solar reflectance

together, based on retrieved temperatures. Because accurate retrieved temperature directly

leads to the accurate SSA, we compare the accuracy of retrived temperatures from STANN.

The retrieved temperature has only 4 K error by one point validation (242 K) using the Cu-

riosity Rover’s thermal radiometer data. Our STANN temperature map is compared with

a temperature map generated independently from a theoretical thermal model. The theo-

retical thermal model describes the relationship between Lambert albedo at the wavelength

1.0 µm, thermal inertia and the surface temperature. However, because the thermal inertia

has pixel size larger than 100 m/pixel, the generated temperature also has the same pixel

xiii



size. Our STANN temperature is projected into the same pixel size (100 m/pixel) by the

classic projection method. The two temperature maps have consistent global patterns.

Retrieved from an IOF cube, a noisy hyperspectral SSA cube needs to be denoised and

reconstructed onto the Mars surface.

We propose a new algorithm, hypothesis-based estimation with regularization (HyBER),

to reconstruct and denoise hyperspectral image data without extra statistical assumptions.

The hypothesis test selects the best statistical model approximating measurements based on

the data only. Gaussian and Poisson distributions are common respectively for continuous

and integer random variables, due to the law of large numbers. Hyperspectral IOF data

result from converting discrete photon counting data to continuous electrical signals after

calibration. Thus, so far, Gaussian and Poisson are candidate distributions for our hypothesis

tests. A regularized maximum log-likelihood estimation method is derived based on the

selected model. A spatially dependent weighting on the regularization penalty is presented,

substantially eliminating row artifacts that are due to non-uniform sampling. A new spectral

weighting penalty is introduced to suppress varying detector-related noise. HyBER generates

reconstructions with sharpened images and spectra in which the noise is suppressed, whereas

fine-scale mineral absorptions are preserved. The performance is quantitatively analyzed for

simulations with relative error 0.002%, which is better than the traditional non-statistical

methods (baselines) and statistical methods with improper assumptions. When applied

to the Mars Reconnaissance Orbiter’s Compact Reconnaissance Imaging Spectrometer for

Mars data, the spatial resolution and contrast are about 2 times better as compared to map

projecting data without the use of HyBER.

So far, part of our results have enabled planetary scientists to identify minerals and un-

derstand the forming history of Mars craters. Some of these findings are verified by the
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Opportunity Rover’s measurements. In the future, results from this pipeline for CRISM are

promising to play more and more critical roles in the planetary science.
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Chapter 1

Introduction

1.1 Motivation and Background

Hyperspectral imaging sensors comprise a class of spectroscopy sensors, for which the sensed

wavelengths are divided into hundreds of contiguous narrow frequency bands. Hyperspectral

data are important for remote applications such as mineralogy, geology, agriculture and

surveillance sensing [3].

Van et al. summarize how remote sensing data help us to understand surface materials [3].

Reflectance spectra of minerals are dominated in the visible-near infrared (VNIR) wave-

length range by the presence or absence of transition metals (e.g., Fe, Cr, Co, Ni) resulting

in absorption features due to electronic processes. The presence or absence of water and

hydroxyl, carbonate and sulfate determine absorption features in the shortwave infrared

(SWIR) region due to vibrational processes. In addition, absorption band depths are related

to grain size, as the amount of light scattered and absorbed by a grain is dependent on

grain size. A larger grain has a greater internal path where photons may be absorbed. On

the contrary in smaller grains there are proportionally more surface reflections compared

to internal photon path lengths, if multiple scattering dominates, the reflectance decreases
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with increasing grain size. As the grain size becomes larger, more light is absorbed and the

reflectance drops. In general, absorption band depth is correlated with the (relative) amount

of material present. Mid infrared wavelengths from 3 µm to 5 µm (MIR) are areas that have

great potential for geologic remote sensing studies (3 µm is related to the surface water),

but have been under-investigated probably due to (1) the complexity of the physics (e.g.,

preserve of both solar and thermal emission) and (2) lack of field/laboratory spectrometers

and (airborne/spaceborne) hyperspectral data [3].

Absorption of energy and thus the presence of absorption features in reflectance spectra

due to electronic processes manifests in the VNIR part of the spectrum in broad features.

Vibration gives rise to narrow and more pronounced features in the SWIR (as overtone

features of mid infrared and longwavelength infrared absorption) roughly at 1.4 µm combined

with 1.9 µm due to molecular water, 2.2 µm due to Al-OH, 2.3 µm due to Mg-OH [3].

The objective of hyperspectral remote sensing (also referred to as imaging spectrometry or

imaging spectroscopy) is to measure quantitatively the components of the surface (radiance,

reflectance or emissivity) spectra acquired as images in many narrow and contiguous spectral

bands. For geologic applications this is done by using spectral absorption features to map

planetary surface composition (in terms of mineralogy or lithology) or to quantify rock or

soil chemistry or physics using derivative image products.

Based on the type of spatial information acquired, there are three basic types of hyperspectral

sensor data: point scanning data, line scanning data and focal plane scanning data [4]. Fig.

1.1 shows how these three scanning ways work.

In this dissertation, we focus on hyperspectral images from the Compact Reconnaissance

Imaging Spectrometer for Mars (CRISM) instrument [5] on the Mars Reconnaissance Orbiter

(MRO) [5], which helps planetary scientists identify locations on Mars that may have hosted
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Figure 1.1: Three basic types of hyperspectral scanning.

water based on mapping hydrated mineral phases. The MRO has been in a 255 km by 320

km near-polar orbit around Mars since 2006 [5]. When the MRO spacecraft is at an altitude

of 300 kilometers, CRISM, operating from 370 to 3920 nm (VNIR S-detector: 364-1055 nm;

IR L-detector: 1001-3936 nm) with 6.55 nm spectral spacing, scans a sequence of narrow but

long lines on the Martian surface; each location of the sensor measures a row of data from a

region that is about 18 meters across and 10,800 meters long [5]. Beginning in 2010 a new

gimbaled motion was implemented when requested and employs significant pixel overlap in

the along-track direction [5]. Fig. 1.2 indicates how different sampling modes work and Fig.

1.3 gives two examples of CRISM data. Over the course of the MRO mission, CRISM has

acquired over 276,000 individual observation segments (or mapping strips) with a variety of

observing modes and data characteristics [6]. The aggregate VNIR and IR mapping coverage

at the equator stand at ∼ 97% and ∼ 78%, respectively, increasing poleward so that at higher

latitudes there are typically multiple individual mapping strips that sample a given ground
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Figure 1.2: Examples of how CRISM always samples: normal sampling, uniform over-
sampling and real sampling.

location [6]. The quality of the CRISM VNIR mapping data has not changed substantially

over the course of the mission, but the IR mapping data quality has varied significantly

as function of the IR detector operating temperature. The CRISM IR detector is actively

cooled and as the cryosystem efficiency has decreased with age, the IR detector temperature

and associated noise level have increased accordingly [6]. The manifestation of the thermally

driven IR noise is more challenging to address in the CRISM mapping data as compared to

the hyperspectral targeted observation data.
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(a) FRT000B6F1: no over-sampling

(b) ATO000D7D74: over-samplilng at target areas

Figure 1.3: Examples of collected data from different sampling modes. Data are shown at
band 10 (wavelength 2.588 micrometers). Notice more obvious ripples in Fig. 1.3b than in
Fig.1.3a, which are caused by over-sampling.
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Figure 1.4: Different minerals have different spectra.

Every spatial pixel in one hyperspectral data cube has one spectrum, providing valuable

information about the properties of this surface pixel. Fig. 1.4 shows one example that

different minerals have different reflectance spectra, especially different absorption features.

Data directly collected by sensors are radiance instead of reflectance. In this dissertation,

surface single scattering albedo (SSA) [2], the ratio of scattering efficiency to scattering plus

absorption efficiencies of a single particle, is selected to describe the reflectance1. Compared

with a measured hyperspectral radiance cube, a retrieved SSA cube is independent of the

lighting and viewing conditions as well as atmospheric effects [2]. Thus, SSA is widely used

in the planetary science analysis for the hyperspectral data. Fig. 1.5 shows a comparison

between measured radiance and SSA.

1Other albedos such as Lambert albedo can also be used. Go to https://en.wikipedia.org/wiki/

Albedo to know more.
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Figure 1.5: CRISM FRT000B6F1 is used as an example. The SSAs at 2 µm are shown in the
left and the corresponding radiance are shown in the right. The location A and B should have
similar minerals but the right radiance have obvious difference due to the lighting condition.

Figure 1.6: Big picture of the pipeline proposed by this dissertation. After inputting hyper-
spectral radiance cube, the pipeline outputs clean and well reconstructed hyperspectral SSA
images.

This dissertation proposes and develops a hyperspectral data processing pipeline, which

outputs clean and well reconstructed SSA images based on radiance data from hyperspectral

sensors as shown in Fig. 1.6. A projected single scattering albedo image with better spatial

resolution and denoised spectra enables planetary scientists’ research [7–9].

1.1.1 SSA retrieval

A lot of research has sought to retrieve the spectral albedos from the radiance. For the

spectral range lower than 2.6 µm, measured radiance is only related to the solar reflectance,
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thus there exists a one-to-one relationship between SSA and radiance [10]. For the thermal

spectral range (> 2.6 µm), measured radiance starts to include the thermal emission, which

makes the problem ill-posed because the surface temperature of the thermal radiance is

also unknown. If the surface temperature is constant for one spatial pixel, hyperspectral

data provide the potential opportunity to derive both the surface temperatures and the

SSA spectra. However, algorithms for retrieving the surface temperatures and albedos are

few, not only due to the difficulty in modeling the forward function from temperature and

albedos to radiance (atmospheric effects should be included), but also the ill-posed property

of estimating N+1 variables based on N measurements.

Discrete Ordinates Radiative Transfer (DISORT)-based processing [2] models radiative trans-

fer streams associated with dust and ice aerosols, CO2, H2O and CO gases, and a surface

boundary layer that is modeled by the Hapke function [11]. Beginning with dust and ice

aerosols based on inferences from Opportunity or Curiosity rover sites, DISORT outputs a

huge look-up table to describe the relationship between the SSA and the radiance for a given

location (fixed emission, incident and phase angle), by modeling both the solar reflectance

and the thermal emission based on the surface temperature.

Even if DISORT can provide this relationship with the atmosphere involved, the temperature

and SSA inversion from radiance is still hard. N+1 unknown variables (SSAs at N bands

plus the surface temperature) need to be estimated based on N measurements (radiance at

the same N bands).

There exists an area of research Land Surface Temperature (LST) retrieval, which is key in

a climate system. LST can also be used for weather or climate forecasting and studying.

Besides the temperature and emissivity separation method [12], other physical methods

to retrieve LST from satellite-based hyperspectral or multispectral thermal infrared data
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include but are not limited to: two-step physical algorithm [13], split-window algorithm [14],

double-viewing angle method [15] and Kalman physical filter [16].

Neural networks [17] have been well applied to remote sensing images, especially for the

classification based on multi/hyperspectral data [18]. According to Zhu, et al. [19], the

number of published papers related to neural networks in remote sensing in 2017 was more

than 30 times the number in 2014. Supervised convolutional neural networks are developed

to classify hyperspectral images in the spectral and spatial domains [20,21]. Li, et al. propose

an anomaly detection method to identify weird pixels in hyperspectral data by addressing a

convolutional neural network [22]. Neural networks are also applied to the interpretation of

high-resolution hyperspectral images [19] such as pansharpening and superresolution, which

will be introduced later.

Neural networks also play a role in the surface temperature retrieval. Aires, et al. proposed

a neural network approach to retrieve the atmospheric water vapor in 2001 [23]. Later, Wu

et al. applied a neural network to predict the sea surface temperature [24]. Mao, et al. used

a neural network on Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) imagery and the error can be controlled under 0.7 K [25]. Later Cheng et al.

found that the performance of a neural network on FIIR datasets is also attractive [26].

Methods to retrieve the surface temperature and reflectance from radiance can be summa-

rized into two categories: physical methods [27–30]; and neural networks methods [25, 26,

31–33]. The physical method retrieves a specific albedo based on prior knowledge and as-

sumptions, such as assuming the albedo at longer wavelengths (thermal region) is the linear

projection of ones at shorter wavelengths (non-thermal region) with the non-thermal albedos

available [30]. However this assumption is not strictly true for all planets and sometimes it
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needs to involve much human intervention to obtain good performance for a specific spec-

trometer. A Neural networks method is applied to ASTER whose bands can be longer than

8 µm and it has the good performance [25,26,31]. However, there are limited studies on why

neural networks can work so well and whether this idea can be extended to more instruments

or planets.

1.1.2 Image Reconstruction

After retrieving an SSA cube, we also need to reconstruct the SSA into the projected map.

Most common planetary hyperspectral imaging instruments are line scanning as shown in

Table 1.1. Image reconstruction is necessary for point and line scanning instruments because

measurements are not mapped in areographic coordinates. Fig. 1.7 shows the necessity

example.

In this thesis, the Mars equirectangular map projection [34] is used because data sets we

employed as examples were acquired near the equator. The Mars equirectangular projec-

tion maps meridians from the center of the sphere and parallels with lines parallel to the

equatorial plane. Moreover, spatially oversampled hyperspectral data can be reconstructed

at a smaller pixel size, which can improve the spatial resolution by proper reconstruction

methods. There are several signal processing approaches called Pansharpening [35] that can

be used to enhance the spatial resolution, including component substitution [36], multireso-

lution methods [37], least squares estimation [38,39] and statistical methods [40]. Maximum

a posteriori (MAP) estimation has been proposed by Hardie et al. [41]. Zhang et al. intro-

duced a method that works in the wavelet domain [42] and later published an expectation

maximization algorithm to maximize the posterior distribution [43]. Convolutional neural

networks have been applied to obtain superresolution of hyperspectral images [44].
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(a) In the sensor space. THEMIS I52340001
(320 columns and 36014 rows) is shown in
the left and FRT000B6F1 (600 columns and
450 rows) is shown in the right. The red
circle in the I5234001 shows the area where
FRT000B6F1 covers.

(b) After projected into the same coor-
dinates. Both THEMIS I52340001 and
FRT000B6F1 are shown in the left and the
red box is zoomed in and shown in the right.
One can find that FRT000B6F1 are well
overlapped on the scene I52340001 because
they are now projected into the same coor-
dinate.

