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Single cloud management platform technology has reached maturity and is quite successful in 

information technology applications. Enterprises and application service providers are 

increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in 

and cloud blackouts and, at the same time, get the benefits like competitive pricing, the 

flexibility of resource provisioning and better points of presence. Another class of applications 

that are getting cloud service providers increasingly interested in is the carriers' virtualized 

network services. However, virtualized carrier services require high levels of availability and 

performance and impose stringent requirements on cloud services. They necessitate the use of 

multi-cloud management and innovative techniques for placement and performance 

management. We consider two classes of distributed applications – the virtual network services 

and the next generation of healthcare – that would benefit immensely from deployment over 

multiple clouds. This thesis deals with the design and development of new processes and 

algorithms to enable these classes of applications. We have evolved a method for optimization of 

multi-cloud platforms that will pave the way for obtaining optimized placement for both classes 

of services. The approach that we have followed for placement itself is predictive cost optimized 

latency controlled virtual resource placement for both types of applications. To improve the 
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availability of virtual network services, we have made innovative use of the machine and deep 

learning for developing a framework for fault detection and localization.  Finally, to secure 

patient data flowing through the wide expanse of sensors, cloud hierarchy, virtualized network, 

and visualization domain, we have evolved hierarchical autoencoder models for data in motion 

between the IoT domain and the multi-cloud domain and within the multi-cloud hierarchy.  
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Chapter 1    

Introduction 

The datacenter	 boom happened in the late 1990s, providing a quick way for businesses to 

deploy their applications and make their presence felt on the Internet. The legacy datacenters, 

many of which still exist, consist of complex physical infrastructure, which is application 

specific and vendor driven. Installation and configuration of applications and services on this 

infrastructure are predominantly manual and, consequently, tedious and time consuming. With 

virtualization came software-defined infrastructure (SDI) offering virtual compute, virtual 

storage and virtual networking resources created in software over commodity hardware. These 

infrastructures are managed using software based management and control system. With SDI, 

businesses started getting a scalable infrastructure at reasonable cost that could accelerate their 

decisions to face competition better.  

Cloud computing enables on-demand network access to a shared pool of configurable computing 

resources that can be rapidly provisioned and released, through a management platform, with 

minimal service provider interaction [1]. While the ultimate vision is to have a multi-cloud 

management and control platform (MMCP) that will completely automate management of 
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resource lifecycle over multiple clouds, what proliferate today are single cloud platforms with 

reactive provisioning and re-configuration. Examples of such platforms are Amazon’s EC2, 

Microsoft Azure, and Google Compute Engine. Use of single clouds has become commonplace 

in recent years in the government [2] and businesses [3]. This could have continued if it had not 

been for frequent cloud outages. Based on industry reports, in 2015 the three biggest providers, 

Amazon Web Services had 56 outages of total 2 hours and 30 minutes, Microsoft Azure had 71 

outages of 10 hours and 49 minutes and Google Cloud Platform had 167 outages of 11 hours and 

34 minutes [4]. Outages are equally common today. According to the Google cloud status 

dashboard, in 2018, the Google Cloud compute engine, storage and networking were out for 

about 45, 22 and 33 hours respectively. For performance critical applications, like healthcare, 

such outages may be disastrous. Any ISP or carrier service provider, having five nines 

availability requirement, would allow a failure of less than 5 minutes and 15 seconds each year. 

This makes a strong case for multi-cloud systems, as statistically all the involved clouds will not 

fail together. In such a system Application and Internet Service Providers (ASPs and ISPs) 

would obtain resources from multiple clouds directly or through cloud aggregators. In either 

case, MMCP would help them automate deployment of their applications over virtual resources 

from the contracted clouds. With such automatic deployment and management of services, the 

ASPs and ISPs get agility of deployment, flexibility of resource provisioning, competitive 

provisioning, distributed points of presence and reduced risk of a total blackout.  

Other than taking care of clouds going on the blink, the key forces for deployment over multiple 

clouds has so far been to avoid vendor lock-in and to come closer to the users. In today's multi-

cloud platforms, some form of lifecycle management and auto scaling appear to be generally 

available. Inter-cloud migration of virtual machines (VMs) is complex and has been solved in a 
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very few cases. None of the platforms offer optimization of its own functioning for the intended 

application. The placement algorithms built into these platforms may take tens of minutes to 

place a 50-function chain. Support for multi-level security for multi-cloud placement is not 

available. Finally, fault and performance management appropriate for carrier applications, like 

virtual cellular network services, needs to be incorporated in these platforms. It is thus evident 

that crucial pieces for enabling the virtual network services and distributed healthcare 

applications are missing. 

Carrier services are today delivered through predominantly physical infrastructure. This causes 

lock-in with telecommunications equipment manufacturers and leads to networks that are high in 

total cost of acquisition and operation. They are time-consuming to deploy and inflexible in 

scaling and reuse. Virtualization of network functions, like routers and switches, and their 

deployment over clouds, makes them non-proprietary, reduces cost, improves scalability and 

reduces deployment time. However, such deployments do not yet meet the five nines availability 

and reliability of the traditional, physical appliance based, networks.  

Virtualization of datacenter resources has been immensely successful for IT applications and 

carriers would like to replicate this success for their services. Carriers see Network Function 

Virtualization (NFV) as a paradigm that could help them transpose this success to their networks 

by instantiating network functions on virtual machines hosted on commercial, off-the-shelf 

servers or better still on the clouds. The resulting Virtual Network Functions (VNFs), e.g., virtual 

routers and virtual load-balancers, form the basic building blocks of the Virtual Network 

Services (VNSs) like cellular mobile service and broadband service. To carriers, such 

deployments would mean freedom from proprietary solutions, ease of installation and scaling, 

reduced cost of operation and reduced time to market. Additionally, instantiating VNSs on 
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multiple clouds brings advantages like proximity to users and avoidance of a single point of 

failure. 

The catch in this utopian scheme is that VNSs do not yet meet the requirements of five-nines 

availability and quality of service that the traditional, largely physical and standards-based 

carrier networks have been assiduously built to provide [4]. The current research challenges 

relating to NFV include: the complexity of cloud-based virtualization, incomplete definition of 

interfaces and lack of fault and performance framework [5]. Our research addresses these 

problems by developing a framework, called HYPER-VINES, which crystallizes useful 

information from high dimensional data, through machine and deep learning models, for 

improving availability and reliability. 

Internet of Things (IoT), multi-cloud hierarchy and virtual network services would be key to 

successful future deployment of critical applications, like pervasive next generation healthcare. 

Use of these technologies would become imperative to improving emergency care and 

diagnostics while controlling investments. However, the use of IoT, clouds and virtualized 

network services increase the attack surface and provide the opportunity for adversarial players 

to perpetuate malicious attacks, leading to increase in patient morbidity and mortality. Our 

research shows that innovative use of hierarchical deep learning models can make data, while in 

motion among the IoT, cloud and visualization domains, secure.  

 



	

	 5	

 
The rest of the dissertation has the following structure: 

• Chapter 2 brings out the challenges faced in the deployment of carrier services and 

critical applications like healthcare on multi-cloud systems. 

• Chapter 3 reviews the related works to discuss how far these challenges have been 

addressed and the motivation that they provide for the work that has been done in the 

dissertation.  

• Chapter 4 introduces the methods developed for the optimization of management 

platforms that controls the lifecycle of virtual resources obtained from multiple clouds. 

• Chapter 5 discusses virtual network function placement, in multi-cloud systems, to meet 

availability, performance and other service level agreement (SLA) parameters. 

• Chapter 6 develops the HYPER-VINES framework for reliable fault and performance 

management system for improving availability in the virtualized carrier network services. 

• Chapter 7 brings out the security issues in IoT and cloud based healthcare network and 

describes our work on the threat model, architecture and development of merged 

hierarchical deep learning model with layer reuse. 

• Chapter 8 summarizes the work and discusses future research directions. 

Our thesis is that by understanding the challenges in creation, performance, availability and 
reliability faced in the deployment of applications like virtual network services over multiple 
cloud systems, it is possible to apply innovative techniques of dynamic platform analysis, 
efficient placement algorithms and fault and performance management to get successful 
virtual carrier deployments. This new networking paradigm enables critical applications like 
pervasive next generation healthcare if data in motion in the cloud hierarchy is adequately 
secured. 	
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Chapter 2    

Challenges in management and security of 
multi-cloud applications 

In the pursuit of creating virtual network services that have the performance and availability of 

the traditional physical network services and security level that allows deployment of pervasive 

IoT, cloud and virtual network services based healthcare set-up, we had to confront several 

challenges. In this chapter, we discuss the challenges and roadblocks to the large-scale 

deployment of cloud based virtual network services and to critical services like next-generation 

healthcare that use this virtual infrastructure. 

2.1 Optimization of the Multi-Cloud Management Platform 
Multi-cloud platforms are software systems that automate provisioning and life-cycle 

management of virtual resources obtained from multiple clouds. Multi-cloud platforms are 

particularly complex as they are expected to dynamically allocate resources over geographically 

distributed clouds, creating, scaling, migrating and destroying virtual resources frequently during 

normal operation of the deployed applications. They generally use multi-threading for concurrent 

execution of processes to ensure that applications and services get the amount of resources they 
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require and the desired performance is achieved. Many modules of a Multi-cloud Management 

and Control Platform (MMCP) may themselves be hosted on virtual cloud resources, along with 

the applications they manage. Optimization of MMCP is important for two reasons. Firstly, 

modules of an unoptimized MMCP may consume a disproportionately higher amount of virtual 

resources leading to higher cost. If any of the modules, of such a system, does not work 

efficiently, overall performance suffers resulting in sub-optimal behavior in terms of not only 

computing, storage and networking resource usage but also greater power consumption [9]. 

Secondly, an unoptimized MMCP may not achieve the best possible placement of the target 

application. Stated briefly, a non-optimized MMCP leads to inefficient resource utilization, 

increased cost of deployments and likely breach of the service level agreements (SLA) between 

the cloud service provider (CSP) and the carrier. 

The main challenge in this regard, therefore, is to optimize the software based MMCP for the 

environment to which it is applied. In this situation, it makes sense for the ASPs and ISPs to 

require that the control and management software they use, for allocating virtual resources to 

their applications, are optimized for their situation. Optimization can be expensive and time 

consuming, as it needs a priori understanding of a platform’s behavior in the execution. The 

effort should, therefore, be to reliably confirm the factors that need optimization before 

launching into one. To the best of our knowledge, no other work has focused on behavioral 

analysis and optimization of multi-cloud management and control platform [7], [8]. 

2.1.1 Extracting Behavioral Data 
Optimization requires collection of data through intensive, but unobtrusive testing. Traditional 

testing, which uses a limited set of sample inputs, does not guarantee semantic coverage. 

Symbolic testing can be done to tackle the latter [10]. In symbolic testing a program is 
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symbolically executed for a set of classes of inputs rather than individual samples. However, 

industry case studies show symbolic techniques do not scale because of path explosion and they 

give high false positives [11]. Use of concrete test data, instead of symbolic, avoids false 

positives, but only covers one execution path depending on the test data [10]. Another common 

method, static analysis is scalable, but gives a relative assessment of execution time and is prone 

to false positives and negatives. It becomes computationally expensive to explore all inter-

leavings [12]. Dynamic analysis gives absolute execution times, but may not offer full coverage. 

However, it is a technique that has potential in virtual environments for giving a deterministic 

assessment of the execution [13]. In their survey of current practices and opportunities for 

improvement of software testing methods and tools (STMT), the authors conclude that the usage 

of STMT is low, and even where they are used the use is limited in scope [4]. Thus, there is a 

gap between available methods and the industry needs. We will see some more related works in 

Chapter 3 to get an idea of the current state-of-the-art. 

In our assessment, the problem of optimization of complex software like MMCP cannot be 

effectively handled with any single existing technique. This provides us motivation for 

developing a combination methodology that uses dynamic execution for data collection and 

initial discovery of factors, followed up with a full factorial analysis to decide with certainty the 

necessity of optimization using these factors. We have evaluated our method on OpenADN 

(Open Application Delivery Network) multi-cloud test-bed at Washington University in St Louis 

with good results. The work done for this part of research has been published in [7] [8]. 

2.1.2 Analyzing Platform Performance 
Components of an ASP or an ISP application deployed over virtual resources from many clouds 

may be run at different times on different virtual machines. These virtual machines are migrated 
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from server to server and cloud to cloud, as the platform optimizes cost and performance of the 

hosted application. The platform and the application software may be split on different, and 

geographically dispersed machines and their communication dynamics may change frequently.  

Additionally, many processes have to take place concurrently with some waiting for others to 

provide inputs. In order that the platform software keeps making progress on the whole, the 

processes are run in different threads [15]. Any method of analysis that attempts to capture 

interactive behavior of all the threads may result in exponential analysis times. Unlike the case in 

the physical environments, the use of tools based on the processor performance counters has not 

advanced significantly in the virtual ones [16]. As we shall see in Chapter 4, the reason for 

problematic behavior of guest machines sometimes lies in the platform or other guest machines. 

Diagnosing performance problems of software running in a virtualized environment is, therefore, 

an involved process [17]. Some work has been done to optimize data centers for performance 

improvement related to cost savings but that does not ensure optimized performance for the 

intended applications [18]. Optimization of performance of cloud management systems and 

applications running on cloud resources is in a nascent stage and quite challenging. 

2.2 Placement of Virtual Network Services in a Multi-Cloud 
Environment 
Assuming that the multi-cloud platform has been optimized for placement of carriers' virtual 

network services, it still remains a challenge to allocate resources and create virtual network 

functions (VNF) in such a way that meets the stringent requirements of the carriers' service 

environment. One of the biggest challenges, in deploying network function virtualization (NFV) 

based virtual network services (VNS) over multiple clouds, is low VNS performance. The 

traditional physical networks have had strict performance standards stipulated by standards 
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organizations like the International Telecommunications Union (ITU), International Standards 

Organization (ISO) and Internet Engineering Task Force (IETF). These standards prescribe 

stringent control over performance parameters like latency, jitter and packet loss [22]. The 

availability requirement is of the order of five nines (permissible downtime of just 5 minutes and 

15 seconds per year). In the current state of technology, VNSs are presently not able to meet all 

of these standards. In fact, there is a general concern regarding the current technological 

capability to extract carrier-grade performance from NFV-based services [19] [20]. The Internet 

Engineering Task Force (IETF) has identified performance and guaranteeing the quality of 

service as open research areas and technology gaps in NFV [21]. 

It is important to study these problems, as carriers perceive NFV as a disruptive technological 

development that has the potential of delivering them from the problems of the traditional 

physical networks. The combination of NFV and cloud computing has great potential for carriers 

that would help them in making their networks agile i.e., Create new services or phase out old 

services with relative ease. It also allows them to move from proprietary to open source, the 

flexibility of scaling and de-scaling, having points of presence closer to the users and avoiding a 

single point of failure. It is expected that these two powerful paradigms would evolve together to 

support the requirements of VNS. 

As far as the challenges of creating and configuring VNFs in a multi-cloud environment are 

concerned, there are several reasons why these software versions of the network functions, do 

not give a performance that matches the performance of the specialized physical appliances used 

in the traditional networks. Besides the limitation of software running on general purpose 

hardware, a reason for lower performance is the reduction in control that carriers can exercise 

when the network appliances move from their switch rooms and transmission centers onto the 
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Cloud Service Providers’ (CSPs’) VMs. Additionally, the newfound ease of creation, 

destruction, migration, and scaling of virtual resources, and opportunities for indiscriminate 

virtualization proliferate. All of these issues cause performance of the VNS to deteriorate. 

Previous work has also shown that virtualization may lead to abnormal latency variations and 

significant throughput instability [18]. In their infrastructure overview, ETSI has indicated 

latency and throughput constraints as the discouraging factors for the use of public clouds for 

hosting NFV. Even though researchers have proposed ways of improving the performance of 

virtual network functions legitimate concerns still remain [23] [24].  

In the VNS game, carriers and CSPs may not always have a cordial relationship. It is challenging 

to co-optimize their conflicting goals when they collaborate to provide VNSs. Carriers look for 

standards-grade performance and availability at the minimum cost and in the desired time frame. 

So, not to take any chances, they incorporate these in their Service Level Agreements (SLAs) 

with the CSP. On the other hand, the CSPs aim to maximize the utilization of their physical and 

virtual resources to improve their profit margin. All said and done, the advantages of the VNSs 

are far too important for researchers to ignore. 

We now summarize some of the key outstanding problems in the placement of carrier VNSs in a 

multi-cloud environment, which we have attempted to handle in the Predictive Adaptive Real 

Time (P-ART) placement framework that we have developed for this purpose. We discuss this 

framework in detail in Chapter 5.	

2.2.1 Achieving Dynamic Placement in Multi-cloud Systems 
Some carrier services may be fairly static, e.g., fixed voice network. Thus, the number of 

instances of VNFs and link capacities required only change slowly over time. On the other hand, 

many services may be extremely dynamic, requiring a change in the number and types of VNF 
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instances, re-dimensioning of links and changes in the offered features of the service, very 

frequently. An example of such a service is the intelligent network service like televoting in a 

TV reality show. Different reality shows may require different features and the number of voters 

may swing unpredictably during the voting window. If the CSP only offers largely static 

placement, with reactive and relatively slow modifications, then the carrier will not able to meet 

the program's requirements. 

We conclude that both, the dynamic and static services would require the CSP to scale VNF 

capacities or links, albeit at different rates. Dynamic services may be more demanding in terms 

of types and number of instances of VNFs and link resources and may even require migration of 

VNFs from one cloud to another to be able to continuously meet the cost and end-to-end latency 

constraints. A dynamic placement algorithm, that monitors the SLA parameters and proactively 

causes changes in the amount of resources and the combination of clouds to meet all the 

requirements, is still a challenging issue. 

To meet the problems described above, the MMCP should be able to make optimized initial 

placement as well as reconfigure Service Function Chain (SFCs) to continuously meet the SLA 

conditions. Additionally, it is important to have fast placements with high success rates for near 

real-time reconfigurations. It is known that solving the placement problem is NP-hard [24]. 

Researchers commonly set it up as an integer linear program (ILP) optimization problem, with 

one or more objectives optimizing resource level parameters like compute usage, storage usage, 

power consumption along with constraints like capacity and affinity [25]. Solving these 

formulations takes minutes to hours becoming unacceptable for dynamic real-time applications. 

Algorithms like greedy placement and heuristics like first fit decreasing (FFD) have been 
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proposed to limit the time a linear or a quadratic programming solution takes to give a reasonable 

solution. Achieving dynamic placement remains an issue. 

2.2.2 Optimizing the SFC Performance 
When the data are multi-modal, optimizing placement of individual VNFs may not achieve the 

global minimum. Placing SFCs as a unit yields better results. The opportunity to achieve the 

global minimum for the parameter being optimized, e.g., latency, is available when placing the 

SFC. If sufficient resources are not available to implement full-service chains, then the request 

may be rejected or, if the policy permits degraded service (for instance without firewall) is 

provided [26] [27]. In our work, we only consider complete SFC placement. The case where the 

customer accepts degraded performance due to low-capacity chain placement or partial 

functionality due to incomplete chain placement is left as a future work 

2.2.3 Meeting the Cost and Quality of Service Constraints 
From the carrier’s perspective, the placement problem boils down to placing network functions 

to meet the cost and quality of service constraints like latency. The placement problem needs to 

be solved at the time of commencement of the VNS, and repeated during its operation, to ensure 

that the carrier requirements are continually met. Performance criteria may vary from one 

application to another. For the carrier services like voice, broadband, and content delivery some 

of the common factors are jitter, packet loss, latency, and throughput. ITU standards for the 

quality of service parameters, in carrier networks, are available in [28]. Latency is one of the 

most important criteria, and we have taken that as a reference performance parameter. The 

framework can be extended to include other criteria as well. We will discuss more about this in 

Chapter 5. 
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We find that the placement algorithms currently built into the MMCPs do not take into account 

the time taken in planning the service chain deployment, creating virtual resources and booting 

them. Besides, time taken for chaining the functions, acceptance testing and commissioning is 

also not accounted for. To be correct, any placement needs to take into account the expected 

latency at the time of placement and not at the time of planning. The method that we have 

evolved, consists of prediction of latency at the time of commissioning so that placement 

algorithm can ensure meeting latency requirements when the service becomes operational. 

Additionally, an iterative random cloud selection method is proposed to select the least cost 

clouds, which meet the latency requirements To make latency predictions more realistic, the 

diurnal variations in traffic are taken into account through the windowing concept. Short-term 

variations in traffic need to be compensated through updation of trained models. Our work on 

Cost optimized latency aware placement has been published in [29]. A more comprehensive 

account of the work, incorporating most the ideas that we have incorporated in the solution to the 

placement problem has been accepted for publication by Elsevier's Computer Communication 

Journal in March 2019 [121]. 

2.2.4 Speed and Accuracy of the Placement 
Carriers want short placement and reconfiguration time, so that the solution can be useful in an 

operational network. CSPs want the solution to have high success of placement requests so that 

the utilization of the virtual resources increases. When the algorithm cannot place, despite the 

availability of resources, CSPs lose by way of unused resources and possible breach of SLA. 

None of the solutions reported in literature have tackled both speed and accuracy together. As we 

shall see in Chapter 5, the methods that we have evolved place thousands of functions in a sub-

minute time frame.  
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2.3 Faults and Performance Management in Multi-cloud Virtual 
Network Services  
In sections 2.1 and 2.2 we have discussed some of the challenges that the creation of NFV based 

virtual network services bring. One may be tempted to question the wisdom carriers for taking all 

this trouble and not continuing with the physical networks that they already have. At the risk of 

repetition, it can be said that NFV allows carriers to create software based virtual functions and 

use these to create VNSs that have great agility and flexibility. A big incentive is the possible 

reduction of the network deployment cost [31] [32] [33]. It is, therefore, no surprise that NFV is 

being regarded as one of the most important developments of this decade for the communication 

networks. The Gartner Hype Cycle 2018 describes NFV and network performance as the key 

technologies, alongside the Internet of Things (IoT) and 5G [30].  

This brings us to the third challenge of deploying virtual network services on multi-cloud 

systems. The performance and availability of the virtual network services do not match those 

given by the traditional physical networks. It is important to meet five nines availability and 

standards based quality of service that that traditional networks offer. In our research, we have 

identified gaps in the definition of interconnection among the involved platforms, lack of a well 

defined 'Fault, Configuration, Accounting, Performance and Security (FCAPS)' framework and 

the complexity of virtualized network services as the primary reasons for not meeting the 

availability requirement. Traditional carrier networks follow rigorous standards relating to 

FCAPS, like the one prescribed in the ITU Telecommunications Management Network 

recommendations [34]. There is no such framework for virtual networks across multiple clouds 

to ensure availability, stability and quality [37] [38]. ETSI Industry Specifications Group (ISG) 

specification on NFV resiliency requirements provides a list of faults and their remediation and 
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service continuity, but the focus of this work is limited to, failure modes, which are introduced 

by moving network services to a virtualized infrastructure [39]. Academic research on fault and 

performance management of virtual network services has been scarce.  

2.3.1 Gaps in the Interface Specifications 
Many players have to cooperatively interact to make VNSs work and achieve the desired 

performance and high availability. In the simplest cases, these players would be the carrier, CSP 

and the NFV service provider. Each of these players would interact with the service through their 

management and control platforms. As far as the NFV is concerned, the two main 

standardization efforts are the ETSI-NFV and the ONAP project of the Linux Foundation. Both 

of these are relatively new and their standards are not yet fully compatible. At the service level, 

inter-platform responsibilities and communication among them have not been clearly defined. As 

a result any service affective event may not be adequately handled causing performance and 

availability to suffer.  

2.3.2 Incomplete Definition of FCAPS 
Traditional networks are built to the stringent quality of service (QoS) norms defined by FCAPS 

standards like ISO Common Management Information Protocol (CMIP) and ITU 

Telecommunications Management Network (TMN) M.3010 and M.3400 recommendations [34] 

[35] [36] [40]. Such norms are still to be fully defined and met for the VNS deployments. 

Traditional failure detection mechanisms cannot be directly applied to NFV environments as 

they lack the sophistication of handling virtualization layers. The variety of Fault and 

Performance (FP) issues that can affect the carrier networks is large and difficult to detect, 

diagnose and localize [41] [42] [43]. When we add to this the virtualization and the cloud 

computing layers, the number of ways faults can affect the virtualized network far exceeds that 
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of their physical counterparts. New methods would be required to deal with faults in VMs or 

VNFs, which cause the VNSs to behave abnormally, even if the underlying hardware is fault-

free. 

2.3.3 Complexity of VNSs 
In NFV-based VNSs, faults may occur for many more reasons compared to traditional physical 

networks. The cloud infrastructure consists of virtual resources such as virtual machines, virtual 

storage, and virtual network links. These virtual resources are created on shared physical 

resources like server hardware, system software or network links, using virtualization software 

(e.g., Hypervisors). Other virtual layers like VNF and SFC are built on these physical and virtual 

infrastructure layers. One reason why virtual resources may fail is because of the failure of 

physical resources. Even if the physical resources are operational, the virtual resources may 

themselves fail [44]. Taking this argument a little further, even if both physical and virtual 

resources are healthy, the VNFs, like routers, instantiated on these virtual resources can develop 

algorithmic problems causing VNSs to malfunction or totally break down. The myriad levels of 

dysfunctions make handling of FP issues in NFV over clouds more abstract and complex. VMs	

are	managed	 by	 the	 CSPs	 and	 the	 VNFs	 by	 both	 the	 NFV	 operator	 and	 the	 carrier.	 This	

overlapping	 responsibility	 makes	 it	 difficult	 for	 the	 traditional	 FP	 systems	 to	 deal	 with	

problems	in	the	virtualized	networks. 

2.4 Security in Next Generation Healthcare  
The final challenge that we tackle in this dissertation is the security of applications such as the 

next generation healthcare that use VNS, IoT and cloud systems [45]. Among the problems of 

the present healthcare systems are inadequate response to medical emergencies, delays in 

diagnosis of acute cases, insufficient monitoring of chronic patients, readmissions and too many 
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preventable errors. Preventable errors are the third leading cause of death in the USA [47]. 

Modern healthcare is capable of reducing the cost of medical care and the resources required 

[48] [49]. To achieve all this medical care of critical, hospitalized or ambulance bound patients 

has to rely heavily on technology. It is believed that the use of technology will reduce patient 

mortality and morbidity by reducing diagnostic response time and improving diagnosis by 

reducing chances of human error [46]. On the flip side, increasing use of technology has its own 

security implications. 

In the next-generation healthcare architecture, all the subsystems viz., the virtualized network, 

the IoT domain consisting of sensors and actuators, the multi-cloud domain and the visualization 

domain, would be intricately enmeshed in cyberspace and become vulnerable to malicious 

adversarial activities of various kinds. Attacks like device takeover or tampering, mutilation or 

theft of data flowing among domains or stored in the clouds, change in patient history and 

planting of ransomware, may result in morbidity and mortality. It is, therefore, important to 

ensure confidentiality, integrity and availability of data as it flows among the domains of the 

healthcare system. 

2.4.1 Inadequacy of the Current Models 
Effective detection of attacks and anomalies has to take into account hundreds of markers, alerts, 

measurements and interaction patterns across a large number of sensors and other devices in the 

IoT domain, a hierarchy of clouds, and the visualization devices in the user domain on a 

continuous basis. Threats exist from inside and outside the healthcare network from cyber 

criminals, policy negligence and malicious intent of insiders. Traditional security solutions rely 

on signature-based defense at the boundaries of the functional areas of healthcare. With the 

healthcare being modernized, the increasing attack surface and hyper activism on the part of 
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malicious players, the signature-based defense is evaded through means like changing tactics, 

encryption, polymorphism or obfuscation [8]. Traditional security approaches involve manual 

filtering of exceptions and analyzing each alert. This becomes time consuming and alerts need to 

be selectively examined because of too many false negatives in the traditional methods. Every 

medical condition that is present and not detected puts patients at risk. Some traditional systems 

may not be effective when attacks involve multiple tactics, multiple end-points and change their 

nature. Additionally, if the threats are continually changing then detecting them across fuzzy 

functional boundaries will be even more difficult [50].  

Because of the problems mentioned above the traditional systems are giving way to machine 

learning based anomaly detection. Machine learning has been applied to security in healthcare in 

many forms. Some of the classifiers that have been used are: support vector machines, decision 

trees, naïve Bayes, K-nearest neighbors and random forest. In machine learning based intrusion 

detection system, for instance, the idea is to capture underlying statistical features of data and use 

them to detect any malicious attack [51]. However, the machine learning solutions that have been 

applied are shallow machine-learning systems that have their own problems. In the presence of 

high dimensional and high velocity data, these methods get bogged down by the need for manual 

feature extraction and their high false positive rates, resulting in the risk of overmedication or 

unnecessary procedures [111]. 

2.4.2 Security of Data Flows Among Domains 
In this work we focus on the patient data generated by sensors and flowing between IoT, cloud 

and visualization domains of the next generation healthcare. Any mutilation or pilferage of data 

and device capturing may compromise the system and result in patient morbidity and mortality. 

It is challenging to detect anomalies produced by these intrusions because of data being large and 
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high dimensional and adversaries employing advanced techniques that change spatially and 

temporally. Many established procedures do not work well in the ensuring environment. 

Signature based systems cannot detect previously unseen attacks. Centralized intrusion detection 

systems at the edge of the IoT domain cannot protect flows in the cloud hierarchy. Also high 

volume and dimensionality of data, manual feature extraction and lack of unknown threat 

datasets render shallow machine learning solutions less effective. In the next chapter, we discuss 

the state-of-the-art and the challenges that remain. In chapter 7 we detail the method we have 

evolved to protect the data in motion. 
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Chapter 3    

Addressing the multi-cloud management and 
security challenges  

In this chapter, we discuss the outcome of the survey of the state-of-the-art and the extent to 

which these works address the challenges described in Chapter 2. We then present how these 

unaddressed problems motivate the work that we have carried out in this dissertation  

3.1 Optimization of Multi-cloud Management and Control 
Platforms 
It has been mentioned before that un-optimized platforms result in slower speed of placement 

and reconfiguration, inefficient resource utilization and increased cost of deployments [8] [15]. 

Some of the reasons that were brought out, in the last chapter, are the complex nature of these 

softwares and extensive use of techniques like polling for asynchronous working and multi-

threading for concurrent execution of a number of activities like initiating workflow in the cloud 

manager, allocating resources for a proxy to connect external services and connect hosts [15].  In 

this situation any method that attempts to carry our exhaustive analysis may result in exponential 

analysis times. Additionally, software testing methods and tools, like use of performance 

counters and exhaustive testing, have not advanced sufficiently for the virtualized environments. 
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[16]. Datacenter optimization for cost has been reported, but this does not ensure optimized 

performance for the application that the ASP or ISP is intending to onboard [18]. Given that the 

fully virtualized and distributed platforms like OpenADN uses the mentioned techniques and 

more, most conventional testing methods like profiling, characterization, and modeling 

methodologies do not work well. None of them have been shown to provide definitive help in 

pinpointing the sections of code that should be optimized. To get a sense of where we currently 

are, we look at some of the techniques that can be applied to a distributed, multi-threaded system 

[52].  

3.1.1 Collecting Behavioral Data 
For collection of behavioral data, the techniques studied can be broadly classified in different 

ways: static and dynamic or continuous and discrete or intrusive and non-intrusive. These are not 

necessarily separate categories and one may be classified under the other. For example, dynamic 

testing can be continuous and intrusive. Limited use of some of these techniques has been made 

to study guided datacenter cost optimization in [53]. In this context, the authors argue that 

performance and utilization characteristics are critically important, because even minor 

performance improvements translate into huge cost savings. They contend that the traditional 

performance analysis is complicated for datacenter applications and it is easier to monitor the 

datacenters on live traffic. Palanisamy et al. have proposed Cura for provisioning cost-effective 

MapReduce services in a cloud [13]. It leverages MapReduce profiling to automatically create 

the best cluster configuration for the jobs. They have reported up to 80% reduction in cloud 

compute infrastructure cost with up to 65% reduction in job response times for Facebook like 

workloads. In [18] the authors argue that the hardware measuring features are inflexible, limiting 

the types of data that can be gathered. On the other hand, instrumentation based profiling can 
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provide more flexible and targeted information gathering at the cost of some overheads. For 

these techniques to be useful for datacenters, overhead needs to be contained to less than a few 

percent in terms of both throughput and latency. The authors propose instant profiling, an 

instrumentation sampling technique using dynamic binary translation. In this technique normal 

execution is interleaved with instrumented execution. They have achieved less than 6% 

slowdown and 3% computational overhead on average. 

Static analysis: involves careful examination of the programs to diagnose defects that will 

prevent correct execution. It builds an abstract representation of the program behavior and 

examines its states. It aims to check all paths and consider all nondeterministic choices. This can 

be done manually (which ends up being too time consuming) or by tools (which often leads to 

too many false positives). The kind of errors it looks for being undefined variables, interface 

between modules, unused variables, syntax violations and dead code. Static analysis can be done 

using model checking in which it computes the run-time states of the program without running 

the program [54]. The generated run-time states are used to check if a property holds. If the 

program has a finite number of states, it is possible to do an exhaustive analysis [55]. This work 

also mentions that models of multi-threaded systems can be used to explore all feasible inter-

leavings and loops exhaustively to ensure correctness properties [56]. However, the multi cloud 

platforms are complex and may have a vast number of feasible inter-leavings, making model 

checking computationally expensive. Another shortcoming of static-analysis techniques is that 

they give an assessment of relative time and temporal ordering and do not give absolute time of 

running code [57]. For assessment of absolute times, it would be necessary to perform dynamic 

analysis [58].  
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Dynamic analysis: This type of profile guided testing allows observing system behavior while it 

is in execution. It is an active form of profiling in which the system being measured explicitly 

generates information about its execution parameters. Conversely, passive profiling relies on 

explicit inspection of control flow and execution state through an external entity, such as a probe 

or modified runtime environment. Dynamic analysis obtains detailed and precise info for a single 

test case. It provides no guarantees for other runs. Multiple runs can be resorted to, each testing 

different paths. Automated tools for dynamic analysis are limited in scope and do what they have 

been programmed to do. In [52], it has been mentioned that dynamic profiling provides ways to 

measure the absolute time of events like various function calls or the time spent by the CPU in a 

particular function. Three main families of dynamic profiling techniques are code 

instrumentation, statistical sampling and concurrency profiling.  

a) Code Instrumentation: A set of additional instructions, called an instrument, is injected into 

the target program. When the instrumented code is executed, it generates timing and frequency 

of the events as they happen. Some instrumentation systems [56] count function activations 

while others count more fine-grained control flow transitions. This method can, thus, provide an 

absolute measure of these events. Instrumenting a program can cause changes in the performance 

of the program, potentially causing inaccurate results and has to be carried out carefully in a 

controlled manner. 

b) Statistical Profiling: In this method the program state is randomly sampled when the program 

is in execution. This involves recording a sample of values of the instruction register, program 

counter, stack, etc. to apply statistical techniques to these samples to deduce how much time is 

being spent in different parts of the program. This method is not as intrusive to the target 

program as the instrumentation method. It can show the relative amount of time spent in user 
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mode versus interruptible kernel mode, such as system call processing, and also the user time out 

of the total execution time. In the OpenADN environment this could, for example, provide 

valuable information on whether optimization should at all be attempted. 

c) Concurrency Profiling: Concurrency profiling can additionally be used in multithreaded 

applications. Resource contention analysis collects detailed call stack information every time that 

competing threads are forced to wait for access to a shared resource. Concurrency visualization 

also collects more general information about how a multithreaded application interacts with 

itself, the hardware, the operating system, and other processes on the hosts. It can help locate 

performance bottlenecks, CPU underutilization and synchronization delays [47]. 

Distinction is also made between deterministic and statistical profiling of software. In the 

deterministic technique all function calls, function returns, and exception events are monitored, 

and precise timings are obtained for the duration of these events and the intervals between them. 

OpenADN is largely written in Python. In Python, since there is an interpreter active during 

execution, the presence of instrumented code is not required to do deterministic profiling. Python 

automatically provides a hook (optional callback) for each event. Call count and time 

consumption statistics can be used to identify hotspots in code, which would be potential 

candidates for optimization. In the statistical technique the instruction pointer is randomly 

checked to deduce where time is being spent. It can, therefore, only provide relative indications 

of where time is being spent. 

The existing works do not describe any definitive method or combination of methods for testing 

virtualized multi-cloud platforms. This motivated us to develop a combination of techniques, 

which is discussed in Chapter 4. 
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3.2 Placement of Virtual Network Services in a Multi-cloud 
Environment 
Since solving the placement problem is NP-hard [24], algorithms like greedy placement and 

heuristics like first fit decreasing (FFD), have been proposed to limit the time a linear or a 

quadratic programming solution would take to give a reasonable solution. However, most of the 

work done so far carries out static and reactive virtual machine placement that requires tenants to 

initiate changes making the process manual [59]. When these methods are in place, there would 

be times when the placement will not meet the cost or performance criterion. More recently 

dynamic and proactive techniques have been applied. Another shortcoming of many methods is 

using VNF/VM as a unit for placement and optimization rather than the SFC. It has been shown 

that that placing SFCs as a unit rather than individual functions yield better results [24]. The 

common method of setting up an ILP with the objective of optimizing resource level parameters 

like compute usage or power consumption under capacity constraint takes minutes to hours even 

with efficient solvers [59]. This would be unacceptable in real-time or near-real time applications 

of the type we are focusing on. Carrier networks have stringent latency requirements, while in 

critical healthcare even seconds could mean the difference between life and death or the extent of 

morbidity suffered. Dynamic placement with cost optimized performance aware placement of 

VNFs is still an open question [61]. We propose a combination of techniques to optimize cost, 

keep latency below threshold and carry out fast placement. 

3.2.1 Methods Based on ILP and its Variants for Optimization 
In [62] and [16] the authors argue that unlike most other works they have considered QoS/SLA 

along with resource requirement of network services. They show that the virtualization overhead 

increases with traffic load and the number of VMs due to factors such as scheduling delays, 
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context switching, and flow routing. The authors include virtualization overhead while setting up 

their Mixed Integer Linear Programming (MILP) model to optimize resource usage while 

guaranteeing latency requirements. The model optimizes the cost, including the utilized 

processor, memory and physical links under the latency constraint of maximum round-trip time. 

It is seen that for a network with 28 nodes and 41 links the model takes about an hour to arrive at 

an optimum solution. The authors in [63] use an MILP model to optimize network latency and 

increase the acceptance rate of strict delay requirements. The evaluation is single cloud specific 

and scaling from 5 VNF to a large network, for delays are unclear. Also, the algorithm chooses a 

more expensive path to ensure a minimum delay. An intuition, that does not require proof, is that 

delay will be more with high bandwidth requirements, or when more requests seek the same link. 

In cases where the number of requests is high, the solver is not able to find an optimal solution in 

the joint delay and routing cost optimization methods. The solution for the optimal chaining and 

routing with MILP limits the scale of the problem. 

3.2.2 ILP and Heuristic to Speed up the Solution 
In [64], the authors optimize the number of physical machines (PM) used, using an Integer 

Linear Programming (ILP) model. They take into account the time-varying workloads while 

instantiating VNFs in PM. A two-stage heuristic solution has been suggested to solve the ILP, 

with a correlation-based greedy algorithm as the first stage and a further adjustment at the VNF 

in each SFC as the second. The simulation demonstrates improved utilization of network 

resources and reduced number of PMs compared to the benchmarks. This and some other works 

presume multi-tenant VNFs to improve utilization. Multi-tenancy allows CSPs to reduce their 

costs, but carriers would usually request exclusive VNFs hosted on exclusive VMs because of 

security and performance concerns. In [65] the authors propose placement of VNFs in the edge 
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clouds to minimize end-to-end latency. Using an ILP model, the authors show that cloud-only 

deployments gave more than 3 times more latency than cloud-and-edge deployments. The 

absolute times for initial placement and for each re-configuration are not known. They also 

present a way to dynamically re-schedule the optimal placement of VNFs based on temporal 

network-wide latency fluctuations using optimal stopping theory. Scheduling re-optimization 

may reduce latency violations, but they may require an increased number of migrations. Periodic 

migration also has a problem, as it requires human intervention to decide on the periodicity of 

tuning. The authors suggest a method using optimal stopping theory to select the right time for 

placement. 

3.2.3 ILP and Heuristics for Comparison 
In [66], the authors consider an IoT-edge cloud-main cloud scenario in a dynamic multi-user 

situation. The authors set up an MILP model to minimize the end-to-end communication delay 

while keeping the cost to the minimum. However, they realize that the MILP formulations 

rapidly increase in complexity and take a long time to give an optimum solution, as the problem 

becomes large. To counter this, the authors also propose Tabu search for placement and 

chaining. They find that the MILP method is 200 times slower than the Tabu Search. The authors 

in [67] solve VNF placement and chaining problem using ILP and also propose another method 

called Cost-efficient Centrality-based VNF Placement and chaining algorithm (CCVP). The 

objective is to minimize the cost by finding an optimal number of VNF instances and their 

locations for handling the required traffic. To simplify, they assume that the network provider is 

the owner of NFVI so concerned factors are under its control. The CCVP is based on the 

Betweenness centrality algorithm. The high centrality indicates that a vertex of a graph G can 

reach other vertices on relatively short paths. This results in lower network cost. They show that 
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the overall cost of their method is close to ILP. It should be noted that processing delays and link 

bandwidths are not considered in the analysis. In [68], the authors pursue the objective of 

optimization of energy consumption as an ILP model. This purportedly gives a reduction in the 

operational cost of the placement. They also propose a near-optimal approximated algorithm to 

solve the problem using the Markov approximation technique. They show that their algorithm 

can achieve the performance arbitrarily close to the global optimum. Simulation results show that 

the algorithm saves up to 14.84%, energy consumption compared with previous VNF placement 

algorithms. 

