Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-99-12

1999-01-01

The Design and Performance of a Pluggable Protocols
Framework for Object Request Broker Middleware

Fred Kuhns, Carlos O'Ryan, Douglas C. Schmidt, and Jeff Parsons

To be an effective platform for performance-sensitive real-time and embedded applications, off-
the-shelf 00 middleware like CORBA, DCOM, and Java RMI must preserve communication-layer
quality of service (QoS) properties to applications end-to-end. However, conventional 00
middleware interoperability protocols, such as CORBA's GIOP/IIOP or DCOM's MS-RPC, are not
well suited for applications that cannot tolerate the message footprint size, latency, and jitter
associated with general-purpose messaging and transport protocols. It is essential, therefore, to
develop standard plugable protocols frameworks that allow custom messaging and transport
protocols to be configured flexibly and used transparently by applications. This paper provides
three contributions to... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Kuhns, Fred; O'Ryan, Carlos; Schmidt, Douglas C.; and Parsons, Jeff, “The Design and Performance of a
Pluggable Protocols Framework for Object Request Broker Middleware" Report Number: WUCS-99-12
(1999). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/489

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/489?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/489

The Design and Performance of a Pluggable Protocols Framework for Object
Request Broker Middleware

Fred Kuhns, Carlos O'Ryan, Douglas C. Schmidt, and Jeff Parsons

Complete Abstract:

To be an effective platform for performance-sensitive real-time and embedded applications, off-the-shelf
00 middleware like CORBA, DCOM, and Java RMI must preserve communication-layer quality of service
(QoS) properties to applications end-to-end. However, conventional 00 middleware interoperability
protocols, such as CORBA's GIOP/IIOP or DCOM's MS-RPC, are not well suited for applications that cannot
tolerate the message footprint size, latency, and jitter associated with general-purpose messaging and
transport protocols. It is essential, therefore, to develop standard plugable protocols frameworks that
allow custom messaging and transport protocols to be configured flexibly and used transparently by
applications. This paper provides three contributions to research on plugab le protocols frameworks for
performance-sensitive communication middleware. First, we outline the key design challenges faced by
pluggable protocols developers. Second, we descrive how TAO, our high-performance, real-time CORBA-
compliant ORB, addresses these challenges in its pluggable protocols framework. Third, we present the
results of benchmarks that pinpoint the impact of TAQO's pattern-priented OO design on it end-to-end
efficiency, predictability, and scalability. Our results demonstrate how applying optimizations and patterns
to communication middleware can yield highly flexible/reusable designs and highly efficient/predictable
implementations. In particular, TAO's middleware overhead is only ~110 microsecs using a commercial,
off-the-shelf 200 Mhz embedded system CPU, interconnect, and 0S. These results illustrate that (1)
communication middleware performance is largely an implementation detail and (2) the next-generation
of optimized, standards-based middleware can replace ad hoc and proprietary solutions.

https://openscholarship.wustl.edu/cse_research/489?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/489?utm_source=openscholarship.wustl.edu%2Fcse_research%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages

The Design and Performance of a Pluggable
Protocols Framework for Object Request
Broker Middleware

Fred Kuhns, Carlos O’Ryan,
Douglas C. Schmidt and Jeff Parsons

WUCS-99-12

April 1999

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

The Design and Performance of a Pluggable Protocols
Framework for Object Request Broker Middleware

Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, and Jeff Parsons
{fredk,coryan,schmidt,parsons } @cs.wustl.edu
Department of Computer Science, Washington University
St. Lonis, MO 63130, USA *

Submitted to the IFIP 6** International Workshop on Proto-
cols For High-Speed Networks (PTHSN ’99), August 25-27,
1999, Salem, MA.

Abstract

To be an effective platform for performance-sensitive real-
time and embedded applications, off-the-shelf 00 middle-
ware like CORBA, DCOM, and Java RMI must preserve
communication-layer quality of service (QoS) properties to
applications end-to-end. However, conventional OO middle-
ware interoperability protocols, such as CORBA’s GIOP/AIOP
or DCOM’'s MS-RPC, are not well suited for applications that
cannot tolerate the message footprint size, latency, and jit-
ter associated with general-purpose messaging and transport
protocols. It is essential, therefore, to develop standard plug-
gable protocols frameworks that allow custom messaging and
transport protocols to be configured flexibly and used trans-
parently by applications.

This paper provides three contributions to research on plug-
gable protocols frameworks for performance-sensitive com-
munication middleware. First, we outline the key design chal-
lenges faced by pluggable protocols developers. Second, we
describe how TAO, our high-performance, real-time CORBA-
compliant ORB, addresses these challenges in its pluggable
protocols framework. Third, we present the results of bench-
marks that pinpoint the impact of TAQ's pattern-oriented 00
design on it end-to-end efficiency, predictability, and scalabil-
ity.

Our results demonstrate how applying optimizations and
patterns to communication middleware can vield highly flex-
ible/reusable designs and highly efficient/predictable imple-
mentations. In particular, TAO's middleware overhead is only
~110 psecs using a commercial, off-the-self 200 Mhz embed-
ded system CPU, interconnect, and OS. These results illustrate
that (1) communication middleware performance is largely

*This work was supported in part by Boeing, DARPA contract 9701516,
GDIS, NSF grant NCR-9628218, Nortel, Siemens, and Sprint,

an implementation detail and (2) the next-generation of op-
timized, standards-based middleware can replace ad hoc and
proprietary solutions.

Subject areas: Frameworks; Design Patterns; Distributed and
Real-Time Systems

1 Introduction

Current trends and limitations: During the past decade,
there has been substantial R&D emphasis on high-speed net-
working and performance optimizations for network elements
and protocols. As a result, networks are now available off-
the-shelf that can support Gbps on every port, e.g., Gigabit
Ethernet and ATM switches. Moreover, 622 Mbps ATM con-
nectivity in WAN backbones is starting to appear. In networks
and GigaPoPs, such as the Advanced Technology Demonstra-
tion Network (ATDnet) [1], 2.4 Gbps (OC-48) link speeds
are being deployed. However, the general lack of robust and
flexible communication middleware for programming, provi-
sioning, and controlling these networks has limited the rate at
which applications have been developed to leverage advances
in high-speed networking.

Communication middleware resides between client and
server applications in distributed systems. It simplifies ap-
plication development by providing a uniform view of het-
erogeneous networks, protocols, and OS layers. At the heart
of communication middleware are Object Request Brokers
(ORBs), such as CORBA [2], DCOM [3], and Java RMI [4],
that eliminate many tedious, error-prone, and non-portable as-
pects of developing and maintaining distributed applications
using low-level network programming mechanisms like sock-
ets. In particular, ORBs automate common network program-
ming tasks, such as object location, object activation, param-
eter (de)marshaling, socket and request demultiplexing, fault
recovery, and security.

There has aiso been substantial R&D emphasis on commu-
nication middleware during the past decade. As a result, com-
munication middleware is now available off-the-shelf that al-

lows clients to invoke operations on distributed components
without concern for component location, programming lan-
guage, OS platform, communication protocols and intercon-
nects, or hardware [5]. However, the general lack of support in
this off-the-shelf communication middleware for QoS specifi-
cation and enforcement features, integration with high-speed
netwoiking technology, and performance, predictability, and
scalability optimizations [6], has limited the rate at which ap-
plications have been developed to leverage advances in com-
munication middleware.

Overcoming communication middleware limitations with
pluggable protocols: To address the shortcomings of com-
munication middleware described above, we have developed
The ACE ORB (TAO) [6]. TAO is open-source,! standards-
based, high-performance, real-time ORB endsystem commu-
nication middleware that supports applications with determin-
istic and statistical QoS requirements, as well as “best-effort”
requirements. TAQ is the first ORB to support end-to-end QoS
guarantees over ATM/TP networks [7, 8].

We have used TAO to research many dimensions of
high-performance and real-time ORB endsystems, including
static [6] and dynamic [9] scheduling, request demultiplex-
ing [10], event processing [11], ORB Core connection and
concurrency architectures [12], IDL. compiler stub/skeleton
optimizations [13], systematic benchmarking of multiple
ORBs [14], I/O subsystem integration [8), and patterns for
ORB extensibility [I5]. This paper focuses on a previously
unexamined dimension in the high-performance and real-time
ORB endsystem design space: the design and performance
of a pluggable protocols framework that supports high-speed
protocols and networks, real-time embedded system intercon-
nects, and standard TCP/IP protocols over the Internet.

