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ABSTRACT 

 

Factors Affecting Size and Swelling of Poly(ethylene glycol) Hydrogel 

Microspheres Formed in Aqueous Sodium Sulfate Solutions 

by 

Mike Nichols 

 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2009 

Research Advisor:  Professor Donald Elbert 

 
 

The lower critical solution temperature (LCST) behavior of poly(ethylene glycol) (PEG) 

in aqueous sodium sulfate solutions was exploited to fabricate hydrogel microspheres 

under mild conditions without the use of other monomers, polymers, surfactants or 

organic solvents.  Reactive PEG derivatives underwent thermally induced phase 

separation to produce spherical PEG-rich domains that coarsened pending gelation, 

resulting in stable hydrogel microspheres that were polydisperse in size.  The degree of 

reaction prior to phase separation, reaction rate within the PEG-rich domains, and 

duration of the reaction were independently varied to elucidate their effects on final 

microsphere size and gain insight regarding the mechanism of formation.  It was found 

that both the time required to reach the gel point during coarsening and the extent of 

crosslinking after gelation impacted the final size of the microspheres.  Power law 
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analyses of microsphere sizes revealed the mean radius of PEG-rich droplets to grow 

with time to the 1/4th power until gelation.  Together with dynamic light scattering data, 

this suggested that a percolation-to-cluster transition occurred soon after phase 

separation by off-critical spinodal decomposition.  This technique of producing PEG 

microspheres with controlled sizes has considerable potential for an array of 

applications, including the production of modular scaffolds for tissue engineering. 
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1. Introduction* 

Hydrogel microparticles serve valuable roles in applications spanning from 

biomedical research to clinical usage.  In research, peptides and antibodies can be 

immobilized on their surfaces for the affinity-based purification of biomolecules and 

cells (Flodin 1965; Rabel 1980; Margel 1983; Kondo and Fukuda 1997).  They have also 

been employed in the form of a “microparticle-enzyme immunoassay” (MEIA) to 

quantify small molecules or proteins of interest (Osikwoicz, Fries et al. 1988; Di Serio, 

Gechtman et al. 2006; Pini, Gallesi et al. 2006).  Clinically, microspheres may be useful 

as both oral and ocular drug delivery systems (Weinstock, Khoobehi et al. 1996; Lopez 

and Peppas 2004; Bhavsar and Amiji 2007; Liu, Griffith et al. 2008).  Microparticles may 

also be useful as nucleic acid delivery vehicles for use in gene therapy (Cortesi, Esposito 

et al. 1994; Cavanagh, Dingwall et al. 2001; Bhavsar and Amiji 2008).  There is also 

potential utility for microspheres as bioactive surface coatings (Singh, Bridges et al. 

2007).  A relatively new and promising application of hydrogel microparticles is their 

use as building blocks for the assembly of modular scaffolds (McGuigan and Sefton 

2006; Yeh, Ling et al. 2006; Rivest, Morrison et al. 2007).  As physical and/or chemical 

characteristics of microspheres may need to be specifically tailored for particular uses 

                                                 

* This thesis is an adaptation of the unpublished manuscript: 
Nichols MD, Scott EA, Elbert DL.  Factors affecting size and swelling of poly(ethylene 
glycol) microspheres formed in aqueous sodium sulfate solutions without surfactants.  
Biomaterials. (Under review). 
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within these or upcoming applications, it is advantageous to have several production 

methods to confer the desired properties. 

 

Presented in this thesis is a novel technique for producing poly(ethylene glycol) 

(PEG) microspheres in solution by phase separating and then crosslinking 

functionalized derivatives of the polymer.  Specifically, the research focuses on 

proposing a mechanism for their formation by probing factors influencing their size.  

Formed microspheres retained residual reactive groups that could potentially be used to 

conjugate biomolecules or form tissue engineering scaffolds, making them suitable for 

applications such as those described above. 

 

A brief overview of alternative microparticle production methods is presented 

below, followed by the motivation for using PEG and pertinent theory of phase 

separation.  The general microsphere fabrication technique is also outlined and 

objectives of the investigation are clarified. 

 

1.1 Microparticle Production Methods 

As noted, hydrogel microparticles can be fashioned using a variety of 

approaches (Rivest, Morrison et al. 2007).  In general, hydrogels are three-dimensional 
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networks of crosslinked hydrophilic polymer(s) (Peppas, Hilt et al. 2006).  These 

methods describe the production of micron-scale versions of hydrogels, and the 

strategies fall into two primary categories: serial methods and solution-based methods.  

In serial production techniques, microparticles are produced successively similarly to 

parts on a production line.  Solution-based methods generate microspheres 

simultaneously in a suspension.  Detailed below are the advantages and disadvantages of 

these methods along with some examples. 

 

1.1.1 Serial Methods 

Serial methods of microparticle fabrication are usually mechanical in nature, 

which allows precise control over the size, distribution and sometimes geometry of the 

products.  One such method is micromolding (also known as micropatterning), in 

which gel precursors are cast in patterned molds and then crosslinked (Khademhosseini, 

Eng et al. 2006; Khademhosseini, Langer et al. 2006; Yeh, Ling et al. 2006; Rivest, 

Morrison et al. 2007). Khademhosseini et al. demonstrated fibroblast and stem cell 

encapsulation into both hyaluranic acid and PEG-diacrylate hydrogels of a variety of 

shapes using this technique (Khademhosseini, Eng et al. 2006).  A similar method 

utilizes photolithography to produce specific microparticle geometries.  In this case, gel 

precursors and photoinitiators are mixed under a photomask and then exposed to light 

that initiates gelation of unmasked regions, also enabling cell encapsulation (Beebe, 

Moore et al. 2000; Liu and Bhatia 2002).  Another strategy providing a great deal of 
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control over particle size is to crosslink droplets of gel precursor into microspheres 

within microfluidic channels (Nisisako, Torii et al. 2002; Xu, Nie et al. 2005; Um, Lee et 

al. 2008).  Yet another technique, atomization, involves mixing gel precursor with a 

crosslinker immediately prior to spraying the solution out of a nozzle in a fine mist 

(nebulization) using air or another gas (Kwok, Groves et al. 1991; Del Valle, Herrero et 

al. 2006; Xie, Marijnissen et al. 2006).  The sizes of the resulting microcapsules can be 

adjusted via the flow rates of solution and/or air during nebulization (Del Valle, 

Herrero et al. 2006).  Despite fine control over some microsphere properties, such 

methods usually require specialized equipment and their serial character can be time-

consuming, hindering scalability required for many applications. 

 

1.1.2 Solution-based Methods 

Solution-based microsphere production methods are highly scalable but sacrifice 

control over geometry and usually necessitate the use of organic solvents, surfactants, or 

other additives that could compromise biocompatibility (Edman, Ekman et al. 1980; 

Kemp, Meredith et al. 1983).  Surfactants act to stabilize phase-separated particles in 

suspension, inhibiting aggregation or coalescence but are extremely difficult to entirely 

remove.   

 

In precipitation polymerization, the polymer being formed is insoluble in its 

monomer/solvent solution upon formation and phase separates into droplets that 
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continue reacting to form microspheres (Odian 2004).  Nolan et al. employed this 

technique but avoided the use of organic solvents by co-polymerizing PEG-acrylate 

with N-isopropylacrylamide (NIPAm) in water to produce microgels with sub-micron 

hydrodynamic diameters (Nolan, Reyes et al. 2005).  Poly(NIPAm) (pNIPAm) 

possesses a lower critical solution temperature (LCST) above which it undergoes 

thermally induced phase separation, but pNIPAm is hydrophobic and thus promotes 

undesirable non-specific protein adsorption at physiological temperatures (Kawaguchi, 

Fujimoto et al. 1992; Boutris, Chatzi et al. 1997).  For this reason, maximizing the 

content of hydrophilic polymers such as PEG that resist non-specific protein 

adsorption is highly desirable. 