3.2.4 Non-ILP Heuristic Solutions 
In [69] the authors presume sharing of VNFs among different service chains. It should be noted 

that while sharing may improve VM utilization, it might consume more link bandwidth because 

these chains may need to go through a longer path to reach the shared VM. From the carriers' 

point of view, this arrangement may give rise to security issues as well as make it difficult to 

control latency. The authors contend that most of the existing work is mainly targeted on 

improving VM utilization, without considering the required bandwidth resources. This work has 

examined the joint VNF placement and the Path Selection problem, to maximize the served 

traffic demands. In [70] the authors discuss a proactive placement model in the context of a 

content distribution network (CDN). They argue that VNF chaining and placement affect QoS, 

and formulate an optimization problem to find the optimal number of locations as well as 

efficient chaining such that the CDN cost is minimized and QoS is satisfied. The authors set up 

the problem as a bin-packing problem that involves the selection of bins (surrogate servers) and 

dropping the items (VNFs) into them. The authors conclude that while their solution gives fewer 

servers, it may give a high communication cost. In [71], the authors investigate the optimal 
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placement of virtual resources to minimize the average response time in mobile edge computing 

(MEC) environment with a capacity constraint on the edge network. They use OEPA (Optimal 

Enumeration Placement Algorithm) as a benchmark to compare Latency-Aware Heuristic 

Placement Algorithm (LAHPA), which has lower computation complexity, Clustering Enhanced 

Heuristic Placement Algorithm (CEHPA) to enhance the performance of LAHPA, Substitution 

Enhanced Heuristic Placement (SEHPA). SEPHA turns out to be better than LAHPA. CEHPA 

and outperforms LAHPA and both are better than the general Greedy Placement Algorithm. The 

authors in [72] describe a dynamic placement algorithm based on traffic variations that saves 

operational expenditures. Their algorithm consolidates VNFs in the fewest possible number of 

network nodes while maintaining a low blocking probability and guaranteeing latency targets to 

the supported services. They reuse VNFs, select VNFs based on locality and activate them based 

on the shortest path. The authors claim that their algorithm can balance the trade-off between 

minimizing latency violations, decreasing blocking probability and reducing operational 

expenditure. The success rate of the algorithm has not been mentioned. The authors claim 50% 

savings in telecom operators' cost. 

3.3 Faults and Performance Management In Multi-cloud Virtual 
Network Services 
The traditional fault and performance management systems do not perform well when applied to 

the virtual environment in which virtual resources can be constantly scaled, migrated or 

destroyed. The commonly used rule based systems of physical networks are rigid and not good at 

unseen faults. With the network functions virtualized, faults propagating through layers change 

their semantics and thus a correlation between an original fault and an observed system disorder 

is not obvious. Though a number of standards organizations, including ETSI, 3GPP, Broadband 
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Forum, IETF, ITU-T SG 15, MEF, ONF, OPNFV and TM Forum, are working on FCAPS in 

virtualized networks there are still many gaps in the specifications [73] [74]. The metric list 

needs to be supplemented with issues related to specific network services, e.g., ‘continuous dial 

tone’ or ‘line card fault’ in relation to fixed phones and similarly ‘call drops’ or ‘weak signal 

strength’ for mobile networks and, ‘WAN light flashing’ or ‘low data rate’ for ADSL broadband 

networks. Some of the efforts, like OPNFV ‘Doctor’ for fault management of network services 

are based on OpenStack. OpenStack telemetry and alarming and are not geared up for multiple 

clouds and it lacks some capabilities that are critical requirements for an NFV platform [75]. 

ETSI has specified the architecture of NFV-MANO [76], which will interface with the CSP 

infrastructure and the carrier's Operation Support System (OSS) (including Network 

Management System) for fault detection and localization. The interfaces among these platforms 

have not been fully defined. There is a multiplicity of responsibility in handling faults. Escalation 

of fault indicators from lower to higher layers has also not been defined. Predictive fault 

management can prove to be effective for distributed real-time systems, but is yet to be 

effectively employed.  In the machine learning assisted methods the problem is of availability of 

real network training datasets. Publicly available datasets like UCI repository [77] and Stanford 

SNAP [78] do not have datasets relating to faults in telecommunications networks. Deep learning 

has been found to be effective in image, speech and text recognition as well as fraud, but is still 

new in network anomaly detection. 

Relevant to FCAPS are ETSI specifications of NFV resiliency requirements [79] and service 

quality metrics [80]. The former provides a list of faults and relationship between them while the 

latter gives VNF related metrics useful for quality of service. Both ETSI and ONAP describe the 

specifications for fault management support functionality [81] [82]. There has been extensive 



	

	 32	

work on performance modeling systems for distributed Internet applications of the pre-NFV era, 

notably TIPME (2000) [83], Pinpoint (2002) [84] and Magpie (2003) [85]. TIPME helps in 

identifying and eliminating causes of long response times. Pinpoint uses data mining to correlate 

the behavior of each active user request with the past failures and successes to determine failed 

components. Magpie works on individual user requests and compares the observed behavior, 

with saved normal models, to identify anomalous requests and malfunctioning components. 

Recently, the ‘mPlane’ consortium of European telecom companies and academic institutions, 

has worked on developing a measurement plane for Internet and CDN (2013- 2016). The core of 

the project is ‘mpAD-Resoner,’ which uses machine learning to detect anomalies involving 

multiple flows or users. It compares the current distribution with stored average distributions 

[86]. The OPNFV Doctor project deals with the problems of the underlying hardware [87]. Most 

techniques relate to the IT environment with the three nines availability, as against the five nines 

required for carrier networks, is considered appropriate for most applications. These techniques 

work on the static or dynamic dependency models, which makes previously unobserved faults 

difficult to detect. These methods are limited by the implausibility of having up-to-date models 

in a dynamic environment. They deal with faults in the physical compute components. The NFV 

over cloud networks have a virtual network function layer that calls for a totally different set of 

markers, metrics and methods. These challenges have led us to develop the HYPER-VINES 

framework. We will discuss the details of this framework in Chapter 6.  

3.3.1 NFVI Level Diagnostics 
In VNSs, NFVI relates to the totality of hardware resources and the virtual compute, storage and 

networking resources created over these. The hardware component of the NFVI is in the domain 

of the CSP and generally inaccessible to the carriers. The methods in this category would rely on 
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VM level alarms and metrics such as compute load or memory leak. These techniques generally 

rely on the monitoring and diagnostic techniques for cloud computing resources used for IT 

applications. An explicit or implicit assumption would usually be that the higher level alarms and 

other markers, e.g., those at network function and network service level, would usually have 

corresponding host level alarms which can be correlated to detect and possibly localize network 

function and service level manifested and impending issues. A correlation between telemetry 

information from the CSP and the higher level alarms in the domain of the carrier, would have to 

be built up for diagnosing faults in the VNSs. Correlation of metrics with anomalies at the virtual 

layer has been applied by authors in [88]. The applicability of these techniques in a large 

distributed network needs to be studied.  

3.3.2 Causal Inference Based Methods 
These methods are also normally applied on VM level alarms like high CPU load and 

insufficient memory availability. The expectation here is that determining the causal relationship 

among them would help to get to the root cause of FP issues at the network function and service 

levels. The process involves looking for anomalous behavior based on VM level alarms, 

correlate alarms in pairs or clusters, determine causality, i.e., the effect of one alarm on the 

others and attempt to build causality templates that could be used for future alarms. The complex 

architecture and dynamics of NFV pose significant challenges from the point of view of causality 

inference. For instance, in [89], the authors carry out analysis of uncorrelated alarms in order to 

recover the pairwise causal relationship between them. To take care of the fact that higher-level 

faults (e.g., VNF or VNS levels) do not only depend on the pairwise relationship among VM 

level alarms, the authors propose clustering to infer multi-way causality templates. The patent 

documentation at [90] goes a step further and uses alarm data from different layers (e.g., NFVI 
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and VNF). It takes into account the temporal proximity and the order of the alarm types in the 

clusters to make causality templates. It is challenging to exhaustively define all the relevant 

causal relationships among the markers and the faults. 

3.3.3 Statistical and AI-based Methods 
The large volume of operational data generated in an operational telecommunications network 

could emanate from within one layer or across multiple layers and possibly contain many 

different types related and unrelated markers. In such a complex environment, it would be 

difficult to analyze the available data to produce information that can be used to manage FP 

issues. This situation, thus, creates a perfect set up for removing humans from the loop and 

resorting to machine intelligence. In this category, there are methods based on machine learning 

and deep learning that could be used for the detection and localization of FP issues.  

Researchers’ interest in AI-based machine intelligence for the identification of FP issues dates 

back to the era of expert systems [91] [92] [93] [94]. During the intervening decades, the carrier 

networks have undergone changes in technology and form, but the interest in intelligent fault 

handling has persisted. We look at AI as a way to empower machines to mimic and outperform 

human intelligence. Machine learning is a subset of AI, chiefly consisting of statistical 

techniques that allow machines to exhibit behavior that improves with learning. Deep learning is 

a way to implement machine learning using neural networks with more than one level of non-

linearity. When using neural networks for difficult tasks, complex relationship among variables 

modeled with several levels of non-linearity improves the generalization process [95] [96] [97]. 

VNSs are a new development and their deployment over multi-cloud is still to be explored fully. 

Many of the AI methods developed for intrusion detection have been explored, with varying 

degrees of success, for managing the FP issues in VNSs. Some researchers have applied AI 
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methods directly to fault detection and, to a lesser extent, to fault localization. A very important 

reason for exploring AI for the problem of FP management for cloud-based NFV is the 

intractability introduced by the known gaps in the NFV specifications. Interaction among 

multiple domains, especially between the legacy carrier OSS and the MANO and the legacy OSS 

and the MMCP have not being fully defined. In this situation the learning methods of AI make 

the best use of the features learned from the available markers and can assist in FP management. 

It has been shown that learning methods give a way to relatively easily learn structure in the data 

and draw inferences [99]. 

Shallow machine learning algorithms, characterized by a single convolution stage, are suitable 

for cases where a large amount of labeled training data, including normal and fault cases, are 

available. They can derive intelligence from data and do not depend on experts to build complex 

interacting rules to derive patterns or models. Even dependencies, which cannot otherwise be 

explicitly modeled, can be learned. These advantages make them attractive for handling FP 

problems. In FP applications, machine learning methods can not only be trained with historical 

fault and performance data, but can also be made to improve themselves as they operate and 

encounter new situations. This makes the machine learning systems, adaptive and intelligent 

when they have been adequately trained, as they can generalize well from the training 

environment to the real-life situations. Use of different algorithms has been reported for 

detection and localization. 

The authors in [100] use Artificial Neural Networks (ANN) for one and two alarms simulated 

scenarios. They show that in a simulated environment ANN provides better performance in 

comparison with the other implemented methods. The researchers in [101] propose a system for 

fault analysis and prediction in the telecommunications access network in the Rijeka area of 
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Croatia. Temporal decision trees for fault prediction in telecommunications networks have been 

used in [102]. As per findings in [103], fuzzy cluster means can be used to classify network 

faults. The current research indicates the possibility of advancing the state-of-the-art in FP 

management through deep learning structures. 

In [104], the authors use the Random Forest machine learning method to detect performance 

degradations in the VNFs. However, these researchers have chosen to rely on virtual resource 

layer level features data like CPU consumption, disk I/O, and free memory based on their 

suitability to computing systems. Evaluation has been carried out in a centralized IMS system. 

Application of the proposed method to a highly distributed multi-domain network has not been 

reported. 

The authors in [105] have worked on the premise that underlying all the VNF failures are the 

NFVI level failures like disk I/O or memory usage. They propose Self Organizing Map (SOM), a 

type of unsupervised learning neural network, for clustering the statistical data and analyzing 

them to detect the faults. In [106], the author mentions that machine-learning algorithms are 

expected to detect invisible failures and anomalies. However, more work is required to validate 

them. 

3.4 Problems with Existing Security Approaches 
Traditionally, for protecting internal resources like hardware, software or network equipment, 

perimeter security is commonly used, which puts a barrier separating internal resources from 

intrusion from outside. The intrusion detection system can have a combination of firewall, anti-

malware functionality and access control mechanisms to establish perimeter defense. Despite all 

these efforts, the strategy fails as attackers become more and more sophisticated. In cloud-based 
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deployments the boundaries are fuzzy as resources gets distributed across geographically 

disparate clouds. Establishing a perimeter defense in such a situation becomes difficult. Virtual 

resources created for different tenants on the same physical resources may also prove to be a 

security problem. 

Traditional security solutions rely on signatures, predefined database of known attack patterns or 

bursts of activity [107] [108]. Not only the traditional signature based systems are penetrable, 

they are not useful for unseen threat models [109]. Other traditional methods like firewalls to 

secure critical assets like electronic health records have often been breached by hackers through 

unhardened IoT devices. Security approaches involving manual filtering of exceptions and 

analyzing each alert become time consuming. Some traditional methods may not be effective 

when attacks involve multiple tactics, multiple end-points and change their nature [110]. In cloud 

computer network visibility is limited and east-west traffic cannot be easily monitored on virtual 

networks. Traditional methods involving Layer 3 and 4 packet filtering and security controls are 

not effective when virtual resources are leased across heterogeneous clouds. 

To tackle the problems of unseen attacks researchers have examined machine-learning solutions 

in a bid to differentiate between ‘normal’ and ‘anomalous’ behavior. The shallow machine 

learning solutions may prove to be inadequate in the virtual healthcare environment. Data in 

healthcare are high dimensional and, with the shallow machine learning techniques, extracting 

relevant features requires human intervention. The curse of dimensionality renders the available 

data sparse and finding statistical significance difficult. On the other hand, using all the features 

would make the training process time consuming. Also, these methods usually have relatively 

high false positive rates for detection [111], which causes the risk of over medication or 

unnecessary procedures. 
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3.5 Challenges Addressed by this Dissertation  
Based on the discussion of the state-of-the-art and the remaining challenges, in this section we 

describe the challenges that we have addressed in different parts of the problem. 

The combination technique for multi-cloud platform optimization: Both of the top-level 

challenges – collecting behavioral data of the platform and analyzing the data to produce 

actionable results- have been addressed in our work. These results have then been used to carry 

out optimization of OpenADN. In Chapter 4, we have discussed the results of optimization to see 

how far the two-level techniques have been successful in the optimization of the multi-cloud 

management platform. 

At the first level, we have used multi-level behavioral data collection techniques in the form of 

onion rings. It starts with a top-level view of the platform software and works down to the 

function and statement levels. Top-level analysis provides the overall CPU time utilization 

among the system and the user activities as well as the idle time. The detailed statement-by-

statement profiling gives a tentative idea of the factors that prevent the platform from operating 

at the optimum level. At the second level, we use a technique for confirming which of the factors 

identified are significant. We use for the first time the two factorial analysis to confirm the 

factors before launching into an expensive full-scale optimization. We evaluate the model and 

find that our method can accurately identify the factors, taking care of which improves the 

performance. 

The main contributions of this work in meeting the described challenges are threefold: 
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1) Elaborate how the behavior of a complex multi-cloud platform can be analyzed, while it is in 

operation, to obtain data for optimization, i.e., obtaining and using virtual resources from 

multiple clouds. 

2) Evolve a methodology to examine the usefulness of the identified factors for optimization of 

the platform and avoid unnecessary optimization efforts. 

3) Carry out the optimization of the OpenADN platform using the result of the above analysis to 

show the usefulness of the techniques evolved. 

The P-ART framework for placement of virtual network services: The primary challenge for 

creating network services over multiple clouds is the placement VNFs of the service under 

several constraints. The placement has to meet the policies and objectives defined by the carrier 

and embodied in the SLA with the CSP. These usually include cost and quality of service 

parameters. Other important requirements, which we have seen in the last chapter, are speed and 

accuracy of placement. In this research, elaborated in Chapter 5, we have comprehensively 

addressed each of these requirements. The challenges have been addressed through multiple 

criteria optimization in an innovative placement strategy. Specifically, placements have been 

carried out to optimize cost and keep latency within the specified threshold. The placement is 

based on prediction of the state of the clouds at the time of placement. A number of innovations 

have been proposed in this part of the work. One such refinement, that makes predictions more 

accurate, is the compensation of the concept drift due to diurnal variation of traffic. The selection 

of clouds is through a generalized random selection algorithm. To the best of our knowledge, all 

of these techniques have been developed and used by us for the first time. We have also seen that 

the ILP solutions are slow in giving optimal solution. This limits their utility in responding fast 



	

	 40	

to the change of state of the multi-cloud system and renders the method unusable in real-time 

applications. We avoid the ILP route and use machine learning for placement, which reduces the 

time taken even for large placements and renders the re-evaluation problem trivial. The method 

that we have developed falls in the category of dynamic and proactive placement algorithms 

rather than being either of those. Our objective and constraint-based determination of clouds, on 

which the SFC will be placed, removes the tight binding between resources and the VNFs of the 

SFC. During operation, the placement is frequently re-evaluated to ensure continued optimality. 

If required, new placement and virtual resource dimensioning will be done consistent with the 

carrier SLA requirements and CSP policies. The methods adopted also lead to the high efficiency 

of the placement process, which ensures that placement requests are successful in all cases where 

enough capacity is available and constraints can be met. The high speed of placements allows the 

CSP to make changes in the network dynamically, in real-time or near real-time, as the factors 

like demand, traffic congestion on links, availability of resources on various clouds change. 

The HYPERVINES fault and performance management framework: This part of the work 

deals with the examination of the major reasons for performance and availability challenges in 

NFV and cloud-based VNS deployments. One of the major reasons is found to be the absence of 

a credible fault and management system. We find that handling detection and localization of 

fault and performance issues is difficult because of multiple layers in implementation of VNSs 

and the ill-defined interfaces among different management platforms for handling the distributed 

and overlapping responsibilities of fault and performance management. To address these 

challenges we have carried out the following work: 

i) Develop an architectural framework for detection and localization of manifest and 

impending fault and performance problems. 
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ii) Develop mechanisms, within the described architectural framework, which make use 

of the network’s operational markers for detection and localization of faults and 

performance issues. 

iii) The innovative use of shallow and deep predictive algorithms to obtain high accuracy 

of detection and localization. We achieve accuracies markedly better than the 

baselines and any other reported result in similar environment.  

iv) Demonstration of the feasibility and effectiveness of the proposed framework using 

real network data 

The merged hierarchical model with layer reuse for dataflow security: Subsystems of IoT and 

Multi-cloud based (also referred to as the next generation in conformity with a funded proposal 

in this area) healthcare would be connected in cyberspace, and therefore, prone to new 

vulnerabilities. Protection of patients' data, as it flows between domains and from cloud to cloud 

within the cloud hierarchy, against the effects of malicious intrusions, is an important part of the 

overall security strategy of the healthcare system. 

To address the inter-cloud dataflow security challenges, our contributions are as follows: 

i) Evolving system and security architecture for the next generation healthcare. 

ii) Evolving a threat model for the system  

iii) Innovative use of deep neural network, in the form of stacked autoencoders at the edge 

clouds and public cloud, for protecting dataflow in motion among the clouds. 

iv) Developing a merged model for reducing the training time and improving accuracy of 

models in the public cloud. 

v) Evaluating the merged model on public and lab generated datasets. 
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Chapter 4    

Optimization of multi-cloud management 
and control platform 

In Chapters 2 and 3 we discussed the challenges, state of the art and contributions of this thesis 

towards the collection of behavioral data and optimization of multi-cloud management platforms. 

In this chapter, we will discuss the work that we have carried out for optimizing management 

platforms, supplemented with the specific case of optimization of OpenADN multi-cloud 

management and control platform developed at Washington University in St. Louis.		

4.1 Introduction and Motivation 
Multi-cloud management and control platforms control the lifecycle of virtual resources obtained 

from multiple clouds. The ability to deploy and manage resources across heterogeneous clouds is 

important for both enterprise and carrier segments. Enterprises may obtain virtual resources from 

cloud service providers for their internal functions or to provide services to other clients. For 

instance, a cloud aggregator may obtain resources from multiple clouds and lease them to 

carriers for deployment of VNSs. Our focus on the problem is with a view to deploy VNFs over 

the virtual resources obtained from multiple cloud service providers. As the analysis made in this 
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work applies equally to a company, like an airline, deploying IT applications, as well as to 

carrier/ISP obtaining virtual resources for their own services, we refer to both as ASPs.  

The term software-defined infrastructures (SDI) would be used to refer to virtualized resources 

that the CSPs and the Network Service Providers (NSPs) offer through software-based control 

and management systems. The physical devices, on which these virtual infrastructures are 

created, could themselves be located in one or more datacenters of a cloud or diverse and 

geographically separated clouds each associated with one or more datacenters. Software control 

of infrastructure allows ASPs the flexibility of creating and managing application specific virtual 

clouds carved out of virtual resources from multiple clouds interconnected with virtual 

networking resources. After gaining experience of single cloud deployments, the enterprises are 

now turning to multiple public clouds [76], for added benefits of lower cost, increased flexibility, 

greater reliability by removing the possibility of a single point of failure, proximity to users, 

reduced latency and a larger number of specialized features. A converged view of resources 

across multiple clouds allows them to use resources from many providers in a manner that 

enables optimization cost and quality of service parameters. SDIs provide ASPs with such a 

converged view of resources owned by different cloud service providers. In the case of carriers, 

this also brings the advantage of being close to the subscribers that they are serving and reducing 

the cost of the access network. On the flip-side, use of resources from multiple clouds brings in 

the complexity of not only interfacing with disparate clouds, but also the requirement of 

managing the network connecting the clouds.  

Enterprises that choose to adopt a multi-cloud strategy are required to lease wide area network 

capacity to interconnect resources on different clouds. The Internet only gives best-effort 

performance and ASPs requiring performance guarantees must bear the cost of static pre-
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provisioning of resources or of creating smart overlays. Having its own private network would 

prove to be quite expensive for small and medium enterprises. This means that most enterprises 

adopting a multi-cloud strategy would also need a shared network infrastructure that can satisfy 

their requirements. Virtualization is helpful as it creates customized network contexts, on a 

common physical infrastructure, for tenants’ application specific requirements. OpenADN helps 

applications to automatically and dynamically communicate their requirements to the network.  

Large ASPs, like Google, have the resources to install application layer proxies at distributed 

points of presence, to intercept service request and route it to the nearest datacenter. Through 

OpenADN smaller, network constrained ASPs can obtain such services from third party 

infrastructure providers, e.g. ISPs, who can route application messages through an appropriate 

set of controllers, proxies, and middleboxes. This way the ASPs can get the benefit of 

economically deploying distributed applications on multiple clouds to get increased 

responsiveness and resiliency [112].   

Software, like OpenADN, presenting an integrated virtualized environment of resources of 

public clouds, operating under disparate control and management softwares, tends to be a 

complex system. Modularity is important in such systems for ease of development, maintenance 

and fate decoupling of the processes. They also generally use multithreading for concurrent 

execution of a number of activities. Any attempt to optimize such a platform would require the 

use of behavioral testing to understand the behavior of the software, if possible in the production 

environment. Software engineers need to conceive innovative techniques to isolate problem areas 

that consume a disproportionate share of resources leading to sub-optimal behavior. 

Multithreading makes the system difficult to profile because characterizing the effects of 
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interactions between threads becomes difficult as described in [52]. Efficient abstractions need to 

be developed to capture this behavior without resulting in exponential analysis times. 

In the context shared above, we have carried out work on three fronts: collecting platform 

behavioral data, analyzing the data to identify factors significant for optimization and optimizing 

multi-cloud platform followed by extensive testing on OpenADN. To this end, we elaborate how 

the operational behavior of the platform can be analyzed to obtain data and the two-factor full 

factorial analysis [113] can be used to make an initial assessment of factors that lead to 

inefficient operation of the platform. Optimization of the platform, using the identified factors, 

brings forth interesting results that are discussed later in this chapter. This chapter is based on 

our work published in [7] [8].  

4.2 Managing Software Defined Infrastructure Over Multiple 
Clouds – OpenADN 
Most contemporary and future application deployments like Internet-of-Things (IOT) based next 

generation healthcare, Cyber-Physical Systems like autonomous mobile systems, mobile apps, 

massively parallel gaming and virtual reality tend to be distributed and need to use multiple 

clouds, primarily due to cost and latency considerations. OpenADN can be used by ASPs to 

manage such distributed applications over multiple clouds as if they were deployed on a single 

cloud. Alternatively, they may use the services of a cloud aggregator, who would in turn use a 

multi-cloud management platform like OpenADN. In the following sections, we shall see why 

the architecture of OpenADN is suitable for such massively distributed application scenarios. It 

is also relevant to discuss these details as they affect the performance of the system.  
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OpenADN is an integrated infrastructure comprising both, message-level devices (e.g., firewalls) 

and packet-level devices (e.g., intrusion detection devices), hosting application-layer services as 

well as network-layer services. For massively distributed applications, like mobile healthcare 

monitoring or mobile app delivery, OpenADN allows multiple zones with each zone consisting 

of multiple clouds [112]. 

OpenADN is interposed between the clouds and the interconnecting network on one side and the 

application deployment environment on the other. As shown in Figure 4.1, it has two types of 

external interfaces. The northbound interfaces are for the application developers, application 

architects, and application deployment administrators to define the application resource 

requirements and deployment policies. The southbound interfaces allow OpenADN to interact 

with the management and control systems of each cloud and network service providers to 

manage virtual resources obtained from them. The northbound interfaces of single cloud/network 

management platforms like OpenStack and OpenDaylight become southbound interfaces of 

OpenADN. OpenADN architecture has a modular structure similar to the OpenDaylight SDN 

controller [114]. 

The ASP specifies the policies regarding when and where to create the resources and OpenADN 

interacts with the respective cloud manager to create those resources, rather than directly 

manipulating them. The management plane of OpenADN is centralized so that the policies are 

uniformly applied. The control plane has a hierarchical architecture with part centralized and part 

distributed controllers. A proper division of work between the global and the local controllers 

ensures a good combination of latency and accuracy. The distributed nature of data plane takes 

advantage of the distributed applications and the network.  
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 Figure 4.1 OpenADN Multi-Cloud Management System 

A	brief	description	of	the	architecture	of	OpenADN	and	its	initialization	activities	is	provided	

in	 the	 following	 sub-section.	 These	 help	 in	 easier	 understanding	 of	 the	 optimization	

process	of	the	platform.	

4.2.1 Components of OpenADN and Bootstrapping 
The key components of the OpenADN multi-cloud management platform are shown in Figure 

4.2. The global controller is part of the hybrid control plane of the OpenADN that consists of a 

global controller and one or more local controllers. The hierarchical design of the control plane 

achieves scalability and resilience of the distributed architecture and ease of maintenance of the 

centralized one. This design helps in multi-datacenter environments where virtual resources are 

widely distributed. Each cloud will have its own local controller. The global manager is 

centralized and compiles the ASP policies received through the northbound interface. It 

maintains a database of resources available from contracted clouds, access policies and billing 

information. The primary function of the global manager is to bootstrap the application 

deployment based on the policies provided. 
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Figure 4.2 Key Components of OpenADN 

The bootstrap process: The global manager is the only module that needs to be manually started. 

It chooses an initial set of clouds and acquires a pre-configured minimum number of virtual 

resources. It starts a global resource manager thread for each datacenter. The global resource 

manager adds resources from different sites to the global resource pool. It also allocates a 

specific role to each node and configures it accordingly. 

The global manager then starts the global controller. The global manager also starts a local 

controller for each cloud. It then launches the OpenADN virtual machines and switches. After 

completing these steps, it tells the global controller to start the workflow manager. The global 

manager also creates event alarms for the ASP based on the runtime logs. During runtime it 

accepts requests from the global controller for additional resources or for surrendering of 

resources not in use.  

From here the global controller takes over. It launches one workflow manager (WFM) for each 

workflow (Figure 4.3). The WFM creates a workflow thread (WFT) for each cloud where the 

application is deployed. Each WFT can spawn multiple workflow instances. The workflow 

registers the application instance with the fakenameserver. The WFT also tries to get a proxy 
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node allocated to it. A proxy port (pPort) is required to connect, to the OpenADN gateway node, 

all external users and third party services, which are OpenADN unaware. These services can be 

connected to internal OpenADN aware services, which connect to the gateway through a sPort 

(message level services) or a tPort (packet level services). Since WFM does not yet have the 

resources it queues the request and sends request failed to the WFT. WFT runs an exponential 

backoff and repeats request checks for resources and launches workflow instances.  

 

Figure 4.3 Functions of OpenADN relevant to the bootstrap process 

WFT starts the services for the workflow after the WFM has allocated it the required resources. 

Initially, it launches at least one workflow instance for the workflow. Each local controller boots 

up separately. The local controller registers with the global controller and starts the connection 

dispatcher, which allows data plane nodes to register with the local controller. The local 

controller makes these resources available to the GC on request. The bootstrap process has been 

given concisely in a block diagram in Figure 4.4 
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.  

Figure 4.4 The OpenADN bootstrap flow diagram 

Policies specified by the application administrator include specifying how to distribute the 

application delivery network deployment initially and during runtime. It is important to decide 

when and where to instantiate new instances and shutdown or move existing instances to support 

a change in the application context. This massively distributed data plane structure makes the 

performance evaluation of OpenADN difficult and calls for	 specialized	 techniques	 that	 we	

shall	discuss	in	the	following	sections.	

4.2.2 Massively Distributed Nature of OpenADN  
OpenADN optimizes application service deployment by deploying the hosts (nodes) of the 

distributed data plane, on virtual resources of various clouds. The system can perform many 

different tasks at the same time leading to better utilization of the hardware resources and 

ensuring that the system as a whole makes progress all the time. Applications like carrier's 

virtual network services or IoT based healthcare have scaling and latency requirements that can 

only be solved by having a massively distributed compute infrastructure. Another requirement is 

GC	instan)ates	WFM	that	is	responsible	for	
deployment	and	run)me	control	of	OpenADN	
workflows		

WFM	spawns	one	WFT	for	each	zone	where	
applica)on	is	deployed	

Each	WFT	spawns	mul)ple	workflow	instances	
depending	on	the	load		

Each	WFT	needs	a	proxy	to	communicate	with	
external	users.	WFM	allocates	proxy	when	it	has	
resources.	WFT	runs	exponen)al	backoff	for	
retrial.	

WFM	aHempts	to	get	resources.	At	this	)me	Local	
Controllers	boot	up	independently	and	register	
with	the	GC	

When	WFM	gets	enough	resources,	the	proxy	
node	is	ini)alized.	It	starts	gathering	resources	to	
deploy	the	other	services	within	the	workflow.	

WFT	starts	the	services	for	the	workflow	aMer	the	
WFM	has	allocated	it	the	required	resources.	
Message	and	packet	rou)ng	services	are	set	up	

AMer	each	service	is	ini)alized,	it	connects	to	the	
OpenADN	socket	that	opens	a	communica)on	
channel	between	the	service	and	the	plaOorm.	
WFT	aHaches	to	a	proxy	port.	Heartbeat	reply	
service	starts.	
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that the application should be able to change its topology dynamically based on usage patterns. 

OpenADN has been designed for these types of applications. Consequently, it has a massively 

distributed data plane structure, with several threads in the state of operational stupor, making the 

performance evaluation of OpenADN difficult. This platform calls for specialized techniques 

that we shall discuss in the following sections. 

4.2.3 Design and Coding Considerations 
Most of the control plane code has been implemented using Python while the data plane has been 

implemented with a mix of C and Python. The total size of the code base currently consists of 

about 10,000 lines of code. OpenADN has been designed as modular software to provide code 

readability and maintainability. The modularity also restricts inter-module interference in case of 

failures. Multiple operations are performed simultaneously to support multiple clouds, multiple 

users and multiple services. Partitioning of OpenADN into concurrently executable modules 

leads to better utilization of the hardware resources [115] [116]. The platform modules and 

application services are executed in separate processes. Application services are designed as 

external modules that connect to the platform through an external communication interface. A 

failed application service(s) can be handled by the platform without affecting other services. The 

services may run on the same or separate hosts. On the same host they use inter-process 

communication (IPC) while on different hosts they communicate using the network transport 

layer.  

In each host, platform modules may run within the same address space (same process) but in 

separate threads to achieve concurrency. The ports handling packet level services and message 

level services run in separate processes because the kernel network stack has been used for 

packet level communication. These threads share the process heap, which provides them a way 
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to communicate with each other. However, in order to avoid fate sharing completely, threads 

communicate inside the platform process through messaging. Depending on the profiling 

techniques used, these design considerations could affect the outcome of profiling. 

4.3 Performance Modeling of OpenADN 
This section defines the experimental modeling that assists in gathering behavioral data, while 

the platform is in operation, and carries out the performance evaluation decision for 

optimization. While we have considered the OpenADN as a representative platform, the 

techniques described here apply to any other cloud platform. 

The main goal of the study is to first methodically and scientifically locate areas of code in the 

platform that might cause it to consume the unduly large amount of computing resources during 

bootstrap and normal operation. Then we apply an experimental design technique to find whether 

any of the located hotspots have significant impact on the metric described in subsection 4.3.2. 

The actual setup of the experiments described in detail in subsection 4.5 would be used as the 

basis for carrying out the collection of profiling data using the techniques mentioned therein.  

4.3.1 Services of OpenADN 
OpenADN offers all the basic services expected of such a platform, e.g., allocation of resources 

from multiple clouds, distribution of applications, scaling/de-scaling, and performance assurance 

of workflows. Its uniqueness, however, lies in the additional application and network layer 

services it offers for highly distributed and multi-threaded applications to run on multiple clouds 

[117] [1]. These services include: 

1) Application layer services including message and packet level services (called middleboxes) 

a) Message level services: webservers, database servers, and web firewalls. 
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b) Packet level services: Intrusion detection and intrusion prevention systems. 

2) Network layer services like packet forwarding and routing 

The expected outcome is the effective use of resources, assurance of meeting quality of service 

and dynamically ensuring efficient operation of the system. However, if the system operates sub-

optimally, say under a computationally demanding application, it results in higher cost, exactly 

opposite of what it was supposed to achieve. Performance parameters like latency may be met 

for some applications and may not be met for others at all times. Communication among 

message level or packet level devices may take unduly long time. These issues were kept in mind 

for deciding metrics and parameters as discussed in the next sub-section.  

4.3.2 Metrics, Factors and Parameters 
The main metric is the CPU time taken to execute the platform software during the complete 

process of bootstrap and as the services start. Execution times for individual functions that 

consume a large amount of time would be of interest. The system parameters include: the type of 

virtual machines, storage capacities, intra-cloud and inter-cloud network bandwidth. The 

workload parameters, which presumably affect the metric, are the users’ requests for services, 

types of services – message or packet service and the amount of resources available. 

4.4 Profiling techniques for Gathering Behavioral Data 
In this section, we discuss the importance of profiling led optimization followed by a selection of 

techniques that are suitable for profiling OpenADN and gathering data for optimization.  

Often application software has code that consumes a disproportionate amount of resources and 

produces high CPU loads. Cloud management platforms are no different. The whole idea of 

profiling multi-cloud delivery platforms is to work through the tiers and threads of these 
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platforms and collect information about their behavior in different operational situations. To this 

end, it is important to use program analysis tools that are appropriate to the distributed, multi-

threaded nature of these platforms and gather as much information as possible. As against this, if 

we choose to carry out intuitive optimization, it may result in modification of parts of the code 

that were not responsible for performance degradation and as a result may be a waste of time. A 

word of caution: too much optimization or too little of it are both considered detrimental. Donald 

Knuth stated in [118] that programmers waste an enormous amount of time thinking about the 

speed of non-critical part of the program. About 97% of the time we should forget about small 

inefficiencies as premature optimization is the root of all evil. It is not only important for 

profiling to precede optimization, it is also important to use correct techniques that would 

produce reliable data based on which it can be decided whether optimization should be carried 

out, and if the answer is in the affirmative, what parts of the code should be optimized [15]. 

The basic techniques were discussed in Section 3.1.1 under the categories of static and dynamic 

testing. We saw that static testing profiles the software through manual or automated 

walkthroughs to find problems with the code. Model checking as a tool for static analysis 

becomes computationally expensive when multi-threading is extensively used. We also saw that 

these techniques give relative time assessments of events like function calls or time spent in a 

function [58]. We, therefore, conclude that this technique would not apply to the OpenADN 

environment.  

Dynamic analysis could be statistical where state of the program is sampled to make a relative 

assessment of the timing of events or deterministic where events can be precisely timed by using 

instrumented code. Dynamic analysis allows collection of performance data from a system in 

execution. It also provides absolute time of events. Dynamic profiling could be done through 
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code instrumentation. The injected code provides information about the execution of the 

programs with varying degree of granularity. However, care must be taken that the injected code 

does not cause any change in the program behavior, potentially causing inaccurate results. While 

the event timing with deterministic profiling takes into account interaction of threads, using 

concurrent analysis, a more precise thread level examination can be made [47]. 

Given the nature of OpenADN, most conventional profiling, characterization, and modeling 

methodologies do not work well because of full system virtualization. They do not provide 

definitive help in pinpointing the sections of code that should be optimized. We shall see here a 

combination of techniques that can be applied to a distributed, multi-threaded system [52].  

4.5 Evaluation Techniques and Experiment Design 
OpenADN is modular, multi-threaded and complex software, making it difficult to analyze using 

traditional analysis. However, if the platform operates sub-optimally, it may result in leasing 

more resources than are necessary, higher deployment cost and unusual communication delays. 

The	 existing	 prototype	 of	 OpenADN	 provides	 the	 test	 and	 evaluation	 environment.	 The	

platform	software	was	loaded	and	executed	in	the	virtual	environment.	Experiments	were	

conducted	to	observe	effects	of	different	workloads	(involving	a	varying	number	of	clients	

and	hosts)	and	also	various	functions	of	the	platform	on	the	CPU	time	required.		

The experiment was designed as a two factor full factorial design without replications [113]. The 

reason for choosing this design actually became obvious while conducting profiling studies and 

collecting data. We had a situation where two sets of parameters, i.e., functions (host creation, 

polling and sleep) and workloads (users and the number of hosts) were affecting the CPU time. 

A careful control of these two sets of parameters was required. We assumed that the factors are 
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categorical. A full factorial design with two factors, functions (Aj) and workloads (Bi) having i= 

j=3, i.e., 3 levels each. The results are deterministic in nature and, therefore, single replication of 

each experiment was considered sufficient. 

4.5.1 Dynamic Layered Analysis for Identification of Factors for 
Optimization  
To validate the functionality, we ran OpenADN in a virtual environment created by Mininet 

[119]. Mininet allows emulating a whole virtual network running real kernel, switch and 

application code, on shared physical resources of a machine. The following virtual resources 

were created for profiling OpenADN: One service zone consisting of a global controller, a 

fakenameserver, two data center sites with a local controller each, a name-server, seven hosts per 

site and client host simulating 10,000 users. The selection of stimuli (set-up and input data) and 

multiple runs of the platform ensured that behavioral data for most control paths were collected. 

The experimental OpenADN setup is shown in Figure 4.5. The host OS is Mac OSX while the 

guest OS is Ubuntu 12.04 LT on all the VMs. 

  

Figure 4.5 The experimental set-up 

Multi-layered dynamic and deterministic techniques were used to collect behavioral data and 

find potential factors for optimization. Deterministic method of profiling monitors functions or 

Legends:		GC	–	Global	Controller			LC:	Local	Controller	
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even statements and collects precise timing of execution as well as call count. In interpreted 

Python the presence of instrumented code is not required to do deterministic profiling. We did 

not draw conclusions directly from the profiling data. These were subjected to further analysis 

before coming to any conclusions. Our method consists of using a combination of dynamic 

analysis and full factor analysis to locate and confirm factors that have significant impact on 

performance and should be taken up for optimization to achieve improved performance of the 

platform. These methods were applied to OpenADN and the results obtained were published in 

[7]. 

The layered profiling model shown in Figure 4.6 helped us to progressively get more detailed 

information and zero in on the problem areas. Platform level profiling provided overall execution 

data for the complete platform. However, as we shall see, while it gives useful information to 

start with, it does not pinpoint the problems in the code. Function level profiling enables us to 

measure the CPU times for execution of various functions so that we could isolate the blocks 

those took disproportionate time to execute. It does not, however, tell us the exact location of 

these time consuming operations. Some functions are called repeatedly in different modules. 

Thus, statement level profiling was carried out to get the location of the calls that were resulting 

in inappropriate behavior. Deterministic and concurrent techniques were used to be able to 

measure the absolute timing of events for carrying out the experimental study. 

