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Cyanobacteria are photoautotrophic organisms that contribute a significant amount of 

global primary productivity. They are found in freshwater, marine and even some extremely severe 

environments. Among those environments, iron deficiency is one of the most common stress 

conditions in cyanobacterial habitats. To survive, cyanobacteria have evolved and developed 

several strategies to alleviate the damage caused by iron deficiency.  

Iron stress-inducible protein (IsiA) is a chlorophyll-binding membrane protein found in 

cyanobacteria grown in iron-deficient conditions. During the past decades, considerable effort has 

been put on understanding how IsiA functions to help cyanobacteria survive iron deficiency. It 

was reported that IsiA forms various ring-shaped complexes with PSI (PSIx-IsiAy) or by itself 

(IsiA aggregate). While coupled with PSI (PSIx-IsiAy), the IsiA protein serves as an accessary 

antenna for PSI, which increases the absorption cross-section by 60% compared with the PSI 

trimer. IsiA aggregate, instead, dissipates excess light energy to prevent the cells from 

photodamage. Although these functions have been discovered and demonstrated in vivo and in 



 

xi 

 

vitro, the detailed mechanisms, especially the non-photochemical quenching process in IsiA, were 

not well understood.  

In this study, the excitation energy quenching process in IsiA was investigated by time-

resolved spectroscopy, and we proposed that IsiA dissipates excitation energy via a cysteine-

mediated quenching process. Site-directed mutagenesis was performed to replace this critical 

cysteine (C260) in IsiA with a valine. This single amino acid substitution in IsiA results in a 

defective IsiA, which no longer quenches excitation energy but still functions as light-harvesting 

antenna for PSI. Interestingly, this IsiA mutant grew faster than the wild type in the presence of 

iron under high light, suggesting a more efficient use of light energy owing to the abolishment of 

a photoprotective mechanism.  

Sharing a similar structure with IsiA, CP43, an intrinsic antenna of PSII, has not been 

reported being involved in excitation energy quenching process. We attempted to introduce this 

cysteine-mediated quenching process into CP43 to provide directly photoprotection to the reaction 

center of PSII. The mutant CP43 phenotypes showed a 25% lower quantum efficiency of PSII and 

barely grew photoautotrophically, implying an inefficient energy transfer to the reaction center of 

PSII caused by the introduction of an extrinsic quenching process.  
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1. Chapter One: Introduction: Function, regulation and 

distribution of IsiA, a membrane bound chlorophyll a-

antenna protein in cyanobacteria 
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membrane-bound chlorophyll a-antenna protein in cyanobacteria. Photosynthetica 56 (1):322-

333 

A.B. performed the phylogenetic analysis. 



 

2 

 

1.1 Abstract 
 

 IsiA is a membrane bound Chl a-antenna protein synthesized in cyanobacteria under 

iron-deficiency. Because iron-deficiency is a common nutrient stress in significant fractions of 

cyanobacterial habitats, IsiA is likely to be essential for some cyanobacteria. However, the role it 

plays in cyanobacteria is not fully understood. In this chapter, we summarize research efforts 

directed towards characterizing IsiA over the past three decades and attempt to bring all the pieces 

of the puzzle together to get a more comprehensive understanding of the function of this protein. 

Moreover, we analyzed the genomes of over 390 cyanobacterial strains available in the JGI/IMG 

database to assess the distribution of IsiA across the cyanobacterial kingdom. Our study revealed 

that only 125 such strains have an IsiA homolog, suggesting that the presence of this protein is a 

niche specific requirement, and cyanobacterial strains that lack IsiA might have developed other 

mechanisms to survive iron-deficiency. 

1.2 Introduction 
 

 The Earth’s atmosphere has undergone a gradual transformation into an oxidative 

environment since the great oxidation event in which photosynthetic organisms like cyanobacteria 

are thought to have played a major role (Lane 2002; Holland 2006). As the oxygen level increased, 

Fe (II) was oxidized to Fe (III), resulting in the formation of water-insoluble oxides of iron. This 

led to the low bioavailability of iron in aquatic environments despite it being the fourth most 

abundant element in the Earth’s crust. The low bioavailability of iron in aquatic ecosystems (Vrede 

and Tranvik 2006; North et al. 2007; Martin and Fitzwater 1988; Moore et al. 2013) has been a 

challenge for cyanobacteria. Pronounced effects of iron stress in cyanobacteria are the decreased 

levels of chlorophyll-binding proteins, phycobilisomes (PBS), cytochromes and ferredoxins 
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(Guikema and Sherman 1984; Fitzgerald et al. 1977; Sherman and Sherman 1983). A strategy that 

cyanobacteria have evolved to overcome such negative effects, is replacing these proteins with 

functional homologs that demand no iron. For instance, a flavodoxin, encoded by isiB (iron stress-

induced) gene, is synthesized by many cyanobacteria under iron-stress conditions. This flavodoxin 

acts as a functional homolog of ferredoxin and compensates for its loss (Fitzgerald et al. 1977; 

Guikema and Sherman 1984). Other remarkable changes observed in iron-starved cyanobacterial 

cells are the decrease of PSI and PSII contents, the increase of PSII/PSI ratios, as well as the 

synthesis of a chlorophyll-binding protein with the molecular weight of about 36 KD called CPVI-

4 (Pakrasi et al. 1985a; Pakrasi et al. 1985b). With sufficient iron, PSI and PSII are the major 

chlorophyll-binding protein complexes in cyanobacteria (Pakrasi et al. 1985a; Pakrasi et al. 

1985b). Under iron-deficient conditions, CPVI-4 protein becomes the dominant chlorophyll-

binding protein (Burnap et al. 1993), which implies that the synthesis of CPVI-4 may be produced 

to compensate for the loss of photosystems, especially for PSI. CPVI-4 is a product of an iron-

induced gene, isiA (Burnap et al. 1993). This gene was initially discovered as part of an iron-stress 

induced operon that includes a flavodoxin gene, isiB (Laudenbach and Straus 1988). It was later 

shown that isiA can be elsewhere in the genome and expressed independently of isiB (Leonhardt 

and Straus 1994).  

 Because iron-deficiency is a common nutrient stress in notable portions of 

cyanobacterial habitats (Bibby et al. 2009; Martin and Fitzwater 1988; North et al. 2007; Vrede 

and Tranvik 2006; Moore et al. 2013) and the production of IsiA is one of the most noticeable 

responses to iron-deficiency, it is reasonable to consider that the IsiA content in thylakoid 

membranes of cyanobacteria in certain environments is always maintained at high levels. In fact, 

it was reported that isiA was found in iron-limited oceanic environments (Bibby et al. 2009; 
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Behrenfeld et al. 2006; Schrader et al. 2011), demonstrating the significant role that IsiA plays in 

helping cyanobacteria survive in iron-deficient environments. The importance of IsiA in stressed 

cyanobacteria has drawn the attention of researchers over the past decades, and numerous 

hypotheses about the functions of IsiA have been proposed. Despite all the efforts, the pieces of 

the puzzle are yet to come together. In this chapter, we review the efforts directed towards 

elucidating the attributes of the IsiA protein over the past decades. We have also attempt to analyze 

the currently rich repertoire of sequenced cyanobacterial strains to assess the distribution of this 

protein across the cyanobacterial kingdom and hypothesize plausible roles for it in these 

organisms. 

1.3 Characteristics of IsiA protein 
 

 The discovery of the IsiA protein dates to the early 1970’s when Öquist reported altered 

spectral properties in iron-deficient cyanobacterial cells (Oquist 1971). Following this, in the early 

80’s, the Sherman lab demonstrated that cyanobacterial cells subjected to iron starvation for a 

prolonged period can undergo severe structural and functional alterations (Guikema and Sherman 

1983a; Sherman and Sherman 1983). A blue-shift of Chl a absorbance from 685 nm to 673 nm 

and the presence of a sharp peak at ~685 nm in the 77 K fluorescence emission spectrum of 

cyanobacterial cells was observed in iron-starved cyanobacteria (Oquist 1971; Burnap et al. 1993; 

Falk et al. 1995). In addition, a significant decrease in the PSI and PSII contents of the cells and 

synthesis of CPVI-4 protein were observed under these conditions (Guikema and Sherman 1984, 

1983b; Burnap et al. 1993; Pakrasi et al. 1985a). It was later demonstrated that the spectral changes 

in iron-starved cells was also associated with the presence of CPVI-4 protein (Pakrasi et al. 1985a; 

Guikema and Sherman 1983a; Pakrasi et al. 1985b). The nucleotide sequence analysis in Anacystis 
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nidulans R2 (Synechococcus sp. PCC7942) revealed that a gene, isiA, was in the same operon as 

isiB (which encodes for flavodoxin), right upstream of it (Laudenbach et al. 1988; Leonhardt and 

Straus 1992). A later report demonstrated that the CPVI-4 protein synthesized in iron-starved cells 

was encoded by the isiA gene (Burnap et al. 1993). The nucleotide sequence analysis showed that 

isiA is highly homologous to CP43 (Laudenbach and Straus 1988), a chlorophyll-binding 

membrane protein, which is a core antenna of PSII. Crystallographic analysis of PSII showed that 

CP43 has six-transmembrane helices and binds to 13 Chl a (Barber et al. 2000; Ferreira et al. 2004; 

Umena et al. 2011). The folding diagram of IsiA based on its nucleotide sequence in Synechocystis 

PCC 6803 and a hydropathy analysis suggested that IsiA also had six transmembrane helices and 

the histidine residues were conserved, implying that IsiA may bind to 13 Chl a (Bibby et al. 2001b; 

Feng et al. 2011). Later, a comparative study of the integrated absorption of PSI and IsiA, indicated 

that IsiA possesses 13~16 Chl a (Feng et al. 2011; Andrizhiyevskaya et al. 2002). Despite the 

similarity, a noticeable difference between CP43 and IsiA is that the large loop on the lumenal side 

joining helices V and VI in CP43 is missing in IsiA, thus resulting in the ~100 less amino acid 

residues in IsiA than in CP43 (Bibby et al. 2001b).  

 IsiA was found to form an antenna ring around PSI trimer under iron-deficient 

conditions (Boekema et al. 2001; Bibby et al. 2001a). Electron microscopy single-particle analysis 

revealed that the PSI-IsiA supercomplex consisted of 18 IsiA and a trimeric PSI (Boekema et al. 

2001; Bibby et al. 2001a). Later reports showed that during prolonged iron-starvation, the number 

of IsiA and PSI monomers varied in the PSI-IsiA supercomplexes (Yeremenko et al. 2004). At 

times, empty IsiA rings were also detected under such conditions (Yeremenko et al. 2004; 

Chauhan et al. 2011). While IsiA was considered to be mainly associated with PSI, it was 

originally proposed to serve as an antenna for PSII to compensate the loss of phycobilisomes 
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during iron-starvation (Pakrasi et al. 1985b). A recent study reported the formation of IsiA-PSI-

PSII supercomplex under iron-deficient as well as under high light conditions (Wang et al. 2010). 

In addition, the presence of IsiA in a complex containing PsaD, slr1128, and high light-inducible 

proteins (Hilps) under high light conditions were also reported (Wang et al. 2008; Daddy et al. 

2015). However, this Hlip-containing complex could not be detected when Komenda and Sobotka 

(Komenda and Sobotka 2016) attempted to reproduce the above results. Therefore, whether IsiA 

is involved in the Hlip-containing complex remains unclear, and further investigation is needed.   

 Unlike isiB gene (Kutzki et al. 1998), isiA was shown to be an essential gene in iron-

starved cyanobacteria by insertional mutagenesis (Burnap et al. 1993). Since it was reported that 

iron-deficiency is common in significant fractions of the habitats of cyanobacteria (Vrede and 

Tranvik 2006; North et al. 2007; Martin and Fitzwater 1988; Moore et al. 2013; Bibby et al. 2009) 

and isiA was detected in several model cyanobacteria, isiA was thought to be widespread in species 

across the cyanobacterial kingdom (Geiss et al. 2001a). However, later reports showed that some 

cyanobacterial strains including Synechococcus WH 8102 did not have isiA (Bailey et al. 2005). 

In addition, instead of IsiA, prochlorophytes including Prochloron, Prochlorothrix, and 

Prochlorococcus were found to have prochlorophyte chlorophyll a/b protein (Pcb), which is also 

a member of the six-transmembrane helices antenna super-family (La Roche et al. 1996). The field 

measurements conducted in the global ocean demonstrated that isiA is more prevalent in some 

iron-limiting oceanic regions, such as equatorial Pacific and Atlantic (Ryan-Keogh et al. 2012; 

Richier et al. 2012; Schrader et al. 2011). These facts conflict with the idea that isiA gene is 

commonly distributed in most cyanobacterial strains. Therefore, the physiological significance of 

IsiA and the role it plays in cyanobacteria need to be revisited. 
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1.4 Expression of IsiA 
 

 The transcripts of isiAB (iron stress-inducible) operon, encoding for IsiA protein and 

flavodoxin, was first identified when Anacystis nidulans R2 (Synechococcus sp. PCC7942) was 

grown under iron-deficient conditions (Laudenbach and Straus 1988; Laudenbach et al. 1988). 

However, later reports showed that isiAB operon could also be transcribed under other stressful 

conditions including high salt, heat shock (Vinnemeier et al. 1998), high light (Havaux et al. 2005), 

limiting light (Foster et al. 2007; Sandrini et al. 2016), and oxidative stress (Li et al. 2004; Yousef 

et al. 2003) conditions as well as in some mutants such as psaFJ-null mutant (Jeanjean et al. 2003) 

and cytochrome c6-deficient mutant (Ardelean et al. 2002). However, it should be noted that the 

synthesis and integration of IsiA in thylakoid membranes were not observed under some of the 

conditions mentioned above.  

 The induction of isiAB operon as a function of the ammonium ferric citrate (Fe(NH4) 

citrate) concentration in Synechocystis 6803 was determined by monitoring the fluorescence signal 

of GFP fused with isiAB promoter in iron-starved cells at different Fe(NH4) citrate concentration 

(Geiss et al. 2001a). The results showed a noticeable increase in GFP fluorescence signal when 

the Fe(NH4) citrate concentration was below 0.77 μM (Geiss et al. 2001a), which again confirmed 

that the isiAB promoter is iron-responsive. Meanwhile, the mechanism of iron-responsive 

regulation controlling isiAB expression was studied (Kunert et al. 2003; Vinnemeier et al. 1998; 

Ghassemian and Straus 1996). One of the hypotheses is that the isiAB expression is controlled by 

the ferric uptake regulator (Fur) (Kunert et al. 2003; Vinnemeier et al. 1998; Ghassemian and 

Straus 1996), a repressor binding to a Fur box under iron-replete conditions to repress gene 

expression, which is commonly found in prokaryotes (Stojiljkovic and Hantke 1995). Under 
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nutrient-replete conditions, the Fur repressor binds to a Fur box upstream of isiAB operon and 

prevent the binding of RNA polymerase. On the other hand, under stressful conditions, the Fur 

repressor falls off, and the expression of isiAB becomes possible (Kunert et al. 2003; Vinnemeier 

et al. 1998). As expected, the Fur box consensus sequences were found upstream of isiA gene in 

some cyanobacteria (Kunert et al. 2003), and the de-repression of isiAB operon was observed in 

the strains with insertional mutagenesis of fur gene (Ghassemian and Straus 1996). To determine 

further the regulatory elements controlling isiAB expression, GFP-containing strains were 

constructed in which GFP was fused with truncated isiAB promoter fragments containing different 

compositions of regulatory elements, which include the A+T-rich region, inverted repeat (IR), and 

the Fur box (Kunert et al. 2003). Intriguingly, the truncation of the sequence between the A+T-

rich and IR regions dramatically reduced the GFP fluorescence detected in iron-deficient 

conditions. This region was, therefore, considered to act as an unidentified positive regulatory 

element. Furthermore, a deletion of the Fur box also resulted in lower GFP fluorescence under 

iron-deficient conditions compared to iron-replete conditions, suggesting that an unrevealed 

mechanism is involved in repressing isiAB expression (Kunert et al. 2003). Besides the regulatory 

mechanism at transcriptional level, an antisense, IsrR (iron stress-repressed RNA), was identified 

to be involved in the posttranscriptional regulation of isiA expression (Duhring et al. 2006). IsrR 

is a cis-encoded antisense transcribed from the noncoding strand of isiA gene. It forms IsrR-isiA 

RNA heteroduplexes with isiA mRNA, and the heteroduplexes are targeted for selective 

degradation (Duhring et al. 2006). The inverse relationship between IsrR and isiA mRNA has been 

determined under oxidative stress, iron-deficient, and high light conditions (Duhring et al. 2006). 

It is likely that IsrR is also present under the stressful conditions mentioned above, but the 

accumulation of isiA mRNA exceeds the amount of IsrR, thus resulting in the production of IsiA 
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(Duhring et al. 2006). This regulatory machinery enables the cyanobacteria to respond instantly to 

the environmental signals and control the expression of isiA. No isiA mRNA was detected from 

the IsrR knock-down strain in iron-replete conditions, implying that IsrR regulatory mechanism 

was independent of the Fur mechanism (Duhring et al. 2006). However, this does not explain the 

expression/ de-repression of isiA in other stressful conditions.  

 To elucidate the factors responsible for the induction of the isiAB operon, stress 

conditions other than iron-deficiency were also studied, and the results suggested that cross-talks 

between multiple stress-induced genes existed (Michel and Pistorius 2004; Yousef et al. 2003; 

Jeanjean et al. 2003; Havaux et al. 2005). The production of reactive oxygen species (ROS) is 

inevitable in photosynthetic organism, thus resulting in the oxidative stress in cells. A strong and 

rapid induction of isiAB operon was determined when Synechocystis PCC 6803 was treated with 

75 µM H2O2 (Yousef et al. 2003; Li et al. 2004). In addition, studies focusing on the responses of 

cyanobacterial cells to oxidative stress conditions suggested that the ROS may interfere with the 

binding of Fur or PerR with the DNA as ROS was known to extract their metal cofactors and, thus, 

de-repress the iron inducible genes (Li et al. 2004). Interestingly, it was reported that no isiA 

transcript was detected in cells grown in iron and manganese co-limiting conditions (Salomon and 

Keren 2015). Because manganese-depletion led to a decrease in the PSII content, resulting in the 

limited production of ROS, the absence of isiA transcript in the cells under these conditions 

revealed the connection between isiA expression and oxidative stress, which appears to be a 

superior trigger for isiA expression (Salomon and Keren 2015). Besides isiAB, researchers found 

that some other iron-inducible genes, such as idiA (iron-deficiency-induced), a gene encoding for 

a protein produced under stressful conditions involved in protecting PSII against the damage 

caused by ROS (Michel and Pistorius 2004; Michel et al. 1996), were also induced under oxidative 
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stress. Even though the expression of isiA and idiA were thought to be controlled independently 

by Fur and IdiB (Michel et al. 1996), respectively, the idiB deletion strain showed a decreased IsiA 

content under iron-deficient conditions, which implied the cross-talk between the iron inducible 

genes. Given that the stressful conditions inducing isiAB operon are either linked to oxidative stress 

or iron-deficiency, a strong relationship between iron homeostasis and oxidative stress in 

cyanobacterial cells was proposed (Yousef et al. 2003; Michel and Pistorius 2004). These findings 

explained the induction of isiAB operon under some stressful conditions, other than iron stress, 

and supported the hypothesis that the cross-talk among stress-inducible genes are involved in isiAB 

expression. However, the expression of isiA was also observed in the cells transitioning into 

stationary growth phase under normal physiological conditions without any stress imposed (Singh 

and Sherman 2006). Therefore, further investigation is needed to elucidate the entire story of the 

expression of isiA. 

 The time course studies on synthesis and integration of IsiA protein in thylakoid 

membranes under iron-deficient conditions (Pakrasi et al. 1985a; Fraser et al. 2013; Ma et al. 2017; 

Ryan-Keogh et al. 2012; Yeremenko et al. 2004) provided another aspect for understanding the 

dynamic changes of isiA expression. IsiA was first identified as CPVI-4 protein (Pakrasi et al. 

1985b), isolated from Synechococcus sp. PCC7942 cells iron-starved for 4 to 5 days. In addition, 

the PSI-IsiA supercomplex with 18 IsiA and 1 trimeric PSI was also isolated and visualized from 

Synechocystis PCC 6803 and Synechococcus sp. PCC7942 cells after short-term iron-starvation 

(Boekema et al. 2001; Bibby et al. 2001a). It was later revealed that various other IsiA-associated 

supercomplexes can be formed within a few additional days of iron-starvation (Yeremenko et al. 

2004; Kouril et al. 2005). Yeremenko et al. (2004) performed electron microscopy followed by 

particle analysis on protein complexes isolated from Synechocystis PCC 6803 cells grown under 
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conditions of prolonged iron-deficiency and visualized the IsiA ring structures with various 

compositions of IsiA and PSI (Yeremenko et al. 2004). Although the majority of PSI-IsiA 

supercomplexes found was PSI3IsiA18, with longer period of iron-deficiency, smaller ring 

structures consisting of 12~14 IsiA and 1 PSI monomer, larger ones comprised of double IsiA 

rings with PSI at the center, IsiA double rings without PSI, as well as partial ring structures were 

observed (Yeremenko et al. 2004). However, it is difficult to monitor the exact amount of all these 

supercomplexes during iron-starvation. To understand the dynamic changes of IsiA-associated 

ring structures during iron-starvation, others have attempted to track the amount of bound and 

unbound IsiA at different time points (Ryan-Keogh et al. 2012; Fraser et al. 2013). It was found 

that the amount of unbound IsiA increased as the iron-starvation was prolonged, and the growth 

of cells slowed after 72 hr (Ryan-Keogh et al. 2012; Fraser et al. 2013). Nevertheless, the 

spectroscopic results showed fluorescence quenching caused by unbound IsiA at the early iron-

starvation stage (van der Weij-de Wit et al. 2007). A recent study showed the complexities of IsiA-

associated supercomplexes while the thylakoid protein complexes were separated by sucrose 

gradient ultracentrifugation from cells after 1-15 days of iron-starvation (Ma et al. 2017). The 

protein fractions isolated from thylakoid membranes became more complicated as the iron-

starvation was prolonged and revealed distinct fluorescence properties (Ma et al. 2017). These 

findings suggested that IsiA proteins in various ring structures assembled during iron-starvation, 

probably served distinct purposes to meet the need at different levels of iron-deficiency. 

 The nutrient availabilities and the expression of IsiA in the world’s oceans were also 

studied. In oligotrophic water and high-nitrate low-chlorophyll (HNLC) regions, bioavailability of 

iron is the main factor that limits the growth of phytoplankton (North et al. 2007; Martin and 

Fitzwater 1988; Coale et al. 1996; Tsuda et al. 2003). The analysis of a dataset obtained from the 



 

12 

 

Global Ocean Sampling Project, has revealed the environmental diversity of chlorophyll-binding 

protein complexes (Bibby et al. 2009). The pcb/isiA gene family has a higher genetic diversity in 

the open-ocean regions, and the isiA-like gene was found predominately at the interface of two 

geographically defined ocean regions that are dominated by pcb-type and PBS-type light 

harvesting systems, respectively. It was suggested that isiA-like gene was restricted to a defined 

oceanic region, so that the detection of isiA-like gene could be used as a biomarker of iron-

limitation in the ocean. Other studies suggested that 30% of the ocean is an HNLC region, in which 

the low Fv/Fm value was detected and attributed to the presence of uncoupled IsiA rings 

(Behrenfeld et al. 2006; Moore et al. 2013). Schrader et al. (2011) investigated isiA expression in 

Synechocystis PCC 6803 under iron and nitrogen co-limiting as well as high-nitrate low-iron 

conditions to mimic the natural environments (Schrader et al. 2011). Interestingly, the cells grown 

in co-limiting conditions showed low fluorescence emission and high Fv/Fm values similar to that 

of cells grown under nutrient-replete conditions (Schrader et al. 2011). On the other hand, cells 

grown in high nitrate and low iron, or HNLC, conditions showed high fluorescence emission and 

low energy-transfer efficiency (Schrader et al. 2011). In addition, cells grown under co-limiting 

conditions had limited IsiA, whereas under HNLC conditions, the cells possessed a huge IsiA pool 

that was not coupled with PSI (Schrader et al. 2011). These results suggest that the majority of 

IsiA produced under co-limiting conditions was well-coupled with PSI and served as an accessary 

antenna of PSI. The energy transfer from IsiA to PSI was efficient so that the IsiA did not 

contribute to the fluorescence emission. Under high-nitrate, low-iron conditions, a huge amount 

of IsiA antenna decoupled from PSI reaction center was produced, thus leading to the high 

fluorescence emission and low energy transfer efficiency (Schrader et al. 2011). The field studies 

conducted by collecting and analyzing the phytoplankton populations from HNLC, co-limiting 
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and nutrient-replete regions showed spectroscopic properties that were in agreement with 

laboratory experimental data (Schrader et al. 2011). The field data revealed the possible 

composition of photosynthetic proteins in cyanobacteria living in aquatic habitats with different 

nutrient availabilities. In nutrient-replete environments, cyanobacteria have PSI, PSII with 

phycobilisome and no IsiA; in co-limiting regions, cyanobacteria have decreased PSI, limited IsiA 

coupled with PSI and PSII with no phycobilisome; in HNLC environments, cyanobacteria have 

decreased PSI, IsiA coupled with PSI, IsiA rings decoupled from PSI, and PSII with phycobilisome 

attached (Figure 1.1). Furthermore, the results from field studies and laboratory experiments 

supported that up to half of total chlorophyll in HNLC existed in uncoupled IsiA complexes and 

remained Photosynthetically inactive (Schrader et al. 2011; Behrenfeld et al. 2006). 
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Figure 1.1 A schematic model of thylakoid membranes of cyanobacteria grown under (a) 

iron and nitrogen co-limiting and (b) HNLC conditions. Under co-limiting conditions, 

cyanobacterial thylakoid membranes contain PSI-IsiA and PSII without phycobilisomes. While 

under HNLC conditions, cyanobacterial thylakoid membranes have PSI-IsiA, IsiA rings and PSII 

with phycobilisomes attached. 
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1.5 Distribution and Phylogeny of IsiA 

 Earlier studies focused on IsiA have relied on molecular techniques as well as genome 

sequence data to evaluate its distribution across the cyanobacterial kingdom (Geiss et al. 2001a; 

Bibby et al. 2009; Shih et al. 2013). Although initially thought to be widespread among 

cyanobacteria (Geiss et al. 2001a), later studies with marine microbes indicated that the gene is 

not ubiquitous in cyanobacteria (Bailey et al. 2005; Bibby et al. 2009). Shih et al. (2013) studied 

the distribution of chlorophyll binding proteins (CBP’s) and found them to be widely distributed 

(84 of the 126 strains studied) across the cyanobacterial phylum. In this analysis, isiA containing 

strains formed the largest clade of the CBP’s (CBPIII). In the recent past, there has been an upsurge 

in the cyanobacterial gene sequence database, with the sequences of many ecologically and 

physiologically diverse strains becoming available. This provides us with a unique opportunity to 

assess the relevance of this protein across the cyanobacterial phylum.  

