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Abstract

The provision of o reliable communication infras-
tructure for mobile agents is still an open research is-
sue. The challenge to reliability we address in this work
does not come from the possibility of faults, but rather
from the mere presence of mobility, which slightly com-
plicates the problem of ensuring the delivery of infor-
mation even in o foult-free network. For instance, the
asynchronous nature of message passing and agent mi-
gration may couse situations where messages forever
chase a mobile agent that moves frequently from one
host to another. Current solutions rely on conven-
tional technologies that either do not provide a solution
Jor the aforementioned problem, because they were not
designed with mobility in mind, or enforce continuous
connectivity with the message source, which in many
cases defeats the very purpose of using mobile agents.

In this paper, we propose en algorithm that guar-
antees delivery to highly mobile agents using a tech-
nigue similar to o distributed snapshot. A number of
enhancements to this basic idea are discussed, which
limit the scope of message delivery by allowing dynamic
creation of the conmectivity graph. Notably, the very
structure of our algorithmn maokes i amenable not only
to guarantee message delivery to a given mobile agent,
but also to provide multicast communication to a group
of agents-——another open problem in research on mobile
agents. After presenting our algorithm and its proper-
ties, we discuss its implementability by analyzing the
requirements on the underlying mobile agent platform,
and argue gbout its applicability.

1. Introduction

Mobile agent systems currently provide an increas-
ing degree of sophistication in the abstractions and
mechanisms they support, well beyond the purpose of
achieving agent migration. However, it is questionable
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P.za Leonardo da Vinci, 32
20133 Milano, Italy
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whether the features that are being added on top of
plain agent migration are really focused on the needs
of application developers, or they really address the
problems that are peculiar to mobility.

A good example of the gap between what is pro-
vided and what is needed is the problem of provid-
ing a communication infrastructure for mobile agents.
This aspect is often overlooked or misunderstood in the
context of mobile agent research. For instance, signif-
icant efforts are being devoted to the problem of en-
abling communication among mobile agents by defin-
ing a common semantic layer for the exchange of in-
formation, as in KQML [6]. Despite their relevance,
the questions posed by researchers in this area are not
particularly affected by the presence of mobility, and
focus on the problem of communication at a completely
different, and much higher, abstraction level than the
one we are concerned with in this paper. Even if we
assume that the problem of ensuring a proper semantic
level for agent communication is somehow solved, we
are still left with the problem of reliably delivering a
message to a mobile agent whose patterns of mobility
are potentially unknown a priori. This is the problem
we address in this paper.

The challenge to reliable communication persists
even under the assumption of an ideal transport mecha-
nism that guarantees a correct delivery of information
in the presence of faults in the underlying communi-
cation link or in the communicating nodes. It is the
sheer presence of mobility, and not the possibility of
faults, that undermines the notion of reliability. If mo-
bile agents are allowed to move freely from one host to
another according to some a priori unknown migration
pattern, the challenge in delivering information prop-
erly is caused by the difficulty in determining where the
mobile agent is, and in ensuring that the information
reaches the mobile agent before it moves again.

By and large, currently available mobile agent sys-
tems rely either on conventional communication facil-
ities like sockets and remote procedure (or method)



call 1, 8, 13], or implement their own message passing
facility [10]. To our knowledge, none of them satis-
factorily addresses the aforementioned problem. They
require knowledge about the location of the mobile
agent, which is obtained either by overly restricting
the freedom of mobility or by assuming continuous
connectivity-——assumptions that in many cases defeat
the whole purpose of using mobile agents.

In this paper, we propose an algorithm that guar-
antees message delivery to highly mobile agents in a
fault-free network. We focus on message passing as the
communication mechanism that we want to adapt to
mobility, because it is a fundamental and well under-
stood form of communication in a distributed system.
This incurs no loss of generality because more complex
mechanisms like remote procedure call and method in-
vocation are easily built on top of message passing. Our
algorithm does not assume knowledge about the loca-
tion of agents, and constrains the movement of agents
only in its most enharced form and only for a limited
amount of time. Furthermore, its structure makes it in-
herently amenable to an extension that provides mul-
ticast communication to a group of agents dispersed
in the network, another problem for which satisfactory
solutions do not yet exist.

The paper is structured as follows. Section 2 dis-
cusses the motivation for this work, and the current
state of the art in the field. Section 3 presents our al-
gorithm, starting with the underlying assumptions and
illustrating subsequent refinements of the original key
idea. Section 4 discusses the applicability and imple-
mentability of a communication mechanism embodying
our algorithm in a mobile agent platform. Finally, Sec-
tion 5 provides some concluding remarks.