Figure 1.7: CRISM FRT000B6F1 SSA at 2 µm and THEMIS I52340001 are used as an
example. One can find that in the sensor space, even we can know the relative locations of
two scenes collected by different instruments, due to different pixel size, it is hard to compare
them directly. After projecting into the same coordinates, it is much easier to analyze both
of them jointly.
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Table 1.1: Some common planetary hyperspectral imaging instruments

Planetary
object

Hyperspectral Imaging
Instrument

Corresponding
Mission

Wavelengths
(µm)

Scanning

Moon
Hyperspectral Imager
(HySI) [45]

Chandrayaan-1,
ISRO

0.42-0.96 Line

Moon
Moon Mineralogy Map-
per [45]

Chandrayaan-1,
ISRO

0.43-3.0 Line

Mars

Compact Reconnais-
sance Imaging Spec-
trometer for Mars
(CRISM) [5]

Mars Reconnais-
sance Orbiter

0.4-4 Line

Mars

Observatoire pour la
minéralogie, l’eau, les
glaces et l’activité
(OMEGA) [46]

Mars Express,
European Space
Agency [47]

0.36-5.2 Line

Earth
Airbone Visible/Infrared
Imaging Spectrometer
(AVIRIS) [48]

NASA’s ER-2 Jet 2 0.4-2.5 Line

1.1.3 Image Denoising

Even if the image can be reconstructed well, hyperspectral sensor data suffer from multiple

sources of noise, which limits the utility of further processing and analysis, such as classi-

fication, unmixing, or object detection [7, 49, 50]. One example of how noisy data suppress

small absorption features is shown in Fig.1.8. Therefore it is critical to reduce the noise in

hyperspectral reconstructions when reconstructing them from measured data.

In recent decades, many hyperspectral image denoising algorithms have been proposed. For

most statistical denoising methods, it is assumed that hyperspectral sensor data have additive

Gaussian noise [51–55]; this assumption is often used for CRISM data [49,56]. This statistical

assumption might work sometimes but previous classic hypothesis tests such as Kolmogorov-

Smirnov [57] and χ2 tests [58] will reject all distributions if true values are unknown; ground-

truth is often missing for hyperspectral sensor data.
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Figure 1.8: One SSA spectrum is shown. After analyzing, there should be two absorption
features at 2.3 µm and 2.4 µm. Suppressed by noise, it is hard to tell now.

With statistical models assumed, classical algorithms can be employed to compute a pe-

nalized maximum likelihood image, such as the expectation-maximization (EM) algorithm.

Regularization is necessary because the forward projection in the reconstruction model is

ill-conditioned [59]. Yuan et al. proposed a spectral-spatial kernel regularization [60] and

good regularized methods can remove phenomena noise such as striping noise [61].

As hyperspectral images may have hundreds of bands, and the noise intensity in each band

varies, the suppression of noise should be adaptive based on data [53].

Moreover, due to the nonuniform spatial sampling of some hyperspectral sensors, some spatial

areas are highly undersampled. If the reconstruction method does not account for it, spatial

artifacts can be introduced.

In summary, our pipeline takes the form shown in Fig. 1.9. We combine the reconstruction

and denoising as one processing step to avoid missing information. Although, CRISM images
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Figure 1.9: Pipeline of this dissertation.

are the main applications in this dissertation, the pipeline idea is general for a wide variety

of hyperspectral data.

1.2 Problem Description

1.2.1 SSA retrieval

We call the function from SSA smk to the radiance rmk the forward model f which has a

general format for every spatial pixel m as shown

rmk = f(smk, Tm, lm, λk), k = 1, 2, ..., K, (1.1)

where Tm, lm are the surface temperature and the geometric information (such as incident

angle, emission angle and phase angle) for this pixel. Tm is a scalar and lm is a vector

containing all geometric information. λk is the corresponding wavelength for the kth band.
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In this case, we have K bands in total. The forward model f is modeled by DISORT in [2]

with simulated Mars atmospheric effects. f does not have a closed-form expression if it is

modeled with atmospheric effects involved. Therefore, in practice, f is usually implemented

as a huge look-up table with spline interpolation.

In general, we aim to solve the inverse function of this forward model as

[smk, Tm] = f−1(rmk, lm, λk), k = 1, 2, ..., K. (1.2)

Although we have K known equations (k = 1, 2, ..., K) from (1.1), we need to estimate

K + 1 unknown variables smk and Tm for every spatial pixel. The ill-posed property leads

to an inverse function f−1 which is one-to-many, in other words, there are several different

combinations of smk (k = 1, 2, ..., K) and Tm that can generate the same rmk. Therefore, the

solutions of (1.2) are not unique theoretically.

If either smk or Tm is known, this inverse function can be mapping f−1T or f−1S with the

unique solution

smk = f−1S (rmk, lm, λk, Tm), (1.3)

or

∀k, Tm = f−1T (rmk, lm, λk, smk). (1.4)
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Also, if λk < 2.5µm where the radiance does not depend on temperature, the unique SSA

can be computed also by the one-to-one mapping f−1S as

smk = f−1S (rmk, lm, λk), λk < 2.5µm. (1.5)

As we introduce in Section 1.1, previous methods to solve (1.2) can be summarized into two

main ideas:

1. Physical method.

2. Neural network method.

Combining with the equations above, we can also summarize the mathematics of these two

ideas3.

Physical method The SSA at a specific band k(1) is computed from the function h with

the available SSA (smk(2)) at another band k(2). We can compute the temperature based

on this SSA and its corresponding radiance from the one-to-one inverse functions f−1T and

f−1S . When the surface temperature for this pixel is obtained, the SSA for other bands

(smk, k 6= k(1)) can be uniquely computed.

Step 1: smk(1) = h(smk(2)) for some k(1)

Step 2: Tm = f−1T (smk(1) , rmk(1) , lm, λk(1))

Step 3: smk = f−1S (Tm, rmk, lm, λk) k = 1, 2, ..., K

(1.6)

3Although other methods focus on albedos rather than SSA, we use SSA instead of albedos to compare
with our method.
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The key step of this method is to estimate smk(1) as accurately as possible. There has been

a lot of research on this step [27–30]. For example, Clark et al. used a linear projection

assumption to remove thermal effects from near-infrared multispectral data on the Moon

[30]. They assume there exists a linear relationship between the emissivity at near-infrared

wavelengths (less than 2.5 µm) and at short-infrared wavelengths (such as 3.7 µm). However,

this assumption is not always strictly true and sometimes it needs to involve much human

intervention (such as which wavelengths should be picked) to obtain good performance for

a specific instrument or location. Erard et al. use a linear combination of spectra from

brighter and darker areas on Mars [29].

Neural network method A new function g is learned by neural networks (NNs) to

approximate the inverse function f−1. Although g can output both smk and Tm, it is still

common to retrieve a more accurate smk from the inverse function based on retrieved Tm as

shown in (1.7).

Step 1: [Tm, smk] = g(rmk, lm, λk) for all k

Step 2: smk = f−1T (Tm, rmk, lm, λk)

(1.7)

This idea is stimulated by the fact that neural networks can approximate almost all contin-

uous functions [62,63]. The goodness of approximation for a NN depends on the complexity

of function f−1 and the number of training samples. The application of NN to ASTER

performs very well as analyzed by previous authors [25, 26, 31]. In the following, we will

explain the reason why it can work and whether it can be extended to other instruments

and planets such as Mars.
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1.2.2 Image Reconstruction and Denoising

Define U = R+ as the positive real number space.

If we have I measurements in total (containing both spatial and spectral domains, thus

I = M ∗ K), SSA data s = [s1, s2, ..., sI ]
′

and their estimates a = [a1, a2, ..., aI ]
′

should

belong to UI , that is s, a ∈ UI .

The reconstruction mapped image in local Cartesian axis c = [c1, c2, ..., cJ ]
′
contains J pixels

in total (also both spatial and spectral); c ∈ UJ .

The physical model provides the system matrix (forward model) H ∈ RI×J , which describes

how the mean data a is linearly generated from the mapped reconstruction c, a = Hc. Often,

H is called a transfer function. We use a Gaussian-shape kernel as the transfer function for

this hyperspectral image system.

If the probability density function of measurements SSA s is p(s|a) with a as the ground

truths, then the reconstruction problem can be formulated as a statistical optimization

problem. The maximum likelihood estimate achieves

max
c

ln p(s|a)

s.t. a = Hc.

(1.8)

The ill-posed nature of the forward model H and the noise in data s create instabilities in

estimates for the mapped reconstruction image c. Therefore a convex regularization function
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Φreg(c) is introduced. Combining with (1.8), the reconstruction problem can be stated as

an a penalized maximum likelihood problem.

min
c
− ln p(s|a) + Φreg(c)

s.t. a = Hc.

(1.9)

The negative loglikelihood − ln p(s|a) is a data fitting term because it is a measure of how

close the measured data s are to the predicted mean data a.

If p(s|a) is assumed to be Gaussian distributed with equal variances, (1.9) is equivalent to

min
c

I∑
i=1

(si − ai)2 + Φ(c)

s.t. a = Hc.

(1.10)

Here, the data fit term reduces to square-error. If p(s|a) is assumed to be Poisson distributed,

(1.9) is equivalent to

min
c

I∑
i=1

(si ln ai − ai) + Φ(c)

s.t. a = Hc.

(1.11)

In (1.10) and (1.11), Φ(c) is the equivalent regularization function from Φreg(c) in (1.9) after

simplifying the data fitting term.

To reconstruct and denoise measured c well, an accurate probability density function is

important for the data fitting term and a reasonable regularization needs to be adjusted for

the penalty function.
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1.3 Notation

r, r Radiance in scale (r) and in vector (r)

s, s Single Scattering Albedo (SSA) in scale (s) and in vector (s)

l Spatially dependent parameters (such as emission and incident angles) exclud-

ing temperatures

λ Wavelengths

a, a Ground truth SSA in the sensor space in scale (a) and in vector (a)

c, c Reconstructed SSA in the projected coordinates in scale (c) and in vector (c)

f Forward model function from SSA to radiance

f−1S Inverse function of f to calculate the unique s from r and T for λ > 2.5 µm or

from s only for λ < 2.5 µm

f−1T Inverse function of f to calculate the unique T from r and s

∆r Sensitivity of radiance with respect to temperatures

H Linear transfer function from SSA in the projected coordinates to the sensor

space

i, I Index for a and s (I in total) including both spectral and spatial

j, J Index for c (J in total) including both spectral and spatial

m,M Spatial index for s, r, l and T (M in total)

k,K Spectral index for s and r (K in total)

′ Transpose

Φ Regularization function
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p Probability density function

1.4 Contributions and Organization

The main contribution of this dissertation is to propose and develop a general pipeline from

measured radiance to reconstructed surface albedos. The goal is to create new methods and

tools that enable our scientific collaborators to perform planetary science research. Two

main algorithms are developed to realize this pipeline:

• STANN: Retrieve single scattering albedos and temperature maps by neural networks.

• HyBER: The surface images are reconstructed.

STANN stands for separating temperature and albedo by neural networks, which is described

in detail in Chapter 2. The main technical contributions for STANN are as follows.

• One-layer neural network model for longer and shorter wavelengths is proposed, trained

and tested for temperature and albedos.

• Variational autoencoder is selected as the spectra generator used to generate enough

training samples.

• The global pattern of the resulting temperature map is consistent with another tem-

perature map independently generated from one thermal model.

• Local values of resulting temperature map are consistent with the local measurements

by the Mars Rover Curiosity.
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• Limitation of neural network approximation is quantitatively described by computing

the sensitivity with respect to temperatures.

HyBER means hypothesis-based estimation with regularization, which is described in detail

in Chapter 3. For HyBER, the main contributions are as follows.

• A new and general hypothesis testing method is proposed to automatically select a

statistical model based on measured data without any extra assumptions.

• Based on the selected statistical model, a maximum loglikelihood algorithm is derived

to reconstruct and denoise the hyperspectral image.

• A spatial and spectral weighting penalty is utilized to avoid artifacts introduced by

non-uniform spatial sampling and varying noise levels.

• Quantitative performance is analyzed for HyBER results based on simulations with

0.002% error.

• Spatial image quality is analyzed for HyBER image reconstructions, which is 2 times

better compared with the projection without HyBER.

This whole pipeline now has been released for planetary scientists and products of this

pipeline have helped them to analyze the Mars mineralogy. The results of the mineralogy

analysis are consistent with measurements by Mars Rovers. The products have been used to

inform decision for Mars Rovers’ landing locations and planned paths. It is very promising

to see increasing impacts of this pipeline on Mars research projects.

Chapter 4 summarizes corresponding main works and impacts of this dissertation in the

pipeline. Some future work and potential impacts for this pipeline are also described.
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Instructions of hypothesis codes are described in Appendix A and some algorithm derivations

are shown in detail in Appendix B.
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Chapter 2

Separating Temperature and Albedo

by Neural Networks

2.1 Mathematical Background

Any hyperspectral data cube has two domains: spatial domain and spectral domain. In this

chapter, we use m to index the spatial pixels and k, j to index the spectral pixels (bands).

We call the function from SSA to the radiance the forward model f which has a general

format for every spatial pixel m as shown

rmj = f(smj, Tm, lm, λj), j = 1, 2, ..., N. (2.1)

In this case, we have N bands in total. The forward model f is modeled by Discrete Ordinates

Radiative Transfer [2] with simulated Mars atmospheric effects. f does not have a closed-

form expression if it is modeled with atmospheric effects involved. Therefore, in practice, f

is usually implemented as a huge look-up table with spline interpolation.
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In general, we aim to solve the inverse function of this forward model as

[smj, Tm] = f−1(rmj, lm, λj), j = 1, 2, ..., N. (2.2)

Although we have N known equations (j = 1, 2, ..., N) from (2.1), we need to estimate

N + 1 unknown variables smj and Tm for every spatial pixel. The ill-posed property leads

to an inverse function f−1 which is one-to-many, in other words, there are several different

combinations of smj (j = 1, 2, ..., N) and Tm that can generate the same rmj. Therefore, the

solutions of (2.2) are not unique theoretically.

If either smj or Tm is known, this inverse function can turn out to be one-to-one mapping f−1T

or f−1S with the unique solution smj = f−1S (rmj, lm, λj, Tm) or ∀j, Tm = f−1T (rmj, lm, λj, smj).

Also, if λj < 2.5µm where the radiance does not depend on temperature, the unique SSA

can be computed also by the one-to-one mapping f−1S as

smj = f−1S (rmj, lm, λj), λj < 2.5µm. (2.3)

To determine the sensitivity of the forward function f with respect to temperature, we define

the sensitivity as the partial differential with respect to temperatures,

∆r = f(s∗, T + ∆T, l∗, λ)− f(s∗, T, l∗, λ). (2.4)

The higher the sensitivity is, the more sensitive the function f is to the temperature. For

a fixed spatial pixel (lm is fixed), this sensitivity can be seen as a function of the surface

temperature and wavelengths, which is shown in Fig. 2.1 with ∆T = 1K, s∗ = 0.6, l∗ =
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Figure 2.1: Sensitivity of radiance with respect to temperatures. Five instruments are labeled
based on the covering spectral range and the estimated temperature range. THEMIS and
TES cover the temperature from 240 to 280 K, which may be a little bit misleading in the
figure.
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[1.62◦, 82.91◦, 108.79◦, 0]. In general, longer wavelengths (from 8 to 12 µm) have higher sen-

sitivity than shorter wavelengths (from 3 to 5µm). Previous NN methods [25,26,31] applied

to ASTER in fact try to solve the inverse function located in the peak yellow mesh grid

(sensitivity higher than 0.1) in Fig. 2.1 with estimated temperature range from 270 to 310 K

and wavelengths from 8 to 12 micrometers. A trained NN for ASTER can approximate this

function very well because a small error in the estimated temperature can lead the corre-

sponding radiance to an unreasonable range (compared with given training samples), which

can back-propagate to update the estimated temperature. However, the surface of Mars

(200 ∼ 290K) is not as hot as Earth (> 270K), therefore, for most Mars spectrometers,

the inverse function we need to solve is much harder than ASTER. For example, THEMIS

covering wavelengths from 7 to 15µm has sensitivity on average less than 0.04. Even worse,

CRISM covering thermal bands from 2.5 to 4µm has the sensitivity less than 10−4. Al-

though solving this problem for Mars is harder than for Earth, Fig. 2.1 still shows that,

it is still possible to use NN directly for longer thermal wavelengths and to apply NN with

extra information for shorter thermal wavelengths. Therefore, we introduce our NN method,

Separating Temperature and Albedo by Neural Networks (STANN) in Section 2.2.