We analyzed the genomes of ~ 390 cyanobacterial strains currently available in the JGI/IMG 

database for the presence of the isiA gene. A blastp search for IsiA across the available strains was 

performed, using Synechocystis 6803 IsiA, a 342 amino acid protein, as the template, and hits with 

≥ 70% identity were designated as homologs of IsiA. In addition, some hits with lower percent 

identity but with proximity to the isiB gene in the genome and/or presence of a corresponding 

antisense RNA were also included as IsiA homologs for our analysis. The length of the protein 

identified in the above searches was also monitored to rule out non-specific selections. A hundred 

and twenty-five cyanobacterial strains were found to contain IsiA that complied with one or more 

of the above criteria. These included unicellular as well as filamentous cyanobacteria from diverse 

ecological niches, with distinct physiological traits. Prominent among the ~265 strains that lack 

isiA are the Prochlorococcus and the marine Synechococcus strains (~150 strains). In addition, 
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Planktothrix, Tolypothrix and the thylakoid-less Gloeobacter strains do not appear to have isiA. 

Several cyanobacterial genera include strains that do not harbor isiA. Examples are, the bloom-

forming filamentous strains of Microcystis and Anabaena and unicellular diazotrophic strains like 

Cyanothece among others. The rationale for this variability among strains within a genus remains 

unclear. However, the variability is likely due to the presence of other low-iron responsive proteins 

or to the differences in their niches, which in turn determines their exposure to different 

environmental stresses. In accordance with the findings of Shih et al., (2013), we also located isiA 

in the same gene cluster with other CBP proteins in several strains. This might be indicative of the 

parallel functions of these light harvesting proteins in some common pathway, and these genes 

may have been included in specific gene islands by horizontal transfer as an adaptive strategy to 

specific environmental needs.  

 The distribution of IsiA varied among symbiotic strains. Uncultivated unicellular N2-

fixing cyanobacteria of group A (UCYN-A) are known to be endosymbionts of prymnesiophytes. 

Both UNYNA-1 and UCYNA-2 contain genes for PSI but lack genes for PSII, resulting in the loss 

of photosynthetic ability. Our analysis revealed that this strain lacks IsiA. On the other hand, a 

photosynthetic symbiont of tunicates, Prochloron didemni, has the isiA gene (Figure 1.2) (Zehr et 

al. 2008; Donia et al. 2011). This suggests that the IsiA machinery is likely to be maintained when 

there is a need for increasing photosynthetic efficiency and/or for dissipation of excess light 

energy, both presumably unnecessary in UCYN-A.  

 Of the 125 strains containing isiA that were identified, 61 strains representing different 

cyanobacterial genera were selected for a phylogenetic analysis (Figure 1.2). In this study, the 

selection of the strains was not based on their ecology. Instead, strains representative of the diverse 

cyanobacterial genera that are commonly studied for their interesting physiology or ecology and 
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are currently present in the sequenced database were selected. The tree revealed that the IsiA of 

Synechocystis 6803 is closely related to that of Spirulina major 6313, and they both share a 

common ancestor with Thermosynechococcus elongatus, Cyanothece 7425 and Synechococcus 

6312. The IsiA in the marine Cyanothece strains 51142 and 0110 grouped separately from the 

terrestrial strains Cyanothece 7425 and 7424 and appeared to have co-evolved with the closely 

related marine strain Crocosphaera Watsonii. Interestingly, the IsiA of 16 heterocystous 

cyanobacteria that were included in this study grouped together in a clade (highlighted in blue), 

implying the coevolution of this gene in these members of the specialized group of cyanobacteria. 

Some of these strains were found to have isiA in the same operon as isiB as opposed to isiB being 

separately expressed as reported for some heterocystous cyanobacteria (Geiss et al. 2001b; Geiss 

et al. 2001a). Some non-heterocystous anaerobic nitrogen fixers [except Cyanothece 7424 which 

was reported as both an anaerobic (Turner et al. 2001) and aerobic (Bandyopadhyay et al. 2011)] 

grouped together (highlighted in brown) and appear to have evolved from a common ancestor. The 

pcb containing Prochlorothrix and marine Synechococcus KORDI-100 grouped together with the 

Prochlorococcus strains (which also contain pcb genes) were used as an outlier in this study 

(highlighted in green). 
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Figure 1.2 Phylogenetic tree of the IsiA protein from 61 sequenced representatives of diverse 

cyanobacterial species. IsiA protein sequences were obtained from the JGI/IMG microbial 

database and aligned with ClustalW within MEGA 7. The phylogenetic tree was generated using 

MEGA 7 (Neighbor-Joining method) (Saitou and Nei 1987). The percentage of replicate trees in 
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which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next 

to the branches (Felsenstein 1985). Only the nodes supported with a bootstrap of ≥ 70% are shown. 

All positions containing gaps and missing data were eliminated. Prochlorococcus strains 

containing the pcb genes were used to root the tree (green). The filamentous heterocystous 

cyanobacteria are shown in blue. The marine Synechococcus Kordi-100 strain and Prochlorothrix 

hollandica which also contain the pcb gene grouped together with the Prochlorococcus. Some 

anaerobic nitrogen fixers which contain the pigment phycoerythrin formed a distinct clade in the 

tree and are shown in orange color. 

 

1.6 Discovery of IsiA functions 

 Although IsiA has been intensively studied for more than three decades, its functions 

are yet not fully understood. To elucidate the functions of IsiA, a comprehensive understanding of 

the factors that induce its expression and the physiological changes under these conditions is 

needed. As discussed in the previous section, most of the stressful conditions inducing isiA 

expression can be linked to oxidative stress or iron-deficiency. In iron-deficient conditions, the 

decrease of PSI contents and the loss of thylakoid membranes are two of the significant changes 

(Guikema and Sherman 1984; Sherman and Sherman 1983). Because IsiA protein is the major 

chlorophyll-binding protein produced under iron-deficient conditions, it is likely that the 

production of IsiA can compensate for the loss of the pigment-binding proteins. Therefore, the 

proposed hypotheses for IsiA function are: (1) a chlorophyll storage protein (Riethman and 

Sherman 1988); (2) an accessary antenna for PSI (Burnap et al. 1993); and (3) a dissipater to 

quench light energy (Park et al. 1999).  

 The analysis of chlorophyll-binding proteins in thylakoid membranes of 

Synechococcus sp. PCC 7942 during the recovery from iron-starvation showed a decrease in the 

IsiA content and a recovery of PSI and PSII levels within 24 h after the addition of iron (Pakrasi 

et al. 1985a). Moreover, experimental data showed that the addition of gabaculine, a chlorophyll 
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synthesis inhibitor, did not affect the spectral change at the early stage of recovery for iron-

starvation (Guikema 1985). Therefore, IsiA has been thought to serve as a Chl a storage protein 

that maintains the Chl a content in cells under iron-deficient conditions, and releases Chl a for the 

synthesis of other chlorophyll-binding proteins, such as PSI, until the iron concentration gets back 

to normal levels. Additionally, unlike PSII, IsiA is mobile in thylakoid membranes (Sarcina and 

Mullineaux 2004) probably because of the loss of the huge loop on the lumenal side, which is the 

main difference between IsiA and CP43 (Burnap et al. 1993). Furthermore, the binding of Chl a 

to IsiA was considered not stable (Riethman and Sherman 1988), which suggests that IsiA is able 

to deliver Chl a during the recovery from iron-starvation. In HNLC environments, a huge pool of 

IsiA complexes were observed, which unlikely serve the purpose of photoprotection (Behrenfeld 

et al. 2006; Yeremenko et al. 2004; Ihalainen et al. 2005; Schrader et al. 2011). Instead, the IsiA 

complexes may be produced to maintain the Chl a content. It needs to be noted that atmospheric 

deposition of iron is an important iron source that episodically provides soluble iron to 

phytoplankton. The Chl a in IsiA can be rapidly released and used to produce PSI and PSII once 

their living environments receive iron pulses (Krishnamurthy et al. 2010; Schrader et al. 2011).     

 When IsiA was first identified in iron-starved Synechococcus sp. PCC 7942, it was 

thought as an intermediate antenna complex of PSII that absorbs light energy to compensate for 

the loss of phycobilisomes (Pakrasi et al. 1985b). The image of the PSI-IsiA supercomplex 

obtained by electron microscopy single-particle analysis provided abundant structural information 

that showed that IsiA was a peripheral membrane antenna associated with PSI (Bibby et al. 2001a; 

Boekema et al. 2001). Because a PSI trimer has 288 Chl a (Jordan et al. 2001) and an IsiA has 13 

Chl a, according to the latest report (Feng et al. 2011), the IsiA ring surrounding the PSI trimer in 

a PSI3IsiA18 supercomplex increases the theoretical absorption cross-section by 81%, which 
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suggests a great potential of IsiA for improving the light absorption capacities of PSI. The 

spectroscopic data showed multiple energy-transfer stages after the excitation of Chl a in PSI-IsiA 

supercomplexes, indicating the fast and efficient energy transfer between IsiA, within IsiA, and 

from IsiA to PSI (Melkozernov et al. 2003; Andrizhiyevskaya et al. 2004). In addition, a recent 

report showed that the electron throughput in PSI was enhanced while PSI was coupled with an 

IsiA ring (Sun and Golbeck 2015). Moreover, the mere 16% increase in exciton trapping time in 

PSI-IsiADR, the largest PSI-IsiA supercomplex isolated, compared with that in PSI timer, showed 

the well-coupled pigment network in PSI-IsiA supercomplex (Chauhan et al. 2011). The effective 

absorption cross-section of PSI (σPSI) in iron-starved Synechocystis sp. PCC6803 was measured in 

vivo, and a 60% increase in σPSI was observed with the accumulation of IsiA (Ryan-Keogh et al. 

2012). Given the experimental data mentioned above, it was demonstrated that IsiA serves as a 

peripheral membrane antenna of PSI. However, because the available PSI-IsiA crystal structure is 

only at the resolution of ~20Å  (Nield et al. 2003), it is impossible to simulate accurately the 

excitation energy transfer (EET) within the IsiA ring or from IsiA ring to PSI. The models of the 

EET in PSI-IsiA reported were constructed based on the positions of Chl a in CP43 and the relative 

positions between CP43 and PSII reaction center (Nield et al. 2003; Riley et al. 2006; Feng et al. 

2011). It was proposed that the helices 5 and 6 of IsiA are facing the PSI trimer, and a well-defined 

path for EET from IsiA ring to PSI exists (Nield et al. 2003; Riley et al. 2006). Additionally, like 

the CP43’s two lowest-energy states, which may play a role in the photoinhibitory and light-

harvesting processes (Reppert et al. 2008), the analogous energy states identified in IsiA are likely 

to facilitate energy transfer from IsiA to PSI (Feng et al. 2011). Furthermore, Chl a 44 and 37, 

located in the proximity of PSI, were proposed to be the chlorophylls contributing to the lowest-
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energy states A and B (Feng et al. 2011), which agrees with the structural model proposed by Nield 

et al. (2003). 

 Although IsiA was considered to improve the absorption cross-section of PSI and help 

capture light energy, some proposed that IsiA also functions as a non-photochemical quencher that 

protects PSII from photodamage (Park et al. 1999). This hypothesis was supported by the fact that 

the strain with the non-functional isiA gene (isiA-), had a higher rate of oxygen evolution under 

modest illumination and was more sensitive to light intensity (Park et al. 1999). By overexpressing 

isiA in a Synechococcus sp. PCC 7942 strain, the photoinhibition of photosynthesis under high 

light conditions was eliminated, which again showed that IsiA was involved in photoprotection 

(Sandstrom et al. 2001). Moreover, blue light-induced fluorescence quenching was observed in 

iron-starved cells (Cadoret et al. 2004). However, it was not clear how a protein is able to function 

as a light-harvesting antenna as well as a non-photochemical quencher. This question was 

addressed in later studies in which the various IsiA-associated ring structures were identified and 

experimentally proved to play distinct roles in iron-starved cells (Yeremenko et al. 2004; Ihalainen 

et al. 2005). Intriguingly, later reports showed that the blue light-induced fluorescence quenching 

in the IsiA-deletion strain was similar to that in wild type, and instead, the orange carotenoid 

protein played the central role in this process, suggesting that IsiA is not involved in the blue light-

induced non-photochemical quenching (NPQ) process (Wilson et al. 2006; Karapetyan 2007). This 

again questioned the mechanism of IsiA-mediated dissipation of light energy in iron-starved cells. 

Berera et al. (2009) proposed that energy in the Chl a pool was ultimately transferred to a 

quenching site, a carotenoid in IsiA (Berera et al. 2009; Berera et al. 2010), which is the same 

mechanism as the light-harvesting complex II in green plant and Hilp utilizes for energy 

dissipation (Ruban et al. 2007; Niedzwiedzki et al. 2016). Nevertheless, the direct evidence of 
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carotenoid involvement in this quenching process was missing. In addition, it was determined that 

the lifetime of excited Chl a fluorescence in IsiA is highly dependent on temperature (Chen et al. 

2017), which is not shown in Hilp (Niedzwiedzki et al. 2016). Additionally, our previously 

published spectroscopic results showed that EET between Chl a and carotenoids in IsiA was 

absent, suggesting a novel quenching mechanism other than carotenoid quenching process in IsiA 

(Chen et al. 2017). Based on the spectroscopic results, we proposed that the quenching process 

was completed by a cysteine-mediated protein-pigment interaction that was previously 

demonstrated in the Fenna-Mathews-Olson (FMO) protein, a light harvesting protein in green 

sulfur bacteria (Orf et al. 2016). 

1.7 Conclusion 

 During the past decades, considerable efforts were devoted to understanding the role 

that IsiA plays in cyanobacteria. Previous reports have shown that IsiA is required for growth of 

cyanobacteria under iron-deficient conditions (Burnap et al. 1993; Park et al. 1999). The 

hypothesis that IsiA stores Chl a under iron-deficient conditions and assimilates into 

photosynthetic proteins is supported by previous studies. Besides, the in vitro and in vivo 

measurements demonstrated that IsiA serves as an accessary antenna of PSI to increase the 

absorption cross section of PSI in PSI-IsiA supercomplex. Furthermore, it has been determined 

that IsiA dissipates excess light energy to prevent photosynthetic proteins from photodamage when 

IsiA is in an IsiA aggregate. However, the high-resolution crystal structure of IsiA is still 

unavailable, which makes it even more difficult to understand the processes and mechanisms of 

energy transfer from IsiA to PSI and the excited energy quenching in IsiA aggregate. In addition, 

the expression of isiA has been observed under various stressful conditions whereas the role of 

IsiA in these conditions is still unclear.  
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 About 390 strains with available genomes in the JGI/IMG database were analyzed in 

this study. Surprisingly, only about one-third of these strains were found to have the isiA gene. 

The habitat of the strain may be a determining factor for the presence or absence of the isiA gene. 

The chances are that the strains without IsiA either live in iron-replete habitats or have developed 

other approaches to survive in iron-deficient conditions. Our study shows that isiA is ubiquitous 

among aquatic cyanobacterial strains that are likely to be subjected to iron deficiency under their 

natural growth conditions. 

1.8 Dissertation overview 

 In this work, the excitation energy quenching process in IsiA was investigated by using 

time-resolved spectroscopy. In addition, site-directed mutagenesis was performed to obtain mutant 

phenotypes that were used to confirm the proposed quenching mechanism and to understand the 

physiological effects of the defective photoprotective mechanism in IsiA on cyanobacterial cells. 

Chapter 1 provides a comprehensive review of the role IsiA plays in cyanobacterial cells. 

Furthermore, more than 390 cyanobacterial genomes were analyzed to assess the distribution of 

the isiA gene, which informs  the significance of IsiA among cyanobacterial kingdom.  

 By examining the pure IsiA-only protein complex by using time-resolved spectroscopy 

coupled with a femtosecond laser system, we were able to revisit the mechanism of excitation 

energy quenching in IsiA. Given the specific spectroscopic signature observed, we proposed that 

IsiA quenches light energy by a cysteine-mediated quenching process previously discovered in the 

Fenna-Matthews-Olson (FMO) protein from green sulfur bacteria.  

 In Chapter 3, several Cys-targeted Synechocystis sp. PCC 6803 mutants were prepared 

and used to examine the hypothesized cysteine-mediated quenching process in IsiA. The 
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spectroscopic results of the IsiA mutants clearly showed that IsiA can no longer quench light 

energy without this critical Cys residue. An IsiA mutant, C260V, was made in which the cysteine 

in motif AVFCAVN was replaced with a valine. This mutant was used to explore the physiological 

effects of the defective IsiA on the mutant cells. Under modest light, the C260V mutant appeared 

to grow as well as the wild type regardless of whether sufficient iron was present. Interestingly, 

with sufficient iron, the mutant grew better than the wild type under high light conditions. This 

suggests that the defective photoprotection may positively affect the biomass yield of 

cyanobacteria under certain growing conditions.  

 While sharing a similar structure with IsiA, CP43, an intrinsic antenna protein of PSII, 

has a valine instead of a cysteine at that critical position and, therefore, does not function in 

photoprotection. Inspired by the significant change in energy quenching due to a single amino acid 

substitution in IsiA, site-directed mutagenesis was performed to investigate the potential of 

photoprotective mechanisms in CP43. Although a thorough study on the CP43 mutant is needed, 

a 25% decrease in the PSII quantum yield compared with the wild type was determined, indicating 

the introduction of a quenching process in the mutant CP43. 

  Chapter 5 summarizes the findings in this work for understanding the role IsiA plays 

in cyanobacteria. In addition, Chapter 5 provides some insights on improving the understanding 

of IsiA in the future. 
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2.1 Abstract 

This paper presents a spectroscopic investigation of IsiA, a chlorophyll a-binding 

membrane protein produced by cyanobacteria grown in iron-deficient environments. IsiA, when 

associated with photosystem I, supports photosystem I in light-harvesting by efficiently 

transferring excitation energy. However, while separated from photosystem I, IsiA exhibits 

considerable excitation quenching observed as a substantial reduction of protein-bound 

chlorophyll a fluorescence lifetime. Previous spectroscopic studies suggested that carotenoids are 

involved in excitation energy dissipation and additionally play a second role in this antenna 

complex by supporting chlorophyll a in light harvesting by absorbing in the spectral range 

inaccessible for chlorophyll a and transferring excitation energy to chlorophylls. However, this 

investigation does not support these proposed roles of carotenoids in this light-harvesting protein. 

This study shows that carotenoids do not transfer excitation energy to chlorophyll a. In addition, 

our investigations do not support the hypothesis that carotenoids are quenchers of the excited state 

of chlorophyll a in this protein complex. We propose that quenching of chlorophyll a fluorescence 

in IsiA is maintained by pigment-protein interactions that allow electron transfer from an excited 

chlorophyll a to a cysteine residue, an excitation quenching mechanism that was recently proposed 

to regulate the light harvesting capabilities of the bacteriochlorophyll a-containing Fenna-

Mathews-Olson protein from green-sulfur bacteria. 

2.2 Introduction 

Cyanobacteria are oxygenic photosynthetic organisms that are responsible for a significant 

portion of global biomass production. They are genetically and morphologically diverse and are 

found in various environments across a wide range of altitudes and latitudes (De los Rios et al. 
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2007). Cyanobacteria have survived many geological and climatic changes on Earth during the 

past ~3.5 billion years, and have evolved to overcome severe environmental conditions, such as 

nutrient deficiencies (De Marais 2000). Iron deficiency is a common nutrient-deficient condition 

in cyanobacterial habitats. Although iron is one of the most abundant elements on Earth, it is 

usually found in the form of insoluble ferric oxides (Stumm and Morgan 1981; Lane 2002). 

Cyanobacteria need significant amounts of ferric iron (Fe3+) for assembly of iron-sulfur complexes 

that are necessary for maintaining light-dependent photochemical reactions in protein complexes 

like photosystem I (PSI) (Reilly and Nelson 1988). If the environment lacks iron, cyanobacteria 

cannot produce sufficient levels of PSI or other essential iron-sulfur proteins, leading to lethal 

consequences. 

IsiA is a chlorophyll a (Chl a)-binding protein produced by cyanobacteria living in iron-

deficient conditions (Pakrasi et al. 1985). Given that iron limitation is common in natural 

environments, the IsiA protein is produced and associated with PSI (Bibby et al. 2001b, a; 

Boekema et al. 2001) under such conditions, where it participates in the process of light harvesting. 

IsiA is a 36 kDa membrane protein with high protein sequence homology to CP43, a core light-

harvesting antenna protein of photosystem II (PSII) (Bibby et al. 2001b). A major difference 

between these proteins is their pigment content. Whereas CP43 binds 13 Chl a and three molecules 

of carotenoid β-carotene, IsiA contains between 13 and 16 Chl a and four carotenoids: three β -

carotenes and one echinenone (Ihalainen et al. 2005; Andrizhiyevskaya et al. 2002). A high-

resolution crystal structure of the IsiA protein is not available, but top view images obtained by 

electron microscopy analysis of single particles of PSI-IsiA supercomplexes showed that the PSI 

trimer is surrounded by 18 IsiA subunits forming a (PSI)3(IsiA)18 supercomplex (Bibby et al. 
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2001a). This ring-shaped supercomplex is a preferred formation adapted by (PSI)x(IsiA)y 

supercomplexes (Yeremenko et al. 2004).  

Since the identification of the IsiA protein in the 1980s (Pakrasi et al. 1985), several 

hypotheses were proposed to explain its biological function. IsiA is highly homologous with CP43 

but is produced when the cyanobacterial cells are grown in iron-deficient environments where 

adequate quantities of PSI cannot be assembled (Ryan‐Keogh et al. 2012). It was suggested that 

the protein is synthesized to compensate for the loss of PSI and maintain light-harvesting capacity. 

From this perspective, the IsiA rings formed around PSI may act as huge light harvesting antennae, 

similar to phycobilisomes associated with PSII (Gantt 1981). Owing to a high mobility of IsiA in 

thylakoid membranes and a large pigment capacity, another function in Chl a storage has been 

also proposed (Sarcina and Mullineaux 2004).  

Studies using time-resolved optical spectroscopies (Andrizhiyevskaya et al. 2002; 

Melkozernov et al. 2003) suggested that in PSI-IsiA supercomplexes, IsiA very efficiently 

transfers the excitation energy of absorbed light to the PSI. However, the antenna proteins that are 

separated from PSI and freely float in the thylakoid membrane show a protective, dissipative 

mechanism that mitigates potential photo-oxidative damage. Excitation quenching has been 

clearly observed as a substantial shortening of the excited state lifetime of Chl a (Ihalainen et al. 