At the heart of TAO’s pluggable protocols framework is
its patterns-oriented OO design [16], which decouples TAO’s
ORB messaging and transport interfaces from its transport-
specific protocol components. This design allows custom
ORB messaging and transport protocols to be configured flex-
ibly and used transparently by CORBA applications. For ex-
ample, if ORBs communicate over a high-speed networking
protocel like ATM AALS, then simpler, optimized ORB mes-
saging and transport protocols can be configured to eliminate
unnecessary features and overhead of the standard CORBA
General Inter-ORB Protocol (GIOP) and Internet Inter-ORB
Protocol (IIOP). Likewise, TAQ’s pluggable protocols frame-
work makes it straightforward to support customized embed-
ded system interconnects, such as CompactPCI or VME, under
standard CORBA inter-ORB protocols like GIOP.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 outlines the CORBA protocol in-
teroperability architecture; Section 3 motivates the need for

ITAOQ is available at www . cs . wustl.edu/~schmidt /TAO. html.

a CORBA pluggable protocols framework and describes the
design of TAO’s pluggable protocols framework; Section 4 il-
lustrates the performance characteristics of TAO’s pluggable
protocols framework; and Section 6 presents concluding re-
marks. For completeness, Appendix A gives an overview of
CORBA and TAQ.

2 Overview of the CORBA Protocol In-
teroperability Architecture

The CORBA specification [2] defines an architecture for ORB
interoperability. Although a complete description of the model
is beyond the scope of this paper, this section outlines the parts
that are relevant to our present topic, i.e., object addressing and
inter-ORB protocols.

Object addressing synopsis: To identify objects, CORBA
defines a generic format called the Interoperable Object Ref-
erence (IOR). An object reference identifies one object and
associates one or more paths through which that object can be
accessed. Each path references one server location that imple-
ments the object and an opague identifier valid on that partic-
ular server.

Different object references may represent the same object,
e.g., if a server is re-started on a new port or migrated to an-
other host. Likewise, if a server has multiple network inter-
faces connecting it to distinct networks, there may be multiple
network addresses. Thus, multiple server locations can be ref-
erenced by one IOR.

References to server locations are called profiles, which pro-
vide an opaque, protocol-specific representation of an object
location. Profiles can be used to annotate the server location
with QoS information, such as the priority of the thread serv-
ing each endpoint or alternative addresses for fault-tolerance.

Protocol model synopsis: CORBA Inter-ORB Protocols
(IOP)s define interoperability between ORB endsystems.
IOPs provide data representation formats and ORB messag-
ing protocol specifications that can be mapped onto stan-
dard and/or customized transport protocols. Regardless of the
choice of ORB messaging or transport protocol, however, the
standard CORBA programming model is exposed to the appli-
cation developers. Figure 1 shows the relationships between
these various components and layers.

In the CORBA protocol interoperability architecture, the
standard General Inter-ORB Protocol (GIOP) is defined by
the CORBA specification [2]. In addition, CORBA defines
a transport-specific mapping of GIOP onto the TCP/IP proto-
col suite called the Internet Inter-ORB Protocol (IIOP). ORBs
must support IIOP to be “interoperability compliant.” Other
mappings of GIOP onto different transport protocols are al-
lowed by the specification, as are different inter-ORB pro-

STANDARD CORBA PROGRAMMING API

ORB MESSAGING
COMPONENT

ORB TRANSPORT Top

ADAPTER COMPONENT

GIOP GIOPLIiTE ESIQOP

VME-IOP ATM-IOP
RELIABLE
SEQUENCED

PROTOCOL CONFIGURATIONS

Figure 1: Relationship Between Inter-ORB Protocols and
Transport-specific Mappings

tocols, known as Environment Specific Inter-ORB Protocols
(ESIOP)s.

Regardless of whether GIOP or an ESIOP is used, a
CORBA IOP must define a data representation, an ORB mes-
sage format, an ORB transport protocol or transport protocol
adapter, and an object addressing format. Below, we outline
how GIOP addresses each of these IOP elements.

GIOP synopsis:
lowing elements:

The GIOP specification consists of the fol-

* A Common Data Representation (CDR) definition:
CDER is a transfer syntax that maps IDL types from their
native host format into a low-level bi-canonical representa-
tion, which supports both littie-endian and big-endian formats.
CDR-encoded messages are used to transmit CORBA requests
and server responses across a network. All IDL, data types are
marshaled using the CDR syntax into an encapsulation, which
is an octet siream that holds marshaled data.

¢ GIOP message formats: The GIOP specification de-
fines seven types of messages that send requests, receive
replies, locate objects, and manage communication channels.
The following table lists the seven types of messages in GIOP
1.0% and the permissible originators of each type:

Message Type Originator | Value
Request Client 0
Reply Server 1
CancelRequest Client 2
LocateRequest Client 3
LocateReply Server 4
CloseConnection | Server 5
MessageError Both 6

Version 1.1 of GIOP added a Fragment message and version 1.2 relaxes
the restrictions with respect to message originators.

* GIOP transport assumptions: The GIOP specification
describes the features of an ORB transport protocol that can
carry GIOP messages, and requires such a protocol to be a
reliable, connection-oriented byte-stream. In addition, GIOP
defines a connection management protocol and a set of con-
straints for GIOP message ordering.

¢ Object addressing: An Interoperable Object Reference
(IOR) is a sequence of opaque profiles, each representing a
protocol-specific representation of an object’s location. For
example, an YIOP profile includes the IP address and port num-
ber where the server accepts connections, as well as the object
key that identifies an object within a particular server. Since
there may be multiple paths to an object, the same IOR can
contain multiple IIOP profiles, along with profiles for other
protocols, such as GIOP over ATM or non-GIOP protocols.

ESIOP synopsis: In addition to the standard GIOP and IIOP
protocols, the CORBA specification allows ORB implemen-
tors to define Environment Specific Inter-ORB Protocols (ES-
I0P)s. ESIOPs can define unique data representation for-
mats, ORB messaging protocols, ORB transport protocols or
transport protocol adapters, and object addressing formats.
These protocols can exploit the QoS features and guaran-
tees provided in certain domains, such as telecommunications
or avionics, ta satisfy performance-sensitive applications that
have stringent bandwidth, latency, and jitter requirements.

Only cne ESIOP protocol is defined in the CORBA 2.x fam-
ily of specifications: the DCE Common Inter-ORB Protocol
(DCE-CIOP) [2]. Two ESIOPs we are developing, GIOPlite
and an ATM ESICP, are shown in Figure 1. The OMG is con-
sidering other protocols for domains particular domains, such
as wireless and mobile systems [17], that have unique perfor-
mance characteristics and optimization points.

3 A Pluggable Protocols Framework
for CORBA

The CORBA specification provides a standard for general-
purpose communication middleware. Within the scope of the
specification, ORB developers are free to optimize internal
data structures and algorithms [10]. Moreover, ORBs may use
specialized inter-ORB protocols and ORB services and still
comply with the specification.® This section identifies the lim-
itations of current ORBs with respect to their protocol sup-
port, enumerates the key requirements for a pluggable proto-
cols framework to overcome these limitations, and describes
several motivating scenarios.

5An ORB muust implement GIOP/IIOP, however, to be interoperability-
compliant.

3.1 Protocol Limitations of Conventional ORBs

CORBA’s standard GIOP/TIOP protocols are well suited for
conventional request/response applications with best-effort
QoS requirements [13]). They are not well suited, however,
for high-performance, real-time, and/or embedded applica-
tions that cannot tolerate the message footprint size of GIOP
or the latency, overhead, and jitter of the TCP/IP-based IIQP
transport protocol. For instance, TCP functionality, such as
adaptive retransmissions, deferred transmissions, and delayed
acknowledgments, can cause excessive overhead and latency
for real-time applications [18]. Likewise, networking proto-
cols, such as IPv4, lack the functionality of packet admission
policies and rate control, which can lead to excessive conges-
tion and missed deadlines in networks and endsystems.

Therefore, applications with more stringent QoS require-
ments need optimized protocol implementations, QoS-aware
interfaces, custom presentations layers, specialized memory
management {e.g., shared memory between ORB and 1/0 sub-
system), and alternative transport programming APIs (e.g.,
sockets vs. TLI). Domains where highly optimized ORB mes-
saging and transport protocols are essential include (1) tele-
conferencing applications running over high-speed networks,
such as Gigabit Ethernet or ATM, and (2) real-time applica-
tions running over embedded system interconnects, such as
VME or CompactPCL.

Conventional CORBA implementations have the following
limitations that make it hard for them to support performance-
sensitive applications effectively:

1. Static protocol configurations: Many ORBs support a
limited number of statically configured protocols, typically
only GIOP/IIOP.

2. Lack of protocol control interfaces: Many ORBs do not
allow applications to define protocol policies and attributes,
such as peak virtual circuit bandwidth.