 

Figure 4.6 The Layered Profiling Model 
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Platform level analysis: To get a broad idea of the efficiency of the platform code executing in a 

virtualized environment, the built in timing utility of the operating system was used. Table 4.1 

shows the CPU times (in seconds) for user space functions, kernel (system) functions, total of 

user and kernel and the overall run time of the platform across seven runs. At the platform level, 

across many runs, of the average total elapsed time of 49.269 seconds for which the platform 

software was executed, the time spent in user functions and kernel space was 1.3% and 1.77%, 

respectively. The information is graphically depicted in Figure 4.7. This gives a sense that a large 

part of the time is spent in activities such as waits and sleep times for dealing with dependent 

asynchronous concurrent processes. However, it cannot yet be said whether this time relates to 

unavoidable delays and the situation can be improved through optimization. This called for the 

next level of profiling, i.e., at module/function level to see which of the modules are more CPU 

intensive. 

Table 4.1 Platform level execution data 
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Figure 4.7 User, System and overall CPU time for OpenADN 

The same modules were also run on separate physical machines for comparison and the results 

obtained are given in Table 4.2. On physical machines, the platform does not have to spend time 

creating virtual machines for its own modules as well as for running services. Even in this case 

the overall user-space time is 17.49% and even less for kernel calls. Among these, the global 

controller used the time more effectively with user functions taking up to 41.64% of run time on 

an average. However, in the actual operational environment, these modules will be hosted on 

VMs that will take a finite amount of time to create, start, augment or migrate to another cloud 

(unless otherwise indicated, all times are in seconds). 

Table 4.2 Time used for user and system activities on physical machines 

Function User Space System Calls Run Time User (%) 
Name Server 14.161 5.072 229.438 6.17 
Global Controller 83.637 15.797 200.835 41.64 
Local Controller 18.549 7.16 175.57 10.57 
Node Controller 19.95 8.86 156.99 12.71 
Client 0.428 0.036 18.855 2.27 
Total 136.725 36.925 781.688 17.49 

 

This simple profiling indicates the possibility of higher load on the CPU, because of potentially 

wasteful activities like waiting on I/O calls and the sleep functions. While in many cases, where 

asynchronous linking of threads is used, some waiting would be unavoidable. However, one 
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needs to see whether these could be optimized for 1) making the platform more efficient 2) 

correctly dimensioning the resources leased, and 3) distributing the workload properly. 

Function Level Profiling and Analysis: Python library provides routines to collect behavioral 

data at the function level. These routines provide a set of statistics that describes how many times 

different functions are called and how much time the CPU is spending to execute various 

modules. The statistical data collected needs to be processed through some other conversion 

routines like ‘pstats’ to make them amenable to analysis. A large volume of data was produced, 

of which a part of the output is shown in Figure 4.8. From line 1 and 3 of the figure it can be 

seen that the platform was executed for a total of 59.801 seconds out of this the polling function 

took 42.045 seconds. At the function level polling and sleep took 70.31% and 25.1% time 

respectively.  OpenADN uses the ZeroMQ™ polling function that provides communication 

between modules on different virtual hosts.  

 

Legend: ncalls: the total number of calls, tottime: total time spent in the given function 
(excluding sub functions) seconds, percall: tottime divided by ncalls, cumtime: total time in this 
and all sub-functions seconds, Percall: cumtime divided by primitive calls, filename: data for 
each function 

Figure 4.8 Extract of Function Level Profile 
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The communicating services have to poll the sockets to check for new incoming messages. 

Polling is, however, called many times in different functions. If a large amount of time is taken, 

then this may be an indication that the entire process of platform execution may be slowing 

down. To know the exact location of this time consuming operation and other such operations 

statement level profiling was done. 

Statement Level Profiling: As is often the case, the reason for a particular module or 

functionality taking a large amount of time could be pinpointed to some small part which may 

seem to be innocuous on a simple reading of the code. Some statements could trigger a library 

function or call a special method that may not be so obvious. A more detailed line-by-line 

analysis of the program was undertaken to find out which parts of the program take more CPU 

time. The line-profiler described in pypi.org used judiciously allows this kind of analysis [120]. 

This profiler keeps track of multiple statement executions, sums up the total time each statement 

takes in multiple passes and avoids profiling overheads. The profiling result is a binary file that 

could be deciphered with ‘pstats’ or a similar function.  

The workload was varied to get CPU times for various statements and identify the functions that 

should be taken up for further analysis. Figure 4.9 shows a section of the profiling output with a 

large proportion of sleep time (92.1%) and also the time taken for creation of hosts. 
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Legend: Hits: Number of times that line was executed, Time: Total execution time 
Per Hit: Average amount of execution time, % Time: Percentage of time spent on 
that line relative to the total amount of recorded time spent in the function, Line 
Contents: Actual source code. 

Figure 4.9 Extract of Statement Level Profile showing large sleep time 2000 users 
and 4 hosts 

Figure 4.10 shows that, in this section of the profile, the polling function takes 78.7% of the time. 

Legends of Figure 4.9 are applicable. 

 

Figure 4.10 Extract of Statement Level Profile showing large time taken by 
Poller 2000 users and 4 hosts 

Figure 4.11 shows 68.9% of the CPU time taken by host creation and linking. Legends of Figure 

4.7 are applicable. 
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Figure 4.11 Extract of profile for 2000 users and 8 hosts showing 68.9% host creation and 

linking time 
Concurrency Profiling Data: While the recursive function level profiling, that includes timing of 

execution of sub-functions and statement level profiling, reflects the effect of execution of 

various threads, individual thread behavior may not be evident. To get a better understanding of 

the multi-threaded platform, thread level profiling was carried out while the program was in 

execution. A sample of concurrency profile is given in Figure 4.12.  

 
Legend: name: function name, ncall: callcount of the function, tsub: time spent in the 
function, ttot: time spend in the function and sub-functions, tavg:ttot/ncall 

Figure 4.12 Concurrency profiling with 2000 users and 16 hosts 

The internal polling operation in line 8 of the output in Figure 4.12 shows that this function was 

called 65804 times after the global controller was started (even before the local controllers were 

2. Starting Global Lighthouse Controller .... Started

Clock type:CPU
Ordered by:totaltime, desc

Name ncall tsub ttot tavg
...7.egg/mininet/util.py:25 quietRun 179 0.372231 0.983090 O.005492
..gg/mininet/node.py:300 Host.linkTo 35 0.001244 0.770000 0.022000
..gg/mininet/util.py:79 makeIntPair 35 0.001611 0.541088 0.015460
..on2.7/subprocess.py:757 Popen.poll 65625 0.085931 0.333069 0.000005
..ckages/line_profiler.py:95 wrapper 3 0.000031 0.278079 0.092693
..et.py:141 mininetDriver.start_topo 1 0.000065 0.248423 0.248423
..g/mininet/net.py:348 Mininet.start 1 0.000077 0.248282 0.248282
..ocess.py:1256 Popen._internal_poll 65804 0.152177 0.247391 0.000004
..g/mininet/net.py:303 Mininte.build 1 0.000024 0.229708 0.228708
..net/net.py:255 Mininet.configHosts 1 0.001468 0.228668 0.228668
..g/mininet/node.py:267 Host.addIntf 70 0.000413 0.226883 0.003241
..7.egg/mininet/util.py:120 moveIntf 35 0.000189 0.226470 0.006471
..py2.7.egg/mininet/util.py:91 retry 35 0.000211 0.226280 0.006465
..ininet/util.py:105 moveIntfNoRetry 35 0.001316 0.226069 0.006459
..7/subprocess.py:619 Popen.__init__ 216 0.008887 0.090917 0.000421
..ocess.py:1099 Popen._execute_child 216 0.031574 0.074085 0.000343
..7.egg/mininet/node.py:235 Host.cmd 153 0.003151 0.029812 0.000195
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activated) and a total of about 0.25 Sec were spent on this operation. This amounts to about 26% 

of the time the thread spends in this function and the subfunctions it calls. 

Finer granularity execution at the statement level showed polling, sleep and host creation 

functions as the most expensive. Armed with this information we launch into the confirmatory 

phase. 

4.5.2  Experimental Results and Analysis 
From all the profiling runs with different workloads it is observed that three types of activities 

are consuming a large amount of time during the execution of the platform software: 

1) Creation and linking of the host to the network 

2) Polling of sockets for inter-service communication 

3) Sleep function 

This part of the work consists of conducting a two factor full factorial analysis on the factors 

revealed by the multi-layered dynamic analysis. The potential optimization opportunities 

revealed in sets of factors, functions (A): polling, sleep and host creation and workloads (B): the 

number of clients and hosts. The full factorial analysis confirms the significance of these factors 

by analyzing whether their effects on the execution times are real or just random. In our 

evaluation the workload was varied, by changing the number of users, from 500 to 2000, each 

accessing from a list of web pages, and also by varying the number of hosts per cloud from 4 to 

16 for hosting the platform modules as well as the application.  It is seen that execution time 

varies more with the number of hosts than with users. Without any loss of generality, we fix the 

number of users to 2000, and vary the hosts from 4 to 16 in steps of 4. Table 4.3 shows the 

execution time as a ratio of total module time to make them comparable across runs.  
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Effect of selected factors:  Table 4.3 reveals that row effect (βi) i.e. of the workloads are within 

1% of the average effects of all factors (0.7001). The column effects (αj) are, respectively, host 

creation on average 39% less than that of all factors and that of polling and sleep functions are 

7.66% and 31.35% more.  

Table 4.3 CPU Time for functions and workloads 

Workloads 
 

Functions 
Row 
Mean 

Row 
effects 
(βi) 

Host 
creation Polling Sleep 

2000/4 hosts 0.3307 0.7865 0.9641 0.6938 -0.0063 
2000/8 hosts 0.4316 0.7571 0.9325 0.7071  0.0070 
2000/16 hosts 0.5186 0.7174 0.862 0.6993 -0.0007 
Column Mean 0.4270 0.7537 0.9195 0.7001 

 Column Effects 
(αj) -0.2731 0.0536 0.2195 

  
 

Explanation of variations: The total variation of CPU time (y) can be attributed to ‘functions’, 

‘workloads’ and the ‘experimental’ errors. The second column of Table 4.4 shows the sum of 

squares explained by these factors (the individual means of Table 4.3). The percentage variation 

explained by functions (αj) and workloads (βi) is 68.29% and 0.05%, respectively. The 

unexplained variation due to errors (ei) is 31.68%. This clearly shows that functions selected are 

important for optimization regardless of the workloads. 

Table 4.4 Analysis of variance for Functions and Workloads 

 

Component 
Sum of 
Squares 

% 
Variation 

Degrees of 
Freedom 

Mean 
square 

F 
computed F Table 

y 4.8131   9       
µ 4.4107   1       
y-µ 0.4024 100 8       
αj 0.2748 68.29 2 0.1374 8.6212  F0.90,2,4= 4.32 
βi 0.0002 0.05 2 0.0001 0.0031  F0.90,2,4= 4.32 
ei 0.1275 31.68 4 0.0159     

Analysis of Variance And Visual Results: We test the significance of the two factors as far as 

the execution time is concerned. From Table 4.3 we observe that the workloads had comparable 

runtimes. This ensured that effect of the functions selected is not overshadowed by the 

differences in the workload run times. The number of functions is a=3 and the number of 
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workloads are b=3. In Table 4.4, the mean square is obtained by dividing the sum of the square 

by the degrees of freedom. The ratio of mean square of functions and workloads and that of 

errors gives the computed F-statistic. The calculated F-statistic for functions is greater than that 

obtained from the F-table at the 90 % confidence level so they are significant for our study. The 

F-statistic for workload is less so they are not significant.  

Visual examination of residuals and responses can be seen from the graphs below (Figure 4.13 

(a) and (b)). To check the homogeneity of the error variance we obtain errors (Table 4.5) and 

plot them against predicted response. 

Table 4.5 The estimated y and the residuals 

ŷij=µ+αj+βi ei=yij- ŷij 
0.4207 0.7474 0.9132 -0.0900 0.0391 0.0509 
0.4340 0.7607 0.9265 -0.0024 -0.0036 0.0060 
0.4263 0.7530 0.9188 0.0923 -0.0356 -0.0568 

 

    Figure 4.13 (a) Residual vs. Predicted Response Figure 4.13 (b) Quantile-Quantile Plot 

Confidence Intervals for the effects: To check the sanity of our results we took the analysis 

further by calculating standard deviations (SDs) and 90% confidence intervals (CIs) for the 

effects related to functions and workloads (Table 4.6).  The ‘t’ value used for the calculation of 
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CIs is for 90% confidence interval and 4 degrees of freedom (the degrees of freedom for the 

errors). 

Table 4.6 Calculation of CI of Effects 

MSE =0.0159 se= 0.1261 

SD of grand mean sµ=0.0420 

SD of αj sαj 0.0594 

SD of βis sβi 0.0594 
90% confidence interval for α 90% confidence interval for β 
(0.3003, 0.5537) (0.5670, 0.8205) 
(0.6269, 0.8804) (0.5803, 0.8338) 
(0.7928, 1.0463) (0.5726, 0.8261) 

It can be seen that CIs of the functions are all significant. Also the means of α do not lie in the CI 

of each other so they are significantly different from each other. This implies that optimization 

concerning these three functions should result in improvement in performance of the platform. 

The workloads on the other hand have their means in the CI of the others so they are not 

significantly different from each other.  

4.6 Optimization Results 
We first discuss the design choices that have been made in OpenADN and then the results of 

changes made on the platform software based on the profiling study and two factorial analysis. 

4.6.1 OpenADN design choices that affect performance 
OpenADN is envisaged to be deployed in a multi-cloud environment, instantiating multiple hosts 

in possibly geographically distributed datacenters. To make it efficient, it has been designed with 

an asynchronous bootstrap mechanism. If a node attempts to connect to another and fails, it 

retries after a certain interval. This interval could be fixed or adaptive. In OpenADN it has been 

fixed. Another design choice of significance is the asynchronous request-response messaging in 

which sender send a message with an ID, the receiver maintains a message queue. When the 
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response comes the sender matches the ID of the response. This allows the system to handle 

many requests simultaneously. The design of OpenADN is meant to be dynamic in adapting to 

application needs and scalable to handle large applications. To keep updated view of the whole 

system the control plane has to poll each node or the nodes must report their state at frequent 

intervals. Lazy updates involve polling before critical decision or data plane nodes report an 

event when load crosses a particular pre-set threshold. 

Each data plane node (that is a virtual machine hosting a message-level or packet-level service) 

is part of an OpenADN Distributed Virtual Switch (DVS) implementation. Also, the OpenADN 

data plane implementation exposes two types of interfaces for services to connect to the DVS, 

the socket interface for OpenADN aware services and the proxy port (pPort) for legacy, non-

OpenADN-aware services. OpenADN service flow will have message router, packet router, 

service node and proxies. OpenADN aware services connect through the sPort or the tPort and 

OpenADN unaware services through the pPort. The cPort is the realization of the control 

element in each of the virtual machines. Various ports associated with OpenADN are described 

below:  

sPort: The sPort or the service port connects to a message-level service such as a web server, a 

storage server or a message level middlebox (e.g., Firewall, transcoder, etc.). The sPort is 

configured through the control port, which connects it to the local control agent that is in turn 

connected to a control plane controller. 

pPort: The pPort or proxy port connects message-level legacy services to the OpenADN 

platform through the OpenADN Gateway Node. Users or third-party services working on a 

legacy application-level protocol such as HTTP or JSON connect to the proxy server. The proxy 
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server assigns a session manager thread to each connection. The session manager thread is 

responsible for handling all the transactions within the user session. Unlike the sPort, where each 

sPort hosts only one service, the pPort may be shared among many different application 

workflow instances. 

tPort: The tPort or tunnel port allows attaching packet-level services to the application 

workflows. Unlike the sPort, the tPort is a shared port that can be shared with more than one 

packet-level service and these services may belong to different workflow instances. 

cPort: Each virtual machine launched by the platform runs a host controller agent called the 

cPort. The cPort manages the OpenADN platform ports in the hosts. The cPort is the control 

plane agent in each virtual machine and is responsible for executing control plane instructions. 

These instructions may include commands for launching a new service and programming the 

corresponding platform port through which the service is attached to the platform; or replying to 

queries from the control plane regarding service liveness, resource availability and load 

information. 

4.6.2 The Bootstrap Process Revisited 
The bootstrap process was discussed in the sub-section 4.2.1. We see it again very briefly here to 

facilitate the discussion of the results.  

The resource manager initiates the bootstrap process where it assigns a role to each node that is 

started. On startup, each node checks for the role it has been assigned by the resource manager 

and fires the appropriate bootstrap script to assume its role. It adds fakenameserver (NS), global 

controller (GC) and the two local controllers (LC) for our configuration. It also adds a client host 

to each side, which simulates 10,000 users. 
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The GC initializes the workflow manager (WFM), WFM spawns a workflow thread (WFT) for 

an application, WFT registers the application instance with NS and tries to get a proxy node 

allocated by WFM. There are no resources yet so the request will be on hold and a request-failed 

message is sent. The design requires WFT to try again and it runs exponential backoff to repeat 

the request. WFM tries to get resources. Both the LCs boot up independently and try to register 

with the GC. They start a module called connection dispatcher, which allows data plane nodes to 

register with it. This process will make the resources available to WFM. WFM requests both the 

sites for resources, in the meanwhile WFT keeps polling. When a resource update comes, WFM 

sends request to allocate a data plane node for the proxy service. The proxy is initialized and 

WFM collects resources for other services. WFM has resources, starts application services, 

message and packet routing services. The internal services connect to the OpenADN gateway 

through a message level port (sPort) or a packet level port (tPort). After each service is initialized 

by WFT it connects to OpenADN socket.  

4.6.3 Details of Optimization 
Our work with OpenADN profiling and analysis, under different workload conditions, has 

revealed three types of activities that consume a large amount of time during the execution of the 

platform software: Creation and linking of the host and connecting services, polling of sockets 

and the sleep functions. We optimized the client host linking and the sleep function to see the 

effect on the overall execution.  

Linking hosts and connecting services: When the client requests a web service, the service is 

connected to OpenADN through the pPort. The http client thread is run and the service is 

registered with the fakenameserver. The http server waits for the response from the service. The 

server waits for these services and clients to connect in what seems to be a wasteful loop. While 
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it is necessary to suspend the operation of the loop in order to artificially synchronize the 

processes, indiscriminate use of sleep or similar functions would be quite wasteful. However, it 

was seen from line 100 of the program (Figure 4.14) that the 1s wait causes this program to take 

48.4% of the time for execution of this function.  

Total time taken: 2.11979 seconds 
Figure 4.14   http client connection (1 s case)  

We tried working with different wait times. When we change it to 1 ms we do not experience 

any change in the functionality of the software but the performance improves and it now just 

takes 4.3% of the time, giving more time to processing work (line 100 in Figure 4.15).  

Total time taken: 0.728944 seconds 
Figure 4.15 http client connection (1ms case) 

From Table 4.7 we see the performance of this thread for 1s, 1ms and 1ns sleep times. The total 

time spent in wasteful waiting reduces as the sleep time is adjusted to a lower level. This is true 

for both the initial connection and during operation. The conclusion is that the program 
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suspension duration needs to be carefully arrived at as such that the execution of the code is not 

affected i.e., connection of the client and the http service to OpenADN are not hindered. 

Table 4.7 Performance of client connection for 
varying execution suspension times 

Suspension 
Time 

Hits Time (μs) Time/hit 
(μs) 

%Time 

During initial connection 
1s 1 1026085.0 1026085.0      48.4 
1ms 1 31270.0   31270.0 4.3 
1ns 1 26151.0   26151.0   5.9 
During operation 
1s 24 898498.0     6898.6       42.4   
1ms 15 558403.0   37226.9      76.6 
1ns 9 337869.0   37541.0      75.8 

The Port initialization delays: This activity is required for connecting any node or service with 

OpenADN, its performance, therefore, becomes important. When profiling the initialization of 

communication ports, it is seen that most of the time is spent, a lot of it wastefully, on either 

security features or initialization of the logging files. Security features use internal libraries to 

generate keys and depend on the efficiency of this program. We chose to work with the logging 

feature, which was specific to OpenADN. Initialization of logging files could be done in a 

separate thread. By bypassing this, the logging times have been reduced by 89.8% for the pPort 

and overall reduction in the initialization time by 77.1% (Lines 206 and 211).  

Total time for initialization 0.00679 seconds 
Figure 4.16 Setting up the pPort  
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Total time for initialization 0.001553 seconds 
Figure 4.17 Setting up the pPort (after optimization) 

For the cPort the reduction of the logging part was 84.6%, while the overall reduction was 19% 

as shown in. Figure 4.18 shows the execution before changes and Figure 4.19 after changes (Line 

143). 

Total time for initialization 0.002394 seconds 
Figure 4.18 Setting up the cPort 

 

  Total time for initialization 0.001938 seconds 
Figure 4.19 Setting up the cPort (after optimization) 
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For sPort the reduction was about 87% with the overall reduction by 40.7% as seen from Figures 

4.20 and 4.21 line number 125. 

Total time for initialization 0.003443 seconds 
Figure 4.20 Setting up the sPort  

 

Total time for initialization 0.002041 seconds 
Figure 4.21 Setting up the sPort (after optimization) 

 

Table 4.8 gives a summary of the time gained by optimization of initialization of various ports 

UDP tunnel port initialization: In starting up a cPort quite a bit of time is wasted in 

udp_tunnel_port_init. The concerned process initialized a communication port with the GC and 

Table 4.8 Outcomes for port optimization 
 Hits Time Per Hit Time (Before 

Optimization 
 (After 
Optimization) 

Reduction in 
activity time 

Overall 
Reduction 

pPort 1 392 392 61.9% 13.4% 89.8% 77.1%% 
sPort 4 1825 456.5 53.0% 11.3% 87% 40.7% 
cPort 1 352.0 352.0 14.7% 2.8% 84.6% 19.0% 
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waits for a reply. This happens because even though this process waits for a reply message, the 

message is not used. Since it is a UDP tunnel, this wait for the message could be omitted and the 

process may return after the port initialization. When this was implemented the UDP 

initialization time was reduced by 98% (Figures 4.22 and 4.23).  

Total time 0.087109 (highlighted) 
Figure 4.22 UDP tunnel port initialization 

 

Total time 0.001043 seconds (highlighted) 

Figure 4.23 cPort without  udp_tunnel_port optimization 

The cPort bootstrapping time was reduced by 95% (line 159 in Figures 4.24 and 4.25) 

Total time 0.089496 seconds 
Figure 4.24 cPort bootstrapping without  udp_tunnel_port optimization 
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Total time 0.003811 seconds 
Figure 4.25 cPort bootstrapping with  udp_tunnel_port_optimization 

4.6 Summary and Discussion 
When software systems do not perform well, intuition or reading of code alone is not enough to 

provide reliable information on what could be wrong with the code. Many techniques have been 

traditionally used for system consuming physical resources. Multi-cloud management systems 

running in a virtualized environment can present a complex picture and evade optimization with 

the traditional techniques. It is necessary for both the CSPs and ASPs to use a platform that has 

been optimized for specific scenarios.  

In this chapter we have presented the work that we have carried out to optimize complex multi-

cloud platforms like OpenADN. Design choices at the time of the development of OpenADN 

govern the use of functions that might cumulatively consume substantial time. Non-blocking 

input-output in the form of polling or putting processes to sleep are an example of these. We 

have observed that the processes of such a platform might slow down if the use of these 

functions is not optimized. With a combined the technique of dynamic analysis and two-factor 

full factorial analysis, we have shown that the method can reliably and provably point out to the 

factors that need to be optimized to make the platform to perform its functions optimally. An 
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optimally performing platform will consume less resources, time and will lead to lower 

operational cost.  
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Chapter 5    

Placement of Virtual Network Functions on 
Multi-Cloud Systems 
In this chapter, we would discuss placement of virtual network functions on the virtual resources 

obtained from multiple cloud service providers. The requirement here is to meet the quality of 

service parameters like latency and jitter as per the policy agreed between the carrier and each of 

the cloud service providers or a cloud aggregator. The carrier would normally want the cost to be 

optimized without compromising on any of the parameters mandated by regulation or required 

for proper engineering of the service being deployed. In this work we use latency, as the 

representative parameter, to be constrained within the given threshold while minimizing the cost. 

This requires latencies of various clouds to be predicted at the time of actual placement. We have 

evolved innovative machine learning based prediction strategy for predicting latency at the time 

of commissioning of service for meeting end-to-end latency constraint. To make predictions 

accurate, appropriate attention has been paid to the dependence of latency on diurnal and also 

and short-term traffic variations. Since minimization of cost is the objective to be met, even for 

multi-modal cases, we have worked with a generalized random search method that works fast 

and is guaranteed to converge to the solution, or close to the solution. Two other requirements 

that have been imposed are the speed and the efficiency of placements. Speed is important for 
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fast initial placement as well as timely reconfigurations that are carried out if a service is no 

longer able to meet the performance requirements. Efficiency is important from the viewpoint of 

the cloud service provider and implies that placement would be successful if the required 

resources can be assembled from the contracted clouds. Finally, all the methods and techniques 

that were evolved for multi-cloud placement of virtual network services have been incorporated 

into a framework called Predictive – Adaptive Real Time (P-ART) framework. The work has 

been published in [10] [121].  

5.1 Introduction and Motivation 
Carriers perceive NFV as a disruptive technological development. NFV allows network 

functions and appliances to be instantiated, in software, on computing and networking resources 

obtained from datacenters or cloud service providers. The combination of NFV and cloud 

computing holds a great promise for carriers. With these developments carriers can look forward 

to freedom from dependence on equipment vendors and their expensive proprietary equipment. 

Additionally, they get ease of service creation and phasing out, the flexibility of scaling and de-

scaling, having points of presence closer to the users and avoiding a single point of failure. Cloud 

computing and NFV have a natural synergy that awaits full exploitation. It is expected that these 

two powerful paradigms would evolve together to support the requirements of virtual network 

services (VNS). The European Telecommunications Standards Institute (ETSI) specification of 

classification of cloud-native VNF implementations describe the creation of VNFs on different 

types of clouds [122]. 

One of the biggest challenges in deploying NFV over multiple clouds today is their inability to 

confer carrier grade performance to VNSs created using NFV paradigm [19] [20]. The Internet 

Engineering Task Force (IETF) too has identified performance and guaranteeing the quality of 
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service as open research areas and technology gaps in NFV [21]. The performance standards 

have been traditionally strict in telecommunications networks, with International 

Telecommunications Union (ITU) standards being adopted by most administrations. These 

standards prescribe stringent control over performance parameters like latency, jitter and packet 

loss [22]. The availability requirement is of the order of five nines (this translates to permissible 

downtime of just 5 minutes and 15 seconds in one year). In their infrastructure overview, ETSI 

has indicated latency and throughput constraints as the discouraging factors for the use of public 

clouds for hosting NFV. 

One of the reasons for software versions of network functions, i.e., VNFs, not giving performance 

comparable to the specialized physical appliances is their creation over general-purpose hardware. 

In contrast hardware appliances are based on ASICS designed for good performance. The 

performance suffers further when these ‘softwarized’ functions are instantiated over clouds. To 

compound the problem, carriers have lesser control over the flow of east-west traffic when network 

appliances move from their switch rooms and transmission centers to the CSPs’ datacenters. 

Among the operational reasons for the deterioration of the performance are, the ease of creation, 

destruction, migration, and scaling of virtual resources (courtesy NFV), which provide the 

technical staff with the opportunity for excessive virtualization. Previous works have also shown 

that virtualization may lead to abnormal latency variations and significant throughput instability 

[37]. Even though researchers have proposed ways of improving the performance of virtual 

network functions [23] [24], legitimate concerns still remain.  

In the ultimate analysis, the advantages of the virtualization of carrier network services and their 

deployment over clouds are far too important than the current problems. This has motivated me 

to evolve the P-ART framework that will help alleviate some of the main concerns of carriers 
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while deploying VNSs over multi-cloud systems, including meeting the contracted performance 

and keeping the cost within the prescribed budget.  

5.2 Contributions 
This part of the research aims to develop a framework for dynamic, predictive, adaptive and real-

time placement of carrier virtual network services over multi-cloud systems. To this end, the 

techniques that we have evolved have been put together to form the P-ART framework. The main 

contributions of this work are summarized below: 

1. Techniques for placement of VNSs to meet the carrier requirements of cost and latency and the 

CSP objective of acceptance rate: 

i) Innovative predictive dynamic placement algorithm that takes care of changes in the state of 

the cloud environment to ensure the validity of the placement at the time of activation of a 

service. Noticeably, the algorithm works with complete SFC, thereby taking into account the 

compute, storage and network links together, rather than the commonly followed path of 

placing VNFs individually. A comparison of our results with those in other works proves 

this point. As most carrier services are affected by latency, we choose to work with latency 

as an important performance measure. The work can be extended to other parameters 

following the same guiding principles. 

ii) We have approached the problem of the scarce availability of public datasets suitable for the 

in two ways. In the first method we built a queuing-theoretic model to generate train and test 

datasets. The other method consisted of the implementation of the system on CloudLab 

[123]. 

iii) One of the important aspects of the framework is a novel method that refines the prediction 
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algorithm, by taking into account variations in network latency because of temporally 

varying traffic conditions in the carriers’ networks. Unaccounted, such variations cause a 

concept-drift, which affects the accuracy of predictions and makes them unreliable. For this, 

we introduce the concept of using time as a feature in training the predictive machine 

learning models. This makes the framework adaptive to diurnal traffic variations. 

iv) Short-term traffic changes may occur because of events like a football match or an election 

rally. These changes do not follow the patterns of diurnal traffic variations and need a 

different treatment. Retraining of models is an option but it is usually quite time consuming 

and expensive. Our framework uses incremental learning to keep the models up-to-date. 

2. We explain in the related works section that, in general, Integer Linear Programming (ILP) and 

its variants give optimal solutions to the multi-criteria optimization problem but take 

significantly more time than other methods. This limits their utility in responding fast to the 

change of state of the multi-cloud system and the subscriber demands from the service during 

its actual operation. We have worked on an innovative placement strategy to carry put 

placements to optimize cost and keep latency within the specified threshold. In a first, we have 

used the random optimization as a viable method to achieve optimized placement. The 

algorithm converges to the global minimum even in the case of a multi-modal dataset. 

3. The high speed of placements allows the CSP to make changes in the network dynamically, in 

real-time or near real-time, as the factors like demand, traffic congestion on links, availability 

of resources on various clouds change. The P-ART framework incorporates innovative 

techniques for making the placement fast with high acceptance rate. A high acceptance rate 

implies that a placement attempt would be successful every time, if enough resources are 
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available on the clouds. 

5.3 Virtual Network Service Environment 
Various services, like wired or wireless voice and data services, Internet services, content 

delivery, leased circuits and virtual private networks, provided by telecommunication companies 

have been considered in this work as carrier network services or simply carrier services. In the 

virtualized form they are referred to as virtual network services. Traditionally, networks 

providing these services have been built using specialized physical appliances and transmission 

links that are custom built for carrier-grade performance. The proprietary and closed nature of 

these appliances creates vendor lock-in leading to high cost, prolonged service deployment time, 

inflexibility in scaling and introducing new services. NFV and cloud computing provide a way to 

create network functions, in software, over inexpensive hardware resources. Such virtual 

functions can be linked with virtual network links to create VNSs. The VNSs result in open, 

flexible, scalable and less expensive networks that are not proprietary and thus prevent vendor 

lock-in. In the next sub-section we shall see the constituents of VNS along with the cloud set-up 

that can be used for hosting such services. 

5.3.1 Constituents of a Virtual Network Service 
In most discussions on VNSs, VNFs are the basic unit of placement. They exhibit functional 

behavior similar to their physical counterparts and have well-defined interfaces consistent with 

relevant industry standards. VNFs can be instantiated on virtual machines (VMs) obtained from 

datacenters, or cloud service providers. All the instances of a VNF, for example, that of the core 

router function, would usually be hosted on one or more dedicated VMs on one or more clouds 

depending on the carriers’ requirements and CSPs own policies regarding these deployments. 
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An SFC or a VNF forwarding graph is a set of VNFs, interconnected in a well-defined sequence, 

to route the packets [26]. They are connected like the way the physical appliances are connected 

in a traditional network [124]. IETF RFC 7498 describes each network service being 

implemented through one or more SFCs [125] [126]. The SFCs can also be hybrid in which the 

carrier retains some of the legacy physical network functions (PNFs) while virtualizing the other 

functions. The SFC may, therefore, consist of VNFs, PNFs, and the links among them. 

Figure	5.1 shows the components of an SFC and associated modules. 

The broadband VNS, shown in Figure 5.1, is an SFC consisting of four VNFs, viz., an 

aggregation switch, a Border Network Gateway (BNG) and a core router. It also has multiple 

instances of a Physical Network Function (PNF), viz., Digital Subscriber Line Access 

Multiplexers (DSLAMs), retained from the legacy network. Each VNF has its own Element 

Management System (EMS), which interfaces the VNF to rest of the network [124]. The 

Operation Support System/Business Support System (OSS/BSS) of the carrier manages the 

VNFs and SFC through the EMSs. 

 
Figure 5.1 Broadband service function chain and associated 

modules 

SFCs can be placed on the available clouds in a number of ways. CSPs, or the niche VNF as a 

Service (VNFaaS) providers, may offer commonly used network functions, which may be leased 

by the carriers to form an SFC. Alternatively, with a view to exercise more control over the 
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performance parameters and cost, carriers may lease, virtual machines, and associated resources, 

in the clouds and instantiate VNFs themselves. Unless otherwise stated, our discussion presumes 

the use of the latter method. Figure 5.2 shows an example of an SFC mapped to multiple clouds. 

It may be noted that we now have four VNFs, as the SFC has two types of BNGs. The 

Aggregation Switch is presumed to have a built-in load-balancing function for distributing traffic 

between the two forked paths. The EMSs have been omitted for simplicity. The end-to-end 

latency of the SFC would depend on how, when, and where the constituent functions have been 

placed. When an initially placed SFC does not meet the required conditions, it has to be 

reconfigured by scaling up functions or even moving the VNFs to different clouds. 

 Figure 5.2. Mapping service function chain to the multi-

cloud system 

5.3.2 The Multi-cloud Hierarchy 
Public cloud services like Amazon EC2, Google Cloud Services, and Microsoft Azure provide 

the advantage of relatively inexpensive resource leasing options. Big public clouds are multi-

tenant and have a regional or international presence. These clouds can handle large volume, 

variety, and velocity of traffic. While a large public cloud does offer greater flexibility in 

obtaining resources and more analytical sophistication, taking all the data to just one public 

cloud would create traffic congestion and increase the access latency. Using a single cloud may 
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also often result in a single point of failure leading to service failures because of cloud blackouts, 

which are not uncommon.  

Additionally, the points of presence (PoPs) of even large public clouds may not be close to the 

carriers' subscriber clusters, and this would give rise to increased access latency. If the 

application calls for lower access latencies, then edge clouds closer to the subscriber clusters, 

offer a good solution. Carriers may also build their own private clouds, which they can 

customize and exercise more control over. This hierarchy of clouds – mobile-edge, private, and 

public – forms a multi-cloud system that can be designed to provide a combination of features 

like low latency, high storage, complex computations, lower cost, and better security. 

5.3.3 Representation of the Tenant Profile 
In this work, a cloud tenant (in our case, a carrier) profile is represented as a tuple <cN, v1, v2, …, 

vm, p>, for each request. Here, v1, …, vm represent the VNFs in the order of traffic traversal in a 

linear chain. The term cN is the native cloud for the tenant to which it is parented, and through 

which its traffic enters an SFC. The desired packet rate is represented as p packet/second. 

Multiple tuples can be used to represent branched traffic flows. Other stipulations like latency 

threshold (Lth) are part of the SLA. All the requests of the tenant are consolidated to calculate the 

required number of instances of each VNF and inter-VNF links of appropriate capacities. The 

cloud topology is represented by the graph Gc = (C, T), where C is the set of available clouds (c1, 

c2, …, ck) and ti,j are the inter-cloud links. The CSP (or a cloud aggregator who integrates services 

from multiple clouds) carries out the task of mapping service chains onto the available clouds to 

achieve optimal results for the carrier. In our case, optimality refers to the least-cost solution that 

meets the end-to-end latency threshold requirement. 
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5.4 Problem Definition 
In this section, we discuss some of the key outstanding problems in the dynamic placement of 

multi-cloud carrier VNSs, that we attempt to handle in the P-ART framework. 

5.4.1 Achieving Dynamic Placement in Multi-cloud Systems 
Some carrier services may be fairly static, e.g., fixed voice network. Thus, the requirement of the 

number of instances of VNFs and link capacities only change slowly over time. On the other 

hand, some services may be extremely dynamic, requiring a change in the number and types of 

VNF instances, re-dimensioning of links and changes in the offered features of the service very 

frequently. An example of such a service is an intelligent network service, like televoting, that is 

in TV reality shows. Different TV reality shows may require different features and the number of 

voters may swing unpredictably during the voting window. If the CSP only offers largely static 

placement with reactive and relatively slow modifications, then the programs' requirements may 

not be met. 

The bottom line is that both, the dynamic and static services, require the CSP to scale VNF 

capacities or links, albeit at a different rate. Dynamic services may be more demanding in terms 

of types and number of instances of VNFs and link resources and may even require migration of 

VNFs from one cloud to another to be able to continuously meet the cost and end-to-end latency 

constraints. A dynamic placement algorithm that would monitor the SLA parameters and 

proactively cause changes in the amount of resources, and the combination of clouds, to meet all 

the requirements at all times, is still a challenging issue. 

5.4.2 Optimizing the SFC Performance 
When the data are high dimensional and multi-modal, optimizing placement of individual VNFs 

may not achieve the global minimum. Placing SFCs as a unit yields better results. The 
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opportunity to achieve the global minimum for the parameter being optimized is available when 

placing the SFC. If sufficient resources are not available to implement full-service chains, then 

the request may be rejected or, if the policy permits, degraded service (for instance without 

firewall) may be provided [26] [27]. In this work, we only consider complete SFC placement. 

The case where the customer accepts degraded performance due to low-capacity chain placement 

or partial functionality due to incomplete chain placement is left as future work. 

5.4.3 Meeting the Cost and Latency Constraints 
From the carrier’s perspective, the placement problem boils down to placing network functions 

in such a way as to meet the cost objectives under latency constraints. At the commencement of 

the VNS and during operation, the placement problem needs to be repeatedly solved to ensure 

that the carrier requirements are continually met. Performance criteria vary from service to 

service. For the carrier services like voice, broadband, and content delivery some of the common 

factors are jitter, packet loss, latency, and throughput. ITU standards for QoS parameters in 

carrier networks are available in [22]. Latency is one of the most important criteria for most 

services, and we have taken that as a reference performance parameter. The framework can be 

extended to include other criteria as well. 

5.4.4 Speed and Efficiency of Placement 
Carriers want short placement and reconfiguration time so that the solution can be useful in an 

operational network. The CSP wants the solution to have the high success of placement requests 

such that utilization of the virtual resources increases. When the system cannot place despite the 

availability of resources, it has low efficiency. In such cases, CSPs lose by way of unused 

resources and possible breach of SLA. 
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5.4.5 Interference Among VNFs 
For optimizing their own cost, a CSP may instantiate several VMs on the same physical machine 

(PM) or a number of virtual links on the same physical inter- or intra-cloud links. Also, VNFs of 

more than one service provider may be instantiated on the same PM. In some cases, pre-

instantiated VNFs may be shared among carriers. Sharing of physical and virtual resources not 

only cause performance concerns, but could also give rise to security concerns. For our work, we 

have assumed that VNFs of different types, belonging to a carrier are on different VMs.  

5.4.6 Problems Addressed in this Dissertation 
The following issues have been specifically addressed in this work: 

1. Dynamic placement of the complete SFCs belonging to a VNS. 

2. Meeting the specified performance and cost criteria. 

3. Prediction of latency using machine learning as a basic input for the placement algorithm. 

4. Refining the prediction by handling the temporal variation of traffic, unplanned short-

term spikes in traffic and the time lag between planning and commissioning of SFCs. 

5. Fast placement of SFCs with high success rate. 

5.5 The Proposed P-ART Framework 
In this section, we describe our framework and approaches for tackling the challenges discussed 

in Section 5.4. We also describe how the refinements mentioned were carried out to achieve the 

desired solutions. The methods described here can be used for carrier networks as well as in the 

enterprise environment. For our studies, we will consider the placement of the SFC shown in 

Figure 5.3. 
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Figure 5.3. The configuration of the experimental service chain 

5.5.1 Information Available from Carriers and CSPs 
Carriers, who request service chain placement, provide information about the performance 

required from a VNS, and the number and structure of the SFCs and the VNFs to be instantiated. 

A VNS may have one or more SFCs. The ith SFC, Si, can be represented in terms of the 

constituent VNFs, i.e., 

Si = <CN, vnf1(i), vnf2(i), …, vnfn(i), p>  (1)     

Where CN is the native cloud and p is the maximum packet rate through the chain. The native 

cloud is usually the point of presence (PoP) of the CSP, closest to the carrier, and provides 

interconnection to the carrier. The CSP may provide an option to connect to PoPs at other 

locations. This gives the carriers a choice to have traffic ingress points close to the customers. 

The design is to be carried out such that the costs of the network, as well as latency in reaching 

the cloud system, are kept to the minimum or below a given threshold value. 

