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Wireless Sensor-Actuator Networks (WSANs) enable cost-effective communication for In-

dustrial Internet of Things (IIoT). To achieve predictability and reliability demanded by

industrial applications, industrial wireless standards (e.g., WirelessHART) incorporate a set

of unique features such as a centralized management architecture, Time Slotted Channel

Hopping (TSCH), and conservative channel selection. However, those features also incur

significant degradation in performance, efficiency, and agility. To overcome these key limita-

tions of existing industrial wireless technologies, this thesis work develops and empirically

evaluates a suite of novel network protocols and algorithms.

The primary contributions of this thesis are four-fold. (1) We first build an experimental

testbed realizing key features of the WirelessHART protocol stack, and perform a series of

empirical studies to uncover the limitations and potential improvements of existing network

features. (2) We then investigate the impacts of the industrial WSAN protocol’s channel

selection mechanism on routing and real-time performance, and present new channel and link

selection strategies that improve route diversity and real-time performance. (3) To further

enhance performance, we propose and design conservative channel reuse, a novel approach

to support concurrent transmissions in a same wireless channel while maintaining a high

xi



degree of reliability. (4) Lastly, to address the limitation of the centralized architecture in

handling network dynamics, we develop REACT, a Reliable, Efficient, and Adaptive Control

Plane for centralized network management. REACT is designed to reduce the latency and

energy cost of network reconfiguration by incorporating a reconfiguration planner to reduce

a rescheduling cost, and an update engine providing efficient and reliable mechanisms to

support schedule reconfiguration. All the network protocols and algorithms developed in this

thesis have been empirically evaluated on the wireless testbed. This thesis represents a step

toward next-generation IIoT for industrial automation that demands high-performance and

agile wireless communication.
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Chapter 1

Introduction

As the industrial Internet of Things (IoT) is emerging, Wireless Sensor-Actuator Networks

(WSANs) have been increasingly recognized as an important technology for process automation.

Contrary to wired networks, which are often expensive to install and maintain, WSANs

have been adopted by process industries because of their benefits in reducing cost for the

deployment and maintenance of process monitoring and control systems [3], and their flexibility

to accommodate new production process requirements. IEEE 802.15.4 based WSANs provide

low-data rate and low-cost communication, which is suitable for industrial application where

energy consumption and costs are crucial.

In contrast to the traditional Wireless Sensor Networks (WSNs) that require only best effort

service, to preserve stability and guarantee control performance [69], industrial WSANs are

inherently subject to real-time and reliability requirements while operating in harsh industrial

environment,i.e., sensor data or control commands must be delivered to its destination by

its deadline. Failing to meet such requirements may result in safety threats, production

inefficiency, and financial loss.
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While there are multiple industrial IoT standards such as WirelessHART [83], ISA100 [33],

WINA [82], IETF 6TiSCH [31], our work focuses on the WirelessHART standard, a leading

wireless standard for industrial process applications widely adopted in the industry [21, 36,

68]. To address the critical demands for timely and reliable communication, WirelessHART

[83] incorporates a set of distinctive design choices. For instance, the network utilizes a Time

Slotted Channel Hopping MAC (TSCH) [30], a TDMA-based protocol with other features

such as channel hopping and network-wide blacklisting. TSCH can offer deterministic and

collision-free communication. Moreover, WirelessHART employs the centralized management

architecture that guarantees predictable communication.

Industrial WSANs have been gaining interest in the research community in recent years.

Significant previous research focused on network algorithms and theoretical analyses for

the WirelessHART network. These efforts aimed to improve the performance of different

aspects of the WirelessHART protocol such as routing algorithms, scheduling algorithms,

delay analysis, rate selection, etc. Comprehensive reviews of these works can be found in [42]

and [49]. However, these works are mostly based on theoretical analyses and simulation

studies. Conversely, there has been earlier work that implemented and evaluated custom

real-time and TDMA-based WSN protocols experimentally [4, 50, 55].

A more recent direction is to exploit IP-based communication in industrial WSNs. As opposed

to the WirelessHART protocol, 6TiSCH runs IPv6 over a TSCH network. An open-source

implementation of 6TiSCH has been explored in [81]. 6TiSCH supports both centralized

and distributed scheduling solutions. Previous research proposed scheduling algorithms [53,

77] for centralized 6TiSCH network, while several efforts [1, 2, 20] developed decentralized

scheduling schemes to support network adaptation. Although, these decentralized approaches

enhances network adaptivity, they are designed for best effort service. Alternatively, a Glossy-

based network [23] offering efficient and fast network flooding by exploiting constructive
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interference and capture effect, provides a promising solution to support real-time and reliable

communication [90]. On the contrary, our work is tailored for industrial applications that

demand reliable and real-time communication over the centralized TSCH-based networks,

which is adopted by the WirelessHART standard.

Although different aspects of industrial WSANs have been studied in the aforementioned

efforts, significant improvements in the performance of industrial WSANs are still needed to

meet reliability and timing requirements. Our research aims to develop and experimentally

evaluate new network protocols and algorithms to improve the performance, efficiency, and

agility of industrial WSANs. The following is a summary of our contributions:

1. WSAN Testbed: To enable experimental studies and evaluations, we develop an

experimental testbed realizing the key features of the WirelessHART protocol including

(a) centralized network manager software supporting route and schedule generation and

update, and (b) a protocol stack that implements WirelessHART’s network features

(e.g., TSCH MAC and and source/graph routings), and provides the capability to

support network reconfiguration.

2. Channel Selection: To ensure reliability, a WSAN only uses links that are reliable in

all non-blacklisted channels for transmissions. Hence, channel selection can impact the

network topology, and as a result, using more channels degrades the routing performance.

Therefore, we design channel and link selection algorithms that automated the channel

selection process to balance channel diversity and route diversity, thereby enhancing

route generation while maintaining reliability.

3. Conservative Channel Reuse: Because channel reuse is not allowed in a WSAN, the

capacity of a WSAN is limited. To enhance real-time performance while maintaining

reliability, we develop a conservative channel reuse approach that introduces channel

3



reuse only when necessary to meet the timing constraints of the WSAN traffic. The

conservative approach is in contrast to the traditional channel reuse approach that is

designed to maximize channel reuse. We also develop a policy to detect links with

poor reliability due to channel reuse, so that these links can be rescheduled to enhance

WSAN reliability.

4. Adaptive Control Plane: While centralized network management architecture pro-

vides deterministic and reliable communication, it impairs the network’s ability to adapt

in response to changing wireless environment. Hence, we propose REACT, a reliable,

efficient, and adaptive control plane for WirelessHART to support network adaptation.

To reduce the network reconfiguration cost, REACT features: (a) a reconfiguration

planner offering flexible scheduling and routing algorithms and reactive update policies

to reduce rescheduling cost, and (b) an update Engine providing efficient and reliable

mechanisms to report link failures, and to disseminate updated schedules.

The rest of the dissertation is organized as follows. Chapter 2 introduces the background

of the WirelessHART network and flow models. Chapter 3 describes our WirelessHART

testbed implementation and empirical study. Chapter 4 presents our channel selection policies.

Chapter 5 discusses our conservative channel reuse approach. Chapter 6 presents our efficient

control-plane to support network adaptation, and Chapter 7 concludes this dissertation.
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Chapter 2

Background

In this chapter, we describe the WirelessHART network and flow models.

2.1 Network Model

Our work considers WirelessHART, a widely adopted industrial wireless standard for process

monitoring and control applications. Figure 2.1 shows the architecture of the WirelessHART

network. The network comprises multiple field devices (sensors or actuators) forming a

Gateway
WSAN

Network
Manager

Security
Manager

Host
Applications

Access
Points

Figure 2.1: WirelessHART network architecture.
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multi-hop wireless mesh network. Multiple access points connect the wireless network to

the gateway and the managers. The gateway enables communication between wireless field

devices and host applications (e.g, process controller). The network manager manages network

operations, and the security manager handles security information and keys. To meet the

stringent requirements on reliability and predictable real-time performance, WirelessHART

adopts a specific sets of features including:

Centralized Manager: A WirelessHART network is supervised by a centralized network

manager, which is responsible for managing and optimizing network operations. In particular,

the network manager collects topology information, generates routes, and constructs a global

schedule, which is then disseminates to field devices. The centralized approach enhances

visibility and predictability of the network operations.

TSCH MAC: Time Slotted Channel Hopping technology has been implemented as a

MAC protocol, and was introduced as part of the IEEE 802.15.4e standard in 2012 for the

industrial process control and automation. WirelessHART employs the TSCH MAC that

offers deterministic and collision-free communication. All nodes in a TSCH network are time

synchronized, and time is divided into 10 ms time slots, which are sufficient to accommodate

a packet transmission and its acknowledgment (ACK). A time slot can either be dedicated

or shared. In a dedicated slot, only one transmission is allowed in each channel while in a

shared slot, two senders compete for the channel for transmitting to a common receiver in a

CSMA/CA fashion. TSCH operates on the 2.4 GHz ISM band and can use up to 16 channels

defined in the IEEE 802.15.4 standard. To mitigate the impact of interference and enhance

channel diversity, TSCH adopts a channel hopping mechanism where each device switches to

a new channel in every slot.
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A B
Source	
 AP1	


(a) Source Routing

A B
Source	


AP1	
C D

E
AP2	


(b) Graph Routing

Figure 2.2: Source and graph routing (solid lines represent primary paths and dashed lines
represent backup paths).

Channel Blacklisting: To avoid using channels with poor quality, WirelessHART adopts a

network-wide channel blacklisting approach that allows the network operator to manually

blacklist channels with observed poor performance. This network-wide blacklisting policy

ensures all channels used for communication are highly reliable and that all links used for

transmissions use this same set of channels.

Source and Graph Routing: WirelessHART supports two routing approaches, named

source routing and graph routing. Source routing provides a single route for each data flow

from a source to a destination node. Graph routing consists of a single primary path and a

backup path for each node on a primary path. As shown in Figure 2.2, for source routing, to

send a packet to an access point AP1, a source node must transmit a packet through nodes A

and B. Under graph routing, the packet may take backup routes to reach the access points if

links on a primary path fail to deliver a packet. Compared to source routing, graph routing

offers a higher degree of reliability through route diversity and transmission redundancy.

2.2 Flow Model

A WSAN is shared by a set of end-to-end flows F = {F1, F2, ...Fn}. For each flow Fi ∈ F ,

a source node Si releases a packet at a periodic interval Pi. The packet must be delivered

7



to the destination Yi through a route φi within the deadline Di where Di ≤ Pi. A route φi

consists of a sequence of links li1, li2, ...lik. A transmission over a link lij is denoted as tij.

Therefore, each flow Fi is characterized by < Si, Yi, Di, Pi, φi >. A flow Fi is schedulable if

all of its packets are scheduled to meet their deadlines. A set of flows F is schedulable only if

all flows in F are schedulable.
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Chapter 3

Implementation and Empirical Studies of

Industrial Wireless Sensor-Actuator

Network Protocols

While industrial WSANs have received increasing attention in the research community recently,

most published results to date have focused on the theoretical aspects and were evaluated

based on simulations. There is a critical need for experimental research on this important

class of WSANs. We developed an experimental testbed by implementing several key network

protocols of WirelessHART, an open standard for WSANs that has been widely adopted in the

process industries including TSCH at the MAC layer and reliable graph routing supporting

path redundancy. We then performed a series of empirical studies showing that graph routing

leads to significant improvement over source routing in terms of worst-case reliability, but at

the cost of longer latency and higher energy consumption. It is therefore important to employ

graph routing algorithms specifically designed to optimize latency and energy efficiency. Our

9



studies also suggest that channel hopping can mitigate the burstiness of transmission failures;

a larger channel distance can reduce consecutive transmission failures over links sharing a

common receiver. Based on these insights, we developed a novel channel hopping algorithm

that utilizes far away channels for transmissions. Furthermore, it prevents links sharing the

same destination from using channels with strong correlations. Our experimental results

demonstrate that our algorithm can significantly improve network reliability and energy

efficiency 1.

3.1 Introduction

Recently, there has been increasing interest in developing new network algorithms and analysis

to support industrial applications. However, there remains a critical need for experimental

testbeds to validate and evaluate network research on industrial WSANs. Without sufficient

experimental evaluation, industry has shown a marked reluctance to embrace new solutions.

To meet the need for experimental research on WSANs, we have built an experimental testbed

for studying and evaluating WSAN protocols. Our testbed supports a suite of key network

protocols specific to the WirelessHART standard and a set of tools for managing wireless

experiments. We then present a comparative study of the two routing approaches adopted

by WirelessHART, namely source routing and graph routing, and an empirical study on the

impact of channel hopping on the burstiness of transmission failures. Our studies have lead

to two major insights on the development of resilient industrial WSANs:
1The contents in this chapter have appeared in:

M. Sha*, D. Gunatilaka*, C. Wu and C. Lu, Implementation and Experimentation of Industrial Wireless
Sensor-Actuator Network Protocols, EWSN, February 2015. (*co-first author)
M. Sha*, D. Gunatilaka*, C. Wu and C. Lu, Empirical Study and Enhancements of Industrial Wireless
Sensor-Actuator Network Protocols, IEEE Internet of Things Journal, 4(3): 696-704, June 2017. (*co-first
author)
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• Graph routing leads to significant improvement over source routing in term of worst-case

reliability, at the cost of longer latency and higher energy consumption. It is therefore

important to employ graph routing algorithms specifically designed to optimize latency

and energy efficiency.

• Channel hopping can mitigate the burstiness of transmission failures; a larger channel

distance can reduce consecutive transmission failures over links sharing a common

receiver.

Based on these insights, we developed a novel channel hopping algorithm for graph routing

that causes senders to utilize far-away channels between consecutive transmissions over the

same link. It further prevents links sharing the same destination from using channels with

strong correlations. Our experimental results demonstrate that our algorithm can significantly

improve network reliability and energy efficiency.

The rest of the chapter is organized as follows. Section 3.2 reviews related work. Section 3.3.3

describes our implementation of the WirelessHART protocol. Section 3.4 presents our

empirical studies. Section 3.5 presents and evaluates our channel hopping algorithm. and

Section 3.6 concludes the chapter.

3.2 Related Work

There has been recent work that implemented and evaluated real-time WSN protocols

experimentally. Recently, O’Donovan et al. [50] developed the GINSENG system, which uses

wireless sensor networks to support mission-critical applications in industrial environments

and shared their valuable experience during real-world deployments. Munir et al. [46] designed

a scheduling algorithm that produces latency bounds of the real-time periodic streams and

11



accounts for both link bursts and interference. Pottner et al. [55] designed a scheduling

algorithm to meet application requirements in terms of data delivery latency, reliability,

and transmission power. While valuable insights can be drawn from the aforementioned

efforts, the novelty of our work lies in its focus on key aspects of the WirelessHART standard,

such as graph routing, that were not studied in earlier works. Our results are therefore

complementary to earlier findings on other aspects of real-time WSANs.

There have been recent empirical studies that investigated the burstiness of transmission

failures and 802.15.4 channel performance in various wireless environments and network

settings. Srinivasan el al. [71, 72, 73] performed a series of link studies to quantify the

burstiness of intra-link and inter-link performance on their office testbed. Sha et al. [65]

performed a spectrum study in the 2.4 GHz band as well as a link study of IEEE 802.15.4

channels in residential environments. Hauer et al. [26] conducted a multi-channel measurement

of Body Area Networks. Ortiz et al. [52] evaluated the multi-channel behavior of 802.15.4

networks in a machine room, a computer room, and an office testbed and found path diversity

to be an effective strategy to ensure reliability. In contrast to these studies, our own study is

specific to WirelessHART’s key mechanisms such as graph routing and sequential slot based

channel hopping. Therefore, our results are complementary to these earlier findings.

In recent years, there has been increasing interest in using channel hopping to enhance network

reliability. Navda et al. [47] proposed a rapid channel hopping scheme to protect a network

from jamming attacks. Le et al. [37] designed a control theory approach to dynamically

allocate channels in a distributed manner. Sha et al. [64] designed an opportunistic channel

hopping algorithm to avoid jammed channels. Industry standards such as Bluetooth’s AFH [7]

leveraged constant hopping in a pseudorandom fashion across channels to avoid persistent

interference. In contrast to these works, our channel hopping algorithm CCS is designed to

improve the reliability and energy efficiency of WirelessHART networks with several features
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that distinguish itself from existing channel hopping approaches in WirelessHART and other

networks. First, CCS enforces a specified channel distance between transmissions, thereby

avoiding adjacent channels with strong correlations. Second, CCS combines link-based

and receiver-based channel hopping, further enhancing its effectiveness in reducing bursty

transmission failures. Finally, CCS is specifically tailored for WirelessHART protocols such

as graph routing and per-slot channel hopping.

While our study focuses on WirelessHART, alternative industrial WSAN standards exist

such as ISA-100.11a [33], WIA-PA [88], and the recently approved IEEE 802.15.4e MAC

enhancement standard [29]. These standards share many common approaches and mechanisms.

For example, IEEE 802.15.4e specifies a time-slotted channel hopping mode which combines

time slotted access, multi-channel communication, and channel hopping to improve reliability

and mitigate the effects of interference and multipath fading. Our insights and proposed

algorithm therefore may be generalized to influence the implementation of WSANs based on

these standards.

3.3 Implementation of a WirelessHART WSAN Testbed

In this section, we first describe our testbed architecture, then introduce our system architec-

ture, and lastly present our WirelessHART protocol stack implementation.

3.3.1 Testbed Architecture

our WSAN testbed includes a four-tier hardware architecture that consists of field devices,

microservers, a server, and clients. The field devices in the testbed are 55 TelosB motes, a

widely used wireless embedded platform integrating a TI MSP430 microcontroller and a TI

CC2420 radio compatible with the IEEE 802.15.4 standard. A subset of the field devices
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Figure 3.1: Testbed software architecture.

can be designated as access points in an experiment. The field devices and access points

form a multi-hop wireless mesh network running WSAN protocols. A key capability of our

testbed is a wired backplane network that can be used for managing wireless experiments

and measurements without interfering with wireless communication. The backplane network

consists of USB cables connecting the field devices and microservers, which are in turn

connected to a server through the Ethernet. The microservers are responsible for forwarding

network management traffic between the field devices and the server. The server executes

network management processes, and serves as a gateway and runs the network manager of

the WSAN. The clients are regular computers that users employ to manage their wireless

experiments and collect data from the experiments through the server and the backbone

network.

3.3.2 Testbed Software Architecture

Figure 3.1 depicts the software architecture for our WSAN testbed. Our WSAN system

comprises the following components.
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• Network manager: The network manager resides on the server. It implements a route

and a schedule generators. The route generator is responsible for creating source

routes or graph routes based on the collected network topology. We use Dijkstra’s

shortest-path algorithm to generate routes for source routing and follow the algorithm

proposed in [25] to generate reliable graphs. The scheduler uses the rate monotonic

scheduling algorithm [39] to construct transmission schedules.

• Protocol stack: The protocol stack runs on TinyOS 2.1.2 [78] and TelosB motes [76].

It is built on top of the IEEE 802.15.4 PHY layer, and consists of a TSCH MAC, a

TDMA-based MAC with channel hopping, and a forwarding layer that forwards packets

based on routes constructed by the network manager.

• Experimental management tools: The managements tools consist of (a) a link stat

collection module running on a mote responsible for collecting link statistics, (b) an

experiment controller responsible for managing wireless experiments (e.g., initiating

topology collection, distributing a schedule, gathering experimental data), (c) a testbed

manager allowing a user to install/erase TinyOS program onto/from motes and to

initiate experiments.

These are the steps to run a testbed experiment. A user first installs the TinyOS program

onto the mote, and starts the experiment controller. The controller issues commands to

nodes to collect link statistics in all 16 channels. Motes report this topology information

back to the network manager. The manager uses this information to compute routes for a

flow set, and construct a global schedule, which is then disseminated to the motes. During

an experiment, statistics regarding network behaviors are collected to the server and stored

in the database. We note that the network management traffic including link statistics, a
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transmission schedule, and experimental data are transferred to/from the network manager

through the wired back plane.