3. Single protocol support: Many ORBs do not support si-
multaneous use of multiple inter-ORB messaging or transport
protocols.

4. Lack of real-time protocol support: Many ORBs have
limited or no support for specifying and enforcing real-time
protocol requirements end-to-end across a backplane, net-
work, Internet.

3.2 Pluggable Protocols Framework Require-
ments

The limitations of conventional ORBs described in Section 3.1
make it difficult for developers to leverage existing implemen-
tations, expertise, and ORB optimizations across projects or
application domains. Defining a standard pluggable protocols

framework for CORBA ORBs is an effective way to address
this problem. The requirements of such a pluggable protocols
framework for CORBA include the following:

1. Define standard, unobtrusive protocol configuration in-
terfaces: To address limitations with conventional ORBs, a
pluggable protocols framework should define a standard set of
components and APIs to install ESIOPs and their transpoit-
dependent instances. Most applications need not use this in-
terface directly. Therefore, the pluggable protocol interface
should be exposed only to developers interested in defining
new protocols or in configuring existing protocol implementa-
tions in new ways.

2. Use standard CORBA programming and control inter-
faces: To ensure application portability, clients should pro-
gram to standard application interfaces defined in CORBA
IDL, even if pluggable ORB messaging or transport protocols
are used. Likewise, object implementors need not be aware
of the underlying framework. However, developers should be
able to set policies that control the ORB’s choice of proto-
col and protocol attributes, Moreover, these interfaces should
transparently support certain real-time ORB features, such as
scatter/gather I/O, optimized memory management, and strate-
gized concurrency models [10].

3. Simultaneous use of multiple ORB messaging and trans-
port protocols: To address the lack of support for multi-
ple inter-ORB protocols in conventional ORBs, a pluggable
protocols framework should support different messaging and
transport protocols simultaneously within an ORB endsystem.
The framework should transparently configure inter-ORB pro-
tocols either statically, i.e., during ORB initialization [19], or
dynamically, i.e., during run-time connection establishment.

4. Support for multiple address representations: This
requirement addresses the lack of suppoit for multiple IOP
support and dynamic protocol configurations in conventional
ORBs. For example, each pluggable protocol implementation
can potentially have a different profile and object addressing
scheme. Therefore, a pluggable protocols framework should
provide a general mechanism to represent these disparate ad-
dress formats transparently, while also supporting standard
IOR address representations efficiently.

5. Support CORBA 2.2 features and future enhancements:
A pluggable protocol framework should suppoit CORBA 2.2
features, such as object reference forwarding, connection
transparency, preservation of foreign IORs and profiles, and
the complete GIOP 1.1 protocol, in a manner that does not
degrade end-to-end performance and determinism. Moreover,
a pluggable protocols framework should accommodate future
changes and enhancements to the CORBA specification, such
as (1) the npcoming GIOP 1.2 protocol, which allows bi-
directional requests over the same connection, (2) real-time

CORBA [19], which includes features to reserve connection
and threading resouices on a per-object basis, and (3) asyn-
chronous messaging [20], which exports QoS policies to ap-
plication developers.

6. Optimized inter-ORB bridging: A pluggable protocols
framework should ensure that protocol implementors can cre-
ate efficient, high performance inter-ORB in-fine bridges. An
in-line bridge converts inter-ORB messages or requests from
one type of IOP to another. This makes it possible to bridge
disparate ORB domains efficiently without incurring unneces-
sary context switching, synchronization, or data movement,

7. Provide common protocol optimizations and real-time
features: A pluggable protocols framework should support
features required by real-time CORBA applications [19], such
as resource pre-allocation and reservation, end-to-end prior-
ity propagation, and mechanisms to control attributes specific
to real-time protocols. These features should be implemented
without modifying the standard CORBA programming APIs
used by conventional, i.e., non-real-time, applications.

8. Dynamic protocol bindings: To address the limitation
of static protocol bindings in conventional ORBs, a pluggable
protocols frameworks should support dynamic association of
specific ORB messaging protocols with specific instances of
ORB transport protocols. This design permits efficient and
predictable configurations for both standard and customized
IOPs.

3.3 Pluggable Protocol Scenarios

To illustrate the benefits of a pluggable protocols framework,
we describe two scenarios where pluggable protocols are nec-
essary to support performance-sensitive and real-time CORBA
applications. These scenarios are based on our experience de-
veloping high-bandwidth, low-latency audio/video streaming
applications [21] and avionics mission computing [11]. In
previous work 8], we addressed the network interface and
I/O system and how to achieve predictable, real-time perfor-
mance. In the discussion below, we focus on ORB support for
alternate protocols,

Low-latency, high-bandwidth multimedia streaming:
Multimedia applications running over high-speed networks
require special optimizations to utilize the full link speed.
For example, consider Figure 2, where network interfaces
supporting 1.2 Mbps or 2.4 Mbps link speeds are used for
a CORBA-based audiofvideo (A/V) application. In this
scenario, we will replace GIOP/IIOP with a custom ORB
messaging and transport protocol that transmits A/V frames
using AALS over ATM to take full advantage of a high-speed
ATM port interconnect controller (APIC) [22]. The APIC
supports (1) shared memory pools between user and kernel

WUGS HIGIH-SPEED
NETWORK

RIG SUHSYSTEM RIO SUBSYSTEM

Figure 2: Example CORBA-based Audio/Video (A/V) Appli-
cation

space, (2} per-VC pacing, (3) two levels of priority queues,
and (4) interrupt disabling on a per-VC bases.

Leveraging the underlying APIC hardware requires the res-
olution of two design challenges:

1. Castom protocols: The first challenge is to create
custom ORB messaging and transport protocols that can ex-
ploit the high-speed network interface hardware. For the A/V
streaming application, a simple frame sequencing protocol can
be used as an ESIOP. This ORB messaging protocol can be
mapped onto an ORB transport protocol using AALS.

2. Optimized protocol implementations: A second
challenge is to optimize the protocol implementations, e.g.,
by sharing memory between the application, OS kemel, and
network interface. This sharing can be achieved by requiring
the message encapsulation process to use memory allocated
from a common buffer pool [22, 10], which eliminates mem-
ory copies between user- and kernel-space when data is sent or
received. The ORB endsystem manages this memory, thereby
relieving application developers from this responsibility. The
ORB endsystem can also manage the APIC interface driver,
interrupt rates, and pacing parameters, as outlined in [8].

Low-latency, low-jitter mission computing: Avionics mis-
sion computing applications are real-time embedded systems
that manage sensors and operator displays, navigate the air-
craft’s course, and control weapon release. Communication
middleware for avionics mission computing applications must
support deterministic real-time QoS requirements interoperat-
ing over shared memory, I/O buses, and traditional network
interfaces. Support for deterministic real-time requirements is
essential for mission computing tasks, such as weapon release
and navigation, that must meet all their deadlines. Likewise,
avionics software must support tasks, such as built-in-test and
low-priority display queues, that can tolerate minor fluctua-
tions in scheduling and reliability guarantees, but nonetheless
require QoS support [9].

To enforce end-to-end application QoS guarantees, mission
computing middleware must reduce overall inter-ORB com-
munication latencies, maximize IO efficiency, and increase
overall system utilization [13, 23]. A particularly important

optimization point is the inter-ORB protocol itself, and the se-
lection of an optimal transport protocol implementation for a
particular platform.

For example, Figure 3 depicts an embedded avionics con-
figuration with three CPU boards, each with an ORB instance.
Each board is connected via a VME bus, which enables the

1553
INTERFACE
TC REMOTE
TERMINALS

e

wITER-ORB comMMunicaTION via VME BUs

Figure 3: Example Avionics Embedded ORB Platform

ORBs on each CPU board to communicate using optimized
inter-board communication, such as DMA between the indi-
vidual board address spaces. CPU board 1 has a 1553 inter-
face to communicate with so-called remote terminals, such as
aircraft sensors for determining global position and forward-
looking infrared radar [11]. This configuration allows ORB
A to provide a bridging service that forwards ORB requests
between ORBs B and C and remote terminals connected with
board 1.

The scenario in Figure 3 motivates the need for multiple
ORB messaging and transport protocols that can be added
seamlessly to an ORB without affecting the standard CORBA
programming API. For instance, ORB A could use a 1553
transport protocol adapter to communicate with remote termi-
nals. Likewise, custom ORB messaging and transport proto-
cols can be used to leverage the underlying VME bus hardware
and eliminate sources of unbounded priority inversion.