2.2 Methodology

Fig. 2.2 shows how our method works in general. The radiance cube (or processed cube)

of one scene and corresponding geospatial information are inputs. STANN can output the

estimated temperature mapping of this scene and the corresponding SSA cube. In the

following, we introduce how to generate the NN model and why a spectra generator is

necessary for both longer and shorter thermal wavelengths.
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Figure 2.2: Framework of our Separating Temperature and Albedo by Neural Network
(STANN) method. CRISM FRT0000B6F1 scene is used as an example.

2.2.1 Longer Thermal Wavelengths (>9 µm)

As explained in Section 1.1, the key idea is to approximate f−1(rmj, lm, λj) by some neural

networks function g(rmj, lm, λj) as closely as possible. Therefore, intuitively, the input nodes

should be rmj, lm and λj. However, we can even make this model simpler because λj only

depends on j and the function is applied independently for every m. Thus, the function we

try to approximate can be written for all N bands (j = 1, 2, ..., N) in

[s1, ..., sN , T ] = g(r1, ..., rN , e, i, φ, p). (2.5)

Mao et al. [25] in fact follows this framework but with a different forward model. We will

introduce more details about how to apply this framework to a specific instrument such as

THEMIS or TES in another paper [64] . Here, we only give a general model.

Input Nodes 11 nodes: Radiances at these 7 bands, emission angle, incident angle, phase

angle, pressure.
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Figure 2.3: Three different spectra shapes based on the linear projection assumption.
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Figure 2.4: Simulation Performance of neural networks for THEMIS changes with the number
of hidden nodes. RMSE means root mean square error of temperatures.

Output Nodes 8 nodes: SSAs at these 7 bands and temperature.

Hidden Nodes Fig. 2.4 shows that increasing hidden nodes reduces both RMSE and

AME sharply for less hidden nodes, and finally converges to around 0.8 and 0.5 K for more

hidden nodes. In another words, one-layer NN for the temperature range and wavelength

range THEMIS covers, can perform as good as 0.5 K for the mean error. Combining with

Fig. 2.1 where THEMIS has lower sensitivity than ASTER, it is not surprising that Mao

et. al can have accuracy as low as 0.24 K for ASTER [25]. However, considering that more

hidden nodes lead to a higher complexity of NN model which is not robust to noises [65], we

select 150 as the number of hidden nodes for THEMIS.

Training Samples Most NN researches on ASTER ignore the importance of ”enough”

training samples because in practice, measured library spectra are limited. For example,

Mao et. al used a complicated 2-layer neural network with 800 hidden nodes each layer, but
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trained it on less than 8000 samples [25]. Fig. 2.5 shows how the performance changes over

the number of training samples based on similar simulations above. Two curves of RMSE

and AME are a little bit overlapped with each other due to a larger display range. We can

find that for our one-layer neural network with 150 hidden nodes, at least 60,000 training

samples are enough to guarantee the NN is well trained.

However, it is even harder to obtain measured spectra on Mars than on Earth. Therefore, we

need to generate enough training samples (at least 60,000) based on limited measurements. In

our case, the basic library spectra (363 in total) we use include. The basic 363 library spectra

are from multiple sources including Mars analog materials by Ehlmann and Edwards [66],

ASTER spectral library, USGS by Baldridge et al. [67] and some tephra and ash samples

from Mauna Kea, basaltic glass, Martian meteorites, olivine, pyroxene, clays, and carbonates

provided by Dr. Richard Morris.

We can generate more by randomly selecting Q library spectra and linearly adding them

together with random generated proportions wi as shown in (2.9). In practice, we generates

150,000 training samples, much more than 60,000, to increase the robustness of training

process and Q is set to 10.

Basic spectra: A = a1, a2, ..., a363

Generated spectra: B = b1, b2, ..., b60,000

∀n bn =

Q∑
i=1

wiai with

Q∑
i=1

wi = 1

(2.6)

Framework of NN The one-layer neural network to separate the temperature and single

scattering albedos for long thermal infrared wavelengths such as THEMIS has the framework
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Figure 2.5: Simulation Performance of one-layer neural network for THEMIS changes with
the number of training samples. RMSE means root mean square error of temperatures.
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Figure 2.6: Framework of our one-layer neural network for THEMIS.

as shown in 2.6. The activation function is chosen as reLU defined as f(x) = max(0, x) for

all hidden nodes. Both inputs and outputs are scaled to the range [0,1] to guarantee the

assumption of NN. Therefore unknown parameters for this framework are the weights on the

edges.

Training Process of NN To train our one-layer NN for THEMIS, we estimate the 7.93

to 12.57µm SSA spectra and temperature for each spatial pixel m and compare these to

input values, using a backpropagation method (shown in Fig. 2.10) to minimize the sums

of squares of deviations between actual and predicted values. The gradient method we use

is Adam [68] aimed to converge faster. After several iterations, the weights on the edges

converge and this one-layer NN is ready to apply. Regularization is needed to avoid NN

over-fitting of the training set. An L-2 norm regularization is used and the regularization

weight is chosen by cross validation.
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2.2.2 Shorter Thermal Wavelengths (from 2.6 to 9 µm)

Although THEMIS and TES have a lower temperature range than ASTER, due to longer

thermal infrared wavelengths they cover, the relatively high sensitivity guarantees a theo-

retical good accuracy. Unlike for CRISM, according to the extremely low sensitivity (about

1/100 of THEMIS sensitivity) in Fig. 2.1, it is almost impossible to separate the surface

temperature and SSA, just based on radiance only. Thus more prior knowledge is required.

Clark et al. [30] propose an assumption that there exists a linear projection relationship

between shorter thermal wavelengths (from 2.6 to 5 µm) and non-thermal wavelengths (from

1.6 to 2.5 µm) as shown in Fig. 2.3. Although this assumption might not be strictly true, it

is still worth considering this assumption as the prior knowledge. In our method, we use it

as a soft constraint. In another words, we constrain the SSA spectra [s1, ..., sN ] retrieved by

NN to have shapes similar to the training spectra.

Neural Network

We define the SSA spectra from 1.6 to 4µm as [s1, s2, ..., sN ] at N bands with wavelengths

λ1 < λ2 < ... < λN and the corresponding radiance as [r1, r2, ..., rN ]. To separate near-

infrared and short infrared, we use 2.5 µm as the threshold to define two vectors: SSApre =

[s1, ..., sC ] and SSApost = [sC+1, ..., sN ] where C is an integer such that ∀j < C, λj < 2.5 µm

and ∀k ≥ C, λk ≥ 2.5 µm. Different from Section 2.2.1, we use the pre-processed radiance,

spectral IOF (radiance/solar radiance). Similarly, we can also have IOFpre and IOFpost. As

we discuss in Section 1.1, SSApre can be computed from (2.3), thus, we only need to estimate

SSApost and T . Therefore, with the same simplification used in Section 2.2.1 (2.2) can be
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remodeled as

[SSApost, T ] = f−1(IOFpost, l)

s.t. [SSApre, SSApost] makes a real spectrum.

(2.7)

Similarly, the neural networks try to approximate the solution in (2.7) by a function g as

[SSApost, T ] = g(IOFpost, SSApre, e, i, φ, p). (2.8)

Thus, we can build a one-layer neural network to learn this function g.

For CRISM, we utilize 320 bands from 1.4 to 3.85 µm, thus N = 320 and C = 169.

Input Nodes 324 nodes: IOFpost at 151 bands, SSApre at 169 bands, emission angle,

incident angle, phase angle, pressure.

Output Nodes 152 nodes: SSApost 151 bands and temperature.

Hidden Nodes According to K. Funahashi [62] and K. Hornik [63], any continuous func-

tion on a bounded interval can be approximated by a single hidden layer neural network. It

is reasonable to assume the inverse function f−1 we try to approximate is continuous and

bounded, therefore, we think a one-layer NN is enough. The number of hidden nodes is

selected by simulations as shown in Fig. 2.7. We generate two data sets individually and

use one as the training set and another as the validation set. The root mean square error

(RMSE) and the absolute mean error (AME) are calculated from the difference between
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Figure 2.7: Simulation Performance of neural networks for CRISM changes with the number
of hidden nodes. RMSE means root mean square error of temperatures.

estimates from NN based on the training set and truths of the validation set. Increasing

the number of hidden nodes reduces the RMSE and finally converges to around 2.9 K. As

for AME, it seems like 50 hidden nodes are enough to make error less than 1 K. In another

words, the main problem of NN for CRISM is the uncertainty not the bias. In summary, a

one-layer NN for the temperature range and wavelength range CRISM covers, can perform

as good as 0.5 K for the mean error. Combining with Fig. 2.1 where CRISM has much

lower sensitivity (10−4) than ASTER (0.12), it is not surprising that Mao et. al can have

accuracy as low as 0.24 K for ASTER [25]. However, considering that more hidden nodes

lead to a higher complexity of NN model which is not robust to noise [65], we select 500 as

the number of hidden nodes for CRISM.
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Figure 2.8: Simulation Performance of one-layer neural network for CRISM changes with
the number of training samples. RMSE means root mean square error of temperatures.

Training Samples Most NN researches on ASTER ignore the importance of ”enough”

training samples because in practice, measured library spectra are limited. For example,

Mao et al. used a complicated 2-layer neural network with 800 hidden nodes each layer,

but trained it on less than 8000 samples [25]. Fig. 2.8 shows how the performance changes

over the number of training samples. As we expect, more training samples are needed to

guarantee the NN is well trained (at least 150,000).

Framework of NN The one-layer neural network to separate the temperature and single

scattering albedos for long thermal infrared wavelengths such as CRISM has the framework

as shown in Fig. 2.9. The activation function is chosen as reLU defined as f(x) = max(0, x)

for all hidden nodes. Both inputs and outputs are scaled to the range [0,1] to guarantee the

assumption of NN.

37



Figure 2.9: Framework of our one-layer neural network for CRISM.
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Figure 2.10: Backpropagation of our one-layer neural network for CRISM.

Training Process of NN To train our one-layer NN for CRISM, we estimate the SSA

spectra and temperature for each spatial pixel m and compare these to input values, using a

backpropagation method (shown in Fig. 2.10) to minimize the sums of squares of deviations

between actual and predicted values. The gradient method we use is Adam [68] whose goal

is to converge faster. After several iterations, the weights on the edges converge and this

one-layer NN is ready to apply. Regularization is needed to avoid NN over-fitting of the

training set. An L-2 norm regularization is used and the regularization weight is chosen by

cross validation.

2.3 Generator Selection

As we analyzed before, aimed to well train our neural network, we need enough training

spectra. However, it is even harder to obtain measured spectra on Mars than on Earth.

39



Therefore, we need to generate enough training samples (at least 150,000) based on limited

measurements.

2.3.1 Linear Generator

One intuitive way is to use the linear generator. We can generate more by randomly selecting

Q library spectra and linearly adding them together with random generated proportions wi

as shown below,

Basic spectra: A = a1, a2, ..., a363

Generated spectra: B = b1, b2, ..., b60,000

∀n, bn =

Q∑
i=1

wiai with

Q∑
i=1

wi = 1.

(2.9)

In practice, we generate 250,000 training samples, much more than 150,000, to increase the

robustness of the training process and Q is set to 10. Fig. 2.11 compares the generated

spectra with the original library spectra. The linear projection assumption seems to softly

hold for all original library spectra (top left). The linear generator (top middle) generates

varying spectra with similar shapes but due to the random generator of weights, it is possible

to generate some spectra (like the orange and green curves) which do not follow the linear

projection assumption.

2.3.2 AutoEncoder

Fig. 2.12 shows the framework of a single autoencoder [69]. It contains two parts: encoder

and decoder. The encoder is a fully connected multiple-layer neural network with decreasing
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Figure 2.11: Comparison between the library spectra and generated spectra by the linear
generator.

hidden nodes for each layer, usually half of tahe previous layer. The decoder is also a fully

connected multiple-layer neural network with increasing hidden nodes, usually symmetric

to the encoder. Between the encoder and the decoder, we have a latent layer with much

less features. Typically, we input a library spectra and then the autoencoder is expected to

output the same output. Our library spectra are sampled based on the CRISM bands, so

the input and output nodes are 277. Thus we generate a five-layer encoder (including input

and output layer) with 277, 128, 64, 32, 5 hidden nodes and a four-layer decoder (including

output layer) with 5, 32, 64, 128, 277 nodes. Aimed to avoind the over-fitting of training

process, we also attached a drop-out layer after every layer (except for the last layer) with

0.5 drop-out probability. A similar back-propagation method is used to update the weights

in both encoder and decoder. After training, the decoder part is applied to generate more

spectra by input the normal distributed latent features (with 0.5 mean and 0.1 variance).

The number of latent features is selected as 5 due to the cross-validation in Fig. 2.13. We

notice that the sum of squared errors (SSE) decreases sharply around 4 and becomes stable

at 5. Thus we choose 5 nodes in the latent layer.

Fig. 2.14 compares the generated spectra with the original library spectra. The autoencoder

generates spectra all following the assumption, but only have the decreasing shape, which
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Figure 2.12: The framework of autoencoder for the one-dimensional spectrum.

Figure 2.13: Performance changes with the increasing latent features.

Figure 2.14: Comparison between the library spectra and generated spectra by the autoen-
coder generator.
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Figure 2.15: The histogram of five latent variables for the library set for one run.

is in fact rare in the original library. Combining with the latent features’ histograms of the

training set in 2.15, We can find that the distributions of five latent features are not normal.

But when we generate the spectra, we assume the latent variables are normal distributed.

This mismatch leads to too many decreasing-shape spectra, which in fact is rare in the library

spectra.

2.3.3 Variational AutoEncoder

Different from the simple autoencoder, variational autoencoder (VAE) adds constraints to

the lower dimensional space, which forces the latent features retrieved from the training

set are (approximately) normal distributed (other distributions can also be assumed) in the

lower dimensional space. The framework of VAE is shown in Fig. 2.16.

Both encoder and decoder are still symmetric fully connected neural networks as shown in

Fig. 2.12. A training spectrum is also first input to the encoder. After the encoder, the mean

and variance of latent features are retrieved and generated features based on these mean and
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Figure 2.16: The framework of variational autoencoder for the one-dimensional spectrum.