 

Emulsion polymerization is performed by mechanically agitating a binary 

immiscible mixture to create an emulsion followed by polymerizing the resulting 

droplets to form microspheres (Odian 2004).  Agitation by shaking or stirring dictates 

the size of the resulting phase-separated droplets.  This strategy was used by Hennink 

and colleagues to generate both PEG and dextran microspheres crosslinked using free-

radical polymerization in water without using surfactants (Franssen and Hennink 1998; 

Van Thienen, Demeester et al. 2008; Van Tomme, Mens et al. 2008).  The same group 

also attempted producing PEG microspheres by phase separating PEG in magnesium 

sulfate solutions and then by vigorously mixing the phases (Franssen and Hennink 

1998).   However, the method suffered from the formation of large aggregates.   
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Coacervation to form gelatin microcapsules is achieved slightly differently. 

Phase separation is achieved by partial desolvation and gradual aggregation of gelatin 

particles in solution (Arshady 1990).  Conventionally, ethanol is slowly added to a well-

stirred gelatin solution to partially desolvate the gelatin due to the more 

thermodynamically favorable water-ethanol interaction.  Sodium sulfate can also be used 

in lieu of ethanol to achieve the same effect (Arshady 1990).  Partially desolvated, the 

gelatin aggregates into droplets which solidify upon cooling and are subsequently 

crosslinked by formaldehyde to form the microcapsules. 

 

1.2 Poly(ethylene glycol) (PEG) 

PEG is a strongly hydrophilic ethylene oxide polymer that is widely utilized in 

biomaterials because of its robust resistance to non-specific protein adsorption (Jeon, 

Lee et al. 1991; Elbert and Hubbell 1996; Banerjee, Irvine et al. 2000; Groll, Haubensak 

et al. 2005; Nolan, Reyes et al. 2005; Lussi, Falconnet et al. 2006; Scott, Nichols et al. 

2008).  Protein adsorption onto implanted materials may promote adverse biological 

responses such as thrombosis via activation of platelets, complement, and/or the 

coagulation cascade (Groth, Derdau et al. 1992; Kao, Sapatnekar et al. 1996; Karlsson, 

Nygren et al. 1996; Borowiec, Venge et al. 1997; Jenney and Anderson 1999; Janatova 

2000; Brodbeck, Colton et al. 2003; Videm 2004).  In solution, the high oxygen content 

of PEG results in extensive hydrogen bonding with water to form a hydration shell that, 

in conjunction with steric repulsion of the polymer chains, confers substantial resistance 
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to non-specific protein adsorption (Bailey and Kaleske 1976; Jeon, Lee et al. 1991).  

Additionally, PEG derivatives possessing reactive moieties can be synthesized with high 

efficiency from its hydroxyl endgroups, permitting subsequent conjugation of 

biomolecules or formation of hydrogels (Harris 1997).  Importantly and as noted earlier, 

PEG also exhibits LCST behavior without which our microsphere fabrication method 

would be impossible (Bailey and Callard 1959; Bailey and Kaleske 1976; Saeki, 

Kuwahara et al. 1976; Bae, Lambert et al. 1991).  These highly desirable and necessary 

properties drove our interest in fabricating microspheres exclusively from PEG. 

 

1.3 Lower Critical Solution Temperature 
(LCST) 

 

Generally, a LCST is a critical temperature below which all compositions of a 

mixture are miscible and thus exist in a single phase (Jenkins, Kratochvil et al. 2009).  If 

the temperature of a mixture is raised above the LCST of one of its components, that 

component undergoes thermally induced phase separation by either nucleation and 

growth or by spinodal decomposition (SD) (Crist and Nesarikar 1995; Robeson 2007) 

(Figure 1.1).  By definition, the minimum value occurring at the intersection of the 

binodal line and spinodal line is the LCST.  Whether nucleation and growth or SD 

occurs depends on how phase boundary is crossed.  If only the binodal line is crossed, 

solvation of the component becomes thermodynamically metastable.  Under this 

scenario, phase separation is favorable but only achieved by nucleation and 
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Figure 1.1 – Generic Phase Diagram Illustrating LCST Behavior.  Depending on 
the volume fraction (composition) of polymer, the type of phase separation (binodal or 
spinodal) and temperature at which it occurs varies.  The LCST corresponds to the 
critical concentration (~50% w/v here) at which the spinodal and binodal lines 
intersect.  
 

growth (Robeson 2007).  If instead the spinodal line is crossed, solvation is unstable and 

SD will occur (Robeson 2007).  However, for SD to occur exclusively the phase 

boundary must be crossed at the LCST, as only at that temperature does the mixture 

transition from stable to unstable without passing through a metastable region.  Note 

that phase separation is visually accompanied by an increase in turbidity or cloudiness of 

a solution corresponding to the cloud point (a temperature), and this value only 

corresponds to the LCST at the critical composition.  For simplicity, an experimentally 

determined cloud point representing the binodal line is often reported rather than an 

LCST (Bae, Lambert et al. 1991; Robeson 2007). 
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Considering only binary aqueous polymer solutions, the LCST of a polymer is 

dependent upon an array of factors affecting solubility (Bailey and Callard 1959; Saeki, 

Kuwahara et al. 1976; Yen, Raghavan et al. 1996; Sun and King 1998; Zhang and 

Cremer 2006; Robeson 2007; Cho, Zhang et al. 2008).  Under identical solution 

conditions, polymers with higher hydrophobicity usually possess lower LCSTs due to 

their higher thermodynamic cost of solvation (Bailey and Callard 1959; Zhang and 

Cremer 2006; Cho, Zhang et al. 2008).  Increasing molecular weight (MW) also tends to 

depress the LCST and broadens the spinodal and binodal lines, but these effects are 

increasingly dampened as the MW increases (Bailey and Callard 1959; Saeki, Kuwahara 

et al. 1976; Bae, Lambert et al. 1991; Yen, Raghavan et al. 1996).  Higher pressures also 

lower the LCST by weakening hydrogen bonding and increasing hydrophobic 

interactions (Sun and King 1998).  Of all factors used to alter the LCST, perhaps the 

most well-known and exploited is changing the salt content of the solution.  The effect 

of salt on the LCST follows the Hofmeister series, which is typically used to increase or 

decrease the solubility of proteins (or the LCST of polymers) with chaotropic and 

kosmotropic salts, respectively (Hofmeister 1888; Bailey and Callard 1959; Collins and 

Washabaugh 1985; Yen, Raghavan et al. 1996; Kunz, Lo Nostro et al. 2004; Zhang and 

Cremer 2006; Cho, Zhang et al. 2008).  More specifically, kosmotropic salts have been 

shown to linearly decrease the LCST of PEG in a concentration-dependent manner, 

with salts of more potent Hofmeister anions (e.g. CO3
2-, SO4

2-, etc.) inducing stronger 

effects (Bailey and Callard 1959; Yen, Raghavan et al. 1996; Cho, Zhang et al. 2008).  
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Using this technique, the LCST of PEG can be reduced from near the boiling point of 

water to below room temperature (Bailey and Callard 1959; Yen, Raghavan et al. 1996). 