With TAO’s pluggable protocols framework, we can create
optimized VME-based and 1553-based inter-ORB messaging
and transport protocols. Moreover, by separating the IOP mes-
saging from a transport-specific mapping, we can adapt TAQ’s
pluggable protocols framework to different transmission tech-
nologies, such as CompactPCI or Fibrechannel, by changing
only the transport-specific mapping of the associated inter-
ORB messaging protocol.

3.4 Architectural Overview

To meet the requirements outlined in Section 3.2, we iden-
tified logical communication component Jayers within TAO,
factored out common features, defined general framework in-
terfaces, and implemented components to support different
concrete inter-ORB protocols. Higher-level services in the
ORB, such as stubs, skeletons, and standard CORBA. pseudo-
objects, are decoupled from the implementation details of par-

ticular protocols, as shown in Figure 4. This decoupling is es-

IN ARGS
operation (acps)

[———Y
OUT ARGS & RETURN VALYE

CAIECT (SERVANT)

2

oy
E

EXEBEDDED

REAL-TIME 10 SUBSYSTEM

IIGLE SPEED NETWORK INTERFACE

Figure 4: TAO’s Pluggable Protocols Framework Architecture

sential to resolve several limitations with conventional ORBs
outlined in Section 3.1, as well as to meet the requirements set
forth in Section 3.2.

In general, the higher-level components and services of
TAO use an abstract interface to access the mechanisms pro-
vided by its pluggable protocols framework., Thus, appli-
cations can (re)configure custom protocols without requiring
global changes to the ORB. Moreover, since applications typi-
cally access only the standard CORBA APIs, TAQ's pluggable
protocols framework is entirely transparent to CORBA appli-
cation developers,

Figure 4 also illustrates the key components in TAQ’s phug-
gabie protocols framework: (1) the ORB messaging compo-
nent, (2) the ORB transport adapter component, and (3) the
ORB policy control component, all of which are outlined be-
low.

ORB messaging component: This component is responsi-
ble for implementing ORB messaging protocols, such as the
standard CORBA GIOP ORB messaging protocol, as well as
custom ESIOPs. As described in Section 2, ORB messaging
protocols should define a data representation, an ORB mes-
sage format, an ORB transport protocol or transport adapter,
and an object addressing format. Within this framework, ORB
protocol developers can implement different data representa-
tion formats, ORB messaging protocols, and ORB connection
management strategies.

Implementors of ORB messaging protocols must conform
to a fixed interface that is used by TAO’s ORB Core to ex-
change requests with peer ORBs. Each ORB messaging pro-
tocol inherits from a common base class that defines a uniform
interface. This interface can be extended to include new capa-
bilities needed by special protocol-aware policies, For exam-
ple, ORB end-to-end resource reservation or priority negoti-
ation can be implemented in an ORB messaging component.

TAQ’s pluggable protocols framework ensures consistent op-
erational characteristics and enforces general IOP syntax and
semantic constraints, such as error handling.

Other key parts of TAO’s ORB messaging component are
its message factories. During connection establishment, these
factories instantiate objects that implement various ORB mes-
saging protocols. These objects are associated with a specific
connection and ORB transport adapter component, i.¢., the ob-
ject that implements the component, for the duration of the
connection.

ORB transport adapter component: This component
maps a specific ORB messaging protocol, such as GIOP or
DCE-CIQP, onto a specific instance of an underlying transport
protocel, such as TCP or ATM. Figure 4 shows an example
in which TAO’s transport adapter maps the GIOP messaging
protocol onto TCP (this standard mapping is called IIOP). In
this case, the ORB transport adapter combined with TCP cor-
responds to the transport layer in the Internet reference model.
However, if ORBs are communicating over an embedded in-
terconnect, such as a VME bus, the bus driver and DMA con-
troller provide the “transport layer” in the communication in-
frastructure.

TAO’s ORB transport component accepts a byte-stream
from the ORB messaging component, provides any additional
processing required, and passes the resulting data unit to the
underlying communication infrastructure. Additional process-
ing that can be implemented by protocol developers includes
(1) concurrency strategies, (2) endsystem/network resource
reservation protocols, (3) high-performance techniques, such
as zero-copy I/O, shared memory pools, periodic I/0, and in-
terface pooling, (4) enhancement of underlying communica-
tions protocols, e.g., provision of a reliable byte-stream proto-
col over ATM, and (5) tight coupling between the ORB and ef-
ficient user-space protocol implementations, such as Fast Mes-
sages [24].

ORB policy control component: This component allows
applications to explicitly control the QoS attributes of config-
ured ORB transport protocols. Since it is not possible to deter-
mine a priori all attributes defined by all protocols, an extensi-
ble policy control component is provided by TAO's pluggable
protocols framework. TAO’s policy control component im-
plements the QoS framework defined in the recently adopted
CORBA Messaging [20] and Real-time CORBA [19] specifi-
cations.

The CORBA QoS framework allows applications to specify
various policies at the ORB-, thread-, or cbject-level. Example
policies relevant for pluggable protocols include buffer pre-
allocations, fragmentation, bandwidth reservation, and max-
imum transport queue sizes. In general, the use of policies
enables the CORBA specification to define semantic proper-
ties of ORB features precisely without (1) over-constraining

ORB implementations or (2) increasing interface complexity
for common use cases.

Some policies, such as timeouts, can be shared between
muitiple protocols. Other policies, such as ATM virtual circuit
bandwidth allocation, may apply to a single protocol. Each
configured protocol can query TAQ’s policy control compo-
nent to determine its policies and use them to configure itself
for user needs. Moreover, protocol implementations can sim-
ply ignore policies that do not apply to it.

TAO’s policy control component also allows applications
to select their protocol(s). This choice can be controlled
by the ClientProtocolPolicy defined in the Real-time
CORBA specification [19]. Using this policy, the application
indicates its preferred protocol(s) and TAQ’s policy control
component attempts to match that preference with the set of
available protocols. Yet another policy controls the behavior
of the ORB if an application’s preferences cannot be satisfied,
e.g., either an exception is raised or another available protocol
is selected transparently.

4 The Performance of TAO’s Plug-
gable Protocols Framework

Despite the growing demand for off-the-shelf middleware in
many application domains, a widespread belief persists in the
embedded systems community that OO techniques are not
sttitable for real-time systems due to performance penalties at-
tributed to the OO paradigm [11]. In particular, the dynamic
binding properties of O0 programming languages and the in-
direction implied in OQ designs seem antithetical to real-time
systems, which require predictable execution behavior and low
latency. Therefore, the results presented in this section are sig-
nificant since they illustrate empirically how the choice of pat-
terns described in Section ?? makes it possible to implement
very predictable, efficient, and scalable middleware without
compromising non-functional requirements, such as portabil-
ity, flexibility, reusability, and maintainability, offered by com-
munication middleware.

To quantify the benefits and costs of TAO’s pluggable proto-
cols framework, we conducted a several benchmarks using two
different ORB messaging protocols, GIOP and GIOPlite, and
two different transport protocols, VME and Ethernet. These
benchmarks are based on our experience developing commu-
nication middleware for avionics mission computing applica-
tions [11].

4.1 Hardware/Software Benchmarking Plat-
form

All benchmarks in this section were run on two 200 MHz Pow-
erPCs with 64 Mbytes of RAM connected with a 10 Mbps Eth-
ernet and a 320 Mbps Dy4-178 VME bus. The OS used for the
benchmarking was VxWorks 5.3.1, which is a real-time QS
that supports multj-threading and interrupt handling.

Benchmarks were run using the standard GIOP ORB mes-
saging protocol, as well as TAO’s GIOPlite messaging proto-
cols [10]. GIOPlite is a streamlined version of GIOP that re-
moves > 13 extraneous bytes from the standard GIOP message
and request headers.* These bytes include the GIOP magic
number (4 bytes), GIOP version (2 bytes), flags (1 byte), Re-
quest Service Context (at least 4 bytes), and Request Principal
(at least 4 bytes).

For the Ethernet tests, the GIOP and GIOPlte ORB mes-
saging protocols were run using the VxWorks TCP/IP socket
library.’> For the VME tests, GIOP and GIOPlite ran over
a custom backplane protocol that was integrated into TAQ’s
pluggable protocols framework via an ORB transport adapter
component and a VxWorks device driver. No changes were
required to cur standard CORBA benchmarking tool, called
IDL._Cubit [12], for either of the ORB messaging and trans-
port protocol implementations.

4.2 Blackbox Benchmarks

Blackbox benchmarks measure the end-to-end performance of
a system from an external (i.e., application) perspective, In
our experiments, we used blackbox benchmarks to compute
the average one-way or two-way response time incurred by
clients sending various types of data using Ethernet and VME.