2. Motivation and Related Work

The typical use of a mobile agent paradigm is for
bypassing a communication link and exploiting local
access to resources on a remote server [7]. Thus, one
could argue that, all in all, communication with a re-
mote agent is not important and a mobile agent plat-
form should focus instead on the communication mech-
anisms that are exploited locally, i.e., to get access
to the server or to communicate with the agents that
are co-located on the same site. Many mobile agent
systems provide mechanisms for local communication,
either using some sort of meeting abstraction as ini-
tially proposed by Telescript [18], event notification for
group communication (1, 10], or, more recently, tuple
spaces [4, 16].

Nevertheless, there are several common scenarios
that provide counterarguments to the statement above.

Some of them are related with the issue of managing
mobile agents. Imagine a “master” agent spawning a
number of “slave” mobile agents that are subsequently
injected in the network to perform some kind of co-
operative computation, e.g., find a piece of informa-
tion. At some point, the master agent may want to
actively terminate the computation of the slave agerits,
e.g., because the requested information has been found
by one of them and thus is desirable to prevent un-
necessary resource consumption. Or, it may want to
change some parameter governing the behavior of the
agents, because the context that determined their cre-
ation has changed in the meanwhile. Or, in turn, the
slave agents may want to detect whether the master
agent is still alive by performing some sort of orphan
detection, which requires locating the master agent if
this is itselfl allowed to be mobile.

Other examples are related to the fact that mobile
agents are just one of the paradigms available to design-
ers of a distributed application, which can then use a
mixture of mobile agent and message passing to achieve
different fenctionalities in the context of the same ap-
plication. For instance, a mobile agent could visit a
site and perform a check on a given condition. If the
condition is not satisfied, the agent could register an
event listener with the site. This way, while the mo-
bile agent is visiting other sites and before reporting
its results, it could receive notifications of changes in
the state of the sites it has already visited and decide
whether they are worth a second visit.

The scenarios above require the presence of a mes-
sage passing mechanism for mobile agents. However, a
highly desirable requirement for such a mechanism is
the guarantee that the message is actually delivered (at
least once) to the destination, independently from the
relative movement of the source and target of communi-
cation. Mobility heavily complicates matters. Typical
delivery schemes suffer from the fundamental problem
that an agent in transit during the delivery can eas-
ily be missed. To illustrate the issue, we discuss two
strawman approaches to message delivery: broadcast
and forwarding.

A simple broadcast scheme assumes a spanning tree
of the network nodes through which a message may
be sent by any node. This node then broadcasts the
message to its neighbors, which broadcast the message
to their neighbors, and so on until the leaf nodes are
reached. This, however, does not guarantee delivery
of the message when an agent is traveling in the re-
verse direction with respect to the propagation of the
message, as depicted in Figure 1. If the agent is be-
ing transferred at the same instant when the message
is propagating in the other direction, the agent and
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Figure 1. The problem: Missing delivery in simplis-
tic broadcast and forwarding schemes.

the message will cross in the channel, and delivery will
never aceur.

A simple forwarding scheme maintains a pointer to
the mobile agent at a well-known location, which is
called home agent in the Mobile IP protocol [14] where
this idea enables physical mobility of hosts. Upon mi-
gration, the mobile agent must inform the home agent
of its new location, in order to enable further com-
munication. However, any messages sent between the
migration and the update are lost, as the agent ba-
sically ran away from the messages before they could
be delivered. Even if retransmission to the new loca-
tion is attempted, the agent can move again and miss
the retransmission, thus effectively preventing guaran-
teed delivery, as depicted in Figure 1. Furthermore,
forwarding has an additional drawback in that it re-
quires communication to the home agent every time
the agent moves. In some situations, this may defeat
the purpose of using mobile agents by reintroducing
centralization. For instance, in the presence of many
highly mobile agents spawned from the same host, this
scheme may lead to a considerable traffic overhead gen-
erated around the home agent, and possibly to much
slower performance if the latency between mobile and
home agent is high. Finally, because of this umbilical
cord that must be maintained with the home agent,
this approach is intrinsically difficult to apply when
disconnected operations are required.