3.3.3 Protocol Stack

Our protocol stack adopts the CC2420x radio driver [12] as the radio core, which provides an

open-source implementation of IEEE 802.15.4 physical layer in TinyOS operating over TI

CC2420 radios. The CC2420x radio stack takes care of the low-level details of transmitting and

receiving packets through the radio hardware. On top of the radio core, we have developed a

TSCH MAC protocol, RT-MAC, which implements the key features of WirelessHART’s MAC

protocol. As shown in Figure 3.2, RT-MAC divides the time into 10 ms slots following the

WirelessHART standards and reserves a Sync window (1.5 s) in every 1650 slots. Flooding

Time Synchronization Protocol (FTSP) [44] is executed during the Sync window to synchronize

the clocks of all wireless devices over the entire network. Our micro-benchmark experiment

shows that an FTSP’s time stamp packet can finish traversing of entire 55-node testbed

within 500 ms. Therefore, RT-MAC configures the FTSP to flood three time stamps with

500 ms intervals over the network in each Sync window to adjust the local clocks of all

devices to a global time source, which is the local time of the mote attached to the network

manager. The time window following the Sync window consists of recurring superframes (a
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series of time slots) and idle intervals. We reserve 2 ms of guard time in the beginning of

each slot to accommodate the clock synchronization error and channel switching delay, since

our micro-benchmark experiments show that more than 95% of field devices over the entire

network can be synchronized with errors less than 2 ms, and channel switching takes only

a few microseconds to write to the registers. The rest of the field devices may disconnect

from the network due to larger clock synchronization errors, but they will be reconnected in

the next Sync window after they catch the new time stamps generated by FTSP. RT-MAC

supports both dedicated and shared slots. In a dedicated slot, only one sender is allowed

to transmit, and the packet transmission occurs immediately after the guard time. In a

shared slot, more than one sender can attempt to transmit, and these senders contend for

the channel using CSMA/CA.

3.4 Empirical Study

We conduct our empirical studies on the WUSTL testbed. Following the practice of industrial

deployment, the routing algorithms used in our study consider only reliable links with PRR

higher than 80%. We use 8 data flows in our experiments. We run our experiments such

that each flow can deliver at least 500 packets from its source to its destination. Figure 3.3

shows the network topology along, a set of flows used in our study, and locations of access

points and field devices. The bigger yellow circles denote the access points that communicate

with the network manager running on the server through the wired backbone network. The

other circles and squares denote the field devices. The source and destination of a flow are

represented as a circle and a square, respectively. The pair of source and destination of a

same flow uses the same color. The period of each flow is randomly selected from the range of

20∼7 seconds, which falls within the common range of periods used in process industries. We
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Figure 3.3: Testbed topology, a set of flows used in the experiment, and locations of access
points, and sources and destinations of flows.

Figure 3.4: Box plot of the PDR of source routing and graph routing in the clean, noisy, and
stress testing environments. Vertical lines delineate three different network configurations.

also repeat our experiments with two other network configurations by varying the location of

access points, sources, and destinations.

3.4.1 Experimentation of Source and Graph Routing

We conduct a comparative study of the two alternative routing approaches adopted by

WirelessHART, namely source routing and graph routing. Specifically, we investigate the

tradeoff among reliability, latency, and energy consumption under the different routing

approaches. We run two sets of experiments, one with the source routing and one with the
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Figure 3.5: Box plot of the normalized latency of source routing and graph routing of each
flow under graph routing over that under source routing.

Figure 3.6: Box plot of the normalized energy consumption of source routing and graph
routing of each flow under graph routing over that under source routing.
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graph routing. We repeat the experiments under a clean environment, a noisy environment,

and a stress testing environments

1. Clean: we blacklist the four 802.15.4 channels overlapping with our campus WiFi

network and run the experiments on the remaining 802.15.4 channels.

2. Noisy: we run the experiments by configuring the network to use channels 16 to 19,

which overlap with our campus WiFi network. Note that Co-existence of WirelessHART

devices and WiFi is common in industrial deployments since WiFi is often used as

backhauls to connect multiple WSANs.

3. Stress testing: we run the experiments with channels 16 to 19 under controlled interfer-

ence, in the form of a laptop and an access point generating 1 Mbps UDP traffic over

WiFi channel 6, which overlaps with 802.15.4 channels 16 to 19.

We use the packet delivery rate (PDR) as the metric for network reliability. The PDR of a

flow is defined as the percentage of packets that are successfully delivered to their destination.

Figure 3.4 compares the network reliability under source routing and graph routing in the

three environments. As shown in Figure 3.4, under the first network configuration, compared

to source routing, graph routing improves the median PDR by a margin of 1.0% (from 0.99 to

1.0), 15.9% (from 0.82 to 0.95), and 21.4% (from 0.70 to 0.85) in the clean, noisy, and stress

testing environments, respectively. Graph routing shows similar improvement over source

routing under the other two network configurations. More importantly, graph routing delivers

a significant improvement in min PDR and achieves a smaller variation of PDR than source

routing, which represents a significant advantage in industrial applications that demand

predictable performance. The improvements in min PDR are 35.5% and 63.5% in noisy and

stress testing, respectively. This result shows that graph routing is indeed more resilient to

interference due to route diversity. However, as shown in Figure 3.5, route diversity incurs a
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cost in term of latency, with graph routing suffering an average of 80% increase in end-to-end

latency. We also estimate the energy consumption based on timestamps of radio activities and

the radio’s power consumption in each state. As Figure 3.6 shows, graph routing consumes

an average of 130% more energy than source routing.

Observation 1: Graph routing leads to significant improvement over source routing in term

of worst-case reliability, at the cost of longer latency and higher energy consumption. It

is therefore important to employ graph routing algorithms specifically designed to optimize

latency and energy efficiency.

3.4.2 Impact of Channel Hopping on Burstiness of Transmission

Failures

As shown in previous studies [26, 46, 52, 65, 71, 72, 73] (and confirmed on our testbed), the

burstiness of transmission failures significantly compromises the reliability and energy efficiency

of WSANs. WirelessHART mitigates this issue by adopting spectrum diversity through

sequential channel hopping in each time slot. Notably, while burstiness of transmissions in a

same channel have been studied extensively, there have been few empirical studies of burstiness

under channel hopping. To explore the impact of channel hopping, we run experiments on

multiple links using 16 IEEE 802.15.4 channels under controlled interference generated by a

WiFi access point and a laptop. We run the experiments with twenty different pairs of senders

and receivers. In each run, each sender transmits 500 packets. If a transmission fails, a sender

hops to the next channel and retransmits a packet. Previous study [65] showed that adjacent

channels may suffer from bursty transmission failures due to significant correlation between

adjacent channels. We hypothesize that increasing hopping distance can also improve the
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Figure 3.7: CDF of percentage of a failed retransmission when first transmission attempt
fails.

reliability of WSANs. Therefore, we conduct another study by increasing to 5 the distance

between the channels used for a transmission and its retransmission.

Figure 3.7 shows the cumulative distribution function (CDF) of the failure ratio of retrans-

missions following failed transmissions. Under sequential channel hopping, 33.5% of links

have a 50% retransmission failure, while under a channel hopping distance of 5, only 13.5%

of links have a 50% retransmission failure. To recover from a failed transmission, hopping

over a large channel distance is more effective than sequential channel hopping. This may be

due to the fact that interference often span multiple adjacent channels. For example, WiFi

signals usually overlap with four channels of IEEE 802.15.4.

In addition to burstiness-of-transmission failures over a link, we also observe that links sharing

the same receiver can also suffer from strong correlations of transmission failures. We apply

channel hopping to links with a common receiver. For each setup, we pick 3 links that involve

the same receiver. Each sender takes turns sending out a packet and switch to a channel
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Figure 3.8: CDF of percentage of two consecutive transmission failures over links that share
a common receiver.

that is one channel (sequential) or five channels away from the channel used by the previous

sender. Each experiment lasts 500 rounds.

Figure 3.8 presents the CDF of the percentage of two consecutive transmission failures over

links that share a common receiver. Again, increasing the channel distance used for channel

hopping effectively reduces consecutive failures over links to a same receiver, and therefore

mitigates the correlations of links to the same receiver.

Observation 2: A larger channel distance can reduce consecutive transmission failures over

links sharing a common receiver. We have shown the limitation of sequential channel hopping

over either the same link or links sharing a receiver. In practice, the effect of channel distance

may vary in different wireless environments depending on the source of interference and on

wireless conditions. The channel distance therefore should be treated as a tunable parameter

that needs to be selected based on field testing and knowledge about existing interference

and wireless environments.
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3.5 Enhanced Channel Hopping for WirelessHART

In this section, we present and evaluate Configurable Channel Stride (CCS), a novel channel

hopping algorithm designed to improve the reliability and energy efficiency of WirelessHART

networks. CCS has several salient features that distinguish itself from existing channel

hopping approaches in WirelessHART and other networks. First, CCS enforces a specified

channel distance between transmissions, thereby avoiding adjacent channels with strong

correlations. Second, CCS combines link-based and receiver-based channel hopping, further

enhancing its effectiveness in reducing bursty transmission failures. Finally, CCS is specifically

tailored for WirelessHART protocols such as graph routing and per-slot channel hopping.

3.5.1 The Configurable Channel Stride Algorithm

In our empirical study in Section 3.4.2, we observed that consecutive retransmissions over a

same link on adjacent channels cannot effectively eliminate transmission failures on primary

routing paths due to strong channel correlation. We also observed a large number of

consecutive failures when multiple senders transmit packets back to back using adjacent

channels to a shared destination. To mitigates both per-link and per-receiver burstiness of

failures, our algorithm combines two channel hopping approaches: (1) link-based channel

hopping for links located on primary routing paths and (2) receiver-based channel hopping

for links sharing the same destination.

Algorithm 1 shows the pseudo-code of our CCS algorithm. The input of our algorithm is

both a desired channel hopping distance and a transmission schedule for the superframe,

which is generated by the routing and scheduling algorithm, and which also specifies a set of

transmissions scheduled for each time slot. Within a slot, transmissions are ordered according
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Algorithm 1: Configurable Channel Stride
1 h: target channel distance per channel hop;
2 txij: the jth transmission assigned to time slot i;
3 channelij: the channel assigned to txij;
4 flowij: the flow that txij belongs to;
5 destij: the receiver node of txij;
6 channel1st_tx: the channel assigned to the first transmission attempt;
7 ChannelPooli: the set of available channels for time slot i;
8 for each time slot i within a superframe S do
9 for each transmission txij scheduled in the time slot i do

10 if txij is on a primary path then
11 if txij is the first attempt for a transmission then
12 channelij ← first channel in ChannelPooli;
13 channel1st_tx ← channelij;
14 else /* txij is a retransmission */
15 if there exists a channel c in ChannelPooli that is at least h hop away from

channel1st_tx then
16 channelij ← c;
17 else
18 channelij ← channel in ChannelPooli with a maximum channel distance

from channel1st_tx;

19 else /* txij is on a backup path */
20 if there is no prior transmission to destij from flowij then
21 channelij ← first channel in ChannelPooli;
22 else
23 if there exists a channel c in ChannelPooli that is at least h hop away from

flowij’s last transmission to destij then
24 channelij ← c;
25 else
26 channelij ← channel in ChannelPooli with a maximum channel distance

from flowij’s last transmission to destij;

27 Remove channelij from ChannelPooli;
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to their flow priority. For instance, txij denotes the transmission j scheduled in slot i. destij

denotes the receiver of txij . flowij denotes the flow txij belongs to. ChannelPooli denotes a

channel pool including all current available channels that can be scheduled in slot i. The

output of the algorithm is the channel assigned to each txij, denoted by channelij.

Our channel-hopping algorithm separates the channel used for a packet transmission from the

one used for its retransmission such that the distance between them is at least h hop away.

For instance, if the transmission txij is the second transmission attempt (retransmission) over

a link located on a primary path, a channel is chosen from the ChannelPooli such that it is

at least h hop away from channel1st_tx, where channel1st_tx is a channel assigned to the first

transmission attempt over this link. Our receiver-based channel hopping requires that when

a transmission txij is on a backup path and there exists a prior transmission of flowij to a

receiving node destij, then a selected channel must be at least h hop away from the channel

used by flowij’s last transmission to destij. In both cases, if such a channel does not exist,

we assign txij to use a channel in a ChannelPooli with a maximum spectral distance instead.

3.5.2 Evaluation

We ran our experiments under three different network configurations by varying the location

of access points, sources, and destinations. Under each configuration, we performed four

experimental runs: a first run (sequential) using the sequential channel hopping approach

suggested by the WirelessHART standard [83], a second run (link-based) using our algorithm

with only link-based channel hopping enabled, a third run (receiver-based) enabling only our

receiver-based channel hopping approach, and a fourth run (link+receiver-based) enabling

both our channel hopping approaches. We performed the experiments on our testbed under

controlled interference (see stress testing setup in Section 3.2), use all 16 channels in 2.4 GHz,

and set channel hopping distance h to 5. We note that our empirical study shows that the
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Figure 3.9: CDF of PDR under four channel assignment approaches.
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under four channel assignment approaches.
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probability of simultaneous channel failures drops off as channel distance increases to more

than 3.

Figure 3.9 shows the CDF of the PDR for different channel assignment approaches. Each data

point represents a percentage of flows with 100 generated packets that have a PDR less than or

equal to x. Under sequential channel hopping, only 55.2% of flows achieve a PDR larger than

90%. However, under receiver-based, link-based, and integration (link+receiver-based) policy,

69.5%, 81.9%, and 85.1% of flows, respectively, attain a PDR larger than 90%. These results

demonstrate the effectiveness of a larger channel hopping distance and the complementary

benefits of link-based and receiver-based channel hopping. Overall the full CCS algorithm

increased the number of reliable flows (with a PDR above 90% PDR) by 54% compared

to the sequential channel hopping approach. Furthermore, CCS drastically improved the

reliability of the flows, seeing the worst PDR among all the flows. Under sequential channel

hopping, the least reliable flow experienced a PDR of only 9%. In contrast, under the full

CCS algorithm, the least reliable flow still achieved a PDR of 75%. This shows that our

CCS policy benefits industrial applications that demand a high degree of reliability and

predictability.

Figure 3.10 presents a CDF of the number of transmission attempts per number of links

on a primary path. With the standard channel assignment, 44.8% of flows requires more

than 1.5X transmission attempts to achieve a desired PDR. Our receiver-based, link-based,

and integration approaches are proved to be more efficient, with 31.0%, 14.0%, and 8.6% of

flows requiring 1.5X transmission attempts, respectively. In a worst-case scenario, sequential,

receiver-based, link-based, and integration policies yield at most 3.3X, 3.0X, 2.1X, and 1.9X

transmission attempts. Hence, our channel hopping policy provides a notable reduction in

the number of transmission attempts of each flow to achieve a desired PDR, which indicates

better link quality and can result in lower energy consumption.
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3.6 Summary

Complementary to recent research on theoretical aspects of WSAN design, we have imple-

mented a suite of network protocols of the WirelessHART standard in TinyOS and TelosB

motes and then performed a series of empirical studies on WSAN protocol designs. We

further developed a novel channel hopping algorithm that prevents consecutive transmissions

from using channels with strong correlations on a common link or to a common receiver.

Experimental results demonstrate that our algorithm can significantly improve network

reliability and energy efficiency.
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Chapter 4

Impacts of Channel Selection on

Industrial Wireless Sensor-Actuator

Networks

To meet stringent reliability requirements of industrial applications, industrial standards such

as WirelessHART adopt TSCH as its MAC protocol. Since every link hops through all the

channels used in TSCH, a straightforward policy to ensure reliability is to retain a link in the

network topology only if it is reliable in all channels used. However, this policy has surprising

side effects. While using more channels may enhance reliability due to channel diversity, more

channels may also reduce the number of links and route diversity in the network topology.

We empirically analyze the impact of channel selection on network topology, routing, and

scheduling on a 52-node WSAN testbed. We observe inherent tradeoff between channel

diversity and route diversity in channel selection, where using an excessive number of channels

may negatively impact routing and scheduling. We propose novel channel and link selection
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strategies to improve route diversity and network schedulability. Experimental results on two

different testbeds show that our algorithms can drastically improve routing and scheduling of

industrial WSANs 2.

4.1 Introduction

WirelessHART adopts a network-wide channel blacklisting approach in which all devices in the

network blacklist the same set of channels. The network operator performs by measuring the

wireless channel’s condition and then manually blacklisting channels where a large number of

external wireless signals were observed during the measurement. Unfortunately, this manual

approach is labor intensive and error prone.

TSCH uses a channel hopping mechanism in which each link in the network hops through all

channels that are not blacklisted, i.e., the channels used. To ensure reliability, a straightforward

approach is to use only links that are highly reliable in all channels used for transmissions.

Hence, channel selection can significantly impact the network topology. As a result, while

using more channels can enhance reliability due to channel diversity and can increase the

number of transmissions that may potentially be scheduled in a time slot, more channels may

also lower route diversity in the network topology. Channel selection must therefore balance

channel diversity and route diversity in a WirelessHART network.

To our knowledge, this work represents the first systematic study on channel selection for

WirelessHART networks. We believe our findings and designs are applicable to other industrial

WSAN standards based on TSCH networks. The contributions of this work are three-fold:
2The contents in this chapter have appeared in: D. Gunatilaka, M. Sha and C. Lu, Impacts of Channel

Selection on Industrial Wireless Sensor-Actuator Networks, INFOCOM, May 2017.
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• We empirically study the impact of channel selection on network topology, routing,

and real-time performance based on the topology of a WSAN testbed. We find the

performance of a WirelessHART network does not improve monotonically with an

increasing number of channels used, due to the tradeoff between channel and route

diversity.

• Based on the insights gathered from our studies, we propose a channel selection algorithm

and a link selection strategy which can configure the network at deployment and/or

runtime in response to operating dynamics. Our algorithms take the guesswork out of

the channel blacklisting process through an automated selection of channels to balance

channel diversity and route diversity.

• We evaluate our channel selection algorithms using a wireless testbed running a Wire-

lessHART protocol stack. Experimental results show our channel selection algorithms

can significantly improve the network’s capability to meet the routing and scheduling

demands of data flows, while requiring only moderate processing time.

The remainder of the chapter is organized as follows. Section 4.2 reviews related work.

Section 4.3 presents our empirical studies. Sections 4.4 and 4.5 describe our channel selection

algorithm and link selection strategy. Section 4.6 presents our evaluation, and Section 4.7

concludes the chapter.

4.2 Related Work

There has been significant research on industrial WSANs spanning transmission scheduling,

routing algorithms and network protocols, assuming a given set of channels. Readers are

referred to recent review articles for comprehensive surveys [42] [81]. However, the impact of
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channel selection has not been studied in the context of industrial WSANs. Our work on

channel selection is therefore complementary to previous work in this area.

802.15.4 radio link quality has been studied extensively in the context of WSNs. Sha et

al. [65] performed empirical studies on real-world 2.4 GHz ISM band usage and channel

conditions in residential environments. Ortiz et al. [52] evaluated the multi-channel behavior

of 802.15.4 networks in a machine room, and an office testbed, and found route diversity to

be an effective strategy to ensure reliability. Neither of these studies analyzed the impact of

the number and the choice of channels on the route diversity of the network.

Multi-channel communication and channel allocation have been explored extensively in the

wireless sensor network literature. For instance, Kim et al. [34] developed a multi-channel

TDMA MAC protocol, and Raman et al. [59] designed a TDMA-based approach that uses

channel hopping to improve network throughput. Wu et al. [85] and Vedantham et al. [80]

proposed channel assignment schemes that partition a network into subgraphs and then

assign channels to each subgraph. Tang et al. [75] and Le et al. [37] developed a multi-channel

MAC protocol with dynamic channel allocation. Doddavenkatappa et al. [19] developed a

channel selection and switching strategy that transforms intermediate quality links into good

ones. Mobashir et al. [45] proposed a channel selection strategy in which only 3 channels

far apart are used for communication. Chowdhury et al. [14] designed a scheme for packet

scheduling and channel selection utilizing a carrier sensing mechanism. There also exists

research on channel assignment for multi-radio multi-channel communication in the context

of the IEEE 802.11-based wireless mesh networks, such as [5, 27, 38, 54, 57, 58, 74, 86].

These works focused on solving the problem of optimizing multi-channel communication

assuming a given set of channels, while our work investigates complementary problem of how

to select a good set of channels. In contrast to the existing work designed for best effort
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service, our solution is tailored for industrial applications that demand reliable and real-time

communication over the TSCH-based networks.

4.3 Empirical Study

In this section, we introduce our experimental setup and present our empirical studies on the

impact of channel selection on network topology, routing, and scheduling.