Measurement technique: The IDL_Cubit benchmark
uses a single-threaded client that issues one-way or two-way
IDL operations af the fastest possible rate. The server performs
the operation, which cubes each parameter in the request. The
client thread waits for the response and checks that it is cor-
rect. Interprocess communication is performed over Ethernet
and VME, as described above.

We measure throughput for operations using a variety of
IDL data types, including void, sequence, and struct
types. The void data type instructs the server not to per-
form any processing other than that necessary to prepare and

4Since the request header size is variable it is not possible to precisely
pinpoint the proportional savings represented by these bytes. In many cases,
however, the reduction is as large as 25%,

5The bandwidth of 10 Mbps Ethernet is much lower than 320 Mbps VME.
Since the performance gains from GIOPlite were smalk, the results for the two
protocols using Ethernet were nearly identical. Therefore, we only show the
GIOPlite results.

send the response, i.e., it does not cube any input parame-
ters. The sequence and st ruct data types exercise TAQ’s
(de)marshaling engine. The struct contains an octet, a
long, and a short, along with padding necessary to align
those fields. We also measure throughput using long and short
sequences of the long and octet types. The sequences of
type long contain 4 and 1,024 members, while the sequences
of type octet contain 16 and 4,096 members.

Blackbox results: The blackbox benchmark results are
shown in Figure 5. Each bar in the chart represents latency av-
eraged over many two-way operation calls. As expected, the

leng seq <long> REENRERES
short seq <iong> ;
iong seq <octet> e

short seq <octet>

struct NG
" DVME/GIOPe avg.

adi) mieg

B VME/GICP avg.

B Ethemet'GIOPite avg.

3000 4006 5000
Latency {usec}

Figure 5: TAO’s Pluggable Protocols Framework Latency for
VME and Ethernet

0 1000 2000 6000 7000 8000 90C0

320 Mbps VME transport protocol significantly outperformed
the 10 Mpbs Ethernet, even for small requests. For single pa-
rameters and short sequence parameters, round-trip laten-
cies were 15-25% lower for VME. For long sequence pa-
rameters {(where the message size was greater than Ethernet’s
MTU) the difference was even more dramatic, with VME out-
performing Ethernet over 600%.

GIOPlite outperformed GIOP by a small margin, typically
2%. These results suggest that more substantial changes to
the GIOP message protocol are required to achieve significant
performance improvements. However, these results also ilius-
trate that GIOP message footprint has a relatively minor per-
formance impact over high-speed networks and embedded in-
terconnects. Naturally, the impact of GIOP message footprint
for lower-speed links, such as second-generation wireless sys-
tems or low-speed modems, is more significant.

Figure 6 compares the overhead incurred in the ORB, OS,
and VME driver for one-way IDL_Cubit calls transmitting
sequences of type long, with lengths that are powers of 2,

100%
0% 18— & 8 [——{ & || & [& |—| 2B B |—|®
=
[+ i
- A oy 3 % [+ g
—EE R RS
OVME + 05 overhead BClent pre /0 send
; '.":DCIiBntpnsl /O send BServer overhead
o LLE L EF L T e T T

4 8 16 32 64 128 1024 2048

Sequence kength {bytes)

Figure 6: Comparison of ORB and VME/OS Overhead Using
VMEtro Timeprobes

256 512

ranging from 4 bytes to 2,048 bytes.® The segments in each bar
represent the combined VME/OS overhead and the ORB over-
head. The latter is broken down into client-side and server-side
processing time. The client side is further decomposed into
pre-I/O send processing time, i.¢., before any data has been
sent to the server, and post-I/O send processing time, i.e., after
data transfer to the server has started. The time in psecs for
each step is displayed on its segment.

Client post-I/O send processing proceeds concurrently with
the VME transfer. Thus, the sum of the four numbers on any
segment is actually greater than the total time observed for the
one-way operation. Our whitebox results illustrate that the to-
tal ORB overhead is considerably less than the VME overhead,
even for very short data transfers,

Figure 6 also shows that, as the size of the operation pa-
rameters increases, VME overhead grows faster than the ORB
overhead. This result illustrates that ORB overhead is largely
independent of the request size. In particular, demultiplexing a
request, creating message headers, and invoking an operation
upcall are not affected by the size of the request.

The only overhead that depends on size is (de)marshaling
{which depends on the type complexity, number, and size of
operation parameters) and data copying (which depends on the
size of the data). In cur whitebox experiment, only the param-
eter size changes, i.e., the sequences vary in length. More-
over, TAO’s (de)marshaling optimizations [13] incur minimal
overhead when running between homogeneous ORB endsys-
tems.

For the operations tested in the IDL_Cubit benchmark, the
overhead of the ORB is dominated by memory bandwidth lim-
itations. Likewise, the performance of the VME driver is dom-
inated by the backplane bandwidth. On the PowerPC/VME
platform, memory bandwidth is much higher than the back-

5The X-axis is in logarithmic scale.

plane bandwidth. Therefore, the VME overhead grows faster,
as shown in Figure 6.

4.3 Whitebox Benchmarks

Whitebox benchmarks measure the performance of specific
components or layers in a system from an internal perspective.
In our experiments, we used whitebox benchmarks to pinpoint
the time spent in key components in TAO’s client and server

~ ORBs.

4.3.1 Measurement Technique

One way to measure performance overhead of operations in
complex communijcation middleware is to use a profiling tool
like Quantify [25]. Quantify instruments an application’s bi-
nary instructions and then analyzes performance bottlenecks
by identifying sections of code that dominate execution time.
Quantify is useful because it can measure the overhead of
system calls and third-party libraries without requiring source
code access.

Unfortunately, Quantify is not available for the real-time
and embedded operating systems for which whitebox mea-
surement of TAQ’s performance is needed. Moreover, because
Quantify modifies the binary code to collect timing informa-
tion, it is most useful for measuring relarive overhead of dif-
ferent operations in a system, rather than measuring absolute
run-time performance.

To aveid the limitations of Quantify, therefore, we used a
lightweight timeprobe mechanism provided by TAO to pre-
cisely pinpoint the amount of time spent in various ORB com-
ponents and layers. The TAQ timeprobe mechanism provides
highly accurate, low-cost timestamps that record the time
spent between regions of cade in a software system. These
timeprobes have minimal performance impact, e.g., 1-2 usec
overhead per timeprobe, and no binary code instrumentation
is required.

Depending on the underlying platform, TAQO’s timeprobes
are implemented either by high-resolution OS timers or by
high-precision timing hardware. An example of the latter is the
VMEtro board, which is a VME bus monitor. VMEtro writes
unique TAO timeprobe values to an otherwise unused VME
address. These values record the duration between timeprobe
markers across multiple processors using a single clock. This
enables TAO to collect synchronized timestamps and accu-
rately measure cominunication delays end-to-end across dis-
tributed CPUs.

Below, we examine the VMEtro-based client and server
whitebox performance in detail.

INITIALIZATION

DNIODLNO

: PARAMETERS
ORE MESSAGING

¢ ORB TRANSPORT

OBJECT (SERVANT) |

S KERNEL

P B3 X R
i VME DRIVER .

INCOMING

Figure 7: Timeprobe Locations for Whitebox Experiment

4.3.2 Whitebox Results

Figure 7 shows the points in a two-way operation request path
where timeprobes were inserted. Each labeled number in the
figure corresponds to an entry in Table 1 and Table 2 below.

Client performance: Table I depicts the time in microsec-
onds (is) spent in each sequential activity that a TAO client
performs to process an outgoing operation request and its re-
ply. Each client outgoing step is outlined below:

[| Direction | Client Activitics | Absolute Time (us)
Outgoing | 1. Initialization 36
2. Uet object reference 12

3. Parameter marshal operation dependent

4. ORB messaging send 4

3. ORB vranspori send 2

6, VO send operation dependent

Incoming | 7. J/O receive operation dependent
8. ORB transport recy 2

9. ORB messaging recv 12

10, Parameter demarshal | operation dependent

Table 1: pseconds Spent in Each Client Processing Step

1. Intheinitialization step, the client invocation is created,
and constructors are called for the input and output Common
Data Representation (CDR) stream objects that handle mar-
shaling and demarshaling of operation parameters.

2. TAO’s connector caches connections, so even though
its connect method is called for every operation, existing
connections are reused for repeated calls. For statically config-
ured systems, such as avionics mission computing, TAO pre-
establishes connections, so even the initial connection setup
overhead can be avoided entirely.

3. In the parameter marshal step, the outgoing in and
incut parameters are marshaled. The overhead of this pro-
cessing depends on the operation signature, i.¢., the number of
data parameters and their type complexity.