The mobile agent systems currently available em-
ploy different communication sérategies. The OMG
MASIF standard [11] specifies only the interfaces that
enable the naming and locating of agents across dif-
ferent platforms. The actual mechanisms to locate an
agent and communicate with it are intentionally left
out of the scope of the standard, although a number of
location techniques are suggested that by and large can

be regarded as variations of broadcast and forwarding.
Some systems, notably Aglets [10] and Voyager [13],
employ forwarding by associating to each mobile com-
ponent a proxy object which plays the role of the home
agent. Some others, like Emerald [9], the precursor
of mobile objects, use forwarding and resort to broad-
cast when the object cannot be found. Others, e.g.,
Mole [1], simply prevent the movement of a mobile
agent while engaged in communication. Mole exploits
also a different forwarding scheme that does not keep
a single home agent, rather it maintains a whole trail
of pointers from the source to destination, for faster
communication. However, this is employed only in the
context of a protocol for orphan detection {2]. Finally,
some systems, e.g., Agent Tcl {8], provide mechanisms
that are based on common remote procedure call, and
leave to the application developer the chore of handling
a missed delivery.

A related subject is the provision of a mechanism for
reliable communication to a group of mobile agents.
Group communication is a useful programming ab-
straction for dealing with clusters of mobile agents that
are functionally related and $o which a same piece of in-
formation must be sent. Many mobile agent systems,
notably Telescript, Aglets, and Voyager, provide the
capability to multicast messages only within the con-
text of a single runtime support. Finally, Mole [1] pro-
vides a mechanism for group communication that, how-
ever, still assumes that agents are stationary during a
set of information exchanges.

The approach we propose provides a reasonable solu-
tion to the problem of guaranteeing delivery to a single
mobile agent, and has the nice side effect of providing
a straightforward way to achieve group communication
as well. The details of our algorithm are discussed in
the next section.

3. Enabling Reliable Communication

As discussed earlier, simplistic message delivery
mechanisms such as spanning tree broadcasting and
forwarding have the potential for failure when agents
are in transit or are rapidly moving. To address these
shortcomings we note that, in general, we must flush
the agents out of the channels and into regions where
they cannot escape without receiving a copy of the
message. For instance, in the aforementioned broad-
cast mechanism, we look at the case where the agent
is moving in the opposite direction from the message
on a bidirectional channel. In this case, if the message
was still present at the destination node of the chan-
nel, it could be delivered when the agent arrived at the
node. This leads to a solution where the message is



stored at the nodes untit delivery completes. Although
this simple extension would guarantee delivery, it is
not reasonable to expect the nodes to store messages
for arbitrary lengths of time. Therefore, we seek a so-
lution that has a tight bound on the storage time for
any given message at a node. We must also address the
situation where a message is continually forwarded to
the new location of the mobile agent, but never reaches
it because the agent effectively is running away and the
message never catches up. Again, we could store the
message at every node in the network until it was de-
livered, but a better solution would involve trapping
the agent in a region of the graph so that wherever it
moves, it cannot avoid receiving the message.

The first algorithm we present for guaranteed mes-
sage delivery to mobile agents is a direct adaptation
of previous work done by the first author in the area
of physical mobility [12]. This work assumes that the
network of nodes and channels is known in advance,
and further assumes that only one message is present
in the system at a time. In this setting, ezactly-once
delivery of the message is guaranteed without modify-
ing the agents behavior either with respect to move-
ment or message acceptance. Next, we extend this ba-
sic algorithm to allow multiple messages o be delivered
concurrently. To achieve this enhancement we must re-
lax the ezactly-once semantics to become at-least-once,
meaning that duplication of messages is acceptable, but
we still prevent an agent from missing a message.

Although these algorithms provide reliable message
delivery, the assumption that the entire network graph
is known in advance is often unreasonable in situations
where mobile agents are used. Therefore, we enhance
our algorithm by allowing the graph to grow dynami-
cally as agents move, and still preserve the at-least-once
semantics for message delivery. For simplicity of pre-
sentation, we will present this latter enhancement in
two stages: first assuming that all messages originate
from a single node and then allowing any node to ini-
tiate the processing needed to send a message.

3.1. Model

The logical model we work with is the typical net-
work graph where the nodes represent the nodes will-
ing to host agents and the edges represent directional,
FIFO channels along which agents can migrate and
messages can be passed. The FIFO assumption is crit-
ical to the proper execution of our algorithm and its
implications on the underlying mobile agent platform
are discussed further in Section 4. We assume a con-
nected network graph (i.e., a path exists between every
pair of nodes), but not necessarily fully connected (i.e.,

Figure 2. A connected network with connected sub-
networks. Agents can enter and leave the subnet-
works only by going through the gateway servers.

a channel does not necessarily exist between each pair
of nodes). In a typical IP network, all nodes are log-
ically connected directly. However, this is not always
the case at the application level, as shown in Figure 2.
There, a sct of subnetworks arc connected to one an-
other through an IP network, but an agent can enter or
leave a subnetwork only by passing through a gateway
server, e.g., because of security reasons.