4.3.1 Empirical Study Settings

To investigate the impacts of channel selection on WSAN performance, we collect topology

information on all 16 IEEE 802.15.4 channels from theWUSTL testbed consisting of 52

TelosB motes spanning across two adjacent buildings. In our study, two nodes are designated

as access points and the rest serve as field devices. We also repeat our experiments on the

Indriya testbed deployed at the National University of Singapore [18]. The Indriya testbed

consists of 86 TelosB motes spanning three floors of a school building.

Channel Selection: We use the packet reception ratio (PRR) to estimate link reliability.

PRR is defined as the fraction of transmitted packets successfully received by the receiver.

Following a straightforward link selection policy, the WSAN only use bidirectional links whose

PRRs are above a threshold in all the channels used and in both directions. This is because

each link cycles through all the channels used through channel hopping. As a result, a link

with a poor PRR in any of the channels used can incur packet loss at run time. Additionally,

the link needs to be bidirectional, supporting reliable communication of both data packets

and their acknowledgments.
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To assess the impacts of channel selection on the performance of a WirelessHART network,

we use a brute-force search algorithm to identify the set of channels that offers the maximum

number of available links. Given k channels used, we compute all possible combinations of k

channels from the 16 IEEE 802.15.4 channels and choose the set of channels that allows the

most links to remain in the network topology. We set the PRR threshold PRRt to 80% in

this study.

Routing and Scheduling: Consider a set of real-time periodic flows sharing a Wire-

lessHART network, each of which delivers a packet from a source to a destination. The

network manager finds the shortest path as the primary path of a flow for both source and

graph routing. For backup paths of graph routing, we run the same shortest path algorithm

to obtain the backup route from each node on a primary path to the destination. In addition,

we also follow [84], which proposed a real-time and energy-efficient routing algorithms for

WirelessHART networks, to generate source and graph routes. The network manager then

schedules transmissions of each flow based on the rate monotonic policy [39], a fixed priority

scheduling often adopted by industrial WSANs. Under the rate monotonic policy, a flow with

a shorter period has a higher priority. The period of each flow is selected within the range

20∼7 seconds, which falls within the common range of periods used in process industries, and

its deadline equals its period.

4.3.2 Impact on Routing

In this subsection, we first study the impact of the number of channels used on the network

topology and routing. As Figure 4.1a shows, the number of available links decreases with an

increasing number of channels used. More channels used result in fewer available links due

to the stringent reliability requirement, in which the PRRs of these links must be no less

than the desired threshold over all channels used. We further quantify the route diversity
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(b) Number of edge-disjoint paths.

Figure 4.1: Impact of the number of channels used on the network topology (WUSTL).
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of a network by computing the number of edge-disjoint paths of a flow, i.e., the number of

paths from a source node to a destination node that does not share any common edge. We

generate 580 flows. Figure 4.1b presents box plots of the number of edge-disjoint paths per

flow. Increasing the number of channels used degrades the route diversity in the resulting

topology.

We then investigate how the number of channels used affects routing. Whether the network

manager can generate a route successfully for a flow depends highly on the underlying network

topology resulting from channel blacklisting. We stipulate that a source route is successfully

generated for a flow set if at least one primary route exists for each flow in this flow set. A

graph route is successfully generated if at least one primary route exists from the source to

the destination of each flow in the flow set and at least one backup route exists from each

node along the primary route to the destination. We generate 100 sets of flows by varying

the locations of sources and destinations. If a route is successfully generated for all flows in

a flow set, then route generation deems successful. The success rate of route generation is

defined as the fraction of flow sets with successful routes.

Figure 4.2 presents the success rates of route generation under source and graph routing

based on both WUSTL and Indriya testbed topology. The routing success rate decreases with

an increasing number of channels used due to its impact on network topology. For instance,

when the number of flows is 8, the route generation success rate of source routing lower

from 0.84 to 0.07 as the number of channels increases from 7 to 16 (Figure 4.2c). Similarly,

with 8 flows, the success rate of graph routing drops from 0.84 to 0.08 when the number

of channels used increases from 2 to 13 (Figure 4.2d). The results from both Indriya and

WUSTL testbeds are consistent that is the route generation success rate decreases as the

number of channels grows due to the reduction in path diversity. Additionally, the number
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(a) Source Routing (WUSTL).
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(b) Graph Routing (WUSTL).
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(d) Graph Routing (Indriya).

Figure 4.2: Route generation success rates, based on the shortest path algorithm.
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Figure 4.3: Impact of the number of channels used on routing based on the energy-efficient
algorithm under WUSTL testbed.
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of channels used has a particularly large impact on graph routing, given its dependency on

route diversity.

We conduct another set experiment by running the energy-efficient algorithm. The results of

this algorithm for both source and graph routing are almost identical to the results obtained

from the shortest path algorithm. Figure 4.3 presents an example of the route generation

success rate of graph routing based on the energy-efficient algorithm under the WUSTL

testbed. Routes generated by the shortest path and the energy-efficient algorithms can be

different due to different routing metrics, however both fail to generate a route when there is

no path between two nodes.

Observation 1: More channels used reduce the route diversity of a network, resulting in

a lower success rate of route generation. Note that more channels used have the benefit of

enhancing channel diversity. Our findings show that channel selection must strike a balance

between channel and route diversity.

4.3.3 Impact on Scheduling

In this subsection, we study how the number of channels used affects transmission scheduling.

Once the routes of a flow set are successfully generated, the network manager computes a

transmission schedule by assigning time slots and channel offsets to all transmissions of the

flows. The transmission schedule generated by the network manager is called a superframe

and is disseminated to field devices. At run time, field devices repeat the schedule when they

reach the end of the superframe.

A flow is schedulable if all its packets will meet its deadline, and a set of flows is schedulable

if all the flows are schedulable. Flows are scheduled based on priorities assigned by the rate
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monotonic algorithm. The scheduling success rate is defined as the fraction of flow sets that

are schedulable among flow sets with successful route generation.

As Figure 4.4a shows, with 32 flows, the scheduling success rate increases when the number

of channels used increases from 1 to 4. This is to be expected, because more channels allow

more concurrent transmissions. Surprisingly, the trend reverses when the scheduling success

rate decreases with more channels used. The results for 16 and 24 flows follow the same trend,

but at a higher success rate due to lighter load. We observe the same trend in the worst-case

packet delays of 32 flows, as shown in Figure 4.4b. The minimum delay occurs when the

number of channels is 4. (When the number of channels exceeds 8 in our experiments, the

routing success rate with 32 flows is very small. Thus, we do not have sufficient sets of flows

to determine the scheduling success rate with more than 8 channels used.)

We find that this phenomenon results from the tradeoff between two sources of delays in a

WirelessHART network [42]: channel contention and transmission conflict:

1. Channel contention: To avoid interference, WirelessHART allows only one transmission

per channel in each time slot. If the number of transmissions scheduled in a time slot

exceeds the number of channels, lower-priority transmissions must be delayed to later

slots.

2. Transmission conflict : Due to the half-duplex nature of IEEE 802.15.4 radios, a node

can participate in only one transmission or one reception in the same slot. Consequently,

transmissions conflict if they involve a common node as either a sender or a receiver.

Then, only one of the conflicting transmissions can be scheduled in that slot.

Figure 4.5a and Figure 4.5b present the number of transmission conflicts and the number

of channel contentions in our previous experiment. Interestingly, while channel contention
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(b) Box plots of worst-case delays of 32 flows under graph routing.

Figure 4.4: Schedule generation success rates and worst-case delays.
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Figure 4.5: Number of transmission conflicts and channel contentions of the 32-flow schedule
under graph routing.

decreases with more channels used, transmission conflicts increase as more transmissions

share nodes, due to reduced route diversity. The median value of transmission conflicts

increases from 9 to 283 when the number of channels used increases from 2 to 8, while the

median value of channel contentions decreases from 137 to 3 at the same time. We can also

observe that after the number of channels reaches 7, there are almost no channel contention.

Our results also suggest that transmission conflict dominates when the number of channels

used is beyond a certain point, so adding more channels can be detrimental.

Observation 2: Because both transmission conflict and channel contention affect scheduling,

schedulability does not improve monotonically with more channels used; in fact, using more

channels may degrade schedulability.

4.4 Channel Selection

In Section 4.3, a brute-force approach is used to search for the set of channels that retains

the maximum number of available links in the network topology. However, this approach is
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impractical due to its high computational cost, especially because the network manager needs

to adjust the selected channels at run time due to changes in wireless conditions. Moreover,

maximizing the total number of links does not always lead to maximum route diversity because

different nodes may not contribute equally to route diversity. For example, a node adjacent

to fewer links may be more vulnerable to channel selection. If its few links are eliminated due

to channel selection, the node may be removed from the network topology. To overcome these

challenges, we introduce a new channel selection algorithm, which operates in three steps: (1)

removing channels on which critical nodes are poorly connected to the network (Channel

Filtering), (2) ranking the channels (Channel Ranking), and (3) finding the maximum

number of channels that can be used to successfully generate the routes and schedule for a

given set of flows. In contrast to the brute-force approach, our channel selection algorithm

employs a new metric for ranking channels that considers the criticalities of nodes to the

network topology.

We model a WSAN as a set of graphs G = {Gi(V,Ei) | 11 ≤ i ≤ 26}, where i is the channel

index 3. Each node v ∈ V denotes a device, and each edge ei ∈ Ei denotes a bidirectional

link with PRRs no lower than a given PRR threshold in both directions on channel i. We

define the degree of v on channel i, Di(v), as the number of edges incident to v on channel i.

Channel Filtering: We first perform channel filtering to ensure that the channel selection

retains all critical nodes, including the sources and destinations of flows and the access points

connected to the gateway. A channel i is filtered out if there exists a critical node v whose

node degree Di(v) < 3 on this channel, as WirelessHART suggests that any device in a

network should have at least three neighbors for route diversity [83].
3IEEE 802.15.4 standard specifies 16 channels (channel 11 ∼ 26) in the 2.4 GHz ISM band [28]
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Channel Ranking (CR): For each node, a channel is preferable if the node has a higher

degree under the channel. CR normalizes the degree of node v on channel i by dividing Di(v)

by the maximum degree of v among all channels to prevent discrimination against nodes with

fewer links. The normalized degree of v is denoted D′i(v). Furthermore, if a node has fewer

good channels, it is more likely to be eliminated from the network after channel selection.

Channel i is considered a good channel for the node v if the following two conditions are met:

• Di(v) > Di(v), the degree of node v is larger than the average degree of all nodes on

the channel i.

• Di(v) > 3, the node v has more than 3 neighbors.

The number of good channels of a node v is denoted by nc(v). To avoid eliminating nodes

with few good channels in channel selection, we include nc(v) in the channel score as follows:

score(i) =
∑
v

D′i(v)/nc(v) (4.1)

The output of CR is an ordered list of channels c1, c2, ...cn sorted in decreasing order of

score(i). A channel with a higher rank potentially enhances route diversity compared to a

channel with a lower rank.

Finding the Maximum Number of Channels Used: Because channel hopping enhances

reliability through channel diversity, our channel selection approach searches for the maximum

number of channels that allows routes to be successfully generated and all flows to meet

their deadlines. Given a ranked list of n channels generated by the CR, we select the top

k (initialized to k = n) channels from the ranked list, and then run routing and scheduling

algorithms. If the route and schedule generation fail, the algorithm decreases k by 1 and

44



reruns the routing and scheduling algorithms until it finds k that can successfully generate

routes and a schedule for the flow set.

4.5 Link Selection

To meet the reliability requirement of Industrial WSANs, we blacklist links whose PRR is

below a threshold in any of the channels used. The choice of the threshold involves a tradeoff

between network reliability and route diversity, and a higher threshold may improve reliability

at the cost of route diversity. Figure 4.6 shows the impact of different PRR thresholds on

the success rate of route generation. In comparison to a 90% PRR threshold, an 80% PRR

threshold allows both source and graph routes to achieve a higher route generation success

rate. Although a higher PRR threshold leads to a lower success rate, employing a lower PRR

threshold may degrade the overall network reliability.

In contrast to traditional link selection based on a single PRR threshold, we propose a novel

Channel Pairing (CP) strategy to maintain reliability while improving route diversity. CP

takes advantage of the redundant transmissions offered by WirelessHART, which dictate that

both the source and the graph routing perform a second transmission (retransmission) if

the first attempt (transmission) fails when delivering a packet. Therefore, instead of using a

single PRR threshold to ensure that selected links are reliable across all channels used, CP

divides the channels used into two sets and applies two different PRR thresholds to these

two sets of channels during link selection. A high PRR threshold is applied to the first set

of channels that are dedicated to the first transmissions, while a lower PRR threshold is

applied to the other set of channels used for retransmissions. Using more reliable channels for

transmissions can reduce the chance of retransmissions, while allowing retransmissions to use
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Figure 4.6: Success rates of source and graph route generation with an 80% and a 90% PRR
threshold.

less reliable channels helps preserve links and route diversity. CP ensures overall reliability

by taking both transmissions into account.

4.5.1 Channel Pairing Algorithm (CP)

The input of CP is a ranked list of k channels obtained from the channel selection algorithm,

Cr, and Psuccess, which is the required probability of successfully sending a packet after a

transmission and a retransmission. In addition, CP allows two PRR thresholds, PRR1t and

PRR2t, for link selection on channels used for transmissions and retransmission, respectively,

where PRR1t > PRR2t.

The outputs of CP are two sets of channels, C1 = {c1,1, c1,2...c1,x} and C2 = {c2,1, c2,2...c2,x},

where |C1| = |C2| = x and x =

⌊
k

2

⌋
. (If the number of channels used, k, is odd, CP defines

cback, which can be used by backup transmissions of graph routing. cback is the middle channels

in Cr. Every link in the output set of links L must also have a PRR no lower than PRR1t on

cback.) CP schedules the first transmission on more reliable channels in C1 and retransmissions

on channels in C2. CP also outputs a set of links, L, selected for use in communication. For
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every link l ∈ L, if its first transmission attempt is on channel c1,i, then its retransmission

must happen on channel c2,i. The PRR of a link l on a channel c is defined as PRR(lc).

Every link l ∈ L must satisfy the following link quality constraints :

1. PRR(lc1,i) ≥ PRR1t, ∀c1,i ∈ C1

2. PRR(lc2,i) ≥ PRR2t, ∀c2,i ∈ C2

3. 1 − (1 − PRR(lc1,i))(1 − PRR(lc2,i)) ≥ Psuccess ∀c1,i ∈ C1 and c2,i ∈ C2 (The two

transmissions are independent due to channel hopping.)

Constraint (3) allows a communication over a link to meet the reliability requirement (Psuccess)

through the transmission and its retransmissions. Constraint (1) ensures that the links have a

high PRR in the first transmission and hence reduces the likelihood of the retransmission and

saves energy consumption by communication devices. Constraint (2) allows the retransmission

to utilize a lower quality link when allowed by constraint (3).

CP works in three steps. It first splits the channels in Cr into two sets. C1 contains the top x

channels in Cr, and C2 has the remaining channels. CP considers a set of links L1, in which

each link l ∈ L1 meets constraint (1). It then computes an average PRR of all links in L1 for

each channel c1,i ∈ C1 and sorts the channels in C1 in increasing order of the average PRRs.

In the second step, for each channel c1,i in a sorted C1, CP pairs it with a channel c2,i in

C2. The selected c2,i pairing with c1,i must maximize the number of links meeting all three

link quality constraints. c2,i must also be at least h hops away from c1,i. If no such channel

exists, c2,i is the channel with the maximum hopping distance from c1,i. Hopping to a nearby

channel may not be effective in improving reliability due to the significant correlation between

transmission failures among adjacent channels [65].
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Lastly, let the set of valid links of a pair of channels c1,i and c2,i be L(c1,i,c2,i). Then, the final

output is a set of links L(c1,1,c2,1) ∩ L(c1,2,c2,2), ... ∩ L(c1,x,c2,x), where every selected link meets

the link quality constraint in every channel pair.

4.5.2 Channel Scheduling for CP

In this section, we describe how to adjust a scheduler to support channel pairing. In

WirelessHART networks, the network manager generates one or more superframes, where

each superframe comprises a transmission schedule that is repeated in a cyclic fashion. To

avoid interference, each time slot can accommodate at most k concurrent transmissions,

where k is the number of channels used. At run-time, each sender and receiver pair switches

to the same channel to communicate. The standard calculates the channel hopping sequence

based on the following formula:

LogicalChannel = (ASN + choffset)%k (4.2)

where ASN (Absolute Slot Number) denotes the cumulated slot number since the network

starts and k is the number of channels used. The channel offset choffset is assigned by the

scheduler during transmission schedule computation (0 ≤ choffset ≤ k − 1). It guarantees

that no transmissions in the same slot use the same channel. The sender and receiver then

map a logical channel on to a physical channel using a common mapping table stored in a

node.

In a straightforward link selection policy, where a link must be equally reliable on all channels

used, a transmission can use any of these channels. However, CP needs to guarantee that,

given two sets of channels C1 and C2, if the first transmission attempt over a link uses

c1,i ∈ C1, then its retransmission must use c2,i ∈ C2. Therefore, we impose a channel
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assignment constraint when scheduling a transmission. For transmissions on a primary path,

if the first transmission is assigned to a slot number s1 and channel offset choffset1, then,

for its retransmission, the scheduler needs to find a slot s2 and a channel offset choffset2

such that

(s1 + choffset1)%x = (s2 + choffset2)%x (4.3)

A channel offset in each slot is in the range [0, x− 1], where x = |C1| = |C2|. The constraint

ensures that a transmission and its retransmission always use the logical channel pair c1,i and

c2,i, where 0 ≤ i ≤ x− 1. In addition, for the backup transmissions of graph routing, they

can use cback or any available channel from C1 and C2 since CP relies on the two transmission

attempts on a primary path to achieve the desired reliability. cback is preferable to a channel

from C1 and C2 because it is not used by transmissions on the primary path.

4.6 Evaluation

We evaluate our approach in four aspects: (1) routing, (2) scheduling, (3) execution time, and

(4) network reliability. To demonstrate the generality of our approach, we evaluate the routing

performance using three real network topologies of different sizes and locations: (1) Full

Testbed - a 52-node WUSTL testbed deployed in two connected buildings; (2) Half Testbed -

part of the WUSTL testbed including only 32 nodes in one of the buildings; (3) Indriya - an

open-access testbed deployed on three floors at the National University of Singapore [18],

consisting of 86 nodes. We compare our solutions CR alone and CR+CP against two baseline

approaches: (1) ML, searching for the set of channels used that maximizes the number of

available links by computing all channel combinations; (2) ML(Rank), ranking channels based

on the number of available links and then selecting the k highest ranked channels as the

channels to be used.
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4.6.1 Success Rate of Route Generation

To evaluate the effectiveness of our algorithms in enhancing route generation, we run experi-

ments with 100 flow sets, each of which contains eight flows that have different sources and

destinations. We generate routes based on the shortest path algorithm. Because an industrial

WSAN usually employs reliable links, we set the PRR threshold to 90% for ML, ML(Rank),

and CR. Given a transmission and a retransmission using a uniform PRR threshold of 90%,

the overall reliability of a link is 99%. We hence set the Psuccess = 99% for CP to achieve the

same level of reliability. PRR1t and PRR2t are set to 90% and 70%, respectively.

Figure 4.7c and Figure 4.7d show the route generation success rates under source and graph

routing on the Full Testbed. A more flexible link selection strategy allows CR+CP to

significantly outperform ML(Rank), CR, and ML, especially under graph routing, which

relies heavily on route diversity. Figure 4.7a and Figure 4.7b show similar results in which

CR+CP again outperforms the two baselines on the smaller but better connected Half

Testbed. CR+CP on both testbeds significantly improves the route generation success rate

when the number of channels used is high (between 6 - 10), thereby allowing the network to

maintain more channel diversity.

As Figure 4.7e and Figures 4.7f show, on the Indriya testbed, CR+CP likewise achieves a

higher success rate of route generation than the two baselines for both source and graph

routings. CR+CP offers less improvement in the route generation success rate on the Indriya

testbed than on the other two testbeds due to weaker network connectivity. It can also be

observed that CR outperforms ML(Rank) on all testbeds for both source and graph routings,

due to a more effective ranking criteria. CR also achieves a route generation success rate

comparable to ML, but with less complexity. Although CR adopts a better heuristic than ML,

CR still has a drawback when compared to ML that explores all combinations of channels.
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(a) Half Testbed (source routing).
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(b) Half Testbed (graph routing).
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(c) Full Testbed (source routing).
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(d) Full Testbed (graph routing).
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(e) Indriya Testbed (source routing).
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(f) Indriya Testbed (graph routing).