An SFC is represented as a forwarding graph of the type Gv = (V, E), the nodes V being virtual 

network functions and edges E the virtual links among these functions. The demanded capacity 

of ith VNF, vnfi (i ≤ n) is expressed as vi
c in the same integrated units as the cloud capacities 

(shown in Table 5.2). An integrated figure represents the compute capacity ck, of a cloud k, 

consisting of a certain amount of processing, memory and storage components. However, there is 
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no integer constraint on the VNF capacities. These are mapped onto resources in the available 

clouds represented as another graph Gc = (C, T), where C represents the set of clouds with 

physical/virtual infrastructure and T the set of links tij among them. The state of a cloud k, at any 

specific time, would involve the cloud compute and link capacities –installed capacities denoted 

as ck
(c) and tkj

(c), and the corresponding used capacities are ck
(u) and tkj

(u). The carrier provides the 

maximum expected packet rate p for each request originating from a cluster of subscribers. The 

expected end-to-end latency is specified by the carrier in terms of a latency threshold (Lth). The 

CSP consolidates the VNF requests and packet rates required for each type of chain to allocate 

resources in an optimum way. Table 5.1 gives the symbols frequently used in the work. 

Some of the important constraints subject to which the cost optimization is carried out are: 

• The number of instances of each type of VNF across all the used clouds, for any carrier, 

should not exceed the number of licenses for that function type paid for by the carrier. 

• To place any chain, at least one instance of each type of VNF needs to be instantiated. 

• The total capacity of each type of VNF placed on any cloud k should not exceed the 

capacity available in the cloud. 

Table 5.1 Symbols used 
Symbol Description Symbol Description Symbol Description 

ck Cloud k cN 
 

Native cloud ck
(u) Used capacity of cloud k 

C Set of all clouds 
available 

vi
(c) Capacity demand for 

VNF i 
tij

(u) Used capacity of the link 
between clouds i & j 

tkj Link from cloud k 
to j 

cN
(c) 
 

Equipped cap of native 
cloud 

p The maximum expected 
packet rate 

T Set of all inter-
cloud links 

cN
(u) Used cap of native 

cloud 
m No of clouds selected 

vi ith VNF  ck
(c) Installed capacity of 

cloud k 
vnfi The ith VNF in the SFC 

V Set of VNFs tij
(c) Capacity of link 

between clouds i & j 
Lth Latency threshold 

n Types of VNFs Vi
(c) Capacity demand for 

ith VNF 
CB 
 

Cost budget 
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• At any given time the sum of the traffic flows, due to all service chain placements, between 

any two clouds k and j should not exceed inter-cloud link capacity tkj(c). 

• The end-to-end latency, L, of any chain should not exceed the specified threshold Lth. 

• While the cost is optimized, the carrier may additionally specify a budget CB for it. 

The framework requires that the CSP lays down its policies regarding tariffs, integrated virtual 

resource capacities, clouds offered, the arrangement with other cloud providers, cloud and link 

capacities offered. 

5.6 Predictive Adaptive Real Time Strategy 
The placement solution optimizes cost and constrains the end-to-end latency below the specified 

threshold, Lth. We assume that the design for instantiation of SFCs, belonging to a VNS, is ready 

at time t, but actual placement is yet to happen. In other words, the placement problem has been 

solved at time t for the placement and activation that will actually take place at time t1. Predictive 

placement is used to take care of the change of state of the clouds because of this time difference. 

Using prediction of the latency, as the basis for design, also takes care of the large number of 

infrastructure and network level parameters that interact in a complex way to decide the end-to-

end latency. In addition to these, the background traffic in the network affects the latency 

experienced by the subscribers of the VNS being placed. Therefore, taking care of the 

background diurnal traffic variations in the network makes prediction of latencies more accurate 

and the system more adaptive to such changes [127]. Short-term surges in traffic, due to events 

like a football match also affect latencies during the event and should be accommodated by 

dimensioning and reconfiguring the SFCs. This renders the system more responsive (and near 

real-time) in terms of latency predictions. We have taken into account all these factors in 
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formalizing our prediction algorithm. Latencies so predicted are then used to select a suitable 

subset of least-cost clouds meeting the latency constraint. The complete algorithm is given in 

Algorithm 5.1. 

Algorithm 5.1: PLACE_SERVICE_CHAIN (client_demands, csp_data, cv_model) 
1: Set up cloud data // all ck ∈ C and tk,j ∈ T 

2: Set up client data // all vi ∈ V 
3: Latency threshold!Lth 
4: Cost budget ! CB 
6: NCloud ! cN // Native Cloud 
7: vic ! capacity demands for vnfi 
8: n ! length of the service function chain (number of VNFs) 
9: native ! true // set native to 1 if native cloud is used else 0 
10: if (native == 1) //place as many VNFs as possible in the native cloud 
11:  for vi, i =1, n  
12:       if ccN –cuN > vic // native cloud has unused capacity 
13:            pop vi 
14:           cuN! cuN+vic  // update cloud capacity 
15:       else 
16:            break 
17:       end if 
18:  end for 
19: end if 
20: if V != 0 // for remaining vnfs 
21:  call RANDOM_SELECTION(C, cv_model, r_clouds)   //get a set of lowest cost clouds 
22:  sort ascending r_clouds on cost   //set of smallest latency clouds 
23:  while V != 0 
24:       place vnfs //on sorted clouds 
25:       update capacity 
26:       update bandwidth 
27:      update vnfs_placed status 
28 :  end while 
29: end if 
30: if all_vnf_placed & latency of chain < Lth & cost of chain < CB 
31:  output placement details 
32: else 
33:  report failure to place 
34: end if 
The essential elements of the placement process can be understood like this: the placement 

process takes care of the change of state of the cloud system by predicting latencies at the time of 

actual activation of the SFCs. This obviates the need for drastic changes soon after placement or 

a reconfiguration. Prediction is, thus, an essential element of the framework. Having said that, 

the prediction methodology needs to be robust against traffic variations. With this, the 

framework becomes adaptive to placement time and traffic variations. To make the framework 
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fast, responsive, and useful in real-time, further steps need to be taken. For this, short-term traffic 

variations are taken into account.  

Two other important factors that need to be taken care of are speed and acceptance rate of 

placement. Fast placement algorithms would allow continuous optimization by making real-time 

changes (e.g., migration) possible, when the need arises, during the operation of the network. For 

dynamic scaling, a fast algorithm would be able to place hundreds or thousands of functions in 

sub-minute time frame. At the same time, a 100% acceptance rate implies that the algorithm 

totally accurate and is able to satisfy all requests for placing SFC, subject to capacity being 

available. This contributes to the avoidance of repeated attempts at placement and saves time and 

money. 

Algorithm 5.1 is called for placement and reconfiguration. The cloud and client data are initialized 

based on the CSP resources and the client request and policies (lines 1-5).  A separate process 

produces a trained model cv_model using the training data (X ! feature_set and y ! labels), which is 

available to the placement procedure. The placement normally begins with the native cloud (this can 

be overridden in line 9 by setting native = 0). The algorithm accommodates as many VNFs as 

possible in the native cloud (lines 10-18). For the remaining VNFs, the chosen support vector 

regression module predicts the latency of various clouds. This procedure uses Algorithm 5.3 

(procedure RANDOM_SELECTION) to select the set of m least-cost clouds that meet the latency 

requirements. The number m can be decided to start with enough capacity to place all the VNFs. For 

the least-cost set, the algorithm calculates the assignment of VNFs in the sequence in which they 

appear in the SFC. The final cost and latency are reported (line 31). If the clouds are exhausted, and 

placement has not completed, then failure to place is reported. If this case happens frequently, then 

the number m needs to be increased. 
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5.6.1 Handling Change of State of the System by Predictive Placement 

The cost of placing an SFC is a function of the set of clouds Cs (Cs ⊆ C), where C is the set of all 

available clouds), selected to place the virtual network functions and the amount of computing, 

storage, and networking resources consumed. End-to-end Latency (L) of the SFC depends on a 

number of factors prominent of which are, a) the installed and used capacities of computing, 

networking and storage resources in the physical servers and the links, b) the traffic pattern on 

the links, c) the types of network functions sharing the servers, and d) the distance between 

clouds. These factors together constitute the state St of the multi-cloud system at time t.  

As the system operates, the number of tenants and their workloads change, causing the state to 

change. The amount of latency introduced in a placement by the state of the cloud, therefore, changes 

over time. Given the state St at the current time t can be observed or computed using assumptions 

about the type of traffic, e.g., Poisson, service times and the queuing discipline. The process of 

planning service function chains, creating virtual resources to host network functions and booting 

them up takes time [128]. Loading the network function software for various VNFs, chaining, 

acceptance testing, and commissioning need additional time. Initial placements and 

reconfigurations planned based on calculations at time t, and the state St, are actually carried out 

at a time t1. In due course, parameters may change and require fresh reconfiguration [129].  

Figure 5.4 shows the SFC to be placed and the available clouds. Used and installed compute 

capacities are shown, in integrated units of Table 5.2, within the clouds, and so are the used and 

installed link capacities in M (Megabits) or G (Gigabits) per second. At time t, the assessed end-

to-end latency is 20ms. When the actual placement and activation takes place at time t1, the 

latency turns out to be 50ms. This increase may cause SLA violation right at the inception and 

trigger reconfiguration of the chain. When this happens for several service chains, it may lead to 
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a heavy penalty to be paid by the CSP and a loss of customers and revenue for the carrier for not 

being able to provide service. When the states of the target clouds are known, the set of least-cost 

clouds, which give cost and latency below the stated thresholds, can be determined.  

 
Figure 5.4. Need for predictive placement 

Thus, if the state St1 at the time t1 can be predicted, and the placement is carried out based on this 

state, then the placement remains consistent with the requirements. This is demonstrated by our 

empirical study given in Section 5.10.  

The placement procedure: In an operational CSP set-up as well as the carrier network, a large 

amount of useful labeled data is available. This data can be curated for use with supervised 

machine learning techniques. As the speed, simplicity, and accuracy are of concern, we worked 

on a prediction technique that could be applied repeatedly for the selection of a set of cloud 

consistent with the objectives of the framework. A review of the literature given in Chapter 3 

shows that many supervised machine-learning techniques have been used in cloud computing 

settings, such as Artificial Neural Networks, Bayesian networks, Ensemble classifiers and 

Support Vector Machines. We worked with a number of methods and found interesting results 

with a well trained and tuned support vector regression (SVR). We discuss the results given by 

some well-known stock algorithms to justify the reason for our choice in Section 5.10.6. In 
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general, SVR offers the advantage of a unique global minimum as it solves a convex 

optimization problem. Also, it is amenable to incremental learning. We have observed that it 

adapts well to multi-modal cases where the latency is time variant and needs multiple models to 

fully capture the actual situation. Well-tuned and trained models, generalized well from training 

to the production environment. The results of our experimental evaluation are given in 

Section 5.10.  

5.6.2 Incorporating Temporal Variation of Traffic in the Model 
We will show, in a later section, through our empirical analysis that taking diurnal traffic 

variations into account improves prediction of latencies. In carrier networks, there is temporal 

and spatial variation in traffic demand because of time differences and patterns of use. The 

amount of traffic flowing through the virtual devices and links varies from place to place and 

hour to hour. This affects the latency experienced by the subscribers of the carrier’s VNS. If the 

provider over-provisions the resources to meet the surge in traffic in the busy hour, then 

resources may lie unused at other times. On the other hand, if enough resources are not 

provisioned, in an attempt to reduce cost of the deployment, then traffic may be lost along with 

the associated revenue. Figures 5.5 (a) and 5.5 (b) show hourly variation of the actual traffic on a 

100 Gbps link from Chicago to Seattle and 10 Gbps link from Los Angeles to San Jose [130]. 

The traffic that a carrier routes through the VNFs consists of streams of voice, video, and data 

with different probability distributions. Each of this traffic varies independently in the time 

domain. The aggregate traffic in the CSP’s network is a composite of all the tenants’ traffic and 

has a complex distribution. The traffic flows continuously as data streams and has properties of 

big data [131]. In such a dynamically changing and non-stationary environment, the data 

distribution changes over time, causing the phenomenon of concept drift [132]. The drift is 
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characterized by the change in the density function, that is, in turn, reflected by the change in the 

shape of the traffic distribution or its statistical properties like mean and variance. Thus, the joint 

distribution pt of the predictor variables (X) and the labels (y) would change dynamically over 

time such that at time t0, t1, …, tn the following relationship (2) holds for all X. 

 pt0(X, y) ≠ pt1(X, y) ≠ … ≠ ptn(X, y)    (2) 

  
Figure 5.5. (a) Traffic variation on Chicago-Seattle link 

 Figure 5.5 (b) Traffic variation on Los Angeles-San Jose Link 

Solving the diurnal traffic variation problem: The solution evolved by us takes care of the 

concept drift to ensure more accurate traffic predictions. A single SVR model works well in 

situations where there is no sizable ambient traffic from other applications and network services. 

However, SVR by itself does not take care of the time-varying nature of the traffic present on the 

links from other voice, data, and video applications. To handle this, we incorporate time as a 

feature by allocating numerical codes to windows. 
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Researchers have experimented with both fixed and adaptive window methods to handle concept 

drift in real time situation. In the case of fixed windows, the data is segregated into many small 

windows to have lower overall generalization errors as compared to a single window situation 

[132]. The utility of the fixed window sizes, for topological data analysis, has been shown, under 

certain conditions, by the authors in [133]. A window of a certain minimal fixed size allows 

learning concepts because the extent of drift is appropriately limited [134]. In Adaptive Windows 

[135], the window size is changed so that the difference in errors (ϵ), given by a point in two 

neighboring windows, is bounded by a small value δ such that ϵt –ϵt-1 < δ. 

To achieve a good compromise between prediction accuracy and complexity, our method has the 

simplicity of a fixed number of windows and is also flexible to include a variable number of 

traffic data points depending on the frequency of variations in different windows. Consequently, 

we call this method fixed-time variable-points (FTVP) window. SVR models are trained, one for 

each window, to tackle the effect of the concept drift. While even as few as two windows give an 

improvement in prediction, finding the right number and sizes is a matter of optimization. A 

larger number of small windows may give more accuracy, but would produce a larger number of 

models and would necessitate maintenance of all of them. This concept allows introduction of 

time as one of the features in the training examples. In a sense, each example carries a time-

stamp, which makes it a member of a particular FTVP window. When a prediction for a new 

point is made, the time feature will cause the framework to use the model appropriate for the 

corresponding time window. In our experiments, this method gives far lower prediction root 

mean squared error (RMSE) and absolute error ratio (AER) than a single integrated windowless 

model. 
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Figure 5.6. Comparison of generalization error with an integrated model and FPTV model 

To validate the FTVP concept, we created a trained SVR model using a single window (full 

integrated dataset) and separately for each of the four selected FTVP windows. In Figure 5.6, we 

show a plot of the absolute error rate versus the latency for both cases. The motivation for using 

multiple training datasets, using time as one of the predictors, becomes amply clear. The errors, 

in general, remain more controlled in the FTVP case.  

5.6.3 Corrections for Short-Term Traffic Variations 
In an operational network, the dynamicity of the environment would render the trained predictive 

models obsolete, if the effects of the short-term changes in the traffic are not accounted for. 

Short-term variations are caused by events like festivals, game tournaments, or rallies. If the 

effect of short-term changes in traffic is not taken care of, latency prediction and consequent 

placement decisions may not be correct. Since retraining of all the models would entail 

prohibitive time and cost, we have used an incremental update of the models [132].  

Choice of SVR for prediction makes incremental learning easier to understand. In SVR, the 

support vectors are the only points that determine the decision surface. They also satisfy the 

Karush-Kuhn-Tucker (KKT) conditions [136]. Each new point generated because of the change 

in traffic is checked for being a support vector. If it is a support vector and improves the overall 

model for future predictions, then it is included. If this becomes time-consuming, due to 

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	

A
bs
ol
ut
e	
er
ro
r	r
a,

o	

Latency	(ms)	

Window 1	 Window 2	 Window 3	 Window 4	Window	4	Window	3	Window	2	

Window	1	

													

Latency	(ms)	
0																			2																						4																		6																		8																					10																			12																	14																			16																		18																		

Ab
so
lu
te
	e
rr
or
	ra

>o
	

18	

16	

14	

12	

10	

08	

06	

04	

02	

00	

Integrated	Model	
FTVP	Model	



	

	 101	

continuously generated traffic data, training in small batches speeds up the process. Support 

vectors can be separately found for each batch of fresh points, and they can be included in the 

model only if they improve it. Algorithm 5.2 gives the incremental training algorithm. We see in 

the next section that this contributes positively to the model empirically. 

The initial training process creates a set S = {xs, ys} of support vectors that decide the decision 

surface. Algorithm 5.2 starts with the solution function f(t) at time t in terms of the initial 

training dataset T = {(xi, yi), i = 1, …, n} xi ∈ Rn and yi ∈ R. The set of support vectors at this 

time are S(t). For the time t+1 for which the model needs to be incrementally updated each of the 

new examples {xnew(t), ynew(t)} is received in the time window (t, t+1), the algorithm checks if 

the new point is a support vector. The new support vectors are incorporated in the set S(t+1) if 

they improve the performance of the model as indicated by reduced mean squared error. Our 

simulations given in Section 6.6 also support this argument. The simplified algorithm is given 

below: 

Algorithm 5.2: TRAIN_REAL_TIME (T, xnew, ynew) 
1: //Initial training set T = ((x1, y1)…(xn, yn)) 
2: f (t) = A(T) //Training done at time t 
3: f(t) : S(t) //S(t) is the set of support vectors at time t 
4: Initialize S(t+1) to S(t) 
5:for all {xnew, ynew} in the window (t, t+1) 
6: if xnew(t) : xs and ynew(t) : ys   // new point is a support vector 
7:       S(t+1) = S(t+1) ) ∪ (xnew, ynew) 
8: endif 
9: endfor 
10: output f(t+1) : S(t+1) //updated model at t+1 

The removal of support vectors when the short-term traffic condition that created them has 

passed is left as a future work. 
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5.7 Cost optimization 

5.7.1 Optimization of Cloud Selection by Random Search 
An important part of the solution is to select the set of clouds that would be used for placing the 

VNFs of an SFC such that the total placement cost is the lowest possible, within the budget CB 

specified by the carrier, and is consistent with the latency constraints, i.e., ∑i li ≤ Lth where li is 

the latency within ith cloud, and its link to the next cloud and Lth is the threshold given in the 

SLA. Following Occam’s razor, we looked for an algorithm that would be simple and yet 

effective in meeting the real-time requirements. Algorithms like A-Star are efficient in finding a 

low-cost walking path from one node to another. Even with one parameter, i.e., the length of the 

path, its time complexity can degenerate to exponential. 

A naïve approach is to search for m lowest cost clouds (enough to meet the capacity 

requirements), one at a time out of total n (m ≤ n) such that the total cost (in terms of cloud 

resources and links) is minimized and the latency remains below the given threshold. In large 

networks, a systematic search like this for the global minimum becomes impractical [137]. The 

worst case time complexity of this algorithm can be assessed as follows: the search for each next 

lowest cost cloud requires approximately n lookups, searching m clouds would have the 

complexity O (mn). Again in the worst case, we would need to look through all the remaining (n-

m) clouds to make sure the latency is below the threshold. Thus the complexity is O((n-m).mn) or 

O(n2m – nm2). Selecting just five clouds out of a hundred would require 47,500 iterations. In 

Section 5.10.11 we compare the randomized cloud search with a modified sequential baseline 

method to show the usefulness of the adopted technique. 

We find that the application of the general theory of optimization by random search gives us 

good results in the multi-cloud environment. The mathematical treatment of this technique is 
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given in [138]. We have adapted this model to multimodal cases in the presence of constraints 

[137]. This category of algorithms is useful and efficient for large-scale ill-structured global 

optimization problems. In contrast with the deterministic methods, like branch and bound, which 

guarantee asymptotic convergence to the optimum at the high computational effort, random 

search algorithms find a relatively good solution quickly and easily. It has been shown that a 

global optimum can be found with random optimization even if the objective function is multi-

modal [139]. Deterministic methods for global optimization are NP-hard, a random search 

method may be executed in polynomial time [140]. Many of the global random search (GRS) 

algorithms have the following desirable features because of which they are popular (i) the 

algorithms are usually easy to construct with a guarantee of convergence, even if the objective 

function is multi-modal [140]; ii) they are insensitive to noise in the objective function; iii) they 

are insensitive to the shape of the feasible reason; (iv) they are insensitive to the growth in the 

dimensionality of the feature set. In these cases, it is relatively easier to construct GRS 

algorithms guaranteeing theoretical convergence. The theoretical basis of general random search 

is given below. The implementation is shown in Algorithm 5.3, and the convergence is proven 

empirically in Section 5.10.11. 

According to [141], the general problem of minimization can be stated in terms of minimization 

of the objective function f(x) in the feasible region x∈X, if x* is the global minimizer of f(x) or 

f(x*) =  minx∈X f(x). A global minimization algorithm constructs a set of points xi i=1…n, from 

the region X, such that the sequence of labels yi=1…n = mini=1...n f(xi) approaches the minimum 

f(x*) as n increases.  
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To establish the convergence of a global random search, we assume that if x is randomly chosen 

from within the region X, then f(x*) is a result of some stochastic process. We are presuming a 

generalized construction of the algorithm where the next point can be chosen from the entire 

space. Thus, if X⊆ Rd  and 0<X<∞, ∑j=1…∞ inf Pj(B(x, ε )) = ∞ for all all x ∈ X and ε > 0, where 

B(x, ε) = {y∈X : ||y−x||2 ≤ ε} and the infimum is over all possible previous points x1…(j-1) and the 

result of the evaluation of the objective function at these points. Pj are the probability distribution 

of xj. Then with probability one, the sequence of points x1, x2, ... falls infinitely often into any 

fixed neighborhood of any global minimizer. In other words, if the algorithm is allowed to 

converge to a global optimum in a finite number of iterations within an acceptance probability, 

then it will converge with probability one [141] [142]. The authors in [138] prove that as long as 

random sampling does not ignore any region, then the algorithm converges with probability one. 

As even for large chains, the number of clouds from which resources are to be taken is not very 

large; we apply a random selection to our problem by selecting at each step a unique set of the 

desired number of clouds randomly. Accordingly, we repeatedly choose, with replacement, a set 

M of m clouds from a space N of n clouds (such that m ≤ n) with replacement. If the total cost of 

the last set is less than the set examined in the last iteration, and the latency is still less than the 

prescribed threshold, then the algorithm remembers this set. The total cost includes that of the 

cloud resources and the inter-cloud links. The link costs are usually much larger and ensure 

locality of clouds while selecting the clouds for placement. When the random selection no longer 

changes the achieved least cost, the process terminates, and the resulting least cost cloud-set is 

used for placement of the SFC in Algorithm 5.1. Alternatively, to ensure graceful stop, if the 

difference between the last two costs falls below a given value, the process can be terminated. 
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It is appropriate to mention that the total cost and latency of the selected cloud-set places an 

upper bound on the final figures as eventually more than one VNF may be placed on the same 

cloud, and all the clouds in the selected set may not be used. As the algorithm iterates over the 

available clouds, the set M clusters around the minimum. The algorithm converges to the global 

minimum, with probability one, even in a multimodal case, as long as it does not consistently 

ignore any of the clouds in the space N. These conditions are met in our implementation. 

Algorithm 5.3 gives the details of random selection. The procedure PREDICT_LATENCY has 

not been separately elaborated as it is based on the SVR model(s) refined for concept drift and 

short-term changes in traffic as already discussed above. 

Algorithm 5.3: RANDOM_SELECTION (C, Lth, cv_model, r_clouds) 
1: //C: a set of available clouds, cv_model: trained model 
2: init small //contains the sum of costs of the current smallest     cost clouds 
3: init lat  // lat: latency 
4: init iter  //set iterations large enough for convergence 
5: while (iter) 
6: init r_clouds // r-cloud array holds final min cost set of clouds 
7: //find a set of m unique clouds 
8: while (m_clouds not unique) 
9:  m_clouds !a random set of m clouds from set C 
10: end while 
11: //test set r_clouds still has the lowest cost and lat ≤ threshold 
12: call PREDICT_LATENCY //uses trained and refined models 
13: for k = 1, m 
14:  lat = lat + latk  //initial assessment of total latency 
15:  cost = cost + costk 
16: end for 
17: if cost < small and lat ≤ Lth 
18:  small = cost 
19:  r_clouds ! m_clouds 
20: end if 
21: end while 
Algorithm 5.3 expects CSP data like the available clouds C and a trained prediction model 

cv_model and produces a set of 'm' minimum cost clouds to be used for placement by Algorithm 

5.1. The variable small represents the smallest total cost of the selected clouds. In line 8-10 a set 

of m unique clouds is selected. Line 12 calls the procedure that predicts latencies for the selected 

set of clouds. The total cost of the selected clouds is checked against the current minimum cost, 
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and if found to be lower than the vector r_clouds is updated with the new set of clouds and small 

with the new lower cost.  

5.8 Increasing Speed and Acceptance Rate of Placement 
These requirements arise from the dual necessity of real-time usage and agility of the service 

deployment. 

a. Speed for real-time usage In an operational virtual network service, the cloud service 

provider needs to monitor latency continuously for avoiding a breach of SLA 

requirements. Not only the latency and other QoS requirements should be met on initial 

placement, but also during operation of the service. If the end-to-end latency goes over 

the stipulated threshold, then the change of placement of VNFs and reconfiguration of the 

SFC is required. This necessitates the algorithm to be fast in giving optimum SFC 

placement, migration, and scaling (increasing or reducing the number of instances) 

decisions so that the network can be dynamically managed. As reported in the literature, 

ILP based solutions for the placement problem may take a long time (of the order of 

hours) to converge to the optimum solution [59] making them unsuitable in many 

situations of dynamic placement. 

b. Efficiency of placement The efficiency of placement refers to successful placement rate 

(also called the acceptance rate) and reconfiguration of chains consistent with SLA 

requirements. It is important for this rate to be high since frequent failure to place and 

reconfigure chains according to the requirement may lead to the carrier not being able to 

handle customer requests. 
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5.9 Combining the Elements of the Framework 
The placement strategy described above has been implemented in a placement framework called 

the P-ART framework. The main modules of P-ART are as shown in Figure 5.7 along with the 

relationship with the algorithms discussed. 

 
Figure 5.7 The P-ART placement framework 

The framework allows CSP and carrier policies to be stored as well as the means for them to 

communicate with the framework. The instant state of a cloud consists of the used capacities of 

virtual compute, storage and networking resources. For each placement request, the management and 

monitoring module produces a success or a failure report. A brief description of the modules is as 

follows: 

Training and Windowing: This part takes the integrated dataset and breaks it into a separate dataset 

for each of the specified windows. It then trains one model for each window applying the FTVP 

methodology discussed above. Short-term changes are incorporated through incremental training. 
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The prediction module uses these predictions to give an assessment of the latencies at the time of 

placement. Currently the SVM algorithm has been implemented for each window. 

CSP Policies: Through this module, the cloud service provider (or a multi-cloud broker) enters the 

cloud configuration data, installed and used cloud capacities, installed and used link capacities as 

well as tariffs for resources. 

Carrier Policies: This module accepts client’s requests for changes in service chain placements, 

types of virtual functions and inter-function traffic rates. Operative parts of the tenants’ SLAs, 

including latency, threshold, and cost budgets are also stored. Carrier privileges are also recorded in 

the database. 

Prediction module: The prediction module uses the correct model for prediction of latencies at the 

time of activation of the chain. It predicts the latencies among clouds at the time an SFC would be 

actually placed and activated. 

Placement and Reconfiguration Module: This module carries out placement, scaling, and adaptation 

to the changed state of the environment. Heuristics for placement has been devised to work fast and 

converge to a set of clouds close to the minimum cost and latency below the threshold. If a 

placement is successful, it gives the end-to-end latency and cost. 

Monitoring and Management Module: This module keeps an inventory of the resources used, the 

status of performance parameters and the state of the cloud environment. If placement is successful, 

it gives the end-to-end latency and the cost. Online monitoring reports are part of the future 

extension. 
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5.10 Evaluation of the Framework 
We evaluated the P-ART framework to confirm the validity of all the sub-systems incorporated, 

viz., model training and generalization, prediction and its refinement, cloud selection for 

placement, speed and acceptance ratio of placement. To keep evaluation close to reality and to 

cross-verify results, datasets used for training and testing were generated as elaborated in Section 

5.10.3. 

5.10.1 The Experimental Set-up for Evaluation 
In our experiments, we use multiple instances of the VNS having one SFC with 5 VNFs 

introduced in Section 5.1 (Figure 5.3). As we shall see in Section 5.10.11, the method scales well 

for bigger chains with thousands of virtual functions. The traffic entering the aggregation switch 

(VNF1) is divided into two streams, one going to one of the Provider Edge (PE)-routers (VNF2 

or VNF3) depending on the carrier’s traffic routing policies. For instance, the policy may route 

traffic from different geographical areas through different paths. All the traffic passes through 

one of the instances of BNG (VNF4) where in practice, the flow accounting will take place for 

billing purposes. The traffic is then routed to P-Router on route to the destination. The end-to-

end latency of the chain would be the greater of the latencies of the two paths VNF1-VNF2-

VNF4-VNF5 and VNF1-VNF3-VNF4-VNF5. 

In the experiments that we have discussed in this dissertation, the CSP domain consists of 10 

clouds. However, we also tested the random selection algorithm for a larger number of clouds, 

and the results have been discussed in Section 5.10.8. Without the loss of generality, we generate 

the link capacities randomly from the chosen set of realistic capacities. In our experiments, we 

choose from the set L= [0.016, 0.064, 0.100, 0.155, 0.622, 2.5] (in Gbps). All links are presumed 

to be bi-directional.  
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The compute capacities of the VMs hosting VNFs have been taken as a single consolidated 

figure for processor, memory, and storage. An example of such a usage is Amazon EC2 where, 

for instance, t2, the medium virtual machine provides two virtual CPUs, 4 GB storage and elastic 

storage. In our experiments, the categories defined are as shown in Table 5.2. 

Table 5.2 Categorization of server resources 
 
Integrated 
capacity 

vCPUs Memory Storage 

1 1 1GB Flexible 
2 2 2GB Flexible 
4 4 4GB Flexible 
6 4 8GB Flexible 
8 8 8GB Flexible 

10 8 16GB Flexible 

5.10.2 Selection of Features for Training the Prediction Models 
Considering the importance of the selection of predictor variables, due attention was given to this 

aspect. Too many features can make prediction models too complex, increase the training time 

and make test errors worse. Further, selecting a good set of features, out of all the features 

generated, improves the accuracy of prediction and speed of processing. Cross-validation error 

has been used to guide feature selection for our prediction models in SVR. Features that do not 

give an improvement in terms of lower overall errors (indicating better prediction) were removed 

from the initial feature set. We finalized the set of features given in Table 5.3. Further analysis, 

to include other variables that are not highly correlated with the existing ones, but may reduce 

the cross-validation error, is left as future work.  

As seen in Table 5.3, the feature space is represented by X = [x1, x2, x3, x4, x6, x7, x8]T and 

corresponding labels y. The equipped physical compute, and storage capacities of a server 

govern the number of VMs that can be created on it and correspondingly the number VNFs that 

can be hosted. VMs on the same PM may cause interference in each other’s operation because of 
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shared resources which may lead to delays. As far as the links are concerned, each additional 

Gbps of equipped capacity does not give the same increase in traffic carrying capacity. The 

amount of traffic that can actually be carried depends on the grade of service required. Total 

ingress traffic depends on the number of served subscriber clusters. The end-to-end latency 

depends on the traffic, requiring this feature to be included. We have seen in Section 5.6 that 

traffic is dependent on the time of the day. We discussed the number of windows and its 

relationship with the complexity of the model. The increasing window number is indicative of 

the increasing time of the day. While the number of windows is a parameter in the evaluation, we 

obtained good compensation of concept drift with four windows as indicated by the results. 

Table 5.3 Predictor variables and the output label 
Predictor variables Label (output) 

x
1
 Origin cloud compute installed capacity y: Latency (ms) 

x
2
 Destination cloud compute installed capacity   

x
3
 Link installed capacity (Gbps)  

x
4
 Link used capacity (Gbps)  

x
5
 Origin cloud compute capacity used  

x
6
 Destination cloud compute used capacity  

x
7
 Window #  

x
8
 The distance between the origin and destination 

clouds  

5.10.3  Obtaining Training Datasets 
We were cognizant of the fact that if a model has been trained with the adequate, realistic 

dataset, it will generalize well in the production environment. For a more thorough evaluation of 

the model, we use two methods for generating datasets. One dataset was obtained through 

simulation using a queuing-theoretic model of inter-VNF traffic flows and the other through 

actual implementation of the service chain on CloudLab. The details of these are given in the 

next two sub-sections. 
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5.10.4  Inter-VNF Traffic Flow Simulation 
Carrier networks carry all kinds of traffic: voice, data, and video. Some of these applications are 

real-time, and their packets have higher priorities. When queues build up at link or router buffers, 

the higher priority traffic may pre-empt lower priority traffic. It follows that different types of 

traffic will experience different delays. The delay model shown in Figure 5.8 takes care of all the 

important delays. Queuing delay in the links is the variable part of the end-to-end delay and 

depends on the network load. Propagation delay is the time required by the signal to travel on the 

link from one VNF to another. This delay depends on the media and is proportional to the length 

of the link, approximated by the distance between clouds. The other prominent delays are 

processing delay in the clouds, queueing delay in the virtual machines, and transmission 

queueing delays on the link. Intercloud simulation was carried out covering all significant delays. 

 
Figure 5.8 Traffic Delay Model for Data Generation 

The total time spent by voice and data packets in the network can follow any distribution. 

Following the conclusion in [143] [144], we have assumed an M/G/1 queueing system of infinite 

capacity with non-preemptive priority. The traffic load is varied to imitate the pattern of the 

actual traffic. A C++ routine generates the dataset that incorporates all the parameters described 

above. The dataset was normalized to keep the numbers comparable. This will prevent any 

feature from overpowering others in the model and avoid biases. 

Traffic 

Node  1 

Processor 

Node Queuing Delay Processing Delay Link Queuing Delay 

Node  2 

Propagation 
delay 
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5.10.5 CloudLab Implementation 
CloudLab is a “meta-cloud” that has been implemented by the University of Utah, Clemson 

University, the University of Wisconsin, Madison, the University of Massachusetts Amherst, 

Raytheon BBN Technologies, and the US Ignite for researchers to build their own clouds for 

experimentation [144]. The software stack that manages CloudLab is based on Emulab. The 

infrastructure at Utah, Wisconsin and South Carolina is interconnected with nationwide and 

international infrastructure from Internet2, so it has been possible to extend, software-defined 

networks right to every host. The CloudLab set up created for this study is shown in Figure 5.9. 

 

Figure 5.9. The CloudLab Implementation 

The data collection process involves traffic being routed from a host on the WUSTL 

(Washington University in St. Louis) LAN through the Internet to the CloudLab nodes. Thus the 

test traffic goes with the live traffic on the Internet and provides real-life traffic conditions. 

Nodes 0, 7 and 10 are the transit points for traffic at APT Utah, Clemson University and IG Utah 

DDC (InstaGENI Rack in Downtown Data Center) clouds, respectively. The distance from the 

hosts at Washington University in St Louis to each of these were IG Utah DDC (~800 miles), 

Internet 
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Clemson University (~1950 miles) and APT Utah (~800 miles). The VNFs are presumed to be 

hosted as follows: VNF1 on node11, VNF2, and VNF3 on Node 10, VNF4 on Node 7 and VNF5 

on Node 9. Delays on the link from WUSTL to the CloudLab depended on the traffic on the 

Internet. Within CloudLab, the delays were varied by loading the links with different amounts of 

traffic. Various delays were recorded as part of the training data. A snapshot of part of one of the 

training sets is shown in Table 5.4. 

 

5.10.6  Selection of the Machine Learning Model 
There are quite a few AI techniques, involving machine learning, that are potentially applicable 

to the problem of detection and localization of fault and performance anomalies. Models with a 

single layer of non-linearity, e.g., a neural network with one hidden layer, are referred to as 

shallow structures or shallow machine learning architectures and those with more than one layer 

of non-linearity as deep structures or deep learning architectures. Shallow models with linear 

hypothesis may have O(n) prediction time complexity and training time of O(l2+n3) where l 

denotes the size and n the degree of the dataset, but approximation errors are large for the high 

dimensional and large volume of data that are usually associated with FP problem. With non-

linear hypothesis space and kernel trick, the approximation errors may be smaller at the cost of 

Table 5.4 An extract of the integrated training dataset 
 o_cap Origin cloud installed capacity 

d_cap Destination cloud installed 
capacity 

link_cap Capacity of the link 
link_cap_used Used up link capacity 
o_used Origin cloud used capacity 
d_used Destination cloud used 

capacity 
window The time window to which 

traffic data pertains 
link_len Length of the link between 

origin and destination clouds 
latency Latency observed 

o_cap	
(x1)

d_cap
(x2)

link_cap
(x3)

link_cap_used	
(x4)

o-used	
(x4)

d_used	
(65)

window	
(x7)

link_len	
(x8)

latency	
(y)

6 1 2.5 1 2.4 0.4 2 1 12.423
1 1 0.622 0.0622 0.1 0.1 3 0.4 4.2307
1 2 0.3 0.06 0.2 0.4 1 0.1 1.0404
2 2 0.3 0.15 1 1 1 0.1 0.4979
1 4 0.3 0.18 0.6 2.4 1 0.1 1.8242
1 6 0.016 0.0096 0.6 3.6 2 0.2 20.497
1 6 0.016 0.0112 0.7 4.2 2 0.2 8.2672
6 1 0.622 0.4976 4.8 0.8 3 0.6 5.7012
1 6 0.064 0.0128 0.2 1.2 3 0.2 4.2227
2 1 2.5 1.75 1.4 0.7 1 0.2 1.2808
1 4 0.155 0.031 0.2 0.8 4 0.2 3.2175
4 4 0.155 0.093 2.4 2.4 4 0.6 3.1406
1 6 0.016 0.0128 0.8 4.8 2 0.2 11.137
1 4 0.3 0.03 0.1 0.4 1 0.1 1.5313



	

	 115	

higher complexity of the training time which is O(l3 + l2n) and prediction speed of O(ln). Of the 

prevalent shallow machine learning architectures, Support Vector Machines (SVM) and Random 

Forest (RF) are considered useful for diagnostic applications [145]. Another supervisory 

technique, Bayesian Network (BN), has been applied to fault management in the industrial 

settings. We will discuss below the analysis that was carried out to finalize the model [147]. 

Size of Training Dataset: The size of the available training dataset governs the choice of the 

machine-learning algorithm. How much data is enough depends on the number of features and 

the non-linearity in the relationship of features and labels among others. If the dataset is small, 

one may choose high bias and low variance classifiers like Naïve Bayes as compared to the low 

bias and high variance classifies like kNN to avoid overfitting. When the training dataset size is 

large, low bias and high variance classifiers give a lower asymptotic error. 

Number of Parameters: Most machine learning algorithms are associated with some parameters 

and hyperparameters. Parameters of an algorithm are internal to it and their values affect how the 

algorithm behaves. They are usually learned at the time of training of the model. The value 

chosen for these parameters may affect the accuracy with which the model predicts. Support 

vectors of the SVM algorithm are an example of a model parameter. Hyperparameters are 

normally external to the algorithm. They need careful tuning to get good accuracy from the 

model. An example is the C hyperparameter in SVM. Even though having many parameters or 

hyperparameters typically provides greater flexibility, training time and accuracy of the 

algorithm can sometimes be quite sensitive to getting just the right settings. 

Number of Features: If the number of features is large then the dataset is said to be high 

dimensional. With high dimensional dataset, we need more data to train the model. Increase in 
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size of the dataset affects different algorithms differently. The complexity of some machine 

learning algorithms may rise exponentially in such cases. The training time may become too long 

for the model to be used in real-time applications. 

Learning Process: The learning process of a model may be supervised or unsupervised based on 

whether labels are available or not. Since the labels indicate the ground truth, we know how our 

trained model should behave. In unsupervised learning, the data is unlabeled, so the model learns 

the inherent structure in the data. If there is some labeled data and a lot of unlabeled data, then 

we may use semi-supervised learning in which the labeled data can be used to improve the 

accuracy of the model built using unlabeled data. Another thing to note is that we are predicting 

latency values which vary in a continuous range. This would, therefore, call for a regression 

model as against a classification model.  

The requirements were studied carefully to pick the right algorithm for the application. In our 

case, it is important that the model works in real-time or near real-time. This is possible if the 

placements and reconfigurations are fast. The model should be fast to train and update with real-

time information. This requires models to be generally simple, with controlled dimensionality 

and a manageable number of hyperparameters to tune. Additionally, some models may not be 

suitable for online training. 

Keeping the above in view, we compared a few suitable stock methods to decide on the one that 

we would include in our model. The models were created and tested on Weka [147]. In each 

case, the models were tuned for good parameter values, and a 13-fold cross validation was used. 