We also assume that the mobile agent server keeps
track of which agents it is currently hosting, and that
it provides some fundamental mechanism to deliver a
message to an agent, e.g., by invoking a method of the
agent object. Finally, we assume that every agent has a
single, globally unigue identifier, which can be used to
direct a message to the agent. These latter assumptions
are reasonable in that they are already satisfied by the
majority of mobile agent platforms.

3.2. Delivery in a Static Network Graph

We begin the description of our solution with a ba-
sic algorithm which assumes a fixed network of nodes.
For simplicity, we describe first the behavior of the al-
gorithm under the unrealistic assumption of a single
message being present in the system, and then show
how this result can be extended to allow concurrent
delivery of multiple messages.

Single message delivery, Previous work by the
first author in the physical mobility environment ap-
proached reliable message delivery by adapting the no-
tion of distributed snapshots [12]. In snapshot algo-
rithms, the goal is to record the local state of the nodes
and the channels in order to construct a consistent
global state. Critical features of these algorithms in-
clude propagation of the snapshot initiation, the flush-
ing of the channels to record all messages in transit, and
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' action: buffer message ¢

Figure 3. State transitions and related diagram for
multiple message delivery in a static network graph.

the recording of every message exactly once. Qur ap-
proach to message delivery uses many of the same ideas
as the original snapshot paper presented by Chandy
and Lamport [5]. However, instead of spreading knowl-
edge of the snapshot using messages, we spread the ac-
tual message to be delivered; instead of flushing mes-
sages out of the channels, we flush agents out of the
channels; and instead of recording the existence of the
messages, we deliver a copy of the message.

The algorithm works by associating a state,
FLUSHED or OPEN, with each incoming channel of a
node. Initially all channels are opEN. When the
message arrives on a channel, the state is changed to
FLUSHED, implying that all the agents on that chan-
nel ahead of the message have been forced out of the
channel (by the FIFO assumption). When the message
arrives for the first time at a node, it is stored locally
and propagated on all outgouing channels, starting the
flushing process on those channels. The message is
also delivered to all agents present at the node. All the
agents that arrive through an OPEN channel on a node
storing the message must receive a copy of it. When
all the incoming channels of a node are FLUSHED, the
node Is no longer required to deliver the message to any
arriving agents, therefore the message copy is deleted
and all of the channels are atomically reset to OPEN.

Multiple message delivery. A simplistic adapta-
tion of the previcus algorithm to multiple message de-
livery would require a node to wait for the termination
of the current message delivery and to coordinate with
the other nodes before initiating a new one, in order to
ensure that only one message is present in the system.
However, this unnecessarily constrains the behavior of
the sender and requires knowledge of non-local state.
We propose instead an approach where multiple

messages can be present in the system, as long as the
node where the message originates tags the message
with a sequence number unique to the node. In prac-
tice, the sequence number allows the nodes to deal with
multiple instantiations of the algorithm running con-
currently, thus encompassing the case of a single source
transmitting a burst of messages without waiting as
well as the case of multiple sources transmitting at the
same time.

To allow concurrent message delivery to take place,
we must address the issue of a new message arriving
during the processing of the current one. In this case,
the channel is already FLUSHED, but not all other chan-
nels are FLUSHED. To handle this case, we introduce a
new state, BUFFERING, as shown in Figure 3, in which
any messages arriving on a FLUSHED channel are put
into a buffer to be processed at a later time (transition
4). A channel in the BUFFERING state is not consid-
ered when determining the transition from FLUSHED
to OPEN. When this transition is finally made (1), all
buffering channels are also transitioned to OPEN (3),
and the messages in the buffer queues are treated as
if they were messages arriving on the channel at that
moment, and thus processed again. It is possible that,
after the processing of the first message, the next mes-
sage causes another transition to BUFFERING, but the
fact that the head of the channel is processed ensures
eventual progress through the sequence of messages to
be delivered.

Although we force messages to be buffered, agent
arrival is not restricted. The agent is being allowed to
move ahead of any messages it originally followed along
the channel. Effectively, the agent may move itself back
into the region of the network where the message has
not yet been delivered. Therefore, duplicate delivery
is possible, although duplicates can be discarded easily
by the runtime support or by the agent itself based on
the sequence number.