4. Inthe send operation in the ORB messaging layer, the
client creates a request header and frames the message. The
messaging layer then passes the message to the ORB trans-
port component for transmission to the server. If the request is
two-way, the transport component waits for and processes the
response.

5. The send operation in the ORB fransport component
implements the connection concurrency strategy and invokes
the appropriate ACE I/O operation. TAO maintains a linked
list of CDR buffers [10], which allows it to use “gather-write”
OS calls, such as writev. Thus, multiple buffers can be writ-
ten atomically without requiring multiple system calls or un-
necessary memory allocation and data copying.

6. The I/O send operation gets the peer I/O handle from
the conmection handler (the iransport component) and per-
forms the appropriate operation, such as copying the data over
the VME using DMA.

Each client incoming step is outlined below:

7. The IO receive operation copies the data from a kernel
buffer to a receive CDR stream and returns control to the ORB
fransport component.

8. The recv operation in the ORB transport layer dele-
gates the reading of the received messages header to the ORB
messaging component. If the message header is valid, then the
remainder of the message is read.

10

9. The recv operation in the ORB messaging layer
checks the message type of the reply, and either raises an ap-
propriate exception, initiates a location forward, or returns the
reply to the calling application.

10. In the parameter demarshal step, the incoming reply
out and incut parameters are demarshaled. The overhead
of this step depends, as it does with the server, on the operation
signature.

Server performance: Table 2 depicts the time in microsec-
onds (us) spent in each activity as a TAO server processes a
request. Each incoming server step is outlined below:

[| Direction | Server Activities | Absolute Time (us) ||

Incoming | 1. KO receive operation dependent
2. ORB transport recv 10
3. ORE messaging recv 33
4. Parsing object key 12
5. POA demux 3
6. Servant demux 6
7. Operation demux 4
8. Parameter demarshal | operation dependent
9. User upcall servant dependent
Qutgoing | 10. Return value marshal | operation dependent
11. ORB messaging send 34
12. GRB transport send 3
13, I/O send operation dependent

Table 2: pseconds Spent in Each Server Processing Step

1. The I/O recv operation copies the data from a kernel
buffer to a CDR steam. This is the transition from the network
transport layer to the ORB transport layer,

2. The recv operation in the ORB transport layer dele-
gates the reading of the received message header to the ORB
messaging component. If it is a valid message, then the re-
maining data is read and passed to the ORB messaging com-
ponent.

3. The recv operation in the ORB messaging layer
checks the type of the message and forwards it to the POA.
Otherwise it handles the message or reports an error back to
the client.

4. The Parsing object key step comes before any other
POA activity. The time in the table includes the acquisition
of a lock that is held through all POA activities (POA demux,
Servant demux, and Operation demux).

5. The POA demux step locates the POA where the servant
resides. The time in this table is for a POA that is one level
deep, although in general, POAs can be many levels deep [10].

11

6. The servant demux step looks up a servant in the tar-
get POA. The time shown in the table for this step is based
on TAO’s active demultiplexing strategy [10], which locates a
servant in constant time regardless of the number of objects in
aPOA.

7. 'Fhe skeleton associated with the operation resides in
the operation demux step. TAO uses perfect hashing [10] to
locate the appropriate operation.

8. In the parameter demarshal step, the incoming request
in and inout parameters are demarshaled. The overhead of
this step depends, as it does with the client, on the operation
signature,

9. The time for the user upcall step depends upon the ac-
tual implementation of the operation in the servant.

Each outgoing server step is outlined below:

10. Inthe return value marshal step, the return, inout
and out parameters are marshaled. This time also depends on
the signature of the operation.

11. The send operation in the ORB messaging layer
passes the marshaled return data down to the ORB transport
layer.

12, The send operaticn in the ORB transport layer adds
the appropriate IOP header to the reply, sends the reply, and
closes the connection if it detects an error.

13. The I/O send operation gets the peer I/O handle from
the server connection handler and calls the appropriate send
operation. As in the client-side /0 send operation described
above, the server uses a gather-write I/O call.

Depending on the type and number of operation parameters,
the parameter demarshal, user upcall, and return value mar-
shal steps typically require the most ORB processing time. In
contrast, the ORB messaging and ORB transport components
in TAO’s pluggable protocols framework require less than half,
l.e., ~40-45%, of the ORB’s overall request dispatch time.
However, since the bulk of the time is spent in the VME driver
and the OS, the total overhead attributed to TAO’s pluggable
protocol layer is ~12

5 Related Work

The design of TAO's pluggable protocals framework is influ-
enced by prior research on the design and optimization of pro-
tocol frameworks for communication subsystems. This sec-
tion outlines this research and compares it with our work.

Configurable communication frameworks: The x-
kernel [26], System V STREAMS [27], Conduit+ [28],
ADAPTIVE [29], and F-CSS [30] are all configurable
communication frameworks that provide a protocol back-
plane consisting of standard, reusable services that support
network protocol development and experimentation. These
frameworks support flexible composition of modular protocol
processing components, such as connection-oriented and con-
nectionless message delivery and routing, based on uniform
interfaces.

The frameworks for communication subsystems listed
above focus on implementing various protocol layers beneath
relatively low-level programming APIs, such as sockets. In
contrast, TAOQ’s pluggable protocols framework focuses on
implementing and/or adapting to transport protocels beneath
a higher-level communication middleware AFPI, i.e., the stan-
dard CORBA, programining API. Therefore, existing commu-
nication subsystem frameworks can provide building block
protocol components for TAOQ’s pluggable protocols frame-
work.

Patierns-based communication frameworks: An increas-
ing number of communication frameworks are being designed
and documented using patterns [15, 28]. In particular, Con-
duit+ [28] is an OO framework for configuring network pro-
tocol software to support ATM signaling. Key portions of the
Conduit+ protocol framework, e.g., demultiplexing, connec-
tion management, and message buffering, were designed us-
ing patterns like Strategy, Visitor, and Composite {31]. Like-
wise, the concurrency, connection management, and demulti-
plexing components in TAO’s ORB Core and Object Adapter
also have been explicited designed using patterns like Reactor,
Acceptor-Connector, and Active Object [15].

CORBA pluggable protocol frameworks: The architec-
ture of TAO’s pluggable protocols framework is based on the
ORBacus [32] Open Communications Interface (OCI). The
OCI framework provides a flexible, intuitive, and portable in-
terface for pluggable protocols. The framework interfaces are
defined in IDL, with a few special rules to map critical types,
such as data buffers.

Defining pluggable protocol interfaces with IDL permits de-
velopers to familiarize themselves with a single programming
model that can be used to implement protocols in different lan-
guages. In addition, the use of IDL makes possible to write
pluggable protocols that are portable among different ORB
implementations and platforms.

Though the OCI pluggable protocols frameworks is useful
for many applications and ORBs, the following aspects make
it less suitable for high-performance and real-time systems:

e IDL interfaces add extra overhead: As mentioned
above, the use of IDL has several advantages. However, unless

new IDL mapping rules are approved for locality constrained
objects, an ORB must setup a non-trivial amount of context
information, e.g., to handle POA Servant Managers [33), to
make local invocations have the same semantics as remote in-
vocations. Although overhead can be minimized by using ad
hoc optimizations, some additional method invocation over-
head will be incurred by common IDL mappings.

In contrast the framework we propose utilizes regular C++
classes, this limits the portability of the system, but completely
eliminates the overhead introduced by the IDL interfaces.

o The current OCI version does not support zero-copy
buffers: The OCI interfaces do not currently support zero-
copy I/0; which would permit the ORB to marshal data di-
rectly into kernel buffers making a single copy or at most one
copy. This omission limits the effectiveness of the framework
over high-performance communication links, such as ATM or
Gigabit Ethernet.

e The current OCI version does not optimize profile
parsing: As discussed in Section ??, parsing an IOP pro-
file is a relatively expensive operation. The QCI framework
does not provide any means to manipulate pre-parsed profile,
which is a common use-case.

Our framework allows each protocol implementation to rep-
resent a Profile as it best see fit. Since this profiles are only
created in few instances it is possible for them to parse the
octet stream representation and store it in a more convenient
format; or the parsing can be done on demand to minimize
startup time. The protocol implementor is free to choose the
strategy that better fits its application,

¢ ACE and OCI interfaces require extra adaptation lay-
ers: TAO uses the ACE framework [34] to isolate itself from
non-portable aspects of underlying operating systems. This
design leverages the extensive testing, optimizations, wide
range of platforms, and the communication patterns supported
and implemented by ACE, enabling us to focus on the partic-
ular problems of developing a high-performance and real-time
ORB. Using the OCI IDL-derived interfaces incurs an extra
layer of adaptation between ACE and TAQ, which unneces-
sarily increases framework overhead.