Figure 4.7: Success rates of route generation under source and graph routing routing.
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Table 4.1: Channel Selection Algorithm Execution Time (in ms).

Approach Half Testbed Full Testbed Indriya
ML(Rank) 26.6 59.6 190.0

CR 55.7 121.4 324.9
ML 1297.2 2133.8 4676.5

CR+CP 83.5 156.5 420.5

4.6.2 Algorithm Execution Time

We measure the execution time of our algorithms on a MacBook Pro laptop with a 2.7 GHz

Intel Core i7. The channel selection process includes finding the best set of channels for

each k (1 ≤ k ≤ 16) channels used, and obtaining the output topology containing links that

satisfy the reliability requirement. Table 4.1 presents the execution time (in milliseconds) of

ML(Rank), CR, ML, and CR+CP on the Half Testbed, the Full Testbed, and the Indriya

testbed. (Because the WirelessHART standard [83] suggests the network with a single gateway

should comprise at most 80 field devices, the Indriya testbed represents a WirelessHART

network with the maximum size.) CR incurs an approximately 2X higher execution time than

ML(Rank) in all testbeds due to a more sophisticated ranking criterion. CR+CP consumes

up to 3.1X and 1.5X longer execution time than ML(Rank) and CR because it introduces

additional computations for pairing channels. ML finds the best set of channels through

a brute-force search on all channel combinations, hence it incurs 15.5X, 13.6X, and 11.1X

longer execution times than CR+CP on the Half Testbed, the Full Testbed, and the Indriya

testbed, respectively.

We then find the maximum number of channels that can be used to generate a schedule. The

number of flows significantly affects the execution time of this process. Table 4.2 compares

the search time (in milliseconds) consumed by CR+CP and ML on the Indriya testbed.
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Table 4.2: Search and Schedule Generation Time (in ms).

Approach 8 flows 16 flows 32 flows
ML 38.47 63.75 125.8

CR+CP 42.07 66.18 120.2

(We limit the number of flows to 32 due to the network size. Almost 80% of the nodes are

designated as either a sender or a receiver.) As the number of flows increases, the execution

time also grows under both CR+CP and ML. With the same number of flows, CR+CP and

ML require similar amounts of execution time. CR+CP is more efficient than ML since it

requires less overall execution time, but it achieves a higher route generation success rate.

4.6.3 Network Performance

Because CR+CP improves the success rate of route generation by allowing links to use

less reliable channels for packet retransmissions, it may degrade the performance of the

network. In this set of experiments, we compare the performance of CR+CP against ML,

which employs a single PRR link selection ensuring all links are reliable across all channels

used. We perform experiments on the Full Testbed to evaluate our approaches in term of the

network reliability, the total number of transmissions of each schedule, and the number of

transmission attempts per hop. The testbed runs the implementation of key network features

of the WirelessHART standard, including TSCH MAC and a routing layer that supports

both source and graph routings on TinyOS 2.1.2 and TelosB motes (see Section 3.3.3). For

each channel selection approach, we run experiments under graph routing with three different

network settings. Each setting contains eight distinct flows and two access points. Each

experiment is run for 100 rounds using eight IEEE 802.15.4 channels. Both ML and CR+CP

follow formula (4.2) in Section 4.5.2 when computing a channel hopping sequence.
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Table 4.3: Network performance comparison under graph routing

Set Approach PDR #Trans / hop #Trans #Hops / flow

1 ML(B) 99.25% 1.01 49.56 6.13
CR+CP 99.88% 1.01 49.43 6.00

2 ML(B) 99.75% 1.02 70.82 8.63
CR+CP 98.75% 1.05 57.61 6.88

3 ML(B) 99.00% 1.03 44.13 5.38
CR+CP 98.38% 1.08 42.37 4.88

We use the end-to-end packet delivery ratio (PDR) as the metric to quantify network reliability.

As Table 4.3 shows, CR+CP achieves an average PDR lower than that of ML by approximately

1% in all settings, except under setting 1, where CR+CP surpasses ML by 1%. The slight

decrease in the average PDR of CR+CP is in exchange for a proportionally much-higher

success rate of route generation.

To determine the number of transmissions incurred by CR+CP, we measure the average

number of transmission per hop. Graph routing allows two transmission attempts over a

link on a primary path, and an additional transmission on a backup link. Table 4.3 shows

that in setting 1, CR+CP requires the same average number of transmissions per hop as

ML. Nevertheless, CR+CP performs slightly worse than ML, as observed in setting 2 and

3, where CR+CP has 3% and 5% increases in the average number of transmissions per hop

compared to ML. We further compute the average total number of transmissions needed for

all flows to deliver packets from their sources to destinations, as shown in Table 4.3. As ML

requires fewer transmissions per hop than CR+CP, it should require fewer transmissions per

schedule. However, the results demonstrate that CR+CP achieves a smaller total number of

transmissions in all settings than ML, especially in setting 2, where CR+CP needs 22.9%

fewer transmissions than ML. This is due to the fact that CR+CP enhances route diversity

and increases the chance of the routing algorithm obtaining a shorter flow path. For instance,
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(a) 16 flows.
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(b) 32 flows.

Figure 4.8: Schedule generation success rates under graph routing on Full Testbed.

in setting 2, CR+CP reduces the average number of hops per flow by 20.2% over ML.

Although CR+CP incurs more transmission attempts per hop than ML because of the use of

weaker channels for retransmissions, it requires fewer transmissions per schedule than ML

and maintains high reliability.

4.6.4 Success Rate of Schedule Generation

Because using more channels may have a negative effect on the scheduling success rate as the

number of channels reaches a certain point, we investigate whether a similar trend can be

observed under CR and CR+CP. We compare the scheduling success rate of our approaches

against ML on the Full Testbed topology. In this set of experiments, we lower the PRR

thresholds of ML and CR to 80%. For CP, Psuccess is set to 96% and PRR1t and PRR2t are

80% and 70%, respectively. (To evaluate the success rate of schedule generation, the network

needs to contain a large number of flows. However, increasing the number of flows under

a high PRR threshold, e.g., 90%, significantly decreases the route generation success rate.

Hence, there are not enough sets of flows to determine the schedule generation success rate.)

We run the experiments with 100 sets of flows.
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As shown in Figure 4.8a and Figure 4.8b, CR obtains a scheduling success rate comparable

to ML under both 16 and 32 flows. With 32 flows, CR+CP leads to a lower schedule

generation success rate than ML when the number of channels is within [2,6]. While CR+CP

potentially reduces the number of transmission conflicts through route diversity, it also

introduces a channel scheduling constraint that causes transmissions of flows to be delayed

and consequently miss their deadlines. In contrast, when the number of channels exceeds 6,

CR+CP outperforms ML for both 16 and 32 flows because CR+CP can fully take advantage

of route diversity since it has enough channels to use. Note that when the number of channels

reaches 9, both CR and ML can no longer successfully generate routes; therefore, their

scheduling success rates drop to 0. CR+CP improves the success rate of schedule generation

when there are more channels used, hence it enhances channel diversity. The number of

channels used also has a similar impact on the success rate of schedule generation under CR

and CR+CP. CR and CR+CP achieve the maximum success rate of schedule generation when

the number of channels is within [4,6] and [6,9] respectively. Judicious selection of the number

of channels is important to meet the timing constraints of WSANs. By exploring different

numbers of channels automatically, our approaches can configure the channels efficiently.

4.7 Summary

In this chapter, we investigate the tradeoff between channel and route diversity, based on

empirical studies on testbeds. Our findings reveal that while using more channels means more

channel diversity, a large number of channels may reduce route diversity, with negative impacts

on routing and scheduling. As a result, using more channels is not always desirable in industrial

WSANs. Based on these insights, we present novel channel and link selection algorithms that

automatically select channels to facilitate routing and scheduling. Experimental results show
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that our solution significantly improves the success rates of routing and scheduling, while

maintaining network reliability.

57



Chapter 5

Conservative Channel Reuse in

Real-Time Industrial Wireless

Sensor-Actuator Networks

Industrial applications impose stringent requirements in reliability and real-time performance

on WSANs. To enhance reliability, industrial standards, such as WirelessHART, embrace

Time Slotted Channel Hopping (TSCH) that integrates channel hopping and TDMA at

the MAC layer. Within a network governed by a same gateway, WirelessHART prohibits

channel reuse, i.e., concurrent transmissions in the same channel, to avoid interference

between concurrent transmissions. Preventing channel reuse however negatively affects

real-time performance. To meet the demand for both reliability and real-time performance

by industrial applications, we propose a conservative channel reuse approach designed to

enhance the real-time performance while limiting its impact on reliability in WSANs. In

contrast to traditional channel reuse designed to optimize performance at the cost of reliability,
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our conservative approach introduces channel reuse only when needed to meet the timing

constraints of flows. Finally, we present an algorithm to detect reliability degradation

caused by channel reuse so that channels can be reassigned to further improve reliability.

Experimental results based on two physical testbeds show that our approach significantly

improves real-time performance while maintaining a high degree of reliability 4.

5.1 Introduction

In contrast to traditional wireless sensor networks that require only best-effort service,

industrial To meet such stringent requirements, WirelessHART [83], incorporate a set of

salient features. To achieve reliable communication, channel reuse is prohibited within a

network based on the same gateway, i.e., in the same time slot only one transmission is

allowed in each channel. However, this policy can severely affect the real-time performance

and the capacity of the network.

While channel reuse has been explored in wireless sensor networks, traditional approaches

are unsuitable for industrial WSANs with stringent reliability requirements. Earlier solutions

either deal with interference between concurrent transmissions in a best-effort manner or

schedule transmissions based on estimated interference. In practice, estimating interference

incurs significant overhead and errors, especially in the presence of temporal variations in

real-world environments. Moreover, traditional approaches are usually designed to maximize

channel reuse. This aggressive approach to channel reuse, combined with an inaccurate

interference estimate, may cause unacceptable degradation in network reliability for industrial

applications.
4The contents in this chapter have appeared in: D. Gunatilaka and C. Lu, Conservative Channel Reuse in

Real-Time Industrial Wireless Sensor-Actuator Networks, ICDCS, July 2018.
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This chapter explores channel reuse for industrial WSANs that demand both real-time

performance and reliability. The contributions of this work are four-fold.

• We propose a conservative channel reuse approach that introduces channel reuse only

when necessary to meet the timing constraints of existing data flows.

• We design Reuse Conservatively (RC), a conservative channel reuse algorithm that in-

corporates channel reuse to meet the real-time performance constraints while mitigating

its impact on reliability.

• We develop a classifier to detect links with poor reliability due to channel reuse so that

these links can be rescheduled to enhance network reliability.

• We present experimental results based on two testbeds that demonstrate RC signifi-

cantly improves real-time performance when compared to the standard WirelessHART

approach without channel reuse, while maintaining higher reliability than aggressive

channel reuse.

The rest of the chapter is organized as follows. Section 5.2 reviews related work. Section

5.3 introduces the problem. Section 5.4 details the channel reuse algorithm. Section 5.5

describes the classifier to detect reliability degradation due to channel reuse. Section 5.6

presents the experimental results. Section 5.7 summarizes the chapter.

5.2 Related Work

There have been extensive studies on interference measurements in the past years. Mashesh-

wari et al. [43] studied different interference models including hop-based, range-based, SINR-

based, and PRR-SINR models. Liu et al. [40] modeled interference based on the PRR-SINR
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relationship. Qiu et al. [56] used a measurement-based model to estimate throughput, and

Zhou et al. [89] proposed a radio interference detection protocol based on a thresholded-SINR

model. Although SINR-based models have been shown to be more realistic than other

approaches [67], estimating interference based on such models involves multiple measurements

(e.g., receiver sensitivity, noise, aggregated interferences, etc.), which, in practice, incurs

significant overhead and complexity. Hence, we opt for mitigating interference by increasing

the hop distance between concurrent transmissions on the same channel (Other protocols

adopting the hop-based model include [6, 70].). More importantly, we reduce the impact

of channel reuse on reliability by introducing channel reuse only when needed to meet the

real-time performance requirements of existing flows.

Several TDMA protocols leverage channel reuse to enhance network capacity. Gronkvist et

al. [24] and Brar et al. [8] proposed scheduling policies based on spatial reuse TDMA protocol

to maximize network throughput. The works presented in [11, 13, 48, 60] designed real-time

scheduling strategies, which incorporate channel reuse, to optimize network throughput and

latency. In contrast, our approach conservatively adopts channel reuse to avoid its impact on

network reliability. Notably, since WSAN traffic loads are known by the centralized network

manager in industrial settings, we therefore only need enough channel reuse to meet the

real-time requirements of existing workloads.

There also exist scheduling algorithms customized for TSCH networks that support channel

reuse. Palettella et al. [53] proposed TASA, a centralized traffic-aware scheduling algorithm

that improves network latency and power efficiency. Accettura et al. [1] developed DeTAS,

a decentralized scheduling protocol for the 6TiSCH [31] network. In contrast to our work,

both algorithms always reuse channels when transmissions are estimated not to interfere

with each other, while our approach introduces channel reuse only when needed to meet

the real-time requirements of the workload. Duquennoy et al. [20] presented Orchestra, an
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autonomous scheduling solution for 6TisCH networks. Transmissions may be mapped to the

same slot on the same channel, and hence they must contend for a channel. While Orchestra

incurs channel reuse in a best-effort manner, our approach manages channel reuse to reduce

interferences by (1) introducing channel reuse conservatively and (2) avoiding interference by

judiciously scheduling channel reuse for concurrent transmissions.

A recent direction in wireless sensor networks is to exploit synchronous transmissions. The

Glossy-based approach [23] provides a promising alternative to TSCH-based networks. It

offers efficient and fast network flooding by exploiting constructive interference and capture

effect allowing packets to be received successfully in the presence of concurrent transmissions.

Zimmerling et al. [90], to the best of our knowledge, was the first to combine Glossy-based

Low-Power Wireless Bus [22] and real-time scheduling. Our solution is based on TSCH that

has been adopted by the industry. Our channel reuse approach also relies on the capture

effect to allow concurrent transmissions on a channel, and therefore it represents a step to

incorporate capture effects into industrial standards such as WirelessHART.

5.3 Problem Description

In this section, we first describe fixed-priority scheduling, and define the communication

and channel reuse graphs of a network. Finally, we set the objectives of our channel reuse

algorithm.

5.3.1 Fixed Priority Scheduling

Our work follows the flow model describe in Section 2.2 where a WSAN is shared by a set of

real-time flows F = {F1, F2, ...Fn}, and each flow is characterized by a source Si, a destination

Yi, a route φi, a period Pi, and a deadline Di. A flow Fi is schedulable if all of its packets are

62



scheduled to meet their deadlines. A set of flows F is schedulable only if all flows in F are

schedulable.

In a fixed priority scheduling policy, each flow Fi is assigned a fixed priority. A flow Fi has

higher priority than a flow Fk if i < k. Priorities are commonly assigned based on deadlines

or periods. The fixed priority scheduler schedules transmissions of higher priority flows

before transmissions belonging to lower priority flows. It allocates the earliest feasible slot to

each transmission. A feasible slot is subject to no transmission conflict and each channel is

restricted by channel constraint. Two transmissions conflict if they share a common node,

either a sender or a receiver. This is because of the half-duplex nature of the IEEE 802.15.4

radios. Within the same network, the WirelessHART protocol does not support channel reuse.

Hence, following the standard, the number of transmissions in each slot must not exceed

the number of channels used. However, our approach extends WirelessHART by allowing

multiple transmissions to share the same channel in the same slot.

5.3.2 Communication Graph vs Channel Reuse Graph

We consider two types of graphs in our network: (1) the communication graph that is used

for constructing routes from a source to a destination for each flow and (2) the channel reuse

graph that is for estimating interferences when channel reuse is adopted.

A communication graph Gc(V,E) consists of a set of network devices V , and a set of links E.

We use the Packet Reception Ratio (PRR), a ratio of successfully received packets to the

total number of transmitted packets, to assess link quality. Let M be a set of channels used

and let PRR( ~xy)i be the PRR of a link ~xy on channel i ∈M . A bidirectional edge uv is in

E if PRR( ~uv)i ≥ PRRt and PRR( ~vu)i ≥ PRRt for all channels i ∈ M where PRRt is a

link selection threshold. An edge must be bidirectional to support a transmission and its
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acknowledgement. Due to channel hopping, links hop through all channels so they must be

reliable in all channels used.

Our channel reuse policy adopts a hop-based interference model in which concurrent trans-

missions are allowed if a sender of a transmission is at least k hops away from a receiver of a

concurrent transmission. Therefore, we construct a channel reuse graph, which determines

the channel reuse hop count between nodes. We represent the channel reuse graph as graph

GR(V,E), where V is a set of network devices and E is a set of edges between two devices.

Due to the challenge in directly measuring interference, we define an edge in the channel reuse

based on its PRR, which is already collected by the network manager in order to construct

the communication graph in the WirelessHART network. Specifically, a bidirectional edge

uv exists in E if for any channel i ∈ M , PRR( ~uv)i > 0 or PRR( ~vu)i > 0. Note that we

consider any channel here because each link cycles through all channels through channel

hopping. As the hop count between u and v increases, interference is likely to diminish. We

denote a minimum channel reuse hop count between any node u and v as ρ.

5.3.3 Objectives of Channel Reuse Policy

Given a real-time WSAN and a set of flows, the objective of our channel reuse algorithm is to

introduce concurrent, channel-sharing transmissions such that all flows will meet the deadlines.

Note that, if no channel reuse is needed to meet the deadlines, no concurrent transmissions

will be scheduled on the same channel. Channel reuse occurs only when needed to make the

deadlines. To further mitigate interference caused by channel reuse, our secondary objectives

are to (1) increase the hop distance between transmissions sharing a channel and (2) reduce

the number of concurrent transmissions per channel. The larger the hop distance between

concurrent transmissions, the more likely for both transmissions to succeed due to capture

effect. Scheduling more transmissions on the same channel can make transmission failures
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more likely because interferences are cumulative [40, 43]. Therefore, it is desirable to schedule

fewer concurrent transmissions on each channel.

5.4 Channel Reuse Algorithm

In this section, we first introduce the channel reuse constraints, the concept of flow laxity,

and then provide a detailed description of our channel reuse algorithm.

5.4.1 Channel Reuse Constraints

The channel reuse constraints set up conditions that a transmission must satisfy in order to

be assigned a specific time slot and channel offset by a scheduler. The maximum number

of slots in a schedule is determined by the hyper-period of a set of flows F , which is the

least common multiple of the periods of all the flows. Let |M | be the number of channels

used. A channel offset is in the range [0, |M | − 1]. Let H(Fi) be a set of flows with higher

priority than Fi. At slot s, Ts denotes a set of scheduled transmissions of H(Fi). For each

channel offset associated with slot s, Tsc ⊂ Ts is a set of scheduled transmissions assigned to

channel offset c. A transmission tij can be scheduled in s, if tij does not conflict with other

transmissions in Ts (see Section 5.3.1). If two transmissions are assigned to a same slot and

channel, they must be at least ρ hops apart on GR(V,E). Therefore, any transmission tij of

Fi can be allocated a slot s and a channel offset c if the following channel reuse constraints

are satisfied:

1. Transmission conflict : tij = uv does not conflict with xy ∈ Ts: u 6= x and u 6= y and

v 6= x and v 6= y, for all xy ∈ Ts.

2. Channel constraints :
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(a) If channel reuse is not allowed (ρ = ∞): channel offset c must not have been

assigned to any transmission, Tsc = ∅.

(b) If channel reuse is allowed (ρ < ∞): given tij = uv and xy ∈ Tsc: u must be at

least ρ hops from all y and all x must be at least ρ hops from v.