Figure 2.17: Comparison between the library spectra and generated spectra by the autoen-
coder generator.

variance are input to the decoder aimed to recover the input spectra. When training this

VAE, we need to minimize the combination of the difference between output and input and

the KL distance in the retrieved mean and variance [70].

After training, the VAE is ready to use. Thus we randomly generates normal distributed

mean and variance and input them to the generator in Fig. 2.16. Fig. 2.17 compares the

generated spectra with the original library spectra. As we expect, VAE generates spectra

with the most common shape in the library, in our case, the flat shape. This is because VAE

forces the latent features from training set be normal distributed and the most common

shape will be very close to the center. And when we randomly generates latent features, we

have high probability to generate shape close to the center (normal distribution), thus the
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Figure 2.18: The framework of generative adversarial network for the one-dimensional spec-
trum.

generated spectra should have the most common shape in the training set. This property

of VAE guarantees that generated spectra must have reasonable shape if the training set is

reasonable selected, which makes up the shortage of autoencoder before. However VAE also

has its own disadvantage that small absorption features (details in the spectrum) are similar

for all generated spectra as shown in Fig. 2.17.

2.3.4 Generative Adversarial Network

Previous both autoencoder and variational autoencoder uses the difference between input

and output as the quantity of cost function to run a generator. We uses L2 norm to quantify

the difference but others can also be used. Different cost functions will lead to different

generators with varying performances. Comparing all cost functions to get the best one

will be very exhausting, thus generative adversarial network (GAN) proposes an idea that

training both the generator and the cost function (which is discriminator in GAN) from data

itself. Fig. 2.18 shows the framework of GAN for our case.
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Figure 2.19: Comparison between the library spectra and generated spectra by the autoen-
coder generator.

GAN usually contains two main parts: generator and discriminator. We first randomly

generates some “fake” spectra from generator and input them and real spectra to the dis-

criminator. Then discriminator can be trained to distinguish real spectra and fake spectra

well. When well trained, discriminator is used as the standard to train generator, aimed to

generate spectra can “cheat” the discriminator in this iteration. Then when the generator

is well trained for this discriminator, we train the discriminator again to increase the ability

of separating generated spectra and real spectra. We can train discriminator and generator

iteratively for enough iterations [71]. Then the GAN is ready to use.

Fig. 2.19 compares the generated spectra with the original library spectra. GAN generates

spectra with correct and varying shapes and a lot more details (absorption features) even

after being filtered by the Savitzky-Golay filter. Compared with VAE, generated spectra

from GAN have more small absorption features and higher varying in shape.

2.3.5 Performance Comparison

As we analyze before, we assume retrieved SSA spectra from NN have a similar shape

as the library spectra, thus when generating more training spectra, the shape of generated
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training spectra should be “real”. Therefore, four generators: linear generator shown in (2.9),

autoencoder [69], variational autoencoder (VAE) [70], and generative adversarial network

(GAN) [72] are tried on the scene FRT0000B6F1 to test which one should be used in practice.

Fig. 2.20b shows the temperature mappings of the scene FRT0000B6F1 based on generated

spectra in Fig. 2.20a. The image On the left is the single scattering albedo for this scene

at near-infrared wavelengths (1.96 µm). It is clear to find that the top left area of this

scene has higher reflectance and the bottom right area has lower reflectance. As we know,

darker areas with lowers reflectances can absorb more heat, thus the surface temperatures

should be higher. Comparing four temperature mappings on the right, we can find only VAE

generator learns this information successfully. Both the linear generator and the autoencoder

generator are misled by the reflectances (higher reflectances have warmer temperatures in

their results). GAN successfully avoids this, but still fails in the learning of the most common

spectral shape in the original library set. Combining the analysis of Fig. 2.20a, we can draw

a conclusion that, VAE should be selected as the training set generator due to the good

learning ability of the pattern and the most common shape of targeted spectra should be

included in the basic library spectra.

2.4 Performance Analysis

CRISM FRT000B6F1 (acquired during 2008) used to validate the performance of STANN,

covers the northwest part of Gale crater and the path of the Curiosity rover as shown

in Fig. 2.21. In this section, we validate both robustness and consistency of STANN.

The robustness is tested based on analysis of the standard derivation of multiple runs and

the consistency is analyzed by comparing with the Curiosity point measure and another

independent temperature retrieved from Ashwin’s thermal model [73].
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(a) FRT000B6F1 reflectance scene

(b) Retrieved temperature for the; scene FRT0000B6F1 based on generated spectra above

Figure 2.20: Performance comparison for four generators.
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Figure 2.21: Relative Location of CRISM FRT000B6F1 and the Curiosity Rover Transverse
Path. The red curve shows the Curiosity Rover path. The false colors RGB are set as 2.5, 1.5
and 1.0 µm. The labeled Sol 1891, 1892 are the location where the Curiosity Rover measured
the diurnal surface temperature in Fig 2.28. The IOFs from Bagnold Dunes and Dust Stones
are shown in Fig. 2.22.

49



Figure 2.22: Two IOFs from Bagnold Dunes (red) and Dust Stones (blue) in Fig. 2.21 are
plotted.

Fig. 2.22 shows IOFs from two areas in Fig. 2.21. One can find that the spectrum from

Bagnold Dunes has higher value at 3.7 µm than 2.5 µm while the spectrum from dust stones

has opposite tendency. In another words, compared with the their own solar IOFs before

2.5 µm, the IOF from Bagnold Dunes has much higher thermal radiance than one from the

Dust Stones at the wavelengths from 3.0 µm to 4.0 µm. Therefore, the Bagnold Dunes should

be warmer than the dust stones in the temperature mapping.

2.4.1 Robustness

Because both neural networks and VAE are not deterministic, STANN can output different

results at every run for the same input. Therefore, we need to test the robustness of STANN

for CRISM (FRT000B6F1).

50



Figure 2.23: The mean standard derivation mapping for 20 runs of STANN.

Fig. 2.23 shows the mean standard derivation mappings for 20 runs of STANN for CRISM.

The standard derivation of CRISM is small (sometimes up to 3.5 K) although the algorithm

is not deterministic because the sensitivity figure in Fig. 2.1 shows CRISM has extremely

small sensitivity. Moreover the standard derivations for most of areas are smaller than 1

K and the average is about 2 K, indicating that STANN for CRISM is also relatively very

robust with the near-infrared spectra involved.
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2.4.2 Consistency

Before consistency comparison, we first want to introduce how we retrieve another indepen-

dent temperature mapping (called thermal model for short in the following) from the thermal

model proposed by Vasavada et al. [73]. Their thermal model gives the relationship between

the Lambert Albedo at the wavelength 1.0 µm, thermal inertia and the surface temperature.

Fig. 2.24 shows the thermal inertia map from THEMIS and the corresponding Lambert

albedo map at 1.05 µm. It is noticed that part of the scene does not have the corresponding

thermal inertia. Thus the temperature mapping only has values in the overlapped area. The

codes of this temperature generator can be found under my github.

Fig. 2.25 shows two temperature mappings generated independently from the thermal model

and our STANN. In general, both temperature mappings have correct pattern and similar

highest temperatures. However there also exist lots of differences in details, for example,

thermal model T seems to be higher than STANN’s T for some colder areas. Aimed to show

it more clearly, we pick three horizontal lines (A, B, C in blue, red and green) and compare

the horizontal values from these two temperatures in Fig. 2.26.

Both temperature maps show that the western area covered by line A is warmest and the

overall area covered by line C seems to be coldest. For the warmest area, both CRISM and

model data are in the range of 255 to 260 K. STANN temperature estimates for the regions

covered by lines B and C are about 240 K while thermal model estimates are about 253 K.

We believe this discrepancy is due to lack of discernable differences in thermal emission for

the CRISM data, perhaps combined with the approximations used for thermal modeling,

i.e., Lambert albedo assumption for surface properties, and retrieval of thermal inertias for

these surfaces. We are pursuing sensitivity analyses to better understand the temperature

differences.
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Figure 2.24: Thermal Inertia from THEMIS and the Lambert Albedo for FRT000B6F1. The
thermal inertia has the range from 200 to 480 and the red and blue indicate the high and low
thermal inertia areas. It is noticed that part of the scene does not have the corresponding
thermal inertia. Thus the temperature mapping only has values in the overlapped area.53



Figure 2.25: Two temperature mappings generated based on different methods independently
are shown. The temperature in the left is from the thermal model proposed by Vasavada
et al. and one in the right is from our STANN. Three horizontal lines are labeled to show
locations where the horizontal comparison for these two mappings in Fig 2.26. One should
notice that we do not model topography for scales less than 250 meters MOLA, thus the flat
area (left area of the blue line) is more valid comparison than others.

One explanation for this difference is that because this area is very cold (colder than 255

K), 10 K difference in temperature can generate similar albedos due to the limitation of the

Plank function property. Fig. 2.23) shows that for very cold area (about 240 K), even 15 K

change in the estimated temperature can only lead a very small change in SSAs as shown in

Fig. 2.27. This also consistent with our previous sensitivity analysis that for very cold area

and CRISM spectral range, the sensitivity in Fig. 2.1 can be as small as 10−5.

Fortunately, the colder area of FRT000B6F1 covers the location (Sol 1891, 1892) where the

Curiosity rover measured the daily surface temperature curve.

Fig. 2.28 shows the diurnal surface temperature curves measured by the Curiosity rover at

the point Sol 1891, 1892. Both curves are consistent with each other (similar pattern and

temperature range). CRISM FRT0000B6F1 was observed at the solar time 15:29. Two cross
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Figure 2.26: Three horizontal value comparisons are shown to see the consistency of the
temperature from our STANN (in dashed line) and one from the thermal model (in solid
line) proposed by Vasavada et al. The x-axis is the column index.
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Figure 2.27: Two different SSAs retrieved from the same IOFs based on 240 K and 255 K.

points show estimates by STANN and the thermal model around Sol 1891, 1892. We can

find that according to the Curiosity rover, the ground truth temperature should be around

242 K. STANN estimates it as 246 K, which has only 4 K difference while the thermal model

estimate it as 255 K. It is partially verified that for the colder temperature, STANN can

estimate better than the thermal model. Combining the analysis before (Section 2.4.1), 4 K

difference is very hard to estimate at such a cold temperature but fortunately it would not

affect on the retrieved SSAs too much(refer to Fig. 2.27).
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Figure 2.28: Diurnal surface temperature curve measured by the Curiosity Rover. The
estimate from STANN is labeled in yellow cross and one from thermal model is labeled in
green cross.
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Aimed to verify this explanation, FRT0000C0EF is selected, a flat and warm scene where

the Curiosity Rover has been 1.

In summary, we can draw a conclusion that in general our STANN can generate a robust

temperature mapping, which is both consistent with the thermal model for warmer areas

and with the Curiosity point measure for colder areas.

2.5 Discussion

We define the sensitivity of radiance with respect to temperatures, which describes how hard

the neural network can approximate the inverse function to get the surface temperature.

A general method, Separating Temperature and Albedo by Neural Networks (STANN), is

proposed to retrieve the Single Scattering Albedo and the surface temperature from radiance.

We also theoretically analyze the difficulty for different cases (different temperature ranges

and different wavelengths) and explain the reason why previous similar methods can work

well. Then the STANNs are derived and built for the hardest Mars spectrometer CRISM.

Performances for both instruments are verified from the robustness and the consistency. It

is noticed that STANN for CRISM can obtain a relatively robust and correct temperature

mapping based on limited information. The local incidence angle can be computed from the

elevation file, which corrects the spatial artifacts in generating albedos.

1More result analysis is coming for this scene
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Chapter 3

Reconstruction and Denoising

Method HyBER for Hyperspectral

Image Data

3.1 Methodology

Fig. 3.1 shows the diagram of our hypothesis-based estimation with regularization (HyBER)

for general cases. Hyperspectral data are input to HyBER, and based on our hypothesis test-

ing method, the best statistical model is selected that describes the hyperspectral data (either

Poisson or Gaussian distribution). A maximum loglikelihood algorithm is then applied for

the selected distribution to produce a denoised and de-blurred hyperspectral mapped image.
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Figure 3.1: Diagram of the hypothesis-based estimation with regularization (HyBER). In
HyBER, the hypothesis test is introduced in details in 3.1.1 and the maximum loglikelihood
method is explained in 3.1.2.

3.1.1 Hypothesis Tests

Two statistical models for hyperspectral sensor data di are considered: Gaussian and scaled

Poisson. Gaussian and Poisson distributions are common distributions respectively for con-

tinuous and integer random variables [65], due to the law of large number. Hyperspectral

radiance data are discrete photon counting essentially as well as continuous electricity signals

after collecting and calibration. Data might not be directly Poisson distributed due to some

necessary calibration α in the instrument or preprocessing. Then two hypotheses are

H1 : αdi ∼ Poisson(αai) i = 1, · · · ,M

H2 : di ∼ N (µi, σ
2) i = 1, · · · ,M,

(3.1)

where Poisson(αai) is the Poisson distribution with mean αai and N (µi, σ
2) is the Gaussian

distribution with different means µi but the same variance σ2. α is a positive constant for

all i = 1, · · · ,M .
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It can be shown in Harremoës and Tusnády [74] that for a Poisson distribution, the test

G-statistic:

G(αdi) = −2× ln pαai(αdi) = 2× [αai + ln(αdi)!− αdi × lnαai]

αdi→∞−−−−→ 2α× (diln
di
ai
− di + ai) = 2αI(di||ai)

(3.2)

is approximated by a χ2-distribution with one degree of freedom.

For Gaussian distribution, the corresponding test G-statistic is,

G(di) =
(di − µi)2

σ2
(3.3)

which also has a χ2-distribution with one degree of freedom.

We have stated that testing the original null hypotheses above is equivalent to testing the

following hypothesis [10]:

H0 : pvi = 1− Fχ2(1)(G(di)) ∼ U [0, 1], (3.4)

where Fχ2(1)(·) is the cumulative χ2 probability with one degree of freedom. U [0, 1] is the

uniform distribution on [0, 1].

We simplify a set of distribution tests with different parameters given one sample per param-

eter in (3.1) to the standard uniform distribution test given enough samples in (3.4). This

is done by introducing the statistics G(di) whose distribution is independent of parameters

ai or µi.

Given a float number between 0 and 1, if the P-value (pvi) is less than this number, the test

is rejected, and if the P-value is larger than this number, the test is accepted. Thus when
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the number of tests becomes large enough (M is large enough), the float number indicates

the probability that the test is rejected if the hypothesis is true,

Pr[H0 is rejected|H0 is true] (3.5)

This probability is often reported as the type I error, or significance. Therefore when

M → ∞, given a significance, if the null hypothesis is true, the fraction of rejected di

should be equal to this significance (Devore 2001). To demonstrate this method, Fig. 3.2

shows the results of a simulation of 100,000 random variables with mean values ranging over

three orders of magnitude. When generating Poisson random variables, we first uniform-

randomly generate 100,000 values as means and then generate 100,000 Poisson samples from

corresponding mean (one sample for one mean). As for Gaussian random variables, means

are generated the same while variance is chosen as the expectation of 100,000 means. A

hypothesis that highly accurately describes the random variables should yield cumulative

distributions that approximate a diagonal line through the plot. The lines for both a Pois-

son and Gaussian hypotheses yield lines along the y=x diagonal, whereas two tests that do

not match the distribution yield curves that are not along the diagonal. One could notice

that assuming Poisson when it is Gaussian (cyan line with circles) is worse than assuming

Gaussian when it is Poisson (purple line with diamonds). One possible explanation is that

when the mean goes large enough, Poisson distribution could be approximated by Gaussian,

not vice versa.