We discuss the methods briefly followed by a comparison of their performance in Table 5.5. 
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Random Forest is a supervised method which is robust yet simple to use. It provides good results 

in many situations. It does not have many hyperparameters to tune, the useful ones being the 

number of trees and the maximum number of features to be tried in each tree. Despite its 

flexibility, random forest does not support online learning. Retraining by rebuilding the trees 

when new examples are introduced takes time. The maximum depth of each tree has been set at 

unlimited. The number of iterations or number of trees is set as 100. 

Table 5.5 Comparative study of machine learning algorithms 
 Corr. 

Coeff. 
Mean 
Absolute 
Error 

RMS 
Error 

Relative 
absolute 
error  (%) 

Root relative 
squared error 
(%) 

Random 
Forest 

0.8639 1.1881 2.4219 33.6077 50.3668 

SVR 0.8610 1.2426 2.5048 35.4465 52.8385 
KNN 0.8007 1.469 2.9681 41.9043 61.7248 
MLP 0.8015 1.9317 2.9405 55.103 61.1514 
Gaussian 0.5714 2.7523 3.9340 78.5130 81.8128 

Support Vector Machine (SVM) is a supervised learning algorithm. The regression version of 

SVM, which is designated SVR, gives good accuracy and can work with high dimensional data, 

which is not linearly separable. Parameter values that obtained for good results are C=200, 

γ=0.01, ∈= 10E-8, RBF Kernel. 

K-Means is an unsupervised model and has been included for comparison here. In this, k data 

points are chosen, and data is divided into clusters with each example going with the nearest 

data-point. Then, centers of the clusters are converted, and the process repeats until convergence. 

The result depends on the initial choice of the points, and the global minimum is not guaranteed.  

Multi-layer Perceptron (MLP) are neural networks with at least three layers of neurons – an 

input, a hidden and an output layer. These layers are connected in the form of a directed graph 

between the input and the output layers. It is also called a feed forward network. An MLP uses 

backpropagation as a supervised learning technique. Some of the parameters include N (the 
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number of epochs for training) taken as 500, E (the number of consecutive increases of errors 

allowed for validation before terminating the training) fixed at the default of 20 and L (the 

learning rate) taken as 0.3. 

Gaussian processes are a supervised learning technique and generalization of Gaussian 

probability distribution. Gaussian distributions are governed by stochastic processes and describe 

random variables. A Gaussian distribution is fully specified by its mean and covariance matrix. 

In a similar manner, a Gaussian process is specified by a mean and a covariance function. Some 

of the parameters are L (the level of Gaussian noise) taken at the default value of 1 and K (the 

Kernel to use) taken as PolyKernel. 

Using the root mean square error as a good indication of the appropriateness of the algorithm for 

the datasets used we see that Random Forest gives the lower error followed by SVR. Taking into 

account our requirement of online updates, we chose to implement SVR.  

5.10.7 Tuning and Testing of the Predictive Model 

In the SVR models, three hyper-parameters, viz., ∈, C, ϒ need attention. Tuning these hyper-

parameters is one of the main challenges in improving the predictive accuracy of an SVR model. 

The ϒ parameter can be seen as the inverse of the radius of influence of samples selected by the 

model as support vectors. With a small ϒ, the model cannot capture the complexity or “shape” of 

the data. If ϒ is too large, the radius of the area of influence of the support vectors only includes 

the support vector itself, and no amount of regularization with C will be able to prevent 

overfitting. The constant C determines the tradeoff between the flatness of f and the amount of 

error allowed above ϵ. A low C makes the decision surface smooth; a high C aims at classifying 

all training examples correctly by giving the model freedom to select more samples as support 
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vectors. Most researchers have followed a standard procedure in using a grid search [123] to 

determine the appropriate values. Several runs narrowed down the parameters to C = 1×10-2 and 

ϒ = 1. The cross-validation error for this combination was the lowest at 7.84295×103. It is worth 

mentioning that with system decided settings when the built-in tuning feature is allowed to 

choose the parameters; the loss is higher at 2.21345×104. The grid search has, in this case, 

resulted in better hyper-parameter values. 

The basic idea of using latency prediction is to improve the placement of virtual functions at a future 

time. This will only work if the predictive model produces good predictions of latency. With the 

Weka tool, SVR with RBF Kernel with the hyper-parameters set at C=10, ∈=0.4 and 20% hold-out 

for cross-validation, we get the errors shown in Tables 5.6 and 5.7. It can be seen that both the 

training and test RMSEs are low indicating good performance. In the classical case, test errors would 

be slightly higher than the training errors. A lower test error may indicate overfitting or biases in the 

dataset. These can be overcome by curating the training dataset. 

Table 5.6 Training Error 
=== Evaluation on training set ===  
=== Summary ===  
  
Correlation coefficient 0.861 
Mean absolute error 1.2426 
Root mean square error 2.5408 
Relative absolute error 35.4465% 
Root relative squared error 52.8385% 

  

Table 5.7 Test Error 
=== Evaluation on training set ===  
=== Summary ===  
  
Correlation coefficient 0.7304 
Mean absolute error 1.8895 
Root mean squared error 2.5469 
Relative absolute error 63.5334 % 
Root relative squared error 71.5849 % 

A comparative plot of training and test error ratios (defined as prediction_error/acutal_latency) 

is given in Figure 5.10. It can be seen that the model training errors are low and it generalizes 

well with the test data.  
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Figure 5.10 Training and test error ratios (with standard error bars) 

5.10.8 Refinement of Latency Prediction by Compensating Concept Drift 

The FTVP method for handling the concept drift in telecommunication traffic was presented in 

Section 5.6.2. This method brings in the sense of time in the datasets. Most researchers working with 

predictive model do not include time as a feature. In our experience, including time as a feature 

affects the predictions positively. We divided the data into windows of equal time blocks, which give 

variable data ranges. The window# is the feature (x7) in the training dataset and has a direct relation 

with the time as increasing number relates to increasing time. All the time-related observations were 

divided into four windows. A sample from each of these is given in Figure 5.11. 

  

 

 

Figure 5.11 Extract of FTVP windows 

Window	2
x1 x2 x3 x4 x5 x6 x7 x8 y

2 1 0.064 0.0064 0.2 0.1 2 0.4 7.8746
6 1 0.622 0.311 3 0.5 2 0.6 7.8994
2 6 0.155 0.124 1.6 4.8 2 0.6 7.9167
4 1 0.016 0.0096 2.4 0.6 2 0.6 7.9177
1 1 0.622 0.4354 0.7 0.7 2 0.4 7.9403
2 1 0.064 0.0128 0.4 0.2 2 0.4 8.0748
6 1 0.064 0.0256 2.4 0.4 2 0.4 8.1421
6 1 2.5 0.5 1.2 0.2 2 1 8.2461
1 6 0.016 0.0112 0.7 4.2 2 0.2 8.2672
6 1 2.5 1.25 3 0.5 2 1 8.3107

Window	3
x1 x2 x3 x4 x5 x6 x7 x8 y

1 1 0.622 0.3732 0.6 0.6 3 0.4 4.895
6 4 0.1 0.05 3 2 3 0.2 4.9074
6 4 0.1 0.08 4.8 3.2 3 0.2 4.9327
4 6 0.1 0.05 2 3 3 0.4 4.982
1 6 0.016 0.0048 0.3 1.8 3 0.2 4.9872
4 1 0.016 0.0064 1.6 0.4 3 0.2 4.9972
1 6 0.064 0.032 0.5 3 3 0.2 5.0935
1 6 0.064 0.0512 0.8 4.8 3 0.4 5.0935
6 2 2.5 0.5 1.2 0.4 3 0.4 5.1221
6 1 0.622 0.1244 1.2 0.2 3 0.6 5.1576

Window	4
x1 x2 x3 x4 x5 x6 x7 x8 y

2 6 0.155 0.1085 1.4 4.2 4 0.4 2.7246
6 1 0.622 0.4354 4.2 0.7 4 0.6 2.7298
6 1 2.5 1 2.4 0.4 4 0.2 2.7603
4 4 0.155 0.093 2.4 2.4 4 0.6 3.1406
2 1 2.5 0.5 0.4 0.2 4 0.2 3.1564
1 4 0.155 0.031 0.2 0.8 4 0.2 3.2175
6 2 0.1 0.08 4.8 1.6 4 0.4 3.2716
1 1 0.622 0.3732 0.6 0.6 4 0.2 3.2845
2 1 2.5 1 0.8 0.4 4 0.2 3.2936
2 6 0.155 0.093 1.2 3.6 4 0.6 3.3156
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The data in different windows have different characteristics as shown by the mean and standard 

deviation in Table 5.8: 

Table 5.8 Probability distribution parameters in 
different windows 

Window 1 2 3 4 
Latency 
range 

(1.824-
0.422) 

(27.683-
7.452) 

(7.317-
4.131) 

(4.216-
1.869) 

Mean 1.083 11.834 5.366 2.773 
Standard 
deviation 0.425 4.848 0.797 0.588 

SVR with separate window models gives much better predictions on new data-points falling in those 

windows. Comparison of latency prediction and error ratios for each window and full dataset is given 

in Figure 5.12 (a) through (h). 

Table 5.9 Errors with integrated and multiple models 
 Full dataset Window 1 Window 2 Window 3 Window 4 
Mean absolute error 3.2279 0.3698 0.4613 0.7342 2.5248 
Root mean squared 
error 4.5869 0.4283 0.5515 0.9102 2.9353 

Table 5.9 summarizes the mean absolute errors and RMSE for the full (integrated) dataset and the 

window-based model. In the integrated model validation was done with 20% of the data points 

separated as a test set. For each window model also cross-validation was done with separate test 

sets. It can be seen that errors are less in a separate model for each widow compared to 

predictions made using integrated dataset. 
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  (a) Comparative Window 1 and full dataset performance (b) Error ratios for Window 1 and the full dataset  
Window 1 RMSE =0.06, full model RMSE =0.47 

  (c) Comparative Window 2 and full dataset performance (d) Error ratios for Window 2 and the full dataset 
Window 2 RMSE=1.27, full model RMSE = 1.62 

 

 (e) Comparative Window 3 and full dataset performance (f) Error ratios for Window 3 and the full dataset 
(e) Comparative Window 3 and full dataset performance 

  (e) Comparative Window 3 and full dataset performance (f) Error ratios for Window 3 and the full dataset 
Window 3 RMSE=0.36 Full model RMSE = 0.74 

Figure 5.12 Comparison of performance window-based integrated models 
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5.10.9 Compensating Shot Term Traffic Variations 
We tested an incremental update of the trained models, with support vectors generated during 

VNS operation, while the trained model was in use. The result of initial training is given in Table 

5.10, and after the introduction of separately generated support vectors, the results improved as 

shown in Table 5.11. We can see that both the mean absolute error and the RMSE decrease when 

new support vector points are learned online. Before the addition of new support vectors, the 

RMSE was 1.74; while after addition, it reduced to 1.68, which along with other measures of 

errors show an improved model. 

Table 5.10 Performance before online updation 
 Support vectors before online updation Performance before online updation 

SV# Actual 
Latency 

Predicted 
Latency 

Error === Evaluation on test set === 

50 5.713 5.379 -0.334 Correlation coefficient 0.8742 
51 7.452 5.233 -2.219 Mean absolute error 1.2677 
52 3.111 3.152 0.041 Root mean squared error 1.7366 
53 1.531 2.785 1.254 Relative absolute error 47.3488 
54 5.572 4.625 -0.947 Root relative squared error 49.2994 
55 5.771 5.298 -0.473 Total Number of Instances 55 

 

Table 5.11 Performance after online updation 
Support vectors after online updation Performance after online updation 

SV# Actual 
Latency 

Predicted 
Latency 

Error === Evaluation on test set === 

50 5.713 5.379 -0.334 Correlation coefficient 0.8816 

51 7.452 5.233 -2.219 Mean absolute error 1.2014 

52 3.111 3.152 0.041 Root mean squared error 1.6797 

53 1.531 2.785 1.254 Relative absolute error 44.5651 

54 5.572 4.625 -0.947 Root relative squared error 47.9109 

55 5.771 5.298 -0.473 Total Number of Instances 60 

56 3.111 3.374 0.264   

57 0.605 2.424 1.820   

58 3.345 3.190 -0.155   

59 3.315 3.579 0.064   

60 10.259 10.199 -0.060   
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5.10.11 Cloud Optimization with Iterative Random Selection 
The principle and methodology of random selection of clouds for placement of VNFs have been 

discussed in Section 5.7. In one trial, a total of 50 experiments were conducted with 1500 and 

1700 iterations each. The minimum possible cost was 51 units, and latency threshold was set at 

150 ms. In the former case, 98% of times the minimum cost of 51 units was reached (Figure 5.13 

(a)) with a latency of 137 ms. In the 1700 iteration case, the minimum cost clouds were selected 

with the latency below the threshold in all cases (Figure 5.13 (b)). 

  Figure 5.13. (a) 50 experiments with1500 
iterations each 

Figure 5.13. (b) 50 experiments with 1700 
iterations each 

In another trial of 5000 experiments, 50 each with the number of clouds increasing from 10 to 

100 in steps of 10 and iterations from 500 to 2000, the convergence rate is as shown in Figure 

5.14. Somewhere between 1500 and 2000 iterations, the algorithm converges to the minimum 

cost in 100% cases. This is an order of magnitude improvement over the exhaustive search 

described above. 
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 Figure 5.14. Number of convergences in 50 experiments 

We implemented, as the baseline, a variation of the sequential method, which we call modified-

sequential (M-sequential). In this method, the first set of lowest cost clouds were sequentially 

selected from a set of 100 clouds without replacement. This ensures the lowest cost. However, if 

the total latency of the selected cloud was more than the given latency threshold, then the highest 

latency cloud was removed from the selected set, and a search was made for the next lowest cost 

cloud. The search stopped when a set of lowest cost with latency below the given threshold was 

found.  

Figure 5.15 shows the number of iterations required to achieve the target latencies (from 100 to 

160ms) for both the randomized and M-sequential algorithms. We see that the M-Sequential 

takes from 34% to about 67% more iterations than randomized. Figure 5.16 gives the final 

latencies achieved in the number of iterations for which the algorithm was run (as shown in 

Figure 5.15). From these, we can conclude that the randomized algorithm performs better than the baseline both 

in terms of the number of iterations and latencies achieved in selecting the required set of clouds 

for placement. 
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Figure 5.15. Number of iterations required by 

randomized and M-Sequential to achieve latency 
below the threshold 

Figure 5.16. Latencies achieved by randomized 
and M-Sequential in the number of iterations 

shown in Figure 5.15 

5.10.12 Speed and Efficiency 
It is important for dynamic rescaling that the designed placement strategy is able to carry out a 

large number of placements within an acceptable time period. A slow placement algorithm 

would not be able to respond fast to the changing network situation or a tenant’s new request. 

Changes made too late may not be suitable, and may actually be detrimental to the health of the 

network, as by that time the situation would have changed. On the other hand, if at a future time, 

maintaining the required performance does not need all the resources that have been deployed, 

not descaling would use up a higher amount of resources leading to higher expenses. For the 

training time of SVR, various assessments of complexity in the range O(n2) to O(n3) are 

available in the literature. According to [129] the complexity is O(max(n, d) min(n, d)2) where d 

is the size of the feature set. If n is much larger than d, then it can be approximated to O(nd2). 

However, the time complexity of the search is linear. It took about 1.19 s to train with 2720 

sample points in Weka and 0.76 s in MATLAB. For speed of placement, we tested with 10 

clusters, each requesting 10 to 100 SFCs of 5 VNFs each. Thus, the number of VNFs was varied 

from 500 to 5,000. We observe that the algorithm is able to place up to 3,000 VNFs in about 1 

minute (Figure 5.17). 
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Figure 5.17 Placement time Vs. No of SFCs 

To see how the speed of the proposed method compares with the placement speeds obtained in 

other works we examined the work done in [148]. The two methods have been performed under 

different conditions and are thus not strictly comparable. However, comparison does give a 

general idea of the behavior of the methods. From Figure 5.18, we see that in case of up to 20 

SFCs, the ILP method is able to find a solution but the author reported average time is 8 minutes 

and 41 seconds and that of the suggested heuristic 1 minute and 21 seconds. For the case of 60 

SFCs, the ILP model takes unduly longer times (>48 hours for ≥18 SFCs).  The heuristic was 

able to give a solution in less than 30 minutes. For small instances, 40 SFC requests (with 75 

network functions per request or a total of 3000 functions) take about 1000 seconds. 

 
Figure 5.18 Placement time reported in [148] 
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A comparison has also been made with results obtained by a completely different technique 

presented in [149]. The authors have carried out joint optimization of resource allocation in NFV 

(JoraNFV). The authors assume that the number of VNFs can be 3, 4 or 5. Taking the example of 

a 5 VNF SFC and medium traffic, the authors conclude that their method works faster than 

CoordVNF described in [150] and a simulated annealing (SA) approach described in [151. The 

coordinated NFV-RA is formulated as mixed-integer linear programming (MILP) with a 

heuristic based two-stage approach to get the near optimal solution. For ten units of traffic, the 

number of instances deployed is about 7 for JoraNFV, 10.5 for CoordVNF and 7 for the SA 

method. For a 90 node network, the JoraNFV and CoorNFV take 10 seconds to place an SFC 

while SA takes about 2000 sec. Even if we assume a linear increase in time taken, for 3000 

functions/instances JoraNFV will take 4285 seconds (Figure 5.19). 

 
Figure 5.19. Average placement time reported in [149] 

ILP based solutions for a large number of VNFs are slow, even with efficient solvers. 

Researchers in [152] and [127] have carried out VNF placement of different configurations using 

ILP method. In [127], the authors have reported that ILP takes 2.3, 4.0 and 7.2 hours for 10, 30 

and 50 functions. In [152], the authors have tried to solve ILP for large networks (60 SFC with 4 

VNFs and 30 instances, each, i.e., 7200 VNF instances) but for more than 18 SFCs the time 
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taken is more than 48 hours. The authors have suggested heuristics to find an acceptable solution 

within reasonable time limits. Thus, [128] suggests using Genetic Algorithm with which 200-700 

functions are placed in 8-13 seconds. In [152], the heuristics involve guiding the ILP solution by 

reducing the solution search space using binary search. With this for 7200 VNF instances, the 

time taken is 30 minutes. In [18], MILP based algorithm takes 500 seconds for 3,000 VNFs. We 

have shown above that with our framework we can place up to 3,000 VNF instances in less than 

60 seconds. It needs to be appreciated that the results are not exactly comparable because of 

different experimental environments, but do give a sense of improvement with predictive 

algorithms. 

The acceptance rate of the heuristic is an important parameter that often gets ignored. In the 

ongoing operations, whether we are looking at new placements or reconfiguration or migration 

of existing chains, it is important for the placement engine to be able to place SFCs every time a 

request is made subject to resources being available. If a large number of requests cannot be 

placed despite adequate capacities being available, then the acceptance rate is low, and we do not 

have a good algorithm. Failure to place SFCs would mean the loss of business for cloud service 

providers and may affect the requesting carriers revenue. For a medium-sized placement request, 

viz. 100 SFCs or 500 functions, the acceptance rate with our algorithm turns out to be 100% 

(Figure 5.20). 
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Figure 5.20 Acceptance rate Vs. Number of SFCs 

As the number of service chains increases, the acceptance rate may fall because of a lack of 

capacity to place the complete service chains. When corrected for capacity, the acceptance rate 

for our algorithm remains above 98% up to the tested configuration of 500 SFCs or 2,500 VNFs. 

We compare this with the real-time placement presented in [153]. The authors propose an ILP 

model to provide an optimal solution for placement and chaining VNFs based on minimizing the 

resources allocation and the deployment (mapping) delay while meeting the real-time condition. 

They also propose a heuristic solution named Degree Based Heuristic (DBH) to minimize the 

end-to-end delay and resources allocation cost. A comparison of successful requests is given in 

Figure 5.21. 

 
Figure 5.21. Acceptance % reported in [153] 
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The authors in [154] claim that with 500 VNFs the acceptance rate is 85%. In comparison, for 

our solution, the acceptance rate is 100% for up to 100 SFCs or 500 VNFs. Above this, the 

acceptance rate drops to 98% for up to 2500 VNFs. 

5.11 Summary and Future Work 
Innovative strategies are required to extract carrier-grade performance from SFCs that use 

resources from multiple clouds. Our strategy consists of techniques based on a predictive 

approach to performance optimization. Complex performance indicators, like end-to-end latency 

of a service chain at activation time, depend on far too many deterministic and probabilistic 

factors, to be modeled accurately by deterministic techniques. We have shown that a carefully 

designed predictive approach combined, with heuristics to select low-latency clouds, can help us 

in keeping the performance consistent with the SLA and costs within the carrier’s budget. To 

make latency predictions more accurate, we have worked with time-based windows and an 

incremental update of the models used for prediction. Making use of the predicted latencies is an 

iteratively convergent randomized search heuristic used to select low latency clouds for 

successive placement of VNFs. Not only the proposed strategy produces results with low error, 

but it also executes fast so that the results can be used to take corrective actions. A 

comprehensive empirical evaluation has been carried out and reported in this work. The 

proposed P-ART framework has been built from all the techniques that have been described in 

this work. 

However, the last word has not been said. Other algorithms need to be explored, both for 

prediction and placement to make placement more responsive to the demands of the virtualized 

service. Another important issue to be worked upon is the security aspect of VNSs in the multi-

cloud environment. 
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Chapter 6    

Fault and Performance Management 
In this chapter, we discuss the techniques that have been evolved to address the challenges that 

inhibit large-scale deployment of virtual network services using NFV (NFV) over multi-cloud 

systems. Our analysis shows that the gaps in inter-platform interface specifications and the lack 

of a reliable fault and performance management system as the key factors for the inability to 

achieve five nines availability that carriers cannot compromise on. We have developed a 

framework that takes into account the information available with the platforms and assists in 

reliable fault detection and localization and a means to increasing availability. Because of the 

lack of exhaustive identification of markers consisting of alarms, notifications, counters and 

measurements, we have defined some of the relevant one for fixed, mobile and broadband 

virtualized services, going beyond those that have been specified by the standards bodies like 

ETSI [25]. This helps in understanding the fault categories for designing detection and 

localization functions. 

Taking a path different from that of the rule based systems in traditional networks, machine-

learning solutions have been explored for detection of faults in the multi-cloud-NFV 

environments. The aim is to detect both manifested and impending faults and performance 

issues. For localization a deductive-predictive methodology has been developed. A major 

contribution of the research is the use of innovative deep learning techniques to predict severity 
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of impending faults through a combination of unsupervised and supervised training method. The 

manifesting faults, on the other hand, are handled with supervised techniques to correlated 

distributed alarms and notifications from various physical and virtual layers. This has been 

published in [156] [163] and also submitted to [157]. 

6.1 Introduction and Motivation 
Using VNFs as the building blocks for creating VNSs, carriers can change the way the network 

services are provided. They are prepared to bear the problems of making this major change, so 

that they can reap the cost and agility benefits that have been described before [31]. Additionally, 

use of multi-clouds position the carriers at the advantage of competitive pricing, wider presence 

and a network that is more robust against failures [32] [158]. The virtual resources (e.g., virtual 

machines and virtual networking) for building these services can be obtained from the in-house 

datacenter, carrier-cloud owned by carriers themselves or public clouds owned by Cloud Service 

Providers (CSPs).  

Despite many advantages, there are several challenges in providing large-scale deployments of 

NFV-based VNSs, which motivate this part of the work. It is important to identify and address 

these challenges so that they can be met and this promising technology does not disappear into 

oblivion. Some of the main challenges are listed here: 

a) Performance and availability of VNSs are inferior to those of the traditional networks. The 

traditional networks have five nines availability (99.999%), which translates to 5 minutes and 

15 seconds of downtime in a year. Cloud information technology applications have been 

working more on three nines (99.9%) availability, which go up to 8.76 hours of downtime in a 

year. 
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b) Traditional networks are built to the stringent quality of service (QoS) norms defined by Fault, 

Configuration, Accounting, Performance and Security (FCAPS) standards like ISO Common 

Management Information Protocol (CMIP) and ITU Telecommunications Management 

Network (TMN) M.3010 and M.3400 recommendations [28] [35] [36] [40]. Such norms are 

still to be fully defined and met for the VNS deployments.  

c) In NFV-based VNSs, faults may occur for many more reasons compared to traditional 

physical networks. The cloud infrastructure consists of virtual resources such as virtual 

machines, virtual storage, and virtual network links. These virtual resources are created on 

shared physical resources like server hardware, system software or network links, using 

virtualization software (e.g., Hypervisors). Virtual resources may fail because of the failure of 

physical resources. Even if the physical resources are operational, the virtual resources may 

themselves fail [44] for reasons like operating system crash or hypervisor failure. Taking this 

argument a little further, even if both physical and virtual resources are healthy, the VNFs, 

like routers, instantiated on these virtual resources can develop algorithmic problems causing 

VNSs to malfunction or totally break down. The myriad levels of dysfunctions make handling 

of fault and performance (FP) issues in NFV over clouds more abstract and complex.  

d) Internet Engineering Task Force (IETF) has recently identified ensuring performance and 

guaranteeing the QoS as open research areas and technology gaps in NFV [6]. Without a 

robust mechanism for handling these issues, carriers would find it very difficult to meet the 

quality, reliability and availability norms. This calls for vigorous research efforts so that NFV 

deployments acquire carrier-grade performance and availability [6] [159] [160]. Considering 

the importance of this area, ITU has included the fault management of the cloud-based NFV 

in their standardization agenda based on our paper [161]. The National Science Foundation 
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(NSF) is supporting our research work in this important area, which can potentially change the 

way the telecommunication services are delivered [162].  

6.2 Contributions  
This part of our research deals with the complexities of fault and performance issues in an NFV 

multi-cloud environment as they prevent availability from reaching close to five nines. I then 

develop an innovative framework for detection and localization of these faults based machine 

and deep learning techniques. The specific contributions are as described below: 

a) An elaborate discussion on the architecture, creation and management of VNSs from the 

viewpoint of fault and performance management. This is illustrated with a real-life example 

to elucidate clearly the fault and performance (FP) management problems and their 

complexities.  

b) Discuss reasons for the traditional methods not performing well in the cloud-based NFV 

environments and how AI techniques like machine learning and deep learning can be useful.  

c) Describe the AI based FP management framework that we have evolved to detect and 

localize faults. 

d) Perform a thorough evaluation of the framework and discuss, in detail, the use of a hybrid 

shallow and a deep learning model to detect and localize some important aspects of fault and 

performance issues [163].  
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6.3 Structure of VNSs 
In this section, we will describe the structure of a VNS, using NFV over a multi-cloud system, 

with the help of an example of a carrier network service. Additionally, we shall see the 

complexities and deficiencies in its management setup, which make a strong case for a predictive 

fault and performance management framework. A basic discussion on the constituents of VNS 

was done in Section 5.3. The discussion here is to help in the discussion of the fault and 

performance aspects of these services. 

Figure 6.1 illustrates a carrier’s implementation of the broadband Internet service consisting of 

access, aggregation core and the edge network. The Access Network consists of various 

technologies through which home and business customers access the Internet and the related 

services. The Aggregation Network collects various streams of traffic and concentrates them on 

higher capacity links to the core network. The Border Network Gateway (BNG) is situated at the 

border of the core and provides Layer-2 and Layer-3 connectivity, policy injection, QoS and 

accounting of user sessions and traffic flows. The Core Network contains core routers that 

 

Figure 6.1 A carrier’s broadband service network 

Content	
Provider		

Network Operation 
Center 

International 
Gateway 

Radius 

Web 
cache 

xDSL 

Aggregation 
Network 

Ethernet 
Switches 

Core Routers 

Internet 

Edge 
Router 

Edge 
Router 

DHCP 

Edge 
Routers 

IXP 

Other ISP’s 

Core 
Network 

OC-192 

GigE 

BNG 

GigE 

Fiber 

Metro 
Ethernet 

Wireless 

Access 
Network 

BNG: Border Network Gateway 
DHCP: Dynamic Host Control Protocol 
OC192: Optical Carrier 9.6Gbps 
GigE: Gigabit Ethernet 
ISP: Internet Service Provider 
IXP: Internet Exchange Point 
 



	

	 137	

transport traffic. The edge network consists primarily of the edge-routers which provider 

connectivity to the Internet and other services like content delivery. The core also connects to the 

Internet Exchange Points (IXPs) for exchanging traffic with other local ISPs without using the 

expensive international bandwidth.  

6.3.1 A Top-down Discussion of VNS 
A VNS can be defined in terms of layers of physical and virtual infrastructure. These layers are 

illustrated in Figure 6.2. We will see the relationship among these layers and discuss their 

functions in a top-down manner.  

 

Figure 6.2. The virtualization hierarchy 

a) Virtual Network Service (VNS) 

From the illustration of a complex network service in Figure 6.1, we abstract a subset to 

represent a simpler VNS that we can use as an example. Figure 6.3 shows this VNS being 

composed of 8 VNFs realized as VNF1 to VNF8. The figure also shows that the carrier has 

retained DSLAMs as Physical Network Function (PNF) from their legacy network, as these 

functions might not have reached their end-of-life. VNFs of a service may belong to different 

vendors, owned by different operators, managed by different platforms and even unaware of 
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Figure 6.3 Virtual broadband service 

b) Service Function Chains (SFCs) 

A carrier may obtain resources from multiple cloud service providers for the reasons discussed 

before. VNFs are instantiated on these cloud resources and linked using virtual networking 

resources to form one or more SFCs [165] [166].  
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c) Virtual Network Functions (VNFs) 

A VNF is the virtual counterpart of a network appliance or a middlebox implemented by running 

software over commercial off-the-shelf general purpose servers. Each VNF has a well-defined 

functional behavior and interfaces for interconnection with other VNFs or PNFs. Figure 6.5 

shows a VNF with its Element Management System (EMS) and interfaces to the rest of the 

network [6] [29]. 

 
Figure 6.5. A VNF implementation 

Some examples of pre-programmed VNFs are given in Table 6.1. 
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VNF Function OEM 
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SRX Firewall Juniper Networks 
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SBC SWe Session Border Controller Ribbon Communications 
Nexus 1000V Virtual Switch Cisco Systems 
Steelhead CX 555V WAN Accelerator Riverbed Technology 
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three VNFs, their EMSs, hosted on two NFVIs of two cloud service providers. External 

connectivity may be possible through the designated switch and routing devices [165].  

 

Figure 6.6. Network function virtualization infrastructure 
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metadata to be used by NSH-aware devices. Implementation of service function chains with 

NSH capabilities requires NSH-aware virtual switches and a central controller.  

6.4 Management of VNSs from an FP Management Perspective 
Figure 6.7 shows the management set-up of a VNS. Management platforms belonging to the 

carrier, cloud service provider and the NFV operator interact to make VNSs work. NFV 

Management and Orchestration (NFV-MANO) and its subsystems use the virtual infrastructure 

provided by the Multi-cloud Management and Control Platform (MMCP) of the CSP to create 

and manage VNFs, SFCs, and VNSs [168]. MANO has the responsibility of performance 

measurement, event reporting, correlation and assistance in fault management of the VNSs and 

their constituents. The MMCP creates virtual machines, virtual storage, and virtual networking 

links. It also manages the placement and migration of these virtual resources over the available 

clouds [29]. The Operation Support System (OSS) of the carrier, with its Network Management 

System (NMS), manages the deployment and operation of the VNSs. The OSS carries out the 

network management by providing support for the provisioning of services, management of fault 

and performance and maintaining an inventory of the resources used. 

In view of what has been said above, the fault management function becomes a shared 

responsibility. The relative distribution of responsibilities among various platforms and their 

interactions is yet to be fully defined. To understand the fault and performance management of 

VNSs, we need to discuss the sub-systems of MANO and their interactions in some more detail 

[169]. 
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Figure 6.7. Orchestration and management of VNS 

6.4.1 Virtual Infrastructure Manager (VIM) 
VIM manages all the virtual and physical resources in NFVI to enable the higher layers of 

MANO to do their tasks of creating VNFs and SFCs. VIM manages the lifecycle of all the virtual 

resources in one NFVI domain (one infrastructure provider’s domain) and applies security 

policies on them. VIM collects information about the performance events and measurements 

from NFVI over the Nf-Vi reference point and forwards them to NFV Orchestrator (NFVO) 

through its northbound reference point (Or-Vi). In the cloud environment, VIM interacts with the 

cloud management platform for obtaining virtual resources. In a multi-cloud or a multi-carrier 

service, there may be multiple VIMs managing the resources.  

6.4.2 Virtual Network Function Manager (VNFM) 
The VNFM instantiates and configures VNFs with resources obtained through the VIM. During 

the lifetime of a network service, VNFM manages the complete lifecycle of the VNFs (scaling, 

descaling and eventually terminating when they are no longer required). It is entrusted with the 

  

OSS (NMS) 

NFV Orchestrator  

Virtualized Infrastructure 
Manager (VIM) 

Os-Nfvo 

Ve-Vnfm-em 

Ve-Vnfm-nf 

Nf-Vi 

Or-Vi 

Vi-Vnfm 

NFV-MANO 

MMCP 

EMS1	

SFC 

NFVI 
Vn-Nf 

Or-Vnfm 
Catalogs 
 VNF2	 VNF3	

Core	
Router	

Aggr.	
Switch	

VNF1	

Edge	
Router	

Edge	
Router	Core	

Router	

VNF4	
Core	
Router	

VNF6	

VNF8	

BNG	

VNF7	

EMS2	 EMS3	 EMS4	

VNF Manager   

Compute	 Storage	 Network	

VirtualizaBon	

VM	 VM	 VM	



	

	 143	

important functions of FP management of VNFs. For this, VNFM interacts with the EMSs of the 

VNFs to obtain fault and performance markers. The EMS (not a part of the MANO) collects 

device statistics, logs notifications, alarms and events, and performance statistics [168]. As 

shown in Figure 6.7, VNFM shares this information with the NFVO over the Or-Vi reference 

point. Since a VNS may have VNFs from multiple providers, it is important that NFVO can 

interact with them through the standard reference points. 

6.4.3 NFV Orchestrator (NFVO) 
NFVO is at the heart of the MANO architecture. It carries out two of its main functions: resource 

orchestration and service orchestration. Using its resource orchestration function, NFVO 

coordinates the acquisition and release of the NFVI resources by interfacing with the VIMs. 

NFVO instantiates the VNF Manager, which in turn manages VNFs as explained above. Service 

orchestration functionality deals with onboarding new network services using the information 

from descriptor files within various catalogs. For fault and performance issues, NFVO has to 

coordinate with the carrier’s OSS and multi-cloud management platform. 

6.4.4 Catalogs and Repositories 
MANO has several catalogs and repositories containing descriptor files, which NFVO uses to 

carry out the orchestration functions [170]. For example, there is a catalog for service onboarding 

templates and another for requirements for creation and operation of the VNFs. There is an NFV 

repository for storing all instances of network services and yet another for the available and used 

NVFI resources.  

6.4.5 MANO Reference Points  
All exchanges among the sub-systems of MANO and between them and external entities, 

including those pertaining to fault and performance status, take place through the defined 
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reference points. Table 6.2 contains a brief description of these reference points and what fault 

and performance related information they carry [171]. Interactions between MANO and MMCP 

have not been defined in the NFV specifications. This has to be taken into consideration in a 

VNS fault and performance management solution.  

6.5 Comparison of Competitive Network Service Orchestration 
Offerings 
Since MANO components are important parts of the FP management of VNSs, we present some 

of the well-known ones in this section and compare their features relating to the management of 

FP problems that threaten the availability and reliability of these services. We include multi-

cloud and multi-carrier domain support and interaction with the OSS, which are the important 

considerations for our discussions. Most MANO implementations are in initial releases and 

under active development. The idea, therefore, is to be representative and not comprehensive. 

Table 6.2 Fault And performance information over NFV reference points 
Reference 

Point 
Endpoints Functions 

OS-Nfvo OSS and 
NFVO 

1. Carries information related to VNS requirements from OSS to NFVO 
2. NFVO creates VNS and applies carrier policies 
3. Carries usage, accounting, fault and performance events for all VNS, 

VNF and NFVI resources. 
Or-Vnfm NFVO and 

VNFM 
1. VNF and NFVO exchange information related to the creation and 

management of VNFs. 
2. Forwards events related to VNF to the NFVO 

Vnfm-Vi VNFM and 
VIM 

1. Carries information about NFVI requests from VIM. 

Or-Vi NFVO and 
VIM 

1. Reserve NFVI resources for VNS 
2. Coordinating scaling and release 

Nf-Vi VIM and 
NFVI 

1. Creating/Obtaining virtual resources for creating VNS 
2. Failure event, measurement results, and configuration information to 

VIM 
Vn-Nf VNF and 

NFVI 
1. Physical and virtual resource information to VNFM for ensuring 

creation scaling and performance and portability of VNFs.  
Ve-Vnfm-Vnf VNFM and 

VNF 
1. Event reporting by VNF to VNFM 
2. Communication from VNFM to VNF regarding configuration and 

events 
3. VNF aliveness check 

Ve-Vnfm-em VNFM and 
EMS 

1. Same functions as Ve-Vnfm-Vnf for virtualization-aware EMS 
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Table 6.3 gives a comparison of the Network Service Orchestration platforms. The following 

criteria have been used for classification [42] [172]. A blank cell indicates that sufficient 

information is not available to adjudge the product on the corresponding criterion.  

• Orchestration of end-to-end service is important from the carrier’s point of view. In the 

absence of this feature, manual configuration and a large amount of scripting may be 

required to orchestrate complete services. 

• Maintains the carrier-grade performance, which is more stringent than enterprise or IT 

application performance. 

Table 6.3 Comparison of some competitive network service orchestration solutions from FP perspective 
Platform ETSI Linux 

Foundation 
Open 

Networking 
Foundation 

Gigaspace Cisco Netcracker 
(NEC) 

Oracle 
Criteria 

NFVO solution 
nomenclature 

Open Source 
MANO (OSM) 

OPEN-
O/ONAP 

XOS/CORD 
+ ONOS1 

Cloudify Network 
Service 
Orchestrator 

RT MANO 
Network 
Orchestration 

Network 
Service 
Orchestration 

Inception date Launched 
2016, 
Spearheaded 
by Carriers 

Launched 
2016 

Launched 
2015 

Launched 
2014 

 Launched 
2015 

Launched 
2015 

Current Release Rel 4, 2018 Rel 2, 2018 Rel 1.10, 
May 2017 

Rel 4.5, July 
2018 

 Rel 12 May 
2017 

 

Whether carrier-
grade  

 Planned Field Trials Yes  Yes Yes 

Open Solution Yes Yes Use case of 
open source 
ONOS 

Yes, TOSCA 
based 

  Partly 

End-to-End service Planned For defined 
use cases 

For carrier 
use 

Yes, may 
require plug-ins 
for underlay 

Yes Yes Yes 

Fault/Performance 
Management 
Sophisticaton2 

Level 1 Level 3 Level 1  Requires 
extension with 
Crosswork 
Network 
Automation 

Level 2  

Support for 
Multiple VNF /VIM 

Yes OpenStack 
VIM+ 
generic 
VNFM 

OpenStack 
VIM+ 
VNFM like 
functions 

Yes Yes Yes Yes 

Cloud platform 
neutral/Multiple 
Clouds 

Yes Planned Multi-access 
edge cloud 

Yes    

Integrates with 
BSS/OSS 

Yes  Yes Yes OSS  Yes
3
 

1 ONOS is under Linux Foundation. CORD is under Open Networking Foundation. 
2 Level 1: e.g., log-based correlation; Level 2: includes a detection mechanism and root cause analysis; Level 3: predictive detection/localization 
3 Proprietary APIs 
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• The sophistication level of fault and performance management functions, we see that many 

of the platforms are yet to achieve the required level of sophistication of fault and 

performance management.  

• Handling of multiple VNFM and VIM support allows management of SFCs across multiple 

carrier domains.  

• Whether it can interact with different cloud and multi-cloud platforms. 

• Coordinate with the OSS for fault and management functions.  

This study helps to motivate our work and highlights its relevance in relation to the state-of-the-

art. 

6.6 Fault and Performance (FP) Problem Description 
FP issues may range from simple single point failures to complex faults with many devices 

involved. A fault may appear because of some hardware or algorithmic error in the system. If the 

error is due to a malfunction or a deviation of the system from the accepted normal performance, 

then a fault would result. Additionally, one faulty entity may affect other neighboring entities 

and faults may propagate. In such a case, the faulty or other connected devices may give out 

notifications. The variety of FP issues that can affect the carrier networks is large and difficult to 

detect, diagnose and localize [41] [42] [43]. When we add to this the virtualization and the cloud 

computing layers, the number of ways faults can affect the virtualized network far exceeds that 

of their physical counterparts. In this setup, when faults traverse through the physical and virtual 

layers they change their presentation and produce a different set of markers in different layers, 

making it even more difficult to correlate an observed system disorder with the original fault 

[73]. 
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Traditional failure detection mechanisms are ineffective or inapplicable in NFV environments. 

Traditional methods depend on probing or running tests on hardware, which are not accessible to 

the carriers who deploy services on virtual resources. Too much of probing or software testing 

may overload the VMs that have been optimized for the network function hosted on them. 

Attempts to apply other traditional methods, like rule-based approaches involving direct 

correlation of the markers with the faults, get mired in complexity and prove to be inadequate.  