 

The molecular mechanism by which Hofmeister salts operate has been 

controversial up until recently.  It was long believed that a major contributor to the 

phenomenon was the ability of the series to affect the structure of bulk water (its 

hydrogen bond network), which in turn altered solubility (Franks 1973; Schuster, 

Zundel et al. 1976; Zaslavsky, Mestechkina et al. 1983; Zaslavsky, Bagirov et al. 1989; 

Gupta, Nath et al. 2002).   However, recent evidence has emerged that largely dismisses 

the notion that the ions extensively alter bulk water structure beyond their immediate 

few hydration shells (Omta, Kropman et al. 2003; Gurau, Lim et al. 2004; Koga, Westh 

et al. 2004; Kunz, Lo Nostro et al. 2004; Collins, Neilson et al. 2007; Smith, Saykally et 

al. 2007).  Instead, direct ion-macromolecule interactions have been implicated as the 

key players in the phenomenon (Song, Ryoo et al. 1991; Bostrom, Williams et al. 2001; 

Schellman 2003; Pegram and Record 2006).  Specifically concerning the ability of 

kosmotropic salts to lower the LCST of polymers, the ions are thought to operate by 

both increasing the cost of hydrophobic hydration and weakening hydrogen bonds.  It 

becomes more thermodynamically unfavorable to solvate macromolecules in the 

presence of the ions due to increased surface tension at the polymer-water interface 

(Zhang, Furyk et al. 2005; Cho, Zhang et al. 2008).  Hydrogen bonds formed directly 

between water and polymer were found to be weakened due to polarization by the 

anions, which would likely disrupt the unique hydration shell of PEG and be the 
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primary cause of the ions reducing its LCST (Zhang, Furyk et al. 2005; Cho, Zhang et 

al. 2008). 

 

 

1.4 PEG Microsphere Fabrication Technique 
 

We developed a method of engineering 100% PEG microspheres in aqueous 

solution without surfactants by thermally phase separating and then crosslinking 

reactive PEG derivatives.  Upon phase separation, spherical PEG-rich domains formed 

and grew in size over time by a process called coarsening.  A crosslinking reaction 

occurred between the PEG derivatives within the phase-separated domains during 

coarsening until the gel point was reached, forming hydrogel microspheres.  The sizes 

of the formed microspheres were affected by the rate of gelation relative to the rate of 

coarsening as well as the extent of reaction both before and after phase separation.  

 

1.4.1 Phase Separation and Coarsening 

Phase separation of PEG in solution was promoted by the addition of the 

kosmotropic salt sodium sulfate to lower the cloud point to just above room 

temperature.  If phase separation occurs by SD, an initially percolated web-like structure 

results that eventually breaks down into spherical polymer-rich domains (McMaster 

1975; Siggia 1979; Lauger, Lay et al. 1994).  This occurs in off-critical polymer solutions, 
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in which the volume fraction of the polymer substantially deviates from that 

corresponding to the LCST.  Nucleation and growth on the other hand simply results in 

the formation of spherical domains (Friedlander 1977; Gunton, Miguel et al. 1983; 

Ratke and Voorhees 2002).  Whether by nucleation or SD, the manifested spherical 

domains grow in size (coarsen) by coalescence and/or Ostwald ripening (Friedlander 

1977; Gunton, Miguel et al. 1983; Ratke and Voorhees 2002).  Coalescence results from 

collision and subsequent fusion of phase-separated domains caused by Brownian 

motion, fluid flow or buoyancy effects (Friedlander and Wang 1966; Siggia 1979; 

Gunton, Miguel et al. 1983).  Ostwald ripening results from mass transfer from smaller 

domains to larger domains by diffusion of minority phase molecules through the 

majority phase (Lifshitz and Slyozov 1961; Wagner 1961; Gunton, Miguel et al. 1983).  

In classical coarsening by coalescence and/or Ostwald ripening, the mean sizes of the 

phase-separated domains evolve according to the power law 3/1timeR  , where R  is a 

characteristic length scale of the phase-separated domains (Lifshitz and Slyozov 1961; 

Friedlander and Wang 1966; Crist and Nesarikar 1995).  Unabated, coarsening 

ultimately results in the formation of two distinct phase-separated layers due to 

differences in the densities of the phases (Figure 1.2).   
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Figure 1.2 – Uninterrupted Coarsening of Unreactive PEG.  Following phase 
separation of PEG-OH, resultant spherical domains will coarsen over time until two 
distinct layers of the phases are formed due to differences in the densities of the phases. 
 

1.4.2 Gelation and Buffer Exchange 

 To form hydrogel microspheres rather than two distinctly layered phases, 

functionalized PEG was phase-separated into spherical domains and allowed to react 

during coarsening (Figure 1.3).  We utilized eight-arm PEG derivatized either with 

vinylsulfone groups (PEG8-VS) or amine groups (PEG8-amine), which over time react 

in aqueous solution to form a bulk hydrogel (Scott, Nichols et al. 2008).  This same 

reaction occured within the PEG-rich domains during their growth by coarsening until 

the gel point was reached.  Upon gelation, coarsening was arrested and a microsphere 

version of the bulk hydrogel was formed.  The extent of coarsening that occured prior 

to gelation affected the mean size of the PEG-rich domains and thus the mean size of 

the resulting microspheres.  After fabrication, microspheres were simply buffer 

exchanged into PBS to remove the sodium sulfate. 
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Figure 1.3 – Gelation of Phase-Separated PEG Derivatives.  Following phase 
separation of reactive PEG derivatives, crosslinking will occur within the PEG-rich 
domains during coarsening until the gel point is reached.  At the gel point, coarsening is 
halted and hydrogel microspheres are formed. 
 

 

1.5 Objectives 

The primary goal of this investigation was to gain insight behind the mechanism 

of microsphere formation by the described method.  This was achieved by specifically 

probing the effects on microsphere size of various factors affecting the reaction 

conditions.  Observed influences of these factors on size were analyzed quantitatively 

and qualitatively to generate a probable mechanism of formation.  Though this 

investigation tested a range of conditions for microsphere formation, it was conducted 

within the context of a separate goal to make the microspheres under mild conditions 

and thus harsh reaction conditions (e.g. extreme pHs or temperatures) were generally 

avoided. 

 

Gel

Droplets grow by coarsening as r  time

Temp  LCST

LCST  Temp

Time PEG phase

Water-rich phase

Phase-separated PEG-rich dropletsPEG + Na2SO4

Temp  LCST

LCST  Temp

Time

Reactive PEG 
derivatives + Na2SO4

Coarsening proceeds until gel point reached,
locking in microsphere size

Point

Crosslinking reaction within droplets
Hydrogel

microspheres



15 

 

Preparation of the microspheres under mild conditions was desirable due to 

their intended use in biological applications.  Because of their anticipated usage, the 

protocol by which they are produced needed to (1) allow conjugation of biomolecules 

(e.g. proteins or peptides) during fabrication and (2) minimize the use of additives such 

as organic solvents and surfactants, which can be difficult to remove and can 

compromise cell viability (Edman, Ekman et al. 1980).  The first requirement in part 

motivated the use of vinylsulfone-derivatized PEG, as vinylsulfone is able to undergo 

nucleophilic conjugate addition reactions at useful rates under physiological pH and 

temperature (Masri and Friedman 1988; Wacker, Scott et al. 2006).  The second 

requirement was fulfilled by reducing the LCST of PEG with salt, permitting phase 

separation below temperatures that would accelerate biomolecule degradation without 

employing additives.  As a bonus, the method used is relatively simple, requires no 

specialized equipment and is highly scalable so that mass quantities of microspheres can 

be produced with ease. 