For the Poisson hypothesis H1, G(di) ≈ 2αI(di||ai) = 2α(di ln
di
ai
− di + ai) and for the

Gaussian hypothesis H2, G(di) = (di−µi)2
σ2 . We can find although the distribution of G(di) is

independent of parameters ai or µi, the computation of G(di) depends on them. However

for real data, it is hard to find true parameters ai or µi. Therefore in practice [10], what we
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Figure 3.2: Cumulative distribution of P-values for various simulation cases (Simulation).

test is

H1 : αdi ∼ Poisson(αâi) i = 1, · · · ,M

H2 : di ∼ N (µ̂i, σ
2) i = 1, · · · ,M,

(3.6)

where âi and µ̂i are the best estimates by minimizing
∑M

i=1 I(di||ai) (explained in detail in

section 3.1.2) and
∑M

i=1(di − µi)2 respectively.
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To quantitatively analyze the goodness of fit, we introduce Kullback-Leibler (KL) divergence

dKL [75] to describe the discrepancy between the hypothesis uniform distribution p(x) and

the real distribution q(x) of pvi in (3.4).

dKL(q||p) =

∫ 1

0

q(x) ln
q(x)

p(x)
dx =

∫ 1

0

q(x) ln q(x)dx

= −S(q),

(3.7)

where S(q) is the differential entropy of probability density q(x).

Because we do not know the true q(x), due to the law of large number, we use a Q-bin his-

togram nk

M
to estimate q(xk)

Q
where xk = 2k−1

2Q
, k = 1, 2, · · · , Q and nk =

∑M
i=1 I[xk− 1

2Q
,xk+

1
2Q

](pvi)

with I[xk− 1
2Q
,xk+

1
2Q

](pvi) = 1 if pvi ∈ [xk − 1
2Q
, xk + 1

2Q
], otherwise, I[xk− 1

2Q
,xk+

1
2Q

](pvi) = 0.

We also estimate dKL (3.7) by

d̂KL =

Q∑
k=1

nk
M

ln
nk
M

+ ln (Q). (3.8)

According to Moddemeijer [76], the bias error for d̂KL is

E[d̂KL]− dKL ≈ C1
Q

M
− C2

1

Q2
, (3.9)

where C1, C2 are constants in the order of 1. Since we have large M (around 107), Q = 100

makes this bias error close to 0. The variance of this estimate is ∼ 1/2M [76], which is

∼ 10−7 for our case. Therefore d̂KL is used as the quantification that indicates the accuracy

of the null hypothesis in (3.1).

64



Table 3.1: Hypothesis KL divergences for simulations

Data Hypothesis d̂KL
αdi ∼ Poisson(αai) αdi ∼ Poisson(αai) 2.0× 10−6

αdi ∼ Poisson(αai) αdi ∼ Poisson(αâi) 0.0089
αdi ∼ Poisson(αai) di ∼ N (µ̂i, σ̂

2) 0.63
di ∼ N (µi, σ

2) di ∼ N (µi, σ
2) 1.6× 10−6

di ∼ N (µi, σ
2) di ∼ N (µ̂i, σ

2) 0.0011
di ∼ N (µi, σ

2
i ) α̂di ∼ Poisson(α̂âi) 3.4796

We generate two simulated data sets:

1. Data di ∼ Poisson(αai)/α for given ai and α; ai are randomly generated between 0 and

1, and α = 106 to approximate real data

2. Data di ∼ N (µi, σ
2) for given µi and σ; µi are randomly generated between 0 and 1, and

σ2 = 10−2.

Applying our hypothesis method to these two simulations, table 3.1 shows d̂KL for different

hypotheses and different datasets (M > 107). When the hypothesis distribution matches the

real distribution and true values are known, the KL divergence is as small as 10−6. It also

verifies that the approximated distribution of G(di) ≈ 2αI(di||ai) [74] does not affect the final

hypothesis results for large α. However, even based on estimated values, if the hypothesis

distribution is true, the KL divergence is also very small (around 10−3). Otherwise, if

the hypothesis distribution is wrong, the KL divergence is relatively much larger. One can

notice that the KL divergence for Gaussian distribution approximating Poisson data is clearly

smaller than the KL for Poisson distribution approximating Gaussian data, which follows

the Central Limit Law that implies the Gaussian distribution can approximate a Poisson

distribution when the mean parameters are large enough. Our method succeed to select a

better distribution from candidates based on data only.
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3.1.2 Statistical Modelling

Define U = R+ as the positive real number space. If we have M measurements, data

d = [d1, d2, ..., dM ]T and their estimates a = [a1, a2, ..., aM ]T should belong to UM , that is

d, a ∈ UM . The reconstruction mapped image in local Cartesian axis c = [c1, c2, ..., cN ]T

contain N pixels in total, then c ∈ UN . The physical model provides the system matrix

(forward model) H ∈ RM×N , which describes how the mean data a is linearly generated

from the mapped reconstruction c, a = Hc. Often, H is called a transfer function. We

use a Gaussian kernel as the transfer function for this hyperspectral image system and the

selection of the transfer function kernel is independent of the distribution of measured data.

We aim to maximize the loglikelihood based on the statistical model selected from section as

in 3.1.1. The ill-posed nature of the forward model and the noise in data d create instabilities

in estimates for the mapped reconstruction image c. Therefore a convex regularization

function Φreg(c), which is described in the section 3.1.3, is introduced. The reconstruction

problem can be stated as an optimization problem

min
c
− ln p(d|a) + Φreg(c)

s.t. a = Hc.

(3.10)

The negative loglikelihood − ln p(d|a) is also called a data fitting term.

If data is selected as being Gaussian distributed, (3.10) is equivalent to

min
c

M∑
i=1

(di − ai)2 + Φ(c)

s.t. a = Hc.

(3.11)
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If data is modeled as being Poisson distributed, (3.10) is equivalent to

min
c

M∑
i=1

(−di ln ai + ai) + Φ(c)

s.t. a = Hc.

(3.12)

In (3.11) and (3.12), Φ(c) is the equivalent regularization function from Φreg(c) in (3.10)

after simplifying the data fitting term.

We derive two iterative algorithms for two different distributions as shown in Algorithms 1

and 2 by decoupling the penalty as Φ(c) ≤ ΦD(c, c(t)), ∀c where ΦD(c, c(t)) is decoupled

using the surrogate method [10] by introducing known c(t) at t iterations (see section 3.1.3).

Minimizing the decoupled penalty minimizes the original penalty iteratively [59].

If HyBER verifies data are scaled Poisson distributed, Algorithm 1 is applied. If HyBER

verifies data are Gaussian distributed, Algorithm 2 is utilized. It should be noticed that
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Algorithm 2 is derived by taking advantage that H is a Gaussian kernel transfer function

and details can be found in [77].

Algorithm 1: Regularized Maximum Log-likelihood Method for Poisson data

Data: measured data d, system matrix H, maximum iteration maxiter, penalty

parameters β1, β2, δ1, δ2

Result: reconstructed mapped image c, estimated data a

Initialize c(1) ∈ UN and h = HT1 where 1 = [1, 1, ..., 1]T ∈ UM , h ∈ RN ;

for i← 1 to maxiter do

Forward Projection: a(t) ← Hc(t) Data Error Ratio: b
(t)
i ← di/a

(t)
i Backward

Projection: f (t) ← HTb(t) Update using the Trust-Region Newton Method:

c(t+1) ← arg minc

∑N
j=1−c

(t)
j f

(t)
j ln cj + hjcj + ΦD(c, c(t); β1, β2, δ1, δ2)

end

Algorithm 2: Regularized Maximum Log-likelihood Method for Gaussian data

Data: measured data d, system matrix H, maximum iteration maxiter, penalty

parameters β1, β2, δ1, δ2

Result: reconstructed mapped image c, estimated data a

Initialize c(1) ∈ UN and h = HT1 where 1 = [1, 1, ..., 1]T ∈ UM , h ∈ RN ;

for i← 1 to maxiter do

Forward Projection: a(t) ← Hc(t) Data Error Difference: b
(t)
i ← di − a(t)i Backward

Projection: f (t) ← HTb(t) Update using the Trust-Region Newton Method:

c(t+1) ← arg minc

∑N
j=1−2f

(t)
j (cj − c(t)j ) + hj(cj − c(t)j )2 + ΦD(c, c(t); β1, β2, δ1, δ2)

end
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3.1.3 Weighting Regularization

The regularization Φ(c) = Φ1(c) + Φ2(c) is a sum of spatial and spectral terms shown in

(3.13). Our prior standard approach was to incorporate the penalty function with constant

weights for all pixels and bands [59]. However, this approach produced artifacts in the

resulting images and spectra. Fig. 3.8a shows the example how a constant weighting penalty

introduces the line-dependent artifacts. Therefore model-based weights w1,j, w2,j needed to

be determined from the spatial sampling mode and wavelength-dependent spectral noise

levels.

Line scanning hyperspectral sensors spatially sample data non-uniformly. w1,j is the spa-

tially dependent weight to adjust the non-uniform sampling issue. Therefore we make it

proportional to the sensitivity mapping h in algorithms which indicate the sampling degree

of the instrument. The necessity of this weight is analyzed in the next section 3.2.3.

Φ1(c) =
N∑
j=1

Φ1,j(c)

=
N∑
j=1

w1,j

∑
k∈NA(j)

1

rkj
β1δ

2
1 ln cosh

[
cj − ck
δ1

]

Φ2(c) =
N∑
j=1

Φ2,j(c)

=
N∑
j=1

w2,j

∑
k∈NE(j)

1

rkj
β2δ

2
2 ln cosh

[
cj − ck
δ2

]
(3.13)

where NA(j) and NE(j) are the spatial and spectral neighborhoods of j and rkj is the

distance between k and j.
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Hyperspectral data with hundred of bands suffer varying noise intensities for different bands,

especially for deteriorating detectors. To compensate for increased noise, we estimate wave-

length dependent noise levels from the data set and suppress noisy data as part of the spectral

regularization (w2,j). First, define the squared magnitude of the short-wavelength Fourier

transform as the spectrogram of a single spectrum. Let s(λ) be the high frequency value of

the mean spectrogram (of all spectra in the hyperspectral data). An example is shown in

3.9. In our approach, the spectral weights are set to increase as the uncertainty or noise in

the measurement increases; the high frequency information s(λ) quantifies this uncertainty.

There must be a threshold on the weights corresponding to a maximum penalty. A Gaussian

distribution function was found to work well with parameters chosen to give a rapid change

in weights for low values of s(λ). Given a range [1, R], spectrally, w2,j is proportional to

F0,m(s(λ))(s(λ))(R−1)+1 where Fµ0,σ2
0

is the Gaussian cumulative distribution function with

mean µ0 and variance σ2
0 and m(s(λ)) is the median value of s(λ). Then we make higher

penalties associated with worse detectors. Also w2,j consider the non-uniform sampling issue

for different areas too.

Φ1(c)

≤
N∑
j=1

∑
k∈NA(j)

β1δ
2
1

w1,k + w1,j

2dkj
ln cosh

[
2cj − c(t)k − c

(t)
j

δ1

]

= ΦD
1 (c, c(t))

Φ2(c)

≤
N∑
j=1

∑
k∈NE(j)

β2δ
2
2

w2,k + w2,j

2dkj
ln cosh

[
2cj − c(t)k − c

(t)
j

δ2

]

= ΦD
2 (c, c(t))

(3.14)
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Penalties in (3.13) contain unknown cj, ck coupled variables. To solve the optimization in

(3.10) iteratively, we decouple these variables using a surrogate method as in (3.14) because

the original penalties are convex. Replacing ΦD(c, c(t)) in Algorithm 1 by ΦD
1 (c, c(t)) +

ΦD
2 (c, c(t)), we now can solve the optimization iteratively.

3.2 Application and Performance Analysis

3.2.1 Data Introduction

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Recon-

naissance Orbiter (MRO) began operations in 2006 [5] as a gimballed push-broom (i.e., line

sampling) hyperspectral imaging spectrometer operating from 362 to 3920 nm, with a 6.5

nm spectral band spacing, and a smallest ground pixel size of 18 m. Since 2010, images have

occasionally been acquired using an along-track oversampled mode (ATO), with significant

overlap in the along-track direction. ATOs allow the reconstruction of images with smaller

pixel size (9-12 m/pixel). CRISM operates as S (0.362 to 1.030 µm) and L (1.036 to 2.650

µm) imaging spectrometers. We focus on bands from 0.362 to 2.650 µm here, because for

wavelengths greater than ∼2.650 µm, the CRISM data contain both reflectance and undeter-

mined thermal emission component. In this chapter, three ATO data sets (FRT0001EB5F,

FRT0001DC22 and ATO00037D74) are employed1. The reader is referred to papers [78] [79]

for scientific analyses using processed data.

CRISM data have been processed and placed in the Planetary Data System archives as

two forms of sensor-space hyperspectral image cubes. For S data the raw data sets have

1The name “ATO” was used later than the ATO mode was applied. Before the name change, some scenes
labeled “FRT” are actually acquired using the ATO mode.
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been assembled to image cubes and calibrated to spectral radiance using a combination of

pre-flight radiometric measurements and in-flight observations using calibrated light sources

contained within the instrument. For L data the archives include image cubes calibrated to

spectral radiance and also image cubes that have had known artifacts removed and converted

to I/F, which is for each pixel and band the ratio of the spectral radiance from the scene

divided by the spectral radiance of the sun at the heliocentric distance for the observation.

We chose to use the latter form of the L data cubes as a start in our processing and will

refer to this product as “CRISM baseline”. For the map-projected version of the “CRISM

baseline” we use a mapping algorithm that includes a 1/distance weighting of the mapped

value of an output pixel, with no consideration of regularization or statistics.

Two processing steps for the hyperspectral ATO image cubes are necessary [10]:

1. Retrieval of Single Scattering Albedo: The primary derived CRISM hyperspectral im-

age cube archived at NASA’s Planetary Data System (PDS) has units of spectral radiance

(Wm−2sr−1µm−1). In our processing, spectral radiances are first converted to I/F by divid-

ing by the solar spectral radiance at Mars at the time of observation. Discrete Ordinates

Radiative Transfer (DISORT)-based processing incorporating modeling atmospheric gases

and aerosols [2], and the Hapke function [11] for surface scattering, are then used to retrieve

the surface single scattering albedo (SSA) [80]. SSA is the ratio of scattering efficiency to

scattering plus absorption efficiencies for the Mars surface.