5.4.2 Flow Laxity

A flow laxity helps anticipate if a packet belonging to a flow can be delivered to meet its

deadline or not. It indicates how much delay a packet can tolerate. The higher the flow

laxity, the more a transmission can be delayed to later slots. The concept of laxity has been

used in [48] and [63] as a heuristic for real-time scheduling. Our algorithm uses flow laxity

to assess if channel reuse is needed or if the current channel reuse hop distance will allow

a flow to meet its deadline or not. Given a slot s that meets the channel reuse constraints

for tij, a set of remaining transmissions of a flow Fi after tij is denoted as Tpost,tij . A flow

laxity is defined as the number of remaining time slots minus the number of slots required

to schedule transmissions in Tpost,tij . Let di be a slot corresponding to Fi’s deadline Di. For

each transmission t ∈ Tpost,tij , we estimate the number slots in an interval [s + 1, di] that

contains transmissions conflicting with t denoted as qts+1,di
. Hence, the total number of slots

in [s + 1, di] conflicting with transmissions in Tpost,tij is
∑

t∈Tpost,tij
qts+1,di

. The minimum

number of slots required to schedule Tpost,tij is |Tpost,tij |. Therefore, the laxity of Fi when

scheduled tij at s is:

[s− di]−
∑

t∈Tpost,tij

qts+1,di
− |Tpost,tij | (5.1)
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where s−di is the number of slots in [s+ 1, di], and
∑

t∈Tpost,tij
qts+1,di

is the estimated number

of conflicting slots that cannot be allocated to transmissions in Tpost,tij . Our channel reuse

policy attempts to select slot s for tij such that Fi’s laxity is no less than 0. This means

that after scheduling tij at slot s, there are enough slots to accommodate the remaining

transmissions of Fi such that Fi can deliver a packet to the destination within its deadline.

5.4.3 Reuse Conservatively Algorithm (RC)

Algorithm 2: Reuse Conservatively (RC)
Input :A flow set F ordered by priority, a conflict graph GR(V,E), the minimum channel

reuse hop distance ρt
Output :A transmission schedule S

1 for each flow Fi from F1 to FN do
2 ρ←∞ ;
3 for each transmission tij of Fi do
4 while ρ ≥ ρt do
5 < s, c >= findSlot(tij, ρ);
6 laxity = calculateLaxity(tij, s);
7 if laxity ≥ 0 then
8 break;
9 else

10 if ρ =∞ then
11 ρ← λR;
12 else
13 ρ← ρ− 1;

14 if s ≤ di then
15 Schedule tij at < s, c >;
16 else
17 return ∅ ;

18 return S ;

In this section, we provide a detailed description of our Reuse Conservatively Algorithm

(RC), which integrates our channel reuse policy with a real-time fixed priority scheduling
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as presented in Algorithm2. The input of the algorithm is a set of flows F , a channel reuse

graph GR(V,E), and the minimum channel reuse hop count threshold ρt. A larger ρt will lead

to more reliable communication, but may reduce the capacity of the network since channel

reuse will be adopted in a more restrictive fashion. In practice, to maintain reliability, a

network operator may select the largest channel reuse hop count under which the workload is

schedulable. When the workload is schedulable without channel reuse, RC will not introduce

channel reuse (i.e., the hop count is effectively infinity).

The output is a transmission schedule S. We schedule flows based on their priorities from

the highest to the lowest priority. The ρ variable keeps the current minimum channel reuse

hop distance. For each transmission tij, ρ is first initialized to ∞, which means no channel

reuse is allowed.

For every transmission tij, the algorithm first executes findSlot(). This function finds the

earliest slot s and channel offset c that comply with the channel reuse constraints (see

Section 5.4.1) given the channel reuse hop count ρ. It then calculates flow laxity following

Equation 5.1 given tij is scheduled at s. If the computed laxity ≥ 0, then tij is scheduled at

slot s and assigned channel offset c, and the algorithm proceeds to the next transmission.

Otherwise, the algorithm introduces channel reuse for tij . We define the network diameter

as the maximum shortest distance between two nodes in the network. When channel reuse is

adopted, ρ is set to λR (i.e., the network diameter of GR(V,E)), which gives the maximum

channel reuse distance for this network. The algorithm decreases the channel reuse hop count

ρ and repeats the findSlot() and calculateLaxity() steps until the calculated laxity ≥ 0 or

until ρ is less than the minimum threshold ρt. The algorithm terminates when all transmissions

of a flow set F are scheduled, or when any scheduled transmission fails to meet its deadline,

which deems F unschedulable.
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The algorithm adopts channel reuse conservatively, i.e., when laxity < 0. It introduces

channel reuse with a larger hop count first to mitigate interference. Note that when there

exist multiple channel offsets in slot s that meet the channel reuse constraints, the algorithm

chooses a channel with the fewest number of scheduled transmissions to reduce channel

contention.

Complexity: There can be at most N ∗L transmissions scheduled where N is the size of F ,

and L is the maximum path length among all flows. For each transmission, findSlot() is

executed at most λR+1 times. For each slot, the algorithm checks the channel reuse constraints,

which takes N ∗(|E|+|V |log|V |) because there can be no more than N transmissions scheduled

in each slot, and channel reuse hop count computation on a graph GR(V,E) takes |E| +

|V |log|V |. The upper-bound complexity of findSlot() is O(λR ∗Pmax ∗N ∗ (|E|+ |V |log|V |))

where Pmax is the maximum possible number of slots in a schedule, which associates with the

hyper-period of F . The total complexity of our channel reuse policy integrating with a fixed

priority scheduling algorithm is O(N2 ∗ L ∗ λR ∗ Pmax ∗ (|E|+ |V |log|V |)).

5.5 Detecting Reliability Degradation Caused by Chan-

nel Reuse

While conservative channel reuse can effectively mitigate the impacts of channel reuse on

reliability, it may lead to reliability degradation in some cases. In such cases, we need to

detect links that suffer poor reliability caused by channel reuse, so that these links can be

reassigned to different channels or time slots.

A naive approach is to use a PRR threshold to identify links affected by channel reuse, i.e., if

the PRRs of the links associated with channel reuse are lower than the PRR threshold, then
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channel reuse may have caused packet loss over these links. However, it is important to note

that channel reuse is not the only possible cause of transmission failures. Dynamic changes in

channel or environmental conditions and external wireless interference may lead to changes in

link reliability as well. It is therefore important to distinguish whether reliability degradation

is caused by channel reuse or other factors so that the network manager can resolve the link

quality degradation according to the root causes. For example, if a link’s PRR drops because

of external interference instead of channel reuse, removing channel reuse involving that link

would not necessarily improve its quality. Henceforth, we propose a method to distinguish

whether a link’s reliability degradation is attributed to channel reuse.

We address this challenge by comparing a link’s PRR in the time slots when it shares a

channel with others and its PRR in the other time slots when there is no channel reuse.

Intuitively, if a link is highly reliable in a contention-free channel, but performs poorly when

channel reuse is introduced, then the link’s reliability is degraded due to channel reuse.

Moreover, we minimize detection overhead by leveraging statistics already collected by the

network manager of a WirelessHART network.

Each wireless node maintains a neighbor table, which contains statistics pertaining to

connectivity between a node and its neighbors, e.g., PRRs, in all channels used. A node learns

these statistics based on regular data transmissions and periodic neighbor-discovery packets,

which are used to update the topology of the network. The network manager must also reserve

enough slots for each node to broadcast neighbor-discovery packets in all channels used. Since

the network topology does not change so frequently, these periodic neighbor-discovery packets

do not need to be scheduled very often. Based on the schedule computed by the network

manager, each node has knowledge of time slots, channel offsets, and its links, which are

associated with channel reuse. For each link involved in channel reuse, a node gathers link

statistics in two cases: (1) when a transmission on the link occurs without channel reuse and
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(2) when a transmission over the link shares a channel with other transmissions. A node

periodically reports these statistics to the network manager, which then detects links affected

by channel reuse based on the following statistical test.

To detect links affected by channel reuse, our detection policy adopts the Kolmogorov-Smirnov

test (K-S test) [35] to quantify the difference of link qualities under these two cases. K-S

test offers the benefits of making no assumption about the distribution of data and making

no restriction on the data set size. A two-sample K-S test evaluates the difference between

two Empirical Cumulative Distribution Functions (ECDF) of two data sets. In our case, we

compare the PRR distributions of a link li when a transmission over li is scheduled with

channel reuse (denoted PRR_DISTr(li)), and when a transmission takes place without

channel reuse (denoted PRR_DISTcf(li)). In a statistical test, under the null hypothesis,

there is no significant difference between two sample sets. K-S test computes the maximum

distance between ECDF of PRR_DISTr(li) and PRR_DISTcf (li). It calculates the p-value

∈ (0, 1), which determines the result of the hypothesis test. The output of the K-S test is

either accepting or rejecting the null hypothesis at α significance level. The null hypothesis is

rejected when the p-value< α. Therefore, for our detection policy, if the outcome of the K-S

test is reject, then we conclude that channel reuse degrades the reliability of link li since the

PRR_DISTr(li) differs significantly from PRR_DISTcf (li). Otherwise, channel reuse only

has subtle or no impact on li.

Our detection policy considers only links associated with channel reuse. Its goal is to

identify links whose reliability is degraded by channel reuse. Let PRRr(li) be the PRR of

PRR_DISTr(li). The policy first uses a PRR threshold PRRt to identify links that fail to

meet the reliability requirement, i.e., links with PRRr(li) < PRRt. It then performs K-S

test on such links to determine if reliability degradation is caused by channel reuse or not.

The following is the detection policy:
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• If PRRr(li) < PRRt, then performK-S test on PRR_DISTr(li) and PRR_DISTcf (li).

– If K-S test returns reject, then channel reuse degrades link reliability.

– If K-S test returns accept, then li fails to meet the reliability requirement due to

other reasons.

• Otherwise, li meets the reliability requirement.

5.6 Evaluation

We evaluate our algorithm in terms of the following aspects: (1) real-time performance

(2) algorithm efficiency, i.e., the amount of channel reuse and channel reuse hop count (3)

execution time (4) network reliability (5) applicability of our detection policy in identifying

links whose reliability is degraded by channel reuse. To demonstrate the generality of our

approach, (1)-(3) are evaluated based on the collected topologies from: (a) the 80-node

Indriya testbed, deployed at the National University of Singapore [18] (b) the 60-node

WUSTL testbed deploying across 3 floors. The topology information includes the PRRs of

all links in the network in all 16 channels. Based on the network topology and the traffic

requirements, the network manager constructs a communication graph (with PRRt = 0.9)

and a channel reuse graph. Then, it generates routes and a schedule, which all field devices

must follow during run time. To measure reliability performance, evaluation (4) and (5) are

conducted on the WUSTL testbed, which runs the WirelessHART protocol on TinyOS 2.1.2

and TelosB motes (See Section 3.3.3).

We randomly generate a set of flows F by varying source and destination nodes. Each flow

set contains two access points, which are nodes with a high number of neighbors. Following

common characteristics of process monitoring and control applications in process industries,

sources of flows generate packets periodically, and the periods of flows are harmonic. The
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periods are uniformly selected from the range P = [2x, 2y] where x < y. Given the period

range P = {2x, 2x+1, ...sx+k}, if a flow Fi is assigned with Pi = 2j, then its deadline Di is

randomly picked from a range [2j−1, 2j].

For each flow Fi ∈ F , the network manager generates a single route from a source to a

destination node based on the shortest path algorithm and the types of traffic. We consider

two types of traffic for control applications: (1) centralized traffic: a packet is generated by a

source (sensor), and routed to a controller through an access point wired to a gateway; then a

control message issued by a controller, running on a computer behind the gateway, is delivered

to a destination (actuator) and (2) peer-to-peer traffic: to enhance scalability, controllers are

implemented on field devices in the network, and a data packet can be delivered directly

from a source to a destination node without going through the gateway. We run experiments

under source routing, which enables every link along the route to retransmit a packet if the

first transmission attempt fails. Hence, a scheduler must reserve one more time slot for every

transmission over a link.

We adopt the Deadline Monotonic (DM) algorithm, which is a commonly used fixed priority

scheduling policy for real-time systems. Under DM, a flow with the shortest deadline has the

highest priority. Our algorithm RC is compared against: (1) DM with no channel reuse (NR):

only one transmission can be scheduled on each channel, and (2) DM with aggressive channel

reuse (RA): a channel is reused whenever possible, i.e., a scheduler schedules transmissions

at the earliest slot and on a channel with at least ρ channel reuse hops. RA adopts similar

channel reuse approaches as traditional channel reuse strategies, which always introduce

channel reuse when an interference model estimates that concurrent transmissions will not

interfere with each other. In addition, RA is also similar to TASA [53], a centralized TSCH

scheduling approach that always allows transmissions to share a channel when ρ ≥ 2. For a

fair comparison, we set the minimum channel reuse distance ρt for RC to 2.
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Figure 5.1: Schedulable ratios under varying number of channels and flows based on the
centralized traffic (Indriya).
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5.6.1 Real-Time Performance

We evaluate the effectiveness of our channel reuse policy in enhancing real-time performance

by using a schedulable ratio as a metric. A schedulable ratio is a fraction of flow sets that is

schedulable. For each experiment, we generate 100 different flow sets.

Figures 5.1 and 5.2 present schedulable ratios based on the Indriya testbed topology. We

compare RC against NR and RA under a varying number of channels, flows, and periods.

Figures 5.1a, 5.1b, 5.2a, and 5.2b show RA and RC consistently outperform NR, especially

when there are a limited number of channels, i.e., when the number of channels is from 3 to

5. Under the peer-to-peer traffic and the period range P = [2−1, 23], NR cannot successfully

generate any schedule for any number of channels as shown in Figure 5.2b. Note that

increasing the number of channels does not always monotonically improve schedulability.

Although more channels enhance network capacity, at the same time, they can degrade route

diversity in the network and introduce more transmission conflicts as observed in our previous

study (See Section 4.3.3).

Both RC and RA also yield higher schedulable ratios compared to NR as the number of flows

increases. Figure 5.1c shows, under the centralized traffic, RA and RC achieve the maximum

of a 7.5X higher schedulable ratio than NR when the number of flows is 40. Figure 5.2c

also illustrates that with the peer-to-peer traffic, as the number of flows reaches 120, NR

can no longer successfully generate schedules, while RA and RC still obtain almost a 100%

schedulable ratio. We also note that a flow path length based on the peer-to-peer traffic is

approximately two times shorter than the path length of a flow under the centralized traffic.

The results demonstrate the benefits of channel reuse in enhancing scalability of the network

under heavy workloads and few available channels. Notably, with lower traffic load, indeed

channel reuse is not needed since flows can be scheduled easily to meet their deadlines. We
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Figure 5.2: Schedulable ratios under varying number of channels and flows based on the
peer-to-peer traffic (Indriya).
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Figure 5.3: Schedulable ratios under varying number of channels and varying number of flows
based on the peer-to-peer traffic (WUSTL).

repeat the experiments based on the WUSTL testbed topology, and observe similar results

as presented in Figure 5.3.

It can also be noticed that channel reuse is more effective under the peer-to-peer traffic since

it enables both RA and RC to outperform NR with a significantly larger margin compared

to the centralized approach. The centralized traffic enforces all packets to be routed through

access points. As a result, it potentially introduces more transmission conflicts near the

access points, which make channel reuse more difficult. Moreover, in most cases, RC can

achieve a schedulable ratio comparable to RA. However, in the worst case, RC obtains a 22%

lower schedulable ratio than RA as shown in Figure 5.3a.

5.6.2 Algorithm Efficiency

We validate if RC indeed meets its goals in: (1) reducing channel reuse and (2) increasing

channel reuse hop distance when channel reuse is adopted. We quantify the number of

transmissions per channel (Tx/channel), and the minimum channel reuse hop count among
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Figure 5.4: Number of transmissions per channel under a varying number of channels
(Indriya).
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Figure 5.5: Channel reuse hop count under a varying number of channels (Indriya).
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senders and receivers of concurrent transmissions on each channel. The results are obtained

from the experiments in Section 5.6.1. Figure 5.4 shows the distribution of different numbers of

transmissions per channel of RA and RC. With the peer-to-peer traffic (Figure 5.4b), compared

to RA, RC attains a higher proportion of 1 Tx/channel (no channel reuse), especially when

there are more available channels. In addition, the results demonstrate that if a channel is

reused, RC schedules fewer transmissions on a channel than RA. While, under the centralized

traffic (Figure 5.4a), both RA and RC achieve comparable results, except when the number

of channels is 3, in which RC achieves a ∼10% higher proportion of 1 Tx/channel than RA.

Figures 5.5a and 5.5b plot the distribution of channel reuse hop count under the peer-to-peer

and centralized traffic, respectively. Again, the peer-to-peer approach allows RC to increase

channel reuse hop count. For every number of channels, RC has the highest proportion for

3-hop count, while RA has the highest proportion for 2-hop count. With the centralized

traffic, both RA and RC are dominated by 2-hop channel reuse. RC demonstrates that it

meets its goals in mitigating interferences by reducing Tx/channel and increasing channel

reuse hop count under the peer-to-peer traffic. However, it is less efficient with the centralized

traffic because the centralized approach introduces more transmission conflicts, which limit

the number of slots that can accommodate channel reuse.

5.6.3 Execution Time

We measure the execution time of the algorithms on a Macbook Pro laptop with 2.7 GHz Intel

core i7. For NR, RA, and RC, we set the number of channels to 5 and the periods P = [20, 22],

and vary the traffic loads. The results are based on the peer-to-peer traffic. Figure 5.6

compares the execution time of NR, RA, and RC. NR obtains the smallest execution time of

0.2 to 0.4 ms, when the number of flows increases from 40 to 100. As the number of flows

reaches 120, NR can no longer successfully generate schedules. The execution time of RA
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Figure 5.6: Algorithm execution time (in milliseconds).

increases linearly from 1.2 ms to 1200 ms as the number of flows increases from 40 to 160,

respectively, while RC incurs 115.1 ms to 290 ms, and sharply increases to 990 ms when

the traffic loads grow from 40, 140, to 160. RC requires less execution time than RA since

RA attempts to adopt channel reuse for every transmission, while RC is more conservative.

Although RC sparingly introduces channel reuse, it obtains longer execution time than NR

because it is required to compute laxity for every transmission. A sudden increase in RC’s

execution time when the number of flows reaches 160 is the result of more workloads, and

heavy computation for channel reuse.

RC’s execution time is acceptable in the WirelessHART network because a schedule does

not need to be reconfigured often. A schedule is recomputed only when the topology or the

traffic demands change significantly. Accordingly, WirelessHART network maintenance is in

frequent by design, e.g., it can take several minutes for a node to detect and report a link

failure to the network manager.
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5.6.4 Network Reliability

Despite enhancing real-time performance, channel reuse may degrade network reliability.

We conduct experiments on the 60-node WUSTL testbed (see Figure 5.7) to obtain the

reliability performance. The testbed runs TSCH MAC protocol with 10 ms time slot and

source routing at the network layer. Source routing allows a sender to retransmit a packet if

its first transmission fails. We generate five different flow sets consisting of 50 flows where

50% of flows release their packets every 2−1 s, and the rest release their packets every 20 s.

We run experiments on 4 channels with observed good performance (channel 11 to 14) and

set the transmission power to 0 dBm. For each flow set, we enable a network to execute the

schedule for 100 times.

Figure 5.8 presents box plots comparing Packet Delivery Ratio (PDR) of NR, RA, and

RC under 5 different flow sets. A PDR is a fraction of packets successfully delivered to its

destination. RC achieves the median PDR at most 1% lower than NR’s median PDR in flow

sets 1, 4, and 5, whereas NR’s median PDR surpasses that PDR of RA by a maximum of 2%

under flow sets 1, 2, and 4. This shows that most of the flows of both RC and RA can achieve

good reliability performance. In terms of worst-case reliability, RC clearly outperforms RA.

RC achieves lower worst-case PDRs than NR by a margin of 3%, 0%, 8%, 3%, and 5% for flow

sets 1 to 5, respectively, while RA decreases the worst-case PDRs by 29%, 18%, 22%, 31%,

and 27% under flow sets 1 to 5, respectively, compared to NR. This is because RC adopts

channel reuse more conservatively compared to RA as shown in Figure 5.9. It is important

to note that worst-case reliability is important in industrial applications because severe data

loss can degrade stability and control performance and may lead to system failure. Although

RC may still suffer from interferences due to channel reuse, in exchange for a much higher

schedulable ratio, advances in networked control have contributed control designs that can
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tolerate packet losses systems (e.g., [32] and [69]). Our approach is suitable for such resilient

control systems.