To alleviate the drawbacks with OCI, TAO implements
highly optimized pluggable protocol framework that is tuned
for high-performance and real-time application requirements.
For example, TAO’s pluggable protocols framework can be in-
tegrated with zero-copy high-speed network interfaces [22, 35,
8, 18], embedded systems [13], or high-performance commu-
nication infrastructures like Fast Messages [24].

However, TAO’s pluggable protocols framework does not
preclude the use of more general frameworks like the ORBa-
cus OCI. In fact, we plan to implement OCI as a pluggable
protocol into TAQ, thereby allowing application developers to

12

test and use OCI pluggable protocols. If applications have very
stringent performance requirements, developers can use the in-
ternal TAO pluggable protocol framework to obtain the higher
performance and greater predictability.

6 Concluding Remarks

To be an effective development platform for performance-
sensitive applications, such as video-on-demand, teleconfer-
encing, and avionics mission computing, based on CORBA
must preserve communication layer QoS properties to appli-
cations end-to-end. It is essential, therefore, to define a plug-
gable protocols framework that allows custom inter-ORB mes-
saging and transport protocols to be configured flexibly and
transparently by CORBA applications.

This paper identifies the protocol-related limitations of cur-
rent ORBs and describes a CORBA-based pluggable protocols
framework we developed and integrated with TAO to address
these limitations. TAC’s pluggable protocols framework con-
tains two main components: an ORB messaging component
and an ORB transport adapter component. These two com-
ponents allows applications developers and end-users to trans-
parently extend their communication infrastructure to support
the dynamic and/or static binding of new ORB messaging and
transport protocols. Moreover, TAQ’s patterns-oriented QO
design makes it straightforward to develop custom inter-ORB
protocol stacks that can be optimized for particular application
requirements and endsystem/network environments.

This paper empirically illustrates the performance of TAQ's
pluggable protocols framework when running CORBA ap-
plications over high-speed interconnects, such as VME. Our
benchmarking results demonstrate that applying appropriate
optimizations and patterns to communication middleware can
yvield highly efficient and predictable implementations, with-
out sacrificing flexibility or reuse. These results support our
contention that communication middleware performance is
largely an implementation issue. Thus, well-tuned, standard-
based communication middleware like TAO can replace ad
hoc and proprietary solutions that are still commeonly used in
traditional embedded real-time systems.

Most of the performance overhead associated with plug-
gable protocols framework described in this paper stem from
“out-of-band” creation operations, rather operations in the crit-
ical path. We have shown how patterns can resolve key design
forces to fiexibly create and control the objects in the frame-
work. Simple and efficient wrapper facades can then be used
to isolate the rest of the application from low-level implemen-
tation details, without significantly affecting end-to-end per-
formance,

In future work, we will develop pluggable protocols for
high-speed networks, such as ATM and Myrinet, as well. One

13

focus of this work is to determine effective patterns for sup-
porting advanced /O features, such as buffer management
schemes using intelligent YO interfaces and shared memory,
available in current high-speed network adaptors. In addi-
tion, we are exploring the integration of high-speed messaging
protocols, such as Fast Messages [24], with standard CORBA
communication middleware.

Acknowledgements

We would like to thank Greg Holtmeyer for his help in gener
ating the whitebox and blackbox performance results in Sec-
tion 4.

References
1]
[2]

AT, “Advanced Technology Demonstration Network.” http:/faww.atd.net/,

Object Management Group, The Commion Object Reqitest Broker: Architecture and
Specification, 2.2 ed., Feb. 1998,

[3]1 D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[4] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for the Java
System,” USENIX Computing Systems, vol, 9, November/December 1996,

i3] 8. Vinoski, “CORBA: Integrating Diverse Applications Within Distributed Hetero-
geneous Environments,” IEEE Conmunications Magazine, vol. 14, February 1997,

ign and Performance of
, vol. 21, pp. 204~

[6]

D, C. Schmidt, D L. Levine, and S. Mungee, “The Des
Real-Time Object Request Brokers,” Ci r Ci i
324, Apr. 1998,

(7] G. Parulkar, D, C, Schmidi, and J. 8. Tumer, “a"t¥m: a Strategy for Integrating
1P with ATM,” in Proceedings of the Sympasium on C ications Architectures

and Protacols (SIGCOMM), ACM, September 1995,

E, Kubnrs, D. C. Schmidt, and D. L. Levine, “The Design and Performance of a
Real-time IO Subsystem,” in Proceedings of the 5" IEEE Real-Time Technology
and Applications Symposim, (Vancouver, British Columbia, Canada), IEEE, June
1999,

[8]

[91 C.D. Gill, D. L. Levine, and D. C, Schmidt, “The Design and Performance of
a Real-Time CORBA Scheduling Service,” The International Journal of Time-
Critical Computing Systems, special issue on Real-Time Middleware, 1999, to ap-
pear.

[10] I Pyarali, C. O’Ryan, D. C. Schemidt, N. Wang, V. Kachroo, and A, Gokhale, “Ap-
plying OElimizau'on Patterns to the Design of Real-time ORBs,” in Proceedings
of the 5** Conference on Objeci-Oriented Techinologies and Systems, (San Diego,
CAY, USENIX, May 1990.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, *The Design and Performance
of a Real-time CORBA Event Service,” in Proceedings of OOPSLA "97, (Atlanta,
GA), ACM, Qctober 1997,

[t1]

[12} D. C. Schmids, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Sofiware Archi-
tectures for Reducing Priority Inveesion and Non-determinism in Real-time Object
Request Brokers,” Jowrnal of Real-time Systems, To appear 1999.

f13] A. Gokhale and D. C, Schmidt, “Optimizing a CORBA, IIOP Protocol Engine for
Minimal Footprint Multimedia Systems,” Journal on Sefected Areas in Conmu-
nications special issue on Service Enabling Platforms for Networked Multimedia
Systems, o appear, 1999,

[14] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Communication
Middleware on High-Speed Networks,” in Proceedings of SIGCOMM '96, (Stan-
ford, CA), pp. 306317, ACM, August 1996,

[E5] D, C. Schmidt and C. Cleeland, “Applying Patterns to Develop Extensible ORB
Middleware,” I[EEE Commnnications Magazine, April 1999.

[16] E Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M, Stal, Parern-
Oriented Software Architecture - A System of Patterns. Wiley and Sons, 1996.

[17] Object Management Group, Telecam Domain Task Force Request For hformation
Supporting Wireless Access and Mobility in CORBA - Request For Information,
OMG Document telecormn/98-06-04 ed., June 1998,

R. 8. Madukkarumukursana and H. V. Shah and C, Pu, “Hamessing User-Level
Networking Architectures for Distributed Object Computing over High-Speed Net-
works,” in Proceedings of the 2ud Usenix Windows NT Symposium, Auvgust 1998,

{te]

[19} Object Management Group, Realtime CORBA 1.0 Joint Submission, OMG Docu-

ment orbos/28-12-05 ed., December 1998,
[20] Object Management Group, CORBA Messaging Specification, OMG Document
orbos/98-05-03 ed,, May 1998,

S. Mungee, N, Surendran, and D. C. Schrmidt, “The Design and Performance of a
CORBA Audio/Video Sireaming Service,” in Proceedings of the Hawaiian Inter-
national Conference on System Sciences, Jan. 1999,

[21]

Z. . Dittia, G. M. Parulkar, and J. R. Cox, Jr, “The APIC Approach to High
Performance Network Interface Design: Protected DMA and Other Techniques,”
in Proceedings of INFOCOM '97, (Kobe, Japan), IEEE, April 1997.

(22

A. Gokhale, D. C. Schmidt, C. O’Ryan, and A. Arulanthu, “The Design and Per-
formance of a CORBA IDL Compiler Optimized for Embedded Systems,” in Srb-
mitted to the LCTES workshop at PLDI '99, (Atanta, GA), IEEE, May 1959.

[23]

[24] M. Lauria, 8. Pakin, and A. Chien, “Efficient Layering for High Speed Commu-

nication: Fast Messages 2.x.,” in Proceedings of the 7th High Performance Dis-
rributed Compuiing (HPDC7) conference, {Chicago, Hlinois}, Tuly 1998,
(23]

[26]

P. 8. Inc., Quantify User’s Guide. PureAtria Software Inc., 1996,

N. C. Hutchinsen and L. L. Peterson, “The v-kemnel: An Aschitecture for Imple-
menting Network Protocols,” JEEE Transactions on Software Engineering, vot. 17,
pp. 6476, January 1991,

[27] D. Ritchie, “A Stream Input-Qutput System,” AT&T Bell Labs Technical Journal,
vol. 63, pp. 311-324, Oct. 1984

[28] H. Hueni, R, Johason, and R. Engel, *A Framework for Network Protocel Soft-
ware,” in Proceedings of OOPSLA *93, (Austin, Texas), ACM, October 1995,

D. C. Schmidt, D. E Box, and T. Suda, "ADAPTIVE: A Dynamically Assem-
bled Protocol Transformation, Integration, and eValuation Environment,” Jorernal
of Concurrency: Practice and Experience, vol. 5, pp. 269-286, June 1993.