2005). Further investigations proposed that a quenching mechanism based on non-photochemical 

quenching was present at the level of the protein monomer and maintained by carotenoids. It was 

argued that one of the carotenoids, preferentially echinenone, quenches the singlet excited state of 

Chl a via direct energy transfer from the Chl a Qy state to the carotenoid S1 state (Berera et al. 

2010; Berera et al. 2009). 
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Efficient quenching of the Chl a excited state via the carotenoid S1 state can compete with 

the intrinsic decay of the carotenoid S1. If the pool of carotenoids excited to their S1 state via 

chlorophyll-to-carotenoid energy transfer is populated faster than intrinsic decay of the S1 state, 

the state can be detected by time-resolved absorption spectroscopy by recording the S1 → Sn 

excited state absorption band. This provides direct evidence of carotenoid involvement in the 

quenching process. Recently, this spectroscopic method was used to demonstrate the involvement 

of a carotenoid in Chl a quenching in another class of cyanobacterial proteins called High-Light 

Inducible Proteins (Niedzwiedzki et al. 2016; Staleva et al. 2015). No such spectral signature of 

the carotenoid excited S1 state has ever been experimentally observed for IsiA. An explanation is 

based on the hypothesis that the populating rate of the quencher (echinenone in the S1 state) is not 

fast enough to compensate for a subsequent, immediate decay of its excited state. The excited 

carotenoid will be only a “virtual” element in the excitation decay pathway. Thus, carotenoid 

involvement was simply anticipated and built into kinetic models of the Chl a excitation decay 

path (Berera et al. 2010; Berera et al. 2009). 

Furthermore, the absorption spectrum of the IsiA sample used in the previous studies 

(Berera et al. 2010; Berera et al. 2009) showed the maximum absorption of the Chl a Qy band to 

be shifted to 675 nm, which according to other spectroscopic studies is more characteristic of the 

IsiA-PSI supercomplex (Andrizhiyevskaya et al. 2002; Andrizhiyevskaya et al. 2004; Feng et al. 

2011; Melkozernov et al. 2003). This is strongly suggestive of a sample that could be substantially 

contaminated by PSI or that contains a mixture of IsiA and IsiA-PSI supercomplexes. Because the 

effect of the quenching of Chl a fluorescence in the IsiA protein could be undermined by 

hypothetically possible IsiA-to-PSI energy transfer, this questions the conclusions of the previous 

studies.  
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The work presented here strongly indicates that carotenoids do not play a role in the 

energetics of this pigment protein complex, either as quenchers or supporters of Chl a. The results 

of this study strongly suggest that the quenching mechanism is merely governed by Chl a-protein 

interactions via electron transfer from an excited Chl a to a cysteine residue. Such a novel energy-

quenching mechanism was very recently proposed to regulate the light harvesting capabilities of 

the bacteriochlorophyll a-containing Fenna-Mathews-Olson (FMO) protein from green sulfur 

bacteria (Orf et al. 2016). However, the current study suggests that this mechanism may be more 

broadly utilized by photosynthetic organisms. 

2.3 Results and Discussion 

2.3.1 Characterization and steady-state spectroscopy of the PSI-IsiA and IsiA complexes 

 The various protein complexes, including the pure IsiA and PSI-IsiA supercomplexes, in 

iron-starved cells were isolated and  shown in Figure 2.1A. The top green band with the lowest 

mass density was targeted as a candidate for IsiA-only complexes. Further analysis of this band by 

western blotting (Figure 2.1B) confirmed the absence of the PSI core subunit PsaA. Furthermore, 

the strong band shown on the blot probed by the IsiA antibody showed the presence of IsiA, thus 

confirming that it contained IsiA-only complexes. On the other hand, the PSI-IsiA sample 

contained both PSI and IsiA as expected. Room temperature absorption spectra of the IsiA, PSI 

and PSI-IsiA samples are provided in Figure 2.1C, showing very distinctive differences in the Qy 

band of Chl a. The Qy absorption band appears at 670 nm in the IsiA sample but is shifted to longer 

wavelengths for the PSI complex (679 nm) and for the PSI-IsiA supercomplex (674 nm). Figure 

2.1D shows absorption spectra taken at 77 K. As visualized by the green dashed line, the absorption 
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of the PSI-IsiA supercomplex was very adequately mimicked by the weighted sum of the 

individual spectra of the IsiA and PSI complexes. 

 

Figure 2.1 Purification and basic spectroscopic characterization of IsiA and PSI-IsiA. (A) 

Protein bands obtained from sucrose gradient ultracentrifugation, (B) PSI-IsiA complexes purified 

by nickel affinity chromatography and the IsiA band from ultracentrifugation probed by 

immunoblotting, (C) Room temperature and (D) 77 K absorption spectra of PSI-IsiA complexes 

and individual IsiA, PSI (with absorptions adjusted to relative contributions in the PSI-IsiA 

spectrum). 
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The good agreement of the spectral shapes of the native and reconstructed PSI-IsiA spectra 

indicated that there was no excitonic coupling between Chls from IsiA and PSI proteins, as that 

would affect the shape of the Qy band. The near-identical spectral lines of native and mimicked 

absorption spectra suggest that there are no additional pigments (carotenoid, Chl a) that are weakly 

bound in the IsiA and PSI interface and that could be lost during separation of the supercomplex 

into individual complexes during detergent treatment. 

Past studies reported that carotenoids transfer excitation energy to Chl a with an overall 

efficiency of ~25%, suggesting that those pigments also supplement Chl a in light harvesting in 

the IsiA complex (Berera et al. 2010). However, this hypothesis was based on kinetic modeling of 

transient absorption data, and additional support was not provided (Berera et al. 2010). Our 

fluorescence studies (Figure 2.2) clearly show that carotenoids are essentially not involved in 

supporting Chl a in light harvesting. The fluorescence excitation (Exc) spectrum did not show any 

evidence of a carotenoid absorption band, as seen in the absorbance (1 - T, where T is 

transmittance) spectrum. Assuming 100% energy transfer within Qy (profiles are normalized 

there), carotenoid-to-Chl a energy transfer efficiency was essentially zero as there was no 

contribution in the Exc profile of IsiA that could be assigned to carotenoids (between 450 – 550 

nm). There are no available prior results of Chl a fluorescence excitation of the IsiA protein for 

comparison. The profile recorded for a highly homologous protein CP43 shows that energy 

transfer from carotenoids to Chl a is very small in that protein (Alfonso et al. 1994), consistent 

with the results obtained for IsiA in this study. 
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Figure 2.2 Fluorescence excitation, emission and absorptance spectral profiles of the IsiA 

complex at room temperature. Exc, excitation; Fluo, fluorescence emission; 1-T, T- 

transmittance, absorption. 

 

2.3.2 Time-resolved fluorescence of PSI-IsiA and IsiA complexes 

Figure 2.3 shows TRF results from PSI-IsiA and IsiA complexes recorded at RT and at 77 

K. The two-dimensional pseudo-color profiles of TRF of the samples are given in panels A, C and 

E, and the corresponding global analyses of the datasets are shown in panels B, D and F. Cryogenic 

temperature essentially had no effect on IsiA-to-PSI energy transfer. As demonstrated in Figure 2. 

3A, excitations populated initially on IsiA were promptly transferred to PSI. Target analysis of 

TRF data showed that transfer time could not be precisely defined, as it was shorter than the streak 

camera temporal resolution in this time window (FWHM of IRF is ~70 ps in a 1 ns time window). 

The spectral characteristics of other kinetic components strongly suggest that those are associated 

with excitation equilibration and followed excitation decay within the Chl a array in PSI. 
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Figure 2.3 Time-resolved fluorescence of PSI-IsiA and IsiA complexes at RT and at 77 K. (A, 

C, E) Two-dimensional, pseudo-color fluorescence decay profiles of PSI-IsiA at 77 K, IsiA at RT 

and at 77 K, respectively. (B, D, F) Global analysis results of TRF datasets (SADS) with 

application of anticipated kinetic schemes of the excitation decay. The models are provided as 

insets. The legends contain effective lifetimes of spectro-kinetic components obtained from the 

analysis. (G) Representative traces of the IsiA fluorescence decay extracted for the datasets along 

with corresponding fits obtained from global analysis. exc - excitation, GS - ground state, ET - 

energy transfer, Chl – chlorophyll a, SADS – species associated decay spectra. 
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Global fitting of the RT TRF data of separate IsiA samples revealed two kinetic 

components with lifetimes of 300 ps and 1.7 ns. The fitting protocol assumed that both fractions 

were independently populated and decayed without interacting with each other. The spectral 

profiles of SADS showed identical line shapes. These lifetimes are comparable to those observed 

in the fluorescence decay of quenched IsiA aggregates in which a short kinetic component lifetime 

of ~200 ps dominates (Ihalainen et al. 2005). Interestingly, a substantial alteration of fluorescence 

lifetime distribution occurs if the IsiA protein is cooled to 77 K. Fitting results (Figure 2.3F) 

demonstrated that the lifetimes substantially lengthen to 1.9 ns and 6.8 ns, but the spectral 

lineshapes of both SADS remain identical although the fluorescence band is narrower and slightly 

red-shifted at 77 K. To assure that elongation of fluorescence lifetime is truly temperature 

dependent effect and is not simply due to presence of glycerol in the buffer, we compared the 

dynamics of Chl a fluorescence decay of the IsiA protein diluted only in the buffer and in the 

buffer-glycerol mixture, measured at RT. These results are given in supplementary information 

(Figure S2.1) and demonstrate that adding glycerol has negligible impact on IsiA fluorescence 

dynamics. Figure 2.3G shows the comparison of representative kinetic traces of fluorescence 

decay for IsiA-containing samples under different conditions: IsiA coupled with PSI at 77 K (cyan 

line), and IsiA aggregates at RT (blue line) and at 77 K (red line). Lifetime shortening of IsiA-

bound Chl a fluorescence upon coupling to PSI is understandable and is associated with IsiA-PSI 

energy transfer; however, the substantial lengthening of the Chl a excited state lifetime in IsiA 

aggregates after cooling to cryogenic temperature is not easy to interpret and merits further 

investigation. 
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2.3.3 Time-resolved absorption spectroscopy of the IsiA complex 

The strong dependence of the lifetime of excited Chl a in IsiA samples on temperature, as 

demonstrated in the time-resolved fluorescence studies, questions the idea that carotenoids are 

responsible for Chl a quenching. Previous studies on carotenoid-mediated Chl a quenching in 

another cyanobacterial chlorophyll protein from a family of High-Light Inducible Proteins (Hlips) 

clearly demonstrated that the quenching ability of the carotenoid is essentially not affected by low 

temperature (Niedzwiedzki et al. 2016) and lengthening of the effective lifetime of the quenched 

Chl a is not expected. In addition, at cryogenic temperature, the carotenoid reveals a very 

prominent electrochromic response to excited Chl a. An electrochromic response of carotenoid 

that interacts with either Chl a or BChls is not unusual; on the contrary, it is typically observed in 

many other photosynthetic proteins like PCP from dinoflagellates (Schulte et al. 2009) or LH2 and 

LH1 light harvesting complexes from purple bacteria (Herek et al. 2004; Herek et al. 1998; Ma et 

al. 2008; Zhang et al. 2001), particularly at cryogenic temperature. In those proteins, carotenoids 

play a role as either singlet energy donors or (B)Chls triplet quenchers. Both roles require that 

carotenoid and (B)Chl molecules are in close proximity, and thus carotenoid absorption should be 

similarly affected by the change in the surrounding electric field induced by (B)Chl excited state. 

We applied time-resolved absorption to test if the electrochromic effect on carotenoid absorption 

is also observed in IsiA. A negative result would indicate that carotenoids are likely not responsible 

for the Chl a quenching that is observed at RT, as the lack of electrochromic response to the excited 

Chl a would indicate that both pigments are not at a distance that allows energy transfer between 

them. 

The results obtained for IsiA measured at 77 K are given in Figure 4. To test all possible 

outcomes, the sample was excited at wavelengths corresponding to absorption bands of all bound 
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pigments: β-carotene (at 505 nm), echinenone (at 535 nm) and Chl a (Qy band, at 670 nm). 

Representative transient absorption spectra obtained after excitation of the carotenoid bands are 

given in Figures 4A and B. The spectra consist mostly of features associated with bleaching of the 

ground state absorption of the carotenoid (the negative region mirroring expected steady-state 

absorption of the carotenoid in IsiA) and associated positive excited state absorption, S1→Sn, band. 

For β-carotene, this band peaks at 680 nm, for echinenone at 600 nm. Previous TA study of this 

protein suggested that instantaneous and prominent bleaching of Qy band Chl a upon excitation of 

carotenoid band is a clear indication of carotenoid to Chl a energy transfer presumably via S2 state. 

For echinenone, the quantum efficiency of the energy transfer process was ~40% (Berera et al. 

2010). However, such interpretation of the TA results does not agree with fluorescence excitation 

that shows that carotenoid-to-Chl a energy transfer is negligible. The signal with apparent Chl a 

signatures must come from direct excitation of Chl a to a vibronic overtone of Qy band. To 

elaborate further and prove that it is possible, we performed a TA study of Chl a- β-carotene 

mixture dissolved in n-hexane. The mixture closely mimicked absorption spectrum of the IsiA 

protein sample. In the mixture, energy transfer between pigments is negligible and upon excitation 

of the carotenoid band, any signal associated with Chl a should derive from its direct excitation. 

These results, shown in Figure S2.2 also support the idea of self-origin of Chl a signal in the IsiA 

sample upon carotenoid band excitation. 

The TA data were fitted with anticipated models of the excitation decay path, and the 

resulting spectro-kinetic profiles (SADS) are given in Figure 2.4C and D. To simplify fitting, the 

spectral range comprising the Chl a Qy band was not included. The SADS lifetimes of 10.5 and 

6.6 ps associated with decay of the S1 state indicate that both carotenoid pigments perform 

essentially as when in frozen solvent (for echinenone, 3’-hydroxyechinenone was used as a 
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benchmark) (Niedzwiedzki et al. 2006; Polivka et al. 2005), and binding to the protein does not 

induce any geometrical distortions, as that typically would affect those lifetimes.  

 

Figure 2.4 Time-resolved absorption of the IsiA complex at 77 K. (A, B) Representative TA 

spectra after selective excitation of the carotenoid absorption band: β-carotene (excitation at 505 

nm) and echinenone (excitation at 535 nm). (C, D) Species associated difference spectra (SADS) 

resulting from global analysis of the TA datasets with application of the kinetic models provided 

in the graph inserts. (E) Representative TA spectra taken after excitation at the blue edge of the 

Chl a Qy absorption band at 670 nm. (F) Representative kinetic traces of rise and decay of Qy band 

probed at multiple wavelengths. 
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For early delay times, the spectra, 77 K transient absorption of IsiA upon excitation of the 

Qy band of Chl a (Figure 2.4E), indicate rapid energy transfer within two different spectral forms 

of Chl a, as indicated by the split Qy band (see insert). This intermolecular Chl a-Chl a energy 

flow is also well indicated in the kinetic traces provided in Figure 2.4F. More importantly, there is 

no signature of a carotenoid electrochromic response, either in β -carotene or echinenone. A bump 

appearing between 540 and 580 nm within the first 200 fs is also visible in blank buffer (not 

shown), indicating it is clearly associated with solvent response to the excitation. 

More insight into the kinetic characteristics of Chl a in IsiA at 77 K is given in Figure 2.5. 

Figure 2.5A shows that rapid decay of the Chl a bleaching band at 671 nm is coupled with the rise 

of the bleaching of the band at 684 nm. The time constant of 1.3 ps obtained from fitting of the 

decay trace at 671 nm, matches very well with the rise constant of 1.1 ps observed in the 684 nm 

trace. This strongly indicates that none of the excitation initially localized on Chls absorbing at 

670 nm is lost, but that it is essentially instantaneously passed on to low-energy Chls. This 

demonstrates that the Chl a array in this protein is very well optimized to minimize any potential 

loss of excitation during migration within IsiA. 
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Figure 2.5 Temporal characteristics of recovery of the Chl a Qy band of IsiA at 77 K. (A) 

Rise and decay of two Qy sub-bands resolved by TA at 77 K. (B) Dependence of recovery 

dynamics on excitation intensity. (C, D) Fitting of kinetic traces according to equation 2.1. 

 

On the other hand, recovery of the bleaching of the 684 nm Qy band should temporarily 

show the same characteristics as the time-resolved fluorescence data because most likely the same 

pool of Chls is probed in both techniques. However, it should be noted that since an amplified 

laser excitation beam is used in transient absorption measurements, it is possible that multiple 

excitations are simultaneously populated within the Chl a exciton manifold and singlet-singlet 

annihilation will be unavoidable. Because the extent of this process is laser intensity dependent, it 

could be easily spotted by comparing the kinetic traces recorded upon vastly different excitation 

laser intensities. This is given in Figure 2.5B, which shows the recovery of the bleaching of the 

Chl a Qy band at 684 nm for two substantially different excitation fluxes. Because both traces, 
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normalized at amplitudes, do not overlap, and the kinetic trace obtained at higher laser intensity 

initially decays faster, involvement of singlet-singlet annihilation is apparent. Consequently, an 

appropriate fitting model should account for an annihilation process. If it is assumed that the time 

of convoluting the Chl a transient signal (exciton generation) is negligible compared to the 

following decay, the 684 nm kinetic trace could be fitted according to the following equation that 

was adapted from (Zaushitsyn et al. 2007): 

∆𝐴(𝑡) =
∆𝐴1𝑒−𝑘𝑡

1+∆𝐴1𝛾𝑠−𝑠𝑘−1(1−𝑒−𝑘𝑡)
+ ∆𝐴2𝑒−𝑘𝑡 + ∆𝐴2𝑒−𝑘1𝑡 (2.1) 

where 𝛾𝑠−𝑠 is the time-independent annihilation rate and k and k1 are decay rates of Chl fractions 

that are not affected by singlet-singlet annihilation and should correspond to reciprocals of 

lifetimes obtained from time-resolved fluorescence. It was also assumed that the annihilation 

process would involve only the Chl a fraction that decays with a larger rate constant, k. The results 

of fitting of both traces (lower and higher laser intensity) are given in Figure 2.5C and D. Fitting 

demonstrates very good agreement with results obtained from time-resolved fluorescence. 

2.3.4 Role of carotenoids in the IsiA protein 

Previous investigations proposed that carotenoids play a dual role in the IsiA protein 

augmenting Chl a in light harvesting, and furthermore, if necessary, serving as quenchers of 

excited Chl a (Berera et al. 2009; Berera et al. 2010). However, our work does not support these 

suggested roles. The Chl a florescence excitation study shows that none of the two carotenoid 

species transfers absorbed light energy to the Chls. Time-resolved fluorescence experiments 

showed that the kinetic component (fast decay) that was previously targeted as a signal associated 

with the decay of quenched Chl a (Ihalainen et al. 2005) substantially lengthens at low 

temperature. This is difficult to explain because carotenoid-mediated quenching is often 
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independent of temperature (Niedzwiedzki et al. 2016), and the lifetime of quenched Chl a should 

not be affected. Moreover, cryogenic time-resolved absorption data revealed that none of the 

bound carotenoids show an electrochromic response to excited Chl a, a feature commonly seen in 

light harvesting proteins in which carotenoid and (B)Chl are bound in sufficient proximity to allow 

energetic interaction between them.  

2.3.5 Toward a new quenching mechanism 

A clue that a novel type of quenching mechanism may be present in the IsiA protein is that, 

upon lowering the temperature, Chl a fluorescence decay substantially elongates. A similar effect 

is well-known for another light harvesting protein, the Fenna-Matthews-Olson (FMO) protein 

from green sulfur bacteria. The FMO protein, which lacks carotenoids and comprises only BChl a 

pigments, if kept in oxygenated solution displays a very short BChl a fluorescence lifetime of ~60 

ps, which is short enough to compete efficiently with energy transfer to the reaction center (RC) 

in the FMO-RC complex (Oh-Oka et al. 1998; Neerken et al. 1998; He et al. 2015). However, if 

conditions change from oxidizing to reducing, the BChl a fluorescence lifetime lengthens to ~2 

ns, close to the intrinsic decay of the excited state of monomeric BChl a in solution (Niedzwiedzki 

and Blankenship 2010). However, a substantial elongation of fluorescence lifetime can also be 

achieved by freezing an oxidized FMO sample to cryogenic temperature (Orf et al. 2014). This 

appears to resemble the phenomenon seen for IsiA in this work. Even though the effect of reductant 

on BChl a fluorescence in the FMO protein was known for almost three decades, only very recently 

was it explained. It was demonstrated that in aerobic conditions the cysteine thiols are converted 

to thiyl radicals, and if those are in proximity to BChl a, they may quench the pigment excited 

state through electron-transfer photochemistry (Orf et al. 2016). It is not difficult to imagine that 

a similar quenching mechanism may be adopted by other photosynthetic organisms. 
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Figure 2.6 Cysteines in CP43 and IsiA structures. (A) Sequence alignment of IsiA and CP43 

from three cyanobacterial species, along with the sequence from spinach for which the high 

resolution crystal structure of CP43 is known (PDB ID: 3JCU, (Wei et al. 2016)). A simplified 

view of the CP43 protein molecular structure from the (B) lumenal and (C) membrane side, which 

in IsiA will face toward PSI. For clarity, the large extrinsic lumenal loop domain E (Bricker and 

Frankel 2002) present in CP43 was removed. All possible cysteines present in various CP43 

proteins across different organisms are marked in red. Valine 290, which in IsiA is replaced by 

cysteine and is fully conserved across multiple organisms, is marked in white. 
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Cyanobacteria, which are photosynthetic organisms living in oxidizing conditions and 

exposed to constant iron-starvation stress, are good candidates for adopting this protective 

mechanism and incorporating it into a light-harvesting antenna complex that is produced under 

challenging growth environments - IsiA. This mechanism would require the presence of cysteine 

in crucial places in the IsiA protein, preferentially in proximity to Chl(s) that may serve role(s) as 

so-called terminal emitter(s) (pass excitation to PSI) – most likely those pigments are responsible 

for observed fluorescence. In addition, a cysteine targeted as a quenching ligand should be quite 

unique, in that it must be present in IsiA but not in homologous proteins (such as CP43) that do 

not reveal similar Chl a fluorescence quenching.  

To test this hypothesis, we compared the IsiA and CP43 protein sequences from three 

cyanobacterial species and also the CP43 protein sequence from spinach, which has a high-

resolution crystallographic structure available (PDB ID: 3JCU) (Wei et al. 2016). The most 

relevant parts of the sequence alignment are given in Figure 2.6. This analysis demonstrated that 

cysteine is very scarce in cyanobacterial CP43 proteins, appearing only in two or three locations 

across the entire sequence, either on the protein side facing the membrane or not in proximity to 

any Chl a. This is consistent with the fact that CP43 does not show evidence of Chl a fluorescence 

quenching. However, the IsiA sequences have a unique cysteine that is fully conserved across the 

various IsiA proteins, whereas all CP43 sequences examined have valine (Val290) in this position. 

As shown in the simplified view of the CP43 crystal structure in Figures 2.5B and C, Val290 is in 

very close proximity to a Chl a molecule (Chl a34), according to nomenclature used in the older 

PSII crystal structure (Loll et al. 2005). If replaced by cysteine, the distance between the amino 

acid and electron donating groups of Chl a34 would range between 5 and 7 Å , similar to distances 

observed between cysteine and BChl a in the FMO protein. According to the IsiA-PSI 
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supercomplex models (Feng et al. 2011; Nield et al. 2003), Chl a34 is the pigment that along with 

other nearby Chls (Chl a37, 44, 41) could be involved in energy transfer to PSI. Importantly, the 

cysteine residues that are present in the sequence of CP43 from spinach, just two places away from 

Val290, if visualized on the structure (Figure 2.6B and C) appear on the opposite side of the helix 

and are essentially completely shielded from any Chls. Those cysteines may not be important 

because they are not conserved across different photosynthetic groups, which is clearly shown in 

the sequence alignment (Figure 2.6A). This structure-sequence analysis suggests that the IsiA 

protein has the capability of quenching the Chl a excited state through electron transfer 

photochemistry. Because cyanobacteria grow in aerobic conditions, the cysteine thiol in IsiA could 

be converted to a thiyl radical at any time and be capable of withdrawing an electron from a nearby 

excited Chl a. If this mechanism is behind the quenching of the excited state of Chl a in IsiA, the 

dynamics of protein fluorescence should be sensitive to the presence of reductant in the buffer, as 

was observed for FMO. Changes in the fluorescence decay dynamics of IsiA upon addition of 

sodium dithionite, a reductant that is typically used for FMO studies, are shown in Figure 2.7. 
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Figure 2.7 Temporal changes of IsiA-bound Chl a fluorescence decay upon addition of 

sodium dithionite (to a final 10 mM concentration) to the sample buffer. Fluorescence was 

recorded at 684 nm at RT. IRF – instrument response function. 