5.6.5 Detecting Links Affected by Channel Reuse

We evaluate our detection policy in terms of its applicability to identify links whose reliability

is degraded by channel reuse under both RA and RC approaches. In this set of experiments, we

generate 50 peer-to-peer flows, which release a packet every 1 s. By default, a WirelessHART

node must deliver a health report to the network manager every 15 minutes (=1 epoch). In

each epoch, we obtain the PRR distribution consisting of 18 samples. We also calculate the

overall PRR of each link in each epoch. Note that we consider the PRR distribution of each

link over all channels used.

We run experiments under a clean environment on channel 11 to 14. We then generate external

interference using WiFi in order to demonstrate that our detection policy can differentiate

unreliable links caused by channel reuse from those caused by external interference. Because

every node in the WUSTL testbed is connected to a Raspberry PI through a USB port

for testbed management and instrumentation, we set up three pairs of Raspberry PIs, one

pair on each floor, to generate interference on WiFi channel 1, which overlaps with 802.15.4

channels 11 to 14. For each pair of raspberry PIs, one is set up as a server (receiver), and

another is a client sending 1 Mbps UDP traffic. We set the significance level α to 0.05 and

PRRt to 0.9. We run the experiments for 6 epochs. There are 95 and 20 links associated

with channel reuse when the flow set is scheduled by RA and RC, respectively.

With RA under clean environment, there are 10 links whose reliability is below PRRt under

channel reuse. Because only links with PRR ≥ PRRt are used for communication, this link

quality degradation is therefore caused by channel reuse because there exists no external
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Figure 5.10: PRRs of rejected and accepted links failing to meet the reliability requirement
when scheduled by RA and RC.

interference. After WiFi traffic is injected to cause external interference on the network,

we observe 18 links with PRR < PRRt. Out of the 18 links with low PRRs, our detection

policy determines that only 14 cases (including all the 10 links with low PRRs in the clean

environment) are attributed to channel reuse (reject), while transmission failures over the

other 4 links are caused by external interference (accept). Our detection policy correctly

detects all 10 links that suffered from channel reuse in the clean environment. Note that

those same links are likely to remain vulnerable to channel reuse under external interference.

Moreover, the additional 4 rejected links were also rejected by the K-S test in the clean

environment. This indicates that channel reuse had a negative impact on these links. However,

as their PRRs still met the reliability requirement in the clean environment, these links do not

need to be rescheduled. When under external interference, however, the external interference

degrades the PRRs of the links while the effect of channel reuse remains. Our policy hence

includes these links among the links that require channel reuse to be avoided.
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Figure 5.11: Rejected links failing to meet the reliability requirement in each epoch under
external interference.

We run similar experiments using RC to generate a schedule. In the clean environment,

all links satisfy the reliability requirement, while under external interference, our detection

policy identifies two rejected links and no accepted link with PRR < PRRt . Again, the two

rejected links were also rejected by the K-S test in the clean environment demonstrating

that they were affected by channel reuse. But because their PRRs were above PRRt in the

clean environment, we do not need to readjust the schedule for these links. Due to RC’s more

conservative channel reuse policy, fewer number of links suffer from link quality degradation

due to channel reuse compared to RA.

Figure 5.10 compares the PRRs of links that fail to meet the reliability requirements for

both rejected and accepted cases when transmissions are scheduled by RA and RC. It can

be observed that rejected links consistently achieve better performance on a contention-free

channel but obtain low PRR when a channel is reused. While accepted links attain poor

reliability performance for both cases. This result shows that our detection policy can

effectively distinguish if link quality degradation is a result of channel reuse or external

interference. Figure 5.11 presents rejected links in each epoch when transmissions are
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scheduled by RA and RC. The result demonstrates that our detection policy consistently

obtains almost the same set of rejected links over the course of the experiments under external

interference.

5.7 Summary

WSANs have become an enabling technology for many IIoT applications that impose strict

demands for real-time and reliable performance. In contrast to traditional approaches designed

to maximize channel reuse, we propose a conservative channel reuse to enhance the real-time

performance of industrial WSANs while mitigating the impact of channel reuse on network

reliability. We further design a classifier to detect reliability degradation caused by channel

reuse. Experimental results from two testbeds demonstrate that conservative channel reuse

significantly outperforms the traditional industrial WSANs without channel reuse in real-time

performance, while achieving higher reliability than aggressive channel reuse.
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Chapter 6

REACT: an Agile Control Plane for a

Centralized Industrial Wireless Network

Architecture

To enhance predictability, industrial WSAN standards such as WirelessHART employ a

centralized management architecture. While the centralized scheme offers deterministic

and reliable communication, it has a significant impact on the network’s ability to adapt

to changing wireless conditions. Most prior efforts in the context of centralized industrial

WSANs focus on improving the performance of the data plane. However, these works often

overlook the control plane, which is crucial for sustaining the data plane performance in

dynamic environments. To address the limitation of the centralized architecture in dynamic

environments, we present REACT, a Reliable, Efficient, and Adaptive Control Plane for

WirelessHART. Specifically designed to support network adaptation, REACT significantly

reduces the latency and energy cost of network reconfiguration, thereby improving the agility
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of WirelessHART under network dynamics. REACT comprises a Reconfiguration Planner

featuring flexible scheduling and routing algorithms and reactive update policies to reduce

rescheduling cost, and an Update Engine providing efficient and reliable mechanisms to report

link failures and disseminate updated schedules. Experimental results on a 50-node wireless

testbed demonstrate that REACT can reduce network reconfiguration latency by 60% at

50% of energy cost when compared to standard approaches.

6.1 Introduction

Industrial WSAN standards such as WirelessHART [83] and ISA100 [33] adopt a centralized

management architecture that guarantees timeliness and highly reliable communication, i.e.,

a centralized manager that can generate a collision-free schedule and enable all packets to be

delivered to meet their deadlines. However, such a solution impairs the network’s ability to

adapt quickly in response to network dynamics. This is due to the fact that the centralized

manager must gather network connectivity information from network devices to generate

routes and a global schedule. The newly computed schedule is then disseminated into the

network through a multi-hop wireless mesh network. This schedule update process can incur

significant communication overhead, especially in a large network.

Despite extensive research on WirelessHART, most works have largely emphasized Wire-

lessHART data plane performance, such as route and schedule optimization, rate selection,

and channel selection. Comprehensive reviews of these works can be found in [42, 49].

However, few works consider the control side of the network, which is critical for monitoring

and maintaining the performance of the data plane. Due to the unpredictable nature of

wireless environment, a network may suffer link quality degradation. While different tech-

niques are used to enhance network reliability, e.g., multi-path forwarding [25] and per-link
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retransmissions [10, 46], a network must have the capability to promptly reconfigure routes

and schedules when link failure occurs.

Additionally, although the WirelessHART standard provides some high-level guidelines and

specifications for its control plane, it leaves open the details regarding the actual design and

implementation. Therefore, our work explores different design spaces for the WirelessHART

control plane to support reliable and efficient network adaptation. Our contributions are

four-fold.

1. We propose REACT , a reliable, efficient, and adaptive control plane optimized for

adaptation in industrial WSANs based on centralized architecture.

2. We develop a Reconfiguration Planner featuring strategies to compute and update

routes and transmission schedules. Designed to minimize the changes to transmission

schedules, the Planner effectively reduce the latency and energy cost in disseminating a

new schedule.

3. We build an Update Engine that provides the mechanisms necessary for network

adaptation, including health reporting, failure notification, and an efficient and reliable

schedule dissemination mechanism. Our design also allows critical flows impacted by

link failures to recover faster than other ones.

4. We implement REACT as the control plane of a WirelessHART protocol stack. Ex-

periments on a 50-node wireless testbed demonstrate that REACT can significantly

reduce the latency and energy cost of network reconfiguration, thereby supporting agile

adaptation in industrial WSANs.

The rest of the chapter is organized as follows. Section 6.2 reviews related works. Section 6.3

introduces TSCH scheduling. Section 6.4 described REACT architecture. Section 6.5 presents
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the policies used in the Reconfiguration Planner, and Section 6.6 details the design of the

Update Engine. Section 6.7 presents evaluation results, and Section 6.8 summarizes the

chapter.

6.2 Related Work

Earlier works on real-time scheduling for centralized TDMA-based networks addressed

different objectives, such as optimizing real-time performance [13, 63] or enhancing reliable

communication [25, 46]. However, these works schedule transmissions without taking into

account the need for a schedule to be updated due to network dynamics. Consequently, a

network may incur considerable adaptation cost. Our system includes a scheduling policy

that helps mitigate schedule reconfiguration cost by reducing schedule-related information

that must be disseminated by a network manager.

There are other scheduling approaches to facilitate network adaptation. Dezfouli et al.

introduced Rewimo [17], a wireless solution for real-time scheduling in mobile networks.

Rewimo incorporates a scheduling technique for a TSCH network that schedules nodes

additively, so a network manager disseminates only a schedule of newly admitted nodes in

response to workload changes. Nevertheless, the scheduling policy does not consider the need

for schedule updates due to link failure. To tackle the unreliable nature of wireless links, Yang

et al. [87] proposed slot assignment algorithms supporting efficient slot rescheduling, and

Shen et al. [66] developed a source-aware scheduling algorithm that trades off schedule length

and schedule reconfiguration overhead. While our scheduling and reconfiguration policies

are built upon a TSCH network and allow multiple flow classes, their scheduling polices are

based on a single channel TDMA network, and consider only one class of flow, i.e., all flows

have the same period and deadline.
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There are also previous efforts to support network maintenance and adaptation mechanisms

for industrial WSANs, based on a centralized architecture in which a network manager collects

network statistics and centrally computes a global schedule. Pottner et al. [55] developed a

schedule construction algorithm and proposed mechanisms to monitor link quality and verify

the validity of a schedule throughout the network lifetime. O’Donovan et al. [50] proposed

GINSENG, a complete industrial WSAN solution that enables topology maintenance and

adaptation through BurstProbe [9] and dynamic tree construction. Both of these solutions

are designed for a single channel TDMA network, whereas REACT is geared towards a TSCH

network operating on multiple channels.

Additionally, Livolant et al. [41] compared the cost of installing and updating schedules

among existing protocols such as CoAP [15] and CoMI [16] that run on top of a centralized

6TiSCH [31] network, and a custom industrial WSAN protocol OCARI [4]. This work

investigated only the impact of these protocols on the number of messages required to install

a global schedule, while REACT offers a more complete solution for schedule reconfiguration

in a WirelessHART network.

Conversely, a decentralized architecture allows nodes to construct their own schedules, which

enables them to adapt quickly when network connectivity changes. The following works

are built on a network running TSCH and RPL [61]. Duquennoy et. al [20] proposed

Orchestra, where nodes autonomously build their own schedules without requiring additional

signaling among neighbors. In the context of the OpenWSN (an open-source implementation

of 6TiSCH) [51], uRes [79] introduced a schedule negotiation mechanism between neighbor

nodes to compute local schedules. Accettura et al. [1] presented DeTAS, a decentralized

scheduling protocol, implemented on OpenWSN. DeTas ensures the smallest end-to-end

latency, and reduces neighbor-to-neighbor signaling to generate local schedules. Although
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these protocols enhance network adaptability, they provide only best-effort service, and

cannot guarantee real-time performance.

Glossy [23] provides fast and efficient network flooding by exploiting constructive interference

and the capture effect. Blink [90] combines a Glossy-based Low-Power Wireless Bus proto-

col [22] and real-time scheduling, and offers a promising alternative to TSCH-based networks.

In contrast to the above-mentioned efforts, Blink is topology independent. Any change in

network connectivity does not impact its global schedule. Taking another approach, REACT

adopts the WirelessHART network model, which is the state-of-the-art industrial solution.

6.3 TSCH Scheduling

A centralized scheduler residing on the network manager constructs a global schedule. Building

a schedule involves allocating a time slot and a channel offset to each transmission. To

generate a feasible schedule, a scheduler must follow these scheduling constraints :

1. Slot constraints:

(a) Due to a half-duplex nature of the IEEE 802.15.4 radio, a node can only send or

receive at a given time, so no two transmissions in a time slot can share a common

node.

(b) To prevent intra-network interference, only one transmission can be scheduled on

each channel in a time slot. With c available channels, there can be at most c

concurrent transmissions in a slot, and the channel offset is within the range [0, c].

2. Precedence constraint: a sender must receive a packet before forwarding it, i.e., trans-

mission tij must be scheduled in a time slot before transmission tij+1.

3. Real-Time constraint: all flows must be scheduled to meet their deadlines.
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Our work adopts fixed priority scheduling , which offers a efficient and computationally

inexpensive heuristic. Hence, it is commonly used for real-time systems. Each flow Fi is

associated with a priority. A flow Fi has higher priority than a flow Fl if i < l. Priorities are

commonly assigned based on a flow’s period or deadline, and a scheduler schedules flows in

decreasing order of priority. For each flow Fi, with respect to the scheduling constraints, a

scheduler allocates a time slot and a channel offset to each transmission tij.

6.4 REACT Architecture

Figure 6.1 depicts REACT architecture, consisting of (1) a gateway enabling communication

between network devices (sensors or actuators) and the centralized controller (2) a host

running network manager software (3) a WSAN comprising multiple network devices forming

a wireless mesh network, and (4) two access points (AP) wired to the network manager and

the gateway. Providing two access points offers redundant paths between the WSAN and the

back plane. To support network reconfiguration, REACT includes two major components: a

reconfiguration planner and an update engine.

Gateway

Topology Update 

New graph

New route

New schedule

Network Manager

Updated schedule

Health report and failure notification
Schedule update ACK

Route Update 

Schedule Update 

Update Scheduler

Neighbor 
Maintenance

Forwarding

Network Device

AP

WSAN

AP

802.15.4 PHY

TSCH Scheduling
TSCH

Figure 6.1: REACT architecture and adaptation process.
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6.4.1 Reconfiguration Planner

The Reconfiguration planner resides on the network manager, and consists of the following

components:

• Topology update: A manager collects link statistics from all network devices, and

generates a network topology represented as a graph G(V,E), where V is a set of

network devices and E is a set of links reliably connecting different pairs of network

devices. When a link fails to meet the reliability requirement, the link is removed from

the topology. Conversely, if a node detects a new neighbor with reliable connectivity, a

link between the node and its neighbor is added into the topology.

• Route update: The module is responsible for creating flow routes and constructing a

broadcast graph for disseminating schedule information from the manager downward

to all network devices. With an updated topology, it computes new routes for flows

associated with a failed link and adjusts the broadcast graph if necessary. Our work

incorporates a partial reroute policy enabling the flow schedule to be modified partially,

and consequently reducing the amount of flow’s schedule that must be updated.

• Schedule update: Based on the new routes, the scheduler recalculates a new global

schedule. It utilizes gap-induced scheduling scheme, which complements our rescheduling

policy in granting only schedules of flows affected by link failure to be updated, thereby

lowering the schedule dissemination cost.

6.4.2 Update Engine

The update engine is composed of two different mechanisms to enable schedule reconfiguration.
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• Health report and failure notification: Each network device maintains statistics pertain-

ing to connectivity between a node and its neighbors. It learns these statistics through

regular transmissions of data packets and periodic neighbor-discovery packets. These

statistics are then reported to the network manager through upstream control flows,

which provide routes from nodes to access points. When a node identifies a failed link,

it notifies the network manager through the same upstream flow.

• Schedule dissemination: An update scheduler installed on the network manager con-

structs packets. It schedules updates based on flow priority. Therefore, more critical

flows receive updates and recover faster than less critical flows. Schedule-related in-

formation is propagated through a broadcast graph to destinations. Nodes receiving

update commands modify their TSCH schedules, and send acknowledgement (ACK)

back to the network manager, using the upstream control flows. The ACK allows the

network manager to handle packet losses and ensure all affected nodes receive its new

schedule.

6.5 Configuration Planner

In this section, we present policies that are incorporated into our reconfiguration planner to

reduce schedule reconfiguration cost. These policies include a gap-induced scheduling policy,

which the scheduler follows while creating or updating a schedule, the partial reroute scheme

for a route update, and the rescheduling policy for a schedule update.

6.5.1 Gap-Induced Scheduling Policy

We propose a scheduling policy based on fixed priority scheduling to support efficient

transmission rescheduling in response to link failure. Our policy is designed to (1) decrease
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superframe

Slots assigned to flow 1
Slots assigned to flow 2

…

Figure 6.2: A superframe consists of 16 slots containing two flows (flow 1 with P1 = 8, and
flow 2 with P2 = 16.)

the likelihood that an update to the schedule of a higher priority flow will impact the

schedules of its lower priority flows. (2) enable a flow’s schedule to be reused partially

when possible. Therefore, only limited portions of a schedule are modified, which lowers the

schedule dissemination overhead.

Key Ideas

With fixed priority scheduling, flows are scheduled in descending order of priority. For each

flow, (1) transmissions are assigned to the earliest feasible slot in a sequential order [62] or

(2) a scheduler schedules transmissions in reverse order by selecting the latest possible slot

meeting the scheduling constraint [17]. In contrast to these two traditional approaches, our

scheduling algorithm adopts the following polices to reduce the rescheduling cost.

1. It ensures that for each flow Fi, the same schedule is repeated for every released packet

1, 2, ...T/Pi within a superframe. As shown in Figure 6.2, flow 1 (with P1 = 8) repeats

its schedule twice in the superframe of size 16. With a regular scheduling pattern, the

network manager can disseminate less schedule-related information to wireless devices.

In practice, flow periods are usually harmonic, so this policy is then easy to satisfy

when we schedule or reschedule transmissions.

2. It adds gaps between transmissions belonging to the same flow. This policy provides

two benefits.
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ch/slot 1 2 3 4 5 6 7 8 9 10

0 aàb bàc càd aàb bàc càd

ch/slot 1 2 3 4 5 6 7 8 9 10

0 aàb bàc càd aàb bàc càd

Schedule 1: Earliest Possible 

Schedule 2: Introducing Gap

Figure 6.3: Examples of schedules based on two slot scheduling heuristics. Flow 1 (P1 =
D1 = 5) sends a packet through route a→ b→ c→ d.

ch/slot 1 2 3 4 5 6 7 8 9 10

0 aàb bàc càd aàb bàc càd
1 bàf fàg gàh

ch/slot 1 2 3 4 5 6 7 8 9 10

0 aàb bàc càd aàb bàc càd
1 bàf fàg gàh

ch/slot 1 2 3 4 5 6 7 8 9 10

0 aàb bàc càd aàb bàc càd
1 bàf fàg gàh

Schedule 1: Earliest Possible 

Schedule 2: Introducing Gap

Schedule 3: Fewer Transmissions per Slot

Figure 6.4: Examples of schedules based on different heuristics. Each schedule consists of
two flows: flow 1 (P1 = D1 = 5, φ1 = a → b → c → d) is labeled in black, and flow 2
(P1 = D2 = 10, φ2 = b→ f → g → h) is labeled in red.

First, it allows a flow to be rescheduled partially when the route of a flow does not

entirely change. For instance, Figure 6.3 presents two schedules: (1) where a scheduler

picks the earliest possible slot for each transmission, (2) when transmissions are spread

out from each other. Initially, a flow sends a packet through route a → b → c → d.

Suppose link b → c fails, and a newly computed route is a → b → f → c → d. To

obtain a new schedule, with the first schedule, a scheduler has to replace b→ c with

b→ f , replace c→ d with f → c, and move c→ d to slot 4. However, for the second

schedule, a scheduler needs only to add b→ f to slot 2 and replace b→ c with f → c.

Hence, the second schedule incurs fewer operations to update.
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Second, it reduces the chance of lower priority flow schedules hindering the modification

of a higher priority flow’s schedule, so a change made to higher priority flows has less

chance of impacting lower priority flows. For example, in Figure 6.4, there are two

flows F1 and F2. Similar to the previous example, suppose b → c fails and a new

route of F1 is a → b → f → c → d. With the first schedule, in order to schedule F1

to meet its deadline at slot 5, the scheduler has to reschedule F2 as well, since b→ f

and f → g block time slots 3 and 4. Otherwise, these two slots can be allocated to

f → c of F1. On the other hand, with the second schedule, a scheduler can reschedule

F1 without affecting F2 by removing b → c, then adding b → f and f → c to slots 3

and 4, respectively.