New methods are required to deal with faults in VMs or VNFs, which cause the VNSs to behave 

abnormally, even if the underlying hardware is fault-free. VMs are managed by cloud service 

providers, and VNFs by the network service providers making it difficult for the traditional 

systems to deal with problems in virtualized services. Consider a situation where the virtual 

private networks (VPNs) of many customers do not work. In this situation, FP detection and 

localization would require investigation all the VMs, on which virtual core router is hosted, the 

VNF that is working as the core router, the virtual network interface controller (vNIC) with fast 

Ethernet or Gigabit Ethernet ports and even the physical machines. Many alarms and other 

markers would result, which have to be correlated.  

The fault detection mechanism should be able to separate out the error conditions that do not 

constitute a fault from the ones that do. The fault conditions have to be further classified into 

manifested or impending so that further action can be accordingly taken. As the name suggests, 

the manifested faults are those that have already occurred and have affected the system in some 

way. The impending problems may not have manifested as faults yet, but may soon materialize 

with varying degree of severity. After having detected and broadly classified the fault as 

manifested or impending, the system has to localize each of them to a level, which will be 

helpful, the operational staff to attend to the problems. We discuss in this section how faults are 
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classified according to their criticality and see in detail the sharing of FP responsibilities among 

different platforms and enunciate the FP problem that this work solves.  

6.6.1 FP Issues and their Criticality  
As far as the VNFs and their interconnections are concerned, faults would happen due to 

algorithmic causes in the system software or in the application software. Faults in the application 

software affect the network functions or the links while those in the system software affect the 

VMs on which the VNFs are implemented. In the multi-domain scenario (multiple carriers), 

besides the usual faults occurring in the carriers’ networks, there would be issues due to the 

interconnection of networks. For example, non-provision of a sufficient number of inter-carrier 

interconnections at the Points of Interconnect (POI) would lead to congestion and failure of calls 

from one network to the other.  

Some events that cause alarms may not always be errors. For example, degradation in service 

can happen with some devices underperforming or because of being under provisioned. Since, in 

such cases, the devices may still not be faulty, there may be no alarm or just a minor alarm. The 

degradation of a service can be detected through notifications, counters or meters set up to count 

events at the virtual function or the service level. Many of these markers would be routine 

warnings. At the same time, some alarms may be automatically taken care of by the network’s 

resilience features, i.e., by using the redundant units instead of the one not performing properly. 

Some of these alarms may be coded to indicate the severity of the events. The confusion does not 

end here. There could also be problems with the management platforms themselves – multi-

cloud platform, MANO, or the OSS/BSS. In this thesis, we confine ourselves to the faults of  

VNFs or of SFCs that affect the performance of VNSs. 
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ITU recommendation X.733 classifies the alarm events into the following four severity classes: 

Critical, Major, Minor, and Warning [35]. Critical alarms are caused when service to one or 

more users is totally stopped. If the service is highly degraded, but not stopped, then a major 

alarm may result indicating a condition that is preventing the service to be given as contracted. A 

minor event does not indicate present degradation, but if the condition is not corrected, it may 

cause a major fault to develop. A warning may be the most benign, but usually indicates an 

impending fault or performance issue which could eventually turn into a major fault. In addition 

to detection and localization functionalities, the predictive capabilities of the fault and 

performance monitoring system are able to indicate the faults that may develop and their severity 

levels. Impending faults are, thus, an important source of concern. It would be very helpful to the 

carriers if they can identify which performance deviations or impending faults may potentially 

result in an FP problem that would require personnel and material to resolve. 

6.6.2 Shared FP Responsibilities 
The fault and performance related responsibilities are jointly exercised by the MANO, the 

MMCP, and the OSS. Their interrelationship in the context of VNSs was illustrated in 

Figure 6.7. Table 6.4 summarizes the fault and performance related responsibilities of these 

management systems. As can be seen from the description, the functions of many systems 

overlap. For example, OSS and NFVO may both obtain information from the EMSs for knowing  

the status of VNFs. Similarly, the marker collection functions of VNFM and EMS overlap. The 

precise distribution of FP related functionalities would, therefore, have to be done in the 

implementations. Standardized reference points among the management systems would help 

with interoperability of management functions of different carrier networks. Some of the 

reference points have, either not been defined, or not completely defined. These issues make the 
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fault detection and localization problems more difficult to handle as complete information is not 

available with any system. Our framework uses information from various management platforms 

to improve FP management. 

6.6.3 The FP Problem Statement 
The FP problem of the carrier networks can be defined as follows: 

1) Detection of any condition that has already led to or could lead to degraded performance or 

failure:  

The reasons could be manifested faults, hidden faults or inconspicuous deviations. The goal of 

FP issue detection is to sense and notify impending or actual fault and performance issues. 

2) Identification and localization of manifested and impending faults: 

Table 6.4 Shared FP responsibilities of different management entities 
Management 

Block 
Fault and Performance Functions 

1. MANO  
1.1 NFVO NFVO orchestrates services and monitors parameters required to meet SLAs. It manages the 

lifecycle of VNSs and uses available resources or requests additional resources to maintain 
the required performance. For handling FP issues, it gets VNF level alarms from VNFM and 
NFVI level alarms from VIM. It interacts with OSS to share measurement results and 
notifications regarding network services. Its functions overlap carrier OSS function. 

1.2 VNFM VNFM interacts with VNF instances to obtain VNF related FP information like software 
inter-module communication failure. It also collects VNF-instance related NFVI information. 
It sends intelligence to NFVO for fault detection and localization. VNFM functionality 
overlaps with EMS functionality as both collect network function information.  

1.3 VIM VIM collects alarms related to physical and virtual resources contained in NFVI. It forwards 
FP alarms to VNFM and NFVO for broader correlation and root cause analysis. The fault 
information may include VM crashes, virtual port malfunction, storage failure, resource 
unavailability, etc. 

2. MMCP MMCP keeps an inventory of and monitors all virtual compute, storage and networking 
resources from different CSPs. It logs analytics for VM related faults. It adjusts resources to 
changing workloads and maintains the required performance level. The division of FP 
responsibilities among MMCP, OSS, and MANO is still to be finalized. 

3. OSS OSS monitors network services and resources and detects anomalous conditions. It interacts 
with EMSs to obtain the status of network elements. In the virtual network service 
environment, it may directly or through NFVO get information about VNFs. It correlates 
alarms from various sources to localize faults and performance conditions. Its functions 
spread from VNS down up to the VNF level.  

4. EMS Each network function/device is monitored and managed by an EMS. They collect 
operational status and alarms from VNSs and forward them to the OSS and VNFM.  
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The goal of FP issue localization is to first determine the broad category of manifested fault and 

then carry out a more fine grain classification. For impending faults it predicts the severity with 

which the fault may occur in future. 

6.7 Methods for FP Management 
During their operation, carrier networks produce large volumes of high dimensional data in the 

form of markers like alarms, notifications, observed behavior, warnings, counter values and 

measurement of performance indicators. These are discussed in some more detail in 

Section 6.8.1. The markers used by carriers are predominantly at the service and the virtual 

network function levels. Any FP management system should take into account all the relevant 

markers to carry out the required functions. Traditionally handling FP issues as part of FCAPS 

has been considered a difficult problem as abnormal behavior has to be interpreted from large 

amounts of high dimensional and noisy data [34]. There are three broad categories of methods 

FP management being explored by researchers lately: 1) NFVI level diagnostics 2) Causality 

inference based methods, and 3) statistical methods including AI based. We’ll discuss each of 

these briefly here and take up a more detailed study of the selected method in the next section. 

6.7.1 NFVI Level Diagnostics 
We have seen previously that in VNSs, NFVI relates to the totality of hardware resources and the 

virtual compute, storage and networking resources created over these. The hardware component 

of the NFVI is in the domain of the CSP and generally inaccessible to the carriers. The methods 

in this category would rely on VM level alarms and metrics such as compute load or memory 

leak. These techniques, thus rely on the monitoring and diagnostic techniques for cloud 

computing resources used for IT applications. An explicit or implicit assumption would usually 

be that the higher level alarms and other markers, e.g., those at network function and network 
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service level, would usually have corresponding host level alarms which can be correlated to 

detect and possibly localize network function and service level manifested and impending issues. 

A correlation between telemetry information from the CSP and the higher level alarms in the 

domain of the carrier would have to be built up for diagnosing faults in the VNSs. Authors in 

[88] have applied correlation of metrics with anomalies at the virtual layer. The applicability of 

these techniques in a large distributed network needs to be studied.  

6.7.2 Causal Inference Based Methods 
These methods are also normally applied on VM level alarms like high CPU load and 

insufficient memory availability. The expectation here is that determining the causal relationship 

among them would help to get to the root cause of FP issues at the network function and service 

levels. The process involves looking for anomalous behavior based on VM level alarms, 

correlate alarms in pairs or clusters, determine causality, i.e., the effect of one alarm on the 

others and attempt to build causality templates that could be used for future alarms. The complex 

architecture and dynamics of NFV pose significant challenges from the point of view of causality 

inference. For instance, in [89], the authors carry out analysis of uncorrelated alarms to recover 

the pairwise causal relationship between them. To take care of the fact that higher-level faults 

(e.g., VNF or VNS levels) do not only depend on the pairwise relationship among VM level 

alarms, the authors propose clustering to infer multi-way causality templates. The patent 

documentation at [90] goes a step further and uses alarm data from different layers (e.g., NFVI 

and VNF). It takes into account the temporal proximity and the order of the alarm types in the 

clusters to make causality templates.  
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6.7.3 Statistical and AI-based Methods 
The large volume of operational data generated in an operational telecommunications network 

could emanate from within one layer or across multiple layers and possibly contain many 

different types related and unrelated markers. In such a complex environment, it would be 

difficult to analyze the available data to produce information that can be used to manage FP 

issues. This situation, thus, creates a perfect set up for removing humans from the loop and 

resorting to machine intelligence. In this category, there are methods based on machine learning 

and deep learning that could be used for the detection and localization of FP issues.  

There has been extensive work on performance modeling systems for distributed Internet 

applications of the pre-NFV era, notably TIPME (2000) [83], Pinpoint (2002) [84] and Magpie 

(2003) [85]. TIPME helps in identifying and eliminating causes of long response times. Pinpoint 

uses data mining to correlate the behavior of each active user request with the past failures and 

successes to determine failed components. Magpie works on individual user requests and 

compares the observed behavior, with saved normal models, to identify anomalous requests and 

malfunctioning components. Recently, the ‘mPlane’ consortium of European telecom companies 

and academic institutions, has worked on developing a measurement plane for Internet and CDN 

(2013-2016). The core of the project is ‘mpAD-Reasoner,’ which uses machine learning to detect 

anomalies involving multiple flows or users. It compares the current distribution with stored 

average distributions [166]. 

Researchers’ interest in AI-based machine intelligence for the identification of FP issues dates 

back to the era of expert systems [91] [92] [93] [94]. During the intervening decades, the carrier 

networks have undergone changes in technology and form, but the interest in intelligent fault 

handling has persisted. We look at AI as a way to empower machines to mimic and outperform 
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human intelligence. Machine learning is a subset of AI, chiefly consisting of statistical 

techniques that allow machines to exhibit behavior that improves with learning. Deep learning is 

a way to implement machine learning using neural networks with more than one level of non-

linearity. When using neural networks for difficult tasks, complex relationship among variables 

modeled with several levels of non-linearity improves the generalization process [95] [96] [97].  

It has been shown that learning methods provide a way to relatively easily learn structure in the 

data and draw inferences [99]. Shallow machine learning algorithms, characterized by a single 

convolution stage, are suitable for cases where a large amount of labeled training data, including 

normal and fault cases, are available. They can derive intelligence from data and do not depend 

on experts to build complex interacting rules to derive patterns or models. Even dependencies, 

which cannot otherwise be explicitly modeled, can be learned. These advantages make them 

attractive for handling FP problems. In FP applications, machine learning methods can not only 

be trained with historical fault and performance data, but can also be made to improve 

themselves as they operate and encounter new situations. This makes the machine learning 

systems, adaptive and intelligent and when they have been adequately trained, as they can 

generalize well from the training environment to the real-life situations. Use of different 

algorithms has been reported for detection and localization. We shall see more about this method 

in the next section. 

VNSs are a new development and their deployment over multi-cloud is still to be explored fully. 

Many of the AI methods developed for intrusion detection have been tried, with varying degrees 

of success, for managing the FP issues. Some researchers have applied AI methods directly to 

the fault detection and, to a lesser extent, to fault localization. A very important reason for 

exploring AI for the problem of FP management for cloud-based NFV is the intractability 
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introduced by the known gaps in the NFV specifications. We have seen in the earlier sections 

that interactions among multiple domains, especially between the legacy OSS and the MANO 

and the legacy OSS and the MMCP have not been fully defined [29]. ETSI supported proof of 

concepts (POC) have also resulted in highlighting the gaps in the NFV framework and carved 

out research work for the future. The present NFV framework, rather simplistically, assumes that 

VNFM will be primarily responsible for fault management actions. In real implementations, 

there will be multiple layers of cooperating fault managers. The OSS tackles customer fault 

reporting and management, which interacts with the EMS and NFV-MANO for the element level 

and VNFM level inputs, respectively. Besides, state change events for fault management actions 

have not been defined which are required for avoiding conflicting multi-layer actions and also an 

escalation from lower to higher layers. In this situation the learning methods of AI make the best 

use of the features learned from the available markers and can assist in FP management. 

The authors in [39] use Artificial Neural Networks (ANN) for one and two alarms simulated 

scenarios. They show that in a simulated environment ANN provides better performance in 

comparison with the other implemented methods. The researchers in [101] propose a system for 

fault analysis and prediction in the telecommunications access network for the Rijeka area of 

Croatia. The Authors in [102] have used temporal decision trees for fault prediction in 

telecommunications networks. As per findings in [103], fuzzy cluster means can be used to 

classify network faults. The current research indicates the possibility of advancing the state-of-

the-art in FP management through deep learning structures. 

Random Forest machine learning method has been used in [104] to detect performance 

degradations in the VNFs. However, these researchers have chosen to rely on virtual resource 

layer level features data like CPU consumption, disk I/O, and free memory based on their 
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suitability to computing systems. Evaluation has been carried out in a centralized IMS system. 

Application of the proposed method to a highly distributed multi-domain network has not been 

reported. In a similar vein the authors in [105] have worked on the premise that underlying all 

the VNF failures are the NFVI level failures like disk I/O or memory usage. They propose Self 

Organizing Map (SOM), a type of unsupervised learning neural network, for clustering the 

statistical data and analyzing them to detect the faults. In [106], the author mentions that 

machine-learning algorithms are expected to detect invisible failures and anomalies. However, 

more work is required to validate them. 

We now discuss in more detail the architecture and design of the HYPERVINES FP 

management framework for NFV deployment in the multi-cloud scenario. 

6.8 Description of the Proposed FP Management Framework 
The architecture and life cycle management in the cloud-based VNS made it VNS management 

is a collaborative process, among the elements constituting the VNS and the management 

systems involved, in creating and managing the service. VNSs impose new requirements on the 

FP management system. Gaps in the ‘NFV on clouds’ specifications in relation to the FP 

management, render rule-based approach inapplicable, and forced us to look at innovative 

techniques. The data generated by an operational system is large and high dimensional. In such a 

case, it would be very difficult to capture the intricate relationships among the features (e.g., the 

location of the fault, resources involved, markers produced, etc.) and the corresponding labels 

(faulty, non-faulty, impending fault, manifested, fault-severity, etc.) through traditional methods. 

Involvement of multiple layers of virtualization, generation of a large amount of high 

dimensional operational data and the unclear causal relationship between alarms and faults 

dictated the choices that we made in developing the framework.  



	

	 157	

6.8.1 Markers and Metrics for Fault Detection and Localization 
We have introduced markers before as indicators produced by an operational network and 

measurements taken by the operations staff. There are a large number of markers that are directly 

or indirectly related to the occurrence of an FP issue. These markers become important features 

in our datasets. Events, that produce these markers, relate to communication, QoS, processing, 

equipment, and environment. Of course, not only each FP issue would usually have multiple 

markers, but also many of the markers would appear in more than one type of issue. Also, at any 

given time the markers produced may be a result of more than one FP issue. Thus, there is a 

complex relationship between the markers and the FP issues. This would usually mean that when 

using machine learning for fault detection and localization, feature engineering, i.e., selection of 

appropriate markers would be required to get better results. However, deep-learning models, are 

able to extract relevant features automatically, without human intervention. Some of the markers 

related to mobile, fixed and broadband networks are given in Table 6.5. 

Table 6.5 List of markers for different carrier services 
Broadband Mobile Network Fixed Network 
Intermittent 
connection Handoff alarm Earth on a limb 

Low data rate BTS power alarm No dial tone 
NPOT Packet loss counter Loop resistance 
Repeated training Backhaul congestion Line card port faulty 
LAN lamp off RX noise floor Permanent ground alarm 
Line noisy Frequency error Distribution cable fault 
Port mismatch Antenna tilt DP fault 
No ping C/I ratio Insulation measurement 
ADSL lamp flashes Signal strength MDF fuse blown 
No line sync Radio link failure Handset fault 
Browsing issues Cell site failure Dis on one limb 
Micro-Filter Faulty Interference level No incoming calls 
No Communication CQ indicator Drop wire fault 
Dropouts Virtual eNB capacity Ringtone fault 
No authentication Hypervisor alarm Message fault 
vRouter failure Registration failure Delayed dial tone 
BTS: Base Transceiver Station, C/I: Carrier to Interference, CSSR: Call Set-
up Success Rate, MDF: Main Distribution Frame, MU: Multi-User, eNB: 
eNodeB, NPOT: No Power in Optical Network Terminal, XCOA: Contact 
with AC, CQ Indicator: Channel Quality Indicator 
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The metrics used by carriers to measure the health of the network provide important information 

about the FP problems at the macro level. Use of these as features in the dataset would help 

learning algorithms to narrow down the scope of localization effort. According to ITU 

Recommendation regarding the QoS criteria and parameters, many basic aspects have to be 

considered while identifying measurable metrics of service availability [173]. ETSI documents 

on service availability [79] and on service quality mention metrics that need to be collected and 

analyzed [80]. The ETSI group specification on service quality metrics recognizes that it is 

important to have an objective and quantitative metrics to assist in identifying problems when 

they arise and provide good service to the consumers. Examples of metrics, and their realistic 

values (where applicable), from an actual network [174] are given in Table 6.6.  

Table 6.6 Metric for network availability and resiliency 
Metric Typical 

Value 
Metric Typical 

Value 
Broadband Network  POI congestion <0 .5% 

Packet loss < 1% Assistance response > 95% 
Customer PoP to Internet exchange 
latency <120ms Mobile Network  

Peak international bandwidth 
utilization < 90% BTS total downtime ≤ 2% 

Connection data rate availability > 80% Traffic Channel Congestion 
(TCH)  ≤ 2% 

Average throughput for packet data > 90% Call Drop Rate (CDR)  ≤ 2% 
Latency (audio)  <150ms Call Set up Success Rate (CSSR)  ≥95% 
Fixed Network  Paging channel congestion ≤ 1% 
 Fault incidences  < 5% Signal strength in vehicle ≥ 85dbms 
Call completion rate > 55%   
PoP: Point of Presence, BTS: Base Transceiver Station, POI: Point of Interconnection 

6.8.2 AI Techniques used in the Framework 
A number of AI techniques, involving machine learning and deep learning, were tested and the 

useful ones were finally used in the HYPERVINES FP management framework for the problem 

of detection and localization of FP anomalies. Following the practice of applied machine 

learning researchers, we designate models with a single layer of non-linearity, e.g., Support 

Vector Machine (SVM) and neural network (NN) with one hidden layer, as shallow structures or 
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shallow machine learning architectures and the models with more than one layer of non-linearity, 

e.g., stacked autoencoders are referred to as deep structures or deep learning architectures [173] 

[176] [177]. We mentioned in the last chapter that it is common for shallow models with a linear 

hypothesis to have O(n) prediction time complexity and the training time complexity of O(l2+n3) 

where l denotes the size and n is the number of features in the dataset used. However, with such 

models, approximation errors are large for the high dimensional and large volume of data that are 

usually associated with the FP problem. Thus, if the data is not linearly separable, then kernels 

could be used to map data into a higher dimension where it shows linear properties. This implies 

that linear models like SVM could be applied to the new space. This kernel trick reduces the 

approximation errors at the cost of higher complexity of the training time which is O(l3 + l2n) 

and prediction speed of O(ln). Of the prevalent shallow machine learning architectures, 

supervised methods (where each training example consists of the feature vector as well as a 

label) such as SVM and Random Forest (RF) are considered useful for diagnostic applications 

[145]. Another supervised learning technique, Bayesian Network (BN), has been applied to FP 

management in the industrial settings. Our preliminary exploration of these methods with small 

datasets has shown that SVM and Alternating Decision Tree (ADT) produce comparable and 

encouraging results for the detection problem. We will discuss the evaluation results in the next 

section. 

In deep learning, increasingly improved features are learned as the hidden layers are traversed. 

Learning of complex features and structure in the data can be broken down into simpler tasks 

performed at many levels. This way, deep learning can achieve low generalization errors, even 

for functions otherwise difficult to represent [177]. Lately, better results than SVM have been 

achieved with deep neural networks in a number of important applications [175] [178]. A key 
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advantage of deep learning over shallow learning is the automatic extraction of high-level 

features. Each algorithm that we have used is briefly described here. Some of these might have 

been described in a different context before; the focus here is not their applicability to the FP 

problem. For more details, readers may consult the references mentioned. 

1) Support Vector Machine (SVM): Geographically dispersed elements of the network may 

generate similar or different markers at different locations, for example, at the carrier’s OSS 

location or the NFV provider’s MANO location. The information contained in these markers is 

non-unique across the domain of faults and performance issues. The SVM classifier can analyze 

the data and learn inherent patterns, which are otherwise not evident to the human senses. It 

works by finding optimal hyperplanes that separate different classes in a given labeled dataset. 

Once trained, it can classify unseen data. References at [136] give a more detailed description of 

SVM. As we have used SVM in our framework, we mention some more details of parameter C, 

ϒ and ϵ that require careful selection to minimize prediction errors. As the exact solution is 

impractical, precision ϵ is used to indicate the error insensitive tube around the decision 

boundary in which the errors are ignored. The aim is to minimize ||ω||2 which is equivalent to 

maximization of the margin between the classes. The constant C determines the tradeoff between 

the flatness of function learned and the amount of error allowed above ϵ. A low C makes the 

decision surface smooth; a high C aims at classifying all training examples correctly by giving 

the model freedom to select more samples as support vectors. We choose how significantly the 

misclassifications should be treated and how large the insensitive loss region should be, by 

selecting suitable values for the parameters C and ϵ. The data X is projected to a higher 

dimension using function ϕ(X). Poor generalization and computational complexity that may 

result from projecting data to higher dimensions can be avoided by the use of a kernel function 
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that maps the input feature space of dimension d to a higher dimensional space in which the 

relationship becomes linear. In our studies, we have found that the performance of the Radial 

Basis Function (RBF) kernel performs better than others. The RBF kernel has the form given 

below. Here, xi and xj are two sample feature vectors, and ϒ is the parameter that sets the spread 

of the kernel.  

K(xi, xj)=exp(-ϒ||xi-xj||)   (6.1) 

In all cases where SVM was used, these parameters were arrived at by the grid search method. 

	2) Alternating Decision Trees (ADT): This method combines Decision Trees with Boosting. The 

ADT is different from normal decision trees as it has predictor and test nodes alternately, while 

the normal decision tree has just test nodes with each branch representing an outcome of the test. 

Another difference is that while each leaf can only be split once into two, in ADT each part can 

be split multiple times. This increases the accuracy of classification/regression. The splitting 

criterion could be impurity based like information gain or Gini index or based on a statistical test 

like chi-square. Boosting, on the other hand, brings in performance-enhancing capabilities. 

However, it adds more test and predictor nodes. The complexity is quadratic in boosting 

iterations, but can be reduced by using a suitable heuristic [180]. 

3) Random Forest: Among supervised learning algorithms of its class, the Random Forest (RF) 

is a classifier that is likely to give more accurate results. It proves to be efficient and robust in 

many use cases with large databases. It can help in feature selection by estimating the relative 

importance of the predictor variables. This is done by selecting an impurity measure like entropy 

and measuring the contribution of each feature. Another very useful feature is that it does not 
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need separate test data or any cross-validation. The Out-of-bag error (OOB-error) gives an 

unbiased estimate of test or classification error [181]. 

4) Deep Learning using Stacked Sparse Autoencoder: An autoencoder is a neural network, which 

has an input layer, an output layer, and one or more hidden layers. It learns the feature of a 

dataset in an unsupervised manner (i.e., the training examples are just feature vectors with no 

labels). Such a model reconstructs the input values at the output with accuracy depending on how 

well the features are represented by the hidden layer(s). A sparse autoencoder (SAE) contains a 

hidden layer with a smaller number of neurons than the inputs. Thus, the high dimensional inputs 

are mapped to a lower dimension forcing them to learn the best representations of the given 

features. Extraction of features takes place according to their relative importance. More than one 

sparse autoencoders can be put in tandem to construct a stacked sparse autoencoder (SSAE). 

Training of the stacked autoencoder is done in a layerwise greedy manner. The first layer is 

trained with the input data x to obtain weights ω and bias b for the hidden units such that the 

output k(f(x)) is as close to the input as possible, i.e., minimizes the loss function Ø(x, k(f(x)) 

[182]. The L2 norm (mean square error) is often used as the loss function. The primary feature 

activations of the first hidden layer are then used as input to the second hidden layer and so on. 

Since the L2 norm may not reduce the error to zero, a sparsity penalty term is added to constrain 

the neurons to be mostly close to zero. The training criterion can be written as 

Ø(x, k(f(x))) + Ω(h), where Ω(h) is the sparsity penalty. 

If we consider an SSAE with n layers then the weight and bias parameters for the mth 

autoencoder can be written as ω(m, 1), ω(m, 2), b(m, 1), b(m, 2). The encoding step in the feed-forward 

direction for each layer k of the stacked autoencoder is given by:		
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h(k) = f(x(k))  (6.2)  

x(k+1) = ω(k,1)h(k) + b(k,1)   (6.3) 

The decoding stack of each autoencoder is run in the reverse order 

h(n+m) = f(x(n+m))  (6.4) 

x(n+m+1) = ω(n-m, 2)h(n+m) + b(n-m, 2)  (6.5) 

Then, as the layer-wise training proceeds, each successive layer learns increasingly more and 

more useful features with the innermost layer h(n) giving a representation of the input in terms of 

the most compressed and useful features for the input of higher dimension. With appropriate 

settings of the parameters, the compressed layer reconstructs the original input with good 

accuracy. Good reconstruction performance helps in achieving good prediction. For prediction of 

fault classes or severity of impending faults, a layer of Softmax classifier replaces the decoder 

layers with h(n) forming the input to this layer. Softmax regression can be used for multi-class 

classification as it gives probabilities of output being close to the target value in the range 0 to 1 

with the sum of probabilities being 1. 

Table 6.7 summarizes the machine learning and deep learning techniques useful for NFV-Cloud 

FP problems. 

Table 6.7 Machine/Deep learning algorithms for the FP problem 
Algorithm Advantages Watch out for 

Support Vector 
Machine 

• Works well for the detection problem.  
• Works with linearly separable as well as 

non-linear feature space (with RBF 
kernel).  

• Select kernel function and fine-tuning 
of parameters. 

• Select the cross-validation method 
carefully.  

• Long training time with the big dataset.  
Random Forest • Works well for the detection problem and 

localization of manifested faults. 
• Works for binary as well as multi-class 

classification.  
• Less prone to overfitting.  
• Handles non-linearity.  
• Handles categorical features.  
• Handles high dimensional spaces and a 

large number of examples. 

• Fine tuning of parameters like the 
number of features in any tree, number 
of trees in the ensemble and leaf size.  

• Watch out for classification time and 
complexity of the model. 

ADT  • Works well for the detection problem.  • Must be used carefully to avoid 



	

	 164	

 

 6.8.3 Design and Implementation of the HYPERVINES Framework  
The operational basis of the HYPER-VINES framework is to consume markers from large 

volumes of multi-source and high dimensional operational data to accurately detect and localize 

faults and performance issues of VNSs in a carrier's environment. Figure 6.8 gives a simplified 

illustration of the process. 

 
Figure 6.8 HYPER-VINES Fault and performance management 

mechanism 

In the training mode, the data is curated and partitioned into training and test datasets. Shallow 

machine learning and deep learning models, used in various stages of detection and localization, 
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• It can be used for mixed categorical and 
numerical data.  

• It helps in finding significant features.  

overfitting. 
• Keep control of parameters like depth 

and number of features to split on. 

Autoencoder/Stacked 
sparse autoencoder 

• Useful for localization of impending 
problems.  

• It gives better control over quality. 
• With the appropriate number of layers 

and neurons, it performs better than the 
shallow algorithms 

• Sensitive to number and size of layers.  
• Careful fine-tuning of sparsity and 

regularization parameters is required. 

SoftMax • Used as the last stage of stacked 
autoencoder in the localization problem.  

• Trained in a supervised manner.  
• It can do binary as well as multi-class 

classification. 
•  It can be used for prediction of faults, 

severity, etc.  

• Watch for bias due to the distribution of 
data.  

• If sufficient labeled data are available 
fine-tuning by backpropagation may 
improve results. 
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were trained and tested. The models were fine-tuned till the mean square error of classification or 

prediction is optimized. The framework is called hybrid as it involves both machine learning and 

deep learning models. During operation, the generated markers are pre-processed and run 

through the trained models for detection and localization. We discuss more details of the process 

in the next sub-section.  

The relationship of the HYPER-VINES framework with its environment is shown in Figure 6.9. 

It collects performance markers primarily from MANO, OSS and the cloud management 

platforms over standard interfaces. Additional information about operational statuses of 

individual VNFs comes from the EMS via OSS or is pulled directly by HYPER-VINES. Since 

HYPER-VINES obtains markers from multiple sources, it mitigates the problem of overlapping 

responsibilities and ill-defined interfaces of the management platforms.  

 
Figure 6.9 The environment of HYPER-VINES 

The internal architecture of HYPER-VINES is shown in Figure 6.10. The main sub-systems are 

the Detection and Localization functions with an optional inclusion of the data pre-processing 

module. We discuss the important details of the framework below. 
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 Figure 6.10 The Architecture of HYPER-VINES Framework 

Markers available from the management platforms, viz., runtime monitoring and measurements, 

alarms, notifications and warnings, configuration changes, measurements and environmental 

factors are used along with machine learning models trained with historical data to draw 

inferences about the manifested performance and fault issues. Additionally, the capability of 

deep learning to map the intricate relationship among the features has been used to predict the 

impending faults. The framework shown in Figure 6.10 consists of three main sub-systems: Data 

pre-processing, Detection and Localization.  

6.8.4 Data Pre-processing 
The marker data, obtained from various sources, are collated and normalized to remove biases. 

We have also tested reduction of features based on some criterion like correlation with the labels. 

Tools like Weka have been used to select features based on correlation with the labels [33]. With 

the dataset used in this study, inclusion of features up to a correlation threshold of 23% improved 

accuracy. In the training mode, the available dataset is split into training and test datasets, which 

are used to train and test all the models. During operation, the marker data is run through the 
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framework to detect and localize problems. We shall see more details of the actual datasets in the 

next section. 

 6.8.5 The FP Detection Subsystem 
The first part of the FP problem, i.e., detection is essentially a two-stage binary classification 

problem that first classifies the outcome as ‘normal/abnormal performance’ or ‘fault/no fault’ 

classes. Then for the ‘fault’ or ‘abnormal performance’ cases, it decides whether the problem is 

manifested or impending. We shall see in the next section, why a two-stage model is better in 

this case. It is important for the detection models to have good accuracy, as manpower and 

material resources are committed for rectification of detected and localized faults. This is 

particularly important, as the presence of alarms does not always indicate a fault.  

 
Figure 6.11 The detection subsystem 

The detection sub-system of the FP management framework is shown with more details in 

Figure 6.11. In the two-stage implementation for detections, both the levels use the shallow 

machine-learning models. As mentioned before, these models are trained on historical data 

consisting of FP events, present markers including the severity levels and the fault clearance 

description that the maintenance staff has entered after rectifying the fault. The cases, where no 

action is required or the fault is transient and corrects itself, are labeled as ‘no-fault.’ In the case 

of an actual fault, the nature of the fault and its actual clearance is indicated. The trained model 
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can then take markers resulting from new events as inputs to decide at Level 1 whether the 

conglomeration of markers constitutes a fault. If it does, then the model at Level 2 uses the 

available information to decide whether the fault is impending or manifested. The use of markers 

from many management platforms may introduce redundancies, as a good amount of similar 

information may be available from OSS and MANO. However, redundancy is good for our 

framework and makes up for the gaps in communication among various management platforms.  

The occurrence of multiple faults, the overlap of markers among faults and conflicting markers 

render the task of detection difficult. If our detection sub-system is effective and can correctly 

segregate the conditions, then localization has better chances of succeeding. A two-level model 

for detection helps in filtering out a large number of ‘no-fault’ cases at level 1 so that level 2 is 

largely applied to the ‘fault cases.’ This makes classification better and faster. 

Algorithm 6.1 describes the process of detection. X is the vector of predictor variables. Hyper-

parameters {pd} and {pd'} pertain to detection models at the two layers, {ps} and {pn} are for 

models at the Localization Layers 1 and 2 and {pi} are for deep learning model for impending 

faults. 

The procedure detect_level1 at line 1 takes the feature vector of a new event and populates the 

hyper-parameters (line 3). The trained machine learning model is used to predict labels. If it is 

‘fault’ condition then detect_level2 is invoked (line 8) which uses another trained model to 

classify the fault as ‘manifested’ or ‘impending’. After that, the appropriate localization module 

is called (line 13 or line 15) to handle the manifested fault localization or the impending fault 

localization. Use of X' and X" indicates the possibility of curating the feature vector used with 
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the corresponding model. This algorithm also outputs the detection report, which includes fault 

cases as well as the type of faults. 

Algorithm 6.1: Detection Levels 1 & 2 
 1: procedure detect_level1 (X) 
 2: #fault/no-fault classification 
 3: {pd} ! values of hyper-parameters for the chosen model 
 4: use trained model for detect_level1 with X, {pd}) 
 5: if ‘fault’ is true 
 6:   call detect_level2 (X') 
 7: produce detection report 
 8: procedure detect_level2 (X') 
 9: # classify as manifested/impending and call localization 
10: {pd'} ! values of hyper-parameters for the chosen model 
11: use trained model for detect_level2 with X,Y, {pd'} 
12: if manifested is true 
13:  call manifested_localization (X") #defined in Algorithm 6.2 
14: elseif impending is true 
15:  call impending_localization (X") #defined in Algorithm2 

6.8.6 The FP Localization Subsystem 
The second part of the FP problem is the localization of the detected faults. Many of the 

manifested faults, that have made themselves evident, could be major or critical threatening to 

seriously cripple the network service from which they originate. Localization of manifested 

faults is, therefore, taken up on priority while immediate localization of impeding is elective, 

nevertheless important.  

Since many faults may propagate and produce secondary markers at other places in the network, 

the localization process has to cut across layers and domains to identify the faulty devices, links, 

and software correctly. Our framework localizes manifested faults using a multi-class, two-

layered model shown in Figure 6.12 (extracted from Figure 6.10). We now describe some more 

details of the manifested and impending fault localization. 
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Figure 6.12. The localization process 

Manifested Faults:	 During the operation, all the FP issues classified as ‘manifested’ pass 

through the two layers of localization. At Layer-1, the model works as a multi-class classification 

model that classifies the faults into one of the several broad categories of FP issues. Table 6.8 

gives examples of three such categories, ‘Network Performance,’ ‘Security’ and ‘Virtual 

Resource.’ The model at Layer-2 is also a multi-class classification algorithm that localizes the 

FP issue at a finer granularity (e.g., a device, interface, or link) within the broad category 

predicted at Layer 1. The localization sub-system produces localization reports that can be used 

by the maintenance staff to carry out the rectification work. For the multi-class classification 

with SVM, we chose to work with simple models like One vs. One (OvO) and One vs. All 

(OvA) [33]. We eventually selected OvA since it provided more accuracy and was comparable to 

OvO in training and actual operations. In the OvA approach, for the ith classifier fi, the examples 

can be classified with f(x) = arg maxi fi(x), i.e., choose the class that classifies the example with 

the maximum margin 
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In Algorithm 6.2, the procedure manifested_localization (line 1) uses procedure localize_layer1 

(line 4) to determine the broad category of manifested fault. Depending on the category 

determined, it calls the localize_layer2 with corresponding parameters. For each category at 

Layer 1, the Layer 2 may have a specifically trained model. For Impending fault localization the 

procedure impending_localization (line 17) calls the deep learning model with the required 

parameters. Let us discuss a little more about the manifested and impending faults. 

Algorithm 6.2: Localization Layers 1 & 2 
 1: procedure manifested_localization (X) 
 2: # Coarse grain localization 
 3: {ps} ! values of hyper-parameters for the chosen model 
 4: call localize_layer1( X,{ps}) 
 5: # fine grain localization with the appropriate model 
 6: if class_category ==1 
 7: {p1} ! hyper-parameters class_category 1 
 8: call localize_layer2(X",{p1}) 

… 
 9: if class_category==7 
10: {p7} ! hyper-parameters class_category 7 
11: call localize_layer2(X",{p7}) 
12: produce localization report 
13: procedure localize_layer1(X,{ps}) 
14: use trained model localize_layer1 with (X,{ps}) 
15: procedure localize_layer2(X'',{pn}) 
16: use trained model localize_layer2 with (X, {pn}) 
17: procedure impending_localization (X) 
18:{pi} ! parameters neurons, sparsity parameters 
19: use deep_learning_model (X,{pd}) 
20: produce impending fault report 
 

Impending Faults:	 In traditional systems, in the absence of predictive analysis, preventive 

maintenance is relied on to catch issues early. In our framework, localization of impending faults 

consists of predicting the severity and location of the fault. In a stable operational network, most 

of the markers would constitute normal data with markers indicating anomalous conditions 

interspersed sporadically. While our data has more than 800 features, any anomalous condition 

would present <5% of these! In other words, the data are quite sparse. Impending faults may also 

contain previously unseen faults. Thus, while manifested faults are manageable with shallow 
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models, impending faults have been tackled with deep learning. We have used Stacked Sparse 

Autoencoder (SSAE) (a type of deep neural network). A single SAE contains an input, an output, 

and a hidden layer. With an under complete hidden layer, the autoencoder learns the most useful 

individual features as well as creates composite features. This advantage can be accentuated with 

stacking a number of autoencoders and carefully designing the hidden layers. 

 

Figure 6.13 The stacked encoder used for prediction 
Figure 6.13 shows the stack of three sparse autoencoders used in this work: the input layer (x), 

an output layer (p) and three hidden layers consisting of paired encoders and decoders. The 

colored neurons show three corresponding pairs of encoders and decoders. By reducing the size 

of hidden layers, the output is made reliant on increasingly lesser but richer features. Such a 

network can be trained in an unsupervised mode to reconstruct input data at the output with good 

accuracy. These networks can be tuned well for sparse data by using parameters like sparsity 

regularization and sparsity proportion as discussed in the evaluation section. 

We train our model to have a good reconstruction of the input at the output (decided by the L2-

norm), with unsupervised data, in a layer-wise greedy method (one hidden layer at a time). A 

model that reconstructs well also gives good predictions [172]. During training, features (z) 

learned by each hidden layer are input to the next layer. Pairs of {weights, biases}, viz., (ω1, b1), 

(ω2, b2) and (ω3, b3), are learned in achieving good reconstruction. 
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                                  argmin{L2_norm(x, x'), k=1 
{ωk, bk, ωk', bk’} =       
                                 argmin{L2_norm(zk-l, zk-l'}, k> 1                                                              (6.6) 
z1 = f(ω1, x)                                                                                                                                (6.7) 
 zk = f(ωk, zk-1), k>1                                                                                                                     (6.8)  

After achieving good reconstruction of the input, the decoders are removed, and a prediction 

layer is added in tandem with the encoded representation layer (Figure 6.14). Softmax assigns 

decimal probabilities to each class in a binary or multi-class problem. These decimal 

probabilities must add up to 1. This additional constraint helps training converge more quickly 

than it otherwise would. In simple terms, the Softmax function can be written as 

F(yi) = exp(yi)/∑j=1, k exp(yj),   i=1, 2, …, k                          (6.9) 

Softmax uses the rich features from the encoded layer of the stacked autoencoder to learn its 

weights ω4 and biases b4. Training of Softmax is done in a supervised manner using the labeled 

examples available. ω4 are the weights for minimum prediction mean square error (MSE). It 

produces predictions y' for the given labels y. Thus, for labels y and its prediction y' we have, 

{ω1, ω2, ω3, ω4}=argmin{L2_norm(y, y')}                                                                              (6.10) 

After the Softmax classifier has been trained in a supervised manner, the whole model is fine-

tuned using back-propagation and simultaneous adjustment of weights of all the layers to 

minimize the mean square error in the labeled test datasets [29]. 