3.3. Delivery in a Dynamic Network Graph

Although the solutions proposed so far provide de-
livery guarantees in the presence of mobility, the ne-
cessity of knowing the network of neighbors a priori is
sometimes unreasonable in the dynamic environment of
mobile agents. Furthermore, the delivery mechanism is
insensitive to which nodes have been active, and deliv-
ers the messages also to regions of the network that
have not been visited by agents. Therefore, our goal
is still to flush channels and trap agents in regions of
the network where the messages will propagate, but
also to allow the network graph used for the delivery
process to grow dynamically as the agents migrate. A



channel will only be included in the message delivery
if an agent has traversed it, and therefore, a node will
be included in the message delivery only if an agent
has been hosted there. We refer to a node or channel
included in message delivery as active.

Our presentation is organized in two phases. First,
we show a restricted approach where all the messages
must originate from a single, fixed source. This is rea-
sonable for menitoring or master-slave scenarios where
all communication flows from a fixed initiator to the
agents in the system. Then, we extend this initial so-
lution to enable direct inter-agent messaging by allow-
ing any node to send messages, without the need for a
centralized source.

Single message source. First, we identify the prob-
lems that can arise when nodes and channels are added
dynamically, due to the possible disparity between the
messages processed at the source and destination nodes
of a channel when it becomes active. We initially
present these issues by example, then develop a gen-
eral solution.

Destination ohead of source. Assume a network as
shown in Figure 4(a). X is the sender of all messages
and is initially the only active node in the system. The
graph is extended when X sends an agent to ¥, causing
Y and (X,Y) to become active. Suppose X sends a
burst of messages 1..4, which are processed by ¥, and
later a second sequence of messages 5..8. This second
transfer is immediately followed by the migration of a
new agent to node Z, which makes Z and (X, Z) active.
Before message 5 arrives at V', an agent is sent from ¥
to Z, thus causing the channel (¥, Z) to be added to
the active graph.

A problem arises if the agent decides to immediately

(b) Source ahead
of destination.

(a) Destination ahead
of source,

Figure 4. Problems in managing a dynamic graph.
Values shown inside the nodes indicate the last mes-
sage processed by the node. The subscripts on agent
a indicate the last message processed by the source
of the channel being traversed by a right before a
migrated.

leave Z, because the messages 5..8 have not yet been
delivered to it. Furthermore, what processing should
occur when these messages arrive at Z along the new
channel (Y, Z)? If the messages are blindly forwarded
on all Z’s outgoing channels, message ordering is pos-
sibly lost and messages can possibly keep propagating
in the network without ever being deleted.

Our solution is to hold the agent at Z until the mes-
sages 5..8 are received and, when these messages ar-
rive, to deliver them only to the detained agent, i.e.,
without broadcasting them to the neighboring nodes.
Therefore, no messages are lost and the system wide
processing of messages is not affected. Notably, al-
though we do inhibit the movement of the agent until
these messages arrive, this takes place only for a time
proportional to the diameter of the network, and even
more important, only when the topology of the network
is changing.

Source ehead of destination. To uncover another
potential problem, we use the same scenario just pre-
sented for nodes X, Y, and Z, except that instead of
assuming an agent moving from ¥ to Z, we assume
it is moving from Z to Y, making (Z,Y") active (Fig-
ure 4(b)). Although the agent will not miss any mes-
sages in this move, two potential problems exist.

First, by making (Z,Y) active, ¥ will wait for Z
to be FLUSHED or BUFFERING before proceeding to the
next message. However, message 5 will never be sent
from Z. Our solution is to delay the activation of chan-
nel (Z,Y) until ¥ catches up with Z. In this example,
we delay until 8 is processed at ¥. Second, if message
9 is sent from X and propagated along channel (Z,Y),
it must be buffered until it can be processed in order.

Given this, we now present a solution that general-
izes the previous one. We describe in detail the channel
states and the critical transitions among these states,
using the state diagram in Figure 5.

* CLOSED: Initially, all channels are CLOSED and not
active in message delivery.

¢ OPEN: The channel is walting to participate in a
message delivery. When an agent arrives through
an OPEN channel on a node that is storing a mes-
sage destined to that agent, the agent should re-
ceive a copy of such message.

e FLUSHED: The current message being delivered
has already arrived on this channel, and therefore
this channel has completed the current message
delivery. Agents arriving on FLUSHED channels
need no special processing.