 

To observe any changes in a more real-time fashion, a more sensitive TCSPC system was 

used. The fluorescence decay was measured at the maximum of the fluorescence emission 

spectrum (684 nm). The results show that the addition of reductant leads to a change in the 

temporal characteristics of fluorescence decay within a minute and that the effect is essentially 

maximized after ~90 min. It is apparent that the short-lived component considerably elongates. It 

is worth noting that sodium dithionite may not be most effective reductant as it is not 

physiologically relevant, and it is possible that other more natural, endogenous reductants (not 

tested here) may induce even more prominent effects on fluorescence decay dynamics. 
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Nonetheless, the observed effect is a strong indication of a cysteine-dependent excitation 

quenching mechanism in the IsiA protein, which was only very recently found in the FMO protein 

.  

Figure 2.8 Variation of dynamics of Chl a fluorescence decay in the unmodified IsiA protein 

obtained from different purification experiments (prep 1, 2, 3) and effect of adding 

reductant. For more details on kinetic components refer to Table 2.1. 

It should be noted that the fluorescence decay trace of the unmodified IsiA seems to be 

different from that obtained from the experimental setup based on the streak camera (Figure 2.3). 

Those two samples show common absorption spectra; however, they were obtained from different 

purification experiments. Additional TRF experiment performed on the unmodified IsiA protein 

from another (third) preparation demonstrated that every time, Chl a fluorescence kinetics of 

unmodified IsiA are somewhat different from each other (Figure 2.8). Further analysis (Table 2.1) 

demonstrated that all of them share similar kinetics components, however with different weights. 

Such variation in amplitudes of the decay components could be associated with fluctuation in 

natural levels of oxidation of cysteines; these levels may vary from preparation to preparation. 



 

57 

 

Table 2.1 Kinetic components obtained from fitting of Chl a fluorescence decay traces given in Fig 2.8. 

2.4 Conclusions 
 

In this study we revisited the mechanism of Chl a excitation quenching in the IsiA protein, 

which is a dominant light harvesting antenna complex produced by iron-starved cyanobacteria. In 

contrast to previous work relying on energetic interactions of the excited Chl a with carotenoids 

present in IsiA, our study indicates that quenching of excited Chl a may be cysteine-dependent, 

similar to the quenching mechanism recently revealed in FMO, a light harvesting protein from 

green sulfur bacteria. This finding opens many possibilities for more detailed studies of the 

quenching mechanism adapted by iron-starved cyanobacteria, including the influence of cysteine 

directed chemical modifications or cysteine directed mutations. 

2.5 Materials and Methods 

Strain growth and thylakoid membrane preparation 

The IsiA-His strain of Synechocystis sp. PCC 6803 was constructed by oligonucleotide-

directed mutagenesis to introduce six histidyl codons at the carboxy terminus of isiA. IsiA-His 

cells were grown phototrophically in BG11 medium containing kanamycin at 30 ℃. The liquid 

cultures were shaken in Erlenmeyer flasks at 60 rpm with illumination of 30 μmol photons m-2 s-

Preparation Sample† 1 

(ps) 

A1‡
 

 2 

(ns) 

A2  3 

(ns) 

A3 Method§ 

1 U 280 0.62 1.6 0.38 n.e.  SC 

2 U 300 0.43 1.6 0.40 4.5 0.17 TCSPC 

2 R n.e.  1 0.45 4.1 0.55 TCSPC 

3 U 400 0.53 2.0 0.47 n.e.  SC 

† U, unmodified IsiA; R, reduced IsiA 

‡ A1+A2+A3=1 

§ SC, streak camera; n.e., not evident 

         



 

58 

 

1. After 5 days of growth, cells were washed with YBG11-Fe (Shcolnick et al. 2007) medium three 

times, and inoculated into 1 L YBG11-Fe medium. After about 2 weeks, the cells were then 

harvested and broken by bead-beating as described previously (Kashino et al. 2002). Thylakoid 

membranes were resuspended in Buffer A (50 mM HEPES-NaOH [pH 7.8], 10 mM MgCl2, 5 mM 

CaCl2, 25% glycerol). Membranes were solubilized by addition of β-D-dodecyl maltoside (DDM) 

to a final concentration of 1%. After incubation on ice in dark for 30 minutes, the solubilized 

membranes were separated from the insoluble material by centrifugation at gradually increasing 

speed from 120 × g to 27,000 × g at 4 ℃ for 20 minutes. The solubilized membranes were then 

stored at -80 ℃ for future use. 

IsiA protein purification 

The IsiA and PSI-IsiA complexes were purified using nickel affinity chromatography 

(Kubota et al. 2010) with some modifications. Ni-NTA slurry was precharged with 50 mM nickel 

sulfate overnight and loaded into an open column. The resin was washed with 25 column volumes 

of water, and then twice with 5 column volumes of Buffer A plus 0.04% DDM and 5 mM histidine 

to remove ethanol and nickel sulfate. After continuous mixing of the washed resin with the 

previously prepared solubilized membranes at 4 ℃ for 2 hours, the flow through material was 

collected. The resin was then washed with 1 column volume Buffer A plus 0.04% DDM and 5 

mM histidine. To remove all other unbound proteins, 12 column volumes of Buffer A plus 0.04% 

DDM was used to wash the resin. The eluents were collected and absorption was measured using 

a DW2000 spectrophotometer (OLIS, USA) to verify that any residual unbound chlorophyll-

containing proteins had been washed from the column. The target proteins, PSI-IsiA 

supercomplexes and IsiA proteins, were eluted with 6 column volumes of buffer A plus 0.04% 

DDM and 100 mM histidine. To concentrate the proteins, 80% (v/v) PEG8000 in 30 mM HEPES-
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NaOH (pH 7.8) was added into the elution, and the proteins were precipitated by centrifugation at 

31,000 × g for 15 minutes. The precipitated proteins were resuspended in Buffer A plus 0.04% 

DDM. 

Sucrose gradient ultracentrifugation was used to obtain highly purified IsiA aggregates that 

do not contain PSI. The PEG-concentrated protein sample was diluted in glycerol-free Buffer A 

plus 0.04% DDM and then loaded on the top of a 10 – 35% sucrose gradient in glycerol-free Buffer 

A plus 0.04% DDM. Centrifugation was performed using a swinging bucket type Beckman-

Coulter SW41 rotor at 4 ℃ and relative centrifugal force of 186,000 × g. After 18 hours of 

ultracentrifugation, green bands were collected. The first green band from the top of the gradient 

was determined spectroscopically to contain only IsiA, and was stored at -80 ℃ until future use. 

SDS-PAGE and immunoblot analysis 

SDS-PAGE was performed by loading the isolated PSI-IsiA supercomplexes and IsiA 

protein samples (adjusted to Chl a mass weight of 0.75 µg) on 12.5% acrylamide resolving gel. 

After transfer of the proteins onto a PVDF membrane, IsiA and PsaA were detected by using 

specific antisera. Bands were visualized using chemiluminescence reagents (EMD Millipore, 

Billerica, MA, USA) with an ImageQuant LAS-4000 imager (GE Healthcare). 

Spectroscopic techniques 

For all low-temperature spectroscopic measurements, the IsiA or IsiA-PSI samples were 

mixed with glycerol in 1:1 (v/v) ratio, placed in 1 cm square plastic cuvettes and frozen in a VNF-

100 liquid nitrogen cryostat (Janis, USA). Steady-state absorption measurements were performed 

using a Shimadzu UV-1800 spectrophotometer. Fluorescence and fluorescence-excitation spectra 
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were recorded at room temperature using a Horiba-Spex Nanolog fluorometer.  The spectra were 

recorded at 90o to excitation and corrected for the instrument spectral response. The excitation and 

detection bandwidths were 2– 4 nm. To avoid front-face and inner-filter effects, the samples were 

adjusted to an absorbance ≤0.1 at the excitation and emission wavelengths.   

Time-resolved fluorescence (TRF) experiments were carried out using two different 

setups. Hamamatsu universal streak camera setup described in detail previously (Niedzwiedzki et 

al. 2013) was used to obtain multi-wavelength decay profiles. The frequency of the excitation 

pulses was set to 8 MHz, corresponding to ~120 ns between subsequent pulses. The excitation 

beam set to 630 nm, with photon intensity of ~1010 photons/cm2 per pulse was depolarized and 

focused on the sample in a circular spot of ~1 mm diameter. The sample absorbance was adjusted 

to ~0.1 at the Qy band of Chl a in a 1 cm cuvette. The emission was measured at a right angle to 

the excitation beam. To minimize the detection of scattered light from the excitation beam a long-

pass 665 nm filter was placed at the entrance slit of the spectrograph. The integrity of the samples 

was examined by observing the photon counts in real-time over the time course of the experiment. 

These were constant, which indicated the absence of sample photodegradation. Single wavelength 

decay measurements were performed using a standalone Simple-Tau 130 time-correlated single 

photon counting (TCSPC) setup from Becker&Hickl (Germany) coupled to an ultrafast laser 

system (Spectra-Physics, USA) described in detail previously (Dilbeck et al. 2016). The IsiA 

complexes were resuspended to an absorbance of ≤0.1 at the Chl a Qy band and the emission signal 

was recorded at a right angle with respect to the excitation beam.  

Transient absorption (TA) measurements of the IsiA protein were performed using a Helios 

TA spectrometer (UltrafastSystems LCC, Sarasota, FL, USA) coupled to a Spectra-Physics 

femtosecond laser system described previously in detail (Greco et al. 2016). The white light 
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continuum probe was generated by a 3 mm thick CaF2 plate. The pump beam with energy set to 

0.1 µJ (670 nm, Chl a) or 0.2 µJ (505 nm, carotenoids) was focused to a spot size of 1 mm in 

diameter, corresponding to intensity of ~ 4–6 × 1013 photons/cm2. The sample was adjusted to an 

absorbance of 0.4 at the Chl a Qy band (1 cm path length).  

Data Analysis and Fitting 

Dispersion in TA datasets was corrected using Surface Xplorer, a software provided by 

Ultrafast Systems, by applying a dispersion correction. Directed kinetic modeling, referred to as 

target analysis, of the TRF and TA results was performed using CarpetView, a data viewing and 

analysis software for ultrafast spectroscopy measurements (Light Conversion Ltd., Vilnius, 

Lithuania). The fitting procedures used the kinetic models with anticipated realistic decay 

pathways following excitation of a carotenoid or Chl a. If the underlying assumptions are correct, 

targeted kinetic analysis separates spectral components such as excited state absorption (ESA) of 

the specific excited states of molecules, etc. The results are commonly abbreviated as SADS - 

Species Associated Decay Spectra (van Stokkum et al. 2004). We have adapted this nomenclature 

to the fitting results of both TA and TRF datasets. For fitting purposes, the instrument response 

function (IRF) was assumed to have a Gaussian-like shape with the full width at half maximum 

(FWHM) of ~200 fs for TA and 70 ps, 180 ps and 320 ps for TRF in 1, 5 and 10 ns time windows, 

respectively. This parameter was fixed in the fitting procedures. 
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2.7 Supplemental results 
 

 

 

Figure S2.1 Time-resolved fluorescence of IsiA protein diluted in (A) buffer and (B) 

buffer/glycerol mixture (50% glycerol, v/v) at room temperature. (C) Chl a fluorescence decay 

traces extracted from both streak camera images (A, B).  
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Figure S2.2 (A) Absorption spectra of IsiA at RT and at 77 K overlaid with absorption 

spectra of Chl a--carotene mixture in n-hexane (with small addition of pyridine to prevent 

Chl a aggregation) mimicking pigment absorption bands in the protein. (B) Transient 

absorption spectra of Chl a--carotene mixture compared with TA spectrum of IsiA at 77 K. 

The IsiA sample was excited at 535 nm, and the pigment mixture sample was excited at 502 nm, 

the wavelength at which the mixture shows a comparable level of carotenoid absorbance (to IsiA 

at 535 nm). Since the mixture sample gave a larger signal (due to being more concentrated), the 

TA spectrum of IsiA was adjusted (multiplied by a constant value) to match the amplitude of 

bleaching of the carotenoid band in the mixture sample. It is clear that bleaching of Chl a 

absorption bands in both samples will show comparable amplitudes. 
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3. Chapter Three: Excitation energy quenching by a 

cysteine-mediated process in IsiA in cyanobacteria 
 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was adapted from: 

Chen HYS, Niedzwiedzki DM, Bandyopadhyay A, Pakrasi HB. Excitation energy quenching by 

a cysteine-mediated process in IsiA in cyanobacteria. (in preparation) 

A. B. performed the protein sequences alignment and D. M. N. performed the experiments and 

analyses of time-resolved spectroscopy. 
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3.1 Abstract 

Iron stress-induced protein A (IsiA) is a chlorophyll (Chl) a-binding membrane protein 

expressed by cyanobacteria in iron-deficient, strong light, and other stress conditions. IsiA forms 

a PSI-IsiA supercomplex and serves as an accessary antenna complex for PSI. Although IsiA 

functions as an independent protein complex (IsiA aggregate), it dissipates excitation energy 

manifested as shortening of decay time of Chl a fluorescence.  In chapter 2, we proposed that IsiA 

uses the cysteine-mediated process to quench excitation energy, and it was the first report of the 

cysteine-mediated excitation energy quenching process in a photoautotrophic organism. In this 

chapter, the specific site-directed mutagenesis was performed, abolishing the excitation energy 

quenching in IsiA and providing the direct evidence of IsiA using this cysteine-mediated process 

to quench excitation energy. In addition, with only one amino acid substitution, a significant 

decrease in photosynthetic protein content in the C260V mutant was observed, and the mutant was 

more light-sensitive in iron-deficient conditions, suggesting that the mutant IsiA is not capable of 

serving a complete photoprotection function without this critical Cys amino acid residue. Besides, 

a faster growth in the C260V mutant was observed, implying that the use of light energy is more 

efficient in the mutant in the iron-replete condition under high light. 

3.2 Introduction 

Iron deficiency is a common nutrient stress in the habitats of cyanobacteria (Martin and 

Fitzwater 1988; Moore et al. 2013; Vrede and Tranvik 2006; North et al. 2007; Bibby et al. 2009). 

In iron-depleted environments, some physiological changes were observed in cyanobacteria 

including the decrease of chlorophyll (Chl)-binding proteins, phycobilisomes as well as other 
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proteins containing iron as a co-factor (Sherman and Sherman 1983; Laudenbach and Straus 1988; 

Laudenbach et al. 1988). In response to iron-deficiency, cyanobacteria have evolved strategies to 

survive in such environments, and these strategies include the induction of the iron stress-induced 

protein A (IsiA) (Pakrasi et al. 1985; Laudenbach and Straus 1988).  

IsiA is a Chl a-binding membrane protein that was first found in cyanobacteria grown in 

iron-free media (Laudenbach and Straus 1988; Pakrasi et al. 1985). Later reports showed that IsiA 

can be induced by other stress conditions including oxidative stress, high salt, heat stress, and high 

light (Yousef et al. 2003; Li et al. 2004; Havaux et al. 2005; Vinnemeier et al. 1998). IsiA belongs 

to a six-transmembrane helices antenna superfamily (La Roche et al. 1996), and is highly 

homologous with CP43, an intrinsic antenna protein of photosystem II (PSII). Unlike CP43, IsiA 

is being mainly associated with PSI, and forms PSI3-IsiA18 supercomplexes (Boekema et al. 2001; 

Bibby et al. 2001a). Time-resolved spectroscopic studies showed that the energy transfer from 

IsiA to PSI and between IsiA copies in PSI-IsiA supercomplexes is fast and efficient (Melkozernov 

et al. 2003; Andrizhiyevskaya et al. 2002a). Because one IsiA binds to 13 Chl a (Feng et al. 2011a) 

and one PSI monomer binds to 96 Chl a (Jordan et al. 2001), the outer IsiA ring can theoretically 

increase the absorption cross-section of the PSI3-IsiA18 supercomplex by ~81% compared with a 

PSI trimer. It was later demonstrated in vivo that IsiA increased the effective absorption cross-

section of PSI by ~60% (Ryan-Keogh et al. 2012). These results demonstrated that in the PSI3-

IsiA18 supercomplex, IsiA serves as an accessary antenna for PSI.  

Besides the PSI3-IsiA18 supercomplex, other PSIx-IsiAy supercomplexes and the IsiA-only 

aggregate were also found in cyanobacterial cells after prolonged growth in iron-depleted 

conditions (Yeremenko et al. 2004). Whereas IsiA functions as a light-harvesting antenna in PSI-

IsiA supercomplexes, it was suggested that IsiA, as an IsiA-only aggregate, may be involved in 
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non-photochemical quenching processes (Park et al. 1999). Studies showed that the isiA deletion 

strain is more light-sensitive, suggesting that IsiA plays a significant role in providing 

photoprotection (Park et al. 1999; Havaux et al. 2005; Ihalainen et al. 2005). However, although 

it has been determined by time-resolved spectroscopy that the accumulation of IsiA results in a 

strongly quenched state in cells, suggesting the photoprotective purpose IsiA serves (Ihalainen et 

al. 2005; van der Weij-de Wit et al. 2007), the mechanism of IsiA excitation quenching was not 

fully understood. Original explanations of the quenching mechanism in IsiA assume that 

carotenoids present in the proteins are solely responsible for quenching of the excited state of Chl 

a (Berera et al. 2009; Berera et al. 2010).  

However, recently this hypothesis was questioned and alternative quenching mechanism, 

a cysteine-mediated mechanism, first found in the Fenna-Matthews-Olson (FMO) protein in green 

sulfur bacteria (Orf et al. 2016) was proposed (Chen et al. 2017). According to it, in an FMO 

complex under oxidizing conditions, the excitation energy is quenched during the process of 

electron transfer between the excited bacteriochlorophyll a and the thiyl radical at the cysteine 

radical (Orf et al. 2016). The rate of photosynthesis is then reduced, protecting the photosynthetic 

proteins from photodamage. On the other hand, under reducing conditions, the thiyl radical is 

converted to a thiol group (or thiolate) and, therefore, no energy quenching takes place in FMO 

under such conditions (Orf et al. 2016). As a result, in green sulfur bacteria, efficiency of excitation 

energy transfer from the light-harvesting chlorosomes to bacterial reaction centers can be flexibly 

regulated, depending on prevailing environmental conditions.  In our previous study, the 

spectroscopic signatures, including the increase in Chl a fluorescence lifetime in IsiA samples with 

the addition of reducing agents, showed that IsiA may also use the cysteine-mediated quenching 

process to quench excitation energy (Chen et al. 2017).  



 

72 

 

In the IsiA protein, the unique cysteine, C260, was identified to play the critical role in the 

excitation energy quenching process (Chen et al. 2017). Intriguingly, sharing a highly similar 

structure, CP43 does not have this cysteine at the same motif. As an intrinsic antenna protein of 

PSII, which passes the excitation energy to the reaction center, CP43 has not been reported to 

quench excitation on its own. Instead of cysteine, CP43 has a valine at this motif in the end of the 

fifth transmembrane helix. According to the proposed cysteine-mediated mechanism (Chen et al. 

2017), having a valine at that position cannot facilitate the quenching process and, therefore, no 

excitation energy quenching takes place in CP43. In this study, site-directed mutagenesis was 

performed to construct the C260V and C260V-His Synechocystis sp. PCC 6803 (thereafter 

Synechocystis) strains, in which the unique cysteine in IsiA is replaced with a valine. To investigate 

further the significance of this cysteine in excitation energy quenching in IsiA, time-resolved 

spectroscopy was used to study fluorescence quenching in the C260V IsiA. In addition, we 

investigated the physiological changes in the C260V mutant cells caused by the single amino acid 

substitution. We determined that, with only this single amino acid change, C260V, the C260V 

mutant IsiA is unable to quench excitation energy although it is still capable of serving as a light-

harvesting antenna for PSI. Furthermore, we demonstrated that the C260V mutant is more light-

sensitive in strict iron-depleted conditions, but has a higher growth rate compared with the wild 

type cells in iron-replete conditions under high light. 

3.3 Results 

3.3.1 Construction of C260V and C260V-His Synechocystis strains  

The mutation in the C260V strain was introduced with the CRISPR/Cpf1 system (Ungerer 

and Pakrasi 2016) to the wild type (WT) Synechocystis strain. The resulting mutant, the C260V 
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strain, is a marker-less mutant with the least changes needed to replace the cysteine with a valine. 

All the physiological comparisons in this study were done with this mutant and wile type 

Synechocystis. On the other hand, for the biophysical and biochemical studies, the pure IsiA and 

PSI-IsiA supercomplexes were needed. The histidine tagged IsiA was used to purify the protein 

complex and the PSI-IsiA supercomplex in the previous study (Chen et al. 2017). In this study, 

the C260V mutation was introduced into the IsiA-His strain via double homologous 

recombination. The resulting strain, C260V-His strain, was grown in iron-depleted conditions that 

induce isiA expression. The mutant IsiA and PSI-IsiA supercomplexes were purified from C260V-

His strain by affinity chromatography followed by rate-zonal centrifugation.  

3.3.2 Purification and basic spectroscopic characterization of mutant PSI-IsiA and IsiA 

protein complexes. 

To answer the question of how this single amino acid mutation, C260V, affects the 

biophysical properties of the mutant PSI-IsiA and IsiA, the pure C260V IsiA and PSI-IsiA 

supercomplexes were needed. The results from ultracentrifugation are shown in Figure 3.1. The 

top green band (band 1) and the thick green band near to the bottom (band 4) were analyzed by 

immunoblotting. The proteins in both bands were fractionated by SDS-PAGE and visualized by 

antisera specifically against PsaA and IsiA (Figure 3.1B). These results show that the top green 

band contains the IsiA-only protein without PSI contamination, and the bottom thick green band 

contains PSI-IsiA supercomplex. These samples are termed C260V IsiA and PSI-C260V IsiA in 

this study. Sample purity can also be confirmed in absorption properties of both IsiA preparations. 

Room-temperature absorption spectra of both IsiA complexes (Figure 3.1C) show that both 

complexes have essentially identical Chl a Qy bands with maximum at 670.8 nm, showing no PSI 

contamination, as was demonstrated in previous studies in which shifts Chl a Qy band position by 
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few nanometers to longer wavelengths were observed (Chen et al. 2017; Andrizhiyevskaya et al. 

2002b; Andrizhiyevskaya et al. 2004; Feng et al. 2011b). It is also demonstrated in Figure 3.1D, 

which highlights room temperature absorption spectra of PSI-IsiA complexes for WT and C260V 

mutant preparations. 

 

Figure. 3.1 Purification of mutant C260V IsiA and PSI-C260V IsiA from C260V-His tagged 

strain and basic spectroscopic characterization of protein complexes. (A) Protein bands 

obtained from sucrose gradient ultracentrifugation with IsiA and PSI-IsiA bands indicated, (B) 

Analysis of IsiA sample purity by immunoblotting probing by antisera against PsaA and IsiA, (C) 

room temperature absorption spectra of WT and C260V IsiA and (D) WT and C260V PSI-IsiA 

supercomplexes. 
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3.3.3 Fluorescence dynamics of Chl a in WT and C260V IsiA  

Our previous studies of Chl a fluorescence decay in the WT IsiA demonstrated that 

fluorescence lifetime is sensitive to the presence of a reducing agent, sodium dithionite, in the 

sample buffer (Chen et al. 2017). We suggested that lifetime extension was associated with 

shutting down the cysteine-mediated excitation quenching mechanism similar to one proposed to 

explain redox dependent fluorescence decay of bacteriochlorophyll a in FMO photosynthetic 

antenna complex from green sulfur bacteria (Orf et al. 2016). In the C260V IsiA, the unique 

cysteine, which most likely is involved in the quenching mechanism, is replaced with a valine. 

Therefore, it is expected that even under oxidizing condition, C260V IsiA will reveal longer Chl 

a florescence decay as the quenching mechanism should be significantly obstructed or even 

completely absent. Comparison of fluorescence decay of Chl a in both WT and C260V IsiA 

(Figure 3.2) shows that the Chl a fluorescence lifetime of mutant IsiA is even longer than that of 

the reduced wild type IsiA, indicating the abolishment of excitation energy quenching done by 

replacing the cysteine with a valine. 

The time-resolved fluorescence spectra of wild-type IsiA, wild type PSI-IsiA and mutant 

PSI-IsiA (Figure 3.3) clearly shows that energy transfer from the mutant IsiA to PSI is still fast 

and efficient. It suggests that with the C260V mutation, the mutant IsiA still possesses the 

capability of serving as an accessary antenna of PSI. 