2. Extrema Removal by Median Filter : A median filter originally designed by Eliason and

McEwen [81] is used next to remove extreme values, a consequence of aging detectors, and

to replace their values by the median value of the neighborhood. This technique is similar

to what was employed by Carter et al. for CRISM data [82]. The necessity of this step is

verified by Kreisch, et al. [10]. These two processing steps remove the effects of atmospheric

gases and aerosols, lighting and viewing conditions, and extreme noise spikes.
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3.2.2 Hypothesis Results

Let’s take a deeper look of H1. α is assumed to be constant, independent of spectral and

spatial location. To test this assumption, we estimated this constant factor first. To test

the shape of the distribution, we use these two homogeneous areas. For a homogeneous

region, the statistics should be independent of spatial location. The hypothesized scale

factor could depend on spectral value in this case α = α(λ). A simple moment estimator

yields a reasonable estimate for α. For a scaled Poisson random variable, the ratio of the

variance to the mean equals the scale factor. We test on two homogeneous areas of CRISM

ATO0002EC79 IR SSA data (shown in Fig. 3.3) and the estimate scalars depending on

wavelength are plotted in the Fig. 3.4.

Fig. 3.4 shows that although the estimate scalars of SSA after median filter contains some

noise, it is approximately independent of wavelength. By comparison, we note that the

SSA after the median filter has a more constant estimated scale factor, with most spikes

removed. It also verifies that the median filter in the preprocessing step is necessary if the

scaled Poisson distribution is selected in the reconstruction step.

The average values from Fig. 3.4 are used to scale the data prior to testing the distribution.

Fig. 3.5 shows a direct comparison of the Poisson and the cumulative distribution function

for a Poisson compared to measured values (histogram and cumulative histogram), for each

of the two areas in Fig. 3.3. While there is some difference between the shape of the Poisson

distribution and the histogram near the peak, the cumulative distributions match closely.

After testing for the homogeneous areas, we apply the quantitative hypothesis method in

2.2 to some scenes: ATO00037D74, FRT0001EB5F, ATO0002DDF9 and ATO0002EC79.
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(a) Homogeneous Area 1.

(b) Homogeneous Area 2.

Figure 3.3: Two selected homogeneous areas of ATO0002EC79 IR SSA data (Area is marked
in red).
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(a) Scalar vector of homogeneous area 1 be-
fore median filter.

(b) Scalar vector of homogeneous area 2 be-
fore median filter.

(c) Scalar vector of homogeneous area 1 after
median filter.

(d) Scalar vector of homogeneous area 2 after
median filter.

Figure 3.4: Scalar vector of homogeneous areas before and after the median filter.
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(a) Probability mass function of the homo-
geneous area 1.

(b) Cumulative mass function of the homo-
geneous area 1.

(c) Probability mass function of the homo-
geneous area 2.

(d) Cumulative mass function of the homo-
geneous area 2.

Figure 3.5: Theoretical scaled Poisson distribution approximates the real distribution of
measured values.
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Figure 3.6: Scalar vector of homogeneous area before and after median filter.

P-value curves are drawn in Fig. 3.6, and curves closer to the diagonal line indicate better

approximations. Fig. 3.6 indicates that for both scenes the scaled Poisson distribution is

closer than the additive white Gaussian distribution to the data distribution.

Compute the dKL from the hypothesis method in 3.1.1 to CRISM data (ATO00037D74

and FRT0001EB5F, collected four years apart), KL divergences in table 3.2 for two scenes

show that the scaled Poisson distribution is closer to the real distribution than the additive

white Gaussian hypothesis. We also note that the KL divergence for the scaled Poisson

distribution based on real data (10−2) is much higher than the scaled Poisson distributed

simulation (10−3) in table 3.1. This might be due to higher variation in αi.
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Table 3.2: Hypothesis KL divergences for CRISM data

Data Hypothesis d̂KL
ATO00037D74 α̂di ∼ Poisson(α̂âi) 0.034
ATO00037D74 di ∼ N (µ̂i, σ̂

2) 0.54
FRT0001EB5F α̂di ∼ Poisson(α̂âi) 0.081
FRT0001EB5F di ∼ N (µ̂i, σ̂

2) 4.53

3.2.3 Weighting Penalty Performance

Spatially dependent weights

Regularized reconstruction methods typically use penalty functions with constant weights

w1,j = 1 for all spatial neighborhood pixels in (3.13). This approach introduced row arti-

facts in CRISM map projected reconstructions because in undersampled areas the penalty

term was weighted higher than the data fitting term (3.10), resulting in over-smoothing. For

example, when reconstructing the hyperspectral sensor data FRT0001DC22, the sensitivity

mapping of it is shown in Fig. 3.7. Without prior knowledge of this sampling informtion,

the constant spatial penalty leads to the reconstructed map projected reconstruction shown

in Fig. 3.8a. The sensitivity h (independent with the statistical model) in Algorithm 1 ac-

counts for varying sampling of different spatial regions and its values range over 20 orders of

magnitude (shown in Fig. 3.7), which shows that some areas are oversampled while some are

highly undersampled. Making the weights in the spatial penalty Φ1(c) proportional to sensi-

tivity values equalizes the balance between the data fitting term and penalty terms in (3.10),

and substantially eliminates the row artifacts associated with high degree of undersampling

as shown in Fig. 3.8b.
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Figure 3.7: An example of the spatial sensitivity mapping for the hyperspectral reconstruc-
tion CRISM FRT0001DC22 on Mars. Values in this sensitivity mapping vary from 10−20 to
20. Data are mapped to the Mars equirectangular projection.

Spectrally dependent weights

Fig. 3.9 shows spectrograms of two examples: hyperspectral data FRT0001EB5F collected

by CRISM (see 3.2.5 for details) during June 2011 and ATO00037D74 acquired in August

2015. Spectrogram values of FRT0001EB5F are smaller than those of ATO00037D74 at high

frequencies, which matches the fact that CRISM in 2011 had higher signal to noise ratios

(SNRs) than in 2015. The increased noise for the most recent scenes is associated with aging

detectors and thermoelectric coolers. The high frequency information in Fig. 3.9b shows

relatively lower values between 1.7 to 1.9 and 2.1 to 2.5 µm, which is consistent with the

predicted instrument performance [5].
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(a) Constant Weighting Penalty.

(b) Spatially Dependent Weighting Penalty.

Figure 3.8: Results with different penalties for CRISM FRT0001DC22 on Mars in Fig 3.7.
Reconstructions are shown in RGB with wavelengths 0.71 µm, 0.599 µm and 0.534 µm.
Frames are ∼10 km across. Note the row artifacts in Fig. 3.8a is corresponding to the
sensitivity mapping in Fig 3.7.
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(a) Spectrogram of the CRISM FRT0001EB5F in 2011.
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(b) Spectrogram of the CRISM ATO00037D74 in 2015.
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Figure 3.9: Mean spectrograms of L data for older and recent scenes are shown with color-
coded relative logarithmic noise power. The vertical axis is the normalized Fourier frequency.
For the scene ATO00037D74, relatively lower noise levels at higher frequency are found
between 1.7 to 1.9 and 2.1 to 2.5 µm, which is consistent with the recent performance of the
instrument.
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3.2.4 Simulations

CRISM often observes areas on Mars where no landed spacecraft has been to provide ”ground

truth”. To quantitatively evaluate the performance of the algorithm, we therefore use simula-

tions. Our simulations use a hyperspectral reconstruction as known truth. The hyperspectral

mapped image chosen is the output of application of our algorithm to real data from the

scene ATO00037D74. This choice is arbitrary and any random scene with reasonable con-

tinuity and smoothness properties could have been chosen. Using a scene from Mars allows

visualization of the results.

Random hyperspectral data were generated by applying the system matrix to this hyper-

spectral mapped image, scaling the result by α, then generating independent Poisson random

variables with these means. These Poisson variables were then divided by the scalar α. In

the true scenes, the scalar α varies over a range from 103 to 104. Do account for this, a

second set of simulations was run with varying αi. The varying scalar is chosen randomly

for every spectral band, uniformly in the range from 103 to 104. The results below are for

32 independent realizations of the data for each of the two cases (constant and varying α) 2.

Table 3.3 compares relative errors for our method HyBER, the Gaussian method (incorrect

assumption) and the projected baseline (non-statistical method). Using HyBER, the Poisson

model can be selected over the Gaussian model (from table 3.1). Then Algorithm 1 can be

applied with penalty parameters chosen as β1 = 0.01, δ1 = 4, β2 = 0.1, δ2 = 0.9. Using

an incorrect statistical model (Gaussian method in table 3.3), Algorithm 2 can be applied

with the same penalty parameters. The projected baseline method (also in table 3.3) is

the projection without noise suppression and using one over distance weighting to calculate

projected pixel values from surrounding pixels.

2Simulation codes can be found under my github (No.1): https://github.com/linyunhe/hypothesis_
test_PG_for_CRISM
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Table 3.3: Relative errors for scaled Poisson distributed simulations

Methods Constant scalar Varying scalar
HyBER
(mean)

1.704× 10−5 1.982× 10−5

HyBER
(standard derivation)

0.0056 0.0085

Gaussian method
(mean)

−0.0025 −0.269

Gaussian method
(standard derivation)

0.0107 0.733

Projected baseline
(mean)

−0.138 −0.138

Projected baseline
(standard derivation)

0.0054 0.0081

For simulations with both constant and varying scalars, HyBER performs the best in both

means and standard derivations of errors. HyBER is also robust to the choice of scalars

(constant or varying), while the Gaussian method works much better with a constant scalar

(104) than a varying scalar (103−104). One possible explanation is that a constant and larger

scalar generates simulated data that are approximately Gaussian distributed according to

the central limit theorem. Moreover, for varying scalar simulations, the Gaussian method

generates more biased results than the projected baseline does, but for constant scalar simula-

tions, the Gaussian method leads to much more unbiased reconstructions than the projected

baseline does. Therefore, with a wrong statistical assumption (Gaussian distribution), the

statistical method can even perform much worse than the projected baseline.

Then we want to analyze errors in details to figure out why the wrong statistical assumptions

will lead to bad estimates. Fig. 3.10 shows the boxplot of all mean relative errors for constant-

scalar simulations. We can find that compared with HyBER, Gaussian method has more

outliers (lower than −100), which are certainly wrong. If zooming in the quantiles range, we

can find that both HyBER and Gaussian has median which is very close to zeros(−1.91×10−5
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for Gaussian and −1.90× 10−5 for HyBER). However, Gaussian errors still have a little bit

larger range between quantiles than HyBER, but not as large as the difference in Table

3.3. Thus, the large mean and variance of Gaussian method errors seem to be caused by

the outliers. Fig. 3.11a shows the spatial locations of these outliers. We can find that

Figure 3.10: Boxplot of all mean relative errors for Gaussian methods and HyBER for
constant scalar simulations.

it seems like the outliers all appears in the boundary of the image where we have limited

sampled information. Therefore it seems like if we cut the boundary of Gaussian method,

Gaussian algorithms will be more robust and accurate. Moreover Fig. 3.11b shows the

ratio of errors (after removing outliers) from Gaussian and HyBER in log 10. Thus if the

pixel value is larger than 0, Gaussian method has higher errors than HyBER. Overall, it

seems like Gaussian method in general a little bit worse than HyBER (which verifies the

conclusion from Fig. 3.10). One interesting finding is that in the boundary of crater (half

ring shape in the middle of the figure), Gaussian seems to have around 2 times errors than

HyBER. Because the penalty parameters have been adjusted based on overall cost function,

this boundary bias seems to be related with the wrong statistical assumptions.
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(a) Gaussian method estimations (in average). The red crosses show pixels who have extremely
weird estimates in the spectral domain (for example, negative values).

(b) The ratio of Gaussian relative errors and HyBER relative errors in log 10.

Figure 3.11: Spatial visualization of Gaussian method errors for constant scalar simulations.
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In general, statistical method in general still works better than non-statistical method. How-

ever the wrong assumption of data can lead to extremely large boundary bias. If we remove

these outliers, estimates from the wrong assumption still have higher boudary bias than

HyBER. In other words, our model selection is essential to the reconstruction problem.

3.2.5 Application to CRISM data

The projected image from the sensor data d in (3.10) with the same desired pixel size based

on the projected baseline (non-statistical) is compared with reconstructions from HyBER.

Spectral comparisons verify the fidelity of original and denoised results. Spatial analysis

quantifies the fidelity of different reconstructions.

Spectral Analysis

To validate spectral features after application of our algorithm, FRT0001EB5F acquired

over Mawrth Vallis is used. The area exposes nontronite and montmorillonite clay minerals

[83–86]. ATO00037D74 was acquired over Iazu Crater in Meridiani Planum, south of the

Mars Exploration Rover (Opportunity) landing site. This place shows evidence of nontronite

and saponite [79] which has also been reported ∼ 20 km away at Endeavour Crater [7].

Fig. 3.12a shows the first scene with locations of two spectrally interesting areas delineated.

In Fig. 3.13a, the top graph shows the mean single scattering albedos of two areas from

the baseline and HyBER reconstructions, and the bottom shows the library spectra of non-

tronite, montmorillonite and saponite. The HyBER spectrum is denoised without removing
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Area 1

Area 2

(a) The scene FRT0001EB5F over Mawrth Vallis and the spectra shown in
(b) are from the two labeled areas. Reconstructions are shown in RGB with
2.529 µm, 1.506 µm and 1.060 µm. The frame is ∼13.5 km across and data are
regularized and projected at 12 m/pixel.

ATO00037D74

Iazu Crater

(b) Location of scene ATO00037D74 over Iazu Crater on Mars and the following
spectral products are from the rectangular area. Reconstructions are shown in
RGB with 2.529 µm, 1.506 µm and 1.060 µm. The frame of ATO00037D74 is
∼10.5 km across and data are regularized and projected at 12 m/pixel.
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Area2: Projected baseline

Area2: HyBER

Area1: Projected baseline

Area1: HyBER

Nontronite

Montmorillonite

Saponite

(a) Spectral comparison between the pro-
jected baseline and HyBER reconstructions
for FRT0001EB5F.

Projected baseline

HyBER

Nontronite

Montmorillonite

Saponite

(b) Spectral comparison between the pro-
jected baseline and HyBER reconstructions
for ATO00037D74.

Figure 3.13: Spectral comparison and analysis. The spectra shown is the mean spectra of 3
by 3 pixels and the vertical lines are centered on laboratory-based absorption features. The
bottom graph is for laboratory-based spectra from USGS spectral library [1]. Nontronite,
montmorillonite and saponite are candidate minerals for this area. Features at 1.9 ∼ 2.0 µm
are OH/H2O-related absorptions and smaller features at 2.2 ∼ 2.3 µm and 2.4 µm indicate
the present of metal-OH.
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diagnostic absorption features ( 2.2, 2.3 and 2.4 µm). Area 1 is a good match for the phyl-

losilicate mineral montmorillonite (matched absorption feature at around 2.2 µm) whereas

area 2 contains nontronite (matched absorption features at around 2.3 and 2.4 µm).

Fig. 3.12b indicates the location of the scene ATO00037D74 over Iazu Crater. The mean

single scattering albedos from the rectangular area are shown in Fig. 3.13b. The top of Fig.

3.13b indicates the spectral comparison between the baseline and HyBER reconstructions.