 

Figure 6.14 Stacked sparse autoencoders 
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6.9 Evaluation of the Model  
In this section, we will discuss how our FP detection and localization framework that we have 

described in the sub-section 6.8 has been evaluated. More specifically, we will see the training 

dataset used, curation of data, and the performance of the trained models for the unseen events. 

Curating may involve one or more of the following activities to improve the outcomes: feature 

pre-selection using some kind of technique to correlate features with the labels, cleansing of data, 

pruning or integration, synthesis or analysis of features. The performance of the HYPER-VINES 

framework is demonstrated by good accuracies achieved by the detection and the localization 

subsystem. 

 6.9.1 Analysis of the Datasets Used 
Having access to good quality datasets is important for proper training of the learning models 

and their predictive performances [183]. Records like fault dockets, switch room logs, outdoors 

logs, personal records of maintenance staff and fault closure reports contain a vast amount of 

information about complaints, faults, test results and restoration details of telecommunication 

networks. However, assembling a useful dataset from these primary data is not an easy task. 

Since network fault and performance datasets are not easily available, researchers commonly 

resort to either proprietary datasets that are not publicly available or generate synthetic datasets 

[101] [103]. We have used in our studies the real network FP dataset pertaining to faults and 

disruptions in telecommunication carrier Telstra’s network drawn from real fault-logs [184]. The 

dataset, as available, is split into many sub-datasets, each containing different information 

derived from the logs. These sub-datasets give event_type, log_feature, resource_type and 

severity_type. They are related through the “id” column that acts as the key field and also 

conveys the timing information. It can be used in innovative ways to improve predictions based 
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on the dataset. The event_type is the type of fault or performance incident. Any anomalous 

situation may have up to 5 different events associated with it. The resource_type gives the 

affected virtual resources. The feature fault_severity is given in terms of the number of faults: 

many faults (2), a few faults (1) and no faults (0). The ‘log-feature’ file identifies features or 

markers like alarms and notifications by their numbers. There can be up to 386 features 

associated with an anomalous event. The severity_type rates the warning conditions in terms of 

their seriousness (on a scale 1 to 5 with 5 being the most serious).  

The training dataset contains “id,” the location of the incidence and the severity of the fault. The 

rest of the fields can be extracted from the other sub-datasets to make a complete dataset for 

training detection models. In the case of localization, the available sub-datasets as collated with 

the training dataset such that the localization model gives a good prediction of severity of faults. 

An extract from the training and test datasets are given in Table 6.9 (a) and 9 (b) respectively. 

The test dataset has “id” and the location for which severity has to be predicted.  

Table 6.9 (a) Training dataset Table 6.9 (b) Test dataset 

id location fault_seve
rityity 

id location 

4757 location 508 0 13484 location 922 
16358 location 257 1 12392 location 184 
11810 location 116 0 2322 location 1019 
7274 location 830 1 567 location 734 
4311 location 704 2 4436 location 236 
12261 location 1089 2 12156 location 124 
14752 location 653 0 7508 location 858 
3304 location 1099 1 6184 location 707 
9012 location 975 0 12213 location 763 
9928 location 1019 2 6458 location 1100 
10013 location 696 0 13967 location 155 

The Telstra log_feature sub-dataset contains 58,672 examples, with events displaying the 

presence of different features. The event_type sub-dataset has 31,170 examples, the 

resource_type sub-dataset has 21,076 and severity_type sub-dataset has18,552 examples. The 
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test and the training files have 11,171 and 7381 records respectively. They have not been split 

from a common dataset so the standard 80:20 or a similar ratio is not maintained. A dataset 

prepared by the consolidation of all sub-datasets has more than 800 features as shown in Table 

6.10. Each fault (with a unique id) is associated with a location, up to 6 features and 

corresponding volumes, up to three affected resources, up to 5 events, and up to 5 severity types 

indicating the intensity of the warning and fault_severity ranging from 0-2 as explained before.  

Table 6.10 List of features from network fault dataset 
No of 

Features 
Feature Name Explanation 

1 id Unique id for an anomaly situation. It contains a time-stamp. 
2 location Location of the event 
3-12 resource_type Up to 10 resources may be involved 
13-398 feature There are 386 types of markers of which usually a few will be 

present 
399-797 volume There is volume information for each feature present 
798-802 event_type Up to 5 event_types may be associated with an anomalous 

situation 
803 severity_type Indicates severity of warning for the situation. The scale is 1-5 

with 5 being the most severe 
804 fault_severity 0 indicates no fault, 1 indicates a few faults and 2 indicates 

many faults 
A part of the consolidated Telstra dataset is shown in Table 6.11. Only feature1 (out of the 

complete set of features from feature1 to feature386) is shown for compactness. As part of 

preprocessing of the dataset, selection of features was carried out based on the degree of 

correlation of each feature with the labels using the Weka tool [147]. With the dataset used in 

this study, a correlation threshold of 23% was found to improve accuracy. 

Table 6.11 Consolidated training dataset 

id location 
fault_ 

severit
y 

resource1 resource2 event1 event2 event3 event4 severity_ty
pe 

feature
1 

volume
1 

8 
location 
243 0 

resource_t
ype 2   

event_type 
34 

event_type 
35   

severity_typ
e 2 232 3 

1
3 

location 
418 0 

resource_t
ype 2   

event_type 
35 

event_type 
34   

severity_typ
e 2 232 1 

1
9 

location 
644 1 

resource_t
ype 2   

event_type 
42 

event_type 
44   

severity_typ
e 1 368 2 

2
0 

location 
79 0 

resource_t
ype 2   

event_type 
54 

event_type 
11   

severity_typ
e 2 55 1 

2
3 

location 
257 0 

resource_t
ype 8 

resource_
_type 2 

event_type 
35 

event_type 
34 

event_t
ype 10  

severity_typ
e 2 307 1 
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2
4 

location 
367 0 

resource_t
ype 2   

event_type 
35    

severity_typ
e 4 312 2 

2
6 

location 
238 0 

resource_t
ype 2   

event_type 
35    

severity_typ
e 4 312 1 

2
7 

location 
793 0 

resource_t
ype 8   

event_type 
11    

severity_typ
e 1 73 3 

2
8 

location 
889 0 

resource_t
ype 8   

event_type 
11    

severity_typ
e 2 68 2 

6.9.2 Evaluation of the detection subsystem 
To prepare the data for Level-1 detection, the fault_severity has been curated to have binary 

values with 0 indicating ‘no-fault’ and 1 indicating ‘fault.’ The detection classification of 

‘fault’/‘no-fault’ was implemented with many supervised learning techniques of which SVM, 

ADT, and RF have been shown in Table 6.12. Based on accuracy, SVM and ADT perform 

comparatively better than RF. In each case, 10% cross-validation was used.  

Table 6.12 Stage-1 detection results 
Benchmark Algorithm SVM ADT Random Forest 
Time taken 0.01 seconds < 0.01 seconds 0.1 seconds 
Correctly classified instances 95.42% 95.00% 86.67% 
Precision (Average) 95.7% 95.2% 86.9% 
Mean absolute error 0.0458 0.0859 0.2509 
Root mean squared error 0.2141 0.2092 0.3261 
True positive for class 0 94.3% 94.3% 95.5% 
False positive for class 0 2.4% 3.6% 30.1% 
True positive for class 1 97.6% 96.4% 69.9% 
False positive for class 1 5.7% 5.7% 4.5% 

With this dataset, SVM, on the whole, performs better than ADT and RF giving ≥ 95.4% 

accuracy. Considering the definitions in Table 6.13, the true positive (TP) rate for ‘fault’ cases 

were the highest for SVM showing that these were correctly classified as ‘fault’ cases. 

Considering the nature of the dataset, this result indicates a good result. There were no faults and 

the system said fault in 5.7% cases, while there were faults and the system said no faults in 2.4% 

cases. The false positive and negative rates were the lowest in SVM and the highest in Random 

Forest. A desirable outcome is that besides classifying faults and faults and no faults as no faults 

with high accuracy, it classifies a very low percentage of faults as no-faults, thus, helping to do 
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what is intended to do – detect performance and fault issues. SVM and RF also gave high 

precision indicating that they correctly classified 'no-fault' cases. 

Table 6.13 Metric used 
Metric Interpretation 
Accuracy (TP+TN)/(TP+TN+FP+FN) 
Precision TP/(TP+FP) 
Recall TP/(TP+FN) 
TP=True Positive, TN=True Negative, FP=False 
Positive, FN=False Negative 

To get a sense of the performance of our detection model, using SVM with RBF Kernel, we 

compared the results with baseline results obtained by One-R model. One-R is a simple but 

accurate classification algorithm, which generates one rule for each predictor and then selects the 

one with the smallest error. Running on our datasets, the baseline result was about 74%, which 

indicates that our chosen model gives a substantial improvement over the naïve baseline. The 

comparative baseline and the accepted model (SVM in this case) results are shown in Table 6.14 

and Figure 6.15 

Table 6.14 Detection Level 1 performance 
Parameter HY-V (%) ONE-R (%) 

Accuracy 95.41 74.55 

Precision 95.7 78.6 

Recall 95.4 73.3 

No-faults as faults 5.7 11 

Faults as no-faults 2.4 15 
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Figure 6.15 Detection Level 1 performance graph 

At Level-2, the detection module classifies the fault cases as ‘manifested’ or ‘impending.’ For 

the Level-2 classification into manifested/impending classes again a tuned SVM with RBF 

Kernel works well as can be seen from Table 6.15. 

Table 6.15 Detection Level 2 performance 
Metric HYPER-

VINES (%) 
Accuracy 95.1 
Precision 93.0 
Recall 93.0 
Rate for correct prediction of 
impending faults 

95.1 

Rate for correct prediction of 
manifest faults 

89.7 

For Level-2 detection, we have chosen One-R as the baseline algorithm. The accuracy of our 

framework is 13.03% better for ‘impending’ faults and 5.97% better for ‘manifested’ faults, 

which is a significant improvement (Figure 6.16.)  

 Figure 6.16. Detection Level 2 effectiveness compared to 
baseline 

6.9.3 Evaluation of Localization Subsystem 
As discussed in Section 6.8.6, for handling manifested FP issues, the localization subsystem was 

implemented in two layers with multi-level classification carried out at both the levels. At Layer-

1, the model classifies the faults into one of several broad categories of FP issues as was shown 

in Table 6.8. We set up the baseline performance with OneR as shown in Table 6.16. 
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Table 6.16 Localization Performance 

 Localization Level 1 Localization Level 2 

Parameter HYPERVINES (%) ONE-R (%) HYPERVINES (%) ONE-R (%) 

Accuracy 97.03 86.14 96.04 90.10 

Incorrectly 
classified classes 

2.97 13.86 3.96 9.90 

Precision 97.1 94.7 97.6 93.5 

Recall 97.3 86.1 96.0 90.1 

PRC Area 0.967 0.806 0.955 0.846 

At Layer-1, we chose the sequential minimal optimization (SMO) multi-class support vector 

classifier. With SMO and RBF Kernel and parameters C = 12, gamma = 0.01 epsilon = 1×10-12, 

the accuracy of Layer-1 localization is 97%, which is a substantial improvement over the baseline 

performance of 86.14%. The performance of the model is given in Table 6.16. 

Figure 6.17 gives a comparison of the performance of our Multi-Class Multi-Layer 

(HYPERVINES) model with the baseline. It can be seen that the accuracy of the classification of 

HYPERVINES is 97.03% against the baseline accuracy of 86.14%. A useful metric for 

comparison of classifiers is Precision-Recall Area (PRC Area), which gives a tradeoff between 

precision and recall. A high value indicates high precision (i.e., low false positives) and high 

recall (i.e., low false negatives). We can see that HYPERVINES Level 1 gives a high PRC Area 

of 0.967 compared to 0.806 of the baseline. 
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Figure 6.17 Localization Layer 1 effectiveness compared to 

baseline 

Once a broad category has been identified, the Layer 2 model does fine grain localization for each 

category of manifested fault. In a dataset containing Network Performance Faults at Layer 1 and 5 

different faults at Layer 2, we have the results in Table 6.16. 

In the same table we can see that when compared with the baseline algorithm result, the HYPER-

VINES using multi-class classification with SMO and OvO has a much superior performance, 

indicating the efficacy of the model. The localization accuracy of the model is 96.04% compared 

to 90.1% of baseline. The PRC Area of the HYPERVINES Level 2 classification is 0.955 against 

0.846 of the baseline. Figure 6.18 gives the graphical comparison of Level 2 performance of the 

implemented model (Multi-class, Multi-layer) and the baseline. It is seen that the implemented 

model gives a higher percentage of correctly classified and lower percentage of wrongly classified 

examples.  
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Figure 6.18 Localization Layer 2 effectiveness compared to 
baseline 

6.9.4 Localization of Impending FP Issues 
One of the main concerns handled in the framework is to localize impending faults and predict 

their severity levels. We have seen in Section 6.5 that the localization sub-system uses stacked 

sparse autoencoder (SSAE) for faults detected as impending faults. While at the preprocessing 

stage a total of 353 features were selected, further condensation was left to the SSAE used.  

To make the deep learning model predict with high accuracy, the first step is to train the stacked 

autoencoders such that the output is as close a replica of the input as possible. To achieve 

optimum performance, the stacked autoencoder parameters like the number of hidden layers, the 

size of the layers, sparsity regulation (SR) and sparsity proportion need to be judiciously arrived 

at. An example of comparative reconstruction performance is given in Figures 6.19(a) through 

6.19(d). It is seen that the model with 3 hidden layers of 200/150/100 neurons, respectively, 

converges quite fast to a low mean-square error. Reconstruction accuracy is important as it affects 

the prediction based on the trained encoders, which the model is eventually used for [169]. 
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   (a) Single AE (b) 2-layer SSAE 

  (c) 3-layer SSAE (d) 4-layer SSAE 
Figure 6.19 Mean square error for reconstruction of the input 

Sparsity in data is handled by using the Autoencoder parameters sparsity regulation (SR) and 

sparsity proportion (SP). SP gives the proportion of training examples a neuron reacts to. A low 

value of SP encourages sparsity. 

Having achieved good reconstruction results with stacked autoencoders, the model was tested for 

prediction of the severity of impending fault and performance issues. As discussed in 

Section 6.8.6, a Softmax layer is added as a prediction layer. The graph in Figure 6.20 shows that 

the model has good generalization characteristics as MSE for the test dataset is close to that of the 

training dataset.  
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Figure 6.20 MSE in training and test dataset 

Fine tuning of the model was done using backpropagation. The accuracy ranges between 72 and 

85% with the abridged dataset (~1000 examples) and ~92% with the enhanced dataset (~5000 

examples). Experiments were carried out for SR = 1 and SP = 0.4. 

We baselined the above results with those obtained with a shallow model, viz., SVM with RBF 

kernel which worked very well for detection and could only obtain 73.1% accuracy in localizing 

impending faults. A comparison between SSAE and SVM models is shown in Figure 6.21. The 

deep structure thus provided a substantial improvement in terms of accuracy of prediction of the	

severity levels	of	the	impending	faults.	

 Figure 6.21 Localization of impending fault stacked 
autoencoder and SVM (baseline) 
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6.10 Summary 
This work introduces the issue of availability and performance management of carrier services 

using NFV over a multi-cloud in a way that achieves the goals established in Subsections 6.1 and 

6.2. To recapitulate briefly, the following contributions have been made: a) Discuss the 

architecture, creation and management of VNS, b) Elucidate the FP problem, c) Discuss the 

usefulness of AI techniques in the cloud-based NFV environments, d) Describe the AI based FP 

management framework and e) Evaluate the designed framework and discuss results. To enable a 

holistic understanding of the fault and performance issues, we have described the design of 

VNSs like mobile or broadband services using SFCs. All the management platforms (MANO, 

OSS, and MMCP) that play important roles in fault and performance management of VNSs and 

their interactions have been discussed. MANO is the main component of the NFV life cycle and 

fault management and considering its importance its constitution and functions have been 

discussed in detail. Responsibilities of each of the sub-systems of the MANO towards 

monitoring and management of fault and performance issues have been described. Interfaces that 

have been defined between the MANO and the MMCP and between the MANO and the OSS 

have been discussed. All these aspects cover goal a). Towards achieving goal b), a full section 

has been devoted to the description of the fault and performance issues wherein we also discuss 

the criticality of faults and the shared FP responsibilities of the management platforms. To meet 

goal c), explanation has been given for the importance of considering AI for achieving the goals 

of the FP problem. Towards achieving goal d), a generic framework for detection and 

localization of the FP issues has been proposed and described in detail. It has been brought out 

how the AI based framework would be able to go beyond the traditional models in predicting 

impending failures and their severity. Markers and metrics are important ingredients of any FP 
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management system and have been given a fitting treatment. To accomplish goal e) we have 

discussed the results our work involving the implementation and evaluation of the detection and 

localization functionalities using the machine and deep learning respectively. Using an actual 

network fault data, we have shown how manifested and impending FP issues can be effectively 

handled by the detection and localization sub-systems of the FP management framework based 

on machine and deep learning models.  
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Chapter 7    

Security in Next Generation Healthcare 

So far we have discussed the work that we have done to place VNSs over clouds and ensure that 

they perform well. In using cloud infrastructure and virtual network services for critical services 

like healthcare, security of patient data becomes an important requirement. In this chapter, we 

discuss the threat model and the security architecture, we have evolved for Internet of Thinks 

(IoT) based next generation healthcare conceived to be deployed in the virtualized network 

service and multi-cloud environment. It is clear from our study that we are dealing with unknown 

threats and adversaries, which limit the use of signature based detection methods. Any attack on 

the data in motion between domains could be a serious threat to life or well being of the patients 

being diagnosed, treated or transferred to a medical facility on an ambulance. We carry forward 

the study to the method for mitigation of attacks with special emphasis on protection of data as it 

moves among domains for analytics, storage or visualization. The overall aim is to develop an 

efficient anomaly based multi-level deep learning based intrusion detection system, which 

protects the data in motion, among the domains and within cloud hierarchy, from any effects of 

malicious attacks leading to mutilation of data flows that could lead to device resetting or 

capture. 
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We have worked on an innovative hierarchical deep learning solution that works at different 

levels in the clouds and protects patient data from mutilation and pilferage. Any undesirable 

activity on data could lead to incorrect diagnosis or patient device malfunction, putting their lives 

and health at risk. The contents of this chapter draw from our work on QNRF funded project ID 

NPRP10-0125-170250 and our paper titled, "Merged Hierarchical Model with Layer Reuse," 

(under preparation) for Security in Multi-cloud. 

7.1 Introduction and Motivation 
Among the problems of the present healthcare systems are the inadequate response to medical 

emergencies, delays in diagnosis of acute cases, insufficient monitoring of chronic patients, 

readmissions and above all too many preventable errors. Preventable errors are the third leading 

cause of death in the USA [185]. To reduce patient morbidity and mortality with timely and 

more accurate diagnostics, medical care of patients is increasingly relying on technology. The 

future technology directions include Internet of Things (IoT), multi-cloud systems and 

virtualization of network services. These developments have the potential of saving crucial 

minutes in the diagnosis and treatment of critical, hospitalized or ambulance bound patients, 

which could mean the difference between life and death or severe disability and return to health. 

The cost of providing healthcare is another reason for taking recourse to the advanced 

technology. The US alone spends 3.5 trillion dollars annually, amounting to a staggering 17.5% 

of the GDP [186]. Increasing use of medical IoT for monitoring vitals and other parameters, 

delivering medication and collecting patients' data records for current and future use is already 

making its presence felt with the average number of devices per bed in the US reaching 13 with 4 

out of these already connected to the network [187]. As a consequence of rapid upsurge in the 

use of IoT devices, analytics and storage are being increasingly outsourced to one or more clouds 
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[188]. As virtual network services go mainstream, the triad of VNS, IoT and multi-cloud is 

expected to substantially reduce costs and improve outcomes of healthcare [189] [190]. 

Notwithstanding the expected gains like fast and better diagnostics, from the direction that the 

technology is taking in healthcare, the undesirable fallout is the increase in the attack surface of 

the healthcare network, making patients and hospitals susceptible to crippling malicious 

activities. Available data show that 94% of the US hospitals have been the target of attacks with 

63 percent of healthcare breaches caused by criminal or malicious activity [191]. The worst 

concerns in the recent years have been ransomware with several high impact cases involving 

WannaCry, Petya/NotPetya and SamSam [192]. Intrusive attacks lead to serious threats on data 

e.g., patient data inaccessibility, pilfering and mutilation and attacks on devices e.g., altering 

settings of or capture of patient devices. In a striking example of a threat to critical medical 

devices, the U.S. Food and Drug Administration (FDA) recalled half a million pacemakers due 

to the firmware having vulnerabilities that could allow a hacker access to the device and let them 

manipulate heart rate settings or drain battery power [193]. 

The increasing attack surface with the increasing sophistication of technology and failure of the 

current intrusion detection systems in the evolving technical milieu, provide us with the 

motivation for a cloud based hierarchical model that would be able to detect any kind of 

intrusion, from within or outside the organization, that alters patient data in any way. 

Attack and anomaly detections must consider hundreds of indicators and interaction patterns 

across thousands of sensors and servers on a continuous basis. This voluminous data is 

multidimensional and complex with patterns that do not become evident with traditional 

analysis. The meta-information about the flow of data assumes as much importance as the 
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payload for examination to effectively weed out the anomalies. The proposed hierarchy of 

distributed deep learners examines the data being transferred to and from the clouds to identify 

malicious communications, data generated by malware and any other attacks that results in 

changing of the value of the parameters being transferred as well as the integrity of the data flow. 

Such distributed deep learners grow in size and complexity as we move from the IoT domain 

edge through the edge cloud to the public cloud and the challenge to reduce the training time and 

maintaining accuracy remains. In our research, we have worked on both of these aspects. 

7.2 Contributions 
Towards tackling the challenges of security of the data in motion in the IoT, cloud based and 

VNS based healthcare, we make the following contributions: 

a) Establish the reference architecture for critical healthcare application like ambulance bound 

critical patients. 

b) Based on the attack surface presented by the flow of data in the multi-domain next-

generation healthcare architecture, evolve a threat model defining clearly the threats and their 

mitigations.  

c) Propose a novel method based on hierarchical deep neural networks to protect the patient 

data flowing between the IoT and edge cloud and edge clouds and public cloud. The 

mainstay of this proposal is a novel AI technique involving a hierarchy of deep learners for 

hardening the security of healthcare system infrastructures. 

d) Evolve a merged public cloud deep neural network for improvement in training time and 

accuracy of prediction of anomalous activity in the data flows. 
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e) Evaluate the proposed method and discuss the results. 

7.3 The Conceptual Framework of the Next Generation 
Healthcare 
The generic layout of the next generation healthcare service assists in understanding the flow of 

data and provides useful inputs for evolving the system architecture. This architecture is then 

used to prepare a threat model and carry out mitigation planning. We depict the overall layout of 

the next generation healthcare service in Figure 7.1. 

 
Figure 7.1 Overall layout of the IoT-Cloud based healthcare 

7.3.1 The Healthcare Network Domains  
As can be observed from Figure 7.1, the healthcare network consists of three domains – the IoT 

domain, the multi-cloud domain and the visualization domain. These domains act as source, sink 

or storage and analytics nodes. The IoT domain is generally a source producing large volumes of 

multi-dimensional patient data, but also acts as a sink for the commands sent to the actuators. 

The multi-cloud domain provides a good combination of speed, analytical sophistication and 
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storage. The visualization domain is predominantly a sink that consumes the analyzed data in 

many forms. However, the clinical staff can generate small amounts of data in the form of 

commands, instructions or prescriptions. Given here is the brief description of the three domains: 

The IoT Domain: The IoT domain consists of a heterogeneous mix of wired and wireless, 

wearable or implanted biosensors, actuators and other medical devices, for patient data 

acquisition and delivery of treatment. Each of the sensing devices performs simple tasks like 

monitoring pulse rate, oxygen saturation or blood pressure. Actuators, on the other hand, perform 

the task of delivering treatment like activating oxygen flow or injecting insulin, based on 

commands from a medical professional or other devices. In the case of the ambulance bound 

patients, as a result of monitoring by IoT devices, there also are auto responses in terms of alerts 

and suggestions to paramedic staff inside the ambulance.  

IoT medical devices measure body temperature, blood pressure, heart rate, oxygen level, and 

other contextual information of the monitored patient and provide a real time flow of vital 

biofeedback. Much of the data generated by devices are communicated to other devices. For 

instance, in the ambulance, pulse oxymeter may start oxygen administration to the patient. 

Characteristically, IoT devices present specific challenges due to their resource constraints. In 

particular, they are characterized by small batteries, small amount of memory and low power 

CPUs. The majority of medical IoT devices are based on cheap micro-controllers that run a small 

amount of preloaded code. These devices have varying processing, storage and communication 

capabilities and are, in general, constrained. As a consequence, these devices depend on external 

storage, processing and analytics provided by the multi-cloud domain. Most of the devices 

connect to an IoT gateway, which acts as the interface between devices and the rest of the 

network. It does the task of protocol or data conversion, when required. Some of the devices may 
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connect directly to the service providers, wired or wireless virtual network services. This 

scenario is challenging, as despite being constrained they are required to transmit large amount 

of information and at the same time be fault tolerant and robust to security attacks. To 

complicate the situation further, the variety of communication protocols used in healthcare IoT is 

large and yet interoperability among the devices are a necessity. The majority of the devices use 

the ISM (Industrial, Scientific and Medical) frequency band (e.g., the 2.4 GHz and 5.8 GHz 

band). Since this band is unlicensed, the manufacturers of medical devices implement support for 

their own communication protocols. This results a heterogeneous scenario constituted by 

different modulation schemes, protocols, and hardware that represent a challenge from the 

security perspective. All these complexities lead to the attack surface becoming very wide, and a 

malicious actor can exploit any of the vulnerabilities of the system. 

The Cloud Domain: in our work the cloud domain has been assumed to consist of a hierarchy of 

edge and public clouds as was shown in Figure 7.1. The reason for working with a hierarchy, 

rather than just the edge or just the public cloud can be understood like this: taking all the data 

from the widely spread out IoT domain, directly to the public cloud would require expensive 

connectivity and would increase access latency. On the other hand, keeping all the data in the 

edge cloud alone improves latency and connectivity cost, but reduces the storage capacity and 

analytic sophistication. A multi-cloud infrastructure provides a combination of low latency, vast 

storage, optimized bandwidth cost and high analytical sophistication. While the edge cloud aids 

quick diagnosis in emergency and acute cases, computationally demanding inference algorithms 

in the larger public clouds help in determining patterns in historical data that correlate with 

current symptoms. This helps in differential diagnosis or discovering yet to develop ailments [8]. 
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Finally the cloud hierarchy, allows us to think of a distributed security solution, with increasing 

sophistication from the IoT gateway to the public cloud gateway.  

The Visualization Domain: consists of mechanisms for presenting multiple streams of 

processed data to the concerned clinical staff. The information can be presented in graphics, 

tables and other forms, to assist the doctor make a fast and accurate diagnosis. This domain also 

allows the medical staff to choose from several streams of incoming information. In the case of 

data from an ambulance, the doctor may decide to communicate with the paramedics to provide 

guidance for immediate patient care. The basic idea is to summarize a large amount of 

information – historical and current, for the clinical staff to quickly glance through, with a view 

to get a fairly good idea of the health of a patient, catch the exceptions and anomalies and the 

early signs of developing complications [194]. It is understood that improvement in 

visualizations can improve diagnosis and in turn outcomes of the treatments.  

7.3.2 Design of Architecture for Next Generation Healthcare 
From the viewpoint of this work, the architecture is required to be so designed so as to take care 

of the security requirements while ensuring that it meets the functional requirements. The 

functional aim of the design is to provide comprehensive data to the medical experts as well as 

applications that process them or controls devices used for patient care. Improperly designed 

system architecture can severely constrain the system's functionality of data movement among 

domains and its amenability to effective security. Several other requirements like image 

acquisition, analytics and communication, remote patient consulting and monitoring and 

telemedicine would govern the movement of large amounts of data from the patient or the IoT 

domain to the cloud domain for analytics and storage. This voluminous data has an impact on 

how the network is organized, where the data is taken for storage and analytics, the way the data 
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will move among domains and how devices, applications and medical experts will collaborate 

for the care of the patient. We have tried to make the architecture general so that it retains its 

flexibility and scalability to grow as the demand on the system grows. In general, it is advisable 

to use open architecture standards that would ensure compatibility of domains, avoid vendor 

lock-in, ensure widely accepted standards and reduce the cost of the eventual system [195]. 

The architecture that we have evolved is shown in Figure 7.2. In consistency with the layout 

already discussed in Section 7.3.1, the architecture has been divided into four interlinked zones: 

the sensor and actuator zone, edge cloud zone, public cloud zone and the visualization zone. This 

compartmentalization into zones assists in the design of the security policy for the healthcare 

network. The organization of zones aligns with the flow of data that flows among the domains of 

the network. A brief discussion on the important constituent of various zones is given below: 

 
Figure 7.2 Architecture of the IoT-Cloud healthcare system 

Medical Things and Hospital/Home/Ambulance Gateway:  This is equivalent to the IoT 

gateway in the layout diagram of Figure 7.1. This zone is composed of devices like sensors, 

actuators, monitors and gateways. It has been mentioned before that most IoT devices have 

limited communication, compute, storage and power capabilities. These devices may be vested 
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with the capability to discover other devices and mesh with them. They rely on their connectivity 

with the IoT gateway (designated here as home/ambulance gateway) for many functions like 

protocol and data conversion, and connectivity to cloud gateways for communication with the 

cloud domain. The gateways connect to the carrier's virtual or physical wide area network and 

can register with the edge clouds, but also in some cases directly with the public cloud. Some of 

the devices that are mobile SIM based can also connect to the communication network and can 

securely register with the cloud for sending and receiving data. The gateways, or intelligent edge 

devices as they may be called, serve an active role in managing access and information flow. 

They may assist in device provisioning, data filtering, batching and aggregation, buffering of 

data, protocol translation, event rules processing, and more. Some of the devices in this zone are 

involved in image or video acquisition and would give rise to a large amount of data to be sent to 

the gateway or the edge cloud for immediate analysis or the public cloud for more sophisticated 

analytics and storage. 

The Edge and Public Cloud Gateways: in the edge and public cloud zone, respectively, 

provide connectivity to various types of devices within the zone and to the gateways in the other 

zones. They also manage devices and securely accept data. The cloud gateways provide secure 

connection to the cloud, data conversion, telemetry information, event ingestion and 

management of connected devices in its zone. 

The Edge and Main Processors: work on the streams of data from the devices or the gateway. 

The edge processor works on the streams of data from the Medical Things or IoT domain, and 

either interfaces the streams to the cloud zones or directly with the visualization zone. The edge 

processor has reasonable processing capabilities and is able to run small neural network models. 

The edge store is primarily for temporary storage to keep the patients' data while the ambulance 
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is passing through the corresponding cell or while it is needed for analytics. The main processor 

can carry out more sophisticated analytics based on large neural network models using both 

current data and large historical datasets. It has the capability of interfacing multiple streams of 

heterogeneous information with the visualization zone. It can also add new data and establish its 

relationships with the already stored the information.  

Machine Learning Agent: in addition to the main processor, the public cloud zone may provide 

specialized hardware (e.g. GPUs) and software that can process historical data for intelligence 

like developing diseases or for predicting readmissions.  

Visualization: Visualization domain consists of related tools used to visualize patient data and 

facilitate patient diagnosis, monitoring and management. It consolidates and synthesizes large 

volumes of data from multiple sources to provide key insights to the clinical staff. It makes 

patterns and relationships evident in large volumes of data, which are not discernable in raw data 

or reports [196].   

7.3.3 Security Architecture for the Next Generation Healthcare 
Unlike traditional healthcare network architectures where security is overlaid and involves 

manual provisioning, in next generation systems security is integrated into the healthcare and 

network architecture right from the design stage. This enables consistent security system across 

all domains/zones and leads to excellent end-to-end security. This not only increases the 

complexity of providing security, but also the time and cost of such maneuvers [197]. Our aim 

here is to show the basic security requirements in such a system and specifically discuss the 

innovative methods that we have evolved for detection of malicious activity while the data flows 

across the zones. Proper integration of the security aspects into the architecture will not only 

mean high availability, patient safety, improved ambulance bound patient care, but also ensure 
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that the system, whether used for domiciliary or patients in ambulances, conforms to any 

regulatory and accountability compliances expected by the law of the land. 

In the real-world systems the data needs to be protected right from the point of generation to the 

clouds and onward to the visualization points. In the architecture that we have envisaged, this 

would mean hardening of all the zones with appropriate technologies that go beyond the state-of-

the-art and thwart the attempts of adversarial actors in infiltrating the system. We describe here 

possible end-to-end protection techniques and indicate the ones that we are concerned with in 

this work. This puts the work done in this dissertation in right perspective as part of a bigger 

system. 

Device Protection and D2D Communication Protection: This concerns protection of both the 

devices and device-to-device communication. It turns out that physical layer security provides 

efficient and effective solutions to enforce confidentiality in D2D communications. In particular, 

new cryptographic key-establishment protocols leveraging different radio signal features such as 

received signal strength and artificial noise generation will help strengthen the inter-device 

communication. Focus is also on denial of service robustness and in particular on jamming by 

considering it both as a threat and as a defense strategy for scenarios in which unauthorized radio 

communications should be prevented at the radio level. New solutions need to be developed for 

protecting the device against compromise, tampering, mutilation or theft of data being sensed 

and code attestation during the devices’ updating process. Access to these devices needs to be 

strongly regulated and the device integrity needs to be tested frequently.  

User Authentication: Patients, paramedics in the ambulances, hospital medical and support staff 

have all to be authenticated in a secure and robust way to protect the patient and their private 
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data. It is proposed to study, analyze and develop novel user authentication techniques based on 

several biometrics such as iris, face, fingerprints and ECG. For patients in the ambulance, brain 

wave biometrics can be explored. Cryptographic authentication and authorization techniques 

would provide a high level of system access security.  

Data at Rest in the Cloud: Gateways are the interfaces between the devices and the cloud 

system and between levels of clouds in the hierarchy. The cloud system provides a range of 

services from quick processing to specialized analytics to aid diagnostics and discover hidden 

trends. Individual patient's historical data can be used with current observations to detect any 

acute conditions and make treatment recommendations. Data from patients from a community 

can be analyzed to predict impending epidemics. Confidentiality of data stored at various points 

in the network can be protected through innovative encryption and encryption key management. 

Integrity can be taken care of by using innovative hashing algorithms. 

Data in Motion: This is the part of interest for this dissertation. Data from the physiological 

sensors are collected by the ambulance/home gateway and transmitted over the Internet or 

wireless access network to the edge cloud. Low latency tasks would usually be performed here 

and for deeper analysis the data would be transferred to the public cloud. Processed information 

is sent to doctor’s screens to visualize the exceptions and make an accurate diagnosis. Our work 

on hierarchical deep learning is aimed at protecting the data in motion from any attack that 

threatens to affect the meta-information or payload of the dataflow. The main concern here is to 

use deep learning to find anomalies in inter-domain streams of data for any indication of 

malicious intent. The innovativeness of the method lies in its hierarchical implementation and 

use of merged edge models to create larger public models. 
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The security architecture that we have envisaged in the next generation network is represented in 

Figure 7.3 in a simplified form. 

 
Figure 7.3 The security architecture of the next generation healthcare 

In this work we have focused on the development of a hierarchical deep learning based anomaly 

detection system that will indicate if the dataflow between the home/ambulance gateway and the 

edge cloud and between the edge cloud and the public cloud is compromised. 

7.4 Threat Model for the Healthcare Network  
We describe in this section a threat model of the healthcare system that has been characterized 

above. A threat model is essential to decide on approach that we take to securitizing such a 

system. The threat model essentially provides an understanding of the attackers, attacks and 

mitigation. It has helped us integrate the essential features of the security policy while design the 

system. We describe in this section a threat model of the healthcare system that has been 

characterized above. A threat model is essential to decide on approach that we take to 

securitizing such a system [198]. 
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The compartmentalization or zoning of the healthcare system that has been the distinctive feature 

of our architecture has helped us formulate an appropriate threat model. The zones are 

represented by their gateways. Thus we have the IoT gateway, the edge-cloud gateway and the 

public cloud gateway and associated services.  A trust boundary separates each zone from the 

other connected zones. It represents a transition of data/information from one source to another. 

It is important that the data flow crossing the trust boundaries be protected against various kinds 

of attacks [199]. A diagrammatic representation of the zones and trust boundaries in shown in 

Figure 7.4. 

 

Figure 7.4 Trust boundaries between zones 
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modeling is essentially the IoT domain shown in the architecture in Figure 7.1. We will use these 

two terms interchangeably. There are two attack surfaces associated with this gateway. One 

facing the IoT devices and the other facing the edge cloud zone. These gateways are often targets 

for intrusions. These intrusions can be serious as there is no redundancy built into these 

gateways. The data sent by the IoT gateway to the edge cloud could be tampered with or be 

made non-available. 

The Edge-cloud Gateway Attack Surface: the edge cloud gateways would be physical or 

virtual server based systems that accepts flows from one or more IoT gateways (in some cases 

directly from the devices) and regulate access to the facilities of control, analysis and storage in 

the edge clouds. Physical access to an edge-cloud is generally more regulated than the IoT 

Gateway. The IoT gateway would be in ambulances, hospitals, offices and homes while a mobile 

edge cloud gateway would be on top of the mobile tower. All the external communication with 

the edge cloud takes place through the edge cloud gateway. In the setup envisaged by us, the 

edge cloud is exposed to the public cloud. Most communication to the public cloud is also 

through the edge gateway. The gateway has two surface areas, one facing towards the IoT 

gateways and the other towards the public cloud gateway. Both edge cloud and public cloud have 

interconnection with the Internet making the zones vulnerable. 

The Public Cloud Gateway Attack Surface: This is usually a virtualized gateway that provides 

access to the public cloud zone. It controls access from the home/ambulance zones coming 

directly or through an edge cloud gateway. It also connects the virtualization domain and other 

external entities of the healthcare system like insurance agencies, pharmacies, suppliers and 

billing services. The attack surface is much larger facing the external entities using the public 

cloud. 
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Attackers: These are all internal or external malicious agents who attempt to mutilate or alter 

the flow of data in any way. Threat could be from organized crime, nation states, hacktivists, 

business associates, skiddies and malicious insiders. In this threat model we assume that 

adversaries have unlimited resources and time while the targeted organization has limited 

resources and thus need efficient methods to counter attacks [200]. 

Attacks: Attacks targeting confidentiality, integrity and availability (CIA) are major security 

issues in cloud based IoT. Several vulnerabilities could be maliciously exploited by adversaries 

in many forms. Attackers can perpetrate a variety of attacks like denial of service to prevent 

patients’ access to devices, changing device settings or stealing patient records for frauds like 

undergoing surgery or obtain prescription medicine. More serious attacks include capturing 

patient devices, ransomware and advanced persistent threat. The attackers also referred to as 

cyber criminals, evade detection by using multiple tactics, tools and targets in their attacks. Their 

techniques can change temporally and spatially. The sensor and cloud based healthcare 

technology is promising and its benefits far outweigh the risk of data breaches and potential 

malfunctions. 

It is important to recognize the kind of attacks that we are protecting the system against. While in 

our system we are concerned with any intrusion that alters the dataflow in terms of the meta-

information is of concern. This will happen if the dataflow is disrupted in any way. It would still 

be useful to look at these attacks, preferably using a standard attack model for the IoT-cloud 

based system like the STRIDE model [199]. This model describes the following categories of 

attacks: 
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Tampering: tampering is a serious infringement of the healthcare system in which the attacker 

alters the dataflow and thereby changes the values of the patients' bio-markers or the meta-

information the data flow (e.g., packet flow rate).  

Spoofing: This is a man in the middle attack where the intruder fools the source to believe that it 

is a legitimate destination. Spoofing attacks can help attackers to cross the trust boundaries and 

cause data theft and deletion. If the masquerader intercepts, partially or fully modifies the 

dataflow then this is of concern to our system.  

Denial of Service: Constrained devices are generally under DoS threat when they actively listen 

for inbound connections or unsolicited datagrams on a network.  An attacker can open many 

connections in parallel and not service them or service them slowly, or the device can be flooded 

with unsolicited traffic. In both cases, the device can effectively be rendered inoperable on the 

network. 

Information Disclosure: constrained devices will have simple security like a single PIN or 

password. Sometimes they just trust the network and allow access to devices on the same 

network. Active reconnaissance may allow attacker to obtain information about the target and 

then cause remote attacks. SQL injection can cause an information disclosure attack as it can 

obtain information about the data in the system. 

Elevation of Privilege: A user with limited privilege assumes the identity of the privileged user 

and gets administrative privileges. With higher privileges attacker can cause an exploit attack. It 

can access gateways and change information flows. 

Repudiation: Attacker can log data to wrong files or change data in the name of others. 
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Mitigation: our concern is to protect the data in motion from attacks that can cause any changes 

in the meta-information of the dataflows. We need to take care of both seen and unseen attacks. 