 

76 

 

 

Figure 3.2 Exemplary fluorescence decay dynamics of IsiA-bound Chl a in WT and C260V 

IsiA, under oxidative (ox, buffer as is) and reducing (red, after addition of 10 mM sodium 

dithionite) conditions. Fluorescence decay was recorded at 684 nm at room temperature. IRF – 

instrument response function.  The insert table shows fitting results with lifetimes and amplitudes 

of contributing kinetic components as well amplitude weighted lifetime <τ>. The signals were 

normalized for better comparability. 

 

Both WT and C260V IsiA proteins, if assembled into supercomplexes with PSI, show 

substantial and equal shortening of Chl a fluorescence decay, demonstrating that antenna 

complexes are equally capable to transfer efficiently excitation energy to PSI. Figures 3.3A and B 

show two-dimensional pseudo-color fluorescence decay profiles recorded for both 

supercomplexes. Measurements of time-resolved fluorescence were performed at 77 K, at 

cryogenic temperature that allows the recording of fluorescence from PSI (720 nm band). Figures 

3.3C and D show time-integrated fluorescence spectra that are integration of all time-resolved 
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spectra of time domain and, in principle, should be equal to expected steady-state fluorescence of 

a supercomplex. Fluorescence decay traces of Chl a associated with IsiA and with PSI, normalized 

to unity to maxima (Figure 3.3E), show that fluorescence decay of IsiA-bound Chl a is equal for 

both WT and C260V IsiA, therefore both IsiA equally well serve PSI as light harvesting antenna 

and excitation donors. Note that at 77 K standalone IsiA even in oxidizing conditions has Chl a 

fluorescence lifetime of ~4 ns (Chen et al. 2017).  

 

Figure 3.3 Time-resolved fluorescence of PSI-IsiA supercomplexes at 77 K. (A, B) Two 

dimensional, pseudo-color fluorescence decay profiles of PSI-WT and C260V IsiA 

supercomplexes, (C, D) Time-integrated spectra that should correspond to steady-state 
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fluorescence emission of both supercomplexes. (E) Comparison of IsiA-bound Chl a fluorescence 

decay in both samples. The kinetic traces are normalized to their maxima for better comparability. 

The samples were excited at 660 nm. Rapid decay of Chl a fluorescence from IsiA shows 

comparable and very fast energy transfer to PSI in both supercomplexes. Small differences visible 

in profiles (670-680 nm) and in residual long-lived signal at ~680 nm in mutant sample are 

associated with larger scattering of the excitation beam and possible residual contamination with 

free Chl a. 

 

3.3.4 Change of the pigment composition and quantification of photosynthetic proteins in 

the C260V mutant and WT Synechocystis strain 

According to the spectroscopic data, the C260V IsiA is incapable of quenching excitation 

energy. Because IsiA is important in providing photoprotection (Havaux et al. 2005), this 

significant change should profoundly affect the physiology of the cells. Therefore, study of 

pigment composition and photosynthetic protein content of the mutant cells grown in different 

conditions was performed.  
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Figure 3.4 Absorption spectra of C260V (C) and wild type (W) Synechocystis 6803. Cultures 

were grown in multicultivators under (A) 200 μmol photons m−2 s−1  (low light) with sufficient 

iron (CLL+ and WLL+), (B) 800 μmol photons m−2 s−1 (high light) with sufficient iron (CHL+ 

and WHL+) and (C) under low light (LL) and high light (HL) with absence of iron.  (D) The 

relative phycobilin and Chl a content per cell in C260V (C) and wild type (WT) under iron-replete 

and iron-depleted conditions. The whole absorption spectra were normalized to the absorption at 

730 nm. The pigment content of both strains obtained under low light is shown as 100% (red dash 

line), and the relative content represents the phycobilin and Chl a content obtained from liquid 

culture grown under high light. 

 

The absorption spectra of both C260V and wild type cultures grown under 200 μmol 

photons m−2 s−1 (low light) in BG11 (Figure 3.4A) had no noticeable difference. This was expected 

because there should be no isiA expression under this condition and, therefore, the mutation did 

not affect the physiology of cells under certain conditions. While cultures were grown under 800 

μmol photons m−2 s−1 (high light) in BG11, the high light intensity induced isiA expression in both 
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cultures, as shown by the blue shift of Qy absorption from 678 nm to 671 nm in the wild type and 

678 nm to 676 nm in the mutant (Figure 3.4B). It is noteworthy that the different levels of blue 

shift were likely caused by different IsiA levels in cells, which will be discussed later. The 

absorption spectra show that both strains have the blue shift of Chl a Qy absorption from 678 nm 

to 671 nm under low light and high light conditions. What interesting is that when both high light 

and iron stresses were applied on the C260V mutant, absorption at 671 nm is much lower, implying 

lower Chl a content on an equal OD730 basis. In addition, its absorbance at 671 nm, Qy absorption 

band of Chl a, is markedly lower than its phycocyanin peak at 625 nm, suggesting a different 

pigment composition in the mutant strain. Because the mutant IsiA no longer quenches excitation 

energy, the mutant cells lose part of the capability for photoprotection, and the photosynthetic 

proteins, or the whole cell may be more light-sensitive.  

Because the mutant appears to be more light-sensitive, the analyses were performed by 

comparing the data obtained from cells grown under high light with that from cells grown under 

low light. In iron-replete conditions, the C260V mutant had a ~20% increase in both phycobilin 

and Chl a content, while the wild type had a ~30% increase in phycobilin and ~50% increase in 

Chl a content under high light. On the other hand, in iron-depleted conditions, phycobilin and Chl 

a content in both strains pronouncedly decreased, especially the Chl a content in the C260V 

mutant, which decreased by ~55%. This suggests that the higher phycobilin to Chl a ratio in the 

C260V mutant in the iron-depleted condition under high light was due to the significantly 

decreased Chl a content caused by the high light intensity. The fact that the C260V mutant had 

lower Chl a content under high light led us to another question: what Chl a-binding protein did the 

mutant cells lose the most to cause so remarkable a decrease in Chl a content? 
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To understand how the photosynthetic proteins are affected by the lack of photoprotection 

provided by IsiA, we compared the photosynthetic protein content of cells grown under high light 

to that of cells grown under low light in iron-replete and iron-depleted conditions. 

 

Figure 3.5 Relative photosynthetic proteins and Chl a content of C260V (C) and wild type 

(WT) Synechocystis 6803. PSI, SPII, IsiA and Chl a content in the C260V and wild type cells 

grown in (A) iron-replete and (B) iron-depleted conditions. The protein and Chl a content of both 
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strains obtained under low light is shown as 100% (red dash line), and the relative content 

represents the protein and Chl a content obtained from liquid culture grown under high light. (C) 

Immunoblotting analysis of solubilized thylakoid membranes extracted from C260V (C) and wild 

type (W) cells grown in iron-replete conditions under low light (CLL+ and WLL+), iron-replete 

conditions under high light (CHL+ and WHL+), iron-depletion under low light (CLL- and WLL-

), and iron-depletion conditions under high light (CHL- and WHL-) probed by antisera specifically 

against IsiA and D2. Photoactive PSI content was determined based on the maximum absorbance 

at 705 nm of P700+ in each sample. PSII and IsiA content was estimated from the 

chemiluminescence signals from the immunoblotting analysis. Chl a content was estimated by the 

methanol extraction method. The comparisons of protein and Chl a content was made on an equal 

cell basis. 

 

Under iron-replete conditions, both the C260V mutant and the wild type had an increase in 

PSII and Chl a content (Figure 3.5A). Because both strains did not express isiA under iron-replete 

condition and low light, the relative IsiA content was not shown here, but both strains did produce 

IsiA under high light (Figure 3.5C). Interestingly, with about 50% higher PSII content, the increase 

of Chl a content in the C260V mutant due to high light was not as marked as that in the wild type. 

This was caused by the much higher IsiA content in the wild-type cells. Besides, under iron-

depleted conditions, the PSI, IsiA and Chl a content of the C260V mutant significantly decreased 

(Figure 3.5B).  On the other hand, the wild type showed a slight decrease in the PSI and PSII 

content and a more noticeable decrease in the IsiA content, causing the decrease in the total Chl a 

content (Figure 3.5B). These findings clearly show that the lack of quenching ability in the mutant 

IsiA results in the severe photodamage of PSI as well as IsiA itself under iron-depleted conditions 

and intense light.  
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3.3.5 Growth of C260V mutant and wild type Synechocystis strain under high light and 

iron stress 

To elucidate how this single amino change in IsiA affects the growth of cells under various 

conditions, the C260V mutant and wild type Synechocystis 6803 strains were grown in 

multicultivators, and the growth of cultures was monitored (Figure 3.6A and B). Although the 

growth rates of both strains are not significantly different from each other, the difference in their 

growth patterns is clear. The lag phase was missing in the mutant and made the mutant grow faster 

at the early growth stage. Under iron-replete condition and strong light, the mutant strain grew 

faster and reached higher OD730 in three days compared to the wild type. This suggested that with 

sufficient iron, the lack of photoprotection provided by IsiA did not hinder but accelerated the 

growth of mutant cells. However, in iron-depleted conditions, no noticeable difference was 

observed in the growth curves of both strains under both high light and low light conditions (data 

not shown). This may be caused by a trace amount of iron remaining in the cells before inoculated 

into multicultivators. Therefore, to solve this issue, other growth experiments were conducted with 

the addition of an iron-chelator, DFB, to create the severe iron-deficient conditions. In this stricter 

iron-deficient condition, the mutant grown under high light started fast without a lag phase, and 

then bleached out after about 30 h. Under low light, the mutant still grew without the lag phase 

and then grew as well as the mutant without bleaching out. These results showed that the C260V 

mutant is more light-sensitive than the wild type in strict iron-limited conditions. 
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Figure 3.6 Comparison of growth pattern of C260V and wild type (WT) Synechocystis 

strains. Growth curves of C260V and wild type in iron-replete conditions under (A) 200 μmol 

photons m−2 s−1 (low light, LL), (B) 800 μmol photons m−2 s−1 (high light, HL), and (C) iron-

depleted conditions (with the addition of iron chelator) under low light and high light. 
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3.4 Discussion 

3.4.1 Energy transfer in the mutant C260V IsiA 

It has been well established that IsiA not only serves as an light-harvesting antenna for PSI 

(Burnap et al. 1993; Andrizhiyevskaya et al. 2002a; Melkozernov et al. 2003; Ryan-Keogh et al. 

2012), but also plays a significant role in providing photoprotection (Ihalainen et al. 2005; Havaux 

et al. 2005; Yeremenko et al. 2004; Park et al. 1999; Sandstrom et al. 2001; van der Weij-de Wit 

et al. 2007). Furthermore, some studies suggested that IsiA stores Chl a molecules in iron-depleted 

conditions, and once the cells obtain iron, IsiA releases the Chl a molecules which are used for the 

synthesis of photosynthetic proteins (Riethman and Sherman 1988; Guikema 1985; Sarcina and 

Mullineaux 2004). However, partially due to the unavailability of an IsiA crystal structure at high 

resolution, the interaction of IsiA with photosynthetic proteins, especially PSI, is not understood. 

Our previous study proposed that IsiA uses the cysteine-mediated mechanism to quench excitation 

energy (Chen et al. 2017; Orf et al. 2016). In this study, site-directed mutagenesis was performed 

to replace the unique cysteine in IsiA with a valine. The essentially identical absorption spectra of 

C260V and WT IsiA (and likewise WT PSI-IsiA and PSI-C260V IsiA) show that the C260V IsiA 

maintains the binding pockets for Chl a and binds Chl a molecules well, suggesting that the C260V 

IsiA is properly folded. In addition, the Chl a Qy absorption bands of both WT and C260V IsiA 

have the maximum at 670.8 nm, and that of both WT and mutant PSI-IsiA have the maximum at 

673.8 nm (Figure 3.1 C and D), in good agreement with previous studies (Bibby et al. 2001b; 

Boekema et al. 2001). These results suggest that we successfully obtained the well-folded free 

C260V IsiA and PSI-C260V IsiA. 
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Unlike FMO protein, where the cysteine-mediated quenching process was first 

demonstrated (Orf et al. 2016), IsiA has only one cysteine, which makes this cysteine in IsiA even 

more essential in the quenching process. It was reported that the Chl a fluorescence lifetime of 

IsiA becomes longer with the addition of reducing agents (Chen et al. 2017) owing to the 

conversion of the thiyl radical to the thiol group in IsiA under reducing environments that prevent 

the excitation energy quenching by the interaction between the thiyl radical and the excited Chl a 

molecule (Orf et al. 2016). In the mutant C260V IsiA, the cysteine is replaced with valine, and, 

therefore, no quenching was expected in the mutant IsiA even under oxidizing conditions. Our 

results show that the Chl a fluorescence lifetime of the C260V IsiA is even longer than that of the 

wild type IsiA under reducing conditions (Figure 3.2), demonstrating no quenching in the C260V 

mutant. 

In the PSI-IsiA supercomplex, IsiA functions as an accessary antenna that absorbs light 

energy and transfers the energy to the reaction center of PSI. Our results are consistent with the 

previous studies, showing that the energy transfer from the IsiA ring to PSI is rapid and efficient 

(Melkozernov et al. 2003; Ryan-Keogh et al. 2012; Andrizhiyevskaya et al. 2002a). Moreover, 

excited at 660 nm, the mutant PSI-C260V IsiA and the wild type PSI-IsiA have identical 

fluorescence decay traces at 684 nm and 720 nm (Figure 3.3), indicating the same energy transfer 

process in both samples. These findings suggest that the mutant C260V IsiA is still capable of 

absorbing and transferring excitation energy to PSI and serves as an accessary antenna for PSI.  

3.4.2 Physiological changes in the mutant C260V cells 

Previous studies showed that IsiA is essential for the survival of Synechocystis sp. PCC 

6803 and Synechococcus sp. PCC 7942 in iron-deficient conditions and under high light (Park et 

al. 1999; Burnap et al. 1993; Wang et al. 2010; Havaux et al. 2005). Although the functions of 
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IsiA have not been completely revealed, it has been suggested that the cells cannot survive without 

IsiA mainly due to the absence of photoprotection provided by IsiA (Park et al. 1999; Burnap et 

al. 1993; Wang et al. 2010; Havaux et al. 2005). Our spectroscopic data show that the mutant 

C260V IsiA no longer quenches excitation energy but still functions as a light-harvesting antenna 

for PSI. It is interesting that this mutant C260V IsiA affects the physiology of the mutant cells. 

Because we are interested in the effects of the abolishment of excitation energy quenching in the 

C260V IsiA on the mutant cells, the data analyses were focused on the comparisons between low 

and high light conditions.   

Under iron-replete conditions 

Under low light with sufficient iron, the absorption spectra of the C260V mutant and the 

wild type are almost identical (Figure 3.4A), and no IsiA was present in both cultures (Figure 

3.4B). Under high light, even with sufficient iron, IsiA was induced by high light, which was 

confirmed by the blue shift of Chl a Qy absorption from 678 nm to 671 nm in the wild type and 

678 nm to 676 nm in the mutant C260V strain. The induction of IsiA was also confirmed the 

immunoblotting analysis shown in Figure 3.5C. As for the cellular pigment content, both 

phycobilin and Chl a content increases in both strains under high light. The changes of phycobilin 

content owing to high light in both strains are almost identical. In the contrast, the wild type had a 

much more significant increase in the Chl a content under high light, which suggests that the 

C260V mutation essentially affects the cellular Chl a content under different light conditions. The 

change of Chl a content should correspond to a change of the Chl a-binding protein. Our results 

show that the significant increase in the Chl a content in the wild type under high light should be 

attributed to the substantial expression of IsiA (Figure 3.5A and C). The C260V mutant only 

showed a slight increase in the Chl a content under the same condition, which is probably because 
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there is much lower IsiA content. Given that the C260V IsiA cannot quench the excitation energy, 

it is likely that the lower IsiA content in C260V mutant under high light is caused by photodamage. 

Besides, both strains had a higher PSII to PSI ratio under high light, as is consistent with previous 

studies (Kopečná et al. 2012; Murakami and Fujita 1991; Hihara et al. 1998). These findings show 

that with only one amino acid substitution in IsiA, the pigment and photosynthetic protein 

composition in mutant cells has achieved a new balance.    

The growth rates of both strains under low light are nearly identical, but distinct growth 

patterns were observed. Instead of growing slowly right after inoculated into the multicultivators, 

the C260V mutant cells started fast without a lag phase. Under high light conditions, the C260V 

mutant grew even faster than the wild type (Figure 3.6B). The manipulation of photoprotection 

has been considered as one of the best approaches to improve photosynthesis (Murchie and Niyogi 

2011). It was shown in plants and algae that by accelerating the recovery from photoprotection or 

removing some photoprotective mechanisms, the growth yield can be substantially improved 

(Hubbart et al. 2018; Kromdijk et al. 2016; Berteotti et al. 2016). However, it was reported that 

the Synechocystis 6803 mutant strain with the isiA gene being deleted cannot survive high light 

even with sufficient iron. In this study, the excitation energy quenching process in C260V IsiA 

was abolished, but the mutant IsiA may still provide photoprotection to cells at some level. In 

addition, the mutant C260V IsiA can serve as the light-harvesting antenna for PSI, which could 

potentially direct light energy to photochemical quenching and improve cells growth.  

Under iron-depleted conditions 

In iron-depleted conditions, both strains clearly show a blue shift of Chl a Qy absorption, 

indicating the presence of IsiA under low and high light conditions (Figure 3.4C). It was reported 
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that cells grown in iron-depleted conditions have a significant decrease in Chl a content (Burnap 

et al. 1993; Sherman and Sherman 1983; Guikema and Sherman 1983) compared with the cells 

grown in iron-replete conditions, which is consistent with our results (data not shown). Here, we 

compared the absorption spectra of cells grown in iron-depleted conditions under low and high 

light conditions. Our results show a significant decrease in the Chl a Qy absorption in the C260V 

mutant grown under high light (Figure 3.4C). The reduction in the Chl a Qy absorption indicates 

the lower Chl a content in the C260V mutant cells, which was also reported in an isiA deletion 

strain grown under similar conditions (Burnap et al. 1993). It was proposed that one purpose IsiA 

serves is to maintain the cellular Chl a content in iron-deficient environments, and help the cells 

to recover once iron becomes available (Riethman and Sherman 1988; Guikema 1985; Sarcina and 

Mullineaux 2004; Schrader et al. 2011). Our results also show that, compared with the C260V 

mutant, wild type cells are able to maintain their cellular Chl a content, and only had a slight 

decrease in Chl a content under high light. Furthermore, the decrease in the photoactive PSI and 

IsiA content in the C260V mutant under high light was more significant compared with wild type. 

This suggests that the significant loss of Chl a in the mutant corresponds to the loss of PSI and 

IsiA. Because the C260V IsiA is unable to quench light energy, it is likely that the loss of PSI and 

IsiA under high light is due to severe photodamage. Nonetheless, with the lower IsiA and PSI 

content, the growth of the C260V mutant in YBG11-Fe under low and high light condition was 

not distinctly different from that of the wild type (data not shown). This may result from the 

remaining iron in cells even after washed three times with YBG11-Fe. To understand how this 

mutation affects the growth of the mutant C260V cells in strict iron-depleted conditions, DFB, an 

iron-chelator, was added into YBG11-Fe, and the growth of both strains was monitored in this 

medium. In this strict iron-depleted condition, under high light, the C260V mutant started fast, and 
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then bleached out after 30 h (Figure 3.6C). This suggests that the C260V mutant is more light-

sensitive in iron-depleted conditions and that the fully functional IsiA is required for the cells to 

survive high light and iron-depleted environments. 

3.4.3 Significance of IsiA in cyanobacteria 

Although the isiA gene is well conserved among the cyanobacterial strains included in an 

earlier study (Chen et al. 2018), after decades of effort, the IsiA puzzle has still not been fully 

elucidated. Although it has been determined that IsiA serves as a light-harvesting antenna for PSI 

and provides photoprotection under stress conditions, the detailed mechanisms of those processes 

remain unclear. We proposed that IsiA uses the cysteine-mediated mechanism to quench excitation 

energy, a process that was first found in FMO protein in green-sulfur bacteria (Chen et al. 2017; 

Orf et al. 2016). In this study, the C260V mutation abolished the excitation energy quenching in 

IsiA, showing the critical role this unique cysteine plays in the quenching process. Our results also 

show that under strict iron-depleted conditions and high light, the mutant bleached out after 30 h, 

suggesting that the C260V mutant is more light-sensitive in iron-depleted conditions. This suggests 

that with the cysteine in IsiA, the wild type is more capable of surviving in such extreme 

environments. In addition, the amino acid sequence alignment of IsiA in representative strains 

shows that the cysteine residue is highly conserved in the ‘AYFCAVN’ motif (Figure 3.7), again, 

highlighting its importance in cyanobacteria. Interestingly, one of the two Calothrix strains 

included in this study has a serine residue instead of the conserved cysteine. The natural habitat of 

these two strains is reported to be different. Although Calothrix 6303 was isolated from a fresh 

water lake, Calothrix 7507 was sampled from an acidic peat bog, a niche unlikely to experience 

intense light stress. A different quenching mechanism might be at play in this strain.  Our findings 

also show that the C260V IsiA is still capable of serving as a light-harvesting antenna for PSI. 
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Faster growth was observed in the C260V mutant in the presence of iron under high light. This 

suggests that the single amino acid change may not interfere with the other IsiA functions and in 

fact, light energy use may become more efficient in the mutant cells due to the removal of part of 

the energy quenching processes.  

 

Figure 3.7 IsiA protein sequence alignment showing the conserved cysteine (C260) residue 

in 25 representative cyanobacterial strains.  

 

3.5 Methods 

Mutant construction 

The plasmid of the C260V-His strain was constructed by replacing the kanamycin 

resistance gene in the plasmid of IsiA-His strain (Chen et al. 2017) with a gentamicin resistant 

gene and introducing the site mutation in one of the homologous arms. This plasmid was 
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constructed by Gibson assembly (Gibson et al. 2009), using the DNA fragments amplified by PCR. 

The resulting plasmid pSL2973 was verified by sequencing. The IsiA-His strain was transformed 

and the transformants were selected for growth on gentamicin. Segregation of the C260V-His 

strain was confirmed by PCR. 

For the C260V strain, the mutation was introduced with the CRISPR/Cpf1 system reported 

previously (Ungerer and Pakrasi 2016). The editing plasmid was constructed by cloning the 

annealed oligos, the gRNA targeting the isiA sequence, into the AarI site on the pSL2680 vector. 

The repair template was constructed by Gibson assembly that cloned two 900 bps homology 

regions, including the mutation at the PAM sequence and the cysteine coding sequence, into the 

KpnI site on the editing vector. The resulting plasmid, pSL2854, was verified by sequencing. It 

was then transferred to Synechocystis 6803 wild type cells using the E. coli strain containing the 

pRL443 and pRL623 plasmid by the tri-parental conjugation method (Golden et al. 1987). The 

resulting colonies were repatched three times onto BG11 plates containing 10 μg/mL kanamycin. 

Mutations were verified by sequencing. The verified colonies were grown to stationary phase in 

BG11 without antibiotics and diluted 1000 times and grown to stationary phase again. This process 

was repeated several times to cure the editing plasmid. BG11 plates with and without kanamycin 

were used to screen the kanamycin-sensitive colonies, which had lost the editing plasmid. These 

kanamycin-sensitive patches are the markerless C260V mutants.  

Culture growth conditions and thylakoid membrane preparation 

Wild type and C260V Synechocystis sp. PCC 6803 cells were grown phototrophically in 

BG11 under continuous illumination with the intensity of 30 μmol photons m−2 s−1 at 30 °C. After 

5 days, cells were harvested and washed three times with YBG11-Fe, a modified medium without 
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the addition of iron (Chen et al. 2017; Shcolnick et al. 2007). The washed cells were adjusted to 

the same optical density to 0.05 at 730 nm (OD730= 0.05), inoculated in a multicultivator, and 

grown under 200 (low light) and 800 (high light) μmol photons m−2 s−1. For iron-starved liquid 

cultures, BG11 was replaced with YBG11-Fe with or without the addition of deferoxamine (DFB) 

to the final concentration of 50 mM depending on the experimental settings. The OD730 was 

continuously recorded every 10 minutes over the course of the growth experiments. After three 

days grown in the multicultivator, the cells of each liquid culture were harvested and counted. One 

milliliter of the each culture was used to obtain the absorption spectra, and the rest of the cultures 

were divided based on the same cell number and resuspended in RB (50 mM 

morpholineethanesulfonic acid [MES]–NaOH [pH 6.0], 10 mM MgCl2, 5 mM CaCl2, 25% 

glycerol) and then stored at −80 °C for future use.  