Compared with Fig. 3.13a, baseline processed data from ATO00037D74 are noisy and it

is harder to distinguish small features at 2.3 and 2.4 µm. Due to the spectral weighting

regularization, fine signatures are evident with suppressed noise, even for the more recent

scene suffering from enhanced noise relative to earlier scenes. Fig. 3.13b shows the evidence

of saponite.

In summary, HyBER provides spectra in which noise is suppressed, whereas fine-scale mineral

absorptions are preserved, both for relatively low-noise data acquired during 2011, and higher

noise data collected during 2015.

Spatial Analysis

We use FRT0001DC22 acquired over Pangboche, a young impact crater on the slopes of

the Olympus Mons volcano, using large boulders on its floor to characterize HyBER spatial

fidelity. We validate the spatial characteristics using MRO Context Imager data (CTX)

acquired at 6 m/pixel at wavelength ∼0.6 µm. Visual comparison in Fig. 3.14 shows that

compared with the projected baseline, HyBER depicts more fine spatial details, i. e., discrete

boulders 3.

3Codes can be obtained under my GIThub: https://github.com/linyunhe/image_quality_CRISM_CTX
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(a) Context camera projected at 6 m/pixel at ∼ 0.6 µm.

(b) HyBER reconstruction projected at 9 m/pixel at band 0.592 µm.

(c) Projected baseline at 9 m/pixel at band 0.592 µm.

Figure 3.14: Part of Pangboche crater from three different reconstructions. FRT0001DC22
is reconstructed. Frames are ∼1.5 km across.
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To quantify the quality of the reconstructed CRISM image data, both local and global

comparisons are employed.

Spatial Local Analysis

Define the Rock Spread Function RSF (x, y) to be the two-dimensional spline interpolation

for pixels covering a spatial rock, where (x, y) is the relative spatial distance to the maximum

or minimum of RSF (x, y). RSFCTX(x, y), RSFHyBER(x, y) and RSFBaseline(x, y) are shown

in 3.15. To quantify the reconstruction quality, we introduce two indexes:

(1)Contrast :

contrast =
maxx,y RSF (x, y)−minx,y RSF (x, y)

1
2

(maxx,y RSF (x, y) + minx,y RSF (x, y))

(2)Sharpness :

sharpness =
maxx,y RSF (x, y)−minx,y RSF (x, y)

width(0.1 ∼ 0.9)

(3.15)

where width(0.1 ∼ 0.9) = min ||(x, y)0.9 − (x, y)0.1||2 with (x, y)η = {(x, y)|RSF (x, y) =

ηmaxx,y RSF (x, y) + (1 − ηminx,y RSF (x, y))}, that is, the minimal distance between two

brightness contours. The distance between maximum and minimum, width(0.1 ∼ 0.9) is

chosen because the distance between two points is more sensitive than one between two

contours. These two indexes can describe the local quality of an RSF since the contrast

shows the amplitude range and the sharpness measures the slope.

In Fig. 3.15, the RSF of CTX has a 1.27 contrast and 0.014 sharpness, the RSF of HyBER

has 0.63 contrast and 0.0059 sharpness, and the RSF of the projected baseline has 0.21

contrast and 0.0021 sharpness. The local quality of other rocks is compared in Table 3.4.
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Figure 3.15: Rock Spread Functions (RSFs) of the same rock from CTX, HyBER and the
projected baseline.

Table 3.4: Local goodness of four different rocks

Reconstruction Image
Rock 1 Rock 2 Rock 3

sharpness contrast sharpness contrast sharpness contrast

CTX (6m) 0.01770 1.5595 0.01704 1.4937 0.01322 1.4396

HyBER (9m) 0.00787 0.7901 0.00602 0.5985 0.00348 0.4828

Baseline (9m) 0.00337 0.3634 0.00319 0.2702 0.00196 0.2210

HyBER (12m) 0.00643 0.6835 0.00516 0.5054 0.00372 0.5180

Baseline (12m) 0.00205 0.2567 0.00285 0.2630 0.00110 0.1388

HyBER (18m) 0.00284 0.4484 0.00271 0.3746 0.00286 0.4953

Baseline (18m) 0.00086 0.1438 0.00137 0.1726 0.00059 0.1097

Three conclusions can be drawn from Table 3.4:

1. Smaller pixel sizes lead to higher contrast and sharpness for both HyBER and projected

baselines;

2. HyBER has at least twice the contrast and sharpness of the baseline method and the

larger the pixel size is, the greater the improvement of HyBER is over the projected baseline

method;
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3. There necessarily is a gap between CTX at 6 m/pixel and HyBER at 9 m/pixel. This

is not surprising given that the ATO mode only achieves up to 9 m/pixel for limited areas

(non-uniform sampling).

Spatial Global Analysis

The global analysis is complicated because the hyperspectral image reconstruction algorithm

is nonlinear, iterative, and spatially varying. As described above, the regularization is de-

signed to remove some spatially varying artifacts with a goal of uniform spatial resolution

properties across the scene. The spatial frequency analysis of a scene is used to quantify the

global performance. The basis of comparison is the spatial resolution determined from the

relative frequency context of the scene.

Let F (µ, ν) =
∑M−1

ky=0

∑N−1
kx=0 f (kx, ky) e

−2πj(µkx+νky) be the Discrete Fourier Transform of the

2D image f (kx, ky). Let ρ =
√
µ2 + ν2 be the radial frequency and J(ρ) be the average,

J(ρ) =

〈
|F (µ, ν)|
F (0, 0)

〉
, for |µ2 + ν2 − ρ2| < 4ρ (3.16)

where 〈·〉 denotes the average and 4ρ is small enough.

For a given threshold τ , the spatial resolution r (in meters) is defined as the largest value

that satisfies,

J(ρ) ≥ τ, for all ρ <
1

r
. (3.17)

Fig. 3.16 shows how J(ρ) changes with the spatial radial frequency ρ for three reconstruc-

tions. It is clear that CTX is much better than the baseline and HyBER, which matches

results shown in Fig. 3.14. The HyBER J(ρ) is higher than one of the projected baseline
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Table 3.5: Global resolution for different areas (unit: meter)

Reconstruction Image Rocks Crater Edge Plain Combination
CTX (6m) 11.0 11.5 10.4 10.6

HyBER (9m) 14.2 15.2 14.2 14.3
Baseline (9m) 20.3 23.5 20.3 20.9
HyBER (12m) 16.8 18.1 16.0 17.5
Baseline (12m) 25.2 28.5 24.9 27.3
HyBER (18m) 22.4 32.3 18.7 27.2
Baseline (18m) 34.4 42.7 33.4 39.3

when 0.018 < ρ < 0.095. In other words, for small spatial features (smaller than 55 but

larger than 11 meters), HyBER depicts them more clearly than the projected baseline.

0 0.02 0.04 0.06 0.08 0.1

Spatial radial frequency  (1/m)

0.2

0.4

0.6

0.8

J
(

)

Standard Projection at 9 m/pixel

HyBER Reconstruction at 9 m/pixel

CTX at 6 m/pixel

Figure 3.16: J(ρ) depending on spatial radial frequency ρ. HyBER works much better than
the baseline method when spatial frequency is inside the range of 0.018 to 0.095, that is,
10.5 to 55 meters spatially.

Table 3.5 shows the spatial resolution of three reconstructions for different areas, given the

distinguishing threshold 0.1 in (3.17). Two conclusions are summarized:

1) CTX has better resolution than both HyBER and the projected baseline method at dif-

ferent projected pixel sizes (9, 12 and 18 m/pixel);

2) For both HyBER and projected baseline methods, decreasing the pixel size leads to better
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the image resolution. Also, HyBER has better resolution than the projected baseline for all

pixel sizes.

3.3 Summary

We propose a general method hypothesis-based estimation with regularization (HyBER) to

reconstruct and denoise hyperspectral reconstruction data. First, a new hypothesis testing

method is used to select a better data statistical distribution (Poisson and Gaussian dis-

tributions as candidates). Based on the selected model, a maximum log-likelihood method

is used to reconstruct and denoise hyperspectral data. Algorithms for both Gaussian and

Poisson models are stated. Moreover, a spatially and spectrally dependent weighting penalty

is proposed to avoid artifacts introduced by non-uniform sampling issues and unstable noise

environments.

Simulated Poisson data are generated to test the performance of HyBER, a statistical method

with a wrong assumption and a non-statistical (the projected baseline) method. It is found

that HyBER can reconstruct images with relative error (to ground truths) less than 0.002%,

which is much smaller than others. Furthermore, reconstructions based on real CRISM

data from HyBER for both FRT0001EB5F and ATO00037D74, which were collected four

years apart, provide spectra in which noise is well suppressed but fine-scale mineral features

are preserved. Moreover the quantitative comparison of contrast, sharpness and spatial

resolution for the scene FRT0001DC22 show that the HyBER reconstruction is on average

twice as good as the projected baseline.
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Chapter 4

Conclusions, Impacts and Future

Work

4.1 Conclusions and Future Work

We developed and evaluated a general pipeline for hyperspectral data and implemented it

for Compact Reconnaissance Imaging Spectrometer for Mars from radiance measurements

to denoised and projected single scattering albedos (SSAs). This pipeline includes two main

parts:

1. Generating single scattering albedos and the surface temperature based on radiance (or

IOF);

2. Reconstructing and denoising the single scattering albedos.

In Chapter 2, we introduce a general method, Separating Temperature and Albedo by Neural

Networks (STANN), to retrieve the Single Scattering Albedo and the surface temperature

from radiance. We also theoretically analyze the difficulty for different cases (different tem-

perature ranges and different wavelengths) and explain the reason why previous similar
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methods can work well. Then the STANN is derived and built for the hardest Mars spec-

trometer, CRISM. Performances for both instruments are verified in term of the robustness

and the consistency. It is noticed that STANN for CRISM can obtain a relatively robust and

correct temperature mapping based on limited information. The local incidence angle can

be computed from the elevation file, which corrects spatial artifacts in generating albedos.

In Chapter 3, we propose a general method hypothesis-based estimation with regulariza-

tion (HyBER) to reconstruct and denoise hyperspectral reconstruction data. First, a new

hypothesis testing method is used to select a better data statistical distribution (Poisson

and Gaussian distributions as candidates). Based on the selected model, a maximum log-

likelihood method (HyBER) reconstructs and denoises hyperspectral data. Algorithms for

both Gaussian and Poisson models are presented. Moreover, a spatially and spectrally de-

pendent weighting penalty is proposed to avoid artifacts introduced by non-uniform sampling

issues and unstable noise environments.

Simulated Poisson data are generated to test the performance of HyBER, a statistical method

with a wrong assumption and a non-statistical (the projected baseline) method. It is found

that HyBER can reconstruct images with relative error (to ground truths) less than 0.002%,

which is much smaller than others. Furthermore, reconstructions based on real CRISM data

from HyBER for both FRT0001EB5F and ATO00037D74, which were collected four years

apart, provide spectra in which noise is well suppressed but fine-scale mineral features are

preserved. The quantitative comparison of contrast, sharpness and spatial resolution for the

scene FRT0001DC22 shows that the HyBER reconstruction is on average twice as good as

the projected baseline.

To make this study more general and applicable, there are also several tasks to be considered

in future work. First of all, so far this pipeline mainly works for CRISM and it is possible
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to develop similar pipelines for other instruments such as OMEGA, THEMIS and TES.

Other parts can also be added to make this pipeline more useful. For example, more spatial

artifacts caused by the viewing conditions can be reduced if the local emission angle for the

DISORT model is also computed. The projected and denoised SSA images can also be used

to compute and classify the surface mineral compositions and their corresponding grain sizes,

which in fact has been under research [8] for the Bagnold Dunes and compared with data

from the Curiosity Rover.

Further analysis of temperatures retrieved from STANN and other thermal model (with

smaller pixel size) can be considered to verify or modify the performance.

Fig. 4.1 summarizes the main work of this dissertation and some future work for the hyper-

spectral data processing pipeline. The results of the dissertation contribute mainly to the

darker blue boxes and partially contribute to the light blue box. These results cannot work

well without the significant help of other’s work labeled in grey boxes. Potential future work

to make this pipeline better is indicated in the white boxes. A similar pipeline including

STANN and HyBER for OMEGA and THEMIS will be released soon.

We have proposed a hypothesis test to verify the best approximation of data distribution

assuming that measurements are independent, thus it is promising to develop a method to

test whether data are independently collected for both Poisson distribution and Gaussian

distribution.

4.2 Impacts

Results from HyBER have helped planetary scientists to predict minerals on the Mars sur-

face, which were proved to be real when the Opportunity rover arrived there. Marathon
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Figure 4.1: Summary of the dissertation work to the hyperspectral data (CRISM) processing
pipeline. DISORT: Discrete Ordinates Radiative Transfer. DEM: Digital Elevation Map.
REM: Rover Environmental Monitoring.
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Valley, about 100 meters wide, crosscuts the Cape Tribulation rim segment of the 22 km

diameter, Noachian-age Endeavour crater on Mars [7]. Fox, et al. found that resulting data

from HyBER predicts the large areal extent of light-toned breccias within Marathon Valley,

are the carriers of the Fe3+ −Mg2+ smectite signatures. Given this prediction, the Oppor-

tunity rover was directed to explore Marathon Valley, characterized the outcrops with the

smectite spectral signature and arrived in August 2015 [7]. Compositions of rocks scanned by

the rover within the breccias are consistent with isochemical alteration forming Fe3+−Mg2+

smectites, with the exception of minor exposure of red pebbles within some of the fractures

separating the light-toned breccia outcrops [7]. More compositional evidences by the rover

are analyzed in detail by Mittlefehldt et al. [87].

Furthermore, HyBER outputs also enabled scientists to interpret the formation history of

craters on Mars. Iazu is a 6.8 km diameter crater located about 25 km south of Noachian-age

Endeavour crater on Mars [79]. Powell et al. drew a conclusion that Noachian basaltic crust

changes through evaporative environments and finally, the current anhydrous environment

dominated by aeolian processes, by analyzing HyBER results over Iazu’s rim and walls [79].

Similarly, Rampe et al. compare our outputs of Gale crater [88] with observations from the

Curiosity Rover.

More applications of HyBER outputs can be found in [8, 89,90].

Before STANN, most scientists only focus on some bands for CRISM (from 0.6 µm to 2.5 µm),

which are just 57% of the whole CRISM hyperspectral data due to the thermal effects.

STANN provides a promising potential to increase the usage of CRISM data. Powell et al.

have started to analyze the broad OH- and H2O- related absorption features near 3.0 µm

over the Curiosity [91] traverse in Gale crater [9,92]. Hopefully, this analysis can be verified

soon when the Curiosity rover arrives.

100



Moreover the temperature maps from STANN provide more thermal information about the

Mars surface, which can work as supplementary data for other thermal instruments such as

THEMIS.
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Appendix A

Hypothesis

A.1 Poisson Distribution Test for Homogeneous Area

In this section, we introduce our codes1 for the homogeneous area test in Chapter 3. As

introduced in 3.1.1, we test whether the distribution of a homogeneous area is close to the

scaled Poisson distribution and whether the scalars retrieved from different bands are similar.