 

 

 

 

 

 

 



16 

 

2. Methods 

2.1 Pre-reaction of PEG Derivatives 

All reagents were purchased from Sigma-Aldrich unless otherwise noted.  Eight-

arm PEG-vinylsulfone (PEG8-VS), PEG-amine (PEG8-amine), and PEG-acrylate 

(PEG8-acrylate) were prepared from eight-arm PEG-OH (PEG8-OH; mol. wt. 10,000; 

Shearwater Polymers, Huntsville, AL) as previously described† (Elbert and Hubbell 

2001; Wacker, Scott et al. 2006).  PEG8-VS and PEG8-amine solutions were prepared at 

20% (w/v) in Dulbecco’s phosphate buffered saline (Pierce) and sterile filtered with 

0.22 m syringe filters (Millipore).  PEG8-VS was ‘pre-reacted’ with PEG8-amine below 

the cloud point by combining the solutions at a 1:1 ratio of vinylsulfone to amine 

groups for a total volume of 1 mL in 1.5 mL centrifuge tubes.  Once mixed, these 

solutions were reacted by incubation at 37C with rotation at 40 rpm.  The progress of 

the reactions was followed by dynamic light scattering (DLS) until the desired mean 

effective diameter (dPCS) was reached.   

2.2 Cloud Point Determination 

Solutions of PEG8-VS, PEG8-acrylate or PEG8-amine were diluted to 2% (w/v) 

from the 20% (w/v) stock solutions with PBS and PBS + 1.5 M sodium sulfate to 
                                                 

† Evan A. Scott performed the synthesis of the PEG derivatives. 
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achieve the desired sodium sulfate concentration.  Cloud points of the polymers were 

determined by increasing solution temperatures in a thermal cycler in 2°C steps (PCR 

Sprint Thermal Cycler, Thermo Electron Corp.) and visually observing the temperature 

at which the cloud point was reached. 

 

2.3 Dynamic Light Scattering (DLS) 

Mean effective hydrodynamic diameters (dPCS) of pre-reacted solutions were 

monitored by dynamic light scattering/photon correlation spectroscopy (DLS/PCS; 

90Plus Particle Size Analyzer, Brookhaven Instruments, Holtsville, NY) at a scattering 

angle of 90° and wavelength of 658 nm.  Values of dPCS and statistics for the gathered 

data were performed with Brookhaven Instruments Particle Sizing Software (version 

2.34, Brookhaven Instruments).  Disposable polystyrene cuvettes (Brookhaven 

Instruments) were cleaned 1x with 95% ethanol and 2x with DI water prior to use. 

 

2.4 Microsphere Fabrication 

PEG8-VS/PEG8-amine microspheres were fabricated from pre-reacted 

solutions of PEG8-VS and PEG8-amine (dPCS  100 unless otherwise stated).  The 20% 

(w/v) PEG pre-reacted solutions were diluted to 2% (w/v) PEG with PBS and PBS + 

1.5 M sodium sulfate to a final sodium sulfate concentration of 0.6 M and volume of 50 

L.  The PEG8-VS/PEG8-amine solutions were then incubated above the cloud point 
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at 37C for 45 min unless otherwise stated.  Suspensions of microspheres were 

subsequently buffer exchanged into PBS 2x to remove the sodium sulfate by: (1) 

diluting the microsphere solution 3:1 with PBS and titurating, (2) centrifuging at 14,100g 

for 2 min, (3) removing the supernatant.  PEG8-acrylate/PEG8-amine microspheres 

were produced as above but in PBS + 0.8 M sodium sulfate incubated 5 min at room 

temperature and then 5 min at 95C. 

 

2.5 Microsphere Sizing 

Phase-contrast photomicrographs of microspheres were analyzed to determine 

microsphere diameters.  Three separately fabricated samples of microspheres at each 

condition were prepared and then diluted 3x either during buffer exchange into PBS or 

with the original reaction buffer.  Each sample was titurated to obtain a well-mixed 

suspension of microspheres, pipetted onto a cleaned glass microscope slide (Corning 

Inc.), covered with a cleaned glass coverslip (12 mm diameter, Ted Pella Inc.), and 

immediately imaged at 20X with an Olympus IX70 microscope (Olympus America, 

Melville, NY) to obtain several representative photomicrographs.  ImageJ software 

(NIH) was used to manually threshold and quantify >500 microsphere areas that were 

later converted to diameters for each reaction condition.  However, microspheres 

smaller than about 1.5 m in diameter were unable to be counted due to the lower 

fidelity of sizing the particles at 20X below that size.  In MATLAB (The Mathworks, 
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Inc.) 500 diameters were randomly selected for each condition and compared by a one-

factor ANOVA with a Scheffe post-hoc test. 

 

Microsphere diameters were converted to volumes to generate polydispersity 

indices (PDIs).  Volume-based polydispersity indices (PDIs) were calculated as the 

volume average volume vV  over the number average volume nV . 
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2.6 Power Law Models‡ 

2.6.1 Microsphere Size as a Function of Reaction Rate 

A power law for microsphere size as a function of pH-based reaction rate 

changes was derived for the second-order reaction between functional groups on the 

                                                 

‡Dr. Donald Elbert helped develop this model.  
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derivatized PEG.  The reaction of vinylsulfone ( VS ) groups on PEG8-VS with amines 

on PEG8-amine is primarily due to the more nucleophilic 2NH  groups instead of the 

 3NH  groups. 

VSNHVSNH
fk

 2      (2.4) 

The rate of the irreversible reaction is dominated by: 

]][[
][

2 VSNHk
dt

VSNHd
f 


     (2.5) 

The Henderson-Hasselbach equation describes the relationship between pH thus 

proportion of nucleophilic amines: 
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By conservation we have of  the total number of  free amines: 

][-][][ 23 -NH-NH-NH tot
     (2.7) 

Plugging (2.7) into (2.6) and rearranging for ][ 2NH : 
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pH is held constant by buffering and thus the fraction of total amines as 2NH  groups 

is constant throughout the reaction.  Note that totNH ][  is not 0,][ totNH , which is the 

initial concentration of amine groups.  Substituting (2.8) into (2.5) gives reaction rate as: 

][][
101

][
VSNH

k

dt

VSNHd
totpHpKa

f 





      (2.9) 

The reaction mixture always contains a 1:1 molar ratio of amine to vinylsulfone groups 

due to the initial concentrations of the reagents and the reaction stoichiometry: 

totNHVS ][][       (2.10) 

Expressing totNH ][  (and  ][ VS ) as a function of  the concentrations of  bonds 

formed, the rate of  reaction can be described solely in terms of  ][ VSNH  : 

][][][ 0, VSNHNHNH tottot       (2.11) 

2
0, ])[]([

101

][
VSNHNH

k

dt

VSNHd
totpHpKa

f 





      (2.12) 

Separating variables and integrating: 

C
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



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1

0,

    (2.13) 

Applying the initial condition 0][ VSNH at 0t and rearranging: 
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pHpKa
f
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VSNHNHNH
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
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The degree of conversion   is defined as:  

0,][

][

totNH

VSNH




      (2.15) 

Substituting (2.15) into (2.14): 

pHpKa
ftot tkNH





 101

][

)1(
0, 




     (2.16) 

The time to reach a certain extent of reaction is then: 

pHpKa
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


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
 101

][
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)1( 0,


     (2.17) 

Gelation should occur at the same degree of conversion (the gel point) regardless of 

pH, although this degree of conversion at which coarsening stops is unknown. 