3. It reduces the number of concurrent transmissions in each time slot, which spreads

out transmissions belonging to different flows. This heuristic also helps prevent lower

priority flow from blocking updates on higher priority flow schedules. As shown in

Figure 6.4, for schedule 3, the scheduler avoids scheduling multiple transmissions in

the same time slot. Again, supposing link b→ c fails, then the scheduler needs only

to modify the schedule of F1 by adding b→ f to slot 2, f → c to slot 3, and moving

c→ d to slot 4, and does not need to update F2’s schedule.

Gap-Induced Scheduling Algorithm

A detailed description of our gap-induced scheduling policy is presented in Algorithm 3. Here,

a time slot means a slot offset in the superframe. With a superframe length of T , the slot

offset is within the range [1, T ]. Both the periods and deadlines of flows are measured in slots.

The input of the algorithm is a set of flows F and c available channels, and the output is a

global schedule S. The algorithm schedules flows in descending order of flow priority. Each

flow Fi consists of a sequence of transmissions Γi = {ti1, ti2, ...tin}, and |Γi| is the size of
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Algorithm 3: Gap-Induced Scheduling
Input :A flow set F ordered by priority, c = the number of available channels
Output :A global schedule S

1 foreach flow Fi, where i=1 to k do
2 foreach transmission tij, where j = n to 1 do
3 χij = ObtainFeasibleSlots(tij);
4 if j==1 then
5 xi1 = earliest slot in χij;
6 S.assign(ti1, xi1, unusedChannel(xi1));
7 else if j==n then
8 xin = latest slot in χij;
9 λin = xin;

10 S.assign(tin, xin, unusedChannel(xin));
11 else
12 λij = latest slot in χij, where λij < λij+1;

13 foreach transmission tij, where j = 2 to n−1 do
14 y = xij−1 + (xin − xij−1+1)/(|Γi| − j + 1);
15 xij = SelectSlot(tij, χij, xij−1, λij+1, y);
16 if xij==-1 then
17 return ∅;
18 S.assign(tij, xij, unusedChannel(xij));

19 return S;
20 Function ObtainFeasibleSlots(tij):
21 for q = 1 to T/Pi do
22 Find Xq = set of slots in [riq, diq] that meets the slot constraint
23 foreach slot x in Xq do
24 x = (x− 1) mod Pi + 1;

25 χij =
⋂T/Pi

q=1 Xq;

26 return χij;

27 Function SelectSlot(tij, χij, xij−1, λij+1, y):
28 if ∀x ∈ χij, x /∈ (xij−1, λij+1) then
29 return -1;

30 foreach slot x ∈ χij and x ∈ (xij−1, λij+1) do
31 dist(x, y) = |x− y|+ 1;
32 w(x) = (#trans(x) + 1)/c;
33 cost(x) = dist(x, y) ∗ w(x);

34 return arg minx cost(x);
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Γi. During a superframe, a flow generates T/Pi packets. Each packet q is released at time

riq and has a deadline diq. The first step is to obtain a set of feasible slots χij for each

transmission tij (function ObtainFeasibleSlot()) starting from the last transmission tin to

the first transmission ti1. A time slot x is added to χij if ∀q, a slot (q − 1) ∗ Pi + x satisfies

the slot constraint for tij and is within [riq, diq]. Because the scheduler will assign only a slot

in χij to each tij, it is guaranteed that a flow can repeat the same schedule for every packet

released in the superframe. The scheduler also determines the latest feasible slot λij ∈ χij

for each transmission tij, where λij < λij+1 for transmission 2 to n-1. Note that a function

S.assign() assigns a time slot xij and an unused channel offset in xij to tij.

To spread out transmissions and introduce gaps between transmissions of a flow, the algorithm

schedules the first transmission ti1 of flow Fi at the earliest possible slot xi1 ∈ χi1, and assigns

the latest feasible slot xin ∈ χin to the last transmission tin. For each remaining transmission

tij, from j = 2 to n− 1, the scheduler computes an ideal slot y (line 14). Suppose xij−1 is

a slot assigned to the previous transmission tij−1, and |Γi| − j is the number of remaining

unscheduled transmissions. Here, if the scheduler divides slots in the range [xij−1 + 1, xin− 1]

into |Γi| − j + 1 equal segments, and assigns a time slot at the end of segment 1 to segment

|Γi| − j to each remaining transmission, then tij and remaining transmissions after tij can be

spaced evenly between [xij−1 + 1, xin− 1]. Hence, in other words, y is the last slot in the first

segment.

A function SelectSlot() determines the best slot for tij . It computes the cost of choosing slot

x ∈ χij (line 33), considering the distance between x and y and the number of transmissions

already scheduled in x (#trans(x)). The scheduler selects the lowest-cost slot xij for

tij (i.e., the slot closest to y and already allocated to the fewest transmissions), where

xij ∈ [xi,j−1 + 1, λij+1 − 1]. The algorithm enforces tij to be scheduled after a slot xi,j−1

(to preserve the precedence constraint) and before the latest feasible slot λij+1 of the next

100



transmission ti,j+1 (to ensure the flow’s schedulability). The algorithm terminates when (1)

transmissions of all flows are scheduled within their deadline, or (2) a scheduler cannot find a

slot for tij, i.e., no slot in χij is within the range (xi,j−1, λij+1).

6.5.2 Partial Reroute

Selecting a new route for a flow associated with link failure influences the flow’s new schedule.

To allow affected flows to reuse parts of their old schedules, the routing algorithm should

choose a new route that includes links in the old route. A network topology is represented as

a graph G(V,E), where V is a set of network devices and E is a set of links. A link is added

between nodes u and v if u and v can reliably communicate with each other. In particular,

the packet reception ratios (PRR), the number of packets successfully received over the total

number of packets sent, of both links u→ v and v → u must be higher than the reliability

requirement in all c channels used. Due to channel hopping, nodes must be able to reliably

communicate in all channels used.

After a graph is updated by removing a failed link, we calculate a new route for each affected

flow in decreasing order of flow priority. Let φi be an old route of Fi. A flow Fi can obtain a

new route φ′i in two steps.

1. We use the Dijkstra’s algorithm to calculate Fi’s route. For each link in G(V,E) in the

old route φi, we sets its weight to w/2, whereas we set the weight of the remaining

links to w. By doing so, the algorithm will output the least-cost route, i.e., a shorter

route containing links used in φi. Due to the centralized control architecture, a packet

needs to be propagated upstream from a source to an access point and a gateway, and

downstream from a gateway and an access point to a destination. Because our work
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considers two access points in the network, Dijkstra’s algorithm must compute four

routes per flow (one upstream and one downstream route for each access point).

2. Because a new route φ′i is a combination of an upstream and a downstream route, the

routing algorithm must select the combination with the lowest cost. Here, the cost is

computed based on the number of operations required to update a route from φi to φ′i,

which reflects the minimum cost of modifying a flow schedule. There are two possible

update operations, DELETE and ADD. If a link in φi no longer exists in φ′i, we must

perform a DELETE operation. On the other hand, if a link is in φ′i, but not in φi, then

an ADD operation is required. The cost is defined as (nDEL ∗ a) + (nADD ∗ b), where

nDEL and nADD are the numbers of deleting and adding operations, respectively.

Here, a and b are the numbers of bytes required to DELETE or ADD a schedule of a

transmission (see Section 6.6.2).

6.5.3 Schedule Reconfiguration Policy

Based on fixed priority scheduling, if a schedule of a higher priority flow is updated due

to a failed link, all of its lower priority flows must be rescheduled as well, although these

lower priority flows are not pertinent to the failed link. Such an approach introduces more

modification to a global schedule, which implies a corresponding higher schedule dissemination

cost. The goal of this policy is to reduce the schedule update cost by (1) rescheduling only flows

affected by the failed link and (2) reusing a flow’s schedule as much as possible. Consequently,

fewer packets are required to update a global schedule. A schedule constructed based on the

gap-induced scheduling policy has a higher chance of being successfully reconfigured to meet

these two goals. For the same reason, the reconfiguration policy also adopts gap-induced

scheduling scheme when rescheduling transmissions.
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Algorithm 4: Flow Rescheduling
Input :A set of affected flows F ′, ordered by priority, and the current global schedule S
Output :A new global schedule S ′

1 S ′ = S;
2 foreach affected flow Fi ∈ F ′ do
3 Remove from S ′ schedules of all transmissions in Γi that no longer exist in Γ′i;
4 while not all transmissions in Γ′ have been scheduled do
5 Γ′s = latest set of unscheduled transmissions in Γ′ that cannot be reused,

{tip, tip+1, ...tiq};
6 if p == 1 then
7 lower_bound = 1;
8 else
9 lower_bound = xip−1+1;

10 if q == m then
11 upper_bound = Di;
12 else
13 upper_bound = xiq+1-1;
14 success = false;
15 while success == false do
16 success = reschedule(Γs, lower_bound, upper_bound);
17 if not success then
18 if p == 1 and q == m then
19 return ∅;
20 else if p == 1 and q! = m then
21 < Z, upper_bound > = ExpandRight();
22 else if p! = 1 and q == m then
23 < Z, lower_bound > = ExpandLeft();
24 else
25 < ZR, upperR > = ExpandRight();
26 < ZL, lowerL > = ExpandLeft();
27 if (upper_bound− lowerL+ 1)/|Γ′s ∪ ZL| ≥

(upperR− lower_bound+ 1)/Γ′s ∪ ZR| then
28 < Z, lower_bound >=< ZL, lowerL >;
29 else
30 < Z, upper_bound >=< ZR, upperR >;
31 Γ′s = Γ′s ∪ Z;

32 return S ′;
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33 Function ExpandLeft():
34 Z.add(tip−1);
35 foreach transmission tij ∈ Γ′ where j = p− 2 to 1 do
36 if tij is already assigned a time slot then
37 return < Z, xij + 1 >
38 Z.add(tij);

39 return < Z, 1 >

40 Function ExpandRight():
41 Z.add(tiq+1);
42 foreach transmission tij ∈ Γ′ where j = q + 2 to n do
43 if tij is already assigned a time slot then
44 return < Z, xij − 1 >;
45 Z.add(tij);

46 return < Z,Di >;

Schedule Reconfiguration Algorithm

Algorithm 4 describes the procedure for rescheduling flows associated with a failed link. The

input of the algorithm is a set of affected flows F ′, ordered from highest to lowest priority,

and a current global schedule S. The output is a new global schedule S ′. The algorithm first

assigns S to S ′. Let Γi be the old set of transmissions, and let Γ′i = {ti1, ti2, ...tim} be the

new set of transmissions of flow Fi. For each affected flow Fi, the algorithm removes the

schedule of transmissions that no longer exist in Γ′i, i.e., transmissions that cannot be reused.

Let Γs ⊂ Γ′i be a set of sequential transmissions {tip, tip+1, ...tiq}, where all transmissions in

Γs do not exist in Γi. If Γs contains only one transmission, then p = q. There can be one

or more discrete sets of Γs in Γ′i. Our policy aims to reschedule only transmissions in Γs,

without modifying the schedules of other transmissions. For instance, suppose an old set

of transmissions is {a → b, b → c, c → d, d → e} and a new set of transmissions comprises

{a→ b, b→ c, c→ g, g → e}. Here, there is only one set of transmissions Γ′s to be scheduled,
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namely, {c → g, g → e}. Transmissions a → b and b → c should be allocated to the same

slots and channel offsets as in schedule S.

The reschedule() function schedules transmissions in Γ′s following the gap-induced schedul-

ing policy, and time slots allocated for these transmissions must be within the range

[upper_bound, lower_bound] to avoid interfering with the schedule of those reusable trans-

missions. If p = 1 (first transmission), then the lower_bound is the first slot of the superframe.

And if q = m (last transmission), the upper_bound is a flow deadline Di. Otherwise, the

upper_bound and lower_bound slots are xip−1+1 and xiq+1-1, respectively, and xip−1 and

xiq+1 are time slots already assigned to the transmissions tip−1 and tiq+1 (in the old schedule

S).

If the scheduler fails to schedule transmissions in Γ′s, i.e., reschedule() returns false, the

algorithm will add more transmissions into Γ′s and adjust either the lower_bound or the

upper_bound through the functions ExpandLeft() or ExpandRight(). In this case, the

algorithm needs to reschedule some of the transmissions that can be reused as well. Then,

it attempts to reschedule Γ′s again. This step repeats until all transmissions in Γ′s can be

scheduled successfully. ExpandLeft() adds one or more transmissions prior to tip to Γ′s

and adjusts a lower_bound, whereas ExpandRight() adds at least one transmission after

tiq to Γ′s and computes a new upper_bound. In both functions, the algorithm keeps adding

transmissions to Γ′s until it reaches the next transmission that is already assigned a time slot,

which sets a new upper_bound or a new lower_bound. By doing so, the algorithm gradually

updates the schedule of those reusable transmissions only when necessary, which enables a

flow to preserve its old schedule as much as possible. The algorithm chooses to ExpandLeft()

if its upper_bound has reached Di, and ExpandRight() when the lower_bound is already

set to 1. Otherwise, the algorithm will compute which option is better. The better option is
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the one providing the higher ratio of the number of slots in [lower_bound, upper_bound] to

the number of transmissions in Γs after the expansion.

The algorithm terminates if it cannot successfully reschedule a flow, i.e., when Γ′s con-

tains all the transmissions in Γ′i and the upper_bound and lower_bound reach their limits

(upper_bound = Di and lower_bound = 1). In this case, the algorithm cannot modify a

schedule of Fi without rescheduling other flows. Otherwise, the algorithm ends when all the

affected flows are scheduled to meet their deadlines

6.6 Update Engine

In this section, we present the designs of our update engine to handle network adaptation.

We first discuss health reporting and failure notification mechanisms, and then a schedule

dissemination mechanism.

6.6.1 Health Report and Failure Notification Mechanisms

Before a WSAN network is made operational, to determine a reliable set of links and channels

for calculating routes and schedules, the network manager must collect complete topology

information from every node and on all 16 channels. Because environmental conditions in

a plant change over time, the manager must update the network topology throughout the

network’s lifetime, and must ensure the current flow routes and schedule stay valid. Therefore,

while the network is operating, nodes must have the capability to report link condition to

the network manager.

To maintain neighbor statistics, each node deploys a neighbor table of link statistics for

each of its neighbors, e.g., PRR. A node obtains the PRR from periodic data packets and
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neighbor-discovery packets. Each node is required to broadcast a neighbor discovery packet

periodically on all channels used, so other nodes hearing the packet can maintain their

connectivity with the sender node. In particular, for each link, a node records if a packet is

successfully received, and uses a sliding window to compute the current PRR.

Instead of periodically reporting to the network manager the link statistics of every neighbor,

our system reduces the amount of data uploading to the network manager by letting nodes

send a health report only when they discover new neighbors or when the link quality between

a node and any of its neighbor falls below the reliability requirement, thereby saving the

network resources. A node activates a link failure notification whenever an active link, i.e.,

a link used by any data flow, fails to meet the reliability requirement. To ensure that a

notification will eventually arrive at the gateway, both the sender and receiver associated

with the failed link will repeatedly send out notifications until they receive a new schedule.

Reserving periodic upstream control flows for health reports and failure notifications from

every network device to the gateway can be expensive, because these flows are left unused

when there is no change in the network condition. To conserve network resources, these

control data can be piggybacked onto periodic data packets. We allocate a separate upstream

control flow for a node only when it has no upstream data flow passing through. The amount

of control data required to indicate a newly added link or a failed link does not add much

overhead to the data packet. Additionally, data flows tend to run at higher rates than control

flows, thus control information can be delivered to the network manager faster.

6.6.2 Schedule Dissemination Mechanism

In this section, we describe our schedule dissemination mechanism that supports reliable and

efficient schedule updates. Our design provides the following features: (1) it updates the
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schedules of critical flows first, and enables these flows to recover quickly from link failure,

(2) it disseminates schedule information through a broadcast graph that offers route diversity,

and forwards only selected packets to enhance energy efficiency, (3) it guarantees that new

schedules reach all affected nodes, and (4) it can handle multiple link failures.

Update Scheduler

It is important that critical flows (flows with higher priority) promptly recover from link

failure. Since these critical flows usually have shorter periods, a longer schedule update

latency results in more packet losses. Therefore, we design our system to ensure that

schedules of more critical flows are updated first. To facilitate such a design, the update

scheduler disseminates packets containing schedules of higher priority flows before packets

with lower priority flow schedules. The update scheduler must first form packets containing

schedule update commands and then determine the sequence in which these packets will be

disseminated.

To reduce schedule dissemination overhead, the network manager identifies the differences

between the old and the newly computed schedules, and distributes only the modified portions

of the global schedule to the affected network devices. Our system supports two schedule

modification commands ADD and DELETE. A DELETE command removes the transmission
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of a flow from a time slot, while an ADD command schedules a new transmission in a time

slot. An ADD command contains a schedule entry associated with a new transmission. A

schedule entry is represented by the following attributes: slot offset (2 bytes), channel offset

(4 bits for the maximum of 16 channels), sender (1 byte), receiver (1 byte), flow ID (1 byte),

and slot type (1 bit). The flow ID indicates which flow a transmission belongs to, and the

slot type specifies whether a slot is dedicated or shared. For a DELETE command, it is

sufficient to specify only the sender (1 byte), the receiver (1 byte), and the time slot (2 bytes)

of the transmission to be removed. The WirelessHART standard suggests that the number of

nodes in a network should not exceed 80, therefore, 1 byte is enough to address all nodes in

the network. Hence, it requires 6 bytes to ADD a new schedule, and 4 bytes to remove a

schedule entry. Note that the maximum packet length of the IEEE 802.15.4 PHY layer is 127

bytes [29], and the MAC payload can contain up to 98 bytes [30].

To constructs packets, the update scheduler follows these steps:

1. It sorts the schedule update commands in decreasing order of flow priority, so that

higher priority flow schedules are included in earlier packets. For each flow, DELETE

commands precede ADD commands, since a schedule entry needs to be removed before

a new entry is added.

2. It adds schedule update commands into a packet until the packet is full, then creates a

new packet.

3. It assigns each packet a sequence number. Packets receiving smaller sequence numbers

contain schedules of higher priority flows.

The update scheduler distributes packets with lower sequence numbers first, and ensures that

all intended recipients have received the packets before disseminating packets with higher
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sequence numbers. Once a node receives each packet, it immediately updates its TSCH

schedule, and executes a new schedule in the next superframe. Therefore, higher priority

flows can recuperate and use a new schedule, while the update scheduler is still disseminating

and updating schedules of the lower priority flows.

Broadcast Graph

We use a broadcast graph to disseminate update commands. Compared to installing multiple

downstream control flows from access points to every network device, a broadcast graph

requires fewer time slots to deliver a packet to every network device. In addition, with fewer

allocated time slots, nodes can save the energy cost when no packet is being distributed,

because every node scheduled to receive in a time slot must always listen on a channel for at

least 2.2 ms [83] to detect if there is an incoming packet or not. If there is not, the node will

turn off its radio. Otherwise, it continues to receive the packet.

A broadcast graph consists of two root nodes (access points), multiple intermediate nodes that

receive and forward packets, and multiple leaf nodes, which only receive packets. To provide

route diversity and ensure reliable dissemination of packets containing update commands, we

require that an intermediate or a leaf node must have two parents, and an intermediate node

must receive a packet from both parents before broadcasting a packet to its children.

Since each packet contains schedules intended for different sets of nodes, it is energy-inefficient

to disseminate every packet to every node. Therefore, we allow intermediate nodes in a

broadcast graph to forward a packet only when they are on a path to packet’s destinations.

To realize such a forwarding mechanism, we install on intermediate nodes information about

each node’s children and its descendants in a broadcast graph. Hence, when a node checks

the destinations of a packet, it can decide whether to forward a packet. Figure6.5 presents a
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broadcast graph in which each node has two parents. Here, if a packet is destined for nodes

f and h, then only nodes b, c, and f can forward the packet.

When a broadcast graph is also affected by link failure, its schedule will be altered as well. A

broadcast graph’s new schedule will be disseminated after the schedules of all affected data

flows have been updated. To ensure that all nodes use the same broadcast graph during the

current schedule update, a new broadcast graph schedule is executed at a later time, when

the network again requires schedule reconfiguration.