* BUFFERING(j): The source is ahead of the desti-
nation. Messages arriving on BUFFERING channels



are put into a FIFO buffer. They are processed
after the node catches up with the source by pro-
cessing message j.

s HOLDING(j): The destination is ahead of the
source. Messages with identifiers less than or equal
to j which arrive on HOLDING channels are deliv-
ered to all held agents. Agents arriving on HOLD-
ING channels, and whose last received message has
identifier less than 7, are held until § arrives.

The initial transition of a channel from CLOSED to
an active state is based on the current state of the des-
tination node and on the state of the source as carried
by the agent. The destination node can either stifl
be inactive or it can have finished delivering the same
message as the source (9), it can still be still process-
ing such message (8), it can be processing an earlier
message (10), or it can be processing a later message
(7). Based on this comparison, the new active state is
assigned. Once a channel is active, all state transitions
occur in response to the arrival of a message. Because
we have already taken measures to ensure that all mes-
sages will be delivered to all agents, our remaining con-
cerns are that detained agents are eventually released
and that at every node, the next message is eventually
processed.

Whether an agent must be detained or not is deter-
mined by comparing the identifier of the latest mes-
sage received by the agent, carried as part of the agent
state, and the current state of the destination node.
Only agents that are behind the destination are actu-
ally detained. If an agent is detained at a channel in
state HOLDING(J}, it can be released as soon as j is
processed along this channel. By connectivity of the
network graph, we are guaranteed that § will eventu-
ally arrive. When it does, the destination node will
either still be processing 7, or will have completed the
processing. In both cases the agent is released. In the
former case, the channel transitions to FLUSHED (6) to
wait for the rest of the channels to catch up, while in
the latter case the channel transitions to OPEN (3) to
be ready to process the next message.

To argue that eventually all messages are delivered,
we must extend the progress argument presented in
Section 3.2 to include the progress of the HOLDING
channels as well as the addition of new channels. As
noted in the previous paragraph, message j is guaran-
teed to eventually arrive along the HOLDING channel,
thus ensuring progress of this channel. Next, we assert
that there is a maximum number of channels that can
be added as incoming channels, bounded by the num-
ber of nodes in the system. We are guaranteed that if
channels are continuously added, eventually this maxi-

pre: no incoming channels OPEN A

1: no incoming channels HOLDING
action: curMsg = L
pre: message j arrives A
2 (curMsg = LV curMsg = §)
action: if curMsg = L deliver, store, propagate
2 pre: message j finished processing
) action:
pre: message 4 arrives A
4: (curMsg = j Ai > j)
nckion:  buffer message i
pre: message § arrives A

(eurMsg = LV curMsg > j)
action:  deliver to held agents,

release held agents
pre: message J arrives A curhsg = j

o

G: action:  deliver to held agents,
release held agents
pre: agent arrives A D ahead of S A
T {curMsg = j V curMsg = 1)
action:
pre: agent arrives A curMsg # L A
8: S and DD processing same message
aclion:
pre: agent arrives A (D not active V
9: (S and D processing same message A
' curMsg = 1))
action;
10: pre: agent aj arrives A .5 ahead of D
. aclkion:

Figure 5. State transitions and related diagram for
multiple message delivery with a single source in a
dynamic network graph. The state transitions refer
to a single channel (5, D).

mum will be reached. By the other progress properties,
eventually all these channels will be either FLUSHED or
BUFFERING, in which case processing of the next mes-
sage (if any) can begin.

Multiple message sources. Although the previous
solution guarantees message delivery and allows the dy-
namic expansion of the graph, the agsumption that all
messages originate at the same node is overly restric-
tive. To extend this algorithm to allow a message to
originate at any node, we effectively superimpose mul-
tiple instances of the same algorithm on the network,
by allowing their concurrent execution. For the pur-
poses of explanation, let n be the number of nodes in
the system. Then:



¢ The state of an incoming channel is represented
by a vector of size n where the state of each node
is recorded. Before the channel is added to the
active graph, the channel is considered CLOSED.
Once the channel is active, if no messages have
been received from a particular node, the state of
the element in the vector corresponding to that
node is set t0 OPEN.

* Processing of each message is done with respect to
the channel state associated with the node where
the message originated.

e Nodes can deliver n messages concurrently, at
most one for each node. As before, if a second
message arrives from the same node, it is buffered
until the prior message completes its processing.

s An agent always carries a vector containing, for
each message source, the identifier of the last mes-
sage received. Moreover, when an agent traverses
a new outgoing channel, it carries another vector
that contains, for each message source, the identi-
fler of the last message processed by the source of
the new channel right before the agent departed.

e An incoming agent is held only as long as, for each
message source, the identifier of the last message
received is greater than the corresponding HOLD-
ING value (if any) of the channel the agent arrived
through.