 

As PEG-rich domains grow by coarsening, their mean diameters d
 
scale with 

time by some scaling exponent  .  From (2.17), we can represent this scaling as in 

Equation (2.18):  


 )101( pHpKatd       (2.18) 

The scaling exponent   was determined by constructing a log-log plot of  

experimentally determined mean microsphere diameters fabricated at different pHs 
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against pHpKa  101  evaluated at corresponding pH values.  A pKa value of  9.8 

corresponding to primary amines was used.  The slope of  the plot was  .    

  

2.6.2 Microsphere Size as a Function of Fractional Time 
to the Gel Point 

 

A power law for microsphere size as a function of fractional time remaining to 

the gel point was derived.  Fractional times remaining until PEG solutions pre-reacted 

to various degrees reached the gel point were calculated as in Equation (2.19).  The time  

gel

reactionpregel
frac t

tt
t 

      (2.19) 

at which pre-reacting solutions (20% w/v PEG, 37C, pH 7.4) reached the gel point, 

gelt , was approximately 7 h.  The duration a PEG solution had been pre-reacted, 

reactionpret  , was used to express a normalized fractional time remaining to the gel point 

fract .  Since the time to reach the gel point t  is linearly proportional to the time 

remaining to the gel point (considered in section 2.6.1), mean PEG-rich domain 

diameter growth should scale with time during coarsening as: 


 fracttd       (2.20) 

The scaling exponent   was determined by constructing a log-log plot of  

experimentally determined mean microsphere diameters fabricated PEG solutions pre-
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reacted various extents against fract  for corresponding pre-reacted solutions.  The slope 

of  the plot was  .     

 

2.7 Statistics 

A p-value < 0.05 was considered significant.  Data were mean ± standard 

deviation unless otherwise indicated.  Error in the power law plots was calculated by 

propagation of error. 
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3. Results 

3.1 Microsphere Fabrication 

Hydrogel microspheres were formed by gelation of reactive PEG derivatives 

that had been phase separated into spherical PEG-rich domains above the cloud point.  

Within these domains, a conjugate addition reaction (crosslinking) occurred between 

electrophilic vinylsulfone groups on eight-arm PEG-vinylsulfone (PEG8-VS, 10 kDa) 

and nucleophilc amines on eight-arm PEG-amine (PEG8-amine, 10 kDa) (Figure 3.1).  

Microsphere fabrication under mild conditions (pH 7.4, 37°C) was only achieved by 

utilizing solutions containing PEG8-VS and PEG8-amine that were initially reacted prior 

to phase separation (‘pre-reacted’).   

   

 

Figure 3.1 – Overview of Microsphere Production.  The conjugate addition reaction 
between eight-arm PEG-vinylsulfone (PEG8-VS) and eight-arm PEG-amine (PEG8-
amine) was followed by dynamic light scattering (DLS) to detect the formation of PEG 
oligomers/microgels during crosslinking prior to phase separation (‘pre-reaction’).  At a 
certain mean microgel diameter, the pre-reacted solution was diluted in PBS + 0.6 M 
sodium sulfate and then heated above the cloud point to produce microspheres. 
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The progress of pre-reaction toward the gel point was followed by dynamic light 

scattering/photon correlation spectroscopy (DLS/PCS), which provided an intensity-

weighted (i.e. z-average) measure of the mean effective diameter (dPCS) of polymers in 

the reacting solution.  A dPCS of about 10 nm was observed after a few hours of reaction, 

while a dPCS of about 180 nm was found just prior to gelation.  Our lab has found via gel 

permeation chromatography of pre-reacted solutions that the intensity-weighted signal 

of right angle light scattering is much more sensitive to the presence of larger reacted 

PEG species (microgels) than monomers and oligomers that form§.  Thus, the dPCS from 

DLS was a measure of the average size of only the largest PEG oligomers/microgels 

but was a useful metric to monitor the progress of pre-reaction.   

 

The extent of pre-reaction in PEG solutions used to form microspheres under 

mild conditions influenced their final sizes.  Microspheres were initially formed from 

solutions that were pre-reacted to dPCS   100 nm and diluted to 2% (w/v) PEG in PBS 

+ 0.6 M sodium sulfate at room temperature.  Dilution was important in slowing the 

pre-reaction rate, as a solution with dPCS   100 nm was about 30 min from the gel point 

at 20% (w/v) PEG and 37°C.  Diluted to 2% (w/v), gelation was not observed within 

24 h, consistent with a 100-fold decrease in the rate of the second-order reaction 

expected for the 10-fold dilution.  The solutions were diluted in PBS + 0.6 M sodium 

sulfate, which was below the cloud point of the solution at room temperature.  To cause 

                                                 

§ Evan A. Scott prepared the samples for GPC analysis and Dr. Donald Elbert analyzed 
the raw data. 
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phase separation, the temperature of the diluted solution was raised above its cloud 

point to 37°C, producing spherical, PEG-rich domains.  Within 45 min, stable PEG8-

VS/PEG8-amine microspheres formed that were stable following buffer exchange into 

PBS (Figure 3.2).    As the length of the pre-reaction step was increased, i.e. at larger dPCS 

values, the sizes of the formed microspheres decreased (Figure 3.3).  Generally, 

microspheres formed aggregates during production that were easily dispersed via 

tituration.  No stable microspheres were observed to form under these conditions if the 

PEG was not pre-reacted. 

 

 

Figure 3.2 – Representative Photomicrograph of Microspheres.  Phase-contrast 
photomicrograph at 20X magnification of PEG8-VS/PEG8-amine microspheres formed 
from a pre-reacted PEG solution.  Image was captured following buffer exchange into 
PBS. 

50 m
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Figure 3.3 – Influence of Pre-reaction Extent on Microsphere Size.  PEG8-VS and 
PEG8-amine were pre-reacted to various degrees.  Solutions were diluted to 2% (w/v) 
PEG in PBS + 0.6 M sodium sulfate, incubated for 45 min at 37ºC and then buffer 
exchanged into PBS.  Under these conditions, stable microspheres were only formed 
using pre-reacted PEG.  Increased pre-reaction (less time to gel point or larger dPCS 
values) significantly decreased the sizes of mean microsphere diameters.  Data represent 
n = 500 microspheres.  * p < 0.05 versus all other conditions. 
 

3.2 Cloud Point Measurements 

Pre-reaction of  the PEG derivatives may have been critical in obtaining stable 

microspheres due to the relatively high cloud point of  PEG8-amine.  As observed in the 

literature, cloud points of  the PEG derivatives decreased linearly with increasing sodium 

sulfate concentration.  However, the endgroups of  the derivatives dramatically impacted 

the cloud point.  While the 2% (w/v) PEG8-VS in PBS + 0.6 M sodium sulfate 

possessed a cloud point near room temperature, PEG8-amine exhibited a cloud point 

>100°C under the same conditions (Figure 3.4).  Though not directly utilized in  
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Figure 3.4 – Cloud Points of PEG Derivatives.  Cloud point data for 2% (w/v) 
PEG8-VS, PEG8-amine (PEG8-Am) and PEG8-acrylate (PEG8-Ac) in PBS + sodium 
sulfate at pH 7.4.  As reported elsewhere, a linear decrease in LCST with increasing salt 
concentrations was observed.  Data represent n = 3 and standard deviations were ≤ 1ºC 
for all points. 
 

this study, the cloud point of  eight-arm PEG-acrylate (PEG8-acrylate, 10 kDa) was also 

investigated and found to be substantially lower than that for PEG8-VS. 