Handling Packet Losses

We use a simple acknowledgement scheme to confirm that nodes have received all their

schedule update packets. For every new packet a node receives, the node sends an ACK back

to the network manager through an upstream flow. Similar to health reports and failure

notifications, we allow an ACK to be piggybacked onto a data packet. Since there can be

more than one packet intended for a node, an ACK must contain a packet number identifying

the specific packet a node received. The update scheduler ensures that it receives ACKs from

all recipients of the packet. Otherwise, it needs to resend that packet until the packet reaches

all destinations. If the manager sends a packet at the beginning of superframe x, then it

expects to receive ACKs from all destination nodes at the end of superframe x+1, because a

packet may arrive at the node after an upstream flow has already been scheduled in that

superframe. In this case, an ACK will be sent in the next superframe.

Figure6.6 shows the timeline for a schedule update consisting of three packets, P1, P2, and

P3. In the first superframe, the update scheduler distributes the first packet P1. It expects

all ACKs for P1 to be delivered by the end of superframe 2. While waiting for P1’s ACKs,

the update scheduler distributes P2 in the second superframe, and checks if it has received all
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ACKs for P1 at the end of that superframe. If some ACKs for P1 are absent, the scheduler

will resend P1. If at least one node belonging to a flow does not receive a schedule, then the

entire flow is not operational. Hence, to ensure that higher priority flows can complete the

update first, the scheduler must resend P1 before sending P3.

Handling multiple link failures

Our system can handle multiple incoming link failure notifications. If a new failure notification

arrives, while the network manager is computing a new schedule or when a new schedule

has not been disseminated yet, then the network manager can halt those operations and

recalculate a new schedule. Contrarily, if the dissemination process is on going as a new

notification arrives, the manager will have to stop disseminating packets and start recomputing

a new schedule again. In the meantime, nodes that already have received a schedule update

will execute those partial new schedules. Since our system updates schedules based on flow

priority, flows that already received an update will run a new schedule, while the other flows

execute on the old schedule, as they wait for the manager to compute and distribute the

most recent schedule.

6.7 Evaluation

To evaluate the performance of REACT, we develop a reconfiguration planner and an update

engine to support schedule reconfiguration. We implement network manager software running

on our server, and a protocol stack running on TinyOS 2.1.2 [78] and TelosB motes. The

network manager can update the network topology, generate and update schedules and routes,

and schedule update commands. In addition, we incorporate features necessary for schedule

reconfiguration including health reporting, failure notification, and TSCH schedule updating

into our previous WirelessHART stack implementation (see Section 3.3.3), which provides
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Fixed-Priority Scheduling Policy
GAP: schedule transmissions based on a gap-induced scheduling policy
EARLY: schedule transmissions of a flow in sequential order and select
the earliest feasible slot for a transmission
LATE: schedule transmissions of a flow in a reverse order and select
the latest feasible slot for a transmission
Route Update Policy
PR: apply a partial reroute policy, and compute a new route using
Dijkstra’s shortest path algorithm
RR: reroute using Dijkstra’s shortest path algorithm
Schedule Update Policy
AFO: reschedule affected flows only
ALL: reschedule affected flows and all of their lower priority flows

Table 6.1: Scheduling, route, and schedule update policies

basic network features such as TSCH MAC and source routing. We designate two nearby

nodes in our testbed as access points. The server communicates with the access points

through serial interfaces.

Following common practices for process monitoring and control applications, flows release

packets periodically, and the periods of flows are harmonic. The periods are uniformly selected

from the range P = {2x, 2x+1, ...2y}. The manager constructs a collision-free TSCH schedule

using fixed-priority scheduling, where only one transmission is allowed per channel in a time

slot. We adopt WirelessHART source routing, which provides a single route from a source

to a destination. For each transmission belonging to a data flow, the manager reserves an

additional time slot for a sender to retransmit a packet if the sender does not receive an ACK

from the receiver.

We quantify the performance of the reconfiguration planner through simulations based on

two metrics: (1) the success rate in rescheduling a flow without modifying schedules of other

flows, and (2) the number of packets required to update flow schedules. For the update

engine, we run experiments on the testbed, present the resulting schedule reconfiguration
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timelines, and measure the schedule dissemination latency and the energy cost. Table 6.1

summarizes different scheduling, route update, and schedule update policies that we compare

against our work. By choosing combinations of the three policy types, we construct different

approaches, each of the form scheduling policy/route update policy + schedule update policy.

6.7.1 Reconfiguration Planner Evaluation

To evaluate the reconfiguration planner, we conduct simulation studies based on our testbed

topology containing 60 nodes. The topology information includes the PRRs of all links in

the network in all 16 channels. We use the topology to construct a communication graph

in which links added to the graph have PRRs of no less than 90% in all channels and in

both directions. We use channels 11 through 14. We randomly generate 50 flow sets under

different traffic loads (i.e., when the numbers of flows are 20, 24, 28, and 32) by varying the

locations of sources and destinations of flows and access points. For each flow set, we obtain

a set of links, where each link in the set is randomly picked. In each experiment, one link in

this set is selected as a failed link.

We consider two fixed-priority scheduling policies commonly adopted for real-time systems:

deadline monotonic and rate monotonic policies. Following a deadline monotonic policy, flow

priorities are determined according to deadlines (i.e., flows with shorter deadlines have higher

priority), while a rate monotonic policy assigns priorities based on rate (i.e., flows with higher

rates have higher priority). We set P = {2−1, 20, 21}. Periods are uniformly assigned to flows

in a flow set. With the deadline monotonic policy, if a flow Fi has a period Pi = 2x, then its

deadline Di is randomly selected from the range {2x−1 + |Γi| ∗ 2, 2x}, where |Γi| is the number

of transmissions of Fi. For the rate monotonic policy, Di is configured to be equal to Pi.
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Figure 6.7: Schedule reconfiguration success rates of AFO under the deadline monotonic
policy.
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Figure 6.8: Schedule reconfiguration success rates of AFO under the rate monotonic policy.

Schedule Reconfiguration Success Rate

To evaluate the effectiveness of our gap-induced scheduling policy in enabling the AFO

reconfiguration policy to update only the schedules of those flows affected by link failure, we

quantify the schedule reconfiguration success rate of AFO. The success rate is defined as the

fraction of cases of a flow set in which AFO successfully reschedules only flows using the

failed link. We compare our two approaches GAP/RR+AFO and GAP/PR+AFO, against

EARLY/RR+AFO and LATE/RR+AFO.
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Figure 6.9: Total number of packets to be disseminated under the deadline monotonic policy.

Figure 6.7 shows box plots of the reconfiguration success rates of AFO under the deadline

monotonic policy. GAP/PR+AFO demonstrates better improvement as the traffic load

increases because it is more difficult for AFO to avoid rescheduling flows unaffected by link

failure as more flows occupy the schedule, especially under the EARLY and LATE scheduling

policies. With 32 flows, GAP/PR+AFO increases the median success rate by 95% and 44%

compared to EARLY/RR+AFO and LATE/RR+AFO, respectively. Similar results can be

observed under the rate monotonic policy, as shown in Figure 6.8. GAP/PR+AFO attains a

higher median success rate than EARLY/RR+AFO and LATE/RR+AFO by 87.9% and 65%,

respectively. Scheduling transmissions with the LATE policy provides better results than the

earliest slot policy (EARLY). With LATE, a lower priority flow with a longer deadline can be

allocated to time slots that are closer to its deadline and are not usable by a higher priority

flow (i.e., slots between the deadline of the current packet and the release time of the next

packet of a higher priority flow), which helps spread out transmissions of different flows, and

makes it easier for AFO to reconfigure the schedule. The results manifest the benefit of GAP

in improving the reconfiguration success rate of AFO and in preventing the modification of

higher priority flow schedules from impacting those of lower priority flows. In addition, it

also shows that PR policy can further enhance the reconfiguration success rate of AFO by at

most 12.5% (Figure 6.8d) because PR allows flows’ schedules to be partially reused.
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Figure 6.10: Total number of packets to be disseminated under the rate monotonic policy.
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Figure 6.11: Impact of the number of flows associated with link failure on the number of
packets required to update a schedule (under the rate monotonic policy).

Number of Packets to Disseminate

We examine the ability of GAP/PR+AFO to reduce the cost of adapting to a failed link by

computing the number of packets required to update the global schedule, which is a direct

quantification of the schedule reconfiguration overhead. We compare our approach with two

additional baselines, EARLY/RR+ALL and LATE/RR+ALL, which utilize ALL as their

reconfiguration policy. Moreover, if AFO cannot successfully reconfigure a flow’s schedule,

the manager will reschedule the flow, along with all of its lower priority flows, starting from

the highest priority flow that AFO fails to reconfigure.
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Figures 6.9 and 6.10 present the CDFs of the total number of packet to be disseminated.

Again, with higher workloads, GAP/PR+AFO proves to be most effective. The results also

demonstrate that GAP/PR+AFO outperforms other approaches in all settings, especially

with 32 flows (Figure 6.10c), where only 15% of the cases need more than 5 packets to be

disseminated. Conversely, under EARLY/RR+ALL, LATE/RR+ALL, EARLY/RR+AFO,

and LATE/RR+AFO, for 57%, 58%, 41%, and 40% of the times, respectively, a network

manger must distribute more than 5 packets. Compared to GAP/RR+AFO, GAP/PR+AFO

reduces the number of cases requiring more than 5 packets by 32%.

Furthermore, we investigate how the number of flows associated with link failure impacts the

number of packets needed to update a schedule. Figure 6.11 shows box plots of the number

of packets to be disseminated when the number of the affected flows is withing the range

[a, b]. Here, we consider flow sets consisting of 56 flows and schedules generated with the rate

monotonic policy. We show only the results of LATE/RR+AFO and LATE/RR+ALL, since

the LATE policy performs better than or similar to the EARLY scheme. GAP/PR+AFO

outperforms the baselines, with drastically larger margins as the number of flows associated

with link failure increases from [1,4] to [13, 16]. For example, LATE/RR+AFO has a 4.25X

higher median number of packets than GAP/PR+AFO when the number of flows is within

[13, 16]. However, as the number of flows exceeds 16, more flows need to be reconfigured,

preventing AFO from successfully rescheduling flows, which in turn increases the number of

packets to be disseminated. GAP/PR+AFO offers a notable reduction over the baselines

in the number of packets required to reconfigure a schedule, which translates into shorter

reconfiguration latency and lower energy consumption.
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Figure 6.12: WUSTL testbed topology.

6.7.2 Update Engine Evaluation

In testbed experiments, We assess REACT’s ability to improve schedule reconfiguration

latency and reduce energy cost. Figure 6.12 shows the WUSTL testbed topology, consisting

of 50 TelosB motes, which is equipped with an MSP430 MCU and a CC2420 radio compatible

with the IEEE 802.15.4 PHY layer. The testbed spans three floors of an office building.

Two nodes on the 5th floor are designated as access points, and are connected to the server

through wired links. We run the network manager software on the server, and our TinyOS

implementation of the WirelessHART protocol with schedule reconfiguration functionality on

the motes.

We explore three different configurations: 16, 24, and 32 flows. Transmission schedules are

generated based on the deadline monotonic policy. We opt to compare our GAP/PR+AFO

approach against only LATE/RR+ALL and LATE/RR+AFO, since they outperform the

baselines employing the EARLY policy under the deadline monotonic policy. We schedule a

broadcast graph every 1 second. All flows generate packets with similar periods of 1 second.

The deadline of each flow is chosen randomly from the range [|Γ| ∗ 2, 20], where |Γ| is the

number of transmissions of a flow. We allow control data (e.g., failure notification and
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ACK) to be piggybacked onto data packets, so no additional control flow is installed. All

configurations follow the same settings, except where stated otherwise.

To demonstrate the benefit of REACT in reducing rescheduling overhead, we pick one critical

link used by 85-90% of flows as a failed link. To simulate network dynamics, WiFi interference

is introduced close to the selected link. We use two Raspberry PIs, which are parts of our

testbed infrastructure, to generate 5MB traffic on WiFi channel 1 overlapping with IEEE

802.15.4 channels 11 to 14 while the nodes communicate on channels 13 to 15. A node reports

a link failure to the network manager once a link’s PRR falls below 90%, and employs a

sliding window of size 100 to calculate the link’s PRR. To obtain average measurements, we

repeat the experiment five times for each configuration.

Note that with centralized scheduling, the schedule reconfiguration overhead depends on

several factors (e.g., the periods of a broadcast graph and control flows, the reliability

requirement, and the sliding window size), which introduce different tradeoffs. For instance,

scheduling a broadcast graph less frequently preserves network resources, but incurs more

reconfiguration latency. Selecting the best values for these parameters is not within the scope

of this work, which focuses on reducing the portions of the global schedule being modified so

fewer packets are required for the schedule update.

Schedule Reconfiguration Timeline

Figure 6.13 presents the schedule reconfiguration timeline to validate the correctness of our

implementation. We quantify two metrics: (1) the radio duty cycle, the fraction of time a node

has its radio on, and (2) the percentage of packets successfully received at their destinations.

The network consists of 16 flows. When the network is stable, all approaches achieve a high

percentage of packets received and incur low duty cycles. At time=20, interference is injected
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Figure 6.13: Schedule reconfiguration timeline.

to degrade the link quality, and the percentage of packets received starts to decrease. Because

the failed link is used by multiple flows, nodes can detect link quality degradation and notify

the network manager quickly. In this setting, the network manager takes less than 10 ms to

recompute a new schedule. So after receiving the notification at time=24, the manager can

promptly begin disseminating a new schedule at time=25. Note that based on our simulation

studies, with 32 flows, we observe a maximum execution time of 13.5 ms for PR+AFO. The

execution time is measured on a Macbook Pro laptop with a 2.7 GHz Intel Core i7.
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During the schedule reconfiguration phase, we notice the percentage of packets received drops,

and the radio duty cycle increases because nodes need to retransmit a packet more often

and they also participate in schedule distribution. Schedule reconfiguration finishes at times

30, 33, and 37 for GAP/PR+AFO, LATE/RR+AFO, and LATE/RR+ALL, respectively.

GAP/PR+AFO provides 25% and 43.8% improvements in schedule reconfiguration latency

over LATE/RR+AFO and LATE/RR+ALL, since GAP/PR+AFO requires fewer packets

to alter the schedule. After schedule reconfiguration, the network performance returns to

normal, and the slightly higher radio duty cycle is due to longer flow routes, which requires

more transmissions.

Note that process monitoring applications may be able to tolerate some packet losses during

the reconfiguration process. However, for more time-sensitive control applications, it is crucial

to ensure that flows can still operate to meet the real-time requirement when the network

suffers from link failure. Therefore, graph routing (a multi-path routing strategy supported

by the WirlessHART protocol) should be adopted for this class of application to ensure

reliable communication.

Schedule Dissemination Latency

We first validate that our policies indeed meet their goal of reducing schedule dissemination

time. Latency is measured from when the first packet is disseminated until the schedules of all

impacted flows are modified or all the affected nodes receive their new schedules. Figure 6.14

presents the latency (in seconds) when a schedule of each flow is updated under different

workloads, and Figure 6.15 plots the time required for each related node to receive a complete

schedule. Thus, the dissemination latency here is the time when the last flow is updated or the

last node has received the full schedule. In Figures 6.14a, 6.14b, and 6.14c, GAP/PR+AFO

reduces the schedule dissemination latency by approximately 45.1-55% and 31.7-34.5% over
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Figure 6.14: Flow schedule update latency under different traffic loads.
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LATE/RR+ALL and LATE/RR+AFO, respectively. In these cases, the network manager

successfully reschedules only flows affected by the failed link for LATE/RR+AFO. With

more flows, it takes longer to disseminate a new schedule, since more flows are affected by

the change.

We introduce an extra scenario where AFO fails to update only flows associated with the

failed link for LATE/RR+AFO. Here, the manager reschedules the remaining flows that

could not be reconfigured by AFO, and also reschedules all of their lower priority flows. To

demonstrate such a case, we adjust the flows’ periods by letting 50% of flows release their

packets every 0.5 second, and the rest release their packets every 1 second. Figure 6.14d

shows the results under such a scenario with 24 flows. Compared to LATE/RR+ALL and

LATE/RR+AFO, GAP/PR+AFO further lowers the schedule update latency by 60.4% and

60%, respectively.

These results indicate the schedule dissemination latency achieved with GAP/PR+AFO is

considerably lower than that of other approaches. This reduction shows the complementary

benefit of our scheduling and reconfiguration policies in enabling partial schedule reuse,

which reduces the amount of schedule-related information to be broadcast once link failure

is detected. Furthermore, the results in Figure 6.14 also verify that our update scheduler

indeed modifies schedules of higher priority flows (i.e., flows with smaller ID) first. Therefore,

these more critical flows running at higher rates suffer less from packet losses.

Energy Consumption

We next examine the performance of REACT in terms of energy efficiency. We measure the

radio on time on each node and compute the energy consumption in mJ. According to the

CC2420 radio specification [12], the power requirements for a transmission and a reception
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Figure 6.15: Latency in which each affected node has received a completed schedule.
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Figure 6.16: CDF of node’s energy consumption in mJ.
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are 52.2 mW and 59.2 mW, respectively. The results presented in this section are obtained

from the experiments in Section 7.2.2. Figure 6.16 shows the CDFs of a node’s average energy

consumption. GAP/PR+AFO significantly improves the energy cost over the two baselines.

For example, with 32 flows (Figure 6.16b), under GAP/PR+AFO, 42% of the nodes consume

less than 6 mJ, while for LATE/RR+AFO, only 8% of the nodes have energy costs lower

than 6 mJ. In contrast, with LATE/RR+ALL, all nodes require more than 6 mJ.

Our approach proves to be energy efficient in all configurations for two reasons: It disseminates

fewer packets, and it reduces the number of nodes affected by the schedule update. As shown in

Figure 6.15, many fewer nodes are affected by the schedule modification under GAP/PR+AFO

than under either LATE/RR+AFO or LATE/RR+ALL. For instance, when the number of

flows is 24, compared to LATE/RR+AFO and LATE/RR+ALL, GAP/PR+AFO decreases

the number of affected nodes by 78.2% and 73.7%, respectively. Reducing the number of

nodes impacted by the schedule update results in fewer nodes participating in schedule

dissemination, since we allow nodes in the broadcast graph to forward a packet only when

they are on a path to the packet’s destinations, thereby improving the node’s energy efficiency.

6.8 Summary

To meet the stringent demands of industrial applications for real-time and reliable performance,

WirelessHART adopts a centralized management architecture to provide deterministic and

reliable communication. Despite these benefits, the centralized architecture introduces high

adaptation overhead for updating a transmission schedule when a network experiences link

failures. In this work, we design and implement REACT, a novel WirelessHART control

plane to handle network adaptation. REACT includes a reconfiguration planner and an

update engine to support efficient and reliable schedule reconfiguration. We implement and
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evaluate REACT on a WSAN testbed. The results show that our system reduces the schedule

dissemination latency by over 60%. At the same time, it significantly decreases the number

of nodes affected by schedule updates, which in turn improves the node energy efficiency.
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Chapter 7

Conclusion

With the emergence of industrial IoT, process industries such as oil refinery and chemical plants

have increasingly adopted WSANs. WSANs offer a promising solution to reduce deployment

and maintenance cost compared to wired infrastructure. To meet the stringent real-time and

highly reliability requirements of industrial applications, WirelessHART adopts a set of specific

features such as TSCH MAC and centralized network architecture. In this dissertation, we

explored different networking designs of industrial WSANs, and developed and experimentally

assessed new network protocols and algorithms to enhance performance, efficiency, and agility

of industrial WSANs. First, complementary to recent research on theoretical aspects of

WSAN design, we implemented a suite of network features of the WirelessHART standard in

TinyOS and TelosB motes and then performed a series of empirical studies on WSAN protocol

designs. Then, we investigated WSAN’s channel selection mechanism, and designed link and

channel selection strategies that balance channel and route diversity. Experimental results

showed that our algorithms can drastically improve routing and scheduling of industrial

WSANs. Next, to enhance real-time performance, we developed a conservative channel

reuse algorithm that introduces channel reuse based on the real-time constraints of the
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flow set. we further presented a policy to detect reliability degradation caused by channel

reuse. Our approach significantly improves real-time performance while maintaining a high

degree of reliability. Finally, we designed and implemented REACT a novel WirelessHART

control plane to handle network adaptation. REACT includes a reconfiguration planner and

an update engine to support efficient and reliable network reconfiguration in response to

changing wireless environment. Evaluation results suggested significant reduction in schedule

reconfiguration overhead in terms of the schedule dissemination latency and energy efficiency.
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