7.5 Merged Hierarchical Security for Data in Motion 
Having discussed the threat model and evolved the security architecture, we now discuss the 

methods that we have evolved for security of data in motion. We consider the scenario where all 

heterogeneous data collected from a variety of medical sensors and other measuring devices are 

aggregated at the IoT gateway and transmitted to the edge cloud gateway. This does not cause 

any loss of generality as the model allows data to be directly sent to the public cloud gateway for 

storage or analytics. As our experimental cloud system is a hierarchy consisting of edge and 

public clouds, we have the opportunity of considering a part of that data moving from edge cloud 

to the public cloud. The data in motion could be encrypted and still be affected by various 

attacks. Our effort in this work has been to develop a proactive, distributed and hierarchical deep 

learning solution to protect the data flows from any adversarial attack that mutilates or alters the 

data stream, including its meta-information, in any way [201] [202]. 

7.5.1  Design Aspects of the Security System 
Based on the recommendations of IETF Intrusion Detection Working Group, an IDS design 

should be based on four types of functionalities – information acquisition about the target 

system, storing information about the events, analyzing event information to detect hostile 

behavior and create response [203]. As far as their functionality is concerned, they are expected 

to continuously monitor and report intrusions. Performance wise, they should give low false 

positives [204].  

IDSs built on these principles detect hostile activities or exploits, in a network, that can lead to 

the data flows being compromised. They detect and react to isolated, distributed as well as 
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coordinated attacks. IDSs are classified based on the information about the attacked data flows 

used for detecting attacks. Thus we have signature or misuse based IDS, anomaly based IDS and 

those that use a combination of these two techniques. In the signature based methods information 

about the known attacks is captured and stored for future use. If any flow of data matches with 

any of the stored attack patterns, then presumption of an intrusive attack is made. In anomaly 

methods, behavior of the normal flow of data is captured and any deviation from this is 

considered as an attack. Another factor that needed to be decided was the location of deployment 

of the IDS. A centralized deployment, e.g., in the IoT gateway can only detect mutilation or 

traffic tampering passing through the IoT gateway, the traffic heading from the edge to the public 

cloud domain cannot be checked for malicious activity.  

In Chapter 3 we discussed the problems that the traditional IDSs face in the cloud set-up. 

Considering that our system would continually face unknown attacks, we have worked on a 

system that detects anomalies in the data flow that does not conform to normal flow. As regards 

the actual placement of the neural network based solution, we have a distributed solution that 

works at all the gateways – IoT, edge cloud, public cloud and visualization domain. In this work 

we focus on the data flowing from the IoT gateway to the edge cloud and from the edge cloud to 

the public cloud. The principle remains the same for any other flow of data through the 

healthcare network. 

7.5.2 The Choice of Deep Learning System 
In our target IoT-Cloud-VNS architecture, any IDS detecting anomalies must consider hundreds 

of indicators and interaction patterns across thousands of sensors and servers on a continuous 

basis. The data produced by such a system are multidimensional, voluminous and complex with 

patterns that are not evident with traditional analysis. Because of the ever changing threat 
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environment and inability of the traditional systems in tackling them, these systems are giving 

way to machine learning based anomaly detection. Machine learning has been applied to security 

in healthcare in many forms. Some of the classifiers that have been used are: support vector 

machines, decision trees, naïve Bayes, K-nearest neighbors and random forest. In machine 

learning based intrusion detection system, for instance, the idea is to capture underlying 

statistical features of data and use them to detect any malicious attack [204]. 

Classical machine learning does not work well large number of features, the lack of automatic 

feature selection, lack of unlabeled data, large attack surface and the incapability of handling 

frequently changing tactics of the attackers. Machine learning works well when it is trained with 

examples of both the classes ‘normal’ and ‘malicious’ so that it can classify a new stream 

appropriately. It is difficult to get training data on new and unseen attacks. Training only on 

normal traffic would not suffice because of variability of data. The data in our system are of 

various kinds and may all be normal, but difficult for the machine learning based intrusion 

detection system to handle. These methods also usually have relatively high false positive rates 

for detection [205], which causes the risk of over medication or unnecessary procedures.  

Deep learning has had a mixed run in intrusion detection scenarios. Its successes in other areas 

have time and again prompted researchers to refine deep learning methods to be more accurate 

and produce low false positives. After all, deep learning performs better than machine learning in 

learning high-resolution images that can be categorized into hundreds of classes [98]. This has 

been demonstrated with a dataset of 1.2 million high-resolution images belonging to 1000 

different classes. Speech recognition systems have been built using recurrent neural network 

(RNN) and the author’s claim their system outperforms previously published methods achieving 

16.0% error [14, 29]. The authors in [155] have used multimodal Deep Belief Network [DBN], a 
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deep learning method, to effectively identify meaningful cancer subtypes from multi-platform 

cancer data. The authors in [60] have detected tens of thousands of disease-causing mutations, 

including those involved in cancers and spinal muscular atrophy using a deep learning based 

system. Deep learning thus has created renewed interest and there have been some recent 

reported works [215, [217]. The IoT environment and deep learning are very well matched as 

shown in Table 7.1. 

Table 7.1 Suitability of deep learning for IoT healthcare 

 Sensor based healthcare Deep Learning 
1 Generates large volume of data Handles large volume of data 
2 The data are mostly unlabeled and has 

temporal variations 
Handles unlabeled and labeled data, including 
data in a time series form. 

3 A large variety of sensors produce 
heteronomous data with many features 

Extracts features from high-dimensional data 

4 Data is complex  Works in layers and learns non-linear features 
and functions from complex data 

5 Large number of features may cause 
overfitting 

Effectively makes use of a large number of 
features 

6 Hierarchy of gateways Amenable to hierarchical deep learning 
7 Of a large number of sensors, some may not 

be activated, drained or faulty 
Effectively handles missing values as it works 
on characteristics of the flow 

8 Data is sparse Has capability of handling sparse data 
Our work consists of a network of deep learners for protection of data in motion. In these 

networks as the data is passed through the layers of the deep structure of the networks, the 

anomalies caused by any kind of attacks would be detected. Our choice of deep learning was 

dictated by a number of factors. Table VII shows the complementarity of deep learning and 

sensor based healthcare. Deep learning has been shown to exhibit potentially revolutionary 

results in detecting first-seen malware. In real environment tests on publicly known databases of 

endpoints with advanced persistent threat (APT) malware, the detection rates of a deep learning 

solution were over 99.9% [206]. As these improvements seem to be consistent across a large 

variety of domains discussed above, we can view this as a motivation to use it in the medical 

computing field. Besides the advantage of learning a huge amount of structure and extracting 

useful features from high dimensional data, deep learning can handle large models. It has the 
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advantage of automatically discovering features that would give the best results. It makes use of 

many layers of non-linear information processing to select useful features and even fuse them to 

end up with a rich set of automatically selected features. This gives this class of methods great 

power to analyze and classify data in which features are related to the outcome in a complex 

way. In machine learning large number of features cause the problem of overfitting, which may 

lead to incorrect detection of attack patterns. It is resistant to small changes and can generalize 

from partial data, making it easy for the system to identify patterns from partial data [206]. A big 

advantage of deep learning is its ability to detect the effect of previously unseen attacks, unseen 

application protocols, unexpected structural anomalies in packets and flows and new variants of 

known threats. 

7.5.3 Deep Neural Networks – Stacked Autoencoders  
Among the deep learning it is proposed to use the stacked autoencoder for a number of reasons. 

A neural network mimics the way the human brain works to learn relationships in a given 

dataset. Thus Artificial Neural Network (ANN), learns by examples i.e., adjusts its weights as it 

sees more training examples, so that it can generate a correct output for the given input. An 

autoencoder (AE) is a 3-layer unsupervised neural network where the outputs of each layer are 

directly connected to the input units of the next. With training an autoencoder learns to recreate 

the input at its output. The data is reduced in dimension as it is encoded and expanded again to 

the same size by the decoding part of the autoencoder. This way an autoencoder is able to learn a 

compressed representation (called code) of the relationships in the dataset. The autoencoder is 

called sparse (SAE) when it has sparsity enforcer that restricts the code size required for 

reconstruction is restricted.  
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A stacked autoencoder (SSAE) is a neural network consisting of multiple layers of sparse 

autoencoders in which the outputs of each layer are fully connected to the inputs of the following 

layer. Please refer to Section 6.8.6 for an illustrative representation of the autoencoder.  

We have experimented with stacked autoencoders and have found desirable outcomes with the 

kind of data that we encounter. A stacked autoencoder is a deep network of greater expressive 

power. It selects useful features automatically from high-dimensional data and filters information 

through the layers to achieve better accuracy. Autoencoder tends to learn features at several 

levels that together form a good representation of its input. In our impending fault localization 

problem, several situations leading to faults have overlapping features. The first layer of a 

stacked autoencoder tends to learn first-order features in the raw input, such as categories of 

faults. The second layer of a stacked autoencoder may learn second-order features corresponding 

to patterns in the first-order features e.g. frequency of occurrence of faults. 

A Stacked autoencoder uses under-complete configuration of the neural network i.e., in which 

the encoding layers successively decrease in dimension. Being deep neural networks they can 

learn and model non-linear and complex relationships. They have the ability to learn hidden 

relationships in the data without imposing any fixed relationships in the data. The ANNs have 

the potential for high fault tolerance. When these networks are scaled across multiple machines 

and multiple servers, they are able to route around missing data or servers and nodes that can't 

communicate. The learnable parameters of the SSAE are the weights and biases that are 

calculated by the network while hyperparameters must be suitably set to obtain good results. 

These hyperparameters are: the code size, the number of layers, number of nodes per layer and 

loss function.  
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Healthcare systems produce a large amount of unlabeled data. Since a stacked autoencoder can 

work with voluminous unlabeled data and extract useful features, it can be used in the 

unsupervised form. The data with a large feature-set, passes through consecutive hidden layers of 

reducing dimensionality. The reduced and enriched feature set or code is in the deepest layer. 

This code is decoded by running it through the decoding layers of the autoencoder in reverse 

order and brought to the original dimensionality. The reconstruction error gives an indication of 

whether the data is normal or anomalous. Only data with normal instances are used to train the 

autoencoder. After training, the autoencoder will reconstruct normal data with low root mean 

square error, while failing to do so with anomalous data, which the autoencoder has not 

encountered. 

For the training of the stacked autoencoders, a data set is divided into a training set and one or 

more test sets. A training example is selected from the training set and then the values of output 

are checked for their quality of reconstruction. If the chosen indicator of error, e.g., root mean 

square error, is below a threshold, then the training concludes. The trained model is then tested 

with the test dataset, which was not used during training. It is common practice among the 

developers of neural network models to “cross-validate” the network on the test set periodically 

during training and to save the network weight configuration meeting one of two criteria: (1) the 

network with the minimum error in the training set or (2) the network with the minimum error in 

the test set. The latter technique is often used to prevent the network from overtraining because 

networks are prone to overfitting. 

In the semi-supervised model the autoencoder layers are trained with unsupervised data. To 

avoid over-fitting, such data require sparse methods in feature selection and learning [207]. To 

achieve the sparse representation, we minimize the reconstruction error with a sparsity 
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constraint. Backpropagation is used to improve weights such that reconstruction becomes better. 

This signal is a mathematical factor that adjusts the value of each weight in the neural network to 

reduce the difference between the predicted and known output. Cases are selected from the 

training set and are continually presented to the neural network until the overall error has been 

minimized. One pass through all of the training cases is considered an epoch of training. The 

overall duration of training is often expressed in terms of the number of epochs required to reach 

an error minimum [208]. 

7.5.4 Hierarchical Merged Model with Layer Reuse 
The new model aims to provide adequate security for data in motion from IoT domain to the 

edge clouds and from the edge clouds to the public cloud. In the security architecture, discussed 

in Section 7.3, this would mean specifically focusing on the perimeters of the edge clouds and 

the public cloud. Based on our threat model, we would focus on adversarial intrusions that result 

in any change in the data flows: exploits, active reconnaissance, sequel injection, denial of 

service, tampering, device resetting and takeover. The main concern here is to use deep learning 

to find anomalies in inter-domain streams of data for any indication of malicious intent [209]. In 

the unsupervised mode, deviation based anomaly detection is mainly based on spectral anomaly 

detection, which uses reconstruction errors as anomaly scores. The reconstruction error of a data 

point, which is the error between the original data point and its low dimensional reconstruction, 

is used as an anomaly score to detect anomalies. In such models the loss is usually represented as 

the residual sum of squares and error of reconstruction is represented as the mean square or root 

mean square error. The main objective, then becomes reduction of the loss function or the mean 

square error by training the model adequately in the forward direction or using techniques like 

back-propagation. 
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We have designed our system with a distributed anomaly based intrusion detection system that 

has presence in IoT gateways, every edge cloud and the public cloud. In this work we have 

restricted to the edge clouds and public cloud. Following the architecture of the network, the 

autoencoders are arranged in a hierarchical manner with Level 1or small 1-2 layer autoencoders 

at the IoT gateway, Level 2 or medium with 3-5 layer autoencoders at edge clouds and Level 3 

or large autoencoders with more than 10 layers in the public clouds. These numbers have 

evolved from simulations using actual IoT network data and health system data generated on the 

test bed created in our lab at Washington University in St. Louis.  

A diagrammatic representation of the distributed hierarchical structure of the autoencoder based 

intrusion system is given in Figure 7.5.  

 
Figure 7.5 Hierarchical autoencoder based system 

The dataflow coming from the IoT domain is passed through the autoencoder of the edge clouds 

in the service area of which the IoT domain falls. We shall see in the next section the training 

and test datasets used to train these models. The training of Level 2 neural network models at the 

edge cloud takes a relatively less amount of time. The edge cloud areas are relatively small. For 
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instance, In case of mobile edge-clouds, the edge clouds area would coincide with the cell area in 

which the base station and servers are located. We will also see in the evaluation section that 

training of edge clouds is fast because of the simplicity of the models.  The public cloud area is 

large, a city, a state, a region or even a full country. The Level 3 neural network models that are 

useful at the public cloud may be large depending on the variability of the data. Training the 

autoencoder at the public cloud could take substantial time. To reduce this training time we have 

worked on merged models in the public cloud, which are aggregations of the edge models. This 

way the training of layers at the edge can be used in the public cloud. Figure 7.6 illustrates how 

the edge models are merged to create public cloud model.  

 
Figure 7.6 The merged model 

While in operation, the incoming data passes through the meta-information extractor, which 

extracts the relevant information from the dataflow. As the dataflow passes through the gateway, 

the datasets of meta-information are passed though the stacked autoencoders. In case of normal 

traffic flow the meta-information is reconstructed with the root mean square error below the 

present threshold. In cases where the traffic consisting of patient data has been intruded upon 

then the value of parameters or the meta-information about the traffic flow is affected. In this 
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case the meta-information can no longer be reconstructed with low root mean square error and 

the system indicates intrusion. In the present evaluation the meta-information is extracted using 

Argus Network Management Systems [210] and ranked using the Weka machine-learning tool 

[147], in future work automatic extraction will be integrated with the system. 

7.6 Evaluation of the Proposed System 
In this section we first discuss the two test datasets, one generated and the other public, used for 

evaluation of the network 7.7.2. Then we use these datasets to evaluate the functionalities and 

draw conclusions. 

7.6.1  BOT-IoT Dataset 

Table 7.2 The feature set of the BoT-IoT dataset 
Feature Description Feature Description 
pkSeqID Row Identifier Spkts Source-to-destination packet count 
Stime Record start time Dpkts Destination-to-source packet count 

Flgs Flow state flags seen in 
transactions Sbytes Source-to-destination byte count 

flgs_number Numerical representation of 
feature flags Dbytes Destination-to-source byte count 

Proto 
Textual representation of 
transaction protocols 
present in network flow 

Rate Total packets per second in transaction 

proto_number Numerical representation of 
feature proto Srate Source-to-destination packets per 

second 

Saddr Source IP address Drate Destination-to-source packets per 
second 

Sport Source port number TnBPSrcIP Total Number of bytes per source IP 

Daddr Destination IP address TnBPDstIP Total Number of bytes per Destination 
IP. 

Dport Destination port number TnP_PSrcIP Total Number of packets per source IP. 

Pkts Total count of packets in 
transaction TnP_PDstIP Total Number of packets per 

Destination IP. 

Bytes Totan number of bytes in 
transaction TnP_PerProto Total Number of packets per protocol. 

State Transaction state TnP_Per_Dport Total Number of packets per dport 

state_number Numerical representation of 
feature state AR_P_Proto_P_SrcIP Average rate per protocol per Source 

IP. (calculated by pkts/dur) 

Ltime Record last time AR_P_Proto_P_DstIP Average rate per protocol per 
Destination IP. 

Seq Argus sequence number N_IN_Conn_P_SrcIP Number of inbound connections per 
source IP. 
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The	 BOT-IoT	 dataset	 has	 been	 made	 available	 by	 the	 UNSW	 Canberra	 Cyber	 Center	

updated	 in	November	 2018	 [211].	 It	was	 created	 using	 a	 realistic	 network	 environment	

with	 simulated	 existence	 of	 IoT	 devices	 in	 the	 Virtual	 Network.	 The	 environment	

incorporates	a	combination	of	normal	and	botnet	traffic.	The	dataset	 includes	DDoS,	DoS,	

Service	Scan,	Keylogging	and	Data	exfiltration	attacks.	Reliability	of	the	BoT-IoT	dataset	has	

been	 established	 using	 different	 statistical	 and	 machine	 learning	 methods	 for	 forensics	

purposes	compared	with	the	existing	datasets.	Table	7.2	gives	the	set	of	features	that	have	

been	used.	

7.6.2 Data Generated on Testbed 
The BoT-IoT dataset consists of meta-information extracted from the flows from many IoT 

devices. While this would be indistinguishable from that generated in the healthcare systems, we 

generated a healthcare specific dataset in our own testbed at Washington University in St. Louis. 

The testbed set-up shown in Figure 7.7 is adapted from [212]. 

Dur Record total duration N_IN_Conn_P_DstIP Number of inbound connections per 
destination IP. 

Mean Average duration of 
aggregated records AR_P_Proto_P_Sport Average rate per protocol per sport 

Stddev Standard deviation of 
aggregated records AR_P_Proto_P_Dport Average rate per protocol per dport 

Sum Total duration of 
aggregated records 

Pkts_P_State_P_Proto
col_P_DestIP 

Number of packets grouped by state of 
flows and protocols per destination IP. 

Min Minimum duration of 
aggregated records 

Pkts_P_State_P_Proto
col_P_SrcIP 

Number of packets grouped by state of 
flows and protocols per source IP. 

Max Maximum duration of 
aggregated records Attack Class label: 0 for Normal traffic, 1 for 

Attack Traffic 

Flgs Flow state flags seen in 
transactions Category Traffic category 
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Figure 7.7 Healthcare testbed for dataset generation 

The IoT domain: Consists of an Arduino Mega based microcontroller and gateway for health 

IoT sensors. Because of the absence of any Wi-Fi or Ethernet post on this microcontroller, an 

external Ethernet shield was attached. The following sensors have been used: heart rate monitor, 

pulse oxygen sensor, electrocardiography sensor and galvanic skin response and body 

temperature sensor.  

The Network Domain: A 24 port Ethernet Switch to which the microcontroller and three 

servers were connected, all configured as one private network with each device assigned a 

private IP. The switch in turn was connected to the Internet. One of the servers was used to 

mirror and record traffic coming to the network from the IoT domain. 

The Visualization Domain: A Linux server was used to visualize patient's data generated 

through the sensors described above. 

Attacker: A server with BlackArch Kali Linux operating system was used to cause malicious 

activity in different domains. 
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	The	 normal	 and	 attack	 datasets	 have	 the	 features	 given	 in	 Table	 7.3.	 An	 extract	 of	 the	

dataset	is	given	in	Figure	7.8.	

 
Figure 7.8 Extract of the Training Dataset 

	

Table 7.3 Features in the healthcare dataset 
SrcAddr Source Address DIntPkt Destination inter 

packet arrival 
time (ms) 

Load Bits per second 

DstAddr Destination Address SIntDist Source inter 
packet arrival 
time distribution 

Loss Packets transmitted 
or dropped 

Sport Source Port # DIntDist Destination inter 
packet arrival 
time distribution 

sMinPktSz Min packet size for 
source traffic 

Dport Destination Port # SIntPktAct Source active 
inter packet 
arrival time 

dMinPktSz Max packet size for 
source traffic 

SrcBytes Source-to-
destination byte 
count 

DIntPktAct Destination active 
inter packet 
arrival time 

pLoss Percent packet 
transmitted or 
dropped 

DstBytes Destination-to-
source byte count 

SrcJitter Source jitter (ms) pSrcLoss Percent source 
packet transmitted 
or dropped 

SAppBytes Source to 
destination 
application bytes 

DstJitter Destination jitter 
(ms) 

pDstLoss Percent destination 
packet transmission 
or dropped 

DAppBytes Destination to 
source application 
bytes 

sMaxPktSz Max packet size 
for source traffic 

Dur Duration of a flow 

SrcLoad Source bits/sec dMaxPktSz Max packet size 
for dest. traffic 

Trans Aggregation record 
cound 

DstLoad Destination bits/sec DstGap Destination bytes 
missing 

TotPkts Total transaction 
packet count 

SrcGap Source bytes 
missing 

SIntPkt Source interpacket 
arrival time (ms) 

TotBytes Total transaction 
byte count 

SrcAddr Dir DstAddr Sport Dport SrcPktsDstPktsTotPktsSrcBytesTotBytes SrcRate DstRate Rate SrcLoad DstLoad Load Traffic
192.168.0.105-> 239.255.255.25059823 1900 2 0 2 286 286 0.334339 0 0.334339 382483 0 382483 normal
192.168.0.105-> 192.168.0.255 17500 17500 1 0 1 187 187 0 0 0 0 0 0 normal
192.168.0.105-> 239.255.255.25059823 1900 2 0 2 286 286 0.249812 0 0.249812 285784 0 285784 normal
192.168.0.108<-> 200.192.232.8 37776 123 1 1 2 90 180 0 0 25.16673 0 0 0 normal
192.168.0.105-> 239.255.255.25059823 1900 2 0 2 286 286 0.330491 0 0.330491 378081 0 378081 normal
192.168.0.105-> 192.168.0.255 17500 17500 1 0 1 187 187 0 0 0 0 0 0 normal
192.168.0.105-> 239.255.255.25059823 1900 2 0 2 286 286 0.334113 0 0.334113 382225 0 382225 normal
192.168.0.108<-> 200.192.232.8 48164 123 1 1 2 90 180 0 0 24.67308 0 0 0 normal
192.168.0.105-> 192.168.0.108 64958 5555 4 3 7 751 925 68.97028 45.98018 137.9406 103731 21335 125066 normal
192.168.0.105-> 192.168.0.108 64961 5555 4 3 7 751 925 66.44224 44.29483 132.8845 999291 20553 120481 normal
192.168.0.105-> 239.255.255.25059823 1900 2 0 2 286 286 0.249878 0 0.249878 285860 0 285860 normal
192.168.0.105-> 192.168.0.108 64975 5555 4 3 7 751 925 67.89788 45.26526 135.7958 102118 21003 123121 normal
192.168.0.105-> 192.168.0.108 64976 5555 4 3 7 751 925 69.11009 46.0734 138.2202 103941 21378 125319 normal
192.168.0.108<-> 200.192.232.8 33127 123 1 1 2 90 180 0 0 20.76628 0 0 0 normal
192.168.0.105-> 239.255.255.25059823 1900 2 0 2 286 286 0.330464 0 0.330464 378050 0 378050 normal
192.168.0.109-> 192.168.0.108 51294 80 1 1 2 74 128 0 0 16666.67 0 0 0 attack
192.168.0.109-> 192.168.0.108 35844 5355 1 1 2 74 128 0 0 6711.409 0 0 0 attack
192.168.0.109-> 192.168.0.108 35846 5355 1 1 2 74 128 0 0 14084.51 0 0 0 attack
192.168.0.109-> 192.168.0.108 35848 5355 1 1 2 74 128 0 0 25000 0 0 0 attack
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7.6.3 Evaluation Results 
The results discussed in this section are the training of neural networks at the edge cloud, the 

training of public cloud neural network with and without layer reuse.  

1.	Training	and	Testing	of	Stacked	Autoencoders	at	the	Edge	Clouds	

The configuration discussed in Section 7.6 and represented in Figures 7.5 and 7.6 was used as 

the basis for training and testing. The generated dataset was randomized and mutually exclusive 

parts were selected to train the autoencoders in the three edge clouds. All the examples in the 

training datasets constituted normal traffic. Some parts of each of the segregated datasets were 

kept apart to be used as training datasets. The models did not see these datasets in the training 

phase. Figure 7.7 shows three edge clouds and Algorithm 7.1 gives a look into how they could be 

trained in Keras (with TensorFlow backend). The algorithm shows part of the code for edge-

cloud 1. The model is created in line 63 and set up for training in line 64. Lines 56 to 62 define 

the training and test data, the number of features being fed to the input layer and sets up the 

autoencoder layers. The other edge cloud models are created similarly. 

 

(a) Autoencoder edge cloud 1 (sae1) 
 

(b) Autoencoder edge cloud 2 (sae2) 

sae1	

x1	

f	

X1’	

sae2	

x2	 X2’	
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(c)Autoencoder edge cloud 3 (sae3) 
Figure 7.7 Three edge cloud autoencoders 

	

The training and testing results are shown in Figures 7.8 (a) to (c). It can be seen from the figures 

that the training accuracies are good and the model generalizes well. The blue lines represent 

training losses, while the green lines represent test losses. Each epoch represents one forward 

plus one back-propagation iteration of the complete dataset through the autoencoder. As the 

number of epochs increase, the model gets trained and the losses come down. The losses of the 

models on the test data settle down to their low value close to the training losses in 40-60 epochs 

of training.   

Code	Snippet	7.1	

…	
…	
56	X_train1,	X_test1	=	train_test_split(X1,	test_size=0.2,	

random_state=42)	
57	input_dim1=X_train1.shape[1]		
58	input_layer1	=	Input(shape=(input_dim1,	))		
59	enc1_edge1	=	Dense(encoding_dim,	activation="tanh",			

activity_regularizer=regularizers.l1(10e-
8))(input_layer1)		

60	enc2_edge1	=	Dense(int(encoding_dim/2),	
activation="relu")(enc1_edge1)	

61	dec1_edge1	=	Dense(int(encoding_dim/2),	
activation='relu')(enc2_edge1)		

62	dec2_edge1	=	Dense(input_dim,	activation='relu')(decoder1_edge1)		
63	sae1	=	Model(inputs=input_layer1,	outputs=decoder2_edge1)		
64	sae1.compile(optimizer='adam',		
																																			loss='mean_squared_error',			metrics=['accuracy'])	

sae3	

X3	 X3
’	
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Train-loss = 4.697, Test-loss = 17.595, Train-accuracy = 0.993, Test-accuracy = 
0.995 

(a) Edge cloud 1 
 
Train-loss = 8.526, Test-loss = 8.661, Train-accuracy = 0.986, Test-accuracy = 
0.985 
 

(b) Edge cloud 2 

 
Train-loss = 7.418, Test-loss = 6.715, Train-accuracy, = 0.993, test-accuracy = 
0.992 

c) Edge cloud 3 
Figure 7.8 Training and test performance of the edge cloud models 

	

2.	Training	and	testing	of	stacked	autoencoders	in	the	public	cloud	

The aggregator in the simple mode merges all the layers of the edge models and produces a 

composite model (Figure 7.9). The aggregator can also be made to merge layers selectively to 

improve the outcome. 
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Figure 7.9 Merged model with all edge layers reused 

Figure 7.10 shows the selective merging of layers. We shall compare the training times of public 

cloud neural network models created ab-initio with the models created by reusing trained layers 

from edge cloud neural networks. 

 

Figure 7.10 Merged model with selective layer 
reuse 

To	test	our	assumption	that	the	Level	3	public	cloud	model	will	take	much	longer	to	train	

than	the	Level	2	edge	clouds	and	that	the	reuse	of	the	layers	from	the	edge	clouds	will	make	

the	public	cloud	train	faster	we	followed	our	aggregation	model	Figure	7.6.	Algorithm	7.2	

shows	 a	 part	 of	 the	 Keras	 program	 that	 can	 be	 used	 to	merge	 the	 edge	models	 to	 form	

public	cloud	model.		

X’	
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The training and testing results are shown in Figure 7.11 a) for the merged model in the public 

cloud while Figure 11 b) shows results for the merged model. 

 

Train-loss = 4.517, Test-loss = 6.151 Train-accuracy = 0.989, Test-accuracy = 0.990 
a) Public cloud merged layers 

 
Train-loss = 2.1575, Test-loss = 4.1718, Train-accuracy = 0.992, Test-accuracy = 0.993 

b) Public cloud merged layers (cross-trained) 
Figure 7.11 Public cloud merged model training and testing 

Code	Snippet	7.2	
…	
…	
30	merged_input=keras.layers.concatenate([encoder1_edge1,encoder1_edge2,encoder1_edge3],	axis=-
1)		
…	
35	merged_output=keras.layers.concatenate([decoder2_edge1,decoder2_edge2,decoder2_edge3],	axis=-
1)		
36	output_main	=	Dense(input_dim,	activation='relu')(merged_output)	
37	merged_model=Model(inputs=	[input_layer1,	input_layer2,	input_layer3],	outputs=output_main)		
38	merged_model.compile(optimizer='adam',		loss='mean_squared_error',	metrics=['accuracy'])		

Train	
Test	
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Figure 7.12 shows the training and validation losses for the increasing number of epochs. It is 

seen that the performance stabilizes between 35 and 40 epochs. Figure 7.13 shows the training 

speed of the merged model in the public cloud. It is seen that because of use of already trained 

layers from the edge clouds, the model in the public cloud stabilizes between 6 and 8 epochs. 

This is a great improvement in speed of training because of reuse, in the public cloud, of layers 

trained in the edge clouds. 

  
Figure 7.12 Edge cloud training Figure 7.13 Public cloud training 

The experimental results discussed above show that merged the model trains faster than even 

much smaller edge clouds. Now we return to the point that the training speed of merged public 

cloud will be faster than if the public cloud was made with fresh layers. To compare the 

improvement in training times, we constructed public cloud autoencoder model from new layers. 

From several runs, we see that even much smaller 'fresh' public cloud models take much less 

than a merged 12-layer model. A comparison of training in both the cases is given in Table 7.3. 

We can see from the table that even a 12-layer model with layer reuse takes 15.7% to 27.63% 

less than a 4-layer untrained model.  
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Table 7.3 Comparison of reuse and non-reuse models 
 No layer reuse With layer reuse 

Parameter 4 layers 8 layers 12 layers 
Trainable parameters 14941 31521 24737 24737 
Training Time 158.99 s 176.183 s 115.055 s 134.067 s 

To see the performance of the model in filtering out the attack cases, we used the attack data 

both from the data generated on our testbed as well as data from the BOT-IoT dataset. It is seen 

that the anomalous data produce very high root mean square error and it is easy to fix a threshold 

value that decides whether the data has been affected by malicious activity. The confusion matrix 

for several runs is given in Table 7.4. 

  Table 7.4 Confusion matrices for attack detection 
Sl. 
No. 

Attack as Attack 
(TP) 

Attack as 
Normal (FN) 

Normal as Attack 
(FP) 

Normal as Normal 
(TN) 

Total 
vectors 

Accuracy 
(%) 

1. 200  0 19 355 574 96.69 
2. 188  0  0 511 699 100.00 
3. 92 42  0 580 714 94.12 
4. 96 0 3 232 331 99.09 
5. 92 16 0 184 292 94.52 
6. 100 0 0 280 380 100.00 
7. 80 17 0 243 340 95.00 
8. 110 1 1 287 399 99.50 
9. 27 1 1 100 129 98.45 

The random runs generally give low false positives and the accuracy ranges from about 95% to 

100%. 

7.7 Summary and Future Directions 
Researchers are investigating deep neural network in the form of stacked in the form of stacked 

autoencoders. Some successes have been reported, using ensemble of autoencoders [215], using 

autoencoders with k-means [216] and stacked autoencoder with random forest for prediction 

[217]. To the best of our knowledge, no investigation is available for the IoT-multi-cloud 

infrastructure, especially with hierarchical and merged autoencoders. Not all methods would be 

suitable by way of performance or speed for such and environment. Based on the architecture 

discussed in Section 7.3, a hierarchical model seemed a natural configuration to explore. While 
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the usefulness was apparent after careful testing with multiple datasets, responsiveness required 

improvement. The training times at the gateways and edge clouds were well within the 

performance limits expected. However, the training times in the public clouds were the reason 

for deeper investigation. Previously studied ensembles of autoencoders, trained separately not 

only increase the training time, but the final decision taken by another trained model, that takes 

input from the ensemble autoencoders, introduce a layer that could enhance false positives and 

false negatives. We thus explored reducing the training time through an innovative technique of 

merged model with layer reuse. The trained layers in the edge clouds are reused at the public 

cloud to speed up the process with only top-up training required at the public cloud. Exceeding 

our expectations, not only the timings improved drastically, the accuracies were much better 

than those that were achieved by training a new stacked-autoencoder at the public cloud. 

As for future direction, we need to think about the reasons why the autoencoder classifies a 

particular stream as attack or normal traffic. Neural networks are opaque, non-intuitive and 

difficult for people to understand [213]. They are not intuitive and provide limited ability to 

explicitly identify possible causal relationships. In critical applications like healthcare, the 

clinical experts may like to know why a certain diagnostic decision was made by the system. 

Explainable AI will be essential if users are to understand, appropriately trust, and effectively 

manage this incoming generation of artificially intelligent partners. The challenge will be to 

produce a new suite of machine learning techniques that produce explainable models, but still 

having high prediction accuracy as shown in Figure 7.14 
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Figure 7.14 Learning Performance and Explainability of 

current and future systems [DARPA] 
	

The acceptability of AI by the medical profession, the courts of law and the common man for 

whom the decisions are being taken will depend on how much trust it can generate by providing 

explanations for its decisions. xAI researchers need to address the challenge of providing AI the 

capability of providing contrasting explanations of the decisions taken by them.  The new AI 

models should be able to produce contrasting explanations, which can be discussed and debated 

by the affected parties to arrive at the most feasible explanation [214].  
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Chapter 8    

Conclusions and future directions 

Cloud computing has taken roots in the business and the government for routine as well as 

innovative applications. The variety of available infrastructure, and the speed with which the 

infrastructure, software or platforms can be leased over the clouds, becomes a great disincentive 

in factoring in the procurement and deployment of hardware and software at one’s own expense 

and at the cost of project time. As the experience of organizations with cloud grew, its use for IT 

applications has already gone through its own mini-generations – physical datacenters, 

virtualization in datacenters, cloud datacenters, cloud micro services, cloud containers and now 

multi-cloud systems! Clouds have become the test-bed for easier and faster testing of innovative 

ideas.  

Despite advancements in the inherent technologies, the very nature of cloud computing resists 

zero downtime. Cloud compute, storage and networking failures are quite common even for 

established cloud services, resulting in hours of service blackouts. This is forcing organizations 

involved in critical services like airline reservations and healthcare as well as carriers' virtual 

network service deployments consider multi-cloud deployment a necessity. It is, therefore, not 

surprising that most organizations have some kind of a multi-cloud strategy. Carrier network 
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function virtualization over clouds is a major evolving paradigm, with far reaching effects, on 

both the carrier as well as cloud computing domains. As would be in any new arena, problems 

abound.  

8.1 What Have We Achieved in this Dissertation? 
All multi-cloud applications require a management and control platform that would be able to 

ease the pains of application managers in onboarding and managing the lifecycle of applications 

on virtual resources distributed over geographically disparate clouds. When we started this work, 

multi-cloud platforms were few and far between and the shortcomings were quite glaring. These 

platforms were a complex piece of software that needed to perform multiple activities 

simultaneously using all the techniques in the book – synchronous and asynchronous processes, 

multi-threading, concurrency and fate decoupling. With all these complexities it is not surprising 

that the platforms that cater to multifarious applications are actually not optimized for any of 

those.  One of the first tasks that we undertook was to evolve a procedure that will help in fine-

tuning these platforms with the applications that they are catering to. We developed a three-stage 

process consisting of dynamically profiling platform behavior, carrying out a two factorial 

analysis for rating the importance of these factors and then using the outcome to optimize the 

platform. Details of the work done in this area are explained in Chapter 4. 

It was now time for greater adventure. All the forecasts and projections by industry pundits were 

speaking of carrier service deployments over clouds as the next big thing for both the cloud 

service providers as well as the carriers. It has the multi-billion dollar potential for earning 

money for the former and saving money for the later. The idea of virtualized services started in 

2012-13 and today snowballed into nothing less than frenzy. All major carriers around the world 

AT&T, Verizon, BT, Orange, Telecom Italia and the standards organizations ETSI, ITU Linux, 
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IETF trying to put the pieces in place.  We worked on the placement of virtual network resources 

onto multi-cloud systems. Using some innovative ideas we achieved results, in many cases better 

than the state-of-the art. This work has been explained in Chapter 5. 

Having optimized the platform, placed the elements of a complex application like carrier 

network service over multiple clouds we turned our attention to the performance issue of these 

applications. It is common knowledge by now that performance and availability are two areas 

that are inhibiting real deployments of virtualized carrier services over clouds. We studied the 

problem and zeroed in on the complexities and factors that we considered are most affective for 

virtual carrier service deployments and how they can be tackled. This led to the development of a 

framework called HYPER-VINES that would assist in meeting the performance and availability 

challenges. This is elaborated in Chapter 6. NSF chipping in with funding for this research was a 

great encouragement. 

Services like next generation healthcare would only be possible through a confluence of clouds, 

virtualized services and artificial intelligence. The missing piece here is the security of data in 

motion between the IoT domain and the multi-cloud hierarchy consisting of edge and public 

clouds. We drew up a plausible architecture for such services and decided to have distributed 

hierarchical security solution based on neural networks. The part of the problem that we tackled 

was to have good accuracy in detecting any kind of intrusions that would cause anomaly in data 

flows. This also involved optimizing the training time of comparatively large neural network 

models in the public cloud. Our work on this is explained in Chapter 7. 
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8.2 Future Directions 
The work done in this dissertation is a step towards making it possible to deploy carrier network 

services over multi-cloud systems by improving their performance and availability and to ensure 

security of data in motion over these infrastructures. Any single research work cannot aim to 

completely solve a problem. In the words of Thorstein Veblen, a well-known American 

economist, "The outcome of any serious research can only be to make two questions grow where 

only one grew before."  

For the new researchers, who wish to take the path that has started to emerge through this 

research, many obstacles await to be overcome.  In H.L. Mencken's words, "If a solution seems 

to be too simple and obvious it is probably wrong (adapted from H.L. Mencken). We will try to 

point out a few possible directions one can take. The confluence of the fields of NFV, AI, Multi-

cloud and Cybersecurity is powerful for, which like confluences of rivers, have the potential to 

slough off the obsolete [218] and give rise to new paradigms that will change the way services 

are given and make them many orders more advanced in all respects. 

The future has more complexity in store. All future networks, including 5G, all future networks 

are expected to have some mandatory features like multi-cloud deployment, virtualized network 

services and use of artificial intelligence. These networks have three broad areas of services – 

ultra reliable, low latency communication, enhanced mobile broadband and massive machine 

type communication. Since all of these are expected to work in virtual network slices over the 

same physical infrastructure, multi-cloud placement would become a complicated affair. 

Comparatively simple problems of today i.e. meeting QoS, latency and optimizing cost would 

pale in comparison with what would be required in future. Not only multiple sets of criteria 

would govern placements over multi-cloud, the optimization would require resources to move 
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from one layer to another and change in specifications of virtual resources as they move from 

one to another would be taken for granted. None of these could possibly materialize without the 

support of virtualization and multi-cloud. 

Carrier networks deployed in accordance with the performance agreements can only guarantee 

successful acceptance testing and commissioning. Continuous successful operations require a 

framework that would that would keep meeting the service level agreements and standards for 

performance and availability. With multiple layers of virtualization, multi-cloud deployments 

and highly demanding services the simple HYPER-VINES framework presented in this work 

would have to undergo drastic changes. They would have to deal with virtual slice managers, 

mobile edge and public cloud providers and a variety of high bandwidth, low latency and IoT 

based services. One direction to watch is the AI pipelines for self-organizing networks. Different 

from today's machine learning pipelines, the AI pipelines would conceptually consist of a variety 

of sensors that collect performance data from various parts of the network. It then uses 

intelligence to decide on the deep or machine learning models to use and will do the job of 

feature extraction if required. After the set-up it would send necessary information to the 

network manager to reorganize the network. The pipeline itself would be able to perform some 

simple performance management tasks. 

Planners of critical services like next generation healthcare are looking at reducing healthcare 

cost and improving diagnostics and monitoring of patients. Use of virtualized network services 

and clouds would increase the cyber security risks. We have proposed an AI solution for data in 

motion among edge and main clouds. Much work remains in providing end-to-end security of 

patient data for precluding any threat to patients' health, life and money. Use of AI models 

introduces an element of skepticism about the results obtained.  These systems may analyze a 
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situation with high accuracy, but they do not provide any help in understanding how they have 

arrived at these results. It must be possible to explain the results to the main stakeholders – 

patients and doctors – to make them trust the system. Explainable AI (xAI) has started to address 

this in a very rudimentary way. Much more research is required to make the AI systems produce 

opposing viewpoints about the proposed solution to help the affected parties discuss and debate 

the results. 
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