» To enable any node to originate a message, we
must guarantee that the graph remains connected.
To maintain this property we make all links bidi-
rectional. In the case where an agent arrives and
the channel in the opposite direction is not already
an outgoing channel, a fake agent message is sent
to S with the state information of D. This mes-
sage effectively makes the reverse channel active.

Again we must argue that detained agents are even-
tually released and that progress is made with respect
to the messages sent from each node. Assume that mes-
sage % is the smallest message identifier from any node
which has not been delivered by all nodes. There must
exist a path from a copy of 7 to every node where i has
not arrived, and every node on this path is blocked until
¢ arrives. By connectivity of the network graph, 1 will
propagate to every node along every channel and will
complete delivery in the system. No node will buffer
i because it is the minimum message identifier which
is being waited for. When ¢ has completed delivery,
the next message is the new minimum and will make
progress in a similar manner. Because the buffering of

messages is done with respect to the individual source
nodes and not for the channel as a whole, the messages
from each node make independent progress.

Holding agents requires coordination among the
nodes. The j value with respect to each node for which
the channel is being held, e.g., HOLDING(]), is fixed
when the first agent arrives. Because the messages are
guaranteed to make progress, we are guaranteed that
eventually j will be processed and the detained agents
will be released.

3.4. Multicast Message Delivery

In all the algeorithms described so far, we exploited
the fact that a distributed snapshot records the state of
each node exactly once, and modified the algorithm by
substituting message recording with message delivery
to an agent. Hence, one could describe our algorithm
by saying that it attempts to deliver a message to every
agent in the system, and only the agents whose identi-
fier match the message target actually accept the mes-
sage. With this view in mind, the solution presented
can be adapted straightforwardly to support multicast.
The only modification that must be introduced is the
notion of a multicast address that allows a group of
agents to be specified as recipients of the message—no
modification to the algorithm is needed.

4. Discussion and Future Work

In this section we analyze the impact of our com-
munication mechanism on the underlying mobile agent
platform, argue about its applicability, and discuss pos-
sible extensions and future work on the topic.

4.1. Implementation Issues

A fundamental assumption that must be preserved
in order for our mechanism to work is that the commu-
nication channels must be FIFQ—a legacy of the fact
that the core of our schema is based on a distributed
global snapshot. The FIFO property must be main-
tained for every piece of information traveling through
the channel, i.e., messages, agents, and any combina-
tion of the two. This is not necessarily a requirement
for a mobile agent platform. A common design for
it. 15 10 map the operations that require message or
agent delivery on data transfers taking place on dif-
ferent data streams, typically through sockets or some
higher-level mechanism like remote method invocation.
In the case where these operations insist on the same
destination, the FIFQ property may not be preserved,
since a data item sent first through one stream can be



received later than another data item through another
stream, depending on the architecture of the under-
lying runtime support. Nevertheless, the FIFO prop-
erty can be implemented straightforwardly in a mobile
agent server by associating a queue that contains mes-
sages and agents that must be transmitted to a remote
server. This way, the FIFO property is structurally
enforced by the server architecture, although this may
require non-trivial modifications in the case of an al-
ready existing platform.

Qur mechanism assumes that the runtime support
maintains some state about the network graph and the
messages being exchanged. In the most static form
of our solution, this state is constituted only by the
last message received, which must be kept until de-
livered. In a system with bidirectional channels, this
means for a time equal to the maximum round trip de-
lay between the node and ifs neighbors. On the other
hand, in the most dynamic variant of our algorithm,
each server must maintain a vector of identifiers for
the active (outgoing and incoming) channels and, for
each channel, a vector containing the messages possi-
bly being buffered. The size of the latter is unbounded,
but each message must be kept in the vector only for
a time proportional to the diameter of the network.

4.2. Applicability

It is evident that the algorithm presented in this
worle generates a considerable overall traffic overhead
if compared, for instance, to a forwarding scheme. This
is a consequence of the fact that our technique involves
contacting the nodes in the network that have been
visited by at least one agent in order to find the mes-
sage recipient, and thus generates an amount of traffic
that is comparable to a broadcast. Unfortunately, this
price must be paid when both guaranteed delivery and
frequent, unconstrained agent movement are part of
the application requirements, since simpler and more
lightweight schemes do not provide these guarantees,
as discussed in Section 2. Hence, the question whether
the communication mechanism we propose is a useful
addition to mobile agent platforms will be ultimately
answered by practical mobile agent applications, which
are still largely missing and will determine the require-
ments for communication.