The cells were thawed on ice prior to the thylakoid membrane extraction. Cells were broken 

by bead-beating as described previously (Kashino et al. 2002; Bricker et al. 1998) with following 

modifications. The thawed cells and 0.17 mm glass beads were loaded into a prechilled Eppendorf 

tube with a 1:1 ratio of cell suspension to glass beads. Cells were then broken using 10 break 

cycles, each cycle consisting of 1 min of homogenization on a Vortex mixer, followed by 1 min 

of cooling. Cell homogenates were centrifuged in a SS34 rotor at 30 000 × g for 15 min and washed 

with RB once. The resulting pellet was then resuspended in RB and solubilized with β-D-dodecyl 

maltoside (DDM) to a final concentration of 1% DDM, and incubated on ice in dark with gentle 

stirring for 30 min. The sample was then centrifuged in a SS34 rotor at 30,000 × g for 30 min and 

the resulting supernatant, the solubilized thylakoid membranes, was stored at −80 °C for future 

use. 

Cell counting 
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Cell cultures were grown in MC-1000 multicultivators in BG11 and YBG11-Fe under 200 and 800 

μmol photons m−2 s−1 as mentioned above. The cells were harvested after three days, and diluted 

to OD730 = 0.01. Twenty milliliters of the diluted sample were taken, and its cell number was 

counted with an automated cell counter (Cellometer Vision; Nexcelom). The cell number was 

automatically counted by the Cellometer with manually curation which improve the accuracy of 

counts. Since the relationship between OD730 and cell number is different in different strains 

under different conditions all liquid cultures were counted as mentioned above to achieve the 

higher accuracy.  

Photoactive PSI content 

Cell cultures were grown in MC-1000 multicultivators in BG11 and YBG11-Fe under 200 

and 800 μmol photons m−2 s−1 as mentioned above. Cells were harvested after three days, and 

adjusted to same cell numbers. With the addition of 10 μM 3-(3,4-dichlorophenyl)-1,1-

dimethylurea (DCMU) and 20 μM dibromothymoquinone (DBMIB), which block linear and 

cyclic electron flow, the absorbance at 705 nm of P700+ in each sample was recorded for 5 s under 

saturating light on a JTS-10 pump probe spectrophotometer. The P700+ molar extinction 

coefficient of 70 mM-1 cm-1 was used to estimate the photoactive PSI content from the maximum 

absorbance. 

SDS-PAGE and immunoblot analysis 

Solubilized thylakoid membranes of C260V and wild type Synechocystis sp. PCC 6803 

were prepared as mentioned above. The solubilized thylakoid membranes were fractionated by 

denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed 

by protein immunoblot as described in previous studies (Laemmli 1970; Zak et al. 2001). 



 

95 

 

Fractionated proteins were blotted onto polyvinylidene difluoride (PVDF) membranes. IsiA and 

D2 were identified by the specific antisera and visualized by using enhanced chemiluminescence 

reagents (WestPico; Pierce) on an Odyssey Fc imager (LI-COR Biosciences, USA). The relative 

protein content was estimated by Image Studio (LI-COR Biosciences, USA) based on the 

chemiluminescence signals of samples. 

Pigment content estimation 

Cell cultures were grown in MC-1000 multicultivators in BG11 and YBG11-Fe under 200 

and 800 μmol photons m−2 s−1 at 30 °C as mentioned above. One milliliter cell culture was taken 

and its Chl a content was estimated by the methanol extraction method (Porra et al. 1989).  

The absorption spectra of cultures were obtained using a DW2000 spectrophotometer 

(OLIS, USA). Phycobilin content in the cultures were estimated using the equation as follows 

(Arnon et al. 1974; Collier and Grossman 1992; Murton et al. 2017):  

Phycobilin content (
𝑚𝑔

𝑚𝑙⁄ ) = 0.139 × (𝐴620 − 𝐴730) − 0.0355 × (𝐴678 − 𝐴730) (3.1) 

Protein complex purification 

C260V-His liquid culture was grown in YBG11-Fe with the addition of 5 mM 

deferoxamine under illumination with the intensity of 30 μmol photons m−2 s−1 at 30 °C for two 

weeks to induce isiA expression as described in our previous study (Chen et al. 2017). The 

solubilized thylakoid membranes were prepared as shown above, and then used to purify PSI-IsiA 

and IsiA protein complexes. The C260V mutant IsiA and PSI-IsiA supercomplexes were purified 

by using nickel affinity chromatography and rate-zonal centrifugation (Chen et al. 2017). After 18 

h of ultracentrifugation, protein fractions were collected. The first green and fourth green bands 
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from the top of the gradient was determined by Western blot and spectroscopy that contains IsiA 

and PSI-IsiA supercomplexes, respectively. 

Steady-state and time-resolved spectroscopy 

Steady-state absorption spectra were recorded using UV-1800 spectrophotometer from 

Shimadzu.  Time-resolved fluorescence (TRF) experiments were carried out using two different 

setups. For recording of image of fluorescence profiles of PSI-IsiA supercomplexes at 77 K a setup 

based on Hamamatsu (Japan) universal streak camera described in detail previously (Niedzwiedzki 

et al. 2013) was used. Single wavelength traces of IsiA samples fluorescence decay at room 

temperature were recorded using a standalone Simple-Tau 130 time-correlated single photon 

counting (TCSPC) system from Becker&Hickl (Germany). Both setups were coupled to an 

ultrafast laser system (Spectra-Physics, USA) described in detail previously (Dilbeck et al. 2016). 

The frequency of the excitation pulses was set to 8 MHz, corresponding to ~120 ns between 

subsequent pulses. To minimize the detection of scattered light from the excitation beam a long-

pass 665 nm filter was placed at the entrance slit of the spectrograph/monochromator. The integrity 

of the samples was examined by monitoring the real-time photon count rate over the time course 

of the experiment. It was constant, which indicated the absence of sample photodegradation. The 

samples were resuspended to an absorbance of ≤0.1 at the Chl a Qy band and the emission signal 

was recorded at a right angle with respect to the excitation beam. The excitation beam set to 640 

nm, with photon intensity of ~1010 photons/cm2 per pulse was depolarized and focused on the 

sample in a circular spot of ~1 mm diameter. 

Amino acid alignment 
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Twenty-five cyanobacterial strains, representative of unicellular, filamentous, diazotrophic 

and non-diazotrphic cyanobacteria, were chosen based on their sequence similarity (blastp) with 

the IsiA protein of Synechocystis 6803. The sequences were obtained from the JGI/IMG microbial 

database and aligned with ClustalW within MEGA 7 (Kumar et al. 2016). The cysteine residue 

(highlighted) in the AYFCAVN motif is conserved across the examined cyanobacterial strains 

harboring the IsiA protein. 
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4. Chapter Four: Introduction of an excitation 

energy quenching process into CP43  
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4.1 Abstract 

CP43 is a Chl a-binding membrane protein functioning as a light-harvesting system of 

photosystem II (PSII). It closely associates with D1 and D2, where reaction center of PSII locates, 

and facilitates excitation energy transfer from the exterior antennae to the reaction center of PSII. 

Interestingly, sharing a similar structure with CP43, IsiA was determined to quench excitation 

energy via a cysteine-mediated mechanism, which was not found in CP43. Amino acid sequence 

analysis showed that no cysteine locates in close proximity to any of the Chl a and the cysteine 

playing the critical role in IsiA is replaced with a valine in CP43. In this study, site-directed 

mutagenesis was used to introduce the cysteine-mediated quenching process into CP43, leading to 

the mutant Synechocystis phenotypes with 25% lower maximum quantum yield in comparison 

with the wild type. The CP43 mutant can not grow photoautotrophically, and a low oxygen 

evolution rate was observed in this mutant, suggesting a less efficient PSII caused by the 

introduction of the excitation energy quenching process.  

 

4.2 Introduction 

CP43 is a Chl a-binding membrane protein, encoded by the psbC gene, which serves as an 

intrinsic antenna for photosystem II (PSII). In PSII, CP43 and CP47 proteins surround D1 and D2, 

where the reaction center of PSII locates (Zouni et al. 2001; Umena et al. 2011), and transfer 

excitation energy from the exterior antenna to the reaction center core. The crystal structure of 

CP43 is available at high resolution which shows that it binds 13 Chl a and has six transmembrane 

helices (Umena et al. 2011). Belonging to the same chlorophyll-binding 6-transmembrane helical 

protein superfamily, CP43 is highly homologous with IsiA, an iron stress-induced Chl a-binding 

protein (Burnap et al. 1993; Bibby et al. 2001). Although IsiA has been determined providing 
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photoprotection by quenching excitation energy as heat (Ihalainen et al. 2005; Orf et al. 2016; 

Chen et al. 2017), no excitation energy quenching process with CP43 directly involved has been 

proposed. Because efficiently transfer excitation energy to the reaction center core is one of the 

most essential function CP43 serves, it is not surprising that CP43 lacks any excitation energy 

quenching mechanism, which may distract energy flux toward the reaction center core and lower 

the quantum efficiency of PSII. However, with an extra quenching mechanism in CP43, it may 

provide photoprotection and help cells survive high light stress. 

A cysteine-mediated quenching mechanism has been proposed being involved in the 

excitation energy quenching process in the Fenna-Matthews-Olson (FMO) complex (Orf et al. 

2016) and the IsiA aggregate (Chen et al. 2017). In this mechanism, the cysteine residue plays a 

critical role that dissipates the excitation energy in oxidizing environments via an excited-state 

electron-transfer event with the participation of excited (bacterio)chlorophylls and thiyl radicals at 

the cysteine residues (Chen et al. 2017; Orf et al. 2016). Sharing a similar structure with IsiA, 

CP43 has a valine (Val277) that locates in close proximity to the Chl a29 as the Cys260 in IsiA 

(Figure 4.1). In this study, site-directed mutagenesis was performed, by which the Val277 in CP43 

was replaced with a cysteine, resulting in the V277C-His47 Synechocystis strain. A 25% lower 

quantum efficiency of PSII in the V277C-His47 strain was observed, which suggests the defective 

energy transfer chain to the reaction center of PSII. In addition, the CP43 mutant is unable to grow 

photoautotrophically, and a low oxygen evolution rate was observed in this mutant, showing a 

significant change in the efficiency of photosynthetic reactions caused by a single amino acid 

substitution that may suggest the introduction of an extrinsic quenching process to CP43. 
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Figure 4.1 The Val290 in CP43 crystal structure. (A) The membrane side view of CP43 and 

(B) the close view of Val290 as well as Chl a29. Val290 is showed in yellow, and the Chl a29 is in 

green. The distance between the Chl a29 and the Val290 is estimated and shown in white.  

 

4.3 Results and Discussion 

To understand if the cysteine-mediated quenching mechanism can be introduced into 

CP43, site-directed mutagenesis was performed by the CRISPR/Cpf1 system (Ungerer and Pakrasi 

2016), resulting in the V277C-His47 mutant. In this V277C-His47 mutant, the valine, V277, was 

replaced with a cysteine which was demonstrated playing a critical role in the cysteine-mediated 

quenching process in IsiA (Chen et al. 2017). Given that the valine and Chl a29 are in close 

proximity (Umena et al. 2011), CP43 shares a similar structure with IsiA, and the oxidizing 

environment in PSII, it is likely that by replacing the valine with a cysteine, the mutant CP43 may 

quench excitation energy, leading to the lower quantum efficiency in PSII.  
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Before confirming the mutation in the V277C transformants, the colonies were examined 

by FluorCam (PSI, Cezch Republic), a fluorometer used to measure the fluorescence parameters. 

The results are shown in Table 4.1, which indicate that the colonies 3, 7 and 8 have the low 

quantum efficiency of PSII (Fv/Fm). Interestingly, the mutation in colonies 1, 3, and 7 were checked 

by sequencing, and the results show that the one with a normal Fv/Fm, colony 1, is a false positive. 

On the other hand, colonies 3 and 7, which have about 25% lower Fv/Fm compared with the wild 

type, were confirmed to be the correct V277C-His47 phenotypes. These preliminary results 

suggest that the V277C mutation in CP43 significantly affects energy transfer in PSII and therefore 

leads to the reduction in the quantum efficiency of PSII. Colony 3 was studied in this study and 

termed V277C-His47 mutant strain. 

Table 4.1 Photosynthetic efficiencies of selected V277C transformants. 
Data† Colony 1 Colony 2 Colony 3 Colony 4 Colony 5 Colony 6 Colony 7 Colony 8 

Fm 889.51 1012.96 798.76 802.89 753.85 666.67 628.11 645.65 

Fv 385.54 495.06 255.57 354.89 341.16 270.04 214.21 139.19 

Fv/Fm 0.43 0.49 0.32 0.44 0.45 0.40 0.34 0.21 

† Fm, maximum fluorescence; Fv, variable fluorescence; Fv/Fm, maximum potential quantum efficiency of photosystem II 

 

Growth experiments were conducted to understand the effects of the V277C mutation in 

CP43 on the mutant cells. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) 

and glucose, the plastoquinone binding site of PSII is blocked, which, therefore, inhibit 

photosynthesis, and the cells are forced to grow heterotrophically. Under this condition, the V277C 

CP43 mutant grew as well as the His47 strain (Figure 4.2). Both strains grew well in the presence 

of glucose, and stopped growing once the glucose was completely consumed. On the other hand, 

without the addition of glucose, the V277C-His47 mutant did not grow in BG11. As mentioned 

above, the V277C-His47 mutant appears to have a lower quantum efficiency of PSII compared 

with the wild type. As a result, this mutant may not grow photoautotrophically.  
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Figure 4.2 The growth curves of the V277C-His47 mutant and the His47 strain in (A) BG11 

and in (B) BG11 in the presence of 20 μM DCMU and 5 mM glucose. 

 

Furthermore, the PSII-mediated oxygen evolution rates of both the V277C-His47 and the 

His47 strains under different light conditions were recorded. The results show that with the mutant 

CP43, the PSII of the V277C-His47 strain can still split water and produce oxygen. However, the 
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lower maximum oxygen evolution rate found in the mutant indicates the lower photosynthesis 

efficiency owing to the substitution of the valine with a cysteine (Figure 4.3). 

 

Figure 4.3 The PSII-mediated oxygen evolution rates of the His47 strain and the V277C-

His47 mutant under different light conditions. 

 

4.4 Methods 

Construction of strains  

Site-directed mutagenesis was performed by the CRISPR/Cpf1 system as described in 

previous studies (Ungerer and Pakrasi 2016). The editing plasmid with all the DNA features 

needed, including the gRNA and the repair template, was transformed into the His47 strain 

(Bricker et al. 1998) using the E. coli strain containing the pRL443 and pRL623 plasmid by the 

tri-parental conjugation method (Golden et al. 1987). In this His47 strain, a hexahistidyl tag was 
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added on the C-terminus of the CP47 protein. This strain has been well characterized and can be 

used to purify active PSII (Bricker et al. 1998). Since no significant physiological difference was 

observed between this His47 strain and the wild type Synechocystis sp. PCC 6803 strain, in this 

study, the V277C-His47 was compared with the His47 strain. 

The transformants were re-patched three times onto BG11 plates containing 5 mM glucose 

and 5 μg/mL gentamycin for selection. Eight colonies were picked and patched and pre-screened 

by measuring the photosynthesis parameters. The V277C-His47 mutant was confirmed by 

sequencing. This mutant was grown in BG11 with 50 mM glucose, 5 μg/mL gentamycin as well 

as 20 μM DCMU, which prevents random mutations.  

Growth experiments 

 To understand how the single amino acid substitution in CP43, V277C, affects the growth 

of cells, the growth of both the His47 and V277C-His47 strains were monitored. Both liquid 

cultures were pre-cultured in BG11 with 50 mM glucose, 5 μg/mL gentamycin and 20 μM DCMU 

for five days. The cells were then harvested and washed three times with BG11. The washed cells 

were adjusted to OD730 0.05 in BG11 for phototrophic growth and in BG11 with 5 mM glucose 

20 μM DCMU for heterotrophic growth in a 12-well plate under the illumination of 30 μmol 

photons m−2 s−1 at 30 °C. One hundred and fifty milliliters liquid culture in each well was taken 

out every 24 hr and the OD730 was measured with a plate reader.  

Measurements of photosynthesis parameters 

Eight V277C-His47 transformants were patched on a BG11 containing 50 mM glucose and 

5 μg/mL gentamycin and grown for a week. The whole plate was placed in the Closed FluorCam 
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FC 800-C (PSI, Czech Republic) for two minutes for dark acclimation. The plate was then imaged 

and the images with the Chl a fluorescence signals were analyzed with the FluorCam7 software 

(PSI, Czech Republic) and the photosynthesis parameters (Fo, Fv and Fm) were determined.  

PSII-mediated oxygen evolution 

Cells cultures were grown in BG11 for a week under the illumination of 30 μmol photons 

m−2 s−1 at 30 °C. The cells were harvested and adjusted to an equal Chl a content for the 

measurement of oxygen evolution rate. The light induced PSI-mediated oxygen evolution rate was 

measured with a Clark type electrode as described in our previous publication (Ungerer et al. 

2018).  
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5. Chapter Five: Conclusion and future directions 
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5.1 Conclusion 

 The functions of IsiA have been studied for decades, yet the mysteries have not been fully 

revealed. In this work, the excitation energy quenching in IsiA was studied by time-resolved 

spectroscopy as well as other protein assays. In addition, the physiological changes of cells caused 

by the modification of the photoprotective mechanism in IsiA were also identified, suggesting the 

significant role IsiA plays in photosynthesis. 

 In this study, pure PSI-IsiA supercomplexes and IsiA aggregates were successfully isolated 

from the iron-starved Synechocystis mutant strains, which have polyhistidine-tags attached to PsaF 

or IsiA, by affinity chromatography followed by sucrose gradient ultracentrifugation. The protein 

samples with the least contamination enables us to study energy transfer in IsiA and PSI-IsiA 

supercomplexes. In Chapter 2, we demonstrated that the carotenoids in IsiA do not serve as energy 

quencher, nor supports Chl a for light-harvesting. Based on the time-resolved spectroscopic 

results, we proposed that IsiA quenches excitation energy by a cysteine-mediated quenching 

mechanism, which was originally demonstrated in the FMO protein (Orf et al. 2016).  

 In Chapter 3, site-directed mutagenesis was performed, resulting in the IsiA mutant strains, 

in which the critical cysteine residue is replaced with a valine. With this single amino acid 

substitution, IsiA no longer quenches excitation energy, whereas it still serves the light-harvesting 

purpose for PSI. Interestingly, the C260V IsiA mutant grows faster than the wild type in the 

presence of sufficient iron under high light. Because the mutant IsiA is unable to quench excitation 

energy but still capable of serving as an antenna for PSI, the faster growth rate may result from the 

more efficient use of light energy in the C260V IsiA mutant compared with that of the wild type. 
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These findings provide a promising approach for improving photosynthesis and increasing the 

biomass yield. 

 The work in Chapter 3 determined that by manipulating photoprotective mechanisms in 

cyanobacteria, the higher biomass yield can be achieved. In Chapter 4, we attempted to introduce 

this cysteine-mediated quenching process into CP43, an intrinsic antenna protein of PSII, to serve 

photoprotection purposes. Our results show that with a cystine residue placed at the critical 

position near to a Chl a, the mutant cells have a 25% lower quantum efficiency of PSII in 

comparison to the wild type and can not grow photoautotrophically. Further investigation is needed 

to characterize this CP43 mutant phenotype, but our results already show a potential in introducing 

an extrinsic photoprotective mechanism into targeted proteins.     

5.2 Future directions 

5.2.1 Extending the understanding of IsiA 

 In this work, we focused on understanding the excitation energy quenching in IsiA and the 

significance of this quenching process on cell growth. Nonetheless, it has been demonstrated that 

IsiA serves multiple functions (Park et al. 1999; Riethman and Sherman 1988; Burnap et al. 1993), 

which have not been fully understood. One issue that hinders our progress of understanding IsiA 

is the missing of IsiA crystal structure at high resolution. Recently, the mature single-particle cryo-

electron microscopy technique was used to obtain the phycobilisome, a 16.8 MDa antenna protein 

complex, structure at 3.5Å  (Zhang et al. 2017). This technique may be used to obtain the structure 

of PSI-IsiA supercomplexes and IsiA aggregates at higher resolution. The crystal structures of PSI-

IsiA and IsiA are useful information that helps to study the protein-protein interactions in PSI-IsiA 

and IsiA aggregates.  
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 The results from field studies and laboratory experiments suggest that IsiA is the dominant 

Chl a-binding protein in iron-deficient environments (Burnap et al. 1993; Schrader et al. 2011). 

Furthermore, some studies suggested that the IsiA aggregates are even more abundant compared 

with PSI-IsiA supercomplexes (Feng et al. 2011; Ryan-Keogh et al. 2012). However, it is not 

understood why cyanobacterial cells spend significant amount of energy producing IsiA 

aggregates under iron-deficient conditions. In addition, the in vivo quantification of PSI-IsiA 

supercomplexes and IsiA aggregates is missing, and where IsiA locates in the thylakoid 

membranes is not revealed. By using hyperspectral confocal fluorescence microscopy in 

combination with electron microscopy, the protein complexes in cells can be identified and 

visualized based on their distinct fluorescence emission signals (Collins et al. 2012). This 

technology can be used to determine the localization of PSI, PSII, PSI-IsiA, and IsiA aggregates, 

and quantify these protein complexes in vivo. This information is critical for understanding the 

roles PSI-IsiA supercomplexes and IsiA aggregates play in the cells. 

5.2.2 Applying the knowledge on improving photosynthesis 

 Fast growth is a significant evolutionary advantage that helps organisms to compete with 

others. In an engineer point of view, growing fast means producing desired products or simply 

growing biomass fast. Therefore, fast-growing strain has always been needed. For phototrophs, 

one approach to achieve higher growth rate, is to improve the quantum efficiency of 

photosynthesis. By improving photosynthesis, the light energy can be converted to chemical 

energy more efficiently, which consequently increases the overall metabolism and results in the 

higher growth rate (Zelitch 1975; Evans 2013). To improve photosynthesis, some attempted 

reducing photorespiration (Hagemann and Bauwe 2016) or improving Rubisco kinetics (Parry et 

al. 2012; Whitney et al. 2011), some turned to the expansion of the Photosynthetically active 
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radiation spectrum (Blankenship and Chen 2013), others focused on manipulation of 

photoprotection (Murchie and Niyogi 2011). Lately, owing to the deeper understanding on the 

photoprotective mechanisms, several studies have shown the potential of improving 

photosynthesis and biomass yield by accelerating the relaxation of photoprotection (Kromdijk et 

al. 2016; Hubbart et al. 2018) and reducing the capability of photoprotection (Berteotti et al. 2016). 

The cysteine-mediated quenching mechanism in IsiA has been studied in this work. With 

the understanding of the critical players in the quenching process, we successfully abolished this 

quenching process and retained the light-harvesting function for PSI, which improved the growth 

rate of mutant cells under high light. Furthermore, this quenching process highly depends on the 

local redox potential. By controlling the local redox potential in cells, we may be able to tune the 

level of photoprotection under fluctuating light and improve the efficiency of photosynthesis. In 

addition, our study on introducing this cysteine-mediated quenching mechanism into CP43 in 

Chapter 4 show another possibility of manipulating the photoprotective mechanism in antenna 

protein. Further investigation is needed to verify the cysteine-mediated quenching process in the 

mutant CP43 as well as understand the physiological significance of the introduction of an 

extrinsic photoprotective mechanism into CP43. 
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Appendix 1: Characterization of IsiA and 

PSI-IsiA supercomplexes 
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Introduction 

Energy transfer in PSI-IsiA and IsiA has been investigated for decades (Andrizhiyevskaya 

et al. 2002; Melkozernov et al. 2003; Berera et al. 2009; Berera et al. 2010; Ryan-Keogh et al. 

2012), yet the mechanism of energy transfer as well as energy quenching has not been fully 

understood. To study energy transfer in both protein complexes, pure protein samples are needed, 

especially for IsiA-only sample. As discussed in Chapter 1, the energy quenching process in IsiA 

has been studied, and a quenching process was proposed which attributes the energy dissipation in 

IsiA to a carotenoid- Chl a interaction (Berera et al. 2009; Berera et al. 2010). However, our 

spectroscopic results in Chapter 2 showed no energy transfer between the carotenoids and Chls in 

IsiA. After revisited the previous studies, we demonstrated that this disagreement is due to the PSI 

contamination in the IsiA sample in previous studies (Berera et al. 2009; Berera et al. 2010). This 

again showed the necessity of having the pure protein samples for studying energy transfer in IsiA. 

In this study, we showed the characterization of PSI-IsiA and IsiA protein samples purified from 

PsaF-His and IsiA-His strains, which are not shown in other Chapters above.  