291

M, Zitterbart, B. Stiller, and A. Fantawy, “A Model for High-Performance Comein-
nication Subsystems,” JEEE Journal on Selected Areas in Conmunication, vol, 11,
pp. 307519, May 1993,

[30]

E. Gamma, R, Helm, R. Johnson, and . Vlissides, Design Panterns: Elements of

[3t]
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995,

[32]
[33]

I. Object Oriented Concepts, “"ORBacus.” www.ooc.comfob.

8. Vineski and M. Henning, Advanced CORBA Programming With C++, Addison-
‘Wesley Longman, 1999,

[34] D.C.Schmidt and T. Suda, “An Object-Oriented Framework for Dynamically Con-
fipuring Extensible Distributed Cornsmunication Systems,” [EE/BCS Distributed
Systems Engineering Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280-293, Decembar 1994,

T. v. Eicken, A. Basu, V. Buch, and W, Vogels, “U-Net: A User-Level Network
Interface for Parallel and Distributed Computing,” in 15th ACM Symposium on
Operating System Principles, ACM, December 1995,

{351

[36] E. Eide, K, Frei, B, Ford, J. Lepreav, and G. Lindstrom, “Flick: A Flexible, Opti-
mizing IDL Compiler,” in Proceedings of ACM SIGPLAN "97 Conference an Pro-
gramining Language Design and fmplementation (PLDI), (Las Vegas, NV), ACM,

June 1997,

D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,” in Proceedings of
the 2% O+ Conference, (San Francisco, California), pp. 87-102, USENIX, April
1999,

(371

A Overview of CORBA and TAO

For completeness, this section outlines the CORBA refer-
ence model, focusing on its interoperability protocol model,
and describes the enhancements that TAO provides for high-
performance and real-time systems.

A1l Overview of the CORBA Reference Model

CORBA Object Request Brokers (ORBs) (5] allow clients to
invoke operations on distributed objects without concemn for
object location, programming language, OS platform, commu-
nication pretocols and interconnects, and hardware. Figure 8
illustrates the key components in the CORBA reference mode]
that collaborate to provide this degree of portability, interop-
erability, and transparency.” Each component in the CORBA

in args
operation()

out args+refurn value
A

OBJECT
(SERVANT)

L
COMPILER

GIOP/TIOP

O STANDARD INTERFACE

STANDARD LANGUAGE MAFPPING

ORB-SPECIFIC INTERFACE () STANDARD FPROTOCOL

Figure 8: Key Components in the CORBA 2.x Reference
Maodel

reference model is outlined below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
Objects can be remote or collocated relative to the client. Ide-
ally, a client can access a remote object just like a local object,
ie., object—roperation(args). Figure 8§ shows how
the underlying ORB components described below transmit re-
mote operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Bach object
is identified by an object reference, which associates one or
more paths through which a client can access an object on a
server. An Object Id associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In languages like C++ and
Java that support object-oriented (OO) programming, servants
are implemented using one or more class instances. In non-
00 languages, like C, servants are typically implemented us-
ing functions and structs. A client never interacts with ser-
vants directly, but always through objects identified by object

references
TThis overview only focuses on the CORBA. components relevant to this
paper. For a complete synopsis of CORBA's components see [2).

14

ORB Core: When a client invokes an operation on an ob-
Ject, the ORB Core is responsible for delivering the request to
the object and returning a response, if any, to the client. An
ORB Core is implemented as a run-time library linked into
client and server applications. For objects executing remotely,
a CORBA-compliant ORB Core communicates via a version
of the General Inter-ORB Protocol (GIOP), most commonly
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue’ between the client and servants, respectively,
and the ORB. Stubs implement the Proxy pattern [31] and
provide a strongly-typed, static invocation interface (SII) that
marshals application parameters into a common data-level rep-
resentation. Conversely, skeletons implement the Adaprer pat-
tern [31] and demarshal the data-level representation back into
typed parameters that are meaningful to an application.

IDL: Compiler: An IDIL compiler transforms OMG IDL
definitions inte stubs and skeletons that are generated auto-
matically in an application programming language like Ct+
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [36, 23].

Object Adapter: An Object Adapter associates servants
with objects, creates object references, demultiplexes incom-
ing requests to servants, and collaborates with the IDL skele-
ton to dispatch the appropriate operation upcall on a servant.
CORBA 2.2 portability enhancements [2] define the Portable
Object Adapter (POA), which supports multiple nested POAs
per ORB. Object Adapters enable ORBs to support various
types of servants that possess sirnilar requirements. This de-
sign results in a smaller and simpler ORB that can support a
wide range of object granularities, lifetimes, policies, imple-
mentation styles, and other properties.

A.2 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. The TAQ
ORB endsystem contains the network interface, QOS, commu-
nication protocol, and CORBA-compliant middleware com-
ponents and features shown in Figure 9. TAO supports the
standard OMG CORBA reference model [2], with the follow-
ing enhancements designed to overcome the shortcomings of
conventional ORBs [12] for high-performance and reai-time
applications:

53-"-32:";0)

(rurcomzon

HIGH-SPEED NETWORK
INTERFACES
{e.p.. APIC, VME)

Figure 9: Components in the TAO Real-time ORB Endsystem

Optimized IDL Stubs and Skeletons: IDL stubs and skele-
tons perform marshaling and demarshaling of application op-
eration parameters, respectively. TAQ’s IDL compiler gener-
ates stubs/skeletons that can selectively use highly optimized
compiled and/or interpretive (de)marshaling [13]. This flex-
ibility allows application developers to selectively trade off
time and space, which is crucial for high-performance, real-
time, and/or embedded distributed systems.

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests
to servants. TAQ’s real-time Object Adapter [10] uses perfect
hashing [37] and active demultiplexing [10] optimizations to
dispatch servant operations in constant O(1) time, regardless
of the number of active connections, servants, and operations
defined in IDL interfaces.

Run-time Scheduler: A real-time scheduler [19] maps ap-
plication QoS requirements, such as bounding end-to-end la-
tency and meeting periodic scheduling deadlines, to ORB end-
system/network resources, such as CPU, memory, network
connections, and storage devices. TAO’s run-time scheduler
supports both static [6] and dynamic {9] real-time scheduling
strategies.

Real-time ORB Core; An ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [12] uses a multi-threaded,

15

preemptive, priority-based connection and concurrency archi-
tecture [13] to provide an efficient and predictable CORBA
protocol engine. As described in Section 3.4, TAO’s ORB
Core allows customized protocols to be plugged into the ORB
without affecting the standard CORBA application program-
ming model.

Real-time I/0 subsystern: TAQ’s real-time YO (RIO) sub-
system [8] extends support for CORBA into the OS. RIO as-
signs pricrities to real-time /0 threads so that the schedulabil-
ity of application components and ORB endsystem resources
can be enforced, When integrated with advanced hardware,
such as the high-speed network interfaces described below,
RIO can (1) perform early demultiplexing of I/O events onto
prioritized kemel threads to avoid thread-based priority inver-
sion and (2) maintain distinct priority streams to avoid packet-
based priority inversion. TAO also runs efficiently and rel-
atively predictably on conventional I/Q subsystems that lack
advanced QoS features.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [22]. The APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps using zero-copy buffering op-
timization to avoid data copying across endsystem layers. In
addition, TAQ runs on conventional real-time interconnects,
such as VME backplanes and multi-processor shared memory
environments, as well as Internet protocols like TCP/IP.

TAO is developed using lower-level middleware called
ACE [34], which implements core concurrency and distribu-
tion patterns [31] for communication software. ACE pro-
vides reusable C++ wrapper facades and framework compo-
nents that support the QoS requirements of high-performance,
real-time applications and higher-level middleware like TAO.
ACE and TAO run on a wide range of OS platforms, includ-
ing Win32, most versions of UNIX, and real-time operating
systems like Sun/Chorus ClassiX, LynxOS, and VxWorks,

16

	The Design and Performance of a Pluggable Protocols Framework for Object Request Broker Middleware
	Recommended Citation
	The Design and Performance of a Pluggable Protocols Framework for Object Request Broker Middleware

	tmp.1439928365.pdf.xQzOR