In any case, we do not expect our mechanism to
be the only one provided by the runtime support. To
make an analogy, one does not shout when the party is
one step away; one resorts to shouting under the excep-
tional condition that the party is not available, or not
where expected to be. Qur algorithm provides a clever
way to shout (i.e., to broadcast a message) with pre-
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cise guarantees and minimal constraints, and should
be used only when conventional mechanisms are not
applicable. Hence, the runtime support should leave
to the programmer the opportunity to choose different
communication mechanisms, and even different vari-
ants of our algorithm. For instance, the fully dynamic
solution described in Section 3.3 is not necessarily the
most convenient in all situations. In a network con-
figuration such as the one depicted in Figure 2, where
the graph is structured in clusters of nodes, the best
tradeoff is probably achieved by using our fully dy-
namic algorithm only for the “gateway” servers that
sit at the border of each cluster, and a static algorithm
within each cluster, thus leveraging off of the knowl-
edge of the internal network configuration. Along the
same lines, it should also be possible to exploit hybrid
schemes. For instance, in the common case where the
receipt of a message triggers a reply, bandwidth con-
sumption can be reduced by encoding the reply desti-
nation in the initial message and using a conventional
mechanism, as long as the sending agent is willing to
remain stationary until the reply is received.

4.3. Enhancements and Future Work

In this work, we argued that the problem of reli-
able message delivery is inherently complicated by the
presence of mobility even in the absence of faults in
the links or nodes involved in the communication. In
practice, however, these faults do happen and, depend-
ing on the execution context, they can be relevant. If
this is the case, the technigues traditionally proposed
for coping with faults in a distributed snapshot can be
applied to our mechanism. For instance, a simple tech-
nique consists of periodically checkpointing the state of
the system, recording the state of links, keeping track of
the last snapshot, and dumping an image of the agents
hosted. (Many systems already provide checkpointing
mechanisms for mobile agents.) This information can
be used to reconcile the state of the faulty node with
the neighbors after a fault has occurred.

A related issue is the ability not only to dynami-
cally add nodes to the graph, but also to remove them.
This could model faults, or model the fact that a given
node is no longer willing to host agents, e.g., because
the mobile agent support has been intentionally shut
down. A simple solution would consist of “short cir-
cuiting” the node to be removed, by setting the in-
coming channels of its outgoing neighbors to point to
the node’s incoming neighbors. However, this involves
running a distributed transaction and thus enforces an
undesirable level of complexity. In this work, we dis-
regarded the problem for a couple of reasons. First of



all, while it is evident that the ability of adding nodes
dynamically enables a better use of the communication
resources by limiting communication to the areas effec-
tively visited by agents, it is unclear whether a similar
gain is obtained in the case of removing nodes, espe-
cially considering the aforementioned implementation
complexity. Second, very few mobile agent systems
provide the ability to start and stop dynamically the
mobile agent runtime support: most of them assume
that the runtime is started offline and operates until
the mobile agent application terminates.

We are currently designing and implementing a com-
munication package based on the algorithm described
in this paper, to be included in the xCODE [15] mo-
bile code toolkit. The goal of this activity is to gain
2 hands-on understanding of the design and imple-
mentation issues concerned with the realization of our
scheme, and to provide the basis for a precise quan-
titative characterization of our approach, especially in
comparison with traditional ones.

5. Conclusions

In this work we point out how the sheer presence
of mobility makes the problem of guaranteeing the
delivery of a message to a mobile agent inherently
difficult, even in absence of faults in the network. To
our knowiedge, this problem has not been addressed
by the research community. Currently available maobile
agent systems employ techniques that either de not
provide guarantees, or overly constrain the movement
or connectivity of mobile agents, thus to some extent
reducing their usefulness. In this work, we propose
a solution based on the concept of a distributed
snapshot., Several extensions of the basic idea allow
us to cope with different levels of dynamicity and,
along the way, provide a straightforward way to im-
plement group communication for mobile agents. QOur
communication mechanism is meant to complement
those currently provided by mobile agent systems,
thus allowing the programmer to trade reliability for
bandwith consumption. Fuorther work will address
fault tolerance and exploit an implementation of our
mechanism to evaluate its tradeoffs against those of
conventional mechanisms.
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