 

3.3 Effects of Reaction Conditions on 
Microsphere Size 

During buffer exchange into PBS to remove the sodium sulfate, microspheres 

swelled to much greater sizes (Figure 3.5).  Both the rate and duration of  the 

crosslinking reaction were found to affect swollen microsphere size (following buffer 

exchange), but only the kinetics influenced unswollen size (prior to buffer exchange).  

PEG8-Ac
PEG8-VS
PEG8-Am
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Figure 3.5 – Swelling of Microspheres upon Buffer Exchange.  Representative 
phase-contrast photomicrographs at 20X magnification demonstrating swelling of 
PEG8-VS/PEG8-amine microspheres following buffer exchange into PBS.  All 
microspheres were formed from pre-reacted solutions (dPCS  100 nm) diluted to 2% 
(w/v) in PBS + 0.6 M sodium sulfate and incubated at 37ºC for: (i) 15 min at pH 6.5 
without buffer exchange (ii) 15 min at pH 6.5 with buffer exchange (iii) 15 min at pH 
7.4 without buffer exchange (iv) 15 min at pH 7.4 with buffer exchange (v) 105 min at 
pH 6.5 without buffer exchange (vi) 105 min at pH 6.5 with buffer exchange (vii) 75 
min at pH 7.4 without buffer exchange (viii) 75 min at pH 7.4 with buffer exchange.  
Scale bars represent 25 m.   
 

3.3.1 Influence of Reaction Length 

Increased lengths of reaction of the PEG-rich domains resulted in decreased 

swollen microsphere sizes, but after 45 min at pH 7.4 or 75 min at pH 6.5, the swollen 

sizes did not decrease further (Figure 3.6).  These asymptotic swollen sizes were reached  
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Figure 3.6 – Influence of Reaction Time on Microsphere Size.  Microsphere 
diameters decreased with increasing reaction (incubation) time, with pH 6.5 
microspheres approaching but not matching pH 7.4 sizes even at extended timepoints.  
Microspheres were formed from pre-reacted solutions of PEG8-VS and PEG8-amine 
(dPCS  100 nm), diluted to 2% (w/v) in PBS + 0.6 M sodium sulfate, incubated at 37ºC 
for various durations, and buffer exchanged into PBS. For pH 6.5 reactions, PEG 
solutions were pre-reacted to dPCS  150 nm to allow multiple observations prior to 
microsphere aggregation/bulk gel formation.  Data represent n = 500 microspheres at 
each timepoint.  * p < 0.05 versus the 105 min timepoint for pH 6.5 and # p < 0.05 
versus the 75 min timepoint for pH 7.4 (no significant changes in size were observed 
after 75 min at pH 6.5 or after 45 min at pH 7.4).  
 

more quickly at the higher reaction pH.  Despite the large differences in the sizes of 

swollen microspheres, unswollen sizes were unaffected by the duration of the reaction.  

Thus, the swelling ratio (Q, the increase in volume after buffer exchange) decreased 

with increasing reaction time above the cloud point (Figure 3.7). 
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 pH 6.5 pH 7.4 

Incubation time (min) 15 105 15 75 

Mean unswollen diameter (mm) 8.78±3.83 8.37±3.65 5.51±1.91 4.90±1.66 

Mean swollen diameter (mm) 32.41±14.92 16.10±8.99 21.44±9.65 9.36±5.29 

Q (swelling ratio) 50.32 7.13 58.98 6.99 
 

Figure 3.7 – Swelling Ratios of Microspheres.  Q was the ratio of the unswollen 
mean volume to the swollen mean volume, with volumes calculated from mean 
diameters.  Differences in mean microsphere diameters were statistically significant 
except for unswollen microspheres at pH 6.5 (15 vs. 105 min) and pH 7.4 (15 vs. 75 
min). 

 

3.3.2 Influence of Reaction Rate 

Unlike the reaction length, a lower pH during the crosslinking reaction increased 

the sizes of both swollen and unswollen microspheres, which is contrasted with the 

length of reaction time that only influenced the sizes of swollen microspheres (Figure 

3.7; Figure 3.8).  The swelling ratio was relatively unaffected by the pH of the reacting 

solution (Figure 3.7).  Temperature was also observed to impact microsphere size, with 

higher reaction temperatures resulting in smaller microspheres (Figure 3.9). 

3.3.3 Microsphere Size Distributions 

Polydispersity indices were calculated for microspheres formed at various pHs 

and generally decreased with increasing pH (Figure 3.8, inset).  Representative observed 

distributions of the microspheres more closely resembled that expected for coalescence 

than for Ostwald ripening (Figure 3.10). 
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Figure 3.8 – Influence of Reaction pH on Microsphere Size.  Microsphere 
diameters and polydispersity indices (PDIs) were observed to decrease with increasing 
pH.  Microspheres were formed from pre-reacted solutions of PEG8-VS and PEG8-
amine (dPCS  100 nm) diluted to 2% (w/v) in PBS + 0.6 M sodium sulfate at various 
pHs, incubated at 37ºC for 45 min, and buffer exchanged into PBS.  Data represent n = 
500 microspheres at each pH.  * p < 0.05 versus all other pHs and # p < 0.05 versus pH 
6.0 -7.4. 
 

 

Figure 3.9 – Influence of Reaction Temperature on Microsphere Size.  Phase-
contrast photomicrographs at 20X magnification of microspheres produced from pre-
reacted solutions of PEG8-VS and PEG8-amine (dPCS  100 nm) diluted to 2% (w/v) in 
PBS + 0.6 M sodium sulfate and incubated at pH 7.4 for: (i) 45 min at 37°C (ii) 10 min 
at 65°C (iii) 5 min at 95°C.  Scale bars represent 25 m. 
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Figure 3.10 – Microsphere Size Distributions.  Distributions of formed 
microspheres were similar to those expected for coalescence.  A) Theoretical size 
distributions expected to result from Ostwald ripening or coalescence.  B and C) 
Observed distributions of PEG8-VS/PEG8-amine microspheres formed from pre-
reacted solutions of PEG8-VS and PEG8-amine (dPCS  100 nm) diluted to 2% (w/v) in 
PBS + 0.6 M sodium sulfate and incubated at 37°C for 45 min at: (B) 7.4 (C) 8.5.  
Histograms were constructed using 100 bins for 500 randomly selected microspheres 
for each pH. 
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3.4 Power Law Plots 

The slopes of the power law plots revealed identical scaling exponent values.  

Log-log plots of mean microsphere diameter both versus fractional time remaining to 

the gel point (Figure 3.11) and versus the pH-based reaction rate (Figure 3.12) yielded 

slopes of 0.24.  Thus, the growth of the mean PEG-rich domain diameters during 

coarsening for all observed conditions approximately scaled as 4/1timed  .  Note that 

for the pH-based plot, microspheres formed at pH 6 and 6.5 were not included in the 

analysis because their swollen sizes were far from asymptotic at 45 min as judged by the 

results in Figure 3.6.  As a result, these microspheres thus should swell to much greater 

degrees than microspheres produced at the higher pHs. 