Results and discussion 

 The iron-starved PsaF-His and IsiA-His cultures were harvested and broken. The thylakoid 

membranes were solubilized with mild detergents, and protein samples were purified by affinity 

chromatography. Multiple protein bands were obtained from the resulting elutions by sucrose 

gradient ultracentrifugation (Figure 1). Because the His-tag is attached to different proteins in 

PsaF-His and IsiA-His, the elutions contain different compositions of protein complexes. The 

protein samples purified from PsaF-His contain PSI and PSI-IsiA. On the other hand, protein 

samples obtained from IsiA-His contain IsiA and PSI-IsiA. In this study, the analyses were focused 
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on the green band 4 from PsaF-His, which mainly contains PSI-IsiA, and green band 1 from IsiA-

His, which only has IsiA aggregates. 

 

Figure 1. Protein bands obtained by sucrose gradient ultracentrifugation. Protein samples were 

purified by nickel affinity chromatography from solubilized thylakoid membranes from the iron-

starved (A) PsaF-His and (B) IsiA-His cells. 

 

The green band 4 obtained from PsaF-His has the highest molecular weight which suggest 

that it mainly contains the PSI3-IsiA18 supercomplex. Other green bands were determined that have 

PSI monomer, PSI trimer as well as other lower molecular weight PSIx-IsiAy supercomplexes (data 

not shown). The steady-state fluorescence emission spectrum of the PSI-IsiA supercomplex, green 

band 4, is shown in Figure 2. It has a huge peak at 718 nm and a small bump at 682 nm, and these 

results are consistent with previous studies (Bibby et al. 2001; Andrizhiyevskaya et al. 2002). On 

the other hand, the green band 1 obtained from IsiA-His was determined to contain only IsiA-
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aggregates in Chapter 2. In its steady-state fluorescence emission spectrum, there is only one huge 

peak at 682 nm, which is consistent with previous studies (Bibby et al. 2001), too. Interestingly, 

the IsiA fluorescence spectra shown in some studies have a small bump at about 718 nm 

(Andrizhiyevskaya et al. 2002; Melkozernov et al. 2003; Ihalainen et al. 2005), indicating the PSI 

contamination in their IsiA sample. This may lead to the wrong conclusion if the samples were 

used as “IsiA-only” samples to perform experiments.    

 

Figure 2. Steady-state fluorescence emission spectra of PSI-IsiA and IsiA excited at 435 nm at 

77K. 

 

The results of high resolution clear native polyacrylamide gel electrophoresis (hrCN-

PAGE) showed that the green band 4 obtained from PsaF-His has many bands at the high 

molecular weight region (Figure 3A). Those bands were examined by 2D-SDS analysis and the 
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results showed that they are various forms of PSI-IsiA aggregates or PSIx-IsiAy supercomplexes 

(Figure 3B). In addition, PSI trimers, monomers and ATP synthases were also found in this green 

band. In the IsiA sample, multiple bands with approximately 50 kDa difference between each were 

found. This 50 kDa difference is close to the molecular weight of one IsiA copy with the co-factors. 

Therefore, it is likely that this sample contains various IsiA complexes which consist of 2 to 12 

IsiA copies.  

The PSI-IsiA sample contains various forms of PSI-IsiA supercomplexes which may not 

be the best sample to study for understanding the detailed mechanism of energy transfer in PSI-

IsiA. Nonetheless, because the ATP synthase is not involved in excitation energy transfer and PSI 

trimer and monomers do not affect the fluorescence emission of PSI-IsiA supercomplexes, we 

were still able to observe the efficient and rapid energy transfer from IsiA to PSI. On the other 

hand, in our IsiA sample, it contains only IsiA but with different numbers of IsiA copies. For the 

purpose of studying excitation energy quenching in individual IsiA copy, with different numbers 

of IsiA copies does not affect the results. The only concern is the PSI-IsiA supercomplex 

contamination, which was ruled out by the assays described in Chapter 2 and 3. 
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Figure 3. The (A) hrCN-PAGE and (B) 2D-SDS PAGE analyses of the PSI-IsiA sample as well 

as the (C) hrCN-PAGE analysis of the IsiA sample.  

 

Methods and materials 

Growth conditions and protein purification 

PsaF-His and IsiA-His strains, which have a polyhistidine tag at the C-terminus of PsaF 

and IsiA, respectively, were grown in YBG11-Fe medium to induce the expression of isiA. The 
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cells were grown under the light intensity of 30 μmol photons m−2 s−1 at 30 °C and harvested after 

7 to 12 days of growth when the IsiA Chl a fluorescence became dominant. 

The cells were broken by the bead-beater technique and the solubilized thylakoid 

membranes were prepared as described in Chapter 2. The protein complexes were purified from 

the solubilized thylakoid membranes by affinity chromatography. The resulting protein mixtures 

in the elutions, were further separated by sucrose gradient ultracentrifugation, as described in 

Chapter 2. 

hrCN-PAGE and 2D-SDS PAGE 

 Both gels were Bis-Tris gels prepared as described in previous study (Wittig et al. 2007).  

The 4 – 12% acrylamide gel was used for hrCN-PAGE and the 10% acrylamide gel was used for 

2D-SDS PAGE. Both gels were stained by the Coomassie Blue G-250 dye to visualize protein 

bands. 

77K Steady-state fluorescence emission spectra 

 The protein samples were prepared as described above. The fluorescence emission 

spectra were obtained at 77K with the Chl a excited at 435 nm by a SPEX Fluoromax 2 

spectrofluorometer. 

 

Reference 

Andrizhiyevskaya EG, Schwabe TM, Germano M, D'Haene S, Kruip J, van Grondelle R, Dekker 

JP (2002) Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium 

Synechococcus PCC 7942. Biochimica et biophysica acta 1556 (2-3):265-272 



 

127 

 

Berera R, van Stokkum IH, d'Haene S, Kennis JT, van Grondelle R, Dekker JP (2009) A 

mechanism of energy dissipation in cyanobacteria. Biophysical journal 96 (6):2261-2267. 

doi:10.1016/j.bpj.2008.12.3905 

Berera R, van Stokkum IH, Kennis JT, van Grondelle R, Dekker JP (2010) The light-harvesting 

function of carotenoids in the cyanobacterial stress-inducible IsiA complex. Chemical Physics 373 

(1):65-70 

Bibby TS, Nield J, Barber J (2001) Three-dimensional model and characterization of the iron 

stress-induced CP43'-photosystem I supercomplex isolated from the cyanobacterium 

Synechocystis PCC 6803. The Journal of biological chemistry 276 (46):43246-43252. 

doi:10.1074/jbc.M106541200 

Ihalainen JA, D'Haene S, Yeremenko N, van Roon H, Arteni AA, Boekema EJ, van Grondelle R, 

Matthijs HC, Dekker JP (2005) Aggregates of the chlorophyll-binding protein IsiA (CP43') 

dissipate energy in cyanobacteria. Biochemistry 44 (32):10846-10853. doi:10.1021/bi0510680 

Melkozernov AN, Bibby TS, Lin S, Barber J, Blankenship RE (2003) Time-resolved absorption 

and emission show that the CP43' antenna ring of iron-stressed Synechocystis sp. PCC 6803 is 

efficiently coupled to the photosystem I reaction center core. Biochemistry 42 (13):3893-3903. 

doi:10.1021/bi026987u 

Ryan-Keogh TJ, Macey AI, Cockshutt AM, Moore CM, Bibby TS (2012) The cyanobacterial 

chlorophyll-binding-protein IsiA acts to increase the in vivo effective absorption cross-section of 

PSI under iron limitation(1). Journal of phycology 48 (1):145-154. doi:10.1111/j.1529-

8817.2011.01092.x 

Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel 

functional assays and fluorescence studies of membrane protein complexes. Molecular & Cellular 

Proteomics 6 (7):1215-1225 

  



 

128 

 

Appendix 2: Adjustments to photosystem stoichiometry and 

electron transfer proteins are key to the remarkably fast 

growth of the cyanobacterium Synechococcus elongatus 

UTEX 2973 
 



Adjustments to Photosystem Stoichiometry and Electron
Transfer Proteins Are Key to the Remarkably Fast Growth of
the Cyanobacterium Synechococcus elongatus UTEX 2973

Justin Ungerer,a Po-Cheng Lin,b Hui-Yuan Chen,b Himadri B. Pakrasia,b

aDepartment of Biology, Washington University, St. Louis, Missouri, USA
bDepartment of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri,
USA

ABSTRACT At the genome level, Synechococcus elongatus UTEX 2973 (Synechococ-
cus 2973) is nearly identical to the model cyanobacterium Synechococcus elongatus
PCC 7942 (Synechococcus 7942) with only 55 single nucleotide differences separating
the two strains. Despite the high similarity between the two strains, Synechococcus
2973 grows three times faster, accumulates significantly more glycogen, is tolerant
to extremely high light intensities, and displays higher photosynthetic rates. The
high homology between the two strains provides a unique opportunity to examine
the factors that lead to increased photosynthetic rates. We compared the photo-
physiology of the two strains and determined the differences in Synechococcus 2973
that lead to increased photosynthetic rates and the concomitant increase in biomass
production. In this study, we identified inefficiencies in the electron transport chain
of Synechococcus 7942 that have been alleviated in Synechococcus 2973. Photosys-
tem II (PSII) capacity is the same in both strains. However, Synechococcus 2973 ex-
hibits a 1.6-fold increase in PSI content, a 1.5-fold increase in cytochrome b6f
content, and a 2.4-fold increase in plastocyanin content on a per cell basis. The
increased content of electron carriers allows a higher flux of electrons through the
photosynthetic electron transport chain, while the increased PSI content provides
more oxidizing power to maintain upstream carriers ready to accept electrons. These
changes serve to increase the photosynthetic efficiency of Synechococcus 2973, the
fastest growing cyanobacterium known.

IMPORTANCE As the global population increases, the amount of arable land con-
tinues to decrease. To prevent a looming food crisis, crop productivity per acre must
increase. A promising target for improving crop productivity is increasing the photo-
synthetic rates in crop plants. Cyanobacteria serve as models for higher plant photo-
synthetic systems and are an important test bed for improvements in photosyn-
thetic productivity. In this study, we identified key factors that lead to improved
photosynthetic efficiency and increased production of biomass of a cyanobacterium.
We suggest that the findings presented herein will give direction to improvements
that may be made in other photosynthetic organisms to improve photosynthetic ef-
ficiency.

KEYWORDS cyanobacteria, electron transport, photosynthesis, Synechococcus

The global population is increasing, while the demand for biofuels consumes more
and more arable land that would otherwise be used for agriculture. These trends

create a looming food crisis that will be realized within the next 50 years. In order to
avoid such a crisis, global food production must increase even though the amount of
farm land is decreasing. Over the past 50 years, production per hectare has more than
doubled due to advances in controlling nutrition, pests, disease, and drought and
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increases in the amount of biomass partitioned into grain. Unfortunately, these prob-
lems are essentially solved which leaves little room for improvement in these areas in
the future. Plants operate at ~1% of the theoretical maximum for solar energy
capture and conversion which suggests that improvements to photosynthesis is a
promising path for improving crop yields in the future.

Cyanobacteria are the ancient ancestors of the chloroplast and serve as a genetically
tractable model for the study of photosynthesis. One model cyanobacterium, Synechoc-
occus elongatus PCC 7942 (Synechococcus 7942), has a recently discovered relative,
Synechococcus elongatus UTEX 2973 (Synechococcus 2973), that is nearly genetically
identical but exhibits photosynthesis rates more than twofold higher. The two strains
differ by only 55 single nucleotide polymorphisms (SNPs), a 7.5-kb deletion/insertion,
and a 188-kb inversion; however, Synechococcus 2973 produces biomass at three times
the rate of Synechococcus 7942 (see below). Unlike many model strains, Synechococcus
2973 is capable of biomass production at rates that are comparable to heterotrophs
such as the yeast Saccharomyces cerevisiae. The extremely close relatedness of the two
cyanobacterial strains offers an excellent system to examine how a slower-growing,
less-productive model organism can be transitioned into a fast-growing and highly
productive strain. We set out to compare the photophysiology of the two strains to
elucidate which specific changes lead to the increased productivity of Synechococcus
2973. Such a comparison will give direction to the changes that must be made to
improve the photosynthetic rates of other model and industrial relevant cyanobacteria
and eventually higher plants.

RESULTS
Growth of Synechococcus 2973 and Synechococcus 7942. Despite being geneti-

cally similar, the two Synechococcus strains display significant phenotypic differences
such as optimum growth conditions and maximum growth rates under such condi-
tions. In our previous study, we reported that Synechococcus elongatus UTEX 2973 grew
best at 500 �mol m�2 s�1 light (20), which was the maximum intensity that our
bioreactor could achieve. With an upgraded bioreactor (MC-1000HL; Photon Systems
Instruments, Brno, Czech Republic), we returned to examine a wider range of growth
conditions. We found that Synechococcus elongatus PCC 7942 grows best at 38°C and
exhibits reduced growth at 42°C (Fig. 1A). In contrast, the optimum growth tempera-
ture for Synechococcus 2973 is 42°C, and it grows slightly slower at 38°C (Fig. 1A).
Another characteristic difference between the two strains is their capacity for light
tolerance and maximum growth rates under optimum conditions. Synechococcus 7942
achieves its maximum growth rate, a 4.9-h doubling time, at 400 �mol m�2 s�1 light,

FIG 1 Growth of Synechococcus 7942 and Synechococcus 2973 under various conditions. (A) Comparison of growth at 38°C versus 42°C. Synechococcus 7942
was grown with 400 �mol m�2 s�1 light and 5% CO2, and Synechococcus 2973 was grown with 900 �mol m�2 s�1 light and 5% CO2. (B) Growth of Synechococcus
7942 at various light intensities at 38°C and 5% CO2. (C) Growth of Synechococcus 2973 at various light intensities at 38°C and 5% CO2. Light intensity in panels
B and C is given in �mol m�2 s�1. Notice the difference in the scale of the x axis in panel B versus panels A and C.
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5% CO2, and 38°C (Fig. 1B). Increasing light intensity above 400 �mol m�2 s�1 slows
growth due to photoinhibition. In contrast, Synechococcus 2973 achieves the remark-
able doubling time of 1.5 h at 1,500 �mol m�2 s�1 light, 5% CO2, and 42°C (Fig. 1C).
Furthermore, Synechococcus 2973 does not appear to suffer from significant photoin-
hibition at light intensities that far exceed natural sunlight, up to 2,400 �mol m�2 s�1

(Fig. 1C).
Although they are closely related, Synechococcus 2973 and Synechococcus 7942 are

two different strains. As such, they grow well under different conditions, and therefore,
there is no single growth condition that both strains can be cultured under for direct
comparison. Under the maximum light intensity that Synechococcus 7942 grows at
(400 �mol m�2 s�1 light), both strains grow at similar rates, and we would not be able
to investigate the rapid growth phenotype of Synechococcus 2973. If we grow both
strains at higher light intensities, then Synechococcus 7942 becomes photoinhibited,
and we would be comparing a strain experiencing severe photodamage to a healthy
one. Therefore, to compare the two strains in this study, we chose conditions that work
well for each strain. To limit the variables that are different in the growth conditions, we
chose 38°C as the growth temperature because both strains grow well at this temper-
ature. However, Synechococcus 7942 was cultured at 300 �mol m�2 s�1 light, while
Synechococcus 2973 was cultured at 900 �mol m�2 s�1 light. The cyanobacteria grown
under both light conditions were supplemented with 5% CO2.

Glycogen accumulation. Synechococcus 2973 demonstrates high growth rates
under high light and high CO2 conditions. To understand more about carbon utilization
by this fast-growing strain, we compared the time course of biomass and glycogen
accumulation that occurs after log-phase growth has transitioned to linear growth at an
optical density at 730 nm (OD730) of ~0.4. Synechococcus 2973 undergoes a protracted
period of linear growth where it reached densities much higher than our bioreactor can
record. During this time, Synechococcus 2973 accumulates biomass steadily at a rate of
1.1 g liter�1 day�1 (Fig. 2A), which is nearly three times higher than the rate shown by
Synechococcus 7942, which accumulates biomass at a rate of 0.45 g liter�1 day�1.
During the fast growth phase of Synechococcus 2973 (before 12 h), the glycogen
content is extremely low (�1% of cell weight [dry weight {DW}]) (Fig. 2B). After that
time, cells enter a linear growth phase (Fig. 2A). The glycogen content drastically
increases between 19 and 25 h, changing 21-fold from 0.3% to 6.3% of DW (Fig. 2B,
inset graph; also see Fig. S1 in the supplemental material). The amount of glycogen
increases from 6% of DW (66 mg liter�1) to 33% of DW (693 mg liter�1) within the next
24-h span (24 h to 48 h) and ultimately reaches 1.1 g liter�1 (36% of DW) by day 3
(Fig. 2B). These results reveal that Synechococcus 2973 directs all of its fixed carbon into
growth during log phase and then rapidly transitions into directing the high flux of
carbon into storage during the linear growth phase. As for Synechococcus 7942, the
biomass and glycogen contents accumulated at much lower rates. The glycogen

FIG 2 Biomass accumulation (A) and glycogen content (B) of Synechococcus 2973 and Synechococcus 7942.
The inset graph in panel B presents glycogen synthesis between 13 and 25 h. DW, dry weight (cell weight).
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content is negligible during the first day of growth, and it is less than 10% (75 mg
liter�1) of DW at day 3 (Fig. 2B).

Pigment content. In this study, we performed several experiments that are typically
normalized to chlorophyll content. When harvesting cells at similar densities, we
observed large differences in chlorophyll content between samples for the two Syn-
echococcus strains. The differences in chlorophyll content were also apparent in absor-
bance scans (Fig. 3C). If the strains differ in chlorophyll content, then normalization to
chlorophyll will be an invalid method of comparison. We compared chlorophyll (Chl)
content in the two strains and found that Synechococcus 2973 has 190 � 7 pmol Chl
107 cells�1 s�1 compared to 112 � 9 pmol Chl 107 cells�1 s�1 in Synechococcus 7942
during log-phase growth (Fig. 3A) (1). Our results show that during log-phase growth,
Synechococcus 2973 has a 1.7-fold-higher chlorophyll content per cell compared to
Synechococcus 7942; however, the chlorophyll content becomes more similar as the
cultures enter linear growth, differing by only 1.1-fold near stationary phase. We also
noted that in both strains, chlorophyll content per cell remains constant during log
growth but increases as a function of culture density during linear growth. This
highlights the importance of harvesting cultures during log phase when normalizing to
chlorophyll content, as chlorophyll is variable during linear growth. Over the course of
this study, normalization was calculated based on cell number to avoid errors caused
by the different chlorophyll levels between the two strains.

Synechococcus 2973 is significantly less blue than Synechococcus 7942 (Fig. S2),
indicating that Synechococcus 2973 exhibits an altered pigment composition. To ex-
amine the pigment compositions of the two strains, we determined room temperature
absorption spectra from 400 nm to 750 nm. The absorbance scans were taken of
cultures with equal cell numbers and normalized at 750 nm. We observed increased
absorbance at 680 nm in Synechococcus 2973 that resulted from its increased chloro-
phyll content (Fig. 3C). We also observed significantly reduced phycobilisome absor-
bance at 625 nm, indicating that Synechococcus 2973 exhibits decreased phycobilisome
content (Fig. 3C). We examined the difference using low-temperature fluorescence at
77 K with excitation at 590 nm to excite phycobilins and normalized at 750 nm.
Phycocyanin (PC) exhibits a fluorescence maximum at 665 nm, and allophycocyanin
(APC) exhibits a fluorescence maximum at 682 nm (2). We found that Synechococcus
2973 exhibits a significantly reduced phycocyanin fluorescence relative to Synechococ-
cus 7942, while allophycocyanin fluorescence remains unchanged (Fig. 3B). In Synechoc-
occus 2973, the ratio of relative fluorescence of PC/APC was 0.88, while it was 1.55 in
Synechococcus 7942. Interestingly, the decrease in phycobilisome absorbance is a result
of fewer or shorter rods (PC) rather than a reduction in the number of phycobilisome
complexes, as indicated by the same fluorescence from the APC cores in both strains.

FIG 3 Pigment content of Synechococcus 2973 versus Synechococcus 7942. (A) Chlorophyll content as a function of culture density. As
indicated, log growth occurs when the OD730 of the cell culture was below 0.4 and linear growth occurs when the OD730 of the cell culture
was above 0.4. (B) 77 K fluorescence of Synechococcus 2973 versus Synechococcus 7942 with excitation at 590 nm. PC, phycocyanin; APC,
allophycocyanin. (C) Absorption spectra of Synechococcus 2973 versus Synechococcus 7942. PBS, phycobilisome.
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Photosynthetic parameters. We set about characterizing the photosynthetic pa-
rameters that contribute to rapid autotrophic growth. To generate biomass at a higher
rate than Synechococcus 7942, Synechococcus 2973 must acquire more fixed carbon. We
compared CO2 uptake rates for the two strains and found that Synechococcus 2973
takes up carbon at a rate of 151 nmol CO2 107 cells�1 h�1 versus 59 nmol CO2

107 cells�1 h�1 for Synechococcus 7942 (Fig. 4A). It follows then that Synechococcus
2973 is also likely to exhibit higher photosynthetic rates to support higher carbon
fixation rates. We compared whole-chain O2 evolution rates for the two strains using a
Clarke electrode and found that Synechococcus 2973 also exhibits a twofold-higher
maximum rate of O2 evolution, 139 � 24 nmol O2 107 cells�1 h�1 versus 74 � 9 nmol
O2 107 cells�1 h�1 for Synechococcus 7942 (Fig. 4B). Under low light, the two strains
differed by only 24% which mirrors the similar growth rates that are observed at low
light intensities. As light intensity increases, the photosynthetic electron transport rate
of Synechococcus 2973 increases much more rapidly than that of Synechococcus 7942,
culminating in a twofold difference in the O2 evolution rate. We also examined respiratory
O2 uptake in both strains. It was found that Synechococcus 2973 exhibits a 2.4-fold-higher
rate of respiratory O2 uptake (14.3 nmol O2 107 cells�1 h�1 versus 5.9 nmol O2

107 cells�1 h�1). However, respiratory O2 uptake is only about 10% of photosynthetic
O2 evolution and does not contribute significantly to total oxygen evolution rates.

PSII activity. We hypothesized that Synechococcus 2973 would have increased
photosystem II (PSII) content to support the higher rate of photosynthetic O2 evolution
that we recorded (Fig. 4B). Western blot analysis was used to compare the PSII content
in the two strains. Equal cell numbers of each strain were harvested, and the chlorophyll
content, which varied in the two strains, was measured. After the membranes were purified,
we adjusted the samples to the same chlorophyll ratio that was measured in whole cells to
maintain equal cell numbers for comparison. The Western blot indicates that both strains
contain similar amounts of PSII on a per cell basis (Fig. 5A). Since both strains have similar
PSII contents, we hypothesized that the PSII centers in Synechococcus 2973 must be more
active than those in Synechococcus 7942. We next interrogated PSII activity directly by
measuring PSII-mediated O2 evolution in the presence of saturating FeCN and 2,6-dichloro-
p-benzoquinone (DCBQ) which accept electrons directly from PSII (2). Interestingly, we
found that both strains had similar maximum capacities for PSII, as indicated by the similar
rates of PSII-mediated O2 evolution (Fig. 5B).

Comparing whole-chain to PSII-mediated O2 evolution rates of the two strains
shows that Synechococcus 2973 operates photosynthesis at close to its maximum
capacity, while Synechococcus 7942 shows a significant inhibition of O2 evolution under
real-world conditions. This suggests that Synechococcus 7942 has a photosynthetic
bottleneck in the electron transport chain (ETC) downstream of PSII that is alleviated in
Synechococcus 2973. If electron transport out from PSII is decreased due to a lack of
carriers or acceptors, there will be a bottleneck because the cells cannot transfer
electrons through the ETC fast enough to keep up with PSII. If no oxidized carrier is

FIG 4 Photosynthetic parameters of Synechococcus 2973 and Synechococcus 7942. (A) CO2 uptake rates.
(B) Whole-chain O2 evolution at various light intensities.