Here we use the scene FRT0001EB5F as the example. Fig. A.1 shows the M instruction steps

for MATLAB codes. We first run the main function “homogenous scalar poisson test()” on

the MATLAB command window and then three browsers show up, asking for SSA input

file, WA input file and output folder respectively. Then the forced color image (input) is

displayed and the user needs to select the homogeneous area by drawing any shape on the

image (see the blue circle in the middle). After the selection of the homogeneous area, the

scalars for different bands are plotted. If the user is satisfied with this selection, input “0”

in the box and click “OK”. Otherwise the user can input anything except for “0” to re-select

the area. Then all necessary steps by users are done and the code computes distribution.

1Codes and instructions can also be found on my GIThub (No.3): https://github.com/linyunhe/

hypothesis_test_PG_for_CRISM
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Figure A.1: Instruction for the input and running of the homogeneous area test codes.

After a few minutes, outputs are all saved into the output folder as shown in Fig. A.2. There

are three outputs: one video named “Poisson test plot cdf.avi” and two MATLAB figures

named “Scalar bands.fig” and “Spat area homo.fig”. “Poisson test plot cdf.avi” records all

plots of distributions of this homogeneous area for all bands (for CRISM L-data, 246 bands).

The figure in the green box shows the example of one plot at band 33. “Spat area homo.fig”

saves the homogeneous area you selected before in red overlaid with the original image and

“Scalar bands.fig” plots retrieved scalars for different bands of this area. For our example

scene, we can find that this scene contains too many spatial features and it is very hard to

find a clean and large homogeneous area. Even for a small area, the scalars we retrieved

show it is not as stable as Fig. 3.4. Also the Poisson approximation of this area is also not

as good as Fig. 3.5.
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Figure A.2: Explanation for the outputs of the homogeneous area test codes.

A.2 Model Selection between Scaled Poisson and Gaus-

sian

In this section, we introduce our model selection codes2 in details.

As introduced in 3.1.1, our model selection is based on the best estimates retrieved from

the maximum loglikelihood method for candidate distributions such as scaled Poisson and

White Gaussian for our case. Then we compute the dKL or plot the p-value figure to see

which assumption works better.

Here we also use the scene FRT0001EB5F as the example. Fig. A.3 shows the instruction

for this scene from the input folder to the MATLAB code running. The input folder must

2Codes and instructions can also be found on my GIThub (No.2): https://github.com/linyunhe/

hypothesis_test_PG_for_CRISM
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Figure A.3: Instruction for the input and running of model selection codes.

contain the SSA, DDR, an empty folder named “PG running” to save the outputs and an

input text file named “PG running info .txt.” This file records the directory of SSA, DDR,

SB and WA files 3, and the bands (consistent with the SSA data) you want to run. In the

example, we only run for the L-band data. We also provide the selection of sub-rows. If you

want to run the sub-scene, just set the “rows use all” as false and insert the subset of rows

you want to run in “row min” and “row max.”

3SB and WA files are always the same for the same instrument
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Figure A.4: Explanation for the outputs of model selection codes.

After running4, outputs are all saved into the output folder as shown in Fig.∼A.4. The

main results are saved in the text file named “PG running results.txt”: the second line

indicates which statistical model is selected and the corresponding dKL for two statistical

models are saved. The p-value figure is saved as “PG running fig.fig”: closer the curve is

to the diagonal line, the better the statistical assumption is to describe the input data. For

this example scene FRT0001EB5F, the scaled Poisson distribution is selected and the scaled

Poisson distribution has small dKL = 0.08 while the Gaussian distribution has dKL = 4.53.

Also we notice that Poisson p-value curve is very close to the diagonal line but the Gaussian

p-value curve is really far away. One explanation is that because this scene has too many

features and the inputted L-band SSAs vary from 0.7 to 0.9 (larger variance compared with

other scenes), the scaled Poisson distribution can not be approximated by the Gaussian

distribution especially for the large scalar (1.8× 105).

4About 1 hour and 20 minutes for the 110 MB scene on the MATLAB 2018a, Windows 7, i7-5820K CPU,
32GB RAM
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(a) Cost function curve for Algorithm 1 with no penalty.

(b) Cost function curve for Algorithm 2 with no penalty.

Figure A.5: Cost function decreasing curve for two algorithms.

The numbers of iterations for Algorithm 1 and Algorithm 2 are defaulted as 30 and 100 based

on the cost function curve shown in Fig.∼A.5. Around 30 iterations and 100 iterations, our

algorithms converge. We also find that Algorithm 1 converges faster than Algorithm 2.
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Appendix B

Convergence Proof of Algorithms

The derivation of Algorithm 1 and 2 is included in the following appendix for the non-penalty

data fitting term, because the decoupling of the penalty is included in section 3.1.3.

B.1 Algorithm 1

Lemma B.1 (Expectation Maximization Lemma). Let p(d|c) be the probability of measure-

ments d given the image c. Then for any intermediate random variable x,

ln p(d|c) ≥
∑
x

p(x|d, c(t)) ln
p(x,d|c)

p(x|d, c(t))
, (B.1)

where based on guessed image from last iteration c(t), and the equality holds iff c = c(t).

Proof of the Expectation Maximization Lemma. Based on the concavity of ln p and Jensen’s

inequality, we have

ln p(d|c) = ln
∑
x

p(d, x|c) ≥
∑
x

q(x) ln
p(d, x|c)

q(x)
, (B.2)
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for all q(x) where
∑

x q(x) = 1.

For the known c(t), we can obtain q(t)(x) by maximizing
∑

x q(x) ln p(d,x|c(t))
q(x)

, thus,

q(t)(x) =
p(d, x|c(t))∑
x p(d, x|c(t))

= p(x|d, c(t)).

By replacing q(x) in (B.2) by q(t)(x), Lemma B.1 is proved.

From Lemma B.1, we can know that after t iterations, the loglikelihood is bounded by the

decoupled function
∑

x q(x) ln p(d,x|c)
q(x)

, thus we can achieve the global minimum by iteratively

solving (after removing the constant term):

max
c

∑
x

p(x|d, c(t)) ln p(x,d|c) = max
c
Ex|d,c(t) [ln p(x,d|c)] .

If we select the intermediate random variable be xij = Hijcj, based on the Poisson additive

property, we have xij ∼ Poisson(Hijcj), di =
∑

j xij. Replacing ln p(xij,d|c) = −Hijcj +

xij lnHijcj − lnXij! above, we can simplify it as:

max
c
Ex|d,c(t) [ln p(x,d|c)] = max

c

∑
ij

[
−Hij + Ex|d,c(t) [xij] lnHijcj

]
.

Because for a given sum di (Poisson distributed), the conditional probability of xij is multi-

nomial, we have Ex|d,c(t) [xij] =
Hijc

(t)
j di∑

kHikc
(t)
k

. Finally,

c
(t+1)
j = arg max

cj

[∑
i

Hijdi∑
kHikc

(t)
k

]
c
(t)
j ln cj −

(∑
i

Hij

)
cj

= arg max
cj

fjc
(t)
j ln cj − hjcj.

(B.3)
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B.2 Algorithm 2

As we showed before, maximizing the loglikelihood is equivalent to minimizing the cost

function (without regularization):

min
c

∑
i

(
∑
j

Hijcj − di)2 (B.4)

where Hij is the entry of the matrix H.

This cost function is hard to minimize is due to the coupled cj in the term (
∑

j Hijcj − di)2.

There exists a lemma [93]:

Lemma B.2 (Convex Decomposition Lemma). Let f(x) be a convex function with x ∈ RP

be a reference point. Let rj ≥ 0 such that
∑
rj <= 1. Then

f(x) ≤
∑
j

rjf(x∗ +
xj − x∗j
rj

ej), (B.5)

where ej denotes a column vector with all zeros except 1 at the jth entry. Equality is obtained

iff (xj − x∗j)/rj is independent of j.

Based on Lemma B.2, we can decouple (
∑

j Hijcj − di)2 in (B.4) as:

(
∑
j

Hijcj − di)2 ≤
∑
j

rj(
∑
k

Hikc
(t)
k − di +Hij

cj − c(t)j
rj

)2

=
∑
j

rj(a
(t)
i − di +Hij

cj − c(t)j
rj

)2

∼
∑
j

2Hij(a
(t)
i − di)(cj − c

(t)
j ) +

∑
j

H2
ij

rj
(cj − c(t)j )2.

(B.6)
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Thus the cost function in (B.4) bounded by decoupled function:

min
c

∑
j

[∑
i

Hij(ai − di)

]
(cj − c(t)j ) +

∑
j

∑
iH

2
ij

rj
(cj − c(t)j )2, (B.7)

after t iterations. Thus this optimization function can be computed iteratively.

We select rj =
∑

iH
2
ij∑

iHij
, thus (B.7) can be written as:

min
c

∑
j

[
∑
i

Hij(ai − di)](cj − c(t)j ) + hj(cj − c(t)j )2]. (B.8)

In the following, we will prove the selection of rj can guarantee the decreasing. By minimizing

(B.8), the update rule based on last iteration t can be retrieved:

c(t+1) = c(t) + A−1HT (d− a(t)), (B.9)

where A is a diagonal matrix with d as the diagonal entries.

Then the error function ||d−Hc(t+1)||2 can be computed as:

||d−Hc(t+1)||2 = ||d−Hc(t) −HA−1HT (d−Hc(t))||2

= ||(I −HA−1HT )(d−Hc(t))||2.
(B.10)

Theorem B.1 (Perron-Frobenius Theorem). Let M = (mij) be an n × n positive definite

matrix. The largest eigenvalue of M should be no more than maxi
∑

jmij.

Let M = I −HA−1HT , according to the Perron-Frobenius theorem, the largest eigenvalue

should be no more than the maximum entry of (I − HA−1HT )1 = 1 − H1. Because H is

the Gaussian-shape kernel, all entries in H1 should be positive and less than 1. Thus the
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largest eigenvalue of (I − HA−1HT ) should be no more than 1. In another words, if we

eigen-decompose (I −HA−1HT ) = QΓQT , Γ ≤ I. Thus,

||d−Hc(t+1)||2 = ||d−Hc(t) −HA−1HT (d−Hc(t))||2

= ||(I −HA−1HT )(d−Hc(t))||2

= (d−Hc(t))TQΓQTQΓQT (d−Hc(t))

= (d−Hc(t))TQΓ2QT (d−Hc(t))

≤ (d−Hc(t))TQIQT (d−Hc(t)) = (d−Hc(t))T (d−Hc(t)) = ||(d−Hc(t))||2.
(B.11)

In another words, Algorithm 2 can decrease the original cost function and converges to the

global minimum.
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Appendix C

Local Incidence Angle

C.1 Motivation and Methodology

In Chapter 2, for fine spatial features less than 250 meters, we cannot model them well based

on current incident angles (around 250 meters per pixel). Therefore a local incident angle

in smaller pixel size can help us to remove the small spatial artifacts caused by the rough

incident angles. In this appendix, we introduce the idea of computing the local incident

angles from the digital elevations.

The digital elevation map (DEM) used to populate a high spatial resolution local inci-

dence angle DDR plane was derived from stereo HiRISE image data sets. It is the prod-

uct produced by the United States Geological Survey Astrogeology Science Center and

posted as https://astrogeology.usgs.gov/search/map/Mars/MarsScienceLaboratory/

Mosaics/MSL_Gale_DEM_Mosaic_10m. Fig.∼C.1 indicates areas that the elevation file DEM

covers and the CRISM FRT000B6F1 covers. For every pixel in CRISM FRT000B6F1, you

can find the corresponding elevation value and compute a more accurate local incident angle.
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Figure C.1: After registration, the elevation file DEM can be overlapped with CRISM
FRT000B6F1 in the projection. DEM elevation is in 1 m/pixel and CRISM FRT000B6F1 is
in 12 m/pixel.
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Let i be the local incident angle of the solar radiance, p be the elevation angle of the surface

above the local horizon (along the solar incident direction). The sun is located at an azimuth

of S degree clockwise from north, and has an elevation angle above the local horizon of θ.

Fig.∼C.2 shows four different cases of how the incident angles i can be computed from p and

θ. When the surface has relative small elevation angle p, the incident angle i = 90◦− (p+ θ)

as shown in Fig.∼C.2A. When the surface has large p as shown in B, the reflected solar

radiance still goes back the sky, thus the incident angle i = (p + θ) − 90◦. However when

the surface has elevation angle larger than 90◦ and also very precipitous as shown in C, it

is possible that the reflected radiance cannot go back to the sky. For this case, although we

can still compute the incident angle, in fact we get nothing back from the surface. Because

the surface elevation angle is defined along the solar direction (at an azimuth of S degree

clockwise from north), it is possible that the p is very large but the surface is likely horizontal

as shown in D. For this case, the incident angle can be obtained as i = 270◦ − (p + θ). In

general, the incident angle can be computed by

i = |90◦ − (θ + p)%180◦| (C.1)

for all cases where % is the modulo operator.

Then we need to compute the surface elevation angle p along the solar direction (at an

azimuth of S degree clockwise from north). Fig.∼C.3 indicates the top view of the horizontal

surface (the dash line in Fig.∼C.2). For every pixel in CRISM, we can know the local spatial

location axes (x, y). Then along the solar direction, we can find the previous point (xpre, ypre)

and the post point xpost, ypost with the northern distance l/2 where l is the target pixel size in

meter. Let the elevation for the point (x, y) be dem(x, y), then the elevation surface degree
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Figure C.2: The vertical slice display along the solar incident direction at an azimuth of S
degree clockwise from north. Four different cases of the incident angles are shown. The red
solid line indicates the incidence of the solar light and the black solid line is the local flat
surface. The dash-dot line indicates the vertical direction of the local surface and the dash
line is the horizontal surface.
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Figure C.3: The top view of the horizontal surface. (x, y) show the spatial location of one
point. l is the target pixel size length in meter. S is an azimuth degree of the solar clockwise
from north.

along the solar direction is

p = arctan

[
dem(xpre, ypre)− dem(xpost, ypost)√

1 + tanS2 × l/2

]
. (C.2)

C.2 Results Comparison

Now we applied the method before to the scene FRT000B6F11 and Fig.∼C.4 shows the

comparison between the original incident angles and our new local incident angles at the

same pixel size 250 m/pixel.

It is noticed that our results have similar value range and the general pattern with the

original ones. Moreover our new local incident angles have more details (corresponding to

1Open-source Python codes can be found under my GIThub: https://github.com/linyunhe/

temperature_on_thermal_model_Ashwin.
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Figure C.4: Results comparison of the original incident angles and our new local incident
angles. The original incident angles from the pixel size around 250 m/pixel is in the left and
our generated local incident angles at the same pixel size is shown in the right.

the local shape of the surface) compared with the original angles. For example, the original

incident angles almost have no information in the middle area where there exist lots of small

features, while our new local incident angles contain these details.

In summary, although we still have some mismatch and artifacts for generating local incident

angles, it is still promising to generate local angles by computing the elevations. All these

disadvantages will be modified after this dissertation and updated codes and results can

be found under my GIThub https://github.com/linyunhe/temperature_on_thermal_

model_Ashwin.
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