 

 

Figure 3.11 – Power Law Plot of Fraction Time Remaining to Gelation versus 
Microsphere Size.  The log-log plot of mean microsphere diameters from Figure 3.6 
against the fractional (normalized) time remaining to the gel point at corresponding 
extents of pre-reaction.  Linear regression yielded a slope of 0.24, suggesting a 

4/1timeR   growth law. 
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Figure 3.12 – Power Law Plot of pH-based Reaction Rate versus Microsphere 
Size.  The log-log plot of mean microsphere diameters from Figure 3.8 against the 
derived pH-based reaction rate at corresponding pHs.  Linear regression yielded a slope 
of 0.24, suggesting a 4/1timeR   growth law. 
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4. Discussion 

Several factors influenced the production of 100% PEG microspheres via 

thermally induced phase separation in the absence of surfactants or organic solvents.  

Whether or not the PEG derivatives were pre-reacted was the most prominent 

influence on fabrication, as without pre-reaction stable microspheres were not observed 

to form under mild conditions (pH 7.4, 37°C).  Under these conditions, PEG8-VS but 

not PEG8-amine was observed to phase separate by cloud point measurements.  

Compared to amine groups, vinylsulfone groups are relatively hydrophobic due to their 

aliphatic vinyl group.  Additionally, the pKa of amine groups is 9.8, leading to a 

predominance of protonated, positively charged amine groups at pH 7.4 (Brown, 

Devadas et al. 1997).  Hence, the difference in cloud points was likely due to the 

increased hydrophobic hydration cost and diminished hydrogen bonding capability of 

PEG8-VS relative to PEG8-amine.  This same logic also explains the even lower cloud 

point of PEG8-acrylate.   

 

This discrepancy in cloud points likely resulted in PEG solutions that were not 

pre-reacted containing only spherical PEG8-VS-rich domains above the cloud point.  In 

this scenario, PEG8-amine still in solution would be sequestered from phase-separated 

PEG8-VS with which it has to react to form microspheres.  Alternatively, phase-

separated PEG-rich domains in pre-reacted solutions should contain oligomers and 

microgels such that both derivatives are sequestered together at very high local 
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concentrations.  Both of these factors should result in faster reaction rates within the 

PEG-rich domains for pre-reacted solutions.  The combination of pre-reacted solutions 

being much closer to the gel point and their faster crosslinking reactions should have 

substantially reduced the time to reach the gel point relative to non-pre-reacted 

solutions, leading to the stable formation of microspheres within 45 min. 

  

Sizes of microspheres formed from pre-reacted PEG solutions were affected by 

the extent of pre-reaction as well as the pH, temperature and duration of the 

crosslinking reaction above the cloud point.  These results demonstrated that the final, 

swollen microsphere sizes were governed primarily by two factors: (1) the degree of 

PEG-rich droplet coarsening prior to reaching the gel point, and (2) the extent of 

crosslinking within microspheres beyond the gel point.  These dependencies provide 

insight into the mechanisms underlying the formation and swelling of cloud-point 

microspheres. 

 

4.1 Coarsening Prior to Reaching the Gel 
Point 

 

Coarsening of the phase-separated PEG-rich domains occurred by a 

combination of Ostwald ripening and coalescence.  Although the two mechanisms 

follow the same growth law of 3/1timeR  , they can be distinguished by the resulting 

microsphere size distributions (Crist and Nesarikar 1995).  During coarsening, the sizes 
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of phase-separated domains are polydisperse and the observed microsphere size 

distributions likely reflected the polydispersity of the phase-separated domains at the 

time of gelation (Lifshitz and Slyozov 1961; Wagner 1961; Friedlander and Wang 1966; 

Crist and Nesarikar 1995; Vemury and Pratsinis 1995).  The leftward-shifted means of 

the distributions are indicative of coarsening dominated by coalescence rather than 

Ostwald ripening (Figure 3.10) (Crist and Nesarikar 1995).   Our lab has also frequently 

observed coalescence of fluorescently labeled PEG-rich domains by confocal 

microscopy under typical formation conditions, further suggesting the dominance of 

this process**.  

 

Coarsening was halted by gelation and thus the length of time required to reach 

the gel point was a major determinant of microsphere size.   One method used to alter 

the time to gelation was changing the rate of the crosslinking reaction by varying the 

temperature.  The rate of reaction increases with increasing temperature according to 

the Arrhenius equation, and thus the gel point should be reached earlier (Jenkins, 

Kratochvil et al. 2009).  With less time for coarsening, PEG-rich domains are smaller 

when they reach the gel point.  Consequently, smaller hydrogel microspheres would be 

expected, which was in agreement with our observation (Figure 3.9).  Coarsening should 

also proceed more quickly at high temperatures, which should lead to the formation of 

larger microspheres.  However, the rate of reaction increases exponentially with 

                                                 

** Evan A. Scott designed and carried out these experiments. 
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temperature while the rate of coarsening only increases linearly, overwhelming any 

apparent qualitative increase in coarsening rate (Friedlander 1977; Marqusee and Ross 

1984).   

 

Reaction rate was also modulated by varying the pH, with more acidic 

conditions resulting in larger microspheres.  The rate of the second-order reaction 

between vinylsulfone and amine groups is decreased at lower pH due to a greater 

proportion of less nucleophilic, protonated amines.  Analysis of the effect of pH 

(detailed in Section 2.9.1) was performed and predicted that mean microsphere 

diameters should scale with pH as )101( pHpKad  , where   is a scaling factor.  As 

classical coarsening possesses a 3/1timeR   power law, an   value of 1/3 was 

expected.  Instead, linearization and linear regression revealed a value of 0.24, which 

suggested a 4/1timeR   power law (Figure 3.12). 

 

Alternatively to changing the reaction rate, the time required to reach the gel 

point was also changed by the proximity to the gel point at the beginning of the 

reaction.  Pre-reaction of the PEG derivatives should simply bring the solution closer to 

the gel point.  With less time required for gelation upon phase separation, the gel point 

would occur earlier in coarsening, resulting in smaller microspheres.  As detailed in 

Section 2.9.2, this effect was expressed as a fractional time remaining to the gel point via 

the power law 


fractd   that predicts that mean diameters of microspheres fabricated 
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from different pre-reacted PEG solutions should again scale with some factor  .  

Surprisingly, linearization of the data again revealed an   value of 0.24 for a 

4/1timeR   growth law instead of the relationship expected for classical coarsening 

(Figure 3.11). 

 

Both power law plots supported a 4/1timeR   growth law instead of  a 

3/1timeR   growth law, which is plausible based on previous results in the literature for 

off-critical polymer compositions.  Immediately following phase separation, the PEG-

rich domains may be connected in a percolated, network-like structure (Lauger, Lay et 

al. 1994).  Surface tension drives the flow from the thin, connected web of  phase 

separated polymer into larger clusters (McMaster 1975; Siggia 1979).  During this initial 

flow-driven period, a relatively rapid timeR   growth law is followed (McMaster 1975; 

Lauger, Lay et al. 1994; Crist 1996; Termonia 1997).  Upon reaching the percolation-to-

cluster transition (PCT), the growth law slows dramatically to 4/1timeR  , eventually 

evolving to the classical 3/1timeR   growth law (Crist 1996; Termonia 1997).   

 

Additional evidence for the occurrence of  a PCT during coarsening was found 

by DLS.  Monitoring the dPCS of  PEG domains just after phase separation, we have 
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observed growth to be linear during the first few minutes of  coarsening††.  This 

indicated coarsening proceeded according to a timeR   power law initially following 

phase separation.  Soon after, growth apparently plateaued.  These results of  a growth 

regime shift have been previously reported in studies following polymer coarsening via 

light scattering (Lauger, Lay et al. 1994).  Additionally, molecular dynamics simulations 

suggest a transition from the timeR   growth law to a 4/1timeR   growth law 

(Termonia 1997).  The 4/1timeR   growth law observed here may reflect that the gel 

point is reached during the intermediate period after the PCT but before the 

3/1timeR   regime of  classical coarsening is achieved.  Together these results imply 

that the pre-reacted PEG is at an off-critical concentration and phase separation occurs 

at least in part by SD to initially form a percolated structure that subsequently breaks 

down into the gelling spherical PEG-rich domains. 

 

Despite the above conclusion being logically sound, the potential exclusion of  

some smaller microspheres from distributions sized could have skewed the observed   

value and thus the power law.  Some smaller microspheres may have been lost during 

buffer exchange, and those surviving the wash step with diameters < 1.5 m were too 

small to accurately size from phase-contrast photomicrographs at 20X.  These 

experimental shortcomings would have been more pronounced for microspheres with 

smaller average diameters, because a larger proportion of  the population would be 
                                                 

†† Evan A. Scott designed and carried out these experiments.  
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prone to these effects.  In such cases the apparent mean size would be lower than the 

actual size, and this discrepancy would have been more marked for smaller means.  Thus 

for faster gelling conditions, the slope of  the power law plots could be skewed 

downward due to overestimation of  the average microsphere size, leading to smaller 

values of   .  Nonetheless, the remarkably identical exponents obtained in two separate 

sets of  experiments suggest that the 4/1timeR   growth law governs the sizes of  

microspheres formed under these conditions.         

  

4.2 Additional Crosslinking Beyond the Gel 
Point 

 

Final microsphere sizes were established from the swelling of unswollen 

microspheres upon buffer exchange into PBS.  Hydrogel swelling in this case likely 

resulted from externally higher osmotic pressure driving water into microspheres below 

their cloud point, a phenomenon observed for similarly thermoresponsive pNIPAm 

hydrogels (Wu, Hoffman et al. 1992; Dusek 1993; Yoshida, Uchida et al. 1995).  Above 

the LCST, the aqueous phase effectively becomes a poor solvent and is extruded from 

the gel, driving polymeric collapse and causing phase separation analogous to that of 

hydrophilic copolymers in organic solvent (Holtz and Asher 1997; Toyotama, Sawada et 

al. 2006).  Buffer exchange into PBS should bring the microspheres below the cloud 

point, restoring the aqueous phase as a good solvent and causing swelling.  
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While pH affected the sizes of both swollen and unswollen microspheres, the 

length of incubation beyond the gel point only affected the sizes of the swollen 

microspheres (Figure 3.7).  Coarsening should be halted after the PEG-rich domains 

reached the gel point and further reaction should not alter the sizes of unswollen 

microspheres.  However, further reaction beyond the gel point should increase the 

mean density of crosslinks within the microspheres and consequently reduce the degree 

of swelling Q  upon buffer exchange. 

  

The Flory-Rehner equation predicts the relationship between the mean crosslink 

density of  a polymeric network and its degree of  swelling given a number of  physical 

and thermodynamic parameters.   For gels (1) exhibiting a high degree of  swelling (Q  > 

10) and (2) possessing an average molecular weight between crosslinks cM  much 

smaller than the MW of  the polymer, the Flory-Rehner equation can be simplified to 

5/3
cMQ  (Flory 1950; Flory 1953; Anseth, Metters et al. 2002).  As the crosslinking 

proceeds, cM  should decrease based on the reaction rate and the combinatorics of  the 

endgroups.  Expected for gels of  the same composition, the asymptotic values of  Q  

were the ultimately the same ( asympQ   7) for microspheres formed at both pHs.  The 

faster rate of  crosslinking at the higher pH decreased the value of  cM  this value more 

quickly, leading to asympQ being reached sooner.  Though asympQ  was less than the value 

of  10 assumed by the simplified form of  the Flory-Rehner equation, the observed 
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asymptotic decrease in microsphere swelling was qualitatively in agreement with the 

relationship and thus its usage seemed appropriate.  While quantitative analysis of  the 

data in the context of  the full Flory-Rehner equation would be illuminating, detailed 

knowledge of  network defects and kinetics of  the reaction would be required.  Such 

analysis is beyond the scope of  this investigation. 

 

4.3 Inherent Characteristics of the Method 

Microspheres produced by this method were both polydisperse and observed to 

cluster during and after fabrication.  These clusters were usually easily dispersed by 

tituration, but if incubated for longer durations microsphere aggregates formed.  

Residual vinylsulfone and amine functional groups present on the surfaces of 

microspheres likely reacted with complimentary groups on other microspheres to form 

inter-microsphere crosslinks.  As more of these bonds were formed, larger groups of 

microspheres that were more difficult to disperse were produced.  Also, though most 

observed microspheres were spherical, the geometry of some appeared as though 

gelation occurred during coalescence of two or more particles (Figure 3.2).  The 

characterstics of polydispersity and clustering intrinsic to this technique must be suitable 

for the ultimate application of the microspheres. 
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The presented method of  microsphere fabrication differs from alternative 

techniques.  Compared to methods producing microparticles in a serial fashion, this 

solution-based method offers the easy production of  large quantities of  microspheres 

but lacks control over particle shape (Rivest, Morrison et al. 2007).  By thermally 

inducing phase separation of  PEG using sodium sulfate, organic solvents and 

surfactants that could be time consuming to remove and negatively affect 

biocompatibility are avoided.   Though most solution-based methods require these 

additives, they have also been avoided in variations of  emulsion polymerization, 

precipitation polymerization and gelatin coacervation (Arshady 1990; Franssen and 

Hennink 1998; Nolan, Reyes et al. 2005).  Instead of  an organic solvent, dextran has 

been used to promote phase separation of  PEG and make free-radical polymerized 

microspheres (Franssen and Hennink 1998).  However, dextran is more expensive and 

may be more difficult to remove than sodium sulfate.  Additionally, most of  these 

solution-based strategies rely on stirring/agitation to reduce the size of  polymer-rich 

domains prior to crosslinking or on surfactants to stabilize the particles and control 

growth.  Our method works in the absence of  mixing because gelation is timed to occur 

early in coarsening, generating microspheres of  controllable size without the use of  

surfactants.  The mild nature of  the method offers the possibility of  conjugating 

chemically reactive biomolecules to the microspheres during and/or after their 

formation.  Together, the simplicity, effectiveness, and flexibility of  this technique 

provides a promising route to engineer highly biocompatible microspheres for a host of  

applications. 
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4.4 Conclusions 

In summary, microsphere sizes were established primarily by the extent of 

coarsening that occurred prior to gelation and the degree of crosslinking within the 

microspheres beyond the gel point.  Analysis of microsphere sizes in conjunction with 

quantitative coarsening data suggested that phase separation occurred by off-critical 

spinodal decomposition, initially forming a web-like structure that quickly broke down 

into spherical PEG-rich domains by a percolation-to-cluster transition.  Size 

distributions of microsphere sizes indicated that coarsening of the PEG-rich domains 

was likely dominated by coalescence.  Using the principles outlined here, the properties 

of 100% PEG microspheres can be engineered for specific applications such as affinity-

based purification systems or as surface coatings (Singh, Bridges et al. 2007; Scott, 

Nichols et al. 2008).  However, they are perhaps best-suited as components of modular 

tissue engineering scaffolds due to their high biocompatibility, residual reactivity and 

ability to be formed under mild conditions that biomolecules could survive (Scott, 

Nichols et al. In preparation). 
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