Photophysiology of Synechococcus 2973 ®

January/February 2018 Volume 9 Issue 1 e02327-17 mbio.asm.org 5

 on A
ugust 23, 2018 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

http://mbio.asm.org
http://mbio.asm.org/


available to accept electrons from PSII, the reaction center will remain in the closed
state for longer periods of time, and oxygen evolution will be decreased. While in the
closed state, PSII reaction centers will release excess energy through chlorophyll
fluorescence, and as PSII is reoxidized by plastoquinone, the reaction centers will
reopen, and fluorescence will decrease (3). We used an FL-200 dual modulation PAM
fluorometer (Photon Systems Instruments, Brno, Czech Republic) to compare primary
quinone electron acceptor of reaction center II (QA

�) reoxidation kinetics of the two
strains. After double normalization at minimum fluorescence (F0) and maximum fluo-
rescence (Fm), we found that the rate of QA

� reoxidation is significantly higher in
Synechococcus 2973 (halftime of 1.6 ms) compared to Synechococcus 7942 (halftime of
3.1 ms) (Fig. 5C). This suggests that Synechococcus 2973 has a higher whole-chain O2

evolution rate because it is better able to move electrons out of PSII as indicated by the
increased rate of QA

� reoxidation.
Using the unnormalized fluorescence data, we found that variable fluorescence (Fv)

was similar in both strains, which further supports both strains having similar PSII
content. We also calculated the photosynthetic efficiency (Fv/Fm) of PSII for each strain
(4). The Fv/Fm value obtained from Synechococcus 2973 is 0.48 � 0.03, while the value
obtained from Synechococcus 7942 is 0.32 � 0.05 (Fig. 5D). Both strains had similar
maximum capacities for PSII; however, Synechococcus 2973 operates PSII more effi-
ciently under real-world conditions as indicated by whole-chain O2 evolution and
photosynthetic efficiency values. We suggest here that a downstream bottleneck in the
ETC in Synechococcus 7942 causes a backup of electron flow which slows turnover of
PSII, because reaction centers are stuck in the closed state for longer periods of time.

In Synechococcus 7942, the PSI/PSII ratio varies from 2 to 3.5 (5–7), and there are 96
chlorophyll molecules per PSI center compared to 35 chlorophyll molecules per PSII
center; thus, most of the chlorophyll is found associated with PSI (8–10). Therefore, we
hypothesized that the increased chlorophyll content would be associated with an
increase in PSI content in Synechococcus 2973. We measured photoactive PSI content
to estimate total PSI content per cell. A JTS-10 pump probe spectrophotometer
(BioLogic Science Instruments) was used to measure maximum A705 of fully oxidized PSI
after a saturating light pulse in the presence of dibromothymoquinone (DBMIB) and

FIG 5 Function of PSII. (A) Western blot loaded based on equal cell number and probed with antibodies
against PSII (D1) or PSI (PsaA). (B) PSII-mediated O2 evolution with DCMU and DBMIB. (C) QA

� reoxidation
kinetics of Synechococcus 2973 versus Synechococcus 7942. (D) Photosynthetic efficiencies of Synechoc-
occus 2973 versus Synechococcus 7942.
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3-(3=,4=-dichlorophenyl)-1,1-dimethylurea (DCMU) to block cyclic and linear electron
flow. A molar extinction coefficient for P700� of 70 mM�1 cm�1 was used to obtain the
concentration of photo-oxidizable PSI in the sample (10). Synechococcus 2973 was
found to have 1.95 � 0.2 pmol PSI per 107 cells, while Synechococcus 7942 has 1.19 �

0.2 pmol PSI per 107 cells (Table 1). Therefore, Synechococcus 2973 has 1.6-fold more PSI
per cell, which suggests that the 1.7-fold increase in chlorophyll in Synechococcus 2973
results exclusively from increased PSI content. We also compared the PSI contents of
the two strains by Western blotting and quantitated 1.7-fold-more PSI in Synechococcus
2973 than in Synechococcus 7942 by this method (Fig. 5A). Not all PSI centers may be
photo-oxidizable, thus we validated our estimate by calculating the number of chlo-
rophyll molecules per PSI center based on our measurement of the total amount of
chlorophyll and number of PSI centers obtained. We calculated that Synechococcus
2973 had 97 chlorophyll molecules per PSI center, while Synechococcus 7942 had 100
chlorophyll molecules per PSI center (Table 1). There should be 96 chlorophyll mole-
cules per PSI center plus a small amount of chlorophyll in PSII. Taking the PSI/PSII ratio
into consideration, our estimation of PSI content is within 10% of the expected value
based on chlorophyll content.

Cytochrome f and plastocyanin kinetics. We have demonstrated that Synechoc-
occus 2973 displays a higher photosynthetic rate than Synechococcus 7942 and that the
increased rate is due to an ETC bottleneck downstream of PSII being alleviated. It is
likely that increased PSI content leads to more efficient flow of electrons through the
ETC by oxidizing upstream ETC carriers so that they may accept more electrons. To
examine this in more detail, we studied cytochrome f and plastocyanin redox kinetics
using a highly sensitive JTS-10 pump probe spectrophotometer.

For cytochrome f, absorption decreases as a function of oxidation. An initial drop in
absorption upon illumination is due to P700� pulling electrons off cytochrome f
(through plastocyanin), followed by a rise in absorption at ~150 ms after illumination
that is caused by the arrival of electrons from PSII. Absorption then falls again, as PSI
draws off electrons faster than PSII can replenish them until the light is turned off, at
which time cytochrome f returns to the dark-adapted state. We subjected samples that
were adjusted to equal cell numbers to determine the oxidation-reduction kinetics
of the cytochrome complex in the two cyanobacterial strains (Fig. 6A). Due to the

TABLE 1 PSI content of Synechococcus 2973 and Synechococcus 7942

Synechococcus
strain

PSI content
(pmol/107 cells)

Chlorophyll content
(pmol/107 cells)

No. of chlorophyll
molecules/PSI

2973 1.95 189 96.9
7942 1.19 119 100

FIG 6 Cytochrome b6f and plastocyanin oxidation-reduction kinetics in Synechococcus 2973 and Synechoc-
occus 7942. (A) Cytochrome f kinetics. (B) Plastocyanin kinetics. Dark (gray background) and light (white
background) conditions are indicated in the figure.
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increased PSI content of Synechococcus 2973, we observed a stronger initial oxidation
of the cytochrome f pool upon illumination in this strain. Both strains have similar PSII
contents, and both return the cytochrome f pool to the resting state with the initial
pulse of electrons; however, the cytochrome pool became more oxidized once again
after ~2-s illumination in Synechococcus 2973, because the increased concentration of
P700� has stronger oxidizing power for the plastocyanin pool, which in turn oxidizes
the cytochrome f pool. Careful examination of these data reveals a bottleneck in the
ETC. Immediately upon illumination, the oxidizing power of PSI generates a more
oxidized cytochrome f pool in Synechococcus 2973. This creates a larger hole for the
electrons to flow into and allows more influx of electrons from PSII. The initial pulse of
electrons is sufficient to fully rereduce the cytochrome f pool in both strains; however,
in Synechococcus 2973, the oxidized cytochrome f pool must accept more electrons to
reach the fully reduced state. Since both strains have equal capacities for PSII, but the
cytochrome f pool in Synechococcus 2973 can accept more electrons, higher electron
flux through cytochrome f would be allowed in Synechococcus 2973.

From the same series of experiments, we also determined the kinetics of plastocya-
nin oxidation and reduction (Fig. 6B) (11, 12). In the case of plastocyanin, absorption
increases with oxidation and decreases with reduction. An initial rise in absorption
upon illumination is due to P700� oxidizing the plastocyanin pool. As the initial burst
of electrons arrives from PSII through cytochrome f, the absorption drops to below the
initial level. Finally, the absorption increases again, as P700� removes electrons from
the plastocyanin pool faster than they are replenished. Comparing cytochrome f and
plastocyanin kinetics of the two strains at 300 ms after illumination reveals more about
the bottleneck in the ETC. Plastocyanin is more deeply oxidized immediately upon
illumination; it is more deeply reduced by electrons arriving from PSII 300 ms after
illumination. At 300 to 800 ms, the cytochrome f pool is fully rereduced and cannot
accept additional electrons in either strain, but the plastocyanin pool is more deeply
reduced by the initial burst of electrons from PSII; thus, more electrons are passing
through cytochrome f into plastocyanin in Synechococcus 2973 under steady-state
conditions. Therefore, we conclude that the bottleneck in the ETC occurs as the
electrons are passing through cytochrome f.

We repeated the experiment on cytochrome f and plastocyanin kinetics in the
presence of the inhibitors DCMU, DBMIB, and methyl viologen (Fig. S3). This set of
inhibitors prevents electrons from flowing into cytochrome f and plastocyanin while
allowing both pools to become fully oxidized by PSI. After 2.5 s of saturating light, we
collected the maximum absorbance and applied extinction coefficients of 18 mM cm�1

and 4.7 mM cm�1 for cytochrome f and plastocyanin, respectively, to determine the
concentration of each within the cell (Fig. S2) (11, 13). We found that Synechococcus
2973 has 1.38 � 0.1 pmol cytochrome f per 107 cells, while Synechococcus 7942 has only
0.86 � 0.1 pmol cytochrome f per 107 cells. The plastocyanin contents were 2.21 �

0.3 pmol per 107 cells and 1.07 � 0.2 pmol per 107 cells for Synechococcus 2973 and
Synechococcus 7942, respectively. Therefore, on a cellular basis, Synechococcus 2973
shows a 1.5-fold increase in cytochrome f and a 2.2-fold increase in plastocyanin.
Increased contents of carriers in the electron transport chain allows higher flux of
electrons through the ETC to complement the increased PSI capacity, which leads to
higher photosynthetic rates in Synechococcus 2973.

DISCUSSION

Synechococcus 2973 and Synechococcus 7942 are nearly genetically identical strains.
However, Synechococcus 2973 exhibits a 3-fold-higher growth rate and a 2.5-fold-higher
rate of glycogen accumulation, which are the result of a 2.5-fold increase in carbon
uptake and 1.9-fold-higher rate of O2 evolution, indicating higher photosynthetic rates
in Synechococcus 2973. Both strains have similar PSII contents, and as such, the
maximum photosynthetic capacity of PSII is the same in both strains. The higher
photosynthetic rate is the result of a 1.5-fold increase in photosynthetic efficiency
in Synechococcus 2973. The increase is attributable to a 1.9-fold increase in the rate
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that electrons exit PSII (QA
� reoxidation), a 1.6-fold increase in PSI content, a 1.5-fold

increase in cytochrome f content, and a 2.2-fold increase in plastocyanin content. It is
worth noting that all the aforementioned fold increases in Synechococcus 2973 corre-
late well with each other.

Both strains share the same capacity of PSII; however, Synechococcus 2973 displays
a higher flux of electrons from water to CO2 as indicated by its higher carbon fixation
rate and higher rate of whole-chain oxygen evolution. Synechococcus 7942 displays a
marked bottleneck in the ETC that reduces flux from CO2 to water, reduces photosyn-
thetic efficiency, and decreases photosynthetic rates under real-world conditions. This
bottleneck is alleviated in Synechococcus 2973. The specific location of the bottleneck
occurs as the electrons pass through the cytochrome b6f complex. Since both strains
have the same capacity of PSII as indicated by PSII-mediated O2 evolution, both strains
should be capable of sending a similar number of electrons from PSII under saturating
light. However, this is not the case under real-world conditions. Synechococcus 2973
shows a higher flux of electrons out of PSII as indicated by the faster QA

� reoxidation
kinetics. Although the potential electron flux from PSII is similar for both strains,
Synechococcus 2973 has a larger pool of downstream ETC carriers waiting to receive the
electrons, which allows higher photosynthetic electron flux in the strain. An initial pulse
of electrons fully returns cytochrome f back to the reduced state in both Synechococcus
strains; however, Synechococcus 2973 accepts more reducing equivalents to reach the
resting state, because the oxidized cytochrome f pool is larger. Since the same number
of electrons could leave PSII in both strains, but more electrons can be accepted by
cytochrome f in Synechococcus 2973, we conclude that the unaccepted electrons back
up in the ETC in Synechococcus 7942. The lack of available oxidized carriers in the ETC
limits the electrons from moving on from PSII. The reduced flux of electrons out of PSII
was duly noted in our measurements of QA

� reoxidation kinetics. The backed-up
electrons cause the PSII reaction centers to remain in the closed state for longer periods
of time, which reduces the photosynthetic efficiency and results in a lower rate of O2

evolution under real-world conditions. It is likely that this also increases the propensity
of photodamage in Synechococcus 7942, making it sensitive to high light intensities.

Synechococcus 2973 overcomes the bottleneck by displaying both increased levels
of electron carriers in the ETC and increased PSI content, which serves to pull more
electrons through the ETC. Although we were not able to address plastoquinone levels,
we conclude that they are sufficiently high to not impede electron flow, because we
observed that the cytochrome f pool becomes fully rereduced to the dark-adapted
state by the initial pulse of electrons from PSII in both strains. In Synechococcus 2973,
the increased levels of cytochrome f and plastocyanin serve to allow a larger volume of
electron flux through the ETC. The increased level of PSI serves to oxidize the increased
levels of electron carriers so that they can accept electrons. Together, these two
features result in increased light-driven electron transfer rates which drive a higher rate
of carbon fixation, thus increasing photosynthetic efficiency in Synechococcus 2973. The
ability of Synechococcus 2973 to empty electrons out of PSII more efficiently and rapidly
would also serve to reduce photodamage by reducing the propensity for charge
recombination that exists while reaction centers are stuck in the closed state. Therefore,
the more efficient electron transport chain would increase light tolerance by reducing
the rate of photodamage in Synechococcus 2973. It is interesting that Synechococcus
7942 has the PSII capacity to support a much higher rate of photosynthesis, but the lack
of downstream carriers creates a bottleneck in the ETC that suppresses the photosyn-
thetic rate. It has also been previously shown that overexpression of plastocyanin from
Anabaena in Synechococcus 7942 increases electron transport ~2.5-fold (14). Cyanobac-
teria are recognized for their high PSI/PSII ratio in conjunction with high photosynthetic
efficiencies compared to higher plants. In this study, we found that further increasing
this ratio by 1.7-fold generated a significant boost in photosynthetic efficiency as well
as productivity. Synechococcus 2973 operates PSII at near maximum capacity, while
Synechococcus 7942 and other widely used cyanobacteria such as Synechocystis sp.
strain PCC 6803 operate PSII at well below their maximum capacity. It is also worth
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noting that Synechococcus 2973 seems specifically adapted to a high light environment.
It shows a significant reduction in phycobilisome antennae, which are less important
under saturating light but useful under low light. Phycobilisomes are costly to make,
and their reduction may free up resources for the increased production of other
photosynthetic components such as more PSI and higher levels of ETC carriers. Inter-
estingly, the observations reported here are predicted by the autotrophic replicator
model (ARM) where the autotrophic growth rate is formulated as a proteome allocation
optimization problem. This model predicts that increased growth rate would be
associated with increased allocation of proteins to photosynthetic electron transport at
the expense of protein resources being allocated to light-harvesting complexes (15).

The results presented in this study suggest a strategy for improving photosynthetic
efficiency and ultimately productivity in these and other cyanobacteria. It is commonly
accepted that RuBisCO activity is the limiting factor in photosynthesis. Here we show
that electron flux through the photosynthetic electron transport chain, and hence
energy production, limits the photosynthetic rate in Synechococcus 7942. Future work
will be needed to identify which of the 55 single nucleotide differences between the
two organisms lead to the marked changes in the photosynthetic apparatus that we
report here.

MATERIALS AND METHODS
Strains and growth conditions. Synechococcus elongatus UTEX 2973 (Synechococcus 2973) and

Synechococcus elongatus PCC 7942 (Synechococcus 7942) were maintained on BG11 agar plates at 38°C
with 125 �mol m�2 s�1 light. Synechococcus 2973 was routinely grown in BG11 liquid medium at 38°C
with 900 �mol m�2 s�1 light and 5% CO2 in an MC-1000 multicultivator (Photon Systems Instruments,
Czech Republic). Synechococcus 7942 was routinely grown in BG11 liquid medium at 38°C with 400 �mol
m�2 s�1 light and 5% CO2 in an MC-1000 multicultivator. For growth curves, strains were grown under
the conditions indicated. The multicultivator was used to simultaneously grow eight cultures under
different conditions and record the optical density at 730 nm (OD730) of the cultures every 5 min over
the course of the growth experiment. Growth rates (K=) were calculated using Microsoft Excel by fitting
an exponential curve to the logarithmic section of the growth data (typically OD720 of �0.3) and using
the slope, m, as K= (y � kemx). Doubling times were then calculated as ln(2)/K=.

Glycogen determination. Cultures were collected by centrifugation, and the pellets were resus-
pended with 300 �l KOH (30% [wt/vol]) each and incubated at 95°C for 90 min. Glycogen was
precipitated by adding 1.2 ml absolute ethanol, and the samples were kept on ice for 2 h. Glycogen was
collected by centrifugation at full speed (16K � g) for 5 min. The pellets were washed twice with 1 ml
absolute ethanol. The washed pellets were dried at 60°C for 15 min until the remaining ethanol was
evaporated. The dried samples were resuspended in 300 �l sodium acetate solution (100 mM, pH 4.75).
Then, glycogen was digested to glucose by amyloglucosidase (4 U/assay) for 25 min at 55°C. After
digestion, the insoluble pellets were removed by centrifugation, and the supernatants were used for
determining the glycogen content using a glucose (HK) assay kit (Sigma, USA). Samples that were not
treated with amyloglucosidase were included to determine the background glucose content. By sub-
traction of the background glucose content, the actual glycogen concentration was determined.

Thylakoid membrane preparation. The Synechococcus 2973 and Synechococcus 7942 preparations
with same cell numbers were harvested and broken by bead-beating technique (16). Thylakoid mem-
branes were resuspended in RB (50 mM morpholineethanesulfonic acid [MES]–NaOH [pH 6.0], 10 mM
MgCl2, 5 mM CaCl2, 25% glycerol) and mixed with �-D-dodecyl maltoside (DDM) to a final concentration
of 1% DDM, and then incubated on ice in the dark for 30 min. Solubilized membranes were isolated by
ultracentrifugation at gradually increasing speed from 120 to 27,000 � g at 4°C for about 20 min. The
solubilized membranes were then stored at �80°C for further use.

SDS-PAGE and immunoblot analysis. The solubilized membranes of Synechococcus 2973 and
Synechococcus 7942 were loaded on an equal cell number basis. Proteins were analyzed by SDS-PAGE as
described previously (17). For the immunoblot analysis, the SDS-polyacrylamide gels were blotted onto
polyvinylidene difluoride (PVDF) membranes. The membranes were then incubated with PsaA- and
D1-specific primary antibodies, respectively, and then incubated with secondary antibodies (horseradish
peroxidase [HRP]). The target proteins were detected and visualized by chemiluminescence on an
ImageQuant LAS-4000 imager.

Cell counting. Cultures were grown in MC-1000 multicultivators at 38°C, 5% CO2, and with 900 or
400 �mol m�2 s�1 light for Synechococcus 2973 and Synechococcus 7942, respectively. Twenty microliters
of culture was removed at various time points during growth, and cells were counted with an automated
cell counter (Cellometer Vision; Nexcelom). The counted images were manually curated to improve
accuracy of the counts. The accompanying Cellometer software reported cell counts in cells per milliliter
after curation. The counts were used to construct an accurate six-point standard curve of each strain for
cell number versus OD730 reported by the multicultivator for cultures ranging in densities from OD730

values of 0.1 to 1.0. The relationship was found to be linear over this entire range. The standard curve
was used to convert OD730 to cell number in later experiments.
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Chlorophyll content. Cultures were grown in MC-1000 multicultivators at 38°C, 5% CO2, and either
900 or 400 �mol m�2 s�1 light for Synechococcus 2973 and Synechococcus 7942, respectively. One
milliliter of culture was removed at various time points during growth, and the chlorophyll content was
determined by a methanol extraction method (1).

77 K fluorescence. Cultures were grown in MC-1000 multicultivators at 38°C, 5% CO2, and either 900 or
400 �mol m�2 s�1 light for Synechococcus 2973 and Synechococcus 7942, respectively. The fluorescence
emission spectra of phycobilisomes from whole cells of each strain were measured at 77 K with samples
adjusted to equal cell number (2 � 108 cells per ml). Excitation occurred at 590 nm, and fluorescence emission
was recorded between 600 nm and 750 nm and normalized at 750 nm. The measurements were made on
a SPEX fluoromax 2 spectrofluorimeter and analyzed with Data Max for Windows.

Absorption spectra. Cultures were grown in MC-1000 multicultivators at 38°C, 5% CO2, and either
900 or 400 �mol m�2 s�1 light for Synechococcus 2973 and Synechococcus 7942, respectively. Absorption
spectra of Synechococcus 2973 and Synechococcus 7942 that were harvested during log phase were
determined on an Olis DW-2000 spectrophotometer, and data were analyzed with Olis Globalworks
software. Spectra were normalized at 750 nm to correct for differences in light scattering.

CO2 uptake rate. Synechococcus 2973 and Synechococcus 7942 were grown in an MC-1000 multi-
cultivator (Photon Systems Instruments) to an OD730 of 0.5. Synechococcus 2973 was grown at
900 �mol m�2 s�1 light, and Synechococcus 7942 was grown at 400 �mol m�2 s�1 light. Two 1-ml
samples were sealed in 13-ml Hungate tubes with rubber septa and sparged with 3% CO2 for 5 min. One
tube for each strain was placed on its side on a shaker under its respective white light-emitting diode
(LED) illumination (900 or 400 �E m�2 s�1) at 38°C for 1 h after which time total CO2 was measured by
gas chromatography (GC). The second tube was measured immediately without incubation to determine
initial CO2. Total CO2 was calculated as the sum of the dissolved plus gaseous CO2 within a sealed system.
Total CO2 of the system was determined after injecting 100 �l of 10 N HCl into the tube to force dissolved
CO2 out of solution, followed by quantification of the headspace CO2 content on an HP 5980 gas
chromatograph under the following conditions: temperature of 100°C; carrier gas, helium at a flow rate
of 40 ml min�1; using a Porapak N column and thermal conductivity detector (TCD). CO2 uptake was
determined as follows: initial total CO2 � final total CO2.

Oxygen evolution. Cells were harvested during log growth and adjusted based on equal cell
numbers. The light-induced oxygen evolution was measured for 1 min at 38°C with a custom-built
Clark-type electrode (18). For the light saturation curves, different neutral density filters were placed in
front of the halogen light source to achieve different light intensities. For whole-chain O2 evolution,
NaHCO3 was added to 10 mM. For the measurements of PSII-mediated O2 evolution, we added
potassium ferricyanide (FeCN) to 1.2 mM and 2,6-dichloro-p-benzoquinone (DCBQ) to 0.6 mM.

Room temperature fluorescence kinetics. The kinetics of chlorophyll a (Chl a) fluorescence and the
fluorescence parameters Fv/Fm (maximum quantum yield) of photosystem II (PSII) were measured using
a double-modulation fluorescence fluorometer, FL-200 (Photon Systems Instruments, Brno, Czech Re-
public) (19). The instrument contained red LEDs for both actinic (20-�s) and measuring (2.5-�s) flashes
and was used in the time range of 100 �s to 100 s. Data from both strains were double normalized at
F0 and Fm, which were set at a relative fluorescence of 0 and 1, respectively.

PSI content. Cultures were grown in MC-1000 multicultivators at 38°C, 5% CO2, and either 900 or
400 �mol m�2 s�1 light for Synechococcus 2973 and Synechococcus 7942, respectively. Cells were
harvested during log phase, cultures were adjusted to have equal cell numbers, and chlorophyll content
was recorded. Then, 10 �M 3-(3=,4=-dichlorophenyl)-1,1-dimethylurea (DCMU) and 20 �M dibromothy-
moquinone (DBMIB) were added to block both linear and cyclic electron flow and changes in the
absorbance at 705 nm of P700� were recorded for 5 s under saturating light on a JTS-10 pump probe
spectrophotometer. A molar extinction coefficient for P700� of 70 mM�1 cm�1 was used to calculate the
PSI content from the maximum absorbance.

Cytochrome f and plastocyanin kinetics. Cytochrome f and plastocyanin redox kinetics were
recorded on a JTS-10 pump probe spectrophotometer (BioLogic Science Instruments, Grenoble, France).
Cells were grown to mid-log phase in an MC-1000 multicultivator at 38°C, 5% CO2, and either 900 or
400 �mol m�2 s�1 light for Synechococcus 2973 and Synechococcus 7942, respectively. After harvest, the
cell samples were adjusted to equal cell numbers and then dark adapted for 3 min before measurements
were taken. Absorbance changes due to cytochrome f and plastocyanin oxidation and reduction were
probed with a measuring beam consisting of short pulses provided by a white LED, and light was filtered
through a 10-nm bandwidth interference filter centered at 546 nm, 554 nm, 563 nm, and 573 nm in
separate experiments. Long-pass 3-mm-thick BG39 filters were placed in front of the detectors to block
the light from an actinic LED emitting in the 720-nm region. Continuous far-red actinic illumination of 5 s
was interrupted by short (200-�s) dark pulses, during which detecting pulses from the white LED were
delivered. The data sets collected from experiments with the four interference filters were then
deconvoluted to generate cytochrome f and plastocyanin absorption signals.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02327-17.
FIG S1, TIF file, 0.04 MB.
FIG S2, TIF file, 0.2 MB.
FIG S3, TIF file, 0.1 MB.
TABLE S1, DOCX file, 0.02 